WO2020027082A1 - Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film - Google Patents

Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film Download PDF

Info

Publication number
WO2020027082A1
WO2020027082A1 PCT/JP2019/029732 JP2019029732W WO2020027082A1 WO 2020027082 A1 WO2020027082 A1 WO 2020027082A1 JP 2019029732 W JP2019029732 W JP 2019029732W WO 2020027082 A1 WO2020027082 A1 WO 2020027082A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
rubber particles
meth
particles
film
Prior art date
Application number
PCT/JP2019/029732
Other languages
French (fr)
Japanese (ja)
Inventor
森田 亮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020533555A priority Critical patent/JP7452421B2/en
Priority to CN201980050752.XA priority patent/CN112513698B/en
Priority to KR1020217002173A priority patent/KR102496408B1/en
Publication of WO2020027082A1 publication Critical patent/WO2020027082A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film, a polarizing plate protective film, a roll of an optical film, and a method for producing an optical film.
  • Polarizing plates are used in display devices such as liquid crystal display devices and organic EL display devices.
  • the polarizing plate has a polarizer and a polarizing plate protective film.
  • a film containing cellulose acylate as a main component has been used as a polarizing plate protective film.
  • a film containing cellulose acylate as a main component has low moisture resistance, when it is used as a polarizing plate, the deterioration of a polarizer due to moisture under high temperature and high humidity may not be sufficiently suppressed. Therefore, it has been studied to use a film mainly composed of a thermoplastic resin having excellent moisture resistance instead of a film mainly composed of cellulose acylate.
  • Patent Document 1 discloses a maleimide-based copolymer resin film including a maleimide-based copolymer resin and a rubbery polymer having a polymer chain compatible with the same. It is shown that the rubbery polymer has an aspect ratio of 2 or less.
  • the film of the maleimide-based copolymer resin alone is brittle, but the brittleness can be improved by including the rubbery polymer, and the rubbery polymer has a polymer chain compatible with the resin, so that it can be stretched during stretching. It is said that a decrease in the transparency of the film due to the formation of voids at the interface between the resin and the rubbery polymer can be suppressed.
  • an optical film such as a polarizing plate protective film is usually formed into a long film, wound up in a roll shape, and stored and transported as a roll body.
  • the winding of a long film is usually performed while applying tension.
  • the optical film to be wound is easily applied with a stretching force in the longitudinal direction and a contracting force in the width direction due to the winding tension.
  • a force (stress) that tends to contract in the longitudinal direction and a force (stress) that tends to expand in the width direction are likely to be generated in the optical film of the roll immediately after winding.
  • a force (stress) that tends to contract in the longitudinal direction easily causes transfer by the winding core due to tightening; a force (stress) that tends to expand in the width direction may cause a chain-shaped failure.
  • the transfer of the winding core is a planar defect, and is easily formed inside the winding in the longitudinal direction of the film (a portion close to the winding core at the beginning of winding).
  • the chain-like failure is a chain-like defect, and is easily formed over the entire film in the width direction.
  • the rubber particles can effectively reduce the stress remaining on the optical film immediately after winding.
  • the particle size of the rubber particles is large.
  • the particle size of the rubber particles is too large, the haze of the film increases, and the transparency tends to be impaired. Therefore, it is desired to be able to suppress winding defects such as transfer of a winding core and chain-like defects without increasing the haze of the optical film, that is, without significantly increasing the particle size of the rubber particles.
  • the present invention has been made in view of the above circumstances, and is a film containing a (meth) acrylic resin as a main component, in which the brittleness is satisfactorily improved without impairing the transparency and the winding failure is suppressed. It is an object of the present invention to provide an optical film, a polarizing plate protective film, a roll of an optical film, and a method for producing an optical film.
  • the optical film of the present invention includes a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles, and the cross section of the optical film has an average aspect ratio of the rubber particles of 1.2 to 1.2. 3.0, wherein the major axes of three or more of the rubber particles are connected in the major axis direction, and the distance between the connected rubber particles is 100 nm or less, and the number of the connected rubber particles is 100 nm or less. Of the rubber particles contained in the optical film is 15% or more.
  • the polarizing plate protective film of the present invention includes the optical film of the present invention.
  • the roll body of the optical film of the present invention comprises a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher, and rubber particles, and the optical film wound in a direction perpendicular to the width direction thereof.
  • an average aspect ratio of the rubber particles is 1.2 to 3.0, and three or more rubber particles have major axes connected in the major axis direction.
  • the distance between the rubber particles is 100 nm or less, and the ratio of the number of the continuous rubber particles to the total number of the rubber particles included in the optical film is 15% or more.
  • the method for producing an optical film of the present invention comprises the step of obtaining a dope containing a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher, rubber particles, and a solvent, and having a solid content of 15% by mass or less. And a step of casting the obtained dope on a support, followed by drying and peeling to obtain a film, and a step of stretching the film by 20% or more.
  • an optical film it is possible to provide an optical film, a roll of an optical film, and a method for producing an optical film, in which the brittleness is satisfactorily improved without impairing the transparency and the winding failure can be suppressed.
  • FIG. 1 is a schematic cross-sectional view illustrating a dispersion state of rubber particles in a cross section of an optical film.
  • FIG. 2A is an enlarged view of an area surrounded by a dotted line 2A in FIG. 1
  • FIG. 2B is an enlarged view of an area surrounded by a dotted line 2B in FIG.
  • the present inventors have conducted intensive studies and found that an optical film containing a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles, and in which the rubber particles are dispersed in a specific dispersion structure, is obtained. It was found that the brittleness was satisfactorily improved without impairing the transparency, and that winding failure could be suppressed.
  • the specific dispersion structure specifically refers to a dispersion structure that satisfies the following 1) and 2) in the cross section of the optical film.
  • the average aspect ratio of the rubber particles is from 1.2 to 3.0.
  • the major axes of three or more rubber particles are continuous in the major axis direction, and the distance between the continuous rubber particles. Is 100 nm or less, and the ratio of the number of continuous rubber particles to the total number of rubber particles contained in the optical film (hereinafter, also referred to as “proximity ratio”) is 15% or more.
  • the average aspect ratio of the rubber particles is equal to or more than a certain value (requirement 1)
  • the rubber particles stretched by stretching are unstable, the rubber particles are restored to a stable original shape (true spherical shape).
  • the flat rubber particles can absorb and relieve the stress remaining in the optical film immediately after winding by the restoring force.
  • the effect of suppressing the winding failure due to the restoring force of the rubber particles can be obtained even if the direction of expansion and contraction of the film does not always match the direction of expansion and contraction of rubber (direction of restoring force) for suppressing it. This is considered to be because the rubber particles absorb the force when a certain force acts on the film and convert it into a restoring force (for example, restoring in the thickness direction), thereby exhibiting an effect.
  • the stress remaining in the optical film immediately after winding is dispersed well.
  • the stress (stretching force) remaining in the optical film tends to increase, and when the rubber particles are single and uniformly dispersed, the stress locally remaining in the optical film is increased.
  • (Stretching force) may not be fully absorbed; when a plurality of rubber particles are close to each other, the optical film is used similarly to rubber particles having a relatively large particle size regardless of the longitudinal direction and the width direction. Can absorb the residual stress (stretching force). It is considered that by these actions, the stress (stretching force) remaining on the optical film immediately after winding can be effectively reduced by the rubber particles without increasing the average major axis of the rubber particles.
  • the requirement of the above 1) can be adjusted by, for example, the solid content concentration of the dope at the time of film formation by the solution casting method and the stretching conditions (particularly the stretching ratio).
  • the stretching conditions particularly the stretching ratio.
  • the requirements of the above 2) include, for example, the glass transition temperature (Tg) of the (meth) acrylic resin, the affinity ( ⁇ SP, etc.) of the (meth) acrylic resin and the rubber particles, the solid concentration of the dope during film formation, It can be adjusted by the composition of the dispersion solvent of the rubber particle dispersion, the stretching ratio, and the like.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably set to 110 ° C. or higher, and the affinity ( ⁇ SP) between the (meth) acrylic resin and the rubber particles is preferably increased.
  • the solid concentration of the dope is preferably low
  • the poor solvent is preferably added to the dispersion solvent of the rubber particle dispersion
  • the stretching ratio is preferably high.
  • optical film of the present invention contains a (meth) acrylic resin and rubber particles.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 110 ° C. or higher.
  • the rubber particles also move at the same stretching temperature because the glass transition temperature (Tg) is lower than that of the (meth) acrylic resin having a low glass transition temperature (Tg). Can be difficult. Thereby, since the rubber particles are not excessively diffused, the rubber particles can be appropriately brought close to each other.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably from 120 to 160 ° C., and more preferably from 125 to 150 ° C.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be measured by using DSC (Differential Scanning Colorimetry) in accordance with JIS K 7121-2012.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be adjusted by the type and composition of the monomer. In order to increase the glass transition temperature (Tg) of the (meth) acrylic resin, for example, it is preferable to increase the content ratio of a copolymer monomer having a bulky structure described later.
  • the (meth) acrylic resin may be a homopolymer of a (meth) acrylic ester or a copolymer of a (meth) acrylic ester and a copolymerizable monomer copolymerizable therewith.
  • (meth) acryl means acryl or methacryl.
  • the (meth) acrylate is preferably methyl methacrylate.
  • the (meth) acrylic resin includes a structural unit derived from methyl methacrylate, and may further include a structural unit derived from a copolymer monomer other than methyl methacrylate (hereinafter, simply referred to as a “copolymer monomer”). preferable.
  • copolymerized monomers include: Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2- (meth) acrylate Ethylhexyl, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclo (meth) acrylate Acrylate or alkyl group having 1 to 20 carbon atoms in the alkyl group, such as pentanyl, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and lactone (me
  • a copolymer monomer having a bulky structure is preferable from the viewpoint of appropriately lowering the affinity for rubber particles while increasing the glass transition temperature (Tg) of the optical film.
  • copolymerized monomers having a bulky structure examples include: (Meth) acrylic acid esters having a cyclo ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, and cyclohexyl (meth) acrylate; Vinyls having; and a copolymer monomer selected from the group consisting of maleimides such as N-phenylmaleimide; Copolymerized monomers such as (meth) acrylate having a branched alkyl group such as t-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are included.
  • (Meth) acrylic acid esters having a cyclo ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, and cyclohexy
  • copolymer monomers having a bulky structure are (meth) acrylates having a cyclo ring, copolymer monomers selected from the group consisting of maleimides, (meth) acrylates having a branched alkyl group, and the like. Is preferable, and a copolymer monomer selected from the group consisting of (meth) acrylates having a cyclo ring and maleimides is more preferable.
  • the content of the structural unit derived from the copolymerized monomer (preferably, the content of the structural unit derived from the copolymerized monomer having a bulky structure) is reduced to 100% by mass in total of the structural units constituting the (meth) acrylic resin. On the other hand, it is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 10 to 30% by mass.
  • the type and composition of the monomer of the (meth) acrylic resin can be specified by 1 H-NMR.
  • the weight average molecular weight Mw of the (meth) acrylic resin is preferably, for example, 200,000 to 2,000,000.
  • the weight average molecular weight Mw of the (meth) acrylic resin is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film formability is not easily impaired.
  • the weight average molecular weight Mw of the (meth) acrylic resin is more preferably from 300,000 to 2,000,000, and still more preferably from 500,000 to 2,000,000.
  • the weight average molecular weight Mw can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • Rubber Particles may have a function of forming irregularities on the surface of the optical film to impart slipperiness while imparting flexibility and toughness to the optical film.
  • the average aspect ratio of the rubber particle when observing the cross section of the optical film is preferably from 1.2 to 3.0.
  • stress force to shrink
  • the average aspect ratio of the rubber particles is more preferably from 1.5 to 2.8, and even more preferably from 2.0 to 2.5.
  • the aspect ratio means the ratio (major axis / minor axis) of the major axis to the minor axis of the rubber particles.
  • the average aspect ratio means an average value of aspect ratios of a plurality of rubber particles.
  • the long diameter of the rubber particle can be measured as the length in the longitudinal direction (length of the long side) of the rectangle circumscribed by the rubber particle in a TEM image described later.
  • the minor axis of the rubber particle can be measured as a length (length of a short side) of a rectangle circumscribed by the rubber particle in a TEM image described later.
  • the average major axis of the rubber particles is preferably from 200 to 500 nm.
  • a stress (force to shrink) with respect to the stretching tension of the rubber particles is likely to be applied to the optical film immediately after winding, so that winding failure is easily suppressed sufficiently.
  • the average major axis of the rubber particles is 500 nm or less, the number of contacts between adjacent rubber particles does not become too small, so that the effect of dispersing the stress is not easily impaired, and the winding failure is easily suppressed sufficiently.
  • the average major axis of the rubber particles is more preferably from 220 to 400 nm, further preferably from 250 to 350 nm.
  • the average major axis of the rubber particles is an average of the major axes of the rubber particles.
  • the average aspect ratio and the average major axis of the rubber particles can be calculated by the following method. 1) TEM observation of a cross section of the optical film (of the cross section along the thickness direction of the optical film, a cross section parallel to the in-plane slow axis).
  • the observation region may be a region corresponding to the thickness of the optical film or a region of 5 ⁇ m ⁇ 5 ⁇ m.
  • the number of measurement points may be one.
  • an area of 5 ⁇ m ⁇ 5 ⁇ m is set as the observation area, the number of measurement points may be four.
  • the average value of the aspect ratios obtained from the plurality of rubber particles is referred to as “average aspect ratio”
  • the average value of the long diameters obtained from the plurality of rubber particles is referred to as “average long diameter”.
  • the average aspect ratio and average major axis of the rubber particles can be adjusted by the film forming conditions and the stretching conditions of the optical film.
  • the average aspect ratio of the rubber particles is adjusted by stretching can be confirmed by the fact that the ratio of the number of continuous rubber particles is 15% or more (requirement 2)).
  • the ratio of the number of continuous rubber particles is 15% or more (requirement 2)).
  • the optical film includes a dispersion structure in which the major axes of three or more rubber particles are continuous in the major axis direction. Specifically, in the cross section of the optical film, a dispersed structure in which three or more rubber particles are continuous in the major axis direction and the distance between the continuous rubber particles is 100 nm or less is observed.
  • FIG. 1 is a schematic cross-sectional view for explaining a dispersion state of rubber particles in a cross section of the optical film.
  • FIG. 2A is an enlarged view of an area surrounded by a dotted line 2A in FIG. 1
  • FIG. 2B is an enlarged view of an area surrounded by a dotted line 2B in FIG.
  • the X direction is, for example, the in-plane slow axis direction of the optical film
  • the Y direction is the thickness direction of the optical film.
  • LA indicates a virtual line including the major axis of the rubber particles.
  • a plurality of rubber particles 120 are dispersed in a matrix 110 mainly composed of a (meth) acrylic resin in a specific dispersion structure.
  • FIG. 2A shows a state in which four rubber particles are connected at predetermined intervals in the major axis direction.
  • FIG. 2B shows a state in which three rubber particles are connected to each other in the major axis direction while partially overlapping each other.
  • 2A and 2B are examples of the above-mentioned specific dispersion structure.
  • the major axes of the rubber particles are connected in the major axis direction specifically means the angle between the major axes of the adjacent rubber particles (in FIG. 2A, the angle between the virtual lines LA including the major axis). Means that the smaller angle ⁇ is continuous at an angle of 30 ° or less (preferably 10 ° or less).
  • the angle between the long diameters of the adjacent rubber particles is 0 °
  • not only the mode in which the long diameters of the adjacent rubber particles are aligned on a straight line, but also the long diameters are The aspect in which the parts are connected to each other while overlapping each other is also included.
  • the minimum distance between adjacent rubber particles can be specified by image analysis of a TEM image.
  • the ratio (proximity ratio) of the number of connected rubber particles (the number of rubber particles constituting the specific dispersion structure) to the total number of rubber particles contained in the optical film is preferably 15% or more.
  • the proximity ratio is 15% or more, the ratio of a plurality of rubber particles close to each other is large, so that stress is easily dispersed.
  • the proximity ratio is 70% or less, the haze of the optical film does not easily increase.
  • the proximity ratio is more preferably from 20 to 60%, further preferably from 25 to 50%, and particularly preferably from 30 to 50%.
  • the major axis direction of the rubber particles is preferably substantially perpendicular to the thickness direction of the optical film. Substantially perpendicular refers to a range of 90 ⁇ 15 °. In addition, from the viewpoint of more easily suppressing the winding failure of the optical film after winding, the major axis direction of the rubber particles is preferably substantially parallel to the in-plane slow axis of the optical film. Substantially parallel means a range of 0 ⁇ 15 °.
  • Rubber particles are a graft copolymer containing a rubber-like polymer (cross-linked polymer), that is, a core portion made of a rubber-like polymer (cross-linked polymer), and a shell portion covering the core portion. It is preferably a core-shell type rubber particle having the following.
  • the rubber-like polymer preferably has a glass transition temperature (Tg) of -10 ° C or lower.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the rubbery polymer is more preferably -15 ° C or lower, and further preferably -20 ° C or lower.
  • the glass transition temperature (Tg) of the rubbery polymer is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubbery polymer can be adjusted by, for example, the monomer composition.
  • Tg glass transition temperature
  • an acrylate / methacrylic acid having an alkyl group having 4 or more carbon atoms in a monomer mixture is preferable to increase the mass ratio of methyl (for example, 3 or more, preferably 4 or more and 10 or less).
  • the rubbery polymer is not particularly limited as long as it has a glass transition temperature in the above range, and examples thereof include, but are not limited to, a butadiene-based crosslinked polymer, a (meth) acrylic crosslinked polymer, and an organosiloxane.
  • -Based crosslinked polymers are included.
  • the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic rubbery polymer) is preferable. Is more preferred.
  • the rubber particles are a core-shell having an acrylic graft copolymer containing an acrylic rubbery polymer (a), that is, a core part containing an acrylic rubbery polymer (a), and a shell part covering the core part.
  • the particles are of the type.
  • the core-shell type particles are a multi-stage polymer (or multilayer) obtained by polymerizing at least one or more stages of a monomer mixture (b) containing a methacrylic acid ester as a main component in the presence of an acrylic rubber-like polymer (a). Structural polymer).
  • the polymerization can be performed by an emulsion polymerization method.
  • the acrylic rubbery polymer (a) is a crosslinked polymer containing an acrylate ester as a main component.
  • the acrylic rubbery polymer (a) is a monomer mixture (a ′) containing 50 to 100% by mass of an acrylate ester and 50 to 0% by mass of another monomer copolymerizable therewith; It is a crosslinked polymer obtained by polymerizing 0.05 to 10 parts by mass of a polyfunctional monomer having two or more non-conjugated reactive double bonds (based on 100 parts by mass of the monomer mixture (a ')).
  • the crosslinked polymer may be obtained by mixing all of these monomers and polymerizing them, or may be obtained by polymerizing two or more times by changing the monomer composition.
  • the acrylate constituting the acrylic rubbery polymer (a) is preferably an alkyl acrylate having 1 to 12 carbon atoms in an alkyl group such as methyl acrylate and butyl acrylate.
  • the acrylate may be one type or two or more types. From the viewpoint of reducing the glass transition temperature of the rubber particles to ⁇ 10 ° C. or lower, the acrylate preferably contains at least an alkyl acrylate having 4 to 10 carbon atoms.
  • the content of the acrylate is preferably from 50 to 100% by mass, more preferably from 60 to 99% by mass, and more preferably from 70 to 99% by mass, based on 100% by mass of the monomer mixture (a '). Is more preferable.
  • the content of the acrylate is 50% by weight or more, it is easy to impart sufficient toughness to the film.
  • the mass ratio of the alkyl acrylate / monomer mixture (a ′) having 4 or more carbon atoms in the alkyl group is preferably It is preferably 3 or more, and more preferably 4 or more and 10 or less.
  • copolymerizable monomers examples include methacrylates such as methyl methacrylate; styrenes such as styrene and methylstyrene; and unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinyl benzene, ethylene glycol di (meth) acrylate, diethylene glycol (meth) Acrylates, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetromethylol methanetetra (meth) acrylate, dipropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate are included.
  • the content of the polyfunctional monomer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on 100% by mass of the total of the monomer mixture (a ').
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of crosslinking of the obtained acrylic rubbery polymer (a) is easily increased, so that the hardness and rigidity of the obtained film are not excessively impaired.
  • the content is 10% by mass or less, the toughness of the film is not easily impaired.
  • the monomer mixture (b) is a graft component for the acrylic rubbery polymer (a) and forms a shell part.
  • the monomer mixture (b) preferably contains a methacrylate ester as a main component.
  • the methacrylate constituting the monomer mixture (b) is preferably an alkyl methacrylate having 1 to 12 carbon atoms in an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more based on 100% by mass of the monomer mixture (b).
  • the content of the methacrylic acid ester is 50% by mass or more, the hardness and rigidity of the obtained film may be hardly reduced.
  • the content of the methacrylate ester is 70% by mass or more based on 100% by mass of the monomer mixture (b). Is more preferable, and it is further preferable that it is 80 mass% or more.
  • the monomer mixture (b) may further contain another monomer as necessary.
  • examples of other monomers include acrylates such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxy (meth) acrylate (Meth) acrylic monomers having an alicyclic structure such as ethyl, a heterocyclic structure or an aromatic group (cyclic structure-containing (meth) acrylic monomers) are included.
  • Core-shell type rubber particles acrylic graft copolymer
  • core-shell type rubber particles include methacrylic acid in the presence of 5 to 90 parts by mass (preferably 5 to 75 parts by mass) of an acrylic rubbery polymer as the (meth) acrylic rubbery polymer (a). It includes a polymer obtained by polymerizing 95 to 25 parts by mass of a monomer mixture (b) containing an acid ester as a main component in at least one stage.
  • the acrylic graft copolymer may further include a hard polymer inside the acrylic rubbery polymer (a), if necessary.
  • Such an acrylic graft copolymer can be obtained through the following polymerization steps (I) to (III).
  • a monomer mixture (c1) comprising 40 to 100% by mass of a methacrylic acid ester and 60 to 0% by mass of another monomer copolymerizable therewith, and 0.01 to 10 parts by mass of a polyfunctional monomer (monomer mixture)
  • Methacrylate A monomer mixture (b1) consisting of 60 to 100% by mass and 40 to 0% by mass of another monomer copolymerizable therewith;
  • the acrylic graft copolymer may be further obtained through the polymerization step (IV).
  • a monomer mixture (b2) consisting of 40 to 100% by mass of a methacrylate, 0 to 60% by mass of an acrylate, and 0 to 5% by mass of another copolymerizable monomer, and 0 to 10 of a polyfunctional monomer
  • a hard polymer is obtained by polymerizing parts by mass (based on 100 parts by mass of the monomer mixture (b2)).
  • the soft layer can impart shock absorption to the optical film.
  • the soft layer include a layer made of an acrylic rubbery polymer (a) containing an acrylate ester as a main component.
  • the hard layer makes it difficult for the toughness of the optical film to be impaired, and can suppress coarsening and agglomeration of the rubber particles during production.
  • the hard layer include a layer made of a polymer containing a methacrylate ester as a main component.
  • the graft ratio (mass ratio of the graft component (shell portion) to the acrylic rubbery polymer (a)) of the acrylic graft copolymer is preferably 10 to 250%, and more preferably 40 to 230%. More preferably, it is more preferably 60 to 220%.
  • the graft ratio is 10% or more, the ratio of the shell portion does not become too small, so that the hardness and rigidity of the film are not easily deteriorated.
  • the graft ratio of the acrylic graft copolymer is 250% or less, the effect of improving the toughness and brittleness of the film is not easily impaired because the proportion of the acrylic rubbery polymer (a) does not become too small.
  • the optical film in order to bring the rubber particles into close proximity to each other, it is preferable to adjust the combination of the type of the rubber particles (specifically, the monomer composition of the shell portion) and the type of the (meth) acrylic resin.
  • solubilitySParameter SP value of the shell part constituting the rubber particles
  • is 0.3 or more. Is preferably 0.5 or more, and more preferably 0.8 or more.
  • the upper limit of ⁇ SP may be 5, for example.
  • SP value a value calculated by inputting the structure of each compound in commercially available simulation software “Material Products Forcite” (manufactured by Dassault Systèmes) is used.
  • ⁇ SP can be adjusted by a combination of the composition of the shell portion of the rubber particles and the composition of the (meth) acrylic resin.
  • ⁇ SP equal to or more than a certain value, for example, the content of methyl methacrylate (MMA) in the monomer mixture (b) constituting the shell portion is increased, and the monomer composition constituting the (meth) acrylic resin is It is preferable to increase the content of the comonomer having a bulky structure.
  • the content of the rubber particles is preferably 5 to 20% by mass based on the (meth) acrylic resin.
  • the content of the rubber particles is 5% by mass or more, not only can the (meth) acrylic resin film be easily imparted with sufficient flexibility and toughness, but also unevenness can be formed on the surface to impart slipperiness.
  • the content of the rubber particles is 20% by mass or less, the haze does not increase too much.
  • the content of the rubber particles is more preferably from 5 to 15% by mass, and still more preferably from 5 to 10% by mass, based on the (meth) acrylic resin.
  • the optical film of the present invention preferably further contains organic fine particles from the viewpoint of further increasing the slipperiness of the optical film and making the rubber particles more unevenly distributed on the surface layer of the film.
  • the organic fine particles are preferably particles having a glass transition temperature (Tg) of 80 ° C. or higher.
  • Tg glass transition temperature
  • the glass transition temperature of the organic fine particles is more preferably 100 ° C. or higher. The glass transition temperature is measured in the same manner as described above.
  • the glass transition temperature (Tg) of the organic fine particles can be adjusted by the monomer composition of the organic fine particles.
  • Tg glass transition temperature
  • the resin constituting the organic fine particles may be any resin having a glass transition temperature (Tg) within the above range, and examples thereof include (meth) acrylates, itaconic diesters, maleic diesters, Derived from one or more selected from the group consisting of vinyl esters, olefins, styrenes, (meth) acrylamides, allyl compounds, vinyl ethers, vinyl ketones, unsaturated nitriles, unsaturated carboxylic acids, and polyfunctional monomers.
  • Polymer a silicone-based resin, a fluorine-based resin, polyphenylene sulfide, and the like.
  • the (meth) acrylic esters, olefins, styrenes, (meth) acrylamides, unsaturated nitriles, unsaturated carboxylic acids and polyfunctional monomers constituting the polymer are the above-mentioned (meth) acrylic resin and The same ones as the monomers constituting the acrylic rubbery polymer (a) can be used.
  • itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dipropyl itaconate.
  • maleic diesters include dimethyl maleate, diethyl maleate, and dipropyl maleate.
  • Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxy acetate, vinyl phenyl acetate, vinyl benzoate, and vinyl salicylate. It is.
  • Examples of allyl compounds include allyl acetate, allyl caproate, allyl laurate, allyl benzoate and the like.
  • Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether, and the like.
  • Examples of vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone, and the like.
  • (meth) acrylates vinyl esters, styrene, etc., from the viewpoint of high affinity with (meth) acrylic resin, flexibility with respect to stress, and easy adjustment of the glass transition temperature to the above range.
  • a copolymer containing a structural unit derived from at least one selected from the group consisting of olefins and a structural unit derived from a polyfunctional monomer is preferable, and a structural unit derived from (meth) acrylates is preferred.
  • a copolymer containing a structural unit derived from a polyfunctional monomer is more preferable, and a structural unit derived from a (meth) acrylate, a structural unit derived from styrene, and a copolymer derived from a polyfunctional monomer are more preferable.
  • a copolymer containing a structural unit is more preferred.
  • the content of the structural unit derived from the polyfunctional monomer in the organic fine particles is generally higher than the content of the structural unit derived from the polyfunctional monomer in the rubber particles.
  • the content of the structural unit derived from the polyfunctional monomer is, for example, 50 to 500% by mass based on 100% by mass of the total of the structural units derived from the monomers other than the polyfunctional monomer constituting the copolymer. sell.
  • ⁇ Particles (polymer particles) composed of such a polymer can be produced by any method, for example, a method such as emulsion polymerization, suspension polymerization, dispersion polymerization, or seed polymerization. Among them, from the viewpoint of easily obtaining polymer particles having a uniform particle diameter, seed polymerization or emulsion polymerization in an aqueous medium is preferred.
  • a method for producing polymer particles for example, A one-stage polymerization method in which the monomer mixture is dispersed in an aqueous medium and then polymerized; A two-stage polymerization method in which the seed particles are obtained by polymerizing the monomer in an aqueous medium, the monomer mixture is absorbed by the seed particles, and then polymerized; -A multi-stage polymerization method in which a step of producing seed particles in a two-stage polymerization method is repeated.
  • These polymerization methods can be appropriately selected depending on the desired average particle size of the polymer particles.
  • the monomer for producing the seed particles is not particularly limited, and any monomer for polymer particles can be used.
  • the organic fine particles may be core-shell type particles.
  • Such organic fine particles may be, for example, particles having a low Tg core portion containing a homopolymer or a copolymer of a (meth) acrylate and a high Tg shell portion.
  • the absolute value ⁇ n of the refractive index difference between the organic fine particles and the (meth) acrylic resin is preferably 0.1 or less, and 0.085 or less, from the viewpoint of highly suppressing the haze increase of the obtained film. Is more preferable, and the value is more preferably 0.065 or less.
  • the average particle diameter of the organic fine particles is preferably from 0.04 to 2 ⁇ m, more preferably from 0.08 to 1 ⁇ m.
  • the average particle diameter of the organic fine particles is 0.04 ⁇ m or more, sufficient lubricity is easily imparted to the obtained film.
  • the average particle diameter of the organic fine particles is 2 ⁇ m or less, it is easy to suppress an increase in haze.
  • the average particle size of the organic fine particles can be measured by the same method as the average particle size of the rubber particles, except for the following points. That is, the average particle diameter of the organic fine particles is specified as the average value of the circle equivalent diameter of 100 organic fine particles obtained by TEM observation of the film cross section.
  • the equivalent circle diameter can be obtained by converting the projected area of a particle obtained by imaging into the diameter of a circle having the same area.
  • the average particle size of the organic fine particles in the dispersion can be measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle size of the organic fine particles means the average size of the aggregates (average secondary particle size) if the particles are cohesive, and the average of the sizes of one particle if the particles are non-aggregate. Mean value.
  • the content of the organic fine particles is preferably from 0.03 to 1.5% by mass based on the (meth) acrylic resin.
  • the content of the organic fine particles is 0.03% by mass or more, sufficient slip properties can be imparted to the optical film.
  • the content of the organic fine particles is 1.5% by mass or less, an increase in haze is easily suppressed.
  • the content of the fine particles is more preferably from 0.05 to 1.0% by mass, and even more preferably from 0.08 to 0.7% by mass.
  • optical film of the present invention may further contain other components as long as the effects of the present invention are not impaired.
  • other components include residual solvents, UV absorbers, antioxidants, and the like.
  • the optical film of the present invention since the optical film of the present invention is manufactured by a solution casting method as described later, it may contain a residual solvent derived from a solvent of the dope used in the solution casting method.
  • the residual solvent amount is preferably 700 ppm or less, more preferably 30 to 700 ppm, based on the optical film.
  • the content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the optical film manufacturing process described below.
  • the content of the residual solvent in the optical film can be measured by head space gas chromatography.
  • a sample is sealed in a container, heated, the gas in the container is quickly injected into the gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. This is to determine volatile components while performing.
  • mass spectrometry is performed to identify volatile components while performing.
  • the optical film of the present invention preferably has high transparency.
  • the haze of the optical film is preferably 4.0% or less, more preferably 2.0% or less, and further preferably 1.0% or less.
  • the haze can be measured on a sample of 40 mm ⁇ 80 nm at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Machine) in accordance with JIS K-6714.
  • the in-plane retardation Ro measured in an environment of a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. Is preferably, and more preferably 0 to 5 nm.
  • the retardation Rt in the thickness direction of the optical film of the invention is preferably from -20 to 20 nm, more preferably from -10 to 10 nm.
  • Ro and Rt are each defined by the following formula.
  • Formula (1a): Ro (nx ⁇ ny) ⁇ d
  • Formula (1b): Rt ((nx + ny) / 2 ⁇ nz) ⁇ d (where, nx represents the refractive index in the in-plane slow axis direction of the film (the direction in which the refractive index is maximized), ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the film, nz represents the refractive index in the thickness direction of the film, d represents the thickness (nm) of the film. )
  • the in-plane slow axis of the optical film of the present invention refers to an axis at which the refractive index becomes maximum on the film surface.
  • the in-plane slow axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller MatrixPolarimeter: manufactured by Axometrics).
  • the in-plane slow axis usually coincides with the direction in which the stretching ratio is maximized.
  • Ro and Rt can be measured by the following method. 1) The optical film of the present invention is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt at a measurement wavelength of 550 nm of the film after humidity control were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure in the environment.
  • the retardation Ro and Rt of the optical film of the present invention can be adjusted by, for example, the type of the (meth) acrylic resin.
  • the content ratio is preferably such that the structural unit having negative birefringence and the structural unit having positive birefringence can cancel the phase difference.
  • the thickness of the optical film of the present invention may be, for example, 5 to 100 ⁇ m, preferably 5 to 40 ⁇ m.
  • optical film of the present invention is manufactured by a solution casting method (casting method). That is, the optical film of the present invention comprises: 1) a step of obtaining a dope containing at least the above (meth) acrylic resin, rubber particles, and a solvent; and 2) casting the obtained dope on a support. , Drying and peeling to obtain a film, 3) stretching the obtained film, and 4) winding the stretched film into a roll. .
  • a solution casting method casting method
  • Step 1) A dope is prepared by dissolving or dispersing the (meth) acrylic resin, rubber particles, and, if necessary, organic fine particles in a solvent.
  • the particle shape of the rubber particles used in the preparation of the dope is not particularly limited, but from the viewpoint of easily developing a good stress relaxation effect by stretching, a rubber particle having a shape close to a true sphere, specifically, having an average aspect ratio of 1 ⁇ 1. It is preferably 0.1.
  • the solvent used for the dope contains at least an organic solvent (good solvent) that can dissolve the (meth) acrylic resin.
  • good solvents include chlorinated organic solvents such as methylene chloride and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred.
  • the solvent used for the dope may further contain a poor solvent.
  • the poor solvent include a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the film-like material is apt to gel, and is easily peeled from the metal support.
  • the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its stability, the boiling point is relatively low, and the drying property is good.
  • the solid content concentration of the dope is not particularly limited, but is preferably lower from the viewpoint of making the rubber particles appropriately close to each other in the obtained optical film due to the compression effect of drying.
  • the solid content concentration of the dope is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the lower limit of the solid content concentration of the dope may be, for example, 9% by mass.
  • the dope may be prepared by directly adding (meth) acrylic resin, rubber particles, and, if necessary, organic fine particles to the above-mentioned solvent and mixing them; A resin solution in which the system resin is dissolved, a rubber particle dispersion in which rubber particles are dispersed in the above-described solvent, and a fine particle dispersion in which organic fine particles are dispersed in the above-described solvent, if necessary, are prepared in advance, respectively. They may be prepared by mixing them.
  • the solvent contained in the rubber particle dispersion preferably contains a solvent having low affinity for the rubber particles from the viewpoint of making the rubber particles appropriately close to each other in the obtained optical film.
  • solvents include the aforementioned poor solvents, for example, straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms.
  • the content of the poor solvent is preferably from 2 to 16% by mass, more preferably from 4 to 16% by mass, based on the whole solvent contained in the rubber particle dispersion.
  • the method for adding the organic fine particles is not particularly limited, and the organic fine particles may be individually added to the solvent, or may be added to the solvent as an aggregate of the organic fine particles.
  • the aggregate of organic fine particles is composed of an aggregate of a plurality of organic fine particles in which mutual connection (fusion) is suppressed. Therefore, when the aggregate of organic fine particles is dispersed in a (meth) acrylic resin or a solvent, the particles are easily separated into organic fine particles, so that the dispersibility of the organic fine particles can be improved.
  • the aggregate of organic fine particles can be obtained, for example, by spray-drying a slurry containing organic fine particles and inorganic powder.
  • Step 2) The obtained dope is cast on a support.
  • the dope can be cast by discharging it from a casting die.
  • the solvent in the dope cast on the support is evaporated and dried.
  • the dried dope is peeled from the support to obtain a film.
  • the amount of the residual solvent of the dope at the time of peeling from the support (the amount of the residual solvent of the film at the time of peeling) is from 10 to 150 mass in terms of facilitating the reduction of the phase difference of the obtained (meth) acrylic resin film. %, More preferably 20 to 40% by mass.
  • the amount of the residual solvent at the time of peeling is 10% by mass or more, the (meth) acrylic resin easily flows and becomes non-oriented during drying or stretching, so that the phase difference of the obtained (meth) acrylic resin film is reduced. Easy to reduce. If the amount of the residual solvent at the time of peeling is 150% by mass or less, the force required for peeling the dope is unlikely to be excessively large, so that breakage of the dope is easily suppressed.
  • the amount of the residual solvent at the time of peeling can be adjusted by the temperature and time for drying the dope on the support, the temperature of the support, and the like.
  • Step 3 The film obtained by peeling is stretched while being dried.
  • Stretching may be performed according to the required optical characteristics, and is preferably performed in at least one direction (for example, the width direction (TD direction) of the film-like material), and is performed in two directions perpendicular to each other (for example, Biaxial stretching in the width direction (TD direction) of the article and the transport direction (MD direction) perpendicular thereto may be performed.
  • TD direction width direction
  • MD direction transport direction
  • the stretching ratio may be set so that the average aspect ratio of the rubber particles falls within the above range, and is preferably, for example, 20 to 200%, more preferably 30 to 100%, and 50 to 70%. Is more preferable.
  • the stretching ratio (%) is defined as (the change in the length of the film before and after stretching in the stretching direction) / (the length of the film before stretching in the stretching direction) ⁇ 100 (%). In the case where biaxial stretching is performed, it is preferable that the stretching ratio is set in the TD direction and the MD direction.
  • the direction of the in-plane slow axis of the optical film (the direction in which the refractive index is maximized in the plane) is usually the direction in which the stretching ratio is maximized.
  • the stretching temperature (drying temperature) is preferably (Tg ⁇ 65) ° C. to (Tg + 60) ° C., and is preferably (Tg ⁇ 50) ° C. to (Tg + 50), where Tg is the glass transition temperature of the (meth) acrylic resin. ) .Degree. C., more preferably (Tg-30) .degree. C. to (Tg + 50) .degree.
  • Tg glass transition temperature of the (meth) acrylic resin.
  • .Degree. C. more preferably (Tg-30) .degree. C. to (Tg + 50) .degree.
  • the stretching temperature is (Tg-30) ° C. or higher, not only is it easy to make the film-like material suitable for stretching, but also the tension applied to the film-like material at the time of stretching does not become too large, so that the obtained (meth) Excess residual stress may hardly remain in the acrylic resin film.
  • Tg the stretching temperature is equal to or lower than Tg, it
  • the stretching temperature is as follows: (a) in the case of drying by a non-contact heating type such as a tenter stretching machine, etc .;
  • the temperature can be measured as any one of the temperature of the contact heating section and the surface temperature of the film-like material (the surface to be dried).
  • a non-contact heating type such as (a) a tenter stretching machine
  • an ambient temperature such as a stretching machine temperature or a hot air temperature is preferable.
  • the amount of residual solvent in the film at the start of stretching is preferably, for example, 5 to 30% by mass.
  • the amount of residual solvent at the start of stretching can be measured in the same manner as described above.
  • Stretching of the film in the TD direction can be performed by, for example, a method (tenter method) in which both ends of the film are fixed with clips or pins and the interval between the clips or pins is increased in the traveling direction.
  • the stretching of the film in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a difference in peripheral speed, and a difference in roll peripheral speed is used therebetween.
  • Step 4) The film obtained after stretching is wound into a roll while being further dried as necessary, to obtain a roll of an optical film.
  • the drying temperature can be adjusted in the same range as the stretching temperature in the above step 3).
  • the drying temperature is measured by the same method as in the above step 3).
  • the temperature is preferably measured as the temperature of the contact heating section.
  • Winding is usually performed while applying tension (winding tension) in the MD direction of the film-like material.
  • the major axis direction of the rubber particles is preferably substantially perpendicular to the thickness direction of the optical film. Further, from the viewpoint of more easily suppressing the winding failure of the optical film after winding, the major axis direction of the rubber particles is preferably substantially parallel to the stretching direction (preferably the width direction) of the optical film.
  • the length of the optical film (the length in the MD direction) of the obtained roll body is preferably from 2000 to 8000 m, more preferably from 5000 to 7000 m.
  • the width (the length in the TD direction) of the optical film is preferably from 1.3 to 3.0 m, more preferably from 2.3 to 2.5 m.
  • the optical film of the present invention has a structure in which rubber particles having an average aspect ratio of not less than a certain value are appropriately close to each other.
  • the optical film of the roll body after winding can effectively reduce the stress without increasing the particle diameter of the rubber particles.
  • the winding shape can be improved without increasing the haze of the optical film.
  • winding failure is more likely to occur. According to the present invention, even in the roll body of such an optical film, the winding failure can be favorably suppressed.
  • the obtained optical film is preferably used as a polarizing plate protective film or a retardation film in various display devices such as a liquid crystal display and an organic EL display.
  • Polarizing Plate The polarizing plate of the present invention has a polarizer and the optical film of the present invention disposed on at least one surface thereof.
  • Polarizer A polarizer is an element that transmits only light having a polarization plane in a certain direction, and is a polyvinyl alcohol-based polarizing film.
  • Polyvinyl alcohol-based polarizing films include those obtained by dyeing a polyvinyl alcohol-based film with iodine and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching the polyvinyl alcohol-based film and then dyeing the film with iodine or a dichroic dye (preferably a film further subjected to a durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizer is usually parallel to the maximum stretching direction.
  • ethylene content 1 to 4 mol%, polymerization degree of 2000 to 4000 and saponification degree of 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol is used.
  • the thickness of the polarizer is preferably from 5 to 30 ⁇ m, and more preferably from 5 to 20 ⁇ m in order to reduce the thickness of the polarizing plate.
  • optical film of the present invention is disposed on only one surface of the polarizer, another optical film may be disposed on the other surface.
  • an optical film and another optical film can be arrange
  • optical films examples include commercially available cellulose ester films (e.g., Konica Minoltack KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6U, KCUEK KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd., Fujitac T40UZ, Fujitack T80UZ, Fujitack T80UZD, Fujitack T60UZD Fujifilm Corporation) and the like.
  • Fujitac T40UZ, Fujitack T80UZ, Fujitack T80UZD, Fujitack T60UZD Fujifilm Corporation and the like.
  • the thickness of the other optical film is preferably thicker from the viewpoint of suppressing cracks in the polarizing plate, and may be, for example, 5 to 100 ⁇ m, and preferably 40 to 80 ⁇ m.
  • the polarizing plate of the present invention can be obtained by bonding a polarizer and the (meth) acrylic resin film of the present invention via an adhesive.
  • the adhesive may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive may be any of a photo-radical polymerization type composition using photo-radical polymerization, a photo-cation polymerization type composition using photo-cation polymerization, or a combination thereof.
  • the liquid crystal display device of the present invention includes a liquid crystal cell, a first polarizer disposed on one surface of the liquid crystal cell, and a second polarizer disposed on the other surface of the liquid crystal cell.
  • the display mode of the liquid crystal cell is, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybrid aligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), and the like.
  • STN Super-Twisted Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • HAN Hybrid aligned Nematic
  • VA Very Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Parallel-Plane-Switching
  • the VA (MVA, PVA) mode and the IPS mode are preferable.
  • One or both of the first and second polarizing plates are the polarizing plates of the present invention.
  • the polarizing plate of the present invention is preferably arranged such that the optical film of the present invention is on the liquid crystal cell side.
  • the glass transition temperatures (Tg) and weight average molecular weights (Mw) of the (meth) acrylic resins A to D were measured by the following methods.
  • Glass transition temperature (Tg) The glass transition temperature of the (meth) acrylic resin was measured according to JIS K 7121-2012 by using DSC (Differential Scanning Colorimetry).
  • the weight average molecular weight (Mw) of the (meth) acrylic resin was measured using gel permeation chromatography (manufactured by Tosoh Corporation, HLC8220GPC) and column (manufactured by Tosoh Corporation, TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). . 20 mg ⁇ 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered with a 0.45 mm filter. 100 ml of this solution was injected into a column (at a temperature of 40 ° C.), measured at a detector RI temperature of 40 ° C., and the value converted into styrene was used.
  • Rubber particles ⁇ Preparation of rubber particles C1> Acrylic modifier Kaneace M210 manufactured by Kaneka Corporation (core: multi-layered acrylic rubber-like polymer (Tg: about -10 ° C.), shell: methacrylic ester-based polymer containing methyl methacrylate as a main component) Coalesced, core-shell type rubber particles, average particle size: 220 nm)
  • MMA methyl methacrylate
  • BA butyl acrylate
  • ALMA allyl methacrylate
  • c1 a monomer mixture composed of 0.065 parts by mass of tertiary decyl mercaptan (tDM) were added all at once to the polymerization machine.
  • the obtained polymer latex was kept at 80 ° C. in a nitrogen stream, and 0.0346 parts by mass of sodium hydroxide and 0.0519 parts by mass of potassium persulfate were added. Thereafter, a mixture comprising 32.5 parts by mass of the monomer mixture (a1) (BA: 82% by mass, MMA: 18% by mass), 0.97 parts by mass of AIMA, and 0.3 parts by mass of polyoxyethylene lauryl ether phosphoric acid was added to 74 parts by mass. Added continuously over minutes. Thereafter, the mixture was held for 45 minutes to complete the polymerization.
  • the average particle size of the obtained rubbery polymer was 260 nm, and the polymerization conversion was 99%.
  • the obtained graft copolymer containing a rubbery polymer is salted out with magnesium sulfate, coagulated, washed with water and dried to obtain a graft copolymer (rubber particles C2) containing a white powdery rubbery polymer. Obtained.
  • the rubber-like polymer of the obtained rubber particles C2 has a glass transition temperature (Tg) of ⁇ 30 ° C., an average particle diameter of 380 nm, a graft ratio of about 149%, and a polymerization conversion of 99%. there were.
  • ⁇ SP of the obtained rubber particles (shell portion) and (meth) acrylic resin was measured by the following method.
  • ⁇ SP The ⁇ SP value of the shell portion of the (meth) acrylic resin and the rubber particles C1 or C2 was calculated. Specifically, in the commercially available simulation software “Material Products Forcite” (manufactured by Dassault Systèmes), the structural formulas of the (meth) acrylic resin and the resin constituting the shell portion are input, and the SP value is calculated. , By calculating their difference.
  • the emulsion containing the seed particles was added to the obtained dispersion, and the mixture was stirred at 30 ° C. for 1 hour to allow the seed particles to absorb the monomer mixture.
  • the absorbed monomer mixture is heated at 50 ° C. for 5 hours under a nitrogen stream to polymerize, and then cooled to room temperature (about 25 ° C.) to obtain a slurry of polymer fine particles (organic fine particles 1).
  • the average particle diameter of the obtained organic fine particles P1 was 0.14 ⁇ m, and Tg was 280 ° C.
  • the average particle size of the organic fine particles was measured by the following method.
  • the dispersed particle size of the organic fine particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle size of the organic fine particles measured using a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.) is almost equal to the average particle size of the organic fine particles measured by TEM observation of the optical film. Matches.
  • Example 1 Production and evaluation of optical film
  • 11.3 parts by mass of the rubber particles C2 and 200 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then under a condition of 1500 rpm using a milder disperser milder disperser (manufactured by Taiheiyo Kiko Co., Ltd.). It was dispersed to obtain a rubber particle dispersion.
  • a milder disperser milder disperser manufactured by Taiheiyo Kiko Co., Ltd.
  • a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressure dissolution tank. Next, the (meth) acrylic resin A was charged into the pressure melting tank with stirring. Next, the rubber particle dispersion liquid prepared as described above was charged, and completely dissolved with stirring. The viscosity of the obtained solution was 16000 mmPa ⁇ s, and the water content was 0.50%. This was filtered at a filtration flow rate of 300 L / m 2 ⁇ h and a filtration pressure of 1.0 ⁇ 10 6 Pa using SHP150 manufactured by Loki Techno Co., Ltd. to obtain a dope.
  • Dope composition (Meth) acrylic resin A: 100 parts by mass Methylene chloride: 220 parts by mass Ethanol: 35 parts by mass Rubber particle dispersion: 200 parts by mass
  • the dope was uniformly cast on a stainless steel belt support at a temperature of 30 ° C. and a width of 1900 mm.
  • the temperature of the stainless steel belt was controlled at 28 ° C.
  • the conveying speed of the stainless steel belt was 20 m / min.
  • the film is further dried while being conveyed by a roll, and the end sandwiched between tenter clips is slit and wound with a laser cutter to obtain an optical film having a width of 2.3 m, a length of 7000 m, and a thickness of 40 ⁇ m.
  • a laser cutter to obtain an optical film having a width of 2.3 m, a length of 7000 m, and a thickness of 40 ⁇ m.
  • Example 2 and 3 An optical film was obtained in the same manner as in Example 1, except that the stretching ratio was changed as shown in Table 1.
  • Example 4 An optical film was obtained in the same manner as in Example 2, except that the type of the (meth) acrylic resin was changed as shown in Table 1.
  • Example 6 An optical film was obtained in the same manner as in Example 2, except that the type of the rubber particles was changed as shown in Table 1.
  • Example 7 An optical film was obtained in the same manner as in Example 2 except that the solid content of the dope was changed as shown in Table 1.
  • Example 8 and 13 An optical film was obtained in the same manner as in Example 2, except that the solvent composition of the rubber particle dispersion was changed as shown in Table 1.
  • Example 9 An optical film was obtained in the same manner as in Example 8, except that the solid content of the dope was changed as shown in Table 1.
  • Example 10 An optical film was obtained in the same manner as in Example 9, except that the length of the optical film was changed as shown in Table 1.
  • Example 11 An optical film was obtained in the same manner as in Example 9 except that the stretching direction was changed as shown in Table 1.
  • Example 12 (Preparation of rubber particle dispersion) 11.3 parts by mass of rubber particles C1, 180 parts by mass of methylene chloride, and 20 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then a milder disperser milder disperser (manufactured by Taihei Kiko Co., Ltd.) was used to perform dispersion under a condition of 1500 rpm to obtain a rubber particle dispersion.
  • a milder disperser milder disperser manufactured by Taihei Kiko Co., Ltd.
  • a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressure dissolution tank. Next, the (meth) acrylic resin 1 was charged into the pressure dissolution tank with stirring. Next, the fine particle dispersion prepared above was charged, heated to 60 ° C., and completely dissolved with stirring. The heating temperature was increased from room temperature at 5 ° C./min, dissolved for 30 minutes, and then decreased at 3 ° C./min. After the obtained solution was filtered, a dope was obtained.
  • the average aspect ratio and the average major axis of the rubber particles were calculated according to the following procedure. 1) The cross section of the optical film (the cross section parallel to the width direction among the cross sections along the thickness direction of the optical film) was observed by TEM. The observation area was 5 ⁇ m ⁇ 5 ⁇ m. 2) The major axis and minor axis of each rubber particle in the obtained TEM image were measured, and the aspect ratio was calculated. 3) The above operations 1) and 2) were performed in a total of four places while changing the observation area. Then, the average value of the measured aspect ratio was defined as “average aspect ratio”, and the average value of the measured major axis was defined as “average major axis”.
  • the proximity ratio of the rubber particles was measured according to the following procedure. 1) The major axis of each rubber particle was specified in the TEM image (observation area: 5 ⁇ m ⁇ 5 ⁇ m). Then, the smaller one of the angles formed by the long diameters of the adjacent rubber particles was 30 ° or less, and the distance between the particles was 100 nm or less. 2) The ratio of the number of rubber particles specified above to the total number of rubber particles in the observation region was calculated. 3) The above operations 1) and 2) were performed at a total of four places while changing the observation area, and the average value of the calculated ratios was defined as “proximity ratio” (%).
  • the MIT flexibility of the obtained optical film was measured using a bending resistance tester (MIT, Model BE-201, bending radius of curvature 0.38 mm, manufactured by Tester Sangyo Co., Ltd.). Specifically, a (meth) acrylic resin film having a width of 15 mm and a length of 150 mm, which was allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% RH for 1 hour or more, was used as a test piece. Under the conditions, the measurement was carried out in accordance with JIS P8115: 2001, and the number of times until breakage was evaluated according to the following evaluation criteria.
  • Table 1 shows the evaluation results of the optical films of Examples 1 to 13 and Comparative Examples 1 to 5.
  • MC indicates methylene chloride and EtOH indicates ethanol.
  • the optical films of Examples 1 to 13 in which the average aspect ratio of the rubber particles was 1.3 to 3.0 and the proximity ratio was 15% or more It can be seen that all have high MIT flexibility and good toughness. In addition, in the rolls of the optical films of Examples 1 to 13, it is found that winding failures such as tight winding and chain failure are also suppressed.
  • the average aspect ratio and the proximity ratio are further increased by increasing the draw ratio (compared to Examples 1 to 3).
  • the proximity ratio can be further increased by increasing ⁇ SP between the (meth) acrylic resin and the rubber particles (compared to Examples 2 and 4 to 6).
  • the proximity ratio is further increased by adding a poor solvent (EtOH) to the dispersion solvent of the rubber particles (compared to Examples 2, 8 and 13).
  • EtOH a poor solvent
  • the haze of the optical films of Examples 1 to 13 was measured using a haze meter (HGM-2DP, Suga Test Machine) at 25 ° C. and 60% RH in accordance with JIS K-6714. Was also small and good.
  • an optical film a roll of an optical film, a polarizing plate protective film, and a method for producing an optical film, in which the brittleness is satisfactorily improved without impairing the transparency, and which can suppress winding failure. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An optical film according to the present invention comprises a (meth)acrylic resin having a glass transition temperature of 110°C or higher and rubber particles. In a cross section of the optical film, the average aspect ratio of the rubber particles is 1.2 to 3.0, at least three among the rubber particles are connected contiguously in the direction of the longer diameters of the rubber particles, the particle-particle distance of the contiguous rubber particles fall within the range of 100 nm or less, and the ratio of the number of the contiguous rubber particles to the total number of the rubber particles contained in the optical film is 15% or more.

Description

光学フィルム、偏光板保護フィルム、光学フィルムのロール体、および光学フィルムの製造方法Optical film, polarizing plate protective film, roll of optical film, and method for producing optical film
 本発明は、光学フィルム、偏光板保護フィルム、光学フィルムのロール体、および光学フィルムの製造方法に関する。 The present invention relates to an optical film, a polarizing plate protective film, a roll of an optical film, and a method for producing an optical film.
 液晶表示装置や有機EL表示装置などの表示装置には、偏光板が用いられている。偏光板は、偏光子と、偏光板保護フィルムとを有する。 偏光 Polarizing plates are used in display devices such as liquid crystal display devices and organic EL display devices. The polarizing plate has a polarizer and a polarizing plate protective film.
 偏光板保護フィルムとして、従来は、セルロースアシレートを主成分とするフィルムが用いられている。しかしながら、セルロースアシレートを主成分とするフィルムは、耐湿性が低いことから、偏光板にした際に、高温高湿下における偏光子の水分による劣化を十分には抑制できないことがあった。そこで、セルロースアシレートを主成分とするフィルムに代えて、耐湿性に優れる熱可塑性樹脂を主成分とするフィルムを用いることが検討されている。 Conventionally, a film containing cellulose acylate as a main component has been used as a polarizing plate protective film. However, since a film containing cellulose acylate as a main component has low moisture resistance, when it is used as a polarizing plate, the deterioration of a polarizer due to moisture under high temperature and high humidity may not be sufficiently suppressed. Therefore, it has been studied to use a film mainly composed of a thermoplastic resin having excellent moisture resistance instead of a film mainly composed of cellulose acylate.
 特許文献1では、マレイミド系共重合体樹脂と、それと相溶する高分子鎖を有するゴム状重合体とを含むマレイミド系共重合体樹脂フィルムが開示されている。ゴム状重合体のアスペクト比は2以下であることが示されている。そして、マレイミド系共重合体樹脂単独のフィルムは脆いが、ゴム状重合体を含むことで脆さを改善でき、かつゴム状重合体が樹脂と相溶する高分子鎖を有することで、延伸時に樹脂とゴム状重合体の界面にボイドが形成されることによるフィルムの透明性の低下を抑制できるとされている。 Patent Document 1 discloses a maleimide-based copolymer resin film including a maleimide-based copolymer resin and a rubbery polymer having a polymer chain compatible with the same. It is shown that the rubbery polymer has an aspect ratio of 2 or less. The film of the maleimide-based copolymer resin alone is brittle, but the brittleness can be improved by including the rubbery polymer, and the rubbery polymer has a polymer chain compatible with the resin, so that it can be stretched during stretching. It is said that a decrease in the transparency of the film due to the formation of voids at the interface between the resin and the rubbery polymer can be suppressed.
特開2006-124435号公報JP 2006-124435 A
 ところで、偏光板保護フィルムなどの光学フィルムは、通常、長尺状に製膜された後、ロール状に巻き取られて、ロール体として保管・運搬される。長尺状のフィルムの巻き取りは、通常、張力をかけながら行われる。そのため、巻き取られる光学フィルムには、巻き取り張力により、長手方向には伸長する力が掛かりやすく、幅方向には収縮する力が掛かりやすい。それにより、巻き取り直後のロール体の光学フィルムには、長手方向には収縮しようとする力(応力)が生じやすく、幅方向には伸びようとする力(応力)が生じやすい。そして、長手方向に収縮しようとする力(応力)により、巻き締まることによる巻き芯による転写が生じやすく;幅方向に伸びようとする力(応力)により、チェーン状故障を生じることがあった。 By the way, an optical film such as a polarizing plate protective film is usually formed into a long film, wound up in a roll shape, and stored and transported as a roll body. The winding of a long film is usually performed while applying tension. For this reason, the optical film to be wound is easily applied with a stretching force in the longitudinal direction and a contracting force in the width direction due to the winding tension. As a result, a force (stress) that tends to contract in the longitudinal direction and a force (stress) that tends to expand in the width direction are likely to be generated in the optical film of the roll immediately after winding. In addition, a force (stress) that tends to contract in the longitudinal direction easily causes transfer by the winding core due to tightening; a force (stress) that tends to expand in the width direction may cause a chain-shaped failure.
 巻き芯の転写とは、面状欠陥であり、フィルムの長手方向の巻内部(巻き取り初期の巻き芯に近い部分)に形成されやすい。チェーン状故障とは、鎖状欠陥であり、フィルムの幅方向の全体に形成されやすい。 転 写 The transfer of the winding core is a planar defect, and is easily formed inside the winding in the longitudinal direction of the film (a portion close to the winding core at the beginning of winding). The chain-like failure is a chain-like defect, and is easily formed over the entire film in the width direction.
 これらの巻き芯の転写やチェーン状故障を少なくするためには、巻き取り直後の光学フィルムに残留する応力を、ゴム粒子によって効果的に緩和できることが望まれる。ゴム粒子によって応力を効果的に緩和するためには、ゴム粒子の粒子径は大きいことが望まれる。しかしながら、ゴム粒子の粒子径を大きくしすぎると、フィルムのヘイズが増大し、透明性が損なわれやすい。したがって、光学フィルムのヘイズを増大させることなく、すなわち、ゴム粒子の粒子径を大幅に大きくしなくても、巻き芯の転写やチェーン状故障などの巻き状故障を抑制できることが望まれている。 In order to reduce the transfer of the winding core and the chain-shaped failure, it is desired that the rubber particles can effectively reduce the stress remaining on the optical film immediately after winding. In order to effectively relieve the stress by the rubber particles, it is desired that the particle size of the rubber particles is large. However, if the particle size of the rubber particles is too large, the haze of the film increases, and the transparency tends to be impaired. Therefore, it is desired to be able to suppress winding defects such as transfer of a winding core and chain-like defects without increasing the haze of the optical film, that is, without significantly increasing the particle size of the rubber particles.
 特に、表示装置の大型化や薄型化に伴い、偏光板保護フィルムなどの光学フィルムの広幅化や薄型化が求められている。このような広幅化かつ薄型化された光学フィルムにおいて、巻き状故障が特に生じやすかった。 Especially, as display devices become larger and thinner, there is a demand for wider and thinner optical films such as polarizing plate protective films. In such a wide and thin optical film, a winding failure is particularly likely to occur.
 本発明は上記事情に鑑みてなされたものであり、(メタ)アクリル系樹脂を主成分とするフィルムであって、透明性を損なうことなく、脆性が良好に改善され、かつ巻き状故障を抑制できる光学フィルム、偏光板保護フィルム、光学フィルムのロール体および光学フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a film containing a (meth) acrylic resin as a main component, in which the brittleness is satisfactorily improved without impairing the transparency and the winding failure is suppressed. It is an object of the present invention to provide an optical film, a polarizing plate protective film, a roll of an optical film, and a method for producing an optical film.
 上記課題は、以下の構成によって解決することができる。 The above problem can be solved by the following configuration.
 本発明の光学フィルムは、ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子とを含み、前記光学フィルムの断面において、前記ゴム粒子の平均アスペクト比は、1.2~3.0であり、3個以上の前記ゴム粒子の長径同士がその長径方向に連なっており、かつ連なっている前記ゴム粒子の粒子間距離が100nm以下であり、前記連なっているゴム粒子の数の、前記光学フィルムに含まれる前記ゴム粒子の総数に対する比率が15%以上である。 The optical film of the present invention includes a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles, and the cross section of the optical film has an average aspect ratio of the rubber particles of 1.2 to 1.2. 3.0, wherein the major axes of three or more of the rubber particles are connected in the major axis direction, and the distance between the connected rubber particles is 100 nm or less, and the number of the connected rubber particles is 100 nm or less. Of the rubber particles contained in the optical film is 15% or more.
 本発明の偏光板保護フィルムは、本発明の光学フィルムを含む。 偏光 The polarizing plate protective film of the present invention includes the optical film of the present invention.
 本発明の光学フィルムのロール体は、ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子とを含み、その幅方向に対して垂直な方向に巻き取られた光学フィルムのロール体であって、前記光学フィルムの断面において、前記ゴム粒子の平均アスペクト比は、1.2~3.0であり、3個以上の前記ゴム粒子の長径同士がその長径方向に連なっており、かつ前記ゴム粒子同士の粒子間距離が100nm以下であり、前記連なっているゴム粒子の数の、前記光学フィルムに含まれる前記ゴム粒子の総数に対する比率が15%以上である。 The roll body of the optical film of the present invention comprises a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher, and rubber particles, and the optical film wound in a direction perpendicular to the width direction thereof. In a roll body, in a cross section of the optical film, an average aspect ratio of the rubber particles is 1.2 to 3.0, and three or more rubber particles have major axes connected in the major axis direction. The distance between the rubber particles is 100 nm or less, and the ratio of the number of the continuous rubber particles to the total number of the rubber particles included in the optical film is 15% or more.
 本発明の光学フィルムの製造方法は、ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含み、かつ固形分濃度が15質量%以下のドープを得る工程と、得られた前記ドープを支持体上に流延した後、乾燥および剥離して膜状物を得る工程と、前記膜状物を、20%以上延伸する工程とを含む。 The method for producing an optical film of the present invention comprises the step of obtaining a dope containing a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher, rubber particles, and a solvent, and having a solid content of 15% by mass or less. And a step of casting the obtained dope on a support, followed by drying and peeling to obtain a film, and a step of stretching the film by 20% or more.
 本発明によれば、透明性を損なうことなく、脆性が良好に改善され、かつ巻き状故障を抑制できる光学フィルム、光学フィルムのロール体および光学フィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide an optical film, a roll of an optical film, and a method for producing an optical film, in which the brittleness is satisfactorily improved without impairing the transparency and the winding failure can be suppressed.
図1は、光学フィルムの断面における、ゴム粒子の分散状態を説明する断面模式図である。FIG. 1 is a schematic cross-sectional view illustrating a dispersion state of rubber particles in a cross section of an optical film. 図2Aは、図1の点線2Aで囲まれた領域の拡大図であり、図2Bは、図1の点線2Bで囲まれた領域の拡大図である。FIG. 2A is an enlarged view of an area surrounded by a dotted line 2A in FIG. 1, and FIG. 2B is an enlarged view of an area surrounded by a dotted line 2B in FIG.
 本発明者らは、鋭意検討した結果、ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子とを含み、かつ当該ゴム粒子が、特定の分散構造で分散した光学フィルムは、透明性を損なうことなく、脆性が良好に改善され、かつ巻き状故障を抑制できることを見出した。 The present inventors have conducted intensive studies and found that an optical film containing a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles, and in which the rubber particles are dispersed in a specific dispersion structure, is obtained. It was found that the brittleness was satisfactorily improved without impairing the transparency, and that winding failure could be suppressed.
 特定の分散構造とは、具体的には、光学フィルムの断面において、以下の1)と2)を満たすような分散構造をいう。
 1)ゴム粒子の平均アスペクト比が、1.2~3.0であること
 2)3個以上のゴム粒子の長径同士がその長径方向に連なっており、かつ連なっているゴム粒子の粒子間距離が100nm以下であり、かつ
 当該連なっているゴム粒子の数の、光学フィルムに含まれるゴム粒子の総数に対する比率(以下、「近接比率」ともいう)が15%以上であること
The specific dispersion structure specifically refers to a dispersion structure that satisfies the following 1) and 2) in the cross section of the optical film.
1) The average aspect ratio of the rubber particles is from 1.2 to 3.0. 2) The major axes of three or more rubber particles are continuous in the major axis direction, and the distance between the continuous rubber particles. Is 100 nm or less, and the ratio of the number of continuous rubber particles to the total number of rubber particles contained in the optical film (hereinafter, also referred to as “proximity ratio”) is 15% or more.
 すなわち、ゴム粒子の平均アスペクト比が一定以上であると(上記1)の要件)、延伸によって引き伸ばされたゴム粒子は不安定であるため、安定な元の形状(真球状)に戻ろうとする復元力を生じやすい。それにより、巻き取り直後の光学フィルムに残留する応力を、扁平形状のゴム粒子が当該復元力によって吸収し、緩和することができる。
 なお、ゴム粒子の復元力による巻き状故障の抑制効果は、フィルムの伸縮方向と、それを抑制するためのゴムの伸縮方向(復元力の方向)とが必ずしも一致していなくても得られる。これは、フィルムに何らかの力が働いたときにゴム粒子がその力を吸収して復元力に変換(例えば厚み方向の復元)することで効果を発揮するためであると考えられる。
That is, when the average aspect ratio of the rubber particles is equal to or more than a certain value (requirement 1), since the rubber particles stretched by stretching are unstable, the rubber particles are restored to a stable original shape (true spherical shape). Easy to produce force. Thereby, the flat rubber particles can absorb and relieve the stress remaining in the optical film immediately after winding by the restoring force.
The effect of suppressing the winding failure due to the restoring force of the rubber particles can be obtained even if the direction of expansion and contraction of the film does not always match the direction of expansion and contraction of rubber (direction of restoring force) for suppressing it. This is considered to be because the rubber particles absorb the force when a certain force acts on the film and convert it into a restoring force (for example, restoring in the thickness direction), thereby exhibiting an effect.
 また、3個以上のゴム粒子がその長径方向に近接して連なった構造が適度に含まれることで(上記2)の要件)、巻き取り直後の光学フィルムに残留する応力を良好に分散させながら緩和することができる。特に、長尺かつ広幅のフィルムでは、光学フィルムに残留する応力(伸縮力)が増加傾向にあり、ゴム粒子が単一で均一分散している場合は、局所的には光学フィルムに残留する応力(伸縮力)を吸収しきれないことがあるが;複数のゴム粒子が近接している場合は、長手方向、幅手方向によらず、相対的に大粒径のゴム粒子と同様に光学フィルムに残留する応力(伸縮力)を吸収できる。
 これらの作用により、ゴム粒子の平均長径を大きくしなくても、巻き取り直後の光学フィルムに残留する応力(伸縮力)を、ゴム粒子によって効果的に緩和できると考えられる。
In addition, since the structure in which three or more rubber particles are closely connected in the major axis direction is appropriately included (requirement 2), the stress remaining in the optical film immediately after winding is dispersed well. Can be eased. In particular, in a long and wide film, the stress (stretching force) remaining in the optical film tends to increase, and when the rubber particles are single and uniformly dispersed, the stress locally remaining in the optical film is increased. (Stretching force) may not be fully absorbed; when a plurality of rubber particles are close to each other, the optical film is used similarly to rubber particles having a relatively large particle size regardless of the longitudinal direction and the width direction. Can absorb the residual stress (stretching force).
It is considered that by these actions, the stress (stretching force) remaining on the optical film immediately after winding can be effectively reduced by the rubber particles without increasing the average major axis of the rubber particles.
 また、3個以上のゴム粒子がその長径方向に近接して連なった構造が適度に含まれることで(上記2)の要件)、粒子径の大きな単一粒子よりも、高度に応力を分散させることができるため、光学フィルムの脆性も高度に改善しうる。 Further, by appropriately including a structure in which three or more rubber particles are closely connected in the major axis direction (requirement 2), stress is more highly dispersed than a single particle having a large particle diameter. Therefore, the brittleness of the optical film can be improved to a high degree.
 上記1)の要件は、例えば溶液流延方式による製膜時のドープの固形分濃度や、延伸条件(特に延伸倍率)によって調整することができる。ゴム粒子の平均アスペクト比を高めるためには、例えばドープの固形分濃度は低くすることが好ましく、延伸倍率は高くすることが好ましい。 要件 The requirement of the above 1) can be adjusted by, for example, the solid content concentration of the dope at the time of film formation by the solution casting method and the stretching conditions (particularly the stretching ratio). In order to increase the average aspect ratio of the rubber particles, for example, it is preferable to lower the solid content of the dope, and it is preferable to increase the stretching ratio.
 上記2)の要件は、例えば(メタ)アクリル系樹脂のガラス転移温度(Tg)や、(メタ)アクリル系樹脂とゴム粒子の親和性(ΔSPなど)、製膜時のドープの固形分濃度、ゴム粒子分散液の分散溶媒の組成、延伸倍率などによって調整することができる。ゴム粒子の近接比率を高めるためには、例えば(メタ)アクリル系樹脂のガラス転移温度(Tg)は110℃以上と高くすることが好ましく、(メタ)アクリル系樹脂とゴム粒子の親和性(ΔSPなど)は適度に低くすることが好ましく、ドープの固形分濃度は低くすることが好ましく、ゴム粒子分散液の分散溶媒に貧溶媒を添加することが好ましく、延伸倍率は高くすることが好ましい。 The requirements of the above 2) include, for example, the glass transition temperature (Tg) of the (meth) acrylic resin, the affinity (ΔSP, etc.) of the (meth) acrylic resin and the rubber particles, the solid concentration of the dope during film formation, It can be adjusted by the composition of the dispersion solvent of the rubber particle dispersion, the stretching ratio, and the like. In order to increase the proximity ratio of the rubber particles, for example, the glass transition temperature (Tg) of the (meth) acrylic resin is preferably set to 110 ° C. or higher, and the affinity (ΔSP) between the (meth) acrylic resin and the rubber particles is preferably increased. And the like), preferably the solid concentration of the dope is preferably low, the poor solvent is preferably added to the dispersion solvent of the rubber particle dispersion, and the stretching ratio is preferably high.
 1.光学フィルム
 本発明の光学フィルムは、(メタ)アクリル系樹脂と、ゴム粒子とを含む。
1. Optical Film The optical film of the present invention contains a (meth) acrylic resin and rubber particles.
 1-1.(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、110℃以上であることが好ましい。(メタ)アクリル系樹脂のガラス転移温度(Tg)が110℃以上であると、同じ延伸温度では、ガラス転移温度(Tg)が低い(メタ)アクリル系樹脂よりも動きにくいため、ゴム粒子も動きにくくしうる。それにより、ゴム粒子が過度に拡散しすぎないため、適度に近接させることができる。(メタ)アクリル系樹脂のガラス転移温度(Tg)は、上記観点から、120~160℃であることが好ましく、125~150℃であることがより好ましい。
1-1. (Meth) acrylic resin The glass transition temperature (Tg) of the (meth) acrylic resin is preferably 110 ° C. or higher. When the glass transition temperature (Tg) of the (meth) acrylic resin is 110 ° C. or higher, the rubber particles also move at the same stretching temperature because the glass transition temperature (Tg) is lower than that of the (meth) acrylic resin having a low glass transition temperature (Tg). Can be difficult. Thereby, since the rubber particles are not excessively diffused, the rubber particles can be appropriately brought close to each other. From the above viewpoint, the glass transition temperature (Tg) of the (meth) acrylic resin is preferably from 120 to 160 ° C., and more preferably from 125 to 150 ° C.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定することができる。 The glass transition temperature (Tg) of the (meth) acrylic resin can be measured by using DSC (Differential Scanning Colorimetry) in accordance with JIS K 7121-2012.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、モノマーの種類および組成によって調整することができる。(メタ)アクリル系樹脂のガラス転移温度(Tg)を高めるためには、例えば後述する嵩高い構造を有する共重合モノマーの含有比率を多くすることが好ましい。 ガ ラ ス The glass transition temperature (Tg) of the (meth) acrylic resin can be adjusted by the type and composition of the monomer. In order to increase the glass transition temperature (Tg) of the (meth) acrylic resin, for example, it is preferable to increase the content ratio of a copolymer monomer having a bulky structure described later.
 (メタ)アクリル系樹脂は、(メタ)アクリル酸エステルの単独重合体であってもよいし、(メタ)アクリル酸エステルとそれと共重合可能な共重合モノマーとの共重合体であってもよい。なお、(メタ)アクリルとは、アクリルまたはメタクリルを意味する。(メタ)アクリル酸エステルは、メタクリル酸メチルであることが好ましい。 The (meth) acrylic resin may be a homopolymer of a (meth) acrylic ester or a copolymer of a (meth) acrylic ester and a copolymerizable monomer copolymerizable therewith. . In addition, (meth) acryl means acryl or methacryl. The (meth) acrylate is preferably methyl methacrylate.
 すなわち、(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位を含み、メタクリル酸メチル以外の共重合モノマー(以下、単に「共重合モノマー」という)に由来する構造単位をさらに含むことが好ましい。 That is, the (meth) acrylic resin includes a structural unit derived from methyl methacrylate, and may further include a structural unit derived from a copolymer monomer other than methyl methacrylate (hereinafter, simply referred to as a “copolymer monomer”). preferable.
 共重合モノマーの例には、
 アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラクトンなどのアルキル基の炭素数が1~20のアクリル酸エステルまたはアルキル基の炭素数が2~20のメタクリル酸エステル類;
 スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレンなどの芳香族ビニル類;
 ビニルシクロヘキサンなどの脂環式ビニル類;
 (メタ)アクリロニトリル、(メタ)アクリロニトリル-スチレン共重合体などの不飽和ニトリル類;
 (メタ)アクリル酸、クロトン酸、(メタ)アクリル酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステルなどの不飽和カルボン酸類;
 酢酸ビニル、エチレンやプロピレンなどのオレフィン類;
 塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル類;
 (メタ)アクリルアミド、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミド、ブチル(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、フェニル(メタ)アクリルアミドなどの(メタ)アクリルアミド類;
 (メタ)アクリル酸グリシジルなどの不飽和グリシジル類;
 N-フェニルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド類が含まれる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
Examples of copolymerized monomers include:
Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2- (meth) acrylate Ethylhexyl, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclo (meth) acrylate Acrylate or alkyl group having 1 to 20 carbon atoms in the alkyl group, such as pentanyl, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and lactone (meth) acrylate Methacrylic esters having a number of 2 to 20;
Aromatic vinyls such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene;
Alicyclic vinyls such as vinylcyclohexane;
Unsaturated nitriles such as (meth) acrylonitrile and (meth) acrylonitrile-styrene copolymer;
Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, (meth) acrylic acid, itaconic acid, itaconic acid monoester, maleic acid and maleic acid monoester;
Olefins such as vinyl acetate, ethylene and propylene;
Vinyl halides such as vinyl chloride, vinylidene chloride and vinylidene fluoride;
(Meth) acrylamides such as (meth) acrylamide, methyl (meth) acrylamide, ethyl (meth) acrylamide, propyl (meth) acrylamide, butyl (meth) acrylamide, tert-butyl (meth) acrylamide, and phenyl (meth) acrylamide;
Unsaturated glycidyls such as glycidyl (meth) acrylate;
Maleimides such as N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide, and No-chlorophenylmaleimide are included. These may be used alone or in combination of two or more.
 中でも、光学フィルムのガラス転移温度(Tg)を高めつつ、ゴム粒子との親和性を適度に低くする観点などから、嵩高い構造を有する共重合モノマーが好ましい。 Among them, a copolymer monomer having a bulky structure is preferable from the viewpoint of appropriately lowering the affinity for rubber particles while increasing the glass transition temperature (Tg) of the optical film.
 嵩高い構造を有する共重合モノマーの例には、
 (メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシルなどのシクロ環を有する(メタ)アクリル酸エステル;ビニルシクロヘキサンなどのシクロ環を有するビニル類;およびN-フェニルマレイミドなどのマレイミド類からなる群より選ばれる共重合モノマー;
 (メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシルなどの分岐アルキル基を有する(メタ)アクリル酸エステルなどの共重合モノマーが含まれる。
 中でも、嵩高い構造を有する共重合モノマーは、シクロ環を有する(メタ)アクリル酸エステル類、マレイミド類からなる群より選ばれる共重合モノマー、分岐アルキル基を有する(メタ)アクリル酸エステル、およびそれらの組み合わせであることが好ましく、シクロ環を有する(メタ)アクリル酸エステル類、マレイミド類からなる群より選ばれる共重合モノマーであることがより好ましい。
Examples of copolymerized monomers having a bulky structure include:
(Meth) acrylic acid esters having a cyclo ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, and cyclohexyl (meth) acrylate; Vinyls having; and a copolymer monomer selected from the group consisting of maleimides such as N-phenylmaleimide;
Copolymerized monomers such as (meth) acrylate having a branched alkyl group such as t-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are included.
Among them, copolymer monomers having a bulky structure are (meth) acrylates having a cyclo ring, copolymer monomers selected from the group consisting of maleimides, (meth) acrylates having a branched alkyl group, and the like. Is preferable, and a copolymer monomer selected from the group consisting of (meth) acrylates having a cyclo ring and maleimides is more preferable.
 共重合モノマーに由来する構造単位の含有量(好ましくは嵩高い構造を有する共重合モノマーに由来する構造単位の含有量)は、(メタ)アクリル系樹脂を構成する構造単位の合計100質量%に対して0~50質量%であることが好ましく、10~40質量%であることがより好ましく、10~30質量%であることがさらに好ましい。(メタ)アクリル系樹脂のモノマーの種類や組成は、H-NMRにより特定することができる。 The content of the structural unit derived from the copolymerized monomer (preferably, the content of the structural unit derived from the copolymerized monomer having a bulky structure) is reduced to 100% by mass in total of the structural units constituting the (meth) acrylic resin. On the other hand, it is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 10 to 30% by mass. The type and composition of the monomer of the (meth) acrylic resin can be specified by 1 H-NMR.
 (メタ)アクリル系樹脂の重量平均分子量Mwは、例えば20万~200万であることが好ましい。(メタ)アクリル系樹脂の重量平均分子量Mwが上記範囲であると、フィルムに十分な機械的強度(靱性)を付与しつつ、製膜性も損なわれにくい。(メタ)アクリル系樹脂の重量平均分子量Mwは、上記観点から、30万~200万であることがより好ましく、50万~200万であることがさらに好ましい。重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。 The weight average molecular weight Mw of the (meth) acrylic resin is preferably, for example, 200,000 to 2,000,000. When the weight average molecular weight Mw of the (meth) acrylic resin is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film formability is not easily impaired. From the above viewpoint, the weight average molecular weight Mw of the (meth) acrylic resin is more preferably from 300,000 to 2,000,000, and still more preferably from 500,000 to 2,000,000. The weight average molecular weight Mw can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 1-2.ゴム粒子
 ゴム粒子は、光学フィルムに柔軟性や靱性を付与しつつ、光学フィルムの表面に凹凸を形成して滑り性を付与する機能を有しうる。
1-2. Rubber Particles The rubber particles may have a function of forming irregularities on the surface of the optical film to impart slipperiness while imparting flexibility and toughness to the optical film.
 1-2-1.ゴム粒子の形状について
 光学フィルムの断面を観察したときのゴム粒子の平均アスペクト比は、1.2~3.0であることが好ましい。ゴム粒子の平均アスペクト比が1.2以上であると、ゴム粒子の延伸張力に対する応力(縮もうとする力)が巻き取り直後の光学フィルムに加わりやすため、光学フィルムに残留する応力を緩和しやすく、巻き状故障を抑制することができる。ゴム粒子の平均アスペクト比が3.0以下であると、近接するゴム粒子同士の接点が少なくなりすぎないため、光学フィルムに残留する応力を分散させる効果が損なわれにくく、巻き状故障を抑制することができる。ゴム粒子の平均アスペクト比は、1.5~2.8であることがより好ましく、2.0~2.5であることがさらに好ましい。
1-2-1. About Shape of Rubber Particle The average aspect ratio of the rubber particle when observing the cross section of the optical film is preferably from 1.2 to 3.0. When the average aspect ratio of the rubber particles is 1.2 or more, stress (force to shrink) with respect to the stretching tension of the rubber particles is easily applied to the optical film immediately after winding, so that the stress remaining on the optical film is reduced. It is easy to suppress winding failure. When the average aspect ratio of the rubber particles is 3.0 or less, the number of contacts between adjacent rubber particles does not become too small, so that the effect of dispersing the stress remaining in the optical film is hardly impaired, and winding failure is suppressed. be able to. The average aspect ratio of the rubber particles is more preferably from 1.5 to 2.8, and even more preferably from 2.0 to 2.5.
 アスペクト比とは、ゴム粒子の長径の短径に対する比(長径/短径)を意味する。また、平均アスペクト比とは、複数のゴム粒子のアスペクト比の平均値を意味する。 The aspect ratio means the ratio (major axis / minor axis) of the major axis to the minor axis of the rubber particles. The average aspect ratio means an average value of aspect ratios of a plurality of rubber particles.
 ゴム粒子の長径は、後述するTEM画像において、ゴム粒子が外接する長方形の長手方向の長さ(長辺の長さ)として測定することができる。ゴム粒子の短径は、後述するTEM画像において、ゴム粒子が外接する長方形の短手方向の長さ(短辺の長さ)として測定することができる。 の 長 The long diameter of the rubber particle can be measured as the length in the longitudinal direction (length of the long side) of the rectangle circumscribed by the rubber particle in a TEM image described later. The minor axis of the rubber particle can be measured as a length (length of a short side) of a rectangle circumscribed by the rubber particle in a TEM image described later.
 ゴム粒子の平均長径は、200~500nmであることが好ましい。ゴム粒子の平均長径が200nm以上であると、ゴム粒子の延伸張力に対する応力(縮もうとする力)が巻き取り直後の光学フィルムに加わりやすため、巻き状故障を十分に抑制しやすい。ゴム粒子の平均長径が500nm以下であると、近接するゴム粒子同士の接点が少なくなりすぎないため、応力を分散させる効果が損なわれにくく、巻き状故障を十分に抑制しやすい。ゴム粒子の平均長径は、220~400nmであることがより好ましく、250~350nmであることがさらに好ましい。ゴム粒子の平均長径は、ゴム粒子の長径の平均値である。 平均 The average major axis of the rubber particles is preferably from 200 to 500 nm. When the average major axis of the rubber particles is 200 nm or more, a stress (force to shrink) with respect to the stretching tension of the rubber particles is likely to be applied to the optical film immediately after winding, so that winding failure is easily suppressed sufficiently. When the average major axis of the rubber particles is 500 nm or less, the number of contacts between adjacent rubber particles does not become too small, so that the effect of dispersing the stress is not easily impaired, and the winding failure is easily suppressed sufficiently. The average major axis of the rubber particles is more preferably from 220 to 400 nm, further preferably from 250 to 350 nm. The average major axis of the rubber particles is an average of the major axes of the rubber particles.
 ゴム粒子の平均アスペクト比と平均長径は、以下の方法で算出することができる。
 1)光学フィルムの断面(光学フィルムの厚み方向に沿った断面のうち、面内遅相軸と平行な断面)をTEM観察する。観察領域は、光学フィルムの厚みに相当する領域としてもよいし、5μm×5μmの領域としてもよい。光学フィルムの厚みに相当する領域を観察領域とする場合、測定箇所は1箇所としうる。5μm×5μmの領域を観察領域とする場合、測定箇所は4箇所としうる。
 2)得られたTEM画像における各ゴム粒子の長径、短径を測定し、アスペクト比をそれぞれ算出する。複数のゴム粒子から得られたアスペクト比の平均値を「平均アスペクト比」とし、複数のゴム粒子から得られた長径の平均値を「平均長径」とする。
The average aspect ratio and the average major axis of the rubber particles can be calculated by the following method.
1) TEM observation of a cross section of the optical film (of the cross section along the thickness direction of the optical film, a cross section parallel to the in-plane slow axis). The observation region may be a region corresponding to the thickness of the optical film or a region of 5 μm × 5 μm. When a region corresponding to the thickness of the optical film is set as the observation region, the number of measurement points may be one. When an area of 5 μm × 5 μm is set as the observation area, the number of measurement points may be four.
2) Measure the major axis and minor axis of each rubber particle in the obtained TEM image and calculate the aspect ratio. The average value of the aspect ratios obtained from the plurality of rubber particles is referred to as “average aspect ratio”, and the average value of the long diameters obtained from the plurality of rubber particles is referred to as “average long diameter”.
 ゴム粒子の平均アスペクト比や平均長径は、光学フィルムの製膜条件や延伸条件によって調整することができる。ゴム粒子の平均アスペクト比や平均長径を大きくするためには、例えば光学フィルムの製膜時のドープ濃度を低くしたり、延伸倍率を高くしたりすることが好ましい。 平均 The average aspect ratio and average major axis of the rubber particles can be adjusted by the film forming conditions and the stretching conditions of the optical film. In order to increase the average aspect ratio and the average major axis of the rubber particles, for example, it is preferable to lower the dope concentration at the time of forming the optical film or to increase the draw ratio.
 ゴム粒子の平均アスペクト比が、延伸によって調整されたものであるかどうかは、連なっているゴム粒子の数の比率が15%以上であること(上記2)の要件)によって確認することができる。つまり、延伸前から扁平なゴム粒子を用いた場合は、製膜過程で、ゴム粒子同士が近接しにくいだけでなく、近接したとしても、ゴム粒子の短径方向に連なるものも一定量以上含まれると考えられるからである。 Whether or not the average aspect ratio of the rubber particles is adjusted by stretching can be confirmed by the fact that the ratio of the number of continuous rubber particles is 15% or more (requirement 2)). In other words, when flat rubber particles are used before stretching, in the film forming process, not only are the rubber particles difficult to come close to each other, but even if they are close to each other, a certain amount or more of rubber particles connected in the minor axis direction is included. It is because it is thought that it is done.
 1-2-2.ゴム粒子の分散構造について
 光学フィルムは、3個以上のゴム粒子の長径同士がその長径方向に近接して連なった分散構造を含む。具体的には、光学フィルムの断面において、3個以上のゴム粒子が、その長径方向に連なっており、かつ連なっているゴム粒子の粒子間距離が100nm以下である、分散構造が観察される。
1-2-2. About Dispersion Structure of Rubber Particles The optical film includes a dispersion structure in which the major axes of three or more rubber particles are continuous in the major axis direction. Specifically, in the cross section of the optical film, a dispersed structure in which three or more rubber particles are continuous in the major axis direction and the distance between the continuous rubber particles is 100 nm or less is observed.
 図1は、光学フィルムの断面における、ゴム粒子の分散状態を説明する断面模式図である。図2Aは、図1の点線2Aで囲まれた領域の拡大図であり、図2Bは、図1の点線2Bで囲まれた領域の拡大図である。図1において、X方向は、例えば光学フィルムの面内遅相軸方向であり、Y方向は、光学フィルムの厚み方向である。また、図2Aにおいて、LAは、ゴム粒子の長径を含む仮想線を示す。 FIG. 1 is a schematic cross-sectional view for explaining a dispersion state of rubber particles in a cross section of the optical film. FIG. 2A is an enlarged view of an area surrounded by a dotted line 2A in FIG. 1, and FIG. 2B is an enlarged view of an area surrounded by a dotted line 2B in FIG. In FIG. 1, the X direction is, for example, the in-plane slow axis direction of the optical film, and the Y direction is the thickness direction of the optical film. In FIG. 2A, LA indicates a virtual line including the major axis of the rubber particles.
 図1に示されるように、光学フィルム100の断面において、複数のゴム粒子120は、(メタ)アクリル系樹脂を主成分とするマトリクス110中に、特定の分散構造をなして分散している。 As shown in FIG. 1, in the cross section of the optical film 100, a plurality of rubber particles 120 are dispersed in a matrix 110 mainly composed of a (meth) acrylic resin in a specific dispersion structure.
 図2Aは、4個のゴム粒子が、その長径方向に所定の間隔で連なった状態を示している。図2Bは、3個のゴム粒子が、その長径方向に一部が互いに重なりながら連なった状態を示している。図2AおよびBは、いずれも上記特定の分散構造の例である。 FIG. 2A shows a state in which four rubber particles are connected at predetermined intervals in the major axis direction. FIG. 2B shows a state in which three rubber particles are connected to each other in the major axis direction while partially overlapping each other. 2A and 2B are examples of the above-mentioned specific dispersion structure.
 「ゴム粒子の長径同士が、その長径方向に連なっている」とは、具体的には、隣り合うゴム粒子の長径同士のなす角度(図2Aでは、長径を含む仮想線LA同士のなす角度)のうち小さいほうの角度θが、30°以下(好ましくは10°以下)をなして連なっていることをいう。なお、隣り合うゴム粒子の長径同士のなす角度が0°である例には、隣り合うゴム粒子の長径同士が一直線上に並ぶ態様だけでなく、図2Bに示されるように、長径同士が一部互いに重なりながら連なった態様も含まれる。 "The major axes of the rubber particles are connected in the major axis direction" specifically means the angle between the major axes of the adjacent rubber particles (in FIG. 2A, the angle between the virtual lines LA including the major axis). Means that the smaller angle θ is continuous at an angle of 30 ° or less (preferably 10 ° or less). In addition, in the example in which the angle between the long diameters of the adjacent rubber particles is 0 °, not only the mode in which the long diameters of the adjacent rubber particles are aligned on a straight line, but also the long diameters are The aspect in which the parts are connected to each other while overlapping each other is also included.
 「粒子間距離が100nm以下である」とは、隣り合うゴム粒子同士の最小間隔が100nm以下であることをいう(図2Aおよび図2Bのdを参照)。隣り合うゴム粒子同士の最小間隔は、TEM画像を画像解析することによって特定することができる。 “The distance between particles is 100 nm or less” means that the minimum distance between adjacent rubber particles is 100 nm or less (see d in FIGS. 2A and 2B). The minimum distance between adjacent rubber particles can be specified by image analysis of a TEM image.
 そして、連なっているゴム粒子の数(特定の分散構造を構成するゴム粒子の数)の、光学フィルムに含まれるゴム粒子の総数に対する比率(近接比率)は、15%以上であることが好ましい。近接比率が15%以上であると、近接した複数のゴム粒子の割合が多いため、応力を分散させやすい。一方、近接比率が70%以下であると、光学フィルムのヘイズが増大しにくい。近接比率は、20~60%であることがより好ましく、25~50%であることがさらに好ましく、30~50%であることが特に好ましい。 (4) The ratio (proximity ratio) of the number of connected rubber particles (the number of rubber particles constituting the specific dispersion structure) to the total number of rubber particles contained in the optical film is preferably 15% or more. When the proximity ratio is 15% or more, the ratio of a plurality of rubber particles close to each other is large, so that stress is easily dispersed. On the other hand, when the proximity ratio is 70% or less, the haze of the optical film does not easily increase. The proximity ratio is more preferably from 20 to 60%, further preferably from 25 to 50%, and particularly preferably from 30 to 50%.
 例えば、ゴム粒子の総数10個のうち、ゴム粒子が4個連なっている構造(例えば図2Aなどを参照)と、3個連なっている構造(例えば図2Bなどを参照)があり、残りの3個のゴム粒子は連なっていない場合、近接比率は、(4+3)/10×100(%)=70%となる。 For example, of a total of 10 rubber particles, there are a structure in which four rubber particles are connected (see, for example, FIG. 2A) and a structure in which three rubber particles are connected (see, for example, FIG. 2B). When the rubber particles are not continuous, the proximity ratio is (4 + 3) / 10 × 100 (%) = 70%.
 ゴム粒子の長径方向は、光学フィルムの厚み方向に対して略垂直であることが好ましい。略垂直とは、90±15°の範囲をいう。また、巻き取り後の光学フィルムの巻き状故障をより抑制しやすくする観点では、ゴム粒子の長径方向は、光学フィルムの面内遅相軸に対して略平行であることが好ましい。略平行とは、0±15°の範囲をいう。 の 長 The major axis direction of the rubber particles is preferably substantially perpendicular to the thickness direction of the optical film. Substantially perpendicular refers to a range of 90 ± 15 °. In addition, from the viewpoint of more easily suppressing the winding failure of the optical film after winding, the major axis direction of the rubber particles is preferably substantially parallel to the in-plane slow axis of the optical film. Substantially parallel means a range of 0 ± 15 °.
 1-2-3.ゴム粒子の組成・構成について
 ゴム粒子は、ゴム状重合体(架橋重合体)を含むグラフト共重合体、すなわち、ゴム状重合体(架橋重合体)からなるコア部と、それを覆うシェル部とを有するコアシェル型のゴム粒子であることが好ましい。
1-2-3. About composition and composition of rubber particles Rubber particles are a graft copolymer containing a rubber-like polymer (cross-linked polymer), that is, a core portion made of a rubber-like polymer (cross-linked polymer), and a shell portion covering the core portion. It is preferably a core-shell type rubber particle having the following.
 ゴム状重合体のガラス転移温度(Tg)は、-10℃以下であることが好ましい。ゴム状重合体のガラス転移温度(Tg)が-10℃以下であると、フィルムに十分な靱性を付与しやすい。ゴム状重合体のガラス転移温度(Tg)は、-15℃以下であることがより好ましく、-20℃以下であることがさらに好ましい。ゴム状重合体のガラス転移温度(Tg)は、前述と同様の方法で測定される。 ガ ラ ス The rubber-like polymer preferably has a glass transition temperature (Tg) of -10 ° C or lower. When the glass transition temperature (Tg) of the rubbery polymer is −10 ° C. or less, sufficient toughness is easily imparted to the film. The glass transition temperature (Tg) of the rubbery polymer is more preferably -15 ° C or lower, and further preferably -20 ° C or lower. The glass transition temperature (Tg) of the rubbery polymer is measured by the same method as described above.
 ゴム状重合体のガラス転移温度(Tg)は、例えば構成するモノマー組成などによって調整することができる。ゴム状重合体のガラス転移温度(Tg)を低くするためには、後述するように、例えばゴム状重合体を構成するモノマー混合物における、アルキル基の炭素数が4以上のアクリル酸エステル/メタクリル酸メチルの質量比を多くする(例えば3以上、好ましくは4以上10以下とする)ことが好ましい。 ガ ラ ス The glass transition temperature (Tg) of the rubbery polymer can be adjusted by, for example, the monomer composition. In order to lower the glass transition temperature (Tg) of the rubber-like polymer, as described later, for example, in a monomer mixture constituting the rubber-like polymer, an acrylate / methacrylic acid having an alkyl group having 4 or more carbon atoms in a monomer mixture. It is preferable to increase the mass ratio of methyl (for example, 3 or more, preferably 4 or more and 10 or less).
 ゴム状重合体は、例えばガラス転移温度が上記範囲内となるものであればよく、特に限定されないが、その例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、光学フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。 The rubbery polymer is not particularly limited as long as it has a glass transition temperature in the above range, and examples thereof include, but are not limited to, a butadiene-based crosslinked polymer, a (meth) acrylic crosslinked polymer, and an organosiloxane. -Based crosslinked polymers are included. Among them, from the viewpoint that the difference in the refractive index from the (meth) acrylic resin is small and the transparency of the optical film is not easily impaired, the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic rubbery polymer) is preferable. Is more preferred.
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含むアクリル系グラフト共重合体、すなわち、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であることが好ましい。当該コアシェル型の粒子は、アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)を少なくとも1段以上重合して得られる多段重合体(または多層構造重合体)である。重合は、乳化重合法で行うことができる。 That is, the rubber particles are a core-shell having an acrylic graft copolymer containing an acrylic rubbery polymer (a), that is, a core part containing an acrylic rubbery polymer (a), and a shell part covering the core part. Preferably, the particles are of the type. The core-shell type particles are a multi-stage polymer (or multilayer) obtained by polymerizing at least one or more stages of a monomer mixture (b) containing a methacrylic acid ester as a main component in the presence of an acrylic rubber-like polymer (a). Structural polymer). The polymerization can be performed by an emulsion polymerization method.
 (コア部:アクリル系ゴム状重合体(a)について)
 アクリル系ゴム状重合体(a)は、アクリル酸エステルを主成分とする架橋重合体である。アクリル系ゴム状重合体(a)は、アクリル酸エステルを50~100質量%と、それと共重合可能な他のモノマー50~0質量%とを含むモノマー混合物(a’)、および、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性モノマー0.05~10質量部(モノマー混合物(a’)100質量部に対して)を重合させて得られる架橋重合体である。当該架橋重合体は、これらのモノマーを全部混合して重合させて得てもよいし、モノマー組成を変化させて2回以上で重合させて得てもよい。
(Core: Acrylic rubbery polymer (a))
The acrylic rubbery polymer (a) is a crosslinked polymer containing an acrylate ester as a main component. The acrylic rubbery polymer (a) is a monomer mixture (a ′) containing 50 to 100% by mass of an acrylate ester and 50 to 0% by mass of another monomer copolymerizable therewith; It is a crosslinked polymer obtained by polymerizing 0.05 to 10 parts by mass of a polyfunctional monomer having two or more non-conjugated reactive double bonds (based on 100 parts by mass of the monomer mixture (a ')). . The crosslinked polymer may be obtained by mixing all of these monomers and polymerizing them, or may be obtained by polymerizing two or more times by changing the monomer composition.
 アクリル系ゴム状重合体(a)を構成するアクリル酸エステルは、アクリル酸メチル、アクリル酸ブチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。ゴム粒子のガラス転移温度を-10℃以下にする観点では、アクリル酸エステルは、少なくとも、炭素数4~10のアクリル酸アルキルエステルを含むことが好ましい。 The acrylate constituting the acrylic rubbery polymer (a) is preferably an alkyl acrylate having 1 to 12 carbon atoms in an alkyl group such as methyl acrylate and butyl acrylate. The acrylate may be one type or two or more types. From the viewpoint of reducing the glass transition temperature of the rubber particles to −10 ° C. or lower, the acrylate preferably contains at least an alkyl acrylate having 4 to 10 carbon atoms.
 アクリル酸エステルの含有量は、モノマー混合物(a’)100質量%に対して50~100質量%であることが好ましく、60~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。アクリル酸エステルの含有量が50重量%以上であると、フィルムに十分な靱性を付与しやすい。 The content of the acrylate is preferably from 50 to 100% by mass, more preferably from 60 to 99% by mass, and more preferably from 70 to 99% by mass, based on 100% by mass of the monomer mixture (a '). Is more preferable. When the content of the acrylate is 50% by weight or more, it is easy to impart sufficient toughness to the film.
 また、アクリル系ゴム状重合体(a)のガラス転移温度を-10℃以下にしやすくする観点では、アルキル基の炭素数が4以上のアクリル酸アルキルエステル/モノマー混合物(a’)の質量比は3以上とすることが好ましく、4以上10以下であることがより好ましい。 From the viewpoint of easily reducing the glass transition temperature of the acrylic rubbery polymer (a) to −10 ° C. or lower, the mass ratio of the alkyl acrylate / monomer mixture (a ′) having 4 or more carbon atoms in the alkyl group is preferably It is preferably 3 or more, and more preferably 4 or more and 10 or less.
 共重合可能なモノマーの例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類なども含まれる。 Examples of copolymerizable monomers include methacrylates such as methyl methacrylate; styrenes such as styrene and methylstyrene; and unsaturated nitriles such as acrylonitrile and methacrylonitrile.
 多官能性モノマーの例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。 Examples of polyfunctional monomers include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinyl benzene, ethylene glycol di (meth) acrylate, diethylene glycol (meth) Acrylates, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetromethylol methanetetra (meth) acrylate, dipropylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate are included.
 多官能性モノマーの含有量は、モノマー混合物(a’)の合計100質量%に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。多官能性モノマーの含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られるフィルムの硬度、剛性が損なわれすぎず、10質量%以下であると、フィルムの靱性が損なわれにくい。 The content of the polyfunctional monomer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on 100% by mass of the total of the monomer mixture (a '). When the content of the polyfunctional monomer is 0.05% by mass or more, the degree of crosslinking of the obtained acrylic rubbery polymer (a) is easily increased, so that the hardness and rigidity of the obtained film are not excessively impaired. When the content is 10% by mass or less, the toughness of the film is not easily impaired.
 (シェル部:モノマー混合物(b)について)
 モノマー混合物(b)は、アクリル系ゴム状重合体(a)に対するグラフト成分であり、シェル部を構成する。モノマー混合物(b)は、メタアクリル酸エステルを主成分として含むことが好ましい。
(Shell part: monomer mixture (b))
The monomer mixture (b) is a graft component for the acrylic rubbery polymer (a) and forms a shell part. The monomer mixture (b) preferably contains a methacrylate ester as a main component.
 モノマー混合物(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 The methacrylate constituting the monomer mixture (b) is preferably an alkyl methacrylate having 1 to 12 carbon atoms in an alkyl group such as methyl methacrylate. The methacrylic acid ester may be one kind or two or more kinds.
 メタクリル酸エステルの含有量は、モノマー混合物(b)100質量%に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、得られるフィルムの硬度、剛性を低下させにくくしうる。(メタ)アクリル系樹脂とゴム粒子の親和性を低くする(ΔSPを大きくする)観点では、メタクリル酸エステルの含有量は、モノマー混合物(b)100質量%に対して70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 The content of the methacrylic acid ester is preferably 50% by mass or more based on 100% by mass of the monomer mixture (b). When the content of the methacrylic acid ester is 50% by mass or more, the hardness and rigidity of the obtained film may be hardly reduced. From the viewpoint of lowering the affinity between the (meth) acrylic resin and the rubber particles (increase ΔSP), the content of the methacrylate ester is 70% by mass or more based on 100% by mass of the monomer mixture (b). Is more preferable, and it is further preferable that it is 80 mass% or more.
 モノマー混合物(b)は、必要に応じて他のモノマーをさらに含んでもよい。他のモノマーの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環式構造、複素環式構造または芳香族基を有する(メタ)アクリル系モノマー類(環構造含有(メタ)アクリル系モノマー)が含まれる。 The monomer mixture (b) may further contain another monomer as necessary. Examples of other monomers include acrylates such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxy (meth) acrylate (Meth) acrylic monomers having an alicyclic structure such as ethyl, a heterocyclic structure or an aromatic group (cyclic structure-containing (meth) acrylic monomers) are included.
 (コアシェル型のゴム粒子:アクリル系グラフト共重合体について)
 コアシェル型のゴム粒子の例には、(メタ)アクリル系ゴム状重合体(a)としてのアクリル系ゴム状重合体5~90質量部(好ましくは5~75質量部)の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)95~25質量部を少なくとも1段階で重合させた重合体が含まれる。
(Core-shell type rubber particles: acrylic graft copolymer)
Examples of the core-shell type rubber particles include methacrylic acid in the presence of 5 to 90 parts by mass (preferably 5 to 75 parts by mass) of an acrylic rubbery polymer as the (meth) acrylic rubbery polymer (a). It includes a polymer obtained by polymerizing 95 to 25 parts by mass of a monomer mixture (b) containing an acid ester as a main component in at least one stage.
 アクリル系グラフト共重合体は、必要に応じて、アクリル系ゴム状重合体(a)の内側に硬質重合体をさらに含んでもよい。そのようなアクリル系グラフト共重合体は、以下の(I)~(III)の重合工程を経て得ることができる。
 (I)メタクリル酸エステル40~100質量%と、これと共重合可能な他のモノマー60~0質量%からなるモノマー混合物(c1)、および多官能性モノマー0.01~10質量部(モノマー混合物(c1)の合計100質量部に対して)を重合して硬質重合体を得る工程
 (II)アクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー0~40質量%からなるモノマー混合物(a1)、および多官能性モノマー0.1~5質量部(モノマー混合物(a1)の合計100質量部に対して)を重合して軟質重合体を得る工程
 (III)メタクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー40~0質量%からなるモノマー混合物(b1)、および多官能性モノマー0~10質量部(モノマー混合物(b1)の合計100質量部に対して)を重合して硬質重合体を得る工程
The acrylic graft copolymer may further include a hard polymer inside the acrylic rubbery polymer (a), if necessary. Such an acrylic graft copolymer can be obtained through the following polymerization steps (I) to (III).
(I) a monomer mixture (c1) comprising 40 to 100% by mass of a methacrylic acid ester and 60 to 0% by mass of another monomer copolymerizable therewith, and 0.01 to 10 parts by mass of a polyfunctional monomer (monomer mixture) (II) A step of obtaining a hard polymer by polymerizing (based on a total of 100 parts by mass of (c1)) To obtain a soft polymer by polymerizing the monomer mixture (a1) and 0.1 to 5 parts by mass of the polyfunctional monomer (based on a total of 100 parts by mass of the monomer mixture (a1)) (III) Methacrylate A monomer mixture (b1) consisting of 60 to 100% by mass and 40 to 0% by mass of another monomer copolymerizable therewith; and 0 to 10 parts by mass of a polyfunctional monomer (monomer) Obtaining a hard polymer mixture per 100 parts by weight of (b1)) polymerized
 (I)~(III)の各重合工程の間に、他の重合工程がさらに含まれてもよい。 の 間 に Between the polymerization steps (I) to (III), another polymerization step may be further included.
 アクリル系グラフト共重合体は、さらに(IV)の重合工程を経て得られてもよい。
 (IV)メタクリル酸エステル40~100質量%、アクリル酸エステル0~60質量%、および共重合可能な他のモノマー0~5質量%からなるモノマー混合物(b2)、ならびに多官能性モノマー0~10質量部(モノマー混合物(b2)100質量部に対して)を重合して硬質重合体を得る。
The acrylic graft copolymer may be further obtained through the polymerization step (IV).
(IV) a monomer mixture (b2) consisting of 40 to 100% by mass of a methacrylate, 0 to 60% by mass of an acrylate, and 0 to 5% by mass of another copolymerizable monomer, and 0 to 10 of a polyfunctional monomer A hard polymer is obtained by polymerizing parts by mass (based on 100 parts by mass of the monomer mixture (b2)).
 各工程で用いられるメタクリル酸エステル、アクリル酸エステル、共重合可能な他のモノマー、および多官能性モノマーは、前述と同様のものを用いることができる。 メ タ The same methacrylic acid ester, acrylic acid ester, other copolymerizable monomer, and polyfunctional monomer used in each step can be used.
 軟質層は、光学フィルムに衝撃吸収性を付与しうる。軟質層の例には、アクリル酸エステルを主成分とするアクリル系ゴム状重合体(a)からなる層が含まれる。硬質層は、光学フィルムの靱性を損ないにくくし、かつゴム粒子の製造時に、粒子の粗大化や塊状化を抑制しうる。硬質層の例には、メタクリル酸エステルを主成分とする重合体からなる層が含まれる。 The soft layer can impart shock absorption to the optical film. Examples of the soft layer include a layer made of an acrylic rubbery polymer (a) containing an acrylate ester as a main component. The hard layer makes it difficult for the toughness of the optical film to be impaired, and can suppress coarsening and agglomeration of the rubber particles during production. Examples of the hard layer include a layer made of a polymer containing a methacrylate ester as a main component.
 アクリル系グラフト共重合体のグラフト率(アクリル系ゴム状重合体(a)に対するグラフト成分(シェル部)の質量比)は、10~250%であることが好ましく、40~230%であることがより好ましく、60~220%であることがさらに好ましい。グラフト率が10%以上であると、シェル部の割合が少なくなりすぎないため、フィルムの硬度や剛性が損なわれにくい。アクリル系グラフト共重合体のグラフト率が250%以下であると、アクリル系ゴム状重合体(a)の割合が少なくなりすぎないため、フィルムの靱性や脆性改善効果が損なわれにくい。 The graft ratio (mass ratio of the graft component (shell portion) to the acrylic rubbery polymer (a)) of the acrylic graft copolymer is preferably 10 to 250%, and more preferably 40 to 230%. More preferably, it is more preferably 60 to 220%. When the graft ratio is 10% or more, the ratio of the shell portion does not become too small, so that the hardness and rigidity of the film are not easily deteriorated. When the graft ratio of the acrylic graft copolymer is 250% or less, the effect of improving the toughness and brittleness of the film is not easily impaired because the proportion of the acrylic rubbery polymer (a) does not become too small.
 アクリル系グラフト共重合体のグラフト率は、以下の方法で測定される。
 1)アクリル系グラフト共重合体2gを、メチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpm、温度12℃にて1時間遠心し、不溶分と可溶分とに分離する(遠心分離作業を合計3回セット)。
 2)得られた不溶分の重量を下記式に当てはめて、グラフト率を算出する。
 グラフト率(%)=[{(メチルエチルケトン不溶分の重量)-(アクリル系ゴム状重合体(a)の重量)}/(アクリル系ゴム状重合体(a)の重量)]×100
The graft ratio of the acrylic graft copolymer is measured by the following method.
1) 2 g of the acrylic graft copolymer was dissolved in 50 ml of methyl ethyl ketone, and centrifuged at 30,000 rpm for 1 hour at a temperature of 12 ° C. using a centrifuge (CP60E, manufactured by Hitachi Koki Co., Ltd.) to obtain an insoluble matter. And soluble components (centrifugation work is set three times in total).
2) The graft ratio is calculated by applying the obtained insoluble weight to the following equation.
Graft ratio (%) = [{(weight of insoluble portion of methyl ethyl ketone) − (weight of acrylic rubbery polymer (a))} / (weight of acrylic rubbery polymer (a))] × 100
 光学フィルムにおいて、ゴム粒子を適度に近接させるためには、ゴム粒子の種類(具体的にはシェル部のモノマー組成)と、(メタ)アクリル系樹脂の種類との組み合わせを調整することが好ましい。 In the optical film, in order to bring the rubber particles into close proximity to each other, it is preferable to adjust the combination of the type of the rubber particles (specifically, the monomer composition of the shell portion) and the type of the (meth) acrylic resin.
 ゴム粒子を構成するシェル部の溶解度パラメータ(Solubility Parameter;SP値)をSP2、(メタ)アクリル系樹脂のSP値をSP1としたとき、ΔSP=|SP1-SP2|は、0.3以上であることが好ましく、0.5以上であることがより好ましく、0.8以上であることがさらに好ましい。ΔSPの上限値は、例えば5でありうる。 When the solubility parameter (SolubilitySParameter; SP value) of the shell part constituting the rubber particles is SP2 and the SP value of the (meth) acrylic resin is SP1, ΔSP = | SP1-SP2 | is 0.3 or more. Is preferably 0.5 or more, and more preferably 0.8 or more. The upper limit of ΔSP may be 5, for example.
 SP値は、市販のシミュレーションソフト「Material Studios Forcite」(ダッソー・システムズ社製)において、それぞれの化合物の構造を入力することによって算出される値を採用する。 As the SP value, a value calculated by inputting the structure of each compound in commercially available simulation software “Material Studios Forcite” (manufactured by Dassault Systèmes) is used.
 ΔSPは、ゴム粒子のシェル部の組成と、(メタ)アクリル系樹脂の組成との組み合わせによって調整することができる。ΔSPを一定以上とするためには、例えばシェル部を構成するモノマー混合物(b)中のメタクリル酸メチル(MMA)の含有量を多くし、かつ(メタ)アクリル系樹脂を構成するモノマー組成を、嵩高い構造を有する共重合モノマーの含有量を多くすることが好ましい。 ΔSP can be adjusted by a combination of the composition of the shell portion of the rubber particles and the composition of the (meth) acrylic resin. In order to make ΔSP equal to or more than a certain value, for example, the content of methyl methacrylate (MMA) in the monomer mixture (b) constituting the shell portion is increased, and the monomer composition constituting the (meth) acrylic resin is It is preferable to increase the content of the comonomer having a bulky structure.
 ゴム粒子の含有量は、(メタ)アクリル系樹脂に対して5~20質量%であることが好ましい。ゴム粒子の含有量が5質量%以上であると、(メタ)アクリル系樹脂フィルムに十分な柔軟性や靱性を付与しやすいだけでなく、表面に凹凸を形成して滑り性も付与しうる。ゴム粒子の含有量が20質量%以下であると、ヘイズが上昇しすぎない。ゴム粒子の含有量は、上記観点から、(メタ)アクリル系樹脂に対して5~15質量%であることがより好ましく、5~10質量%であることがさらに好ましい。 The content of the rubber particles is preferably 5 to 20% by mass based on the (meth) acrylic resin. When the content of the rubber particles is 5% by mass or more, not only can the (meth) acrylic resin film be easily imparted with sufficient flexibility and toughness, but also unevenness can be formed on the surface to impart slipperiness. When the content of the rubber particles is 20% by mass or less, the haze does not increase too much. From the above viewpoint, the content of the rubber particles is more preferably from 5 to 15% by mass, and still more preferably from 5 to 10% by mass, based on the (meth) acrylic resin.
 1-3.有機微粒子
 本発明の光学フィルムは、光学フィルムの滑り性をさらに高めつつ、フィルムの表層部にゴム粒子をより偏在させやすくする観点などから、有機微粒子をさらに含むことが好ましい。
1-3. Organic Fine Particles The optical film of the present invention preferably further contains organic fine particles from the viewpoint of further increasing the slipperiness of the optical film and making the rubber particles more unevenly distributed on the surface layer of the film.
 有機微粒子は、ガラス転移温度(Tg)が80℃以上の粒子であることが好ましい。有機微粒子のガラス転移温度が80℃以上であると、光学フィルムの表面に適度な硬度の凹凸を形成しやすいため、滑り性を高めやすい。有機微粒子のガラス転移温度は、100℃以上であることがより好ましい。ガラス転移温度は、前述と同様の方法で測定される。 The organic fine particles are preferably particles having a glass transition temperature (Tg) of 80 ° C. or higher. When the glass transition temperature of the organic fine particles is 80 ° C. or higher, it is easy to form irregularities having appropriate hardness on the surface of the optical film, and thus it is easy to enhance the slipperiness. The glass transition temperature of the organic fine particles is more preferably 100 ° C. or higher. The glass transition temperature is measured in the same manner as described above.
 有機微粒子のガラス転移温度(Tg)は、有機微粒子を構成するモノマー組成によって調整されうる。有機微粒子のガラス転移温度(Tg)を高くするためには、例えば後述する多官能モノマーに由来する構造単位の含有量を多くすることが好ましい。 ガ ラ ス The glass transition temperature (Tg) of the organic fine particles can be adjusted by the monomer composition of the organic fine particles. In order to increase the glass transition temperature (Tg) of the organic fine particles, for example, it is preferable to increase the content of a structural unit derived from a polyfunctional monomer described later.
 有機微粒子を構成する樹脂は、ガラス転移温度(Tg)が上記範囲となるようなものであればよく、その例には、(メタ)アクリル酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、ビニルエステル類、オレフィン類、スチレン類、(メタ)アクリルアミド類、アリル化合物、ビニルエーテル類、ビニルケトン類、不飽和ニトリル類、不飽和カルボン酸類、および多官能モノマー類からなる群より選ばれる1以上に由来する構造単位を含む重合体や、シリコーン系樹脂、フッ素系樹脂、ポリフェニレンスルフィドなどが含まれる。 The resin constituting the organic fine particles may be any resin having a glass transition temperature (Tg) within the above range, and examples thereof include (meth) acrylates, itaconic diesters, maleic diesters, Derived from one or more selected from the group consisting of vinyl esters, olefins, styrenes, (meth) acrylamides, allyl compounds, vinyl ethers, vinyl ketones, unsaturated nitriles, unsaturated carboxylic acids, and polyfunctional monomers. Polymer, a silicone-based resin, a fluorine-based resin, polyphenylene sulfide, and the like.
 上記重合体を構成する(メタ)アクリル酸エステル類、オレフィン類、スチレン類、(メタ)アクリルアミド類、不飽和ニトリル類、不飽和カルボン酸類および多官能モノマー類は、上記(メタ)アクリル系樹脂や上記アクリル系ゴム状重合体(a)を構成するモノマーとして挙げたものと同様のものを用いることができる。イタコン酸ジエステル類の例には、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジプロピルが含まれる。マレイン酸ジエステル類の例には、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピルが含まれる。ビニルエステル類の例には、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニルが含まれる。アリル化合物の例には、酢酸アリル、カプロン酸アリル、ラウリン酸アリル、安息香酸アリルなどが含まれる。ビニルエーテル類の例には、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテル、ジメチルアミノエチルビニルエーテルなどが含まれる。ビニルケトン類の例には、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトンなどが含まれる。 The (meth) acrylic esters, olefins, styrenes, (meth) acrylamides, unsaturated nitriles, unsaturated carboxylic acids and polyfunctional monomers constituting the polymer are the above-mentioned (meth) acrylic resin and The same ones as the monomers constituting the acrylic rubbery polymer (a) can be used. Examples of itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dipropyl itaconate. Examples of maleic diesters include dimethyl maleate, diethyl maleate, and dipropyl maleate. Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxy acetate, vinyl phenyl acetate, vinyl benzoate, and vinyl salicylate. It is. Examples of allyl compounds include allyl acetate, allyl caproate, allyl laurate, allyl benzoate and the like. Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether, and the like. Examples of vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone, and the like.
 中でも、(メタ)アクリル系樹脂との親和性が高く、応力に対する柔軟性があり、かつガラス転移温度を上記範囲に調整しやすい観点などから、(メタ)アクリル酸エステル類、ビニルエステル類、スチレン類、オレフィン類からなる群より選ばれる1以上に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体が好ましく、(メタ)アクリル酸エステル類に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体がより好ましく、(メタ)アクリル酸エステル類に由来する構造単位と、スチレン類に由来する構造単位と、多官能モノマー類に由来する構造単位とを含む共重合体がさらに好ましい。 Among them, (meth) acrylates, vinyl esters, styrene, etc., from the viewpoint of high affinity with (meth) acrylic resin, flexibility with respect to stress, and easy adjustment of the glass transition temperature to the above range. , A copolymer containing a structural unit derived from at least one selected from the group consisting of olefins and a structural unit derived from a polyfunctional monomer is preferable, and a structural unit derived from (meth) acrylates is preferred. A copolymer containing a structural unit derived from a polyfunctional monomer is more preferable, and a structural unit derived from a (meth) acrylate, a structural unit derived from styrene, and a copolymer derived from a polyfunctional monomer are more preferable. A copolymer containing a structural unit is more preferred.
 有機微粒子が、多官能モノマーに由来する構造単位を含む場合、有機微粒子における多官能モノマーに由来する構造単位の含有量は、通常、ゴム粒子における多官能モノマーに由来する構造単位の含有量よりも多い。例えば、多官能モノマーに由来する構造単位の含有量は、上記共重合体を構成する多官能モノマー以外のモノマーに由来する構造単位の合計100質量%に対して、例えば50~500質量%でありうる。 When the organic fine particles include a structural unit derived from the polyfunctional monomer, the content of the structural unit derived from the polyfunctional monomer in the organic fine particles is generally higher than the content of the structural unit derived from the polyfunctional monomer in the rubber particles. Many. For example, the content of the structural unit derived from the polyfunctional monomer is, for example, 50 to 500% by mass based on 100% by mass of the total of the structural units derived from the monomers other than the polyfunctional monomer constituting the copolymer. sell.
 このような重合体からなる粒子(重合体粒子)は、任意の方法、例えば乳化重合、懸濁重合、分散重合、シード重合などの方法により製造されうる。中でも、粒子径が揃った重合体粒子が得られやすい観点などから、水性媒体下でのシード重合や乳化重合が好ましい。 粒子 Particles (polymer particles) composed of such a polymer can be produced by any method, for example, a method such as emulsion polymerization, suspension polymerization, dispersion polymerization, or seed polymerization. Among them, from the viewpoint of easily obtaining polymer particles having a uniform particle diameter, seed polymerization or emulsion polymerization in an aqueous medium is preferred.
 重合体粒子の製造方法としては、例えば、
 ・単量体混合物を水性媒体に分散させた後、重合させる1段重合法、
 ・単量体を水性媒体中で重合させることで種粒子を得た後、単量体混合物を種粒子に吸収させた後、重合させる2段重合法、
 ・2段重合法の種粒子を製造する工程を繰り返す多段重合法などが挙げられる。これらの重合法は、重合体粒子の所望する平均粒子径に応じて適宜選択できる。なお、種粒子を製造するための単量体は、特に限定されず、重合体粒子用の単量体をいずれも使用できる。
As a method for producing polymer particles, for example,
A one-stage polymerization method in which the monomer mixture is dispersed in an aqueous medium and then polymerized;
A two-stage polymerization method in which the seed particles are obtained by polymerizing the monomer in an aqueous medium, the monomer mixture is absorbed by the seed particles, and then polymerized;
-A multi-stage polymerization method in which a step of producing seed particles in a two-stage polymerization method is repeated. These polymerization methods can be appropriately selected depending on the desired average particle size of the polymer particles. The monomer for producing the seed particles is not particularly limited, and any monomer for polymer particles can be used.
 有機微粒子は、コアシェル型の粒子であってもよい。そのような有機微粒子は、例えば(メタ)アクリル酸エステルの単独重合体あるいは共重合体を含む低Tgのコア部と、高Tgのシェル部とを有する粒子などでありうる。 The organic fine particles may be core-shell type particles. Such organic fine particles may be, for example, particles having a low Tg core portion containing a homopolymer or a copolymer of a (meth) acrylate and a high Tg shell portion.
 有機微粒子と(メタ)アクリル系樹脂との屈折率差の絶対値Δnは、得られるフィルムのヘイズ上昇を高度に抑制する観点では、0.1以下であることが好ましく、0.085以下であることがより好ましく、0.065以下であることがさらに好ましい。 The absolute value Δn of the refractive index difference between the organic fine particles and the (meth) acrylic resin is preferably 0.1 or less, and 0.085 or less, from the viewpoint of highly suppressing the haze increase of the obtained film. Is more preferable, and the value is more preferably 0.065 or less.
 有機微粒子の平均粒子径は、0.04~2μmであることが好ましく、0.08~1μmであることがより好ましい。有機微粒子の平均粒子径が0.04μm以上であると、得られるフィルムに十分な滑り性を付与しやすい。有機微粒子の平均粒子径が2μm以下であると、ヘイズの上昇を抑制しやすい。 The average particle diameter of the organic fine particles is preferably from 0.04 to 2 μm, more preferably from 0.08 to 1 μm. When the average particle diameter of the organic fine particles is 0.04 μm or more, sufficient lubricity is easily imparted to the obtained film. When the average particle diameter of the organic fine particles is 2 μm or less, it is easy to suppress an increase in haze.
 有機微粒子の平均粒子径は、以下の点以外は、ゴム粒子の平均粒子径と同様の方法で測定することができる。すなわち、有機微粒子の平均粒子径は、フィルム断面のTEM観察によって得られる有機微粒子100個の円相当径の平均値として特定される。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。なお、分散液での有機微粒子の平均粒子径は、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定することができる。 平均 The average particle size of the organic fine particles can be measured by the same method as the average particle size of the rubber particles, except for the following points. That is, the average particle diameter of the organic fine particles is specified as the average value of the circle equivalent diameter of 100 organic fine particles obtained by TEM observation of the film cross section. The equivalent circle diameter can be obtained by converting the projected area of a particle obtained by imaging into the diameter of a circle having the same area. The average particle size of the organic fine particles in the dispersion can be measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 有機微粒子の平均粒子径は、凝集性の粒子であれば、凝集体の平均大きさ(平均二次粒径)を意味し、非凝集性の粒子であれば、一粒子のサイズを測定した平均値を意味する。 The average particle size of the organic fine particles means the average size of the aggregates (average secondary particle size) if the particles are cohesive, and the average of the sizes of one particle if the particles are non-aggregate. Mean value.
 有機微粒子の含有量は、(メタ)アクリル系樹脂に対して0.03~1.5質量%であることが好ましい。有機微粒子の含有量が0.03質量%以上であると、光学フィルムに十分な滑り性を付与しうる。有機微粒子の含有量が1.5質量%以下であると、ヘイズの上昇を抑制しやすい。微粒子の含有量は、0.05~1.0質量%であることがより好ましく、0.08~0.7質量%であることがさらに好ましい。 含有 The content of the organic fine particles is preferably from 0.03 to 1.5% by mass based on the (meth) acrylic resin. When the content of the organic fine particles is 0.03% by mass or more, sufficient slip properties can be imparted to the optical film. When the content of the organic fine particles is 1.5% by mass or less, an increase in haze is easily suppressed. The content of the fine particles is more preferably from 0.05 to 1.0% by mass, and even more preferably from 0.08 to 0.7% by mass.
 1-4.その他の成分
 本発明の光学フィルムは、本発明の効果を損なわない範囲で、他の成分をさらに含んでいてもよい。他の成分の例には、残留溶媒や紫外線吸収剤、酸化防止剤などが含まれる。
1-4. Other Components The optical film of the present invention may further contain other components as long as the effects of the present invention are not impaired. Examples of other components include residual solvents, UV absorbers, antioxidants, and the like.
 例えば、本発明の光学フィルムは、後述するように溶液流延方式により製造されることから、溶液流延方式で用いられるドープの溶媒に由来する残留溶媒を含んでいてもよい。 For example, since the optical film of the present invention is manufactured by a solution casting method as described later, it may contain a residual solvent derived from a solvent of the dope used in the solution casting method.
 残留溶媒量は、光学フィルムに対して700ppm以下であることが好ましく、30~700ppmであることがより好ましい。残留溶媒の含有量は、後述する光学フィルムの製造工程における、支持体上に流延させたドープの乾燥条件によって調整されうる。 (4) The residual solvent amount is preferably 700 ppm or less, more preferably 30 to 700 ppm, based on the optical film. The content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the optical film manufacturing process described below.
 光学フィルムにおける残留溶媒の含有量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマー等を定量をも併せて行うことができる。 残留 The content of the residual solvent in the optical film can be measured by head space gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, the gas in the container is quickly injected into the gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. This is to determine volatile components while performing. In the headspace method, it is possible to observe all peaks of volatile components by gas chromatography, and to quantify volatile substances and monomers with high accuracy by using an analysis method that uses electromagnetic interaction. Can also be performed together.
 1-5.物性
 (ヘイズ)
 本発明の光学フィルムは、透明性が高いことが好ましい。光学フィルムのヘイズは、4.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。ヘイズは、試料40mm×80nmを25℃、60%RHでヘイズメーター(HGM-2DP、スガ試験機)でJISK-6714に従って測定することができる。
1-5. Physical properties (haze)
The optical film of the present invention preferably has high transparency. The haze of the optical film is preferably 4.0% or less, more preferably 2.0% or less, and further preferably 1.0% or less. The haze can be measured on a sample of 40 mm × 80 nm at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Machine) in accordance with JIS K-6714.
 (位相差RoおよびRt)
 本発明の光学フィルムは、例えばIPS用の位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、0~10nmであることが好ましく、0~5nmであることがより好ましい。本発明の光学フィルムの厚み方向の位相差Rtは、-20~20nmであることが好ましく、-10~10nmであることがより好ましい。
(Phase difference Ro and Rt)
From the viewpoint of using the optical film of the present invention as, for example, a retardation film for IPS, the in-plane retardation Ro measured in an environment of a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. Is preferably, and more preferably 0 to 5 nm. The retardation Rt in the thickness direction of the optical film of the invention is preferably from -20 to 20 nm, more preferably from -10 to 10 nm.
 RoおよびRtは、それぞれ下記式で定義される。
 式(1a):Ro=(nx-ny)×d
 式(1b):Rt=((nx+ny)/2-nz)×d(式中、
 nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、
 nzは、フィルムの厚み方向の屈折率を表し、
 dは、フィルムの厚み(nm)を表す。)
Ro and Rt are each defined by the following formula.
Formula (1a): Ro = (nx−ny) × d
Formula (1b): Rt = ((nx + ny) / 2−nz) × d (where,
nx represents the refractive index in the in-plane slow axis direction of the film (the direction in which the refractive index is maximized),
ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the film,
nz represents the refractive index in the thickness direction of the film,
d represents the thickness (nm) of the film. )
 本発明の光学フィルムの面内遅相軸とは、フィルム面において屈折率が最大となる軸をいう。光学フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。面内遅相軸は、通常、延伸倍率が最大となる方向と一致する。 内 The in-plane slow axis of the optical film of the present invention refers to an axis at which the refractive index becomes maximum on the film surface. The in-plane slow axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller MatrixPolarimeter: manufactured by Axometrics). The in-plane slow axis usually coincides with the direction in which the stretching ratio is maximized.
 RoおよびRtは、以下の方法で測定することができる。
 1)本発明の光学フィルムを23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRoおよびRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following method.
1) The optical film of the present invention is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt at a measurement wavelength of 550 nm of the film after humidity control were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure in the environment.
 本発明の光学フィルムの位相差RoおよびRtは、例えば(メタ)アクリル系樹脂の種類によって調整することができる。光学フィルムの位相差RoおよびRtを低くするためには、負の複屈折を持つ構造単位と正の複屈折を持つ構造単位で位相差を相殺できるような含有比率であることが好ましい。 位相 The retardation Ro and Rt of the optical film of the present invention can be adjusted by, for example, the type of the (meth) acrylic resin. In order to reduce the phase differences Ro and Rt of the optical film, the content ratio is preferably such that the structural unit having negative birefringence and the structural unit having positive birefringence can cancel the phase difference.
 (厚み)
 本発明の光学フィルムの厚みは、例えば5~100μm、好ましくは5~40μmとしうる。
(Thickness)
The thickness of the optical film of the present invention may be, for example, 5 to 100 μm, preferably 5 to 40 μm.
 2.光学フィルムの製造方法
 本発明の光学フィルムは、溶液流延方式(キャスト法)で製造される。すなわち、本発明の光学フィルムは、1)少なくとも前述の(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含むドープを得る工程と、2)得られたドープを支持体上に流延し、乾燥および剥離して、膜状物を得る工程と、3)得られた膜状物を延伸する工程と、4)延伸された膜状物をロール状に巻き取る工程とを経て製造されうる。
2. Manufacturing method of optical film The optical film of the present invention is manufactured by a solution casting method (casting method). That is, the optical film of the present invention comprises: 1) a step of obtaining a dope containing at least the above (meth) acrylic resin, rubber particles, and a solvent; and 2) casting the obtained dope on a support. , Drying and peeling to obtain a film, 3) stretching the obtained film, and 4) winding the stretched film into a roll. .
 1)の工程について
 前述の(メタ)アクリル系樹脂と、ゴム粒子と、必要に応じて有機微粒子とを溶媒に溶解または分散させて、ドープを調製する。
Step 1) A dope is prepared by dissolving or dispersing the (meth) acrylic resin, rubber particles, and, if necessary, organic fine particles in a solvent.
 ドープの調製に用いられるゴム粒子の粒子形状は、特に限定されないが、延伸によって良好な応力緩和作用を発現させやすくする観点では、真球状に近いもの、具体的には、平均アスペクト比が1±0.1であることが好ましい。 The particle shape of the rubber particles used in the preparation of the dope is not particularly limited, but from the viewpoint of easily developing a good stress relaxation effect by stretching, a rubber particle having a shape close to a true sphere, specifically, having an average aspect ratio of 1 ± 1. It is preferably 0.1.
 ドープに用いられる溶媒は、少なくとも(メタ)アクリル系樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 溶媒 The solvent used for the dope contains at least an organic solvent (good solvent) that can dissolve the (meth) acrylic resin. Examples of good solvents include chlorinated organic solvents such as methylene chloride and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred.
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。 溶媒 The solvent used for the dope may further contain a poor solvent. Examples of the poor solvent include a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the ratio of the alcohol in the dope is high, the film-like material is apt to gel, and is easily peeled from the metal support. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its stability, the boiling point is relatively low, and the drying property is good.
 ドープの固形分濃度は、特に制限されないが、乾燥による圧縮効果により、得られる光学フィルムにおいて、ゴム粒子を適度に近接させやすくする観点から、低いほうが好ましい。具体的には、ドープの固形分濃度は、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。一方、所定の厚みの膜状物を得やすくする観点では、ドープの固形分濃度の下限値は、例えば9質量%としうる。 The solid content concentration of the dope is not particularly limited, but is preferably lower from the viewpoint of making the rubber particles appropriately close to each other in the obtained optical film due to the compression effect of drying. Specifically, the solid content concentration of the dope is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less. On the other hand, from the viewpoint of making it easier to obtain a film having a predetermined thickness, the lower limit of the solid content concentration of the dope may be, for example, 9% by mass.
 ドープの調製は、前述の溶媒に、(メタ)アクリル系樹脂、ゴム粒子、および必要に応じて有機微粒子を直接添加し、混合して調製してもよいし;前述の溶媒に(メタ)アクリル系樹脂を溶解させた樹脂溶液、前述の溶媒にゴム粒子を分散させたゴム粒子分散液、および必要に応じて前述の溶媒に有機微粒子を分散させた微粒子分散液をそれぞれ予め調製しておき、それらを混合して調製してもよい。 The dope may be prepared by directly adding (meth) acrylic resin, rubber particles, and, if necessary, organic fine particles to the above-mentioned solvent and mixing them; A resin solution in which the system resin is dissolved, a rubber particle dispersion in which rubber particles are dispersed in the above-described solvent, and a fine particle dispersion in which organic fine particles are dispersed in the above-described solvent, if necessary, are prepared in advance, respectively. They may be prepared by mixing them.
 ゴム粒子分散液に含まれる溶媒は、得られる光学フィルムにおいて、ゴム粒子を適度に近接させやすくする観点では、ゴム粒子との親和性が低い溶媒を含むことが好ましい。そのような溶媒の例には、前述の貧溶媒、例えば、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。当該貧溶媒の含有量は、ゴム粒子分散液に含まれる溶媒全体に対して2~16質量%であることが好ましく、4~16質量%であることがより好ましい。 溶媒 The solvent contained in the rubber particle dispersion preferably contains a solvent having low affinity for the rubber particles from the viewpoint of making the rubber particles appropriately close to each other in the obtained optical film. Examples of such solvents include the aforementioned poor solvents, for example, straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms. The content of the poor solvent is preferably from 2 to 16% by mass, more preferably from 4 to 16% by mass, based on the whole solvent contained in the rubber particle dispersion.
 有機微粒子の添加方法は、特に制限されず、有機微粒子を個別に溶媒に添加してもよいし、有機微粒子の集合体として溶媒に添加してもよい。有機微粒子の集合体は、相互の連結(融着)が抑制された複数の有機微粒子の集合体からなる。そのため、取り扱い性に優れ、(メタ)アクリル系樹脂や溶媒に、有機微粒子の集合体を分散させれば、容易に有機微粒子に別れるため、有機微粒子の分散性を良好としうる。有機微粒子の集合体は、例えば、有機微粒子と、無機粉末とを含むスラリーを噴霧乾燥させることによって得ることができる。 The method for adding the organic fine particles is not particularly limited, and the organic fine particles may be individually added to the solvent, or may be added to the solvent as an aggregate of the organic fine particles. The aggregate of organic fine particles is composed of an aggregate of a plurality of organic fine particles in which mutual connection (fusion) is suppressed. Therefore, when the aggregate of organic fine particles is dispersed in a (meth) acrylic resin or a solvent, the particles are easily separated into organic fine particles, so that the dispersibility of the organic fine particles can be improved. The aggregate of organic fine particles can be obtained, for example, by spray-drying a slurry containing organic fine particles and inorganic powder.
 2)の工程について
 得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
Step 2) The obtained dope is cast on a support. The dope can be cast by discharging it from a casting die.
 次いで、支持体上に流延されたドープ中の溶媒を蒸発させ、乾燥させる。乾燥されたドープを支持体から剥離して、膜状物を得る。 Next, the solvent in the dope cast on the support is evaporated and dried. The dried dope is peeled from the support to obtain a film.
 支持体から剥離する際のドープの残留溶媒量(剥離時の膜状物の残留溶媒量)は、得られる(メタ)アクリル系樹脂フィルムの位相差を低減しやすくする点では、10~150質量%であることが好ましく、20~40質量%であることがより好ましい。剥離時の残留溶媒量が10質量%以上であると、乾燥または延伸時に、(メタ)アクリル系樹脂が流動しやすく、無配向にしやすいため、得られる(メタ)アクリル系樹脂フィルムの位相差を低減しやすい。剥離時の残留溶媒量が150質量%以下であると、ドープを剥離する際に要する力が過剰に大きくなりにくいので、ドープの破断を抑制しやすい。 The amount of the residual solvent of the dope at the time of peeling from the support (the amount of the residual solvent of the film at the time of peeling) is from 10 to 150 mass in terms of facilitating the reduction of the phase difference of the obtained (meth) acrylic resin film. %, More preferably 20 to 40% by mass. When the amount of the residual solvent at the time of peeling is 10% by mass or more, the (meth) acrylic resin easily flows and becomes non-oriented during drying or stretching, so that the phase difference of the obtained (meth) acrylic resin film is reduced. Easy to reduce. If the amount of the residual solvent at the time of peeling is 150% by mass or less, the force required for peeling the dope is unlikely to be excessively large, so that breakage of the dope is easily suppressed.
 剥離時のドープの残留溶媒量は、下記式で定義される。以下においても同様である。
 ドープの残留溶媒量(質量%)=(ドープの加熱処理前質量-ドープの加熱処理後質量)/ドープの加熱処理後質量×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃30分の加熱処理をいう。
The residual solvent amount of the dope at the time of peeling is defined by the following equation. The same applies to the following.
Residual solvent amount (mass%) of dope = (mass before heat treatment of dope−mass after heat treatment of dope) / mass after heat treatment of dope × 100
Note that the heat treatment when measuring the amount of the residual solvent refers to a heat treatment at 140 ° C. for 30 minutes.
 剥離時の残留溶媒量は、支持体上でのドープの乾燥温度や乾燥時間、支持体の温度などによって調整することができる。 (4) The amount of the residual solvent at the time of peeling can be adjusted by the temperature and time for drying the dope on the support, the temperature of the support, and the like.
 3)の工程について
 剥離して得られた膜状物を、乾燥させながら延伸する。
Step 3) The film obtained by peeling is stretched while being dried.
 延伸は、求められる光学特性に応じて行えばよく、少なくとも一方の方向(例えば、膜状物の幅方向(TD方向))に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。 Stretching may be performed according to the required optical characteristics, and is preferably performed in at least one direction (for example, the width direction (TD direction) of the film-like material), and is performed in two directions perpendicular to each other (for example, Biaxial stretching in the width direction (TD direction) of the article and the transport direction (MD direction) perpendicular thereto may be performed.
 延伸倍率は、ゴム粒子の平均アスペクト比が上記範囲内となるように設定されればよく、例えば20~200%であることが好ましく、30~100%であることがより好ましく、50~70%であることがさらに好ましい。延伸倍率(%)は、(延伸前後のフィルムの延伸方向の長さの変化量)/(延伸前のフィルムの延伸方向の長さ)×100(%)として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The stretching ratio may be set so that the average aspect ratio of the rubber particles falls within the above range, and is preferably, for example, 20 to 200%, more preferably 30 to 100%, and 50 to 70%. Is more preferable. The stretching ratio (%) is defined as (the change in the length of the film before and after stretching in the stretching direction) / (the length of the film before stretching in the stretching direction) × 100 (%). In the case where biaxial stretching is performed, it is preferable that the stretching ratio is set in the TD direction and the MD direction.
 なお、光学フィルムの面内遅相軸方向(面内において屈折率が最大となる方向)は、通常、延伸倍率が最大となる方向である。 The direction of the in-plane slow axis of the optical film (the direction in which the refractive index is maximized in the plane) is usually the direction in which the stretching ratio is maximized.
 延伸温度(乾燥温度)は、(メタ)アクリル系樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃~(Tg+60)℃であることが好ましく、(Tg-50)℃~(Tg+50)℃であることがより好ましく、(Tg-30)℃~(Tg+50)℃であることがさらに好ましい。延伸温度が(Tg-30)℃以上であると、膜状物を延伸に適した柔らかさにしやすいだけでなく、延伸時に膜状物に加わる張力が大きくなりすぎないので、得られる(メタ)アクリル系樹脂フィルムに過剰な残留応力が残りにくくしうる。延伸温度がTg以下であると、膜状物中の溶媒の気化による気泡の発生などを抑制しやすい。延伸温度は、具体的には、60~220℃としうる。 The stretching temperature (drying temperature) is preferably (Tg−65) ° C. to (Tg + 60) ° C., and is preferably (Tg−50) ° C. to (Tg + 50), where Tg is the glass transition temperature of the (meth) acrylic resin. ) .Degree. C., more preferably (Tg-30) .degree. C. to (Tg + 50) .degree. When the stretching temperature is (Tg-30) ° C. or higher, not only is it easy to make the film-like material suitable for stretching, but also the tension applied to the film-like material at the time of stretching does not become too large, so that the obtained (meth) Excess residual stress may hardly remain in the acrylic resin film. When the stretching temperature is equal to or lower than Tg, it is easy to suppress the generation of bubbles due to the vaporization of the solvent in the film. The stretching temperature can be specifically set at 60 to 220 ° C.
 延伸温度は、(a)テンター延伸機などのように非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度、(b)熱ローラーなどの接触加熱型で乾燥させる場合は、接触加熱部の温度、あるいは(c)膜状物(被乾燥面)の表面温度のいずれかの温度として測定することができる。中でも、(a)テンター延伸機などのように非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度が好ましい。 The stretching temperature is as follows: (a) in the case of drying by a non-contact heating type such as a tenter stretching machine, etc .; The temperature can be measured as any one of the temperature of the contact heating section and the surface temperature of the film-like material (the surface to be dried). Above all, when drying is performed by a non-contact heating type such as (a) a tenter stretching machine, an ambient temperature such as a stretching machine temperature or a hot air temperature is preferable.
 延伸開始時の膜状物中の残留溶媒量は、例えば5~30質量%であることが好ましい。延伸開始時の残留溶媒量は、前述と同様の方法で測定することができる。 (4) The amount of residual solvent in the film at the start of stretching is preferably, for example, 5 to 30% by mass. The amount of residual solvent at the start of stretching can be measured in the same manner as described above.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。 延伸 Stretching of the film in the TD direction (width direction) can be performed by, for example, a method (tenter method) in which both ends of the film are fixed with clips or pins and the interval between the clips or pins is increased in the traveling direction. The stretching of the film in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a difference in peripheral speed, and a difference in roll peripheral speed is used therebetween.
 4)の工程について
 延伸後に得られた膜状物を、必要に応じてさらに乾燥させながらロール状に巻き取り、光学フィルムのロール体を得る。
Step 4) The film obtained after stretching is wound into a roll while being further dried as necessary, to obtain a roll of an optical film.
 乾燥温度は、上記3)の工程の延伸温度と同様の範囲に調整されうる。乾燥温度は、上記3)の工程と同様の方法で測定される。(b)熱ローラーなどの接触加熱型で乾燥させる場合は、接触加熱部の温度として測定されることが好ましい。 The drying temperature can be adjusted in the same range as the stretching temperature in the above step 3). The drying temperature is measured by the same method as in the above step 3). (B) When drying with a contact heating type such as a heat roller, the temperature is preferably measured as the temperature of the contact heating section.
 巻き取りは、通常、膜状物のMD方向に張力(巻き取り張力)を掛けながら行う。 Winding is usually performed while applying tension (winding tension) in the MD direction of the film-like material.
 巻き取り後に得られるロール体において、ゴム粒子の長径方向は、光学フィルムの厚み方向に対して略垂直であることが好ましい。また、巻き取り後の光学フィルムの巻き状故障をより抑制しやすくする観点では、ゴム粒子の長径方向は、光学フィルムの延伸方向(好ましくは幅方向)に対して略平行であることが好ましい。 ロ ー ル In the roll obtained after winding, the major axis direction of the rubber particles is preferably substantially perpendicular to the thickness direction of the optical film. Further, from the viewpoint of more easily suppressing the winding failure of the optical film after winding, the major axis direction of the rubber particles is preferably substantially parallel to the stretching direction (preferably the width direction) of the optical film.
 得られるロール体における、光学フィルムの長さ(MD方向の長さ)は、2000~8000mであることが好ましく、5000~7000mであることがより好ましい。光学フィルムの幅(TD方向の長さ)は、1.3~3.0mであることが好ましく、2.3~2.5mであることがより好ましい。 光学 The length of the optical film (the length in the MD direction) of the obtained roll body is preferably from 2000 to 8000 m, more preferably from 5000 to 7000 m. The width (the length in the TD direction) of the optical film is preferably from 1.3 to 3.0 m, more preferably from 2.3 to 2.5 m.
 前述の通り、巻き取り張力により、巻き取り直後のロール体の光学フィルムには、長手方向に収縮しようとする力(応力)が働き、幅方向に伸びようとする力(応力)が働きやすい。これに対し、本発明の光学フィルムは、平均アスペクト比が一定以上のゴム粒子が適度に近接した構造を有する。それにより、ゴム粒子の粒子径を大きくしなくても、巻き取り後のロール体の光学フィルムは、上記応力を効果的に緩和することができる。それにより、長手方向に収縮しようとする力による巻き芯の転写や、幅方向に伸びようとする力によるチェーン状故障を抑制することができる。したがって、光学フィルムのヘイズを増大させることなく、巻き形状を改善することができる。 As described above, a force (stress) that tends to contract in the longitudinal direction and a force (stress) that tends to expand in the width direction easily act on the optical film of the roll immediately after winding due to the winding tension. On the other hand, the optical film of the present invention has a structure in which rubber particles having an average aspect ratio of not less than a certain value are appropriately close to each other. Thereby, the optical film of the roll body after winding can effectively reduce the stress without increasing the particle diameter of the rubber particles. Thereby, it is possible to suppress the transfer of the winding core due to the force shrinking in the longitudinal direction and the chain-like failure due to the force shrinking in the width direction. Therefore, the winding shape can be improved without increasing the haze of the optical film.
 特に、光学フィルムが長尺であり(MD方向の長さが長く)、かつ広幅(TD方向の長さが長い)であるものほど、巻き状故障が生じやすい。本発明は、そのような光学フィルムのロール体においても、巻き状故障を良好に抑制することができる。 Especially, as the optical film is longer (longer in the MD direction) and wider (longer in the TD direction), winding failure is more likely to occur. According to the present invention, even in the roll body of such an optical film, the winding failure can be favorably suppressed.
 得られる光学フィルムは、液晶ディスプレイや有機ELディスプレイなどの各種表示装置における偏光板保護フィルムや位相差フィルムとして好ましく用いられる。 The obtained optical film is preferably used as a polarizing plate protective film or a retardation film in various display devices such as a liquid crystal display and an organic EL display.
 3.偏光板
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された本発明の光学フィルムとを有する。
3. Polarizing Plate The polarizing plate of the present invention has a polarizer and the optical film of the present invention disposed on at least one surface thereof.
 3-1.偏光子
 偏光子は、一定方向の偏波面の光だけを通す素子であり、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
3-1. Polarizer A polarizer is an element that transmits only light having a polarization plane in a certain direction, and is a polyvinyl alcohol-based polarizing film. Polyvinyl alcohol-based polarizing films include those obtained by dyeing a polyvinyl alcohol-based film with iodine and those obtained by dyeing a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching the polyvinyl alcohol-based film and then dyeing the film with iodine or a dichroic dye (preferably a film further subjected to a durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used. The absorption axis of the polarizer is usually parallel to the maximum stretching direction.
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。 For example, as disclosed in JP-A-2003-248123, JP-A-2003-342322, etc., ethylene content of 1 to 4 mol%, polymerization degree of 2000 to 4000 and saponification degree of 99.0 to 99.99 mol%. Ethylene-modified polyvinyl alcohol is used.
 偏光子の厚みは、5~30μmであることが好ましく、偏光板を薄型化するため等から、5~20μmであることがより好ましい。 The thickness of the polarizer is preferably from 5 to 30 μm, and more preferably from 5 to 20 μm in order to reduce the thickness of the polarizing plate.
 3-2.他の光学フィルム
 本発明の光学フィルムが、偏光子の一方の面のみに配置される場合、他方の面には、他の光学フィルムが配置されうる。なお、光学フィルムおよび他の光学フィルムは、偏光子上に、接着剤層を介して配置されうる。
3-2. Other Optical Film When the optical film of the present invention is disposed on only one surface of the polarizer, another optical film may be disposed on the other surface. In addition, an optical film and another optical film can be arrange | positioned via an adhesive layer on a polarizer.
 他の光学フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC8UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製)などが含まれる。 Examples of other optical films include commercially available cellulose ester films (e.g., Konica Minoltack KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6U, KCUEK KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd., Fujitac T40UZ, Fujitack T80UZ, Fujitack T80UZD, Fujitack T60UZD Fujifilm Corporation) and the like.
 他の光学フィルムの厚みは、偏光板のクラックを抑制する観点では厚いほうが好ましく、例えば5~100μm、好ましくは40~80μmとしうる。 The thickness of the other optical film is preferably thicker from the viewpoint of suppressing cracks in the polarizing plate, and may be, for example, 5 to 100 μm, and preferably 40 to 80 μm.
 3-3.偏光板の製造方法
 本発明の偏光板は、偏光子と本発明の(メタ)アクリル系樹脂フィルムを、接着剤を介して貼り合わせて得ることができる。接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)、または活性エネルギー線硬化性接着剤でありうる。活性エネルギー線硬化性接着剤は、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、またはそれらの併用物のいずれであってもよい。
3-3. Method for Producing Polarizing Plate The polarizing plate of the present invention can be obtained by bonding a polarizer and the (meth) acrylic resin film of the present invention via an adhesive. The adhesive may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive. The active energy ray-curable adhesive may be any of a photo-radical polymerization type composition using photo-radical polymerization, a photo-cation polymerization type composition using photo-cation polymerization, or a combination thereof.
 4.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、液晶セルの一方の面に配置された第1偏光板と、液晶セルの他方の面に配置された第2偏光板とを含む。
4. Liquid crystal display device The liquid crystal display device of the present invention includes a liquid crystal cell, a first polarizer disposed on one surface of the liquid crystal cell, and a second polarizer disposed on the other surface of the liquid crystal cell.
 液晶セルの表示モードは、例えばSTN(Super-Twisted Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、HAN(Hybridaligned Nematic)、VA(Vertical Alignment、MVA(Multi-domain Vertical Alignment)、PVA(Patterned Vertical Alignment))、IPS(In-Plane-Switching)などでありうる。中でも、VA(MVA,PVA)モードおよびIPSモードが好ましい。 The display mode of the liquid crystal cell is, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybrid aligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), and the like. Among them, the VA (MVA, PVA) mode and the IPS mode are preferable.
 第1および第2偏光板のうち一方または両方が、本発明の偏光板である。本発明の偏光板は、本発明の光学フィルムが液晶セル側となるように配置されることが好ましい。 一方 One or both of the first and second polarizing plates are the polarizing plates of the present invention. The polarizing plate of the present invention is preferably arranged such that the optical film of the present invention is on the liquid crystal cell side.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
 1.光学フィルムの材料
 (1)(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂A:メタクリル酸メチル(MMA)/N-フェニルマレイミド(PMI)共重合体(MMA/PMI=85/15(質量比)、ガラス転移温度(Tg):125℃、重量平均分子量Mw:150万)
 (メタ)アクリル系樹脂B:メタクリル酸メチル(MMA)/メタクリル酸ジシクロペンタニル共重合体(MMA/メタクリル酸ジシクロペンタニル:70/30(質量比)、ガラス転移温度(Tg):115℃、重量平均分子量Mw:170万)
 (メタ)アクリル系樹脂C:メタクリル酸メチル(MMA)/メタクリル酸アダマンチル(MADMA)/N-フェニルマレイミド(PMI)共重合体(MMA/MADMA/PMI:50/25/25(質量比)、ガラス転移温度(Tg):135℃、重量平均分子量Mw:190万)
 (メタ)アクリル系樹脂D:メタクリル酸メチル(MMA)/アクリル酸n-ブチル共重合体(MMA/BA:90/10(質量比)、ガラス転移温度(Tg):109℃、重量平均分子量Mw:120万)
1. Optical film material (1) (meth) acrylic resin (meth) acrylic resin A: Methyl methacrylate (MMA) / N-phenylmaleimide (PMI) copolymer (MMA / PMI = 85/15 (mass ratio) , Glass transition temperature (Tg): 125 ° C, weight average molecular weight Mw: 1.5 million)
(Meth) acrylic resin B: Methyl methacrylate (MMA) / dicyclopentanyl methacrylate copolymer (MMA / dicyclopentanyl methacrylate: 70/30 (mass ratio), glass transition temperature (Tg): 115 ° C, weight average molecular weight Mw: 1.7 million)
(Meth) acrylic resin C: Methyl methacrylate (MMA) / adamantyl methacrylate (MADMA) / N-phenylmaleimide (PMI) copolymer (MMA / MADMA / PMI: 50/25/25 (mass ratio), glass Transition temperature (Tg): 135 ° C., weight average molecular weight Mw: 1.9 million)
(Meth) acrylic resin D: methyl methacrylate (MMA) / n-butyl acrylate copolymer (MMA / BA: 90/10 (mass ratio), glass transition temperature (Tg): 109 ° C., weight average molecular weight Mw : 1.2 million)
 (メタ)アクリル系樹脂A~Dのガラス転移温度(Tg)および重量平均分子量(Mw)は、以下の方法で測定した。 ガ ラ ス The glass transition temperatures (Tg) and weight average molecular weights (Mw) of the (meth) acrylic resins A to D were measured by the following methods.
 (ガラス転移温度(Tg))
 (メタ)アクリル系樹脂のガラス転移温度は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
(Glass transition temperature (Tg))
The glass transition temperature of the (meth) acrylic resin was measured according to JIS K 7121-2012 by using DSC (Differential Scanning Colorimetry).
 (重量平均分子量(Mw))
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL  G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL  直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mlに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100ml注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。
(Weight average molecular weight (Mw))
The weight average molecular weight (Mw) of the (meth) acrylic resin was measured using gel permeation chromatography (manufactured by Tosoh Corporation, HLC8220GPC) and column (manufactured by Tosoh Corporation, TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). . 20 mg ± 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered with a 0.45 mm filter. 100 ml of this solution was injected into a column (at a temperature of 40 ° C.), measured at a detector RI temperature of 40 ° C., and the value converted into styrene was used.
 (2)ゴム粒子
 <ゴム粒子C1の調製>
 (株)カネカ製アクリル系モディファイヤー カネエースM210(コア部:多層構造のアクリル系ゴム状重合体(Tg:約-10℃)、シェル部:メタアクリル酸メチルを主成分とするメタクリル酸エステル系重合体、のコアシェル型のゴム粒子、平均粒子径:220nm)
(2) Rubber particles <Preparation of rubber particles C1>
Acrylic modifier Kaneace M210 manufactured by Kaneka Corporation (core: multi-layered acrylic rubber-like polymer (Tg: about -10 ° C.), shell: methacrylic ester-based polymer containing methyl methacrylate as a main component) Coalesced, core-shell type rubber particles, average particle size: 220 nm)
 <ゴム粒子C2の調製>
 下記成分を、ガラス製反応器に仕込んだ。
 イオン交換水:125質量部
 ホウ酸:0.47質量部
 炭酸ナトリウム:0.05質量部
 ポリオキシエチレンラウリルエーテルリン酸:0.0042質量部
<Preparation of rubber particles C2>
The following components were charged into a glass reactor.
Deionized water: 125 parts by mass Boric acid: 0.47 parts by mass Sodium carbonate: 0.05 parts by mass Polyoxyethylene lauryl ether phosphoric acid: 0.0042 parts by mass
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、メタクリル酸メチル(MMA)97質量部、アクリル酸ブチル(BA)3質量部、メタクリル酸アリル(ALMA)0.17質量部、およびターシャリドデシルメルカプタン(tDM)0.065質量部からなるモノマー混合物(c1)の25質量%を重合機に一括で追加した。これに、5%ソディウムホルムアルデヒドスルフォキシレ-ト0.00645質量部、エチレンジアミン四酢酸-2-ナトリウム0.0056質量部、硫酸第一鉄0.0014質量部を追加し、その15分後にt-ブチルハイドロパーオキサイド0.022質量部を追加し、さらに15分間重合を継続させた。その後、2%の水酸化ナトリウム水溶液を0.013質量部追加した。
 次いで、上記モノマー混合物(c1)の残り75質量%を30分かけて連続的に添加した。添加終了30分後に、69%のt-ブチルハイドロパーオキサイド0.0069質量部を追加し、同温度で30分保持し、重合を完結させた。重合転化率は、98%であった。
After sufficiently replacing the inside of the polymerization machine with nitrogen gas, the internal temperature was raised to 80 ° C., and 97 parts by mass of methyl methacrylate (MMA), 3 parts by mass of butyl acrylate (BA), and 0.17 parts by mass of allyl methacrylate (ALMA). , And 25% by mass of a monomer mixture (c1) composed of 0.065 parts by mass of tertiary decyl mercaptan (tDM) were added all at once to the polymerization machine. To this were added 0.00645 parts by mass of 5% sodium formaldehyde sulfoxylate, 0.0056 parts by mass of 2-sodium ethylenediaminetetraacetate, and 0.0014 parts by mass of ferrous sulfate. 0.022 parts by mass of -butyl hydroperoxide was added, and the polymerization was further continued for 15 minutes. Thereafter, 0.013 parts by mass of a 2% aqueous sodium hydroxide solution was added.
Next, the remaining 75% by mass of the monomer mixture (c1) was continuously added over 30 minutes. Thirty minutes after the completion of the addition, 0.0069 parts by mass of 69% t-butyl hydroperoxide was added, and the mixture was maintained at the same temperature for 30 minutes to complete the polymerization. The polymerization conversion was 98%.
 得られた重合体ラテックスを窒素気流中で80℃に保ち、水酸化ナトリウム0.0346質量部、過硫酸カリウム0.0519質量部を添加した。その後、モノマー混合物(a1)32.5質量部(BA:82質量%、MMA:18質量%)およびAIMA0.97質量部、ポリオキシエチレンラウリルエーテルリン酸0.3質量部からなる混合物を、74分にわたって連続添加した。その後、重合を完結させるために45分保持した。得られたゴム状重合体の平均粒子径は260nmであり、重合転化率は99%であった。 を The obtained polymer latex was kept at 80 ° C. in a nitrogen stream, and 0.0346 parts by mass of sodium hydroxide and 0.0519 parts by mass of potassium persulfate were added. Thereafter, a mixture comprising 32.5 parts by mass of the monomer mixture (a1) (BA: 82% by mass, MMA: 18% by mass), 0.97 parts by mass of AIMA, and 0.3 parts by mass of polyoxyethylene lauryl ether phosphoric acid was added to 74 parts by mass. Added continuously over minutes. Thereafter, the mixture was held for 45 minutes to complete the polymerization. The average particle size of the obtained rubbery polymer was 260 nm, and the polymerization conversion was 99%.
 得られたゴム状重合体を80℃に保ち、過硫酸カリウム0.0097質量部、水酸化ナトリウム0.05質量部添加した後、モノマー混合物(b1)50質量部(MMA:90質量%、BA:10質量%)を150分にわたって連続添加した。添加終了後、1時間保持した。 After keeping the obtained rubbery polymer at 80 ° C. and adding 0.0097 parts by mass of potassium persulfate and 0.05 parts by mass of sodium hydroxide, 50 parts by mass of the monomer mixture (b1) (MMA: 90% by mass, BA : 10% by mass) was continuously added over 150 minutes. After completion of the addition, the mixture was kept for 1 hour.
 得られたゴム状重合体を含むグラフト共重合体を、硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のゴム状重合体を含むグラフト共重合体(ゴム粒子C2)を得た。得られたゴム粒子C2のゴム状重合体のガラス転移温度(Tg)は-30℃であり、平均粒子径は380nmであり、グラフト率は、約149%であり、重合転化率は99%であった。 The obtained graft copolymer containing a rubbery polymer is salted out with magnesium sulfate, coagulated, washed with water and dried to obtain a graft copolymer (rubber particles C2) containing a white powdery rubbery polymer. Obtained. The rubber-like polymer of the obtained rubber particles C2 has a glass transition temperature (Tg) of −30 ° C., an average particle diameter of 380 nm, a graft ratio of about 149%, and a polymerization conversion of 99%. there were.
 得られたゴム粒子(シェル部)と(メタ)アクリル系樹脂のΔSPを、以下の方法で測定した。 ΔΔSP of the obtained rubber particles (shell portion) and (meth) acrylic resin was measured by the following method.
 (ΔSP)
 (メタ)アクリル系樹脂とゴム粒子C1またはC2のシェル部のΔSP値を算出した。具体的には、市販のシミュレーションソフト「Material Studios Forcite」(ダッソー・システムズ社製)において、(メタ)アクリル系樹脂およびシェル部を構成する樹脂の構造式をそれぞれ入力し、SP値を算出して、それらの差を算出することによって求めた。
(ΔSP)
The ΔSP value of the shell portion of the (meth) acrylic resin and the rubber particles C1 or C2 was calculated. Specifically, in the commercially available simulation software “Material Studios Forcite” (manufactured by Dassault Systèmes), the structural formulas of the (meth) acrylic resin and the resin constituting the shell portion are input, and the SP value is calculated. , By calculating their difference.
 (3)有機微粒子
 以下の方法で調製した有機微粒子P1を用いた。
(3) Organic fine particles Organic fine particles P1 prepared by the following method were used.
 (種粒子の作製)
 攪拌機、温度計を備えた重合器に、脱イオン水1000gを入れ、そこへメタクリル酸メチル50g、t-ドデシルメルカプタン6gを仕込み、攪拌下に窒素置換しながら70℃まで加温した。内温を70℃に保ち、重合開始剤として過硫酸カリウム1gを溶解した脱イオン水20gを添加した後、10時間重合させた。得られたエマルジョン中の種粒子の平均粒子径は、0.05μmであった。
(Preparation of seed particles)
1000 g of deionized water was put into a polymerization vessel equipped with a stirrer and a thermometer, and 50 g of methyl methacrylate and 6 g of t-dodecylmercaptan were charged therein, and the mixture was heated to 70 ° C. while stirring and replacing with nitrogen. The internal temperature was kept at 70 ° C., and 20 g of deionized water in which 1 g of potassium persulfate was dissolved as a polymerization initiator was added, followed by polymerization for 10 hours. The average particle diameter of the seed particles in the obtained emulsion was 0.05 μm.
 (有機微粒子の作製)
 攪拌機、温度計を備えた重合器に、ゲル化抑制剤としてラウリル硫酸ナトリウム2.4gを溶解した脱イオン水800gを入れ、そこへモノマー混合物としてメタクリル酸メチル66g、スチレン20gおよびエチレングリコールジメタクリレート64gと、重合開始剤としてアゾビスイソブチロニトリル1gとの混合液を入れた。次いで、混合液をT.Kホモミキサー(特殊機化工業社製)にて攪拌して、分散液を得た。
(Preparation of organic fine particles)
In a polymerization vessel equipped with a stirrer and a thermometer, 800 g of deionized water in which 2.4 g of sodium lauryl sulfate was dissolved was added as a gelling inhibitor, and 66 g of methyl methacrylate, 20 g of styrene, and 64 g of ethylene glycol dimethacrylate were added thereto as a monomer mixture. And 1 g of azobisisobutyronitrile as a polymerization initiator. Then, the mixture was added to T.V. The mixture was stirred with a K homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a dispersion.
 得られた分散液に、上記種粒子を含むエマルジョン60gを加え、30℃で1時間攪拌して種粒子にモノマー混合物を吸収させた。次いで、吸収させたモノマー混合物を、窒素気流下で50℃、5時間加温して重合させた後、室温(約25℃)まで冷却して、重合体微粒子(有機微粒子1)のスラリーを得た。得られた有機微粒子P1の平均粒子径は、0.14μmであり、Tgは、280℃であった。 6060 g of the emulsion containing the seed particles was added to the obtained dispersion, and the mixture was stirred at 30 ° C. for 1 hour to allow the seed particles to absorb the monomer mixture. Next, the absorbed monomer mixture is heated at 50 ° C. for 5 hours under a nitrogen stream to polymerize, and then cooled to room temperature (about 25 ° C.) to obtain a slurry of polymer fine particles (organic fine particles 1). Was. The average particle diameter of the obtained organic fine particles P1 was 0.14 μm, and Tg was 280 ° C.
 (有機微粒子の集合体の作製)
 このエマルジョンを噴霧乾燥機としての坂本技研社製のスプレードライヤー(型式:アトマイザーテイクアップ方式、型番:TRS-3WK)で次の条件下にて噴霧乾燥して、有機微粒子の集合体を得た。有機微粒子の集合体の平均粒子径は、30μmであった。
 供給速度:25ml/min
 アトマイザー回転数:11000rpm
 風量:2m/min
 噴霧乾燥機のスラリー入口温度:100℃
 重合体粒子集合体出口温度:50℃
(Preparation of aggregate of organic fine particles)
This emulsion was spray-dried under the following conditions using a spray dryer (model: atomizer take-up system, model: TRS-3WK) manufactured by Sakamoto Giken Co., Ltd. as a spray dryer to obtain an aggregate of organic fine particles. The average particle diameter of the aggregate of the organic fine particles was 30 μm.
Feed rate: 25 ml / min
Atomizer rotation speed: 11000 rpm
Air volume: 2m 3 / min
Slurry inlet temperature of spray dryer: 100 ° C
Outlet temperature of polymer particle aggregate: 50 ° C
 有機微粒子の平均粒子径は、以下の方法で測定した。 平均 The average particle size of the organic fine particles was measured by the following method.
 (平均粒子径)
 得られた分散液中の有機微粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。なお、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)用いて測定される有機微粒子の平均粒子径は、光学フィルムをTEM観察して測定される有機微粒子の平均粒子径とほぼ一致するものである。
(Average particle size)
The dispersed particle size of the organic fine particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.). The average particle size of the organic fine particles measured using a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.) is almost equal to the average particle size of the organic fine particles measured by TEM observation of the optical film. Matches.
 2.光学フィルムの作製および評価
 [実施例1]
 (ゴム粒子分散液の調製)
 11.3質量部のゴム粒子C2と、200質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。
2. Production and evaluation of optical film [Example 1]
(Preparation of rubber particle dispersion)
11.3 parts by mass of the rubber particles C2 and 200 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then under a condition of 1500 rpm using a milder disperser milder disperser (manufactured by Taiheiyo Kiko Co., Ltd.). It was dispersed to obtain a rubber particle dispersion.
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、およびエタノールを添加した。次いで、加圧溶解タンクに、(メタ)アクリル系樹脂Aを撹拌しながら投入した。次いで、上記調製したゴム粒子分散液を投入して、これを撹拌しながら、完全に溶解させた。得られた溶液の粘度は、16000mmPa・sであり、含水率は0.50%であった。これを、(株)ロキテクノ製のSHP150を使用して、濾過流量300L/m・h、濾圧1.0×10Paにて濾過し、ドープを得た。
 (ドープの組成)
 (メタ)アクリル樹脂A:100質量部
 メチレンクロライド:220質量部
 エタノール:35質量部
 ゴム粒子分散液:200質量部
(Preparation of dope)
Next, a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressure dissolution tank. Next, the (meth) acrylic resin A was charged into the pressure melting tank with stirring. Next, the rubber particle dispersion liquid prepared as described above was charged, and completely dissolved with stirring. The viscosity of the obtained solution was 16000 mmPa · s, and the water content was 0.50%. This was filtered at a filtration flow rate of 300 L / m 2 · h and a filtration pressure of 1.0 × 10 6 Pa using SHP150 manufactured by Loki Techno Co., Ltd. to obtain a dope.
(Dope composition)
(Meth) acrylic resin A: 100 parts by mass Methylene chloride: 220 parts by mass Ethanol: 35 parts by mass Rubber particle dispersion: 200 parts by mass
 (製膜)
 無端ベルト流延装置を用い、ドープを温度30℃、1900mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
(Film formation)
Using an endless belt casting device, the dope was uniformly cast on a stainless steel belt support at a temperature of 30 ° C. and a width of 1900 mm. The temperature of the stainless steel belt was controlled at 28 ° C. The conveying speed of the stainless steel belt was 20 m / min.
 ステンレスベルト支持体上で、流延(キャスト)したドープ中の残留溶剤量が30質量%になるまで溶媒を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体から剥離し、膜状物を得た(剥離時の膜状物の残留溶媒量は30質量%)。剥離したフィルムを多数のローラーで搬送させながら、得られた膜状物を、テンターにて、(Tg+15)℃(本例では140℃)の条件で幅方向に30%延伸した。延伸開始時の膜状物の残留溶媒量は10質量%であった。その後、ロールで搬送しながらさらに乾燥させて、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、幅方向の長さ2.3m、長さ7000m、膜厚40μmの光学フィルムを得た。 (4) The solvent was evaporated on the stainless belt support until the amount of the residual solvent in the cast dope became 30% by mass. Subsequently, the film was peeled from the stainless steel belt support at a peeling tension of 128 N / m to obtain a film (the amount of the residual solvent in the film at the time of peeling was 30% by mass). While the peeled film was transported by a number of rollers, the obtained film was stretched by 30% in the width direction with a tenter at (Tg + 15) ° C. (140 ° C. in this example). The amount of residual solvent in the film at the start of stretching was 10% by mass. Thereafter, the film is further dried while being conveyed by a roll, and the end sandwiched between tenter clips is slit and wound with a laser cutter to obtain an optical film having a width of 2.3 m, a length of 7000 m, and a thickness of 40 μm. Was.
 [実施例2、3]
 延伸倍率を表1に示されるように変更した以外は実施例1と同様にして、光学フィルムを得た。
[Examples 2 and 3]
An optical film was obtained in the same manner as in Example 1, except that the stretching ratio was changed as shown in Table 1.
 [実施例4、5]
 (メタ)アクリル系樹脂の種類を表1に示されるように変更した以外は実施例2と同様にして、光学フィルムを得た。
[Examples 4 and 5]
An optical film was obtained in the same manner as in Example 2, except that the type of the (meth) acrylic resin was changed as shown in Table 1.
 [実施例6]
 ゴム粒子の種類を表1に示されるように変更した以外は実施例2と同様にして、光学フィルムを得た。
[Example 6]
An optical film was obtained in the same manner as in Example 2, except that the type of the rubber particles was changed as shown in Table 1.
 [実施例7]
 ドープの固形分濃度を表1に示されるように変更した以外は実施例2と同様にして、光学フィルムを得た。
[Example 7]
An optical film was obtained in the same manner as in Example 2 except that the solid content of the dope was changed as shown in Table 1.
 [実施例8、13]
 ゴム粒子分散液の溶媒組成を表1に示されるように変更した以外は実施例2と同様にして、光学フィルムを得た。
[Examples 8 and 13]
An optical film was obtained in the same manner as in Example 2, except that the solvent composition of the rubber particle dispersion was changed as shown in Table 1.
 [実施例9]
 ドープの固形分濃度を表1に示されるように変更した以外は実施例8と同様にして、光学フィルムを得た。
[Example 9]
An optical film was obtained in the same manner as in Example 8, except that the solid content of the dope was changed as shown in Table 1.
 [実施例10]
 光学フィルムの長さを表1に示されるように変更した以外は実施例9と同様にして、光学フィルムを得た。
[Example 10]
An optical film was obtained in the same manner as in Example 9, except that the length of the optical film was changed as shown in Table 1.
 [実施例11]
 延伸方向を表1に示されるように変更した以外は実施例9と同様にして、光学フィルムを得た。
[Example 11]
An optical film was obtained in the same manner as in Example 9 except that the stretching direction was changed as shown in Table 1.
 [実施例12]
 (ゴム粒子分散液の調製)
 11.3質量部のゴム粒子C1と、180質量部のメチレンクロライドと、20質量部のエタノールとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。
[Example 12]
(Preparation of rubber particle dispersion)
11.3 parts by mass of rubber particles C1, 180 parts by mass of methylene chloride, and 20 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then a milder disperser milder disperser (manufactured by Taihei Kiko Co., Ltd.) Was used to perform dispersion under a condition of 1500 rpm to obtain a rubber particle dispersion.
 (有機微粒子分散液の調製)
 12質量部の有機微粒子P1と、388質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、有機微粒子分散液を得た。
(Preparation of organic fine particle dispersion)
12 parts by mass of the organic fine particles P1 and 388 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then dispersed under a condition of 1500 rpm using a milder disperser / milder disperser (manufactured by Taiheiyo Kiko Co., Ltd.). Thus, an organic fine particle dispersion was obtained.
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、およびエタノールを添加した。次いで、加圧溶解タンクに、(メタ)アクリル系樹脂1を撹拌しながら投入した。次いで、上記調製した微粒子分散液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を濾過した後、ドープを得た。
(Preparation of dope)
Next, a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressure dissolution tank. Next, the (meth) acrylic resin 1 was charged into the pressure dissolution tank with stirring. Next, the fine particle dispersion prepared above was charged, heated to 60 ° C., and completely dissolved with stirring. The heating temperature was increased from room temperature at 5 ° C./min, dissolved for 30 minutes, and then decreased at 3 ° C./min. After the obtained solution was filtered, a dope was obtained.
 (ドープの組成)
 (メタ)アクリル系樹脂1:100質量部
 メチレンクロライド:220質量部
 エタノール:16質量部
 ゴム粒子分散液:209質量部
 有機微粒子分散液:18質量部
(Dope composition)
(Meth) acrylic resin 1: 100 parts by mass Methylene chloride: 220 parts by mass Ethanol: 16 parts by mass Rubber particle dispersion: 209 parts by mass Organic fine particle dispersion: 18 parts by mass
 (製膜)
 得られたドープを用いた以外は実施例2と同様にして光学フィルムを得た。
(Film formation)
An optical film was obtained in the same manner as in Example 2 except that the obtained dope was used.
 [比較例1]
 (メタ)アクリル系樹脂の種類を表1に示されるように変更した以外は実施例1と同様にして、光学フィルムを得た。
[Comparative Example 1]
An optical film was obtained in the same manner as in Example 1 except that the type of the (meth) acrylic resin was changed as shown in Table 1.
 [比較例2、5]
 延伸倍率を表1に示されるように変更した以外は比較例1と同様にして、光学フィルムを得た。
[Comparative Examples 2, 5]
An optical film was obtained in the same manner as in Comparative Example 1 except that the stretching ratio was changed as shown in Table 1.
 [比較例3]
 ドープの固形分濃度を表1に示されるように変更した以外は比較例1と同様にして、光学フィルムを得た。
[Comparative Example 3]
An optical film was obtained in the same manner as in Comparative Example 1 except that the solid content of the dope was changed as shown in Table 1.
 [比較例4]
 (メタ)アクリル系樹脂の種類を表1に示されるように変更した以外は比較例2と同様にして、光学フィルムを得た。
[Comparative Example 4]
An optical film was obtained in the same manner as in Comparative Example 2 except that the type of the (meth) acrylic resin was changed as shown in Table 1.
 実施例1~13および比較例1~5の光学フィルムの断面におけるゴム粒子の平均アスペクト比、平均長径および近接比率を、以下の方法で測定した。 平均 The average aspect ratio, average major axis, and proximity ratio of rubber particles in the cross sections of the optical films of Examples 1 to 13 and Comparative Examples 1 to 5 were measured by the following methods.
 (ゴム粒子の平均アスペクト比、平均長径)
 ゴム粒子の平均アスペクト比および平均長径は、以下の手順で算出した。
 1)光学フィルムの断面(光学フィルムの厚み方向に沿った断面のうち、幅方向に平行な断面)をTEM観察した。観察領域は、5μm×5μmとした。
 2)得られたTEM画像における、各ゴム粒子の長径および短径をそれぞれ測定し、アスペクト比をそれぞれ算出した。
 3)上記1)および2)の操作を、観察領域を変えて合計4箇所行った。そして、測定されたアスペクト比の平均値を「平均アスペクト比」とし、測定された長径の平均値を「平均長径」とした。
(Average aspect ratio of rubber particles, average major axis)
The average aspect ratio and the average major axis of the rubber particles were calculated according to the following procedure.
1) The cross section of the optical film (the cross section parallel to the width direction among the cross sections along the thickness direction of the optical film) was observed by TEM. The observation area was 5 μm × 5 μm.
2) The major axis and minor axis of each rubber particle in the obtained TEM image were measured, and the aspect ratio was calculated.
3) The above operations 1) and 2) were performed in a total of four places while changing the observation area. Then, the average value of the measured aspect ratio was defined as “average aspect ratio”, and the average value of the measured major axis was defined as “average major axis”.
 (ゴム粒子の近接比率)
 ゴム粒子の近接比率については、以下の手順で測定した。
 1)上記TEM画像(観察領域:5μm×5μm)において、各ゴム粒子の長径を特定した。そして、隣り合うゴム粒子の長径同士のなす角度のうち小さいほうの角度が30°以下であり、かつその粒子間距離が100nm以下であるものを特定した。
 2)上記特定したゴム粒子の数を、観察領域中のゴム粒子の総数に対する比率を算出した。
 3)上記1)と2)の操作を、観察領域を変えて合計4箇所行い、算出された比率の平均値を「近接比率」(%)とした。
(Proximity ratio of rubber particles)
The proximity ratio of the rubber particles was measured according to the following procedure.
1) The major axis of each rubber particle was specified in the TEM image (observation area: 5 μm × 5 μm). Then, the smaller one of the angles formed by the long diameters of the adjacent rubber particles was 30 ° or less, and the distance between the particles was 100 nm or less.
2) The ratio of the number of rubber particles specified above to the total number of rubber particles in the observation region was calculated.
3) The above operations 1) and 2) were performed at a total of four places while changing the observation area, and the average value of the calculated ratios was defined as “proximity ratio” (%).
 さらに、実施例1~13および比較例1~5の光学フィルムの脆性(MIT屈曲性)および巻き形状(巻き締まり故障、チェーン状故障)を、それぞれ以下の方法で評価した。 Furthermore, the brittleness (MIT flexibility) and the winding shape (winding failure, chain-like failure) of the optical films of Examples 1 to 13 and Comparative Examples 1 to 5 were evaluated by the following methods, respectively.
 (脆性:MIT屈曲性)
 得られた光学フィルムのMIT屈曲性を、耐折度試験機(テスター産業株式会社製、MIT、BE-201型、折り曲げ曲率半径0.38mm)を用いて測定した。
 具体的には、試験片として、温度25℃、相対湿度65%RHの状態に1時間以上静置させた、幅15mm、長さ150mmの(メタ)アクリル系樹脂フィルムを使用し、荷重500gの条件で、JIS P8115:2001に準拠して測定し、破断するまでの回数により、以下の評価基準で評価した。
 ◎+:1000回以上
 ◎:500回以上1000回未満
 ○:300回以上500回未満
 △:100以上300回未満
 ×:100回未満
 破断するまでの回数が多いほど屈曲性に優れていることを表し、繰り返しの折り曲げ耐性に優れていることを表し、△以上であれば実用上望ましい特性を有する。
 △以上であれば良好と判断した。
(Brittleness: MIT flexibility)
The MIT flexibility of the obtained optical film was measured using a bending resistance tester (MIT, Model BE-201, bending radius of curvature 0.38 mm, manufactured by Tester Sangyo Co., Ltd.).
Specifically, a (meth) acrylic resin film having a width of 15 mm and a length of 150 mm, which was allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% RH for 1 hour or more, was used as a test piece. Under the conditions, the measurement was carried out in accordance with JIS P8115: 2001, and the number of times until breakage was evaluated according to the following evaluation criteria.
++: 1000 times or more ◎: 500 times or more and less than 1000 times :: 300 times or more and less than 500 times Δ: 100 or more and less than 300 times ×: less than 100 times The greater the number of times to break, the better the flexibility. Indicates that it has excellent resistance to repeated bending.
If it was not less than Δ, it was judged to be good.
 (巻き形状(巻き締まり故障、チェーン状故障))
 (1)巻き締まり(巻芯転写)
 得られた光学フィルムのロール体を、40℃80%RHの雰囲気下で10日間保存した後、巻きほぐして、巻き芯からの転写が発生した光学フィルムの長さ(m)を測定した。なお、巻き芯からの転写は、巻き取り後の光学フィルムの変形(長手方向に縮もうとする応力)によって生じる面状欠陥であり、長手方向の巻内部に形成される。
 ◎:10m未満
 〇:10m以上50m未満
 △:50m以上100m未満
 ×:100m以上
 △以上であれば良好と判断した。
(Wound shape (winding failure, chain-like failure))
(1) Tightening (core transfer)
After the roll body of the obtained optical film was stored in an atmosphere of 40 ° C. and 80% RH for 10 days, the roll body was unwound and the length (m) of the optical film on which transfer from the core occurred was measured. The transfer from the winding core is a planar defect caused by the deformation (stress of shrinking in the longitudinal direction) of the optical film after winding, and is formed inside the winding in the longitudinal direction.
:: less than 10 m 〇: 10 m or more and less than 50 m Δ: 50 m or more and less than 100 m X: 100 m or more △ or more was judged as good.
 (2)チェーン状故障
 得られた光学フィルムのロール体を巻きほぐして、チェーン状故障が発生した光学フィルムの長さ(m)を測定した。なお、チェーン状故障とは、巻き取り後の光学フィルムの変形(幅方向に伸びようとする応力)によって生じる鎖状欠陥であり、幅方向の全体に形成される。そして、以下に基づいて評価した。
 ◎:10m未満
 〇:10m以上200m未満
 △:200以上1000m未満
 ×:1000m以上
 △以上であれば良好と判断した。
(2) Chain-like Failure The roll of the obtained optical film was unwound and the length (m) of the optical film in which the chain-like failure occurred was measured. Note that the chain-like failure is a chain-like defect caused by deformation of the optical film after winding (stress that tends to expand in the width direction), and is formed entirely in the width direction. And it evaluated based on the following.
:: less than 10 m 〇: 10 m or more and less than 200 m Δ: 200 or more and less than 1000 m ×: 1000 m or more △ or more was judged to be good.
 実施例1~13および比較例1~5の光学フィルムの評価結果を、表1に示す。表1中、MCは、メチレンクロライド、EtOHはエタノールを示す。 Table 1 shows the evaluation results of the optical films of Examples 1 to 13 and Comparative Examples 1 to 5. In Table 1, MC indicates methylene chloride and EtOH indicates ethanol.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フィルム断面を観察したときに、ゴム粒子の平均アスペクト比が1.3~3.0であり、かつ近接比率が15%以上である実施例1~13の光学フィルムは、いずれも高いMIT屈曲性を有し、良好な靱性を有することがわかる。また、実施例1~13の光学フィルムのロール体では、巻き締まりやチェーン状故障などの巻き状故障も抑制されることがわかる。 As shown in Table 1, when the cross section of the film was observed, the optical films of Examples 1 to 13 in which the average aspect ratio of the rubber particles was 1.3 to 3.0 and the proximity ratio was 15% or more It can be seen that all have high MIT flexibility and good toughness. In addition, in the rolls of the optical films of Examples 1 to 13, it is found that winding failures such as tight winding and chain failure are also suppressed.
 特に、延伸倍率を高くすることで、平均アスペクト比や近接比率がさらに高くなることがわかる(実施例1~3の対比)。 In particular, it can be seen that the average aspect ratio and the proximity ratio are further increased by increasing the draw ratio (compared to Examples 1 to 3).
 また、(メタ)アクリル樹脂のガラス転移温度(Tg)を高くすることで、近接比率がさらに高くなることがわかる(実施例1、4および5の対比)。 In addition, it can be seen that increasing the glass transition temperature (Tg) of the (meth) acrylic resin further increases the proximity ratio (compared to Examples 1, 4 and 5).
 また、(メタ)アクリル系樹脂とゴム粒子のΔSPを大きくすることで、近接比率をさらに高めうることがわかる(実施例2および4~6の対比)。 Also, it can be seen that the proximity ratio can be further increased by increasing ΔSP between the (meth) acrylic resin and the rubber particles (compared to Examples 2 and 4 to 6).
 また、ドープの固形分濃度を低くすることで、近接比率がさらに高くなることがわかる。これは、ドープ乾燥時の圧縮効果により、ゴム粒子同士が配向しやすいためであると考えられる(実施例2と7の対比、実施例8と9の対比)。 わ か る It can also be seen that lowering the solids concentration of the dope further increases the proximity ratio. This is considered to be because the rubber particles are likely to be oriented by the compression effect at the time of drying the dope (comparison between Examples 2 and 7 and Examples 8 and 9).
 また、ゴム粒子の分散溶媒に、貧溶媒(EtOH)を含有させることで、近接比率がさらに高くなることがわかる(実施例2、8および13の対比)。 Also, it can be seen that the proximity ratio is further increased by adding a poor solvent (EtOH) to the dispersion solvent of the rubber particles (compared to Examples 2, 8 and 13).
 これに対して、ゴム粒子の平均アスペクト比が1.3未満である比較例2および4の光学フィルム、近接比率が15%未満である比較例1および3、平均アスペクト比が3.0を超える比較例5の光学フィルムは、いずれもMIT屈曲性が低く、巻き締まりやチェーン状故障などの巻き状故障が抑制できないことがわかる。 On the other hand, the optical films of Comparative Examples 2 and 4 in which the average aspect ratio of the rubber particles is less than 1.3, Comparative Examples 1 and 3 in which the proximity ratio is less than 15%, and the average aspect ratio of more than 3.0 It can be seen that the optical films of Comparative Example 5 all have low MIT flexibility, and cannot prevent winding failure such as tight winding or chain failure.
 なお、実施例1~13の光学フィルムのヘイズを、ヘイズメーター(HGM-2DP、スガ試験機)を用いて、25℃60%RHでJISK-6714に従って測定したところ、いずれも0.3%よりも小さく、良好であった。 The haze of the optical films of Examples 1 to 13 was measured using a haze meter (HGM-2DP, Suga Test Machine) at 25 ° C. and 60% RH in accordance with JIS K-6714. Was also small and good.
 本出願は、2018年7月31日出願の特願2018-144438に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2018-144438 filed on Jul. 31, 2018. The entire contents described in the specification and drawings of the application are incorporated herein by reference.
 本発明によれば、透明性を損なうことなく、脆性が良好に改善され、かつ巻き状故障を抑制できる光学フィルム、光学フィルムのロール体、偏光板保護フィルム、および光学フィルムの製造方法を提供することができる。 According to the present invention, there are provided an optical film, a roll of an optical film, a polarizing plate protective film, and a method for producing an optical film, in which the brittleness is satisfactorily improved without impairing the transparency, and which can suppress winding failure. be able to.
 100 光学フィルム
 110 マトリクス
 120 ゴム粒子
 LA 仮想線
 d 粒子間距離
REFERENCE SIGNS LIST 100 optical film 110 matrix 120 rubber particle LA virtual line d distance between particles

Claims (15)

  1.  ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子とを含む光学フィルムであって、
     前記光学フィルムの断面において、
     前記ゴム粒子の平均アスペクト比は、1.2~3.0であり、
     3個以上の前記ゴム粒子の長径同士がその長径方向に連なっており、かつ連なっている前記ゴム粒子の粒子間距離が100nm以下であり、
     前記連なっているゴム粒子の数の、前記光学フィルムに含まれる前記ゴム粒子の総数に対する比率が15%以上である、
     光学フィルム。
    An optical film including a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles,
    In the cross section of the optical film,
    The rubber particles have an average aspect ratio of 1.2 to 3.0,
    The major axes of three or more of the rubber particles are continuous in the major axis direction, and the inter-particle distance of the continuous rubber particles is 100 nm or less,
    The ratio of the number of the continuous rubber particles to the total number of the rubber particles included in the optical film is 15% or more.
    Optical film.
  2.  前記ゴム粒子の長径方向は、前記光学フィルムの厚み方向に対して略垂直である、
     請求項1に記載の光学フィルム。
    The major axis direction of the rubber particles is substantially perpendicular to the thickness direction of the optical film,
    The optical film according to claim 1.
  3.  前記光学フィルムは、面内遅相軸を有し、
     前記ゴム粒子の長径方向は、前記面内遅相軸に対して略平行である、
     請求項1または2に記載の光学フィルム。
    The optical film has an in-plane slow axis,
    The major axis direction of the rubber particles is substantially parallel to the in-plane slow axis,
    The optical film according to claim 1.
  4.  前記ゴム粒子は、架橋重合体を含むコア部と、前記コア部を覆い、前記架橋重合体とは異なる重合体を含むシェル部とを有するコアシェル型の粒子であり、
     前記(メタ)アクリル系樹脂と前記重合体の溶解性パラメータ(SP値)の差ΔSPが0.8以上である、
     請求項1~3のいずれか一項に記載の光学フィルム。
    The rubber particles are core-shell particles having a core portion containing a crosslinked polymer and a shell portion covering the core portion and containing a polymer different from the crosslinked polymer,
    The difference ΔSP between the solubility parameter (SP value) of the (meth) acrylic resin and the polymer is 0.8 or more;
    The optical film according to any one of claims 1 to 3.
  5.  前記ゴム粒子の平均長径は、200~500nmである、
     請求項1~4のいずれか一項に記載の光学フィルム。
    The rubber particles have an average major axis of 200 to 500 nm,
    The optical film according to any one of claims 1 to 4.
  6.  前記(メタ)アクリル系樹脂は、シクロ環を有する(メタ)アクリル酸エステル類、マレイミド類からなる群より選ばれる共重合モノマーに由来する構造単位、および分岐アルキル基を有する(メタ)アクリル酸エステルに由来する構造単位の少なくとも一方を含む、
     請求項1~5のいずれか一項に記載の光学フィルム。
    The (meth) acrylic resin is a (meth) acrylic ester having a structural unit derived from a copolymerized monomer selected from the group consisting of (meth) acrylic esters having a cyclo ring and maleimides, and a branched alkyl group. Including at least one of structural units derived from
    The optical film according to any one of claims 1 to 5.
  7.  ガラス転移温度が80℃以上の有機微粒子をさらに含む、
     請求項1~6のいずれか一項に記載の光学フィルム。
    Glass transition temperature further includes organic fine particles having a temperature of 80 ° C. or higher,
    The optical film according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一項に記載の光学フィルムを含む、
     偏光板保護フィルム。
    Including the optical film according to any one of claims 1 to 7,
    Polarizer protection film.
  9.  ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子とを含み、その幅方向に対して垂直な方向に巻き取られた光学フィルムのロール体であって、
     前記光学フィルムの断面において、
     前記ゴム粒子の平均アスペクト比は、1.2~3.0であり、
     3個以上の前記ゴム粒子の長径同士がその長径方向に連なっており、かつ前記ゴム粒子同士の粒子間距離が100nm以下であり、
     前記連なっているゴム粒子の数の、前記光学フィルムに含まれる前記ゴム粒子の総数に対する比率が15%以上である、
     光学フィルムのロール体。
    A roll body of an optical film wound in a direction perpendicular to a width direction thereof, including a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher and rubber particles,
    In the cross section of the optical film,
    The rubber particles have an average aspect ratio of 1.2 to 3.0,
    The major axes of the three or more rubber particles are continuous in the major axis direction, and the distance between the rubber particles is 100 nm or less,
    The ratio of the number of the continuous rubber particles to the total number of the rubber particles included in the optical film is 15% or more.
    Roll body of optical film.
  10.  前記ゴム粒子の長径方向は、前記光学フィルムの厚み方向に対して略垂直である、
     請求項9に記載の光学フィルムのロール体。
    The major axis direction of the rubber particles is substantially perpendicular to the thickness direction of the optical film,
    A roll of the optical film according to claim 9.
  11.  前記ゴム粒子の長径方向は、前記光学フィルムの幅方向に対して略平行である、
     請求項9または10に記載の光学フィルムのロール体。
    The major axis direction of the rubber particles is substantially parallel to the width direction of the optical film,
    A roll of the optical film according to claim 9.
  12.  前記光学フィルムの幅は、2.3m以上であり、
     前記光学フィルムの長さは、5000m以上である、
     請求項9~11のいずれか一項に記載の光学フィルムのロール体。
    The width of the optical film is 2.3 m or more,
    The length of the optical film is 5000 m or more,
    A roll of the optical film according to any one of claims 9 to 11.
  13.  ガラス転移温度が110℃以上である(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含み、かつ固形分濃度が15質量%以下のドープを得る工程と、
     得られた前記ドープを支持体上に流延した後、乾燥および剥離して膜状物を得る工程と、
     前記膜状物を、20%以上延伸する工程とを含む、光学フィルムの製造方法。
    A step of obtaining a dope containing a (meth) acrylic resin having a glass transition temperature of 110 ° C. or higher, rubber particles, and a solvent, and having a solid concentration of 15% by mass or less;
    After casting the obtained dope on a support, drying and peeling to obtain a film-like material,
    Stretching the film-like material by 20% or more.
  14.  前記ゴム粒子は、架橋重合体を含むコア部と、前記コア部を覆い、前記架橋重合体とは異なる重合体を含むシェル部とを有するコアシェル型の粒子であり、
     前記ドープは、前記(メタ)アクリル系樹脂と、前記ゴム粒子と溶媒を含むゴム粒子分散液と、溶媒とを混合して得られ、
     前記ゴム粒子分散液に含まれる溶媒は、前記重合体の貧溶媒を含む、請求項13に記載の光学フィルムの製造方法。
    The rubber particles are core-shell particles having a core portion containing a crosslinked polymer and a shell portion covering the core portion and containing a polymer different from the crosslinked polymer,
    The dope is obtained by mixing the (meth) acrylic resin, a rubber particle dispersion containing the rubber particles and a solvent, and a solvent,
    14. The method for producing an optical film according to claim 13, wherein the solvent contained in the rubber particle dispersion contains a poor solvent for the polymer.
  15.  前記ゴム粒子は、架橋重合体を含むコア部と、前記コア部を覆い、前記架橋重合体とは異なる重合体を含むシェル部とを有するコアシェル型の粒子であり、
     前記(メタ)アクリル系樹脂と前記重合体の溶解性パラメータ(SP値)の差ΔSPが0.8以上である、
     請求項13または14に記載の光学フィルムの製造方法。
    The rubber particles are core-shell particles having a core portion containing a crosslinked polymer and a shell portion covering the core portion and containing a polymer different from the crosslinked polymer,
    The difference ΔSP between the solubility parameter (SP value) of the (meth) acrylic resin and the polymer is 0.8 or more;
    The method for producing an optical film according to claim 13.
PCT/JP2019/029732 2018-07-31 2019-07-30 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film WO2020027082A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020533555A JP7452421B2 (en) 2018-07-31 2019-07-30 Optical film, polarizing plate protective film, optical film roll, and optical film manufacturing method
CN201980050752.XA CN112513698B (en) 2018-07-31 2019-07-30 Optical film, polarizing plate protective film, roll of optical film, and method for producing optical film
KR1020217002173A KR102496408B1 (en) 2018-07-31 2019-07-30 Optical film, polarizing plate protective film, roll body of optical film, and manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144438 2018-07-31
JP2018-144438 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027082A1 true WO2020027082A1 (en) 2020-02-06

Family

ID=69231886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029732 WO2020027082A1 (en) 2018-07-31 2019-07-30 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film

Country Status (4)

Country Link
JP (1) JP7452421B2 (en)
KR (1) KR102496408B1 (en)
CN (1) CN112513698B (en)
WO (1) WO2020027082A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145436A1 (en) * 2021-01-04 2022-07-07 株式会社カネカ Method for producing stretched film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150926A1 (en) * 2008-06-13 2009-12-17 コニカミノルタオプト株式会社 Method for production of acrylic film, and acrylic film produced by the method
JP2012016845A (en) * 2010-07-06 2012-01-26 Konica Minolta Opto Inc Optical film forming method, optical film, polarizing plate, and liquid crystal display
JP2013028676A (en) * 2011-07-27 2013-02-07 Konica Minolta Advanced Layers Inc Method for producing acrylic resin-containing film, acrylic resin-containing film, polarizing plate, and liquid crystal display device
WO2014188993A1 (en) * 2013-05-24 2014-11-27 コニカミノルタ株式会社 Method for producing optical film
WO2015111519A1 (en) * 2014-01-22 2015-07-30 富士フイルム株式会社 Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device
JP2016042159A (en) * 2014-08-18 2016-03-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate protective film, polarizing plate, and liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579946B2 (en) * 2001-02-02 2003-06-17 Dow Global Technologies Inc. Low-gloss biaxially oriented films comprising vinyl aromatic polymers and substantially non-spherical rubber particles
JP2006124435A (en) 2004-10-26 2006-05-18 Sekisui Chem Co Ltd Maleimide-based copolymer resin film
JP2012018383A (en) * 2010-06-08 2012-01-26 Sumitomo Chemical Co Ltd Optical film, anti-glare film, and polarizing plate
JP2016071264A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Optical film, polarizing plate protection film, polarizing plate, and liquid crystal display device
JP2016071142A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Production method of optical film, optical film, and polarizing plate and liquid crystal display device including optical film
US10576777B2 (en) * 2015-06-15 2020-03-03 Kuraray Co., Ltd. Hydraulic transfer printing base film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150926A1 (en) * 2008-06-13 2009-12-17 コニカミノルタオプト株式会社 Method for production of acrylic film, and acrylic film produced by the method
JP2012016845A (en) * 2010-07-06 2012-01-26 Konica Minolta Opto Inc Optical film forming method, optical film, polarizing plate, and liquid crystal display
JP2013028676A (en) * 2011-07-27 2013-02-07 Konica Minolta Advanced Layers Inc Method for producing acrylic resin-containing film, acrylic resin-containing film, polarizing plate, and liquid crystal display device
WO2014188993A1 (en) * 2013-05-24 2014-11-27 コニカミノルタ株式会社 Method for producing optical film
WO2015111519A1 (en) * 2014-01-22 2015-07-30 富士フイルム株式会社 Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device
JP2016042159A (en) * 2014-08-18 2016-03-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate protective film, polarizing plate, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145436A1 (en) * 2021-01-04 2022-07-07 株式会社カネカ Method for producing stretched film

Also Published As

Publication number Publication date
KR102496408B1 (en) 2023-02-06
JP7452421B2 (en) 2024-03-19
JPWO2020027082A1 (en) 2021-08-26
KR20210022722A (en) 2021-03-03
CN112513698A (en) 2021-03-16
CN112513698B (en) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2020027085A1 (en) Optical film, polarizing plate and method for producing optical film
WO2020203833A1 (en) Optical film, polarizing plate, and production method for optical film
WO2020027082A1 (en) Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film
JP7298617B2 (en) (Meth)acrylic resin film, optical film, method for producing (meth)acrylic resin film
KR101483328B1 (en) Acrylic resin-containing film, process for producing acrylic resin-containing film, and polarizing plate and liquid crystal display device using the acrylic resin-containing film
KR102166417B1 (en) Acrylic optical film and manufacturing method thereof
KR101497751B1 (en) Acrylic resin-containing film and process for the production of the film
JP7314942B2 (en) Optical films, protective films for polarizers and polarizers
JP7314988B2 (en) Optical film, polarizing plate, method for producing optical film
TW201315760A (en) Optical resin material, manufacturing method of optical resin material, manufacturing method of optical film, optical film of display, optical film of lcd, polarizing plate protective film, optical film, light source of polarization surface, lens, screen
JP5614450B2 (en) Optical film dope manufacturing method, optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
CN113454502B (en) Optical film mixture, optical film, method for producing optical film, and polarizing plate
WO2020166682A1 (en) Optical film, polarizing plate, and optical film production method
CN112226027A (en) Optical film and polarizing plate
JP7379933B2 (en) Method for producing dope for optical film and method for producing optical film
JP7293691B2 (en) Optical film, polarizing plate, method for producing optical film
WO2024122626A1 (en) Acrylic resin powder and film
JPWO2019221137A1 (en) Optical film, retardation film, polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533555

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002173

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845529

Country of ref document: EP

Kind code of ref document: A1