WO2020203833A1 - Optical film, polarizing plate, and production method for optical film - Google Patents

Optical film, polarizing plate, and production method for optical film Download PDF

Info

Publication number
WO2020203833A1
WO2020203833A1 PCT/JP2020/014179 JP2020014179W WO2020203833A1 WO 2020203833 A1 WO2020203833 A1 WO 2020203833A1 JP 2020014179 W JP2020014179 W JP 2020014179W WO 2020203833 A1 WO2020203833 A1 WO 2020203833A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
optical film
film
mass
acrylic resin
Prior art date
Application number
PCT/JP2020/014179
Other languages
French (fr)
Japanese (ja)
Inventor
治加 増田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021512039A priority Critical patent/JPWO2020203833A1/ja
Priority to KR1020217028981A priority patent/KR20210125543A/en
Publication of WO2020203833A1 publication Critical patent/WO2020203833A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film, a polarizing plate, and a method for producing an optical film.
  • Optical films such as polarizing plate protective films are used in display devices such as liquid crystal display devices and organic EL display devices.
  • a (meth) acrylic resin film such as polymethylmethacrylate may be used because it has excellent transparency, dimensional stability, and low hygroscopicity.
  • the (meth) acrylic resin film is usually manufactured by a melt film forming method (melt film forming method).
  • melt film forming method if the monomer remains in the (meth) acrylic resin that is the raw material, the fluidity during melt film formation is lowered, and the color tone and heat resistance of the film are lowered (
  • Patent Documents 1 to 3 it has been studied to reduce the amount of residual monomers in a (meth) acrylic resin or an optical film.
  • Patent Document 1 a (meth) acrylic resin layer (I) containing a specific (meth) acrylic resin ( ⁇ ) and a simple adhesive layer (II) are included, and a (meth) acrylic resin layer (meth).
  • a film in which the amount of residual maleimide-based monomer in I) is reduced to 0.01 to 0.5% by mass is disclosed.
  • Patent Document 2 discloses an optical film containing a specific acrylic copolymer having a residual monomer amount of 5% by mass or less
  • Patent Document 3 discloses an optical film containing a specific acrylic copolymer and having a residual monomer amount of 5% by mass or less.
  • a resin composition for an optical film having a concentration of 2000 ppm or less is disclosed.
  • a high molecular weight resin can be used, so that a (meth) acrylic resin film having sufficient toughness can be obtained.
  • a dope (solution) in which a resin is dissolved in a solvent is cast on a support, and then the solvent is removed (dried) to obtain a film.
  • the (meth) acrylic resin has high hydrophobicity, it has a high affinity with a solvent, and it takes time to remove the solvent, that is, it has a problem of low drying property.
  • the present invention has been made in view of the above circumstances, and although it contains a (meth) acrylic resin as a main component, it can be obtained with high production efficiency due to its high drying property, and is sufficient. It is an object of the present invention to provide an optical film having toughness, a polarizing plate, and a method for producing an optical film.
  • the optical film of the present invention contains a (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million, and a residual monomer derived from the (meth) acrylic resin.
  • An optical film containing rubber particles, the content of the residual monomer is 0.1 to 2% by mass with respect to the optical film.
  • the polarizing plate of the present invention includes a polarizing element and an optical film of the present invention arranged on at least one surface of the polarizing element.
  • the method for producing an optical film of the present invention is derived from a (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million, and the (meth) acrylic resin.
  • a dope containing a residual monomer and rubber particles and having a content of the residual monomer of more than 0.1% by mass and less than 3% by mass based on the total amount of the (meth) acrylic resin and the residual monomer is obtained.
  • the process includes a step of casting the dope onto a support and then peeling it off to obtain a film-like substance, and a step of drying the film-like substance.
  • the present invention although it contains a (meth) acrylic resin as a main component, it can be obtained with high manufacturing efficiency due to its high drying property, and has sufficient toughness (mechanical strength).
  • a method for producing a film, a polarizing plate and an optical film can be provided.
  • the present inventors have high toughness and high toughness by using a relatively high molecular weight (meth) acrylic resin and leaving a certain amount or more of residual monomers derived from the (meth) acrylic resin. It was found to have dryness.
  • the reason for this is not clear, but it is presumed as follows.
  • the solution film forming method (casting method)
  • the residual monomer appropriately contained in the film-like material can form an appropriate space in the polymer matrix of the film-like material.
  • the solvent easily moves along the space, so that the solvent easily volatilizes, and it is considered that the drying property can be improved.
  • the optical film of the present invention can suppress a decrease in toughness of the film by adjusting the content of the residual monomer and containing a relatively high molecular weight (meth) acrylic resin. Further, since the optical film is manufactured by the solution film forming method (cast method), it is not easily exposed to a high temperature such as the melt film forming method (melt method). As a result, even if the film contains an appropriate amount of residual monomer, the color tone of the film is unlikely to deteriorate as in the past. The present invention has been made based on these findings.
  • the optical film of the present invention contains a (meth) acrylic resin, a residual monomer, and rubber particles.
  • the (meth) acrylic resin does not contain residual monomers.
  • (meth) acrylic means acrylic or methacrylic.
  • the glass transition temperature of the (meth) acrylic resin is preferably 115 ° C. or higher.
  • the Tg of the (meth) acrylic resin is 115 ° C. or higher, not only the heat resistance of the optical film can be increased, but also the drying temperature during production by the solution film forming method can be increased, so that the drying property is improved.
  • Cheap When the Tg of the (meth) acrylic resin is 160 ° C. or lower, for example, it is not necessary to increase the content of the structural unit derived from the monomer having a large free volume of the molecule, so that the toughness of the optical film is not easily impaired.
  • the Tg of the (meth) acrylic resin is more preferably 120 to 150 ° C.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be measured using DSC (Differential Scanning Colorimetry) in accordance with JIS K7121-2012.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be adjusted by the type and composition of the monomer.
  • the content of structural units derived from a monomer having a large free volume of a molecule may be increased.
  • the weight average molecular weight of the (meth) acrylic resin is preferably 600,000 to 3,000,000.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film forming property and drying property are not easily impaired.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is more preferably 600,000 to 2,000,000.
  • the weight average molecular weight (Mw) can be measured in polystyrene conversion by gel permeation chromatography (GPC). Specifically, the measurement can be performed using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). The measurement conditions may be the same as in the examples described later.
  • the (meth) acrylic resin is preferably a copolymer having a structural unit derived from methyl methacrylate, as long as the glass transition temperature (Tg) and the weight average molecular weight (Mw) satisfy the above ranges.
  • it may be a copolymer having a structural unit derived from methyl methacrylate and a structural unit derived from a copolymerizable monomer copolymerizable with methyl methacrylate.
  • Examples of copolymerizable monomers copolymerizable with methyl methacrylate include Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2--butyl (meth) acrylate Ethylhexyl, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclo (meth) acrylate (Meta) acrylates other than methyl methacrylate, such as pentanyl, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (me
  • the copolymer monomer is preferably a monomer having a large free volume of molecules.
  • a monomer having a large free volume of a molecule tends to form a gap (space) for moving a solvent in a polymer matrix of a film-like substance in a solution film forming step.
  • the solvent removability that is, the drying property can be improved.
  • An example of a monomer with a large free volume of a molecule is It has an aliphatic ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and 6-membered ring lactone (meth) acrylate.
  • Acrylic acid ester Aromatic vinyls such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene; Alicyclic vinyls such as vinylcyclohexane; Maleimides such as N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide, and NO-chlorophenylmaleimide are included.
  • a monomer with a large free volume of a molecule is N-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, n-hexyl (meth) acrylate, lauryl (meth) acrylate, etc.
  • (Meta) acrylic acid alkyl ester includes (meth) acrylamides such as n-butyl (meth) acrylamide, pentyl (meth) acrylamide, hexyl (meth) acrylamide, and octyl (meth) acrylamide.
  • the content of the structural unit derived from the copolymerized monomer is preferably 0 to 50% by mass, preferably 10 to 40% by mass, based on 100% by mass of all the structural units constituting the (meth) acrylic resin. Is more preferable, and 10 to 30% by mass is further preferable.
  • the type and composition of the (meth) acrylic resin monomer can be specified by 1 1 H-NMR.
  • the (meth) acrylic resin is preferably 80% by mass or more, and may be 100% by mass, based on the matrix resin component contained in the optical film.
  • Residual monomer is a residual monomer derived from a (meth) acrylic resin.
  • the content of the residual monomer is preferably 0.1 to 2% by mass with respect to the optical film.
  • the content of the residual monomer is 0.1% by mass or more, the drying property during solution film formation can be improved, so that the optical film can be obtained with high production efficiency.
  • the content of the residual monomer is 2% by mass or less, the toughness (mechanical strength) of the optical film does not decrease too much, so that the bendability is not easily impaired.
  • the content of the residual monomer is more preferably more than 0.2% by mass and 1% by mass or less with respect to the optical film.
  • the content and composition of residual monomers in the optical film can be measured by liquid chromatography.
  • the measurement conditions are as follows. (Measuring method) -Column type (adsorbent): Silica gel-Mobile phase: Tetrahydrofuran-Column temperature: 40 ° C ⁇ Flow velocity: 1 ml / min
  • the content of the residual monomer can be adjusted by, for example, the content of the residual monomer in the dope when the optical film is produced by the solution film forming method.
  • the content of the residual monomer in the dope can be adjusted by, for example, a drying treatment or purification after the polymerization of the (meth) acrylic resin.
  • Rubber particles may have a function of imparting unevenness to the surface of the optical film to impart slipperiness while imparting flexibility and toughness to the optical film.
  • the rubber particles are graft copolymers containing a rubber-like polymer (crosslinked polymer), that is, core-shell type rubber particles having a core portion made of a rubber-like polymer (crosslinked polymer) and a shell portion covering the core portion. Is preferable.
  • the glass transition temperature (Tg) of the rubber particles is preferably ⁇ 10 ° C. or lower. When the glass transition temperature (Tg) of the rubber particles is ⁇ 10 ° C. or lower, it is easy to impart sufficient toughness to the film.
  • the glass transition temperature (Tg) of the rubber particles is more preferably ⁇ 15 ° C. or lower, and even more preferably ⁇ 20 ° C. or lower.
  • the glass transition temperature (Tg) of the rubber particles is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubber particles is, for example, the monomer composition constituting the core portion or the shell portion, the mass ratio (graft ratio) between the core portion and the shell portion, and the mass ratio between the soft layer and the hard layer as described later. Can be adjusted by.
  • Tg glass transition temperature
  • the number of carbon atoms of the alkyl group in the monomer mixture (a') constituting the acrylic rubber-like polymer (a) in the core portion is described later. It is preferable to increase the total mass ratio of the acrylic ester / copolymerizable monomer having a value of 4 or more (for example, 3 or more, preferably 4 or more and 10 or less).
  • rubber-like polymers examples include butadiene-based crosslinked polymers, (meth) acrylic-based crosslinked polymers, and organosiloxane-based crosslinked polymers.
  • the (meth) acrylic crosslinked polymer is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the optical film is not easily impaired, and the acrylic crosslinked polymer (acrylic rubber-like weight) is preferable. Coalescence) is more preferable.
  • the rubber particles are preferably an acrylic graft copolymer containing the acrylic rubber-like polymer (a).
  • the acrylic graft copolymer containing the acrylic rubber-like polymer (a) may be a core-shell type particle having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
  • core-shell type particles are a multi-stage polymer obtained by polymerizing at least one stage or more of a monomer mixture (b) containing a methacrylic acid ester as a main component in the presence of an acrylic rubber-like polymer (a). is there.
  • the polymerization can be carried out by an emulsion polymerization method.
  • the acrylic rubber-like polymer (a) constituting the core portion is a crosslinked polymer containing an acrylic acid ester as a main component.
  • the acrylic rubber-like polymer (a) is a monomer mixture (a') containing an acrylic acid ester and an arbitrary monomer copolymerizable therewith, and two or more non-conjugated reactive double bonds per molecule. It is a crosslinked polymer obtained by polymerizing a polyfunctional monomer having (radical polymerizable group).
  • the acrylic rubber-like polymer (a) may be obtained by mixing all of these monomers and polymerizing them, or by changing the monomer composition and polymerizing them twice or more.
  • the acrylic acid ester is preferably an acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as methyl acrylate and butyl acrylate.
  • the acrylic ester may be one kind or two or more kinds. From the viewpoint of lowering the glass transition temperature of the rubber particles to ⁇ 15 ° C. or lower, the acrylic acid ester preferably contains at least an acrylic acid alkyl ester having 4 to 10 carbon atoms.
  • the content of the acrylic acid ester is preferably 50 to 100% by mass, more preferably 60 to 99% by mass, and 70 to 99% by mass with respect to 100% by mass of the monomer mixture (a'). Is even more preferable.
  • the content of the acrylic acid ester is 50% by weight or more, it is easy to impart sufficient toughness to the film.
  • the acrylic acid alkyl ester having an alkyl group having 4 or more carbon atoms in the monomer mixture (a') / other copolymerizable monomer The total mass ratio is preferably 3 or more, and more preferably 4 or more and 10 or less.
  • copolymerizable monomers examples include methacrylic ester such as methyl methacrylate; styrenes such as styrene and methylstyrene; unsaturated nitriles such as acrylonitrile and methacrylnitrile.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (meth).
  • acrylates triethylene glycol di (meth) acrylates, trimethyl roll propanthry (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, and polyethylene glycol di (meth) acrylates.
  • the content of the polyfunctional monomer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on 100% by mass of the total of the monomer mixture (a').
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) is easily increased, so that the hardness and rigidity of the obtained film are not excessively impaired.
  • it is 10% by mass or less, the toughness of the film is not easily impaired.
  • the polymer of the monomer mixture (b) constituting the shell portion is a graft component for the acrylic rubber-like polymer (a).
  • the monomer mixture (b) contains a methacrylic acid ester as a main component.
  • the methacrylic acid ester is preferably an alkyl methacrylate ester having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more with respect to 100% by mass of the monomer mixture (b).
  • the content of the methacrylic acid ester is 50% by mass or more, it is possible to make it difficult to reduce the hardness and rigidity of the obtained film.
  • the content of the methacrylic acid ester is more preferably 70% by mass or more, more preferably 80% by mass or more, based on 100% by mass of the monomer mixture (b). Is more preferable.
  • the monomer mixture (b) may further contain other monomers, if necessary.
  • examples of other monomers include acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxy (meth) acrylate.
  • (meth) acrylic monomers having an alicyclic structure such as ethyl, a heterocyclic structure or an aromatic group (ring structure-containing (meth) acrylic monomer).
  • the acrylic graft copolymer may further contain a hard polymer inside the acrylic rubber-like polymer (a), if necessary.
  • Such an acrylic graft copolymer can be obtained through the following polymerization steps (I) to (III).
  • a hard polymer by polymerizing 0.1 to 5 parts by mass of the monomer mixture (a1) and 0.1 to 5 parts by mass of the polyfunctional monomer (relative to a total of 100 parts by mass of the monomer mixture (a1)) to obtain a soft polymer (III) Methacrylate ester A total of 100 parts by mass of a monomer mixture (b1) consisting of 60 to 100% by mass and 40 to 0% by mass of another monomer copo
  • the acrylic graft copolymer may be further obtained through the polymerization step (IV).
  • Monomer mixture (b2) consisting of 40 to 100% by mass of methacrylic acid ester, 0 to 60% by mass of acrylic acid ester, and 0 to 5% by mass of other copolymerizable monomers, and 0 to 10 polyfunctional monomers.
  • a hard polymer is obtained by polymerizing parts by mass (relative to 100 parts by mass of the monomer mixture (b2)).
  • methacrylic acid ester acrylic acid ester, other copolymerizable monomer, and polyfunctional monomer used in each step, the same ones as described above can be used.
  • the soft layer can impart shock absorption to the optical film.
  • the soft layer include a layer made of an acrylic rubber-like polymer (a) containing an acrylic acid ester as a main component.
  • the hard layer makes it difficult to impair the toughness of the optical film, and can suppress the coarsening and agglomeration of the particles during the production of the rubber particles.
  • the hard layer include a layer made of a polymer containing a methacrylic acid ester as a main component.
  • the graft ratio (mass ratio of the graft component to the acrylic rubber-like polymer (a)) in the acrylic graft copolymer is preferably 10 to 250%, more preferably 25 to 200%, and 40. It is more preferably to 200%, and even more preferably 60 to 150%.
  • the graft ratio is 10% or more, the ratio of the shell portion is not too small, so that the hardness and rigidity of the film are not easily impaired.
  • the graft ratio of the acrylic graft copolymer is 250% or less, the proportion of the acrylic rubber-like polymer (a) is not too small, so that the toughness and brittleness improving effect of the film are not easily impaired.
  • the average particle size of the rubber particles is preferably 100 to 400 nm, more preferably 150 to 300 nm.
  • the average particle size is 100 nm or more, sufficient toughness is easily imparted to the film, and when it is 400 nm or less, the transparency of the film is unlikely to decrease.
  • the average particle size of the rubber particles is specified as an average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the film surface and sections.
  • the equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area.
  • the rubber particles (acrylic graft copolymer) observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size.
  • the average particle size of the rubber particles (acrylic graft copolymer) in the dispersion can be measured by a zeta potential / particle size measurement system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the content of rubber particles is preferably 5 to 40% by mass with respect to the (meth) acrylic resin.
  • the content of the rubber particles is preferably 5% by mass or more, not only is it easy to impart sufficient toughness to the film, but also unevenness can be formed on the surface to impart slipperiness. If it is 40% by mass or less, the haze does not rise too much.
  • the content of the rubber particles is more preferably 7 to 30% by mass and further preferably 8 to 25% by mass with respect to the (meth) acrylic resin.
  • optical film of the present invention may further contain other components as long as the effects of the present invention are not impaired.
  • other components include fine particles, residual solvents, UV absorbers, antioxidants and the like.
  • the optical film of the present invention may further contain organic fine particles other than inorganic fine particles or rubber particles as a matting agent from the viewpoint of further enhancing slipperiness.
  • inorganic materials constituting the inorganic fine particles include silicon dioxide (SiO 2 ), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. Includes calcium, aluminum silicate, magnesium silicate, and calcium phosphate. Of these, silicon dioxide is preferred in order to reduce the increase in haze of the resulting film.
  • the organic fine particles may be resin particles having a glass transition temperature (Tg) of preferably 80 ° C. or higher.
  • Organic solvent Since the optical film of the present invention is produced by the solution casting method as described later, it may contain a residual solvent derived from the doping solvent used in the solution casting method.
  • the amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film.
  • the content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film described later.
  • the content of the residual solvent in the optical film can be measured by headspace gas chromatography.
  • a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound.
  • the volatile components are quantified while doing so.
  • the dryness of the optical film can be measured by the following method. First, the optical film is allowed to stand at room temperature for 2 hours, and then cut into two 10 cm square squares to obtain test pieces. One of the test pieces is dried in an oven at 140 ° C. for 15 minutes, then weighed and the weight is defined as X. The other test piece is dried in an oven at 110 ° C. for 60 minutes, then weighed and the weight is defined as Y. Then, the measured value is applied to the above formula to calculate the residual solvent amount (%).
  • the dryness of the optical film can be adjusted by adjusting the monomer composition of the (meth) acrylic resin and the content of residual monomers.
  • the optical film of the present invention preferably has high transparency.
  • the haze of the optical film is preferably 4.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less.
  • Haze can be measured according to JIS K-6714 with a haze meter (HGM-2DP, Suga Test Instruments) at 25 ° C. and 60% RH for a sample of 40 mm ⁇ 80 nm.
  • the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. It is preferably 0 to 5 nm, and more preferably 0 to 5 nm.
  • the phase difference Rt in the thickness direction of the optical film of the present invention is preferably ⁇ 20 to 20 nm, and more preferably ⁇ 10 to 10 nm.
  • Ro and Rt are defined by the following equations, respectively.
  • Equation (2a): Ro (nx-ny) ⁇ d
  • Equation (2b): Rt ((nx + ny) /2-nz) ⁇ d
  • nx represents the refractive index in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized) of the film.
  • ny represents the refractive index in the direction orthogonal to the in-plane slow-phase axis of the film.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the thickness (nm) of the film.
  • the in-plane slow-phase axis of the optical film of the present invention means the axis having the maximum refractive index on the film surface.
  • the in-plane slow axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods. 1) The optical film of the present invention is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Matrix Polarimeter), respectively. Measure in the environment.
  • the phase difference Ro and Rt of the optical film of the present invention can be adjusted by, for example, the type of (meth) acrylic resin.
  • a (meth) acrylic resin that does not easily generate a phase difference due to stretching is used (for example, a structural unit derived from a monomer having negative birefringence and positive birefringence are used. It is preferable to set the monomer ratio so that the phase difference can be offset with the structural unit derived from the monomer.
  • the thickness of the optical film of the present invention can be, for example, 5 to 100 ⁇ m, preferably 5 to 40 ⁇ m.
  • the manufacturing method of the optical film of the present invention is not particularly limited, but the solution casting method (cast method) is used from the viewpoint that there are few restrictions on the materials that can be used, such as the use of a high molecular weight resin. preferable.
  • the optical film of the present invention has 1) a step of obtaining a dope containing at least a (meth) acrylic resin, a residual monomer, rubber particles, and a solvent, and 2) flowing the obtained dope onto a support. It can be produced through a step of spreading, drying and peeling to obtain a film-like substance, and 3) a step of further drying the obtained film-like substance.
  • step 1) for example, a (meth) acrylic resin, a residual monomer, and rubber particles can be dissolved or dispersed in a solvent to obtain a doping.
  • the (meth) acrylic resin, residual monomer and rubber particles are as described above.
  • the solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the (meth) acrylic resin.
  • good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
  • the solvent used for doping may further contain a poor solvent.
  • poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope is high, the film-like material is likely to gel and peel off from the metal support.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because of its stability of doping, relatively low boiling point, and good drying property.
  • the dope may be prepared by directly adding the (meth) acrylic resin, the residual monomer, and the rubber particles to the solvent and mixing them; or using the (meth) acrylic resin as the solvent.
  • a resin solution in which the residual monomer is dissolved and a rubber particle dispersion in which rubber particles are dispersed in a solvent may be prepared and mixed.
  • the content of the residual monomer in the dope exceeds 0.1% by mass with respect to the total amount of the (meth) acrylic resin and the residual monomer from the viewpoint of improving the drying property of the film-like substance in the step 3) (drying step). It is preferably less than 3% by mass. This is because when the content of the residual monomer in the dope is within the above range, the content of the residual monomer in the obtained optical film can be easily adjusted within the above range. From the above viewpoint, the content of the residual monomer in the dope is more preferably 0.12 to 2.8% by mass with respect to the total amount of the (meth) acrylic resin and the residual monomer, and 0.24 to 1. More preferably, it is 2% by mass. The content of residual monomers in the dope can be measured by liquid chromatography.
  • the content of the residual monomer in the dope may be adjusted by any method, for example, by performing a drying treatment after the polymerization of the (meth) acrylic resin; the raw material of the (meth) acrylic resin is purified and adjusted. May be good.
  • the drying treatment is performed, the drying temperature is preferably higher than, for example, the polymerization temperature.
  • the purification method is not particularly limited, and may be, for example, a reprecipitation method.
  • the reprecipitation method is a method of reducing the amount of monomers remaining in the raw material by dropping a solution of the raw material of the (meth) acrylic resin in a good solvent into a poor solvent.
  • the poor solvent used in the reprecipitation method the same ones as those mentioned above as the poor solvent can be used, and alcohols such as methanol and ethanol are preferable.
  • the good solvent used in the reprecipitation method the same solvent as those mentioned above as the good solvent can be used, and methyl ethyl ketone or the like is preferable.
  • the purification conditions by the reprecipitation method may be such that the content of the residual monomer remaining in the finally obtained optical film is within the above range; for that purpose, for example, in doping. It is preferable to carry out under the condition that the content of the residual monomer is within the above range.
  • step 2 the obtained dope is cast on the support. Doping can be cast by discharging from a casting die.
  • the residual solvent amount of the doping when peeling from the support is preferably, for example, 25% by mass or more, more preferably 30 to 37% by mass, and 30. It is more preferably to 35% by mass.
  • the amount of the residual solvent at the time of peeling is 25% by mass or more, the solvent is likely to be volatilized at once from the film-like material after peeling. Further, when the amount of the residual solvent at the time of peeling is 37% by mass or less, it is possible to prevent the film-like material from being excessively stretched due to peeling.
  • the heat treatment for measuring the amount of residual solvent means a heat treatment at 140 ° C. for 15 minutes.
  • the amount of residual solvent at the time of peeling can be adjusted by adjusting the drying temperature and drying time of the doping on the support, the temperature of the support, and the like.
  • step 3 the obtained film-like material is dried.
  • Drying may be performed in one step or in multiple steps. Further, the drying may be carried out while stretching, if necessary.
  • the drying of the film-like material includes a step of peeling from the support in the step 2) and then drying before stretching (initial drying step), a stretching step, and a step of drying after stretching (post-drying step). May have.
  • the drying temperature before stretching can be higher than the stretching temperature.
  • the glass transition temperature of the (meth) acrylic resin is Tg, it is preferably Tg (° C.) or higher, and more preferably (Tg + 10) to (Tg + 50) ° C.
  • Tg glass transition temperature
  • Tg + 10) ° C. or higher the solvent is easily volatilized appropriately, so that the transportability (handleability) is easily improved, and when it is (Tg + 50) ° C. or lower, the solvent Is not excessively volatilized, so that the stretchability in the subsequent stretching step is not easily impaired.
  • the initial drying temperature is (a) when drying with a non-contact heating type while transporting with a tenter stretching machine or roller, the ambient temperature such as the temperature inside the stretching machine or hot air temperature, and (b) drying with a contact heating type such as a hot roller.
  • the temperature it can be measured as either the temperature of the contact heating portion or (c) the surface temperature of the film-like material (surface to be dried). Above all, it is preferable to measure (a) atmospheric temperature such as hot air temperature.
  • Stretching may be performed according to the required optical characteristics, and is preferably stretched in at least one direction, and stretches in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like object and orthogonal to it. Biaxial stretching in the transport direction (MD direction)) may be performed.
  • the draw ratio can be 1.01 to 2 times from the viewpoint of using the optical film as a retardation film for IPS, for example.
  • the stretch ratio is defined as (size of the film after stretching in the stretching direction) / (size of the film before stretching in the stretching direction).
  • the in-plane slow-phase axial direction of the optical film (the direction in which the refractive index is maximized in-plane) is usually the direction in which the draw ratio is maximized.
  • the drying temperature (stretching temperature) at the time of stretching is preferably Tg (° C.) or higher, and is preferably (Tg + 10) to (Tg + 50), when the glass transition temperature of the (meth) acrylic resin is Tg, as described above. More preferably, it is ° C.
  • Tg (° C.) or higher preferably (Tg + 10) ° C. or higher
  • the solvent is likely to volatilize appropriately, so that the stretching tension can be easily adjusted to an appropriate range, and when it is (Tg + 50) ° C. or lower, the solvent Does not volatilize too much, so stretchability is not easily impaired.
  • the stretching temperature can be, for example, 115 ° C. or higher.
  • the stretching temperature it is preferable to measure the ambient temperature such as (a) the temperature inside the stretching machine, as described above.
  • the amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, for example, preferably 20 to 30% by mass, and 25 to 30% by mass. More preferably.
  • Stretching of the film-like object in the TD direction can be performed by, for example, fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method).
  • Stretching of the film-like material in the MD direction can be performed by, for example, a method (roll method) in which a plurality of rolls are provided with a peripheral speed difference and the roll peripheral speed difference is used between them.
  • post-drying process From the viewpoint of further reducing the amount of residual solvent, it is preferable to further dry (post-dry) the film-like substance obtained after stretching. For example, it is preferable that the film-like substance obtained after stretching is further dried while being conveyed by a roll or the like.
  • the post-drying temperature (drying temperature when not stretched) is preferably (Tg-50) to (Tg-30) ° C., where Tg is the glass transition temperature of the (meth) acrylic resin, and is preferably (Tg-). It is more preferably 40) to (Tg-30).
  • Tg glass transition temperature of the (meth) acrylic resin
  • Tg- glass transition temperature of the (meth) acrylic resin
  • It is more preferably 40) to (Tg-30).
  • the post-drying temperature it is preferable to measure the ambient temperature such as (a) hot air temperature as described above.
  • the film-like substance contains a predetermined amount of residual monomer. Since such a film-like substance may have a micro space (gap) in which the solvent can move, it is easy to volatilize and remove the solvent from the film-like substance in the drying step, particularly in the initial drying step and the post-drying step. sell. Thereby, the drying speed can be increased as compared with the conventional one, or the drying speed can be equal to or higher than the conventional one even at a low drying temperature.
  • the optical film of the present invention is used as an optical film in various display devices such as a liquid crystal display device and an organic EL display device.
  • Examples of the optical film include a polarizing plate protective film (including a retardation film and the like), a transparent substrate, and a light diffusing film, and a polarizing plate protective film is preferable.
  • the polarizing plate of the present invention has a polarizing element, an optical film of the present invention, and an adhesive layer arranged between them.
  • Polarizer A polarizing element is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based polarizing film.
  • the polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a film obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl.
  • An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound).
  • the absorption axis of the polarizer is usually parallel to the maximum stretching direction.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the saponification degree is 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol is used.
  • the thickness of the polarizer is preferably 5 to 30 ⁇ m, and more preferably 5 to 20 ⁇ m in order to reduce the thickness of the polarizing plate.
  • optical film of the present invention is arranged on at least one surface of the polarizer (at least the surface facing the liquid crystal cell).
  • the optical film can function as a polarizing plate protective film.
  • optical film of the present invention When the optical film of the present invention is arranged on only one surface of the polarizer, another optical film may be arranged on the other surface of the polarizer.
  • other optical films include commercially available cellulose ester films (eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC6UY, KC4UY KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd. The above includes Fuji Film Co., Ltd.).
  • the thickness of the other optical film can be, for example, 5 to 100 ⁇ m, preferably 40 to 80 ⁇ m.
  • Adhesive layer The adhesive layer is located between the optical film (or other optical film) and the polarizer.
  • the thickness of the adhesive layer can be, for example, 0.01 to 10 ⁇ m, preferably about 0.03 to 5 ⁇ m.
  • the polarizing plate of the present invention can be obtained by laminating a polarizing element and an optical film of the present invention via an adhesive.
  • the adhesive can be a fully saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive may be any of a photoradical polymerization type composition utilizing photoradical polymerization, a photocationic polymerization type composition utilizing photocationic polymerization, or a combination thereof.
  • the liquid crystal display device of the present invention includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell.
  • the display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridaligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), etc.
  • STN Super-Twisted Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • HAN Hybridaligned Nematic
  • VA Very Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Parallel-domain Vertical Alignment
  • IPS In-Plane-Switching
  • the polarizing plate of the present invention is preferably arranged so that the optical film of the present invention is on the liquid crystal cell side.
  • Optical film material 1-1 Preparation of resin composition (mixture of (meth) acrylic resin and residual monomer)) ⁇ Preparation of resin composition 1> (polymerization)
  • resin composition 1> (polymerization)
  • Deionized water was put into a SUS polymerization reactor equipped with a stirrer, a dispersion stabilizer and a dispersion stabilizer were added, and the mixture was stirred and dissolved. Further, in a container equipped with another stirrer, methyl methacrylate (MMA) and n-butyl methacrylate (BA) are contained in a monomer mixture containing the mass ratios shown in Table 1 as a polymerization initiator, 2,2'-.
  • MMA methyl methacrylate
  • BA n-butyl methacrylate
  • the glass transition temperature (Tg), weight average molecular weight (Mw), and amount of residual monomer (amount with respect to the (meth) acrylic resin) of the (meth) acrylic resin contained in the obtained resin composition are determined by the following method. It was measured.
  • Glass transition temperature (Tg) The obtained resin composition was repeatedly subjected to the above-mentioned reprecipitation to separate and recover a (meth) acrylic resin containing no monomer. Then, the glass transition temperature of the (meth) acrylic resin separated and recovered was measured using DSC (Differential Scanning Colorimetry) according to JIS K 7121-2012.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) of the (meth) acrylic resin separated and recovered as described above was measured by gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and column (TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). was measured using. 20 mg ⁇ 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature 40 ° C.), measured at a detector RI temperature of 40 ° C., and a styrene-converted value was used.
  • the amount (amount with respect to the (meth) acrylic resin) and composition of the residual monomer in the obtained resin composition was measured by a liquid chromatography method.
  • the measurement conditions were as follows. (Measurement condition) -Column type (adsorbent): Silica gel-Mobile phase: Tetrahydrofuran-Column temperature: 40 ° C ⁇ Flow velocity: 1 ml / min
  • Table 1 shows the composition and physical properties of the resin compositions 1 to 14.
  • MMA Methyl methacrylate
  • MA Methyl acrylate
  • LMA Lauryl methacrylate
  • BA n-butyl acrylate
  • EHA 2-ethylhexyl acrylate
  • SMA Stearyl methacrylate
  • CHMA Cyclohexyl methacrylate
  • IMA Isobornyl methacrylate
  • N-EMI N- Ethylmaleimide
  • N-PMI N-phenylmaleimide
  • N-CHMI N-cyclohexylmaleimide
  • Rubber particles C1 Acrylic rubber particles M-210 (core part: acrylic rubber-like polymer with a multi-layer structure, shell part: methacrylic acid ester-based polymer containing methyl methacrylate as a main component, core-shell type Rubber particles, Tg: about -10 ° C, average particle size: 220 nm)
  • the average particle size of the rubber particles C1 was measured by the following method.
  • the dispersed particle size of the rubber particles C1 in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle size of the rubber particles measured using the zeta potential / particle size measurement system is the average particle size of the rubber particles C1 measured by TEM observation of the optical film. It is almost the same as.
  • a dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressurized dissolution tank. Next, the resin composition 1 (a mixture of a (meth) acrylic resin and a residual monomer) was charged into the pressure dissolution tank with stirring. It was then heated to 60 ° C. and completely dissolved with stirring. The heating temperature was raised from room temperature at 5 ° C./min, melted in 30 minutes, and then lowered at 3 ° C./min. The resulting solution was filtered to give a dope. Resin composition 1 (mixture of (meth) acrylic resin and residual monomer): 100 parts by mass Methylene chloride: 504 parts by mass Ethanol; 64 parts by mass Rubber particle dispersion: 384 parts by mass
  • the dope was then uniformly cast on the stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm using an endless belt casting device.
  • the temperature of the stainless steel belt was controlled to 28 ° C.
  • the transport speed of the stainless steel belt was 20 m / min.
  • the solvent was evaporated until the amount of residual solvent in the cast film was 30%.
  • it was peeled from the stainless belt support at a peeling tension of 128 N / m. While transporting the peeled film with a large number of rolls, it was dried (initially dried) at (Tg + 20) ° C.
  • Tg indicates Tg of (meth) acrylic resin, the same applies hereinafter
  • the product was stretched 1.2 times in the width direction under the condition of (Tg + 10) ° C. in a tenter. Then, the film was further dried (post-dried) at (Tg-30) ° C. while being conveyed by a roll, and the end portion sandwiched between the tenter clips was slit with a laser cutter and wound up to obtain an optical film having a film thickness of 40 ⁇ m.
  • ⁇ Optical film 2-14> An optical film was produced in the same manner as the optical film 1 except that the resin composition 1 was changed to the resin composition shown in Table 2.
  • the amount of residual monomer, glass transition temperature (Tg), dryness and bendability of the obtained optical films 1 to 14 were evaluated by the following methods, respectively.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) of the obtained optical film was measured according to JIS K 7121-2012 in the same manner as described above.
  • Residual solvent amount is 0.1% or less 4: Residual solvent amount is more than 0.1% and 0.2% or less 3: Residual solvent amount is more than 0.2% and 0.3% or less 2: Residual solvent amount is 0 .3% or more and 0.5% or less 1: If the residual solvent amount is more than 0.5% and 3 or more, it is judged to be good.
  • Table 2 shows the configurations and evaluation results of the optical films 1 to 14.
  • the amount of residual solvent in the obtained optical films 1 to 14 was measured by the above-mentioned headspace gas chromatography, and all of them were in the range of 30 to 600 mass ppm.
  • the optical films 2, 4, 5, 7, 11, 12 and 14 having a residual monomer content of 0.1 to 2% by mass all have good drying properties and bendability. It can be seen that it has.
  • the drying property is particularly enhanced when the content of the residual monomer derived from the (meth) acrylic resin is more than 0.2% by mass (comparison between the optical films 2 and 11).
  • the optical films 6 and 10 having a residual monomer content of less than 0.1% by mass have low drying properties. It is considered that this is because if the content of the residual monomer is too small, it is difficult to obtain the action of disturbing the orientation of the resin molecules by the residual monomer. Further, it can be seen that the optical films 1 and 13 having a residual monomer content of more than 2% by mass have low bendability. It is considered that this is because the amount of residual monomer is too large and the flexibility is impaired.
  • an optical film which can be obtained with high production efficiency by having high drying property and has sufficient toughness even though it contains a (meth) acrylic resin as a main component. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

This optical film includes a (meth)acrylic resin that has a glass transition temperature of at least 115°C and a weight average molecular weight of 600,000–3,000,000, residual monomers from the (meth)acrylic resin, and rubber particles. The residual monomer content of the optical film is 0.1–2 mass%.

Description

光学フィルム、偏光板および光学フィルムの製造方法Manufacturing method of optical film, polarizing plate and optical film
 本発明は、光学フィルム、偏光板および光学フィルムの製造方法に関する。 The present invention relates to an optical film, a polarizing plate, and a method for producing an optical film.
 液晶表示装置や有機EL表示装置などの表示装置では、偏光板保護フィルムなどの光学フィルムが用いられている。そのような光学フィルムとしては、優れた透明性や寸法安定性、低吸湿性を有することから、ポリメチルメタクリレートなどの(メタ)アクリル系樹脂フィルムが用いられることがある。 Optical films such as polarizing plate protective films are used in display devices such as liquid crystal display devices and organic EL display devices. As such an optical film, a (meth) acrylic resin film such as polymethylmethacrylate may be used because it has excellent transparency, dimensional stability, and low hygroscopicity.
 (メタ)アクリル系樹脂フィルムは、通常、溶融製膜法(メルト製膜法)で製造される。溶融製膜法においては、原料となる(メタ)アクリル系樹脂中にモノマーが残留していると、溶融製膜時の流動性の低下や、フィルムの色調や耐熱性の低下を生じることから(例えば特許文献1~3)、(メタ)アクリル系樹脂中または光学フィルム中の残留モノマー量を低減することが検討されている。 The (meth) acrylic resin film is usually manufactured by a melt film forming method (melt film forming method). In the melt film formation method, if the monomer remains in the (meth) acrylic resin that is the raw material, the fluidity during melt film formation is lowered, and the color tone and heat resistance of the film are lowered ( For example, Patent Documents 1 to 3), it has been studied to reduce the amount of residual monomers in a (meth) acrylic resin or an optical film.
 例えば、特許文献1では、特定の(メタ)アクリル系樹脂(α)を含む(メタ)アクリル系樹脂層(I)と、簡易接着層(II)とを含み、(メタ)アクリル系樹脂層(I)中の残存マレイミド系モノマー量が0.01~0.5質量%に低減されたフィルムが開示されている。 For example, in Patent Document 1, a (meth) acrylic resin layer (I) containing a specific (meth) acrylic resin (α) and a simple adhesive layer (II) are included, and a (meth) acrylic resin layer (meth). A film in which the amount of residual maleimide-based monomer in I) is reduced to 0.01 to 0.5% by mass is disclosed.
 特許文献2では、残留モノマー量が5質量%以下の特定のアクリル系共重合体を含む光学フィルムが開示されており、特許文献3では、特定のアクリル系共重合体を含み、残留モノマー量が2000ppm以下である光学フィルム用樹脂組成物が開示されている。 Patent Document 2 discloses an optical film containing a specific acrylic copolymer having a residual monomer amount of 5% by mass or less, and Patent Document 3 discloses an optical film containing a specific acrylic copolymer and having a residual monomer amount of 5% by mass or less. A resin composition for an optical film having a concentration of 2000 ppm or less is disclosed.
特開2016-79194号公報Japanese Unexamined Patent Publication No. 2016-79194 特開2014-133885号公報Japanese Unexamined Patent Publication No. 2014-133858 特表2014-514611号公報Special Table 2014-514611
 ところで、近年、表示装置の大型化、薄膜化やフレキシブル化、偏光板の高機能化などの要求に伴い、光学フィルムは、高い靱性(機械的強度)を有することが望まれている。しかしながら、特許文献1~3に示されるような溶融製膜法では、高分子量の樹脂を用いることができないため、得られる光学フィルムは、十分な靱性を有するものではなかった。 By the way, in recent years, with the demand for larger display devices, thinner and more flexible display devices, and higher functionality of polarizing plates, it is desired that optical films have high toughness (mechanical strength). However, in the melt film forming method as shown in Patent Documents 1 to 3, a high molecular weight resin cannot be used, so that the obtained optical film does not have sufficient toughness.
 これに対し、溶液製膜法(キャスト製膜法)では、高分子量の樹脂を用いることができるため、十分な靱性を有する(メタ)アクリル系樹脂フィルムを得ることができる。溶液製膜法では、樹脂を溶剤に溶解させたドープ(溶液)を支持体上に流延した後、溶剤を除去する(乾燥させる)工程を経て、フィルムを得る。しかしながら、(メタ)アクリル系樹脂は疎水性が高いため、溶剤との親和性が高く、溶剤を除去するのに時間を要する、すなわち、乾燥性が低いという問題があった。 On the other hand, in the solution film forming method (cast film forming method), a high molecular weight resin can be used, so that a (meth) acrylic resin film having sufficient toughness can be obtained. In the solution film forming method, a dope (solution) in which a resin is dissolved in a solvent is cast on a support, and then the solvent is removed (dried) to obtain a film. However, since the (meth) acrylic resin has high hydrophobicity, it has a high affinity with a solvent, and it takes time to remove the solvent, that is, it has a problem of low drying property.
 本発明は、上記事情に鑑みてなされたものであり、(メタ)アクリル系樹脂を主成分として含むにも係わらず、高い乾燥性を有することにより高い製造効率で得ることができ、かつ十分な靱性を有する光学フィルム、偏光板および光学フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and although it contains a (meth) acrylic resin as a main component, it can be obtained with high production efficiency due to its high drying property, and is sufficient. It is an object of the present invention to provide an optical film having toughness, a polarizing plate, and a method for producing an optical film.
 上記課題は、以下の構成によって解決することができる。 The above problem can be solved by the following configuration.
 本発明の光学フィルムは、ガラス転移温度が115℃以上であり、かつ重量平均分子量が60万~300万である(メタ)アクリル系樹脂と、前記(メタ)アクリル系樹脂に由来する残留モノマーと、ゴム粒子とを含む光学フィルムであって、前記残留モノマーの含有量は、前記光学フィルムに対して0.1~2質量%である。 The optical film of the present invention contains a (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million, and a residual monomer derived from the (meth) acrylic resin. An optical film containing rubber particles, the content of the residual monomer is 0.1 to 2% by mass with respect to the optical film.
 本発明の偏光板は、偏光子と、前記偏光子の少なくとも一方の面に配置された本発明の光学フィルムとを含む。 The polarizing plate of the present invention includes a polarizing element and an optical film of the present invention arranged on at least one surface of the polarizing element.
 本発明の光学フィルムの製造方法は、ガラス転移温度が115℃以上であり、かつ重量平均分子量が60万~300万である(メタ)アクリル系樹脂と、前記(メタ)アクリル系樹脂に由来する残留モノマーと、ゴム粒子とを含み、前記残留モノマーの含有量が、前記(メタ)アクリル系樹脂と前記残留モノマーの合計量に対して0.1質量%超3質量%未満であるドープを得る工程と、前記ドープを支持体上に流延した後、剥離して膜状物を得る工程と、前記膜状物を乾燥させる工程とを含む。 The method for producing an optical film of the present invention is derived from a (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million, and the (meth) acrylic resin. A dope containing a residual monomer and rubber particles and having a content of the residual monomer of more than 0.1% by mass and less than 3% by mass based on the total amount of the (meth) acrylic resin and the residual monomer is obtained. The process includes a step of casting the dope onto a support and then peeling it off to obtain a film-like substance, and a step of drying the film-like substance.
 本発明によれば、(メタ)アクリル系樹脂を主成分として含むにも係わらず、高い乾燥性を有することにより高い製造効率で得ることができ、かつ十分な靱性(機械的強度)を有する光学フィルム、偏光板および光学フィルムの製造方法を提供することができる。 According to the present invention, although it contains a (meth) acrylic resin as a main component, it can be obtained with high manufacturing efficiency due to its high drying property, and has sufficient toughness (mechanical strength). A method for producing a film, a polarizing plate and an optical film can be provided.
 本発明者らは、比較的高分子量の(メタ)アクリル系樹脂を用い、かつ当該(メタ)アクリル系樹脂に由来する残留モノマーを一定量以上残留させることで、高い靱性を有しつつ、高い乾燥性を有することを見出した。 The present inventors have high toughness and high toughness by using a relatively high molecular weight (meth) acrylic resin and leaving a certain amount or more of residual monomers derived from the (meth) acrylic resin. It was found to have dryness.
 この理由は明らかではないが、以下のように推測される。溶液製膜法(キャスト法)でフィルムを製造する際に、膜状物中に適度に含まれる残留モノマーは、当該膜状物のポリマーマトリクス中に適度な空間を形成しうる。それにより、溶媒が当該空間を伝って移動しやすいため、溶媒が揮発しやすく、乾燥性を高めうると考えられる。 The reason for this is not clear, but it is presumed as follows. When a film is produced by the solution film forming method (casting method), the residual monomer appropriately contained in the film-like material can form an appropriate space in the polymer matrix of the film-like material. As a result, the solvent easily moves along the space, so that the solvent easily volatilizes, and it is considered that the drying property can be improved.
 一方で、残留モノマーのような低分子量成分の含有量が多すぎると、フィルムの靱性が損なわれやすい。これに対し、本発明の光学フィルムは、残留モノマーの含有量が調整され、かつ比較的高分子量の(メタ)アクリル系樹脂を含むことにより、フィルムの靱性の低下を抑制できる。
 また、光学フィルムは、溶液製膜法(キャスト法)で製造されることにより、溶融製膜法(メルト法)のような高温下には曝されにくい。それにより、残留モノマーを適度に含むフィルムであっても、従来のようなフィルムの色調の低下なども生じにくい。本発明は、これらの知見に基づいてなされたものである。
On the other hand, if the content of low molecular weight components such as residual monomers is too large, the toughness of the film tends to be impaired. On the other hand, the optical film of the present invention can suppress a decrease in toughness of the film by adjusting the content of the residual monomer and containing a relatively high molecular weight (meth) acrylic resin.
Further, since the optical film is manufactured by the solution film forming method (cast method), it is not easily exposed to a high temperature such as the melt film forming method (melt method). As a result, even if the film contains an appropriate amount of residual monomer, the color tone of the film is unlikely to deteriorate as in the past. The present invention has been made based on these findings.
 1.光学フィルム
 本発明の光学フィルムは、(メタ)アクリル系樹脂と、残留モノマーと、ゴム粒子とを含む。
1. 1. Optical Film The optical film of the present invention contains a (meth) acrylic resin, a residual monomer, and rubber particles.
 なお、本発明において、(メタ)アクリル系樹脂は、残留モノマーを含まないものとする。また、(メタ)アクリルとは、アクリルまたはメタクリルを意味する。 In the present invention, the (meth) acrylic resin does not contain residual monomers. Further, (meth) acrylic means acrylic or methacrylic.
 1-1.(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂のガラス転移温度は、115℃以上であることが好ましい。(メタ)アクリル系樹脂のTgが115℃以上であると、光学フィルムの耐熱性を高めうるだけでなく、溶液製膜法で製造する際の乾燥温度を高めることができるため、乾燥性を高めやすい。(メタ)アクリル系樹脂のTgが160℃以下であると、例えば分子の自由体積が大きいモノマーに由来する構造単位の含有量を多くする必要がないため、光学フィルムの靱性が損なわれにくい。(メタ)アクリル系樹脂のTgは、120~150℃であることがより好ましい。
1-1. (Meta) Acrylic Resin The glass transition temperature of the (meth) acrylic resin is preferably 115 ° C. or higher. When the Tg of the (meth) acrylic resin is 115 ° C. or higher, not only the heat resistance of the optical film can be increased, but also the drying temperature during production by the solution film forming method can be increased, so that the drying property is improved. Cheap. When the Tg of the (meth) acrylic resin is 160 ° C. or lower, for example, it is not necessary to increase the content of the structural unit derived from the monomer having a large free volume of the molecule, so that the toughness of the optical film is not easily impaired. The Tg of the (meth) acrylic resin is more preferably 120 to 150 ° C.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定することができる。 The glass transition temperature (Tg) of the (meth) acrylic resin can be measured using DSC (Differential Scanning Colorimetry) in accordance with JIS K7121-2012.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、モノマーの種類や組成によって調整することができる。(メタ)アクリル系樹脂のガラス転移温度(Tg)を高めるためには、例えば分子の自由体積が大きいモノマーに由来する構造単位の含有量を多くしたりすればよい。 The glass transition temperature (Tg) of the (meth) acrylic resin can be adjusted by the type and composition of the monomer. In order to increase the glass transition temperature (Tg) of the (meth) acrylic resin, for example, the content of structural units derived from a monomer having a large free volume of a molecule may be increased.
 また、(メタ)アクリル系樹脂の重量平均分子量は、60万~300万であることが好ましい。(メタ)アクリル系樹脂の重量平均分子量(Mw)が上記範囲であると、フィルムに十分な機械的強度(靱性)を付与しつつ、製膜性や乾燥性も損なわれにくい。(メタ)アクリル系樹脂の重量平均分子量(Mw)は、上記観点から、60万~200万であることがより好ましい。 Further, the weight average molecular weight of the (meth) acrylic resin is preferably 600,000 to 3,000,000. When the weight average molecular weight (Mw) of the (meth) acrylic resin is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film forming property and drying property are not easily impaired. From the above viewpoint, the weight average molecular weight (Mw) of the (meth) acrylic resin is more preferably 600,000 to 2,000,000.
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。具体的には、東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL  G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定することができる。測定条件は、後述する実施例と同様としうる。 The weight average molecular weight (Mw) can be measured in polystyrene conversion by gel permeation chromatography (GPC). Specifically, the measurement can be performed using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). The measurement conditions may be the same as in the examples described later.
 (メタ)アクリル系樹脂は、好ましくはガラス転移温度(Tg)および重量平均分子量(Mw)が上記範囲を満たすものであればよく、メタクリル酸メチルに由来する構造単位を有する単独重合体であってもよいし、メタクリル酸メチルに由来する構造単位と、メタクリル酸メチルと共重合可能な共重合モノマーに由来する構造単位とを有する共重合体であってもよい。 The (meth) acrylic resin is preferably a copolymer having a structural unit derived from methyl methacrylate, as long as the glass transition temperature (Tg) and the weight average molecular weight (Mw) satisfy the above ranges. Alternatively, it may be a copolymer having a structural unit derived from methyl methacrylate and a structural unit derived from a copolymerizable monomer copolymerizable with methyl methacrylate.
 メタクリル酸メチルと共重合可能な共重合モノマーの例には、
 アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、六員環ラクトン(メタ)アクリル酸エステルなどの、メタクリル酸メチル以外の(メタ)アクリル酸エステル類(アルキル基の炭素数が1~20のアクリル酸エステル類またはアルキル基の炭素数が2~20のメタクリル酸エステル類);
 スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレンなどの芳香族ビニル類;
 ビニルシクロヘキサンなどの脂環式ビニル類;
 (メタ)アクリロニトリル、(メタ)アクリロニトリル-スチレン共重合体などの不飽和ニトリル類;
 (メタ)アクリル酸、クロトン酸、(メタ)アクリル酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステルなどの不飽和カルボン酸類;
 酢酸ビニル、エチレンやプロピレンなどのオレフィン類;
 塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル類;
 (メタ)アクリルアミド、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミド、ブチル(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、フェニル(メタ)アクリルアミドなどの(メタ)アクリルアミド類;
 (メタ)アクリル酸グリシジルなどの不飽和グリシジル類;
 N-フェニルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド類が含まれる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
Examples of copolymerizable monomers copolymerizable with methyl methacrylate include
Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2--butyl (meth) acrylate Ethylhexyl, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, dicyclo (meth) acrylate (Meta) acrylates other than methyl methacrylate, such as pentanyl, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and 6-membered ring lactone (meth) acrylate. Acrylic acid esters with 1 to 20 carbon atoms in the alkyl group or methacrylic acid esters with 2 to 20 carbon atoms in the alkyl group);
Aromatic vinyls such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene;
Alicyclic vinyls such as vinylcyclohexane;
Unsaturated nitriles such as (meth) acrylonitrile and (meth) acrylonitrile-styrene copolymer;
Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, (meth) acrylic acid, itaconic acid, itaconic acid monoester, maleic acid, maleic acid monoester;
Olefins such as vinyl acetate, ethylene and propylene;
Vinyl halides such as vinyl chloride, vinylidene chloride, vinylidene fluoride;
(Meta) acrylamides such as (meth) acrylamide, methyl (meth) acrylamide, ethyl (meth) acrylamide, propyl (meth) acrylamide, butyl (meth) acrylamide, tert-butyl (meth) acrylamide, phenyl (meth) acrylamide;
Unsaturated glycidyls such as (meth) glycidyl acrylate;
Maleimides such as N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide, and NO-chlorophenylmaleimide are included. These may be used alone or in combination of two or more.
 中でも、溶液製膜時の乾燥性を高めやすくする(膜状物から溶媒を除去しやすくする)観点では、共重合モノマーは、分子の自由体積が大きいモノマーであることが好ましい。分子の自由体積が大きいモノマーは、溶液製膜工程において、膜状物のポリマーマトリクス中で、溶媒を移動させるための隙間(空間)を形成しやすい。それにより、溶媒の除去性、すなわち、乾燥性を高めることができる。 Above all, from the viewpoint of making it easier to improve the drying property during solution film formation (making it easier to remove the solvent from the film-like material), the copolymer monomer is preferably a monomer having a large free volume of molecules. A monomer having a large free volume of a molecule tends to form a gap (space) for moving a solvent in a polymer matrix of a film-like substance in a solution film forming step. Thereby, the solvent removability, that is, the drying property can be improved.
 分子の自由体積が大きいモノマーの例には、
 (メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、六員環ラクトン(メタ)アクリル酸エステルなどの脂肪族環を有する(メタ)アクリル酸エステル;
 スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレンなどの芳香族ビニル類;
 ビニルシクロヘキサンなどの脂環式ビニル類;
 N-フェニルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド類が含まれる。
An example of a monomer with a large free volume of a molecule is
It has an aliphatic ring such as dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, and 6-membered ring lactone (meth) acrylate. ) Acrylic acid ester;
Aromatic vinyls such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene;
Alicyclic vinyls such as vinylcyclohexane;
Maleimides such as N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide, and NO-chlorophenylmaleimide are included.
 また、分子の自由体積が大きいモノマーの他の例には、
 (メタ)アクリル酸n-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステル;n-ブチル(メタ)アクリルアミド、ペンチル(メタ)アクリルアミド、ヘキシル(メタ)アクリルアミド、オクチル(メタ)アクリルアミドなどの(メタ)アクリルアミド類などが含まれる。
Another example of a monomer with a large free volume of a molecule is
N-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, n-hexyl (meth) acrylate, lauryl (meth) acrylate, etc. (Meta) acrylic acid alkyl ester; includes (meth) acrylamides such as n-butyl (meth) acrylamide, pentyl (meth) acrylamide, hexyl (meth) acrylamide, and octyl (meth) acrylamide.
 共重合モノマーに由来する構造単位の含有量は、(メタ)アクリル系樹脂を構成する全構造単位100質量%に対して0~50質量%であることが好ましく、10~40質量%であることがより好ましく、10~30質量%であることがさらに好ましい。(メタ)アクリル系樹脂のモノマーの種類や組成は、H-NMRにより特定することができる。 The content of the structural unit derived from the copolymerized monomer is preferably 0 to 50% by mass, preferably 10 to 40% by mass, based on 100% by mass of all the structural units constituting the (meth) acrylic resin. Is more preferable, and 10 to 30% by mass is further preferable. The type and composition of the (meth) acrylic resin monomer can be specified by 1 1 H-NMR.
 (メタ)アクリル系樹脂は、光学フィルムに含まれるマトリクス樹脂成分に対して80質量%以上であることが好ましく、100質量%であってもよい。 The (meth) acrylic resin is preferably 80% by mass or more, and may be 100% by mass, based on the matrix resin component contained in the optical film.
 1-2.残留モノマー
 残留モノマーは、(メタ)アクリル系樹脂に由来する残留モノマーである。
1-2. Residual monomer The residual monomer is a residual monomer derived from a (meth) acrylic resin.
 残留モノマーの含有量は、光学フィルムに対して0.1~2質量%であることが好ましい。残留モノマーの含有量が0.1質量%以上であると、溶液製膜時の乾燥性を高めうることから、光学フィルムは、高い製造効率で得られる。残留モノマーの含有量が2質量%以下であると、光学フィルムの靱性(機械的強度)が低下しすぎないため、折り曲げ性が損なわれにくい。残留モノマーの含有量は、上記観点から、光学フィルムに対して0.2質量%超1質量%以下であることがより好ましい。 The content of the residual monomer is preferably 0.1 to 2% by mass with respect to the optical film. When the content of the residual monomer is 0.1% by mass or more, the drying property during solution film formation can be improved, so that the optical film can be obtained with high production efficiency. When the content of the residual monomer is 2% by mass or less, the toughness (mechanical strength) of the optical film does not decrease too much, so that the bendability is not easily impaired. From the above viewpoint, the content of the residual monomer is more preferably more than 0.2% by mass and 1% by mass or less with respect to the optical film.
 光学フィルムにおける残留モノマーの含有量および組成は、液体クロマトグラフィーにより測定することができる。測定条件は、以下の通りである。
 (測定方法)
 ・カラム種(吸着剤):シリカゲル
 ・移動相:テトラヒドロフラン
 ・カラム温度:40℃
 ・流速:1ml/分
The content and composition of residual monomers in the optical film can be measured by liquid chromatography. The measurement conditions are as follows.
(Measuring method)
-Column type (adsorbent): Silica gel-Mobile phase: Tetrahydrofuran-Column temperature: 40 ° C
・ Flow velocity: 1 ml / min
 残留モノマーの含有量は、後述するように、例えば溶液製膜法で光学フィルムを製造する際の、ドープ中の残留モノマーの含有量によって調整することができる。ドープ中の残留モノマーの含有量は、例えば(メタ)アクリル系樹脂の重合後の乾燥処理や精製などによって調整することができる。 As will be described later, the content of the residual monomer can be adjusted by, for example, the content of the residual monomer in the dope when the optical film is produced by the solution film forming method. The content of the residual monomer in the dope can be adjusted by, for example, a drying treatment or purification after the polymerization of the (meth) acrylic resin.
 1-3.ゴム粒子
 ゴム粒子は、光学フィルムに柔軟性や靱性を付与しつつ、光学フィルムの表面に凹凸を形成して滑り性を付与する機能を有しうる。
1-3. Rubber particles The rubber particles may have a function of imparting unevenness to the surface of the optical film to impart slipperiness while imparting flexibility and toughness to the optical film.
 ゴム粒子は、ゴム状重合体(架橋重合体)を含むグラフト共重合体、すなわち、ゴム状重合体(架橋重合体)からなるコア部と、それを覆うシェル部とを有するコアシェル型のゴム粒子であることが好ましい。 The rubber particles are graft copolymers containing a rubber-like polymer (crosslinked polymer), that is, core-shell type rubber particles having a core portion made of a rubber-like polymer (crosslinked polymer) and a shell portion covering the core portion. Is preferable.
 ゴム粒子のガラス転移温度(Tg)は、-10℃以下であることが好ましい。ゴム粒子のガラス転移温度(Tg)が-10℃以下であると、フィルムに十分な靱性を付与しやすい。ゴム粒子のガラス転移温度(Tg)は、-15℃以下であることがより好ましく、-20℃以下であることがさらに好ましい。ゴム粒子のガラス転移温度(Tg)は、前述と同様の方法で測定される。 The glass transition temperature (Tg) of the rubber particles is preferably −10 ° C. or lower. When the glass transition temperature (Tg) of the rubber particles is −10 ° C. or lower, it is easy to impart sufficient toughness to the film. The glass transition temperature (Tg) of the rubber particles is more preferably −15 ° C. or lower, and even more preferably −20 ° C. or lower. The glass transition temperature (Tg) of the rubber particles is measured by the same method as described above.
 ゴム粒子のガラス転移温度(Tg)は、例えばコア部やシェル部を構成するモノマー組成、コア部とシェル部の質量比(グラフト率)、および後述するような軟質層と硬質層の質量比などによって調整することができる。ゴム粒子のガラス転移温度(Tg)を低くするためには、後述するように、例えばコア部のアクリル系ゴム状重合体(a)を構成するモノマー混合物(a’)における、アルキル基の炭素数が4以上のアクリル酸エステル/共重合可能なモノマーの合計の質量比を多くする(例えば3以上、好ましくは4以上10以下とする)ことが好ましい。 The glass transition temperature (Tg) of the rubber particles is, for example, the monomer composition constituting the core portion or the shell portion, the mass ratio (graft ratio) between the core portion and the shell portion, and the mass ratio between the soft layer and the hard layer as described later. Can be adjusted by. In order to lower the glass transition temperature (Tg) of the rubber particles, for example, the number of carbon atoms of the alkyl group in the monomer mixture (a') constituting the acrylic rubber-like polymer (a) in the core portion is described later. It is preferable to increase the total mass ratio of the acrylic ester / copolymerizable monomer having a value of 4 or more (for example, 3 or more, preferably 4 or more and 10 or less).
 ゴム状重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、光学フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。 Examples of rubber-like polymers include butadiene-based crosslinked polymers, (meth) acrylic-based crosslinked polymers, and organosiloxane-based crosslinked polymers. Among them, the (meth) acrylic crosslinked polymer is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the optical film is not easily impaired, and the acrylic crosslinked polymer (acrylic rubber-like weight) is preferable. Coalescence) is more preferable.
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含むアクリル系グラフト共重合体であることが好ましい。アクリル系ゴム状重合体(a)を含むアクリル系グラフト共重合体は、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であることが好ましい。そのようなコアシェル型の粒子は、アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)を少なくとも1段以上重合して得られる多段重合体である。重合は、乳化重合法で行うことができる。 That is, the rubber particles are preferably an acrylic graft copolymer containing the acrylic rubber-like polymer (a). The acrylic graft copolymer containing the acrylic rubber-like polymer (a) may be a core-shell type particle having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion. preferable. Such core-shell type particles are a multi-stage polymer obtained by polymerizing at least one stage or more of a monomer mixture (b) containing a methacrylic acid ester as a main component in the presence of an acrylic rubber-like polymer (a). is there. The polymerization can be carried out by an emulsion polymerization method.
 (コア部について)
 コア部を構成するアクリル系ゴム状重合体(a)は、アクリル酸エステルを主成分とする架橋重合体である。アクリル系ゴム状重合体(a)は、アクリル酸エステルと、それと共重合可能な任意のモノマーとを含むモノマー混合物(a’)、および、1分子あたり2以上の非共役な反応性二重結合(ラジカル重合性基)を有する多官能性モノマーを重合させて得られる架橋重合体である。アクリル系ゴム状重合体(a)は、これらのモノマーを全部混合して重合させて得てもよいし、モノマー組成を変化させて2回以上で重合させて得てもよい。
(About the core part)
The acrylic rubber-like polymer (a) constituting the core portion is a crosslinked polymer containing an acrylic acid ester as a main component. The acrylic rubber-like polymer (a) is a monomer mixture (a') containing an acrylic acid ester and an arbitrary monomer copolymerizable therewith, and two or more non-conjugated reactive double bonds per molecule. It is a crosslinked polymer obtained by polymerizing a polyfunctional monomer having (radical polymerizable group). The acrylic rubber-like polymer (a) may be obtained by mixing all of these monomers and polymerizing them, or by changing the monomer composition and polymerizing them twice or more.
 アクリル酸エステルは、アクリル酸メチル、アクリル酸ブチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。ゴム粒子のガラス転移温度を-15℃以下にする観点では、アクリル酸エステルは、少なくとも、炭素数4~10のアクリル酸アルキルエステルを含むことが好ましい。 The acrylic acid ester is preferably an acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as methyl acrylate and butyl acrylate. The acrylic ester may be one kind or two or more kinds. From the viewpoint of lowering the glass transition temperature of the rubber particles to −15 ° C. or lower, the acrylic acid ester preferably contains at least an acrylic acid alkyl ester having 4 to 10 carbon atoms.
 アクリル酸エステルの含有量は、モノマー混合物(a’)100質量%に対して50~100質量%であることが好ましく、60~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。アクリル酸エステルの含有量が50重量%以上であると、フィルムに十分な靱性を付与しやすい。 The content of the acrylic acid ester is preferably 50 to 100% by mass, more preferably 60 to 99% by mass, and 70 to 99% by mass with respect to 100% by mass of the monomer mixture (a'). Is even more preferable. When the content of the acrylic acid ester is 50% by weight or more, it is easy to impart sufficient toughness to the film.
 また、ゴム粒子のガラス転移温度を-10℃以下にしやすくする観点では、モノマー混合物(a’)における、アルキル基の炭素数が4以上のアクリル酸アルキルエステル/それ以外の共重合可能なモノマーの合計の質量比は、3以上であることが好ましく、4以上10以下であることがより好ましい。 Further, from the viewpoint of facilitating the glass transition temperature of the rubber particles to -10 ° C. or lower, the acrylic acid alkyl ester having an alkyl group having 4 or more carbon atoms in the monomer mixture (a') / other copolymerizable monomer The total mass ratio is preferably 3 or more, and more preferably 4 or more and 10 or less.
 共重合可能なモノマーの例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類などが含まれる。 Examples of copolymerizable monomers include methacrylic ester such as methyl methacrylate; styrenes such as styrene and methylstyrene; unsaturated nitriles such as acrylonitrile and methacrylnitrile.
 多官能性モノマーの例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。 Examples of polyfunctional monomers include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (meth). Includes acrylates, triethylene glycol di (meth) acrylates, trimethyl roll propanthry (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, and polyethylene glycol di (meth) acrylates.
 多官能性モノマーの含有量は、モノマー混合物(a’)の合計100質量%に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。多官能性モノマーの含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られるフィルムの硬度、剛性が損なわれすぎず、10質量%以下であると、フィルムの靱性が損なわれにくい。 The content of the polyfunctional monomer is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on 100% by mass of the total of the monomer mixture (a'). When the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) is easily increased, so that the hardness and rigidity of the obtained film are not excessively impaired. When it is 10% by mass or less, the toughness of the film is not easily impaired.
 (シェル部について)
 シェル部を構成するモノマー混合物(b)の重合体は、アクリル系ゴム状重合体(a)に対するグラフト成分である。モノマー混合物(b)は、メタアクリル酸エステルを主成分として含む。
(About the shell part)
The polymer of the monomer mixture (b) constituting the shell portion is a graft component for the acrylic rubber-like polymer (a). The monomer mixture (b) contains a methacrylic acid ester as a main component.
 メタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 The methacrylic acid ester is preferably an alkyl methacrylate ester having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate. The methacrylic acid ester may be one kind or two or more kinds.
 メタクリル酸エステルの含有量は、モノマー混合物(b)100質量%に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、得られるフィルムの硬度、剛性を低下させにくくしうる。また、メチレンクロライドなどの溶媒との親和性を高める観点では、メタクリル酸エステルの含有量は、モノマー混合物(b)100質量%に対して70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 The content of the methacrylic acid ester is preferably 50% by mass or more with respect to 100% by mass of the monomer mixture (b). When the content of the methacrylic acid ester is 50% by mass or more, it is possible to make it difficult to reduce the hardness and rigidity of the obtained film. Further, from the viewpoint of enhancing the affinity with a solvent such as methylene chloride, the content of the methacrylic acid ester is more preferably 70% by mass or more, more preferably 80% by mass or more, based on 100% by mass of the monomer mixture (b). Is more preferable.
 モノマー混合物(b)は、必要に応じて他のモノマーをさらに含んでもよい。他のモノマーの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環式構造、複素環式構造または芳香族基を有する(メタ)アクリル系モノマー類(環構造含有(メタ)アクリル系モノマー)が含まれる。 The monomer mixture (b) may further contain other monomers, if necessary. Examples of other monomers include acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxy (meth) acrylate. Includes (meth) acrylic monomers having an alicyclic structure such as ethyl, a heterocyclic structure or an aromatic group (ring structure-containing (meth) acrylic monomer).
 (ゴム粒子(アクリル系グラフト共重合体)について)
 アクリル系グラフト共重合体の例には、アクリル系ゴム状重合体(a)5~75質量部の存在下で、メタクリル酸エステルを主成分とするモノマー混合物(b)95~25質量部を少なくとも1段階で重合させた重合体が含まれる。
(About rubber particles (acrylic graft copolymer))
In the example of the acrylic graft copolymer, at least 95 to 25 parts by mass of the monomer mixture containing methacrylic acid ester as a main component (b) in the presence of 5 to 75 parts by mass of the acrylic rubber-like polymer (a). A polymer polymerized in one step is included.
 アクリル系グラフト共重合体は、必要に応じて、アクリル系ゴム状重合体(a)の内側に硬質重合体をさらに含んでもよい。そのようなアクリル系グラフト共重合体は、以下の(I)~(III)の重合工程を経て得ることができる。
 (I)メタクリル酸エステル40~100質量%と、これと共重合可能な他のモノマー60~0質量%からなるモノマー混合物(c1)、および多官能性モノマー0.01~10質量部(モノマー混合物(c1)の合計100質量部に対して)を重合して硬質重合体を得る工程
 (II)アクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー0~40質量%からなるモノマー混合物(a1)、および多官能性モノマー0.1~5質量部(モノマー混合物(a1)の合計100質量部に対して)を重合して軟質重合体を得る工程
 (III)メタクリル酸エステル60~100質量%と、これと共重合可能な他のモノマー40~0質量%からなるモノマー混合物(b1)、および多官能性モノマー0~10質量部(モノマー混合物(b1)の合計100質量部に対して)を重合して硬質重合体を得る工程
The acrylic graft copolymer may further contain a hard polymer inside the acrylic rubber-like polymer (a), if necessary. Such an acrylic graft copolymer can be obtained through the following polymerization steps (I) to (III).
(I) Monomer mixture (c1) consisting of 40 to 100% by mass of methacrylic acid ester and 60 to 0% by mass of other monomers copolymerizable therewith, and 0.01 to 10 parts by mass of polyfunctional monomer (monomer mixture). Step of polymerizing (with respect to a total of 100 parts by mass of (c1)) to obtain a hard polymer (II) From 60 to 100% by mass of the acrylic acid ester and 0 to 40% by mass of other monomers copolymerizable therewith. Step of polymerizing 0.1 to 5 parts by mass of the monomer mixture (a1) and 0.1 to 5 parts by mass of the polyfunctional monomer (relative to a total of 100 parts by mass of the monomer mixture (a1)) to obtain a soft polymer (III) Methacrylate ester A total of 100 parts by mass of a monomer mixture (b1) consisting of 60 to 100% by mass and 40 to 0% by mass of another monomer copolymerizable therewith, and 0 to 10 parts by mass of a polyfunctional monomer (monomer mixture (b1)). To obtain a hard polymer by polymerizing
 (I)~(III)の各重合工程の間に、他の重合工程がさらに含まれてもよい。 Other polymerization steps may be further included between the polymerization steps (I) to (III).
 アクリル系グラフト共重合体は、さらに(IV)の重合工程を経て得られてもよい。
 (IV)メタクリル酸エステル40~100質量%、アクリル酸エステル0~60質量%、および共重合可能な他のモノマー0~5質量%からなるモノマー混合物(b2)、ならびに多官能性モノマー0~10質量部(モノマー混合物(b2)100質量部に対して)を重合して硬質重合体を得る。
The acrylic graft copolymer may be further obtained through the polymerization step (IV).
(IV) Monomer mixture (b2) consisting of 40 to 100% by mass of methacrylic acid ester, 0 to 60% by mass of acrylic acid ester, and 0 to 5% by mass of other copolymerizable monomers, and 0 to 10 polyfunctional monomers. A hard polymer is obtained by polymerizing parts by mass (relative to 100 parts by mass of the monomer mixture (b2)).
 各工程で用いられるメタクリル酸エステル、アクリル酸エステル、共重合可能な他のモノマー、および多官能性モノマーは、前述と同様のものを用いることができる。 As the methacrylic acid ester, acrylic acid ester, other copolymerizable monomer, and polyfunctional monomer used in each step, the same ones as described above can be used.
 軟質層は、光学フィルムに衝撃吸収性を付与しうる。軟質層の例には、アクリル酸エステルを主成分とするアクリル系ゴム状重合体(a)からなる層が含まれる。硬質層は、光学フィルムの靱性を損ないにくくし、かつゴム粒子の製造時に、粒子の粗大化や塊状化を抑制しうる。硬質層の例には、メタクリル酸エステルを主成分とする重合体からなる層が含まれる。 The soft layer can impart shock absorption to the optical film. Examples of the soft layer include a layer made of an acrylic rubber-like polymer (a) containing an acrylic acid ester as a main component. The hard layer makes it difficult to impair the toughness of the optical film, and can suppress the coarsening and agglomeration of the particles during the production of the rubber particles. Examples of the hard layer include a layer made of a polymer containing a methacrylic acid ester as a main component.
 アクリル系グラフト共重合体におけるグラフト率(アクリル系ゴム状重合体(a)に対するグラフト成分の質量比)は、10~250%であることが好ましく、25~200%であることがより好ましく、40~200%であることがより好ましく、60~150%であることがさらに好ましい。グラフト率が10%以上であると、シェル部の割合が少なくなりすぎないため、フィルムの硬度や剛性が損なわれにくい。アクリル系グラフト共重合体のグラフト率が250%以下であると、アクリル系ゴム状重合体(a)の割合が少なくなりすぎないため、フィルムの靱性や脆性改善効果が損なわれにくい。 The graft ratio (mass ratio of the graft component to the acrylic rubber-like polymer (a)) in the acrylic graft copolymer is preferably 10 to 250%, more preferably 25 to 200%, and 40. It is more preferably to 200%, and even more preferably 60 to 150%. When the graft ratio is 10% or more, the ratio of the shell portion is not too small, so that the hardness and rigidity of the film are not easily impaired. When the graft ratio of the acrylic graft copolymer is 250% or less, the proportion of the acrylic rubber-like polymer (a) is not too small, so that the toughness and brittleness improving effect of the film are not easily impaired.
 アクリル系グラフト共重合体のグラフト率は、以下の方法で測定される。
 1)アクリル系グラフト共重合体2gを、メチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpm、温度12℃にて1時間遠心し、不溶分と可溶分とに分離する(遠心分離作業を合計3回セット)。
 2)得られた不溶分の重量を下記式に当てはめて、グラフト率を算出する。
 グラフト率(%)=[{(メチルエチルケトン不溶分の重量)-(アクリル系ゴム状重合体(a)の重量)}/(アクリル系ゴム状重合体(a)の重量)]×100
The graft ratio of the acrylic graft copolymer is measured by the following method.
1) Dissolve 2 g of the acrylic graft copolymer in 50 ml of methyl ethyl ketone and centrifuge at a rotation speed of 30,000 rpm and a temperature of 12 ° C. for 1 hour using a centrifuge (Cat. And the soluble component (centrifugal separation work is set 3 times in total).
2) The graft ratio is calculated by applying the weight of the obtained insoluble matter to the following formula.
Graft ratio (%) = [{(weight of methyl ethyl ketone insoluble matter)-(weight of acrylic rubber-like polymer (a))} / (weight of acrylic rubber-like polymer (a))] × 100
 ゴム粒子の平均粒子径は、100~400nmであることが好ましく、150~300nmであることがより好ましい。平均粒子径が100nm以上であると、フィルムに十分な靱性を付与しやすく、400nm以下であると、フィルムの透明性が低下しにくい。 The average particle size of the rubber particles is preferably 100 to 400 nm, more preferably 150 to 300 nm. When the average particle size is 100 nm or more, sufficient toughness is easily imparted to the film, and when it is 400 nm or less, the transparency of the film is unlikely to decrease.
 ゴム粒子の平均粒子径は、フィルム表面および切片のSEM撮影またはTEM撮影によって得た粒子100個の円相当径の平均値として特定される。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。この際、倍率5000倍のSEM観察および/またはTEM観察によって観察されるゴム粒子(アクリル系グラフト共重合体)を、平均粒子径の算出に使用する。なお、分散液でのゴム粒子(アクリル系グラフト共重合体)の平均粒子径は、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定することができる。 The average particle size of the rubber particles is specified as an average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the film surface and sections. The equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area. At this time, the rubber particles (acrylic graft copolymer) observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size. The average particle size of the rubber particles (acrylic graft copolymer) in the dispersion can be measured by a zeta potential / particle size measurement system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 ゴム粒子の含有量は、(メタ)アクリル系樹脂に対して5~40質量%であることが好ましい。ゴム粒子の含有量が5質量%以上であると、フィルムに十分な靱性を付与しやすいだけでなく、表面に凹凸を形成して滑り性も付与しうる。40質量%以下であると、ヘイズが上昇しすぎない。ゴム粒子の含有量は、上記観点から、(メタ)アクリル系樹脂に対して7~30質量%であることがより好ましく、8~25質量%であることがさらに好ましい。 The content of rubber particles is preferably 5 to 40% by mass with respect to the (meth) acrylic resin. When the content of the rubber particles is 5% by mass or more, not only is it easy to impart sufficient toughness to the film, but also unevenness can be formed on the surface to impart slipperiness. If it is 40% by mass or less, the haze does not rise too much. From the above viewpoint, the content of the rubber particles is more preferably 7 to 30% by mass and further preferably 8 to 25% by mass with respect to the (meth) acrylic resin.
 1-4.他の成分
 本発明の光学フィルムは、本発明の効果を損なわない範囲で、他の成分をさらに含んでいてもよい。他の成分の例には、微粒子、残留溶媒、紫外線吸収剤、酸化防止剤などが含まれる。
1-4. Other Components The optical film of the present invention may further contain other components as long as the effects of the present invention are not impaired. Examples of other components include fine particles, residual solvents, UV absorbers, antioxidants and the like.
 (微粒子)
 本発明の光学フィルムは、滑り性をさらに高める観点などから、マット剤として、無機微粒子またはゴム粒子以外の有機微粒子をさらに含んでもよい。
(Fine particles)
The optical film of the present invention may further contain organic fine particles other than inorganic fine particles or rubber particles as a matting agent from the viewpoint of further enhancing slipperiness.
 無機微粒子を構成する無機材料の例には、二酸化珪素(SiO)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、およびリン酸カルシウムが含まれる。中でも、得られるフィルムのヘイズの増大を少なくするためには、二酸化ケイ素が好ましい。有機微粒子は、ガラス転移温度(Tg)が、好ましくは80℃以上の樹脂粒子でありうる。 Examples of inorganic materials constituting the inorganic fine particles include silicon dioxide (SiO 2 ), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. Includes calcium, aluminum silicate, magnesium silicate, and calcium phosphate. Of these, silicon dioxide is preferred in order to reduce the increase in haze of the resulting film. The organic fine particles may be resin particles having a glass transition temperature (Tg) of preferably 80 ° C. or higher.
 (有機溶媒)
 本発明の光学フィルムは、後述するように溶液流延方式により製造されることから、溶液流延方式で用いられるドープの溶媒に由来する残留溶媒を含んでいてもよい。
(Organic solvent)
Since the optical film of the present invention is produced by the solution casting method as described later, it may contain a residual solvent derived from the doping solvent used in the solution casting method.
 残留溶媒量は、光学フィルムに対して700ppm以下であることが好ましく、30~700ppmであることがより好ましい。残留溶媒の含有量は、後述する光学フィルムの製造工程における、支持体上に流延させたドープの乾燥条件によって調整されうる。 The amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film. The content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film described later.
 光学フィルムにおける残留溶媒の含有量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマーなどの定量も併せて行うことができる。 The content of the residual solvent in the optical film can be measured by headspace gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. The volatile components are quantified while doing so. In the headspace method, it is possible to observe all peaks of volatile components by gas chromatography, and by using an analytical method that utilizes electromagnetic interactions, it is possible to quantify volatile substances and monomers with high accuracy. It can be done at the same time.
 1-5.光学フィルムの物性
 (乾燥性)
 光学フィルムは、前述の通り、高い乾燥性を有する。具体的には、光学フィルムの、下記式で表される乾燥試験後の残留溶媒量は、0.25%以下であることが好ましく、0.1%以下であることがより好ましい。
 残留溶媒量(%)=〔(Y-X)*100〕/Y
1-5. Physical properties of optical film (dryness)
As described above, the optical film has high drying property. Specifically, the amount of residual solvent in the optical film after the drying test represented by the following formula is preferably 0.25% or less, and more preferably 0.1% or less.
Residual solvent amount (%) = [(YX) * 100] / Y
 光学フィルムの乾燥性は、以下の方法で測定することができる。
 まず、光学フィルムを、室温で2時間静置した後、10cm角の正方形に2枚切り出し、試験片とする。そのうち一つの試験片を、140℃のオーブンで15分間乾燥させた後、重量を測定し、その重量をXとする。もう一つの試験片を、110℃のオーブンで60分間乾燥させた後、重量を測定し、その重量をYとする。そして、測定値を、上記式に当てはめて、残留溶媒量(%)を算出する。
The dryness of the optical film can be measured by the following method.
First, the optical film is allowed to stand at room temperature for 2 hours, and then cut into two 10 cm square squares to obtain test pieces. One of the test pieces is dried in an oven at 140 ° C. for 15 minutes, then weighed and the weight is defined as X. The other test piece is dried in an oven at 110 ° C. for 60 minutes, then weighed and the weight is defined as Y. Then, the measured value is applied to the above formula to calculate the residual solvent amount (%).
 光学フィルムの乾燥性は、(メタ)アクリル系樹脂のモノマー組成や残留モノマーの含有量などによって調整することができる。光学フィルムの乾燥性を高めるためには、例えば(メタ)アクリル系樹脂を構成する分子の自由体積が大きいモノマーの含有量を多くしたり、残留モノマーの含有量を多くしたりすることが好ましい。 The dryness of the optical film can be adjusted by adjusting the monomer composition of the (meth) acrylic resin and the content of residual monomers. In order to improve the dryness of the optical film, for example, it is preferable to increase the content of the monomer having a large free volume of the molecule constituting the (meth) acrylic resin or increase the content of the residual monomer.
 (ヘイズ)
 本発明の光学フィルムは、透明性が高いことが好ましい。光学フィルムのヘイズは、4.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。ヘイズは、試料40mm×80nmを25℃、60%RHでヘイズメーター(HGM-2DP、スガ試験機)でJISK-6714に従って測定することができる。
(Haze)
The optical film of the present invention preferably has high transparency. The haze of the optical film is preferably 4.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less. Haze can be measured according to JIS K-6714 with a haze meter (HGM-2DP, Suga Test Instruments) at 25 ° C. and 60% RH for a sample of 40 mm × 80 nm.
 (位相差RoおよびRt)
 本発明の光学フィルムは、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、0~10nmであることが好ましく、0~5nmであることがより好ましい。本発明の光学フィルムの厚み方向の位相差Rtは、-20~20nmであることが好ましく、-10~10nmであることがより好ましい。
(Phase difference Ro and Rt)
From the viewpoint of using the optical film of the present invention as a retardation film for IPS mode, for example, the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. It is preferably 0 to 5 nm, and more preferably 0 to 5 nm. The phase difference Rt in the thickness direction of the optical film of the present invention is preferably −20 to 20 nm, and more preferably −10 to 10 nm.
 RoおよびRtは、それぞれ下記式で定義される。
 式(2a):Ro=(nx-ny)×d
 式(2b):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、
 nzは、フィルムの厚み方向の屈折率を表し、
 dは、フィルムの厚み(nm)を表す。)
Ro and Rt are defined by the following equations, respectively.
Equation (2a): Ro = (nx-ny) × d
Equation (2b): Rt = ((nx + ny) /2-nz) × d
(During the ceremony
nx represents the refractive index in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized) of the film.
ny represents the refractive index in the direction orthogonal to the in-plane slow-phase axis of the film.
nz represents the refractive index in the thickness direction of the film.
d represents the thickness (nm) of the film. )
 本発明の光学フィルムの面内遅相軸とは、フィルム面において屈折率が最大となる軸をいう。光学フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow-phase axis of the optical film of the present invention means the axis having the maximum refractive index on the film surface. The in-plane slow axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
 RoおよびRtは、以下の方法で測定することができる。
 1)本発明の光学フィルムを23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRoおよびRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following methods.
1) The optical film of the present invention is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Matrix Polarimeter), respectively. Measure in the environment.
 本発明の光学フィルムの位相差RoおよびRtは、例えば(メタ)アクリル系樹脂の種類によって調整することができる。光学フィルムの位相差RoおよびRtを低くするためには、延伸によって位相差が出にくい(メタ)アクリル系樹脂を用いる(例えば負の複屈折を有するモノマー由来の構造単位と、正の複屈折を有するモノマー由来の構造単位とで位相差を相殺できるようなモノマー比率にする)ことが好ましい。 The phase difference Ro and Rt of the optical film of the present invention can be adjusted by, for example, the type of (meth) acrylic resin. In order to reduce the phase difference Ro and Rt of the optical film, a (meth) acrylic resin that does not easily generate a phase difference due to stretching is used (for example, a structural unit derived from a monomer having negative birefringence and positive birefringence are used. It is preferable to set the monomer ratio so that the phase difference can be offset with the structural unit derived from the monomer.
 (厚み)
 本発明の光学フィルムの厚みは、例えば5~100μm、好ましくは5~40μmとしうる。
(Thickness)
The thickness of the optical film of the present invention can be, for example, 5 to 100 μm, preferably 5 to 40 μm.
 2.光学フィルムの製造方法
 本発明の光学フィルムの製造方法は、特に制限されないが、高分子量の樹脂を用いることができるなど、使用できる材料の制限が少ない観点から、溶液流延方式(キャスト法)が好ましい。
2. Manufacturing Method of Optical Film The manufacturing method of the optical film of the present invention is not particularly limited, but the solution casting method (cast method) is used from the viewpoint that there are few restrictions on the materials that can be used, such as the use of a high molecular weight resin. preferable.
 すなわち、本発明の光学フィルムは、1)少なくとも(メタ)アクリル系樹脂と、残留モノマーと、ゴム粒子と、溶媒とを含むドープを得る工程と、2)得られたドープを支持体上に流延し、乾燥および剥離して膜状物を得る工程と、3)得られた膜状物をさらに乾燥させる工程とを経て製造されうる。 That is, the optical film of the present invention has 1) a step of obtaining a dope containing at least a (meth) acrylic resin, a residual monomer, rubber particles, and a solvent, and 2) flowing the obtained dope onto a support. It can be produced through a step of spreading, drying and peeling to obtain a film-like substance, and 3) a step of further drying the obtained film-like substance.
 1)の工程について
 本工程では、例えば(メタ)アクリル系樹脂と、残留モノマーと、ゴム粒子とを、溶媒に溶解または分散させて、ドープを得ることができる。(メタ)アクリル系樹脂、残留モノマーおよびゴム粒子は、それぞれ前述のものである。
About step 1) In this step, for example, a (meth) acrylic resin, a residual monomer, and rubber particles can be dissolved or dispersed in a solvent to obtain a doping. The (meth) acrylic resin, residual monomer and rubber particles are as described above.
 ドープに用いられる溶媒は、少なくとも(メタ)アクリル系樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 The solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the (meth) acrylic resin. Examples of good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。 The solvent used for doping may further contain a poor solvent. Examples of poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope is high, the film-like material is likely to gel and peel off from the metal support. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because of its stability of doping, relatively low boiling point, and good drying property.
 ドープの調製は、溶媒に、(メタ)アクリル系樹脂と、残留モノマーと、ゴム粒子とをそれぞれ直接添加し、混合して調製してもよいし;溶媒に、(メタ)アクリル系樹脂と、残留モノマーとを溶解させた樹脂溶液と、溶媒にゴム粒子を分散させたゴム粒子分散液とをそれぞれ調製しておき、それらを混合して調製してもよい。 The dope may be prepared by directly adding the (meth) acrylic resin, the residual monomer, and the rubber particles to the solvent and mixing them; or using the (meth) acrylic resin as the solvent. A resin solution in which the residual monomer is dissolved and a rubber particle dispersion in which rubber particles are dispersed in a solvent may be prepared and mixed.
 ドープにおける残留モノマーの含有量は、3)の工程(乾燥工程)における膜状物の乾燥性を高める観点から、(メタ)アクリル系樹脂と残留モノマーの合計量に対して0.1質量%超3質量%未満であることが好ましい。ドープにおける残留モノマーの含有量が上記範囲内であると、得られる光学フィルムにおける残留モノマーの含有量を上記範囲内に調整しやすいからである。ドープにおける残留モノマーの含有量は、上記観点から、(メタ)アクリル系樹脂と残留モノマーの合計量に対して0.12~2.8質量%であることがより好ましく、0.24~1.2質量%であることがより好ましい。ドープにおける残留モノマーの含有量は、液体クロマトグラフィーにより測定することができる。 The content of the residual monomer in the dope exceeds 0.1% by mass with respect to the total amount of the (meth) acrylic resin and the residual monomer from the viewpoint of improving the drying property of the film-like substance in the step 3) (drying step). It is preferably less than 3% by mass. This is because when the content of the residual monomer in the dope is within the above range, the content of the residual monomer in the obtained optical film can be easily adjusted within the above range. From the above viewpoint, the content of the residual monomer in the dope is more preferably 0.12 to 2.8% by mass with respect to the total amount of the (meth) acrylic resin and the residual monomer, and 0.24 to 1. More preferably, it is 2% by mass. The content of residual monomers in the dope can be measured by liquid chromatography.
 ドープにおける残留モノマーの含有量は、任意の方法、例えば(メタ)アクリル系樹脂の重合後に乾燥処理を行って調整してもよいし;(メタ)アクリル系樹脂の原料を精製して調整してもよい。乾燥処理を行う場合、乾燥温度は、例えば重合温度よりも高いことが好ましい。精製方法は、特に制限されず、例えば再沈殿法でありうる。 The content of the residual monomer in the dope may be adjusted by any method, for example, by performing a drying treatment after the polymerization of the (meth) acrylic resin; the raw material of the (meth) acrylic resin is purified and adjusted. May be good. When the drying treatment is performed, the drying temperature is preferably higher than, for example, the polymerization temperature. The purification method is not particularly limited, and may be, for example, a reprecipitation method.
 再沈殿法は、(メタ)アクリル系樹脂の原料を良溶媒に溶解させた溶液を、貧溶媒中に滴下することで、当該原料に残留するモノマーの量を低減する方法である。再沈殿法で用いられる貧溶媒としては、前述の貧溶媒として挙げたものと同様のものを用いることができ、好ましくはメタノール、エタノールなどのアルコール類などである。再沈殿法で用いられる良溶媒としては、前述の良溶媒として挙げたものと同様のものを用いることができ、好ましくはメチルエチルケトンなどである。 The reprecipitation method is a method of reducing the amount of monomers remaining in the raw material by dropping a solution of the raw material of the (meth) acrylic resin in a good solvent into a poor solvent. As the poor solvent used in the reprecipitation method, the same ones as those mentioned above as the poor solvent can be used, and alcohols such as methanol and ethanol are preferable. As the good solvent used in the reprecipitation method, the same solvent as those mentioned above as the good solvent can be used, and methyl ethyl ketone or the like is preferable.
 再沈殿法による精製条件(精製回数など)は、最終的に得られる光学フィルム中に残留する残留モノマーの含有量が上記範囲となるような条件で行えばよく;そのためには、例えばドープ中の残留モノマーの含有量が上記範囲となるような条件で行うことが好ましい。 The purification conditions by the reprecipitation method (number of purifications, etc.) may be such that the content of the residual monomer remaining in the finally obtained optical film is within the above range; for that purpose, for example, in doping. It is preferable to carry out under the condition that the content of the residual monomer is within the above range.
 2)の工程について
 本工程では、得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
About step 2) In this step, the obtained dope is cast on the support. Doping can be cast by discharging from a casting die.
 次いで、支持体上に流延されたドープ中の溶媒を適度に蒸発させた後(乾燥させた後)、支持体から剥離して、膜状物を得る。 Next, after the solvent in the dope cast on the support is appropriately evaporated (after drying), it is peeled off from the support to obtain a film-like substance.
 支持体から剥離する際のドープの残留溶媒量(剥離時の膜状物の残留溶媒量)は、例えば25質量%以上であることが好ましく、30~37質量%であることがより好ましく、30~35質量%であることがさらに好ましい。剥離時の残留溶媒量が25質量%以上であると、剥離後の膜状物から溶媒を一気に揮発させやすい。また、剥離時の残留溶媒量が37質量%以下であると、剥離による膜状物が伸びすぎるのを抑制できる。 The residual solvent amount of the doping when peeling from the support (the residual solvent amount of the film-like substance at the time of peeling) is preferably, for example, 25% by mass or more, more preferably 30 to 37% by mass, and 30. It is more preferably to 35% by mass. When the amount of the residual solvent at the time of peeling is 25% by mass or more, the solvent is likely to be volatilized at once from the film-like material after peeling. Further, when the amount of the residual solvent at the time of peeling is 37% by mass or less, it is possible to prevent the film-like material from being excessively stretched due to peeling.
 剥離時のドープの残留溶媒量は、下記式で定義される。以下においても同様である。
 ドープの残留溶媒量(質量%)=(ドープの加熱処理前質量-ドープの加熱処理後質量)/ドープの加熱処理後質量×100
 尚、残留溶媒量を測定する際の加熱処理とは、140℃15分の加熱処理をいう。
The residual solvent amount of the doping at the time of peeling is defined by the following formula. The same applies to the following.
Residual solvent amount of doping (mass%) = (mass before heat treatment of doping-mass after heat treatment of doping) / mass after heat treatment of doping × 100
The heat treatment for measuring the amount of residual solvent means a heat treatment at 140 ° C. for 15 minutes.
 剥離時の残留溶媒量は、支持体上でのドープの乾燥温度や乾燥時間、支持体の温度などによって調整することができる。 The amount of residual solvent at the time of peeling can be adjusted by adjusting the drying temperature and drying time of the doping on the support, the temperature of the support, and the like.
 3)の工程について
 本工程では、得られた膜状物を乾燥させる。
About step 3) In this step, the obtained film-like material is dried.
 乾燥は、一段階で行ってもよいし、多段階で行ってもよい。また、乾燥は、必要に応じて延伸しながら行ってもよい。 Drying may be performed in one step or in multiple steps. Further, the drying may be carried out while stretching, if necessary.
 例えば、膜状物の乾燥は、上記2)の工程で支持体から剥離した後、延伸前に乾燥させる工程(初期乾燥工程)と、延伸工程と、延伸後に乾燥させる工程(後乾燥工程)とを有してもよい。 For example, the drying of the film-like material includes a step of peeling from the support in the step 2) and then drying before stretching (initial drying step), a stretching step, and a step of drying after stretching (post-drying step). May have.
 (初期乾燥工程)
 延伸前の乾燥温度(初期乾燥温度)は、延伸温度よりも高い温度でありうる。具体的には、(メタ)アクリル系樹脂のガラス転移温度をTgとしたとき、Tg(℃)以上であることが好ましく、(Tg+10)~(Tg+50)℃であることがより好ましい。初期乾燥温度がTg(℃)以上、好ましくは(Tg+10)℃以上であると、溶媒を適度に揮発させやすいため、搬送性(ハンドリング性)を高めやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、この後の延伸工程における延伸性が損なわれにくい。
(Initial drying process)
The drying temperature before stretching (initial drying temperature) can be higher than the stretching temperature. Specifically, when the glass transition temperature of the (meth) acrylic resin is Tg, it is preferably Tg (° C.) or higher, and more preferably (Tg + 10) to (Tg + 50) ° C. When the initial drying temperature is Tg (° C.) or higher, preferably (Tg + 10) ° C. or higher, the solvent is easily volatilized appropriately, so that the transportability (handleability) is easily improved, and when it is (Tg + 50) ° C. or lower, the solvent Is not excessively volatilized, so that the stretchability in the subsequent stretching step is not easily impaired.
 初期乾燥温度は、(a)テンター延伸機やローラーで搬送しながら非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度、(b)熱ローラーなどの接触加熱型で乾燥させる場合は、接触加熱部の温度、あるいは(c)膜状物(被乾燥面)の表面温度のいずれかの温度として測定することができる。中でも、(a)熱風温度などの雰囲気温度を測定することが好ましい。 The initial drying temperature is (a) when drying with a non-contact heating type while transporting with a tenter stretching machine or roller, the ambient temperature such as the temperature inside the stretching machine or hot air temperature, and (b) drying with a contact heating type such as a hot roller. In the case of making the temperature, it can be measured as either the temperature of the contact heating portion or (c) the surface temperature of the film-like material (surface to be dried). Above all, it is preferable to measure (a) atmospheric temperature such as hot air temperature.
 (延伸工程)
 延伸は、求められる光学特性に応じて行えばよく、少なくとも一方の方向に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。
(Stretching process)
Stretching may be performed according to the required optical characteristics, and is preferably stretched in at least one direction, and stretches in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like object and orthogonal to it. Biaxial stretching in the transport direction (MD direction)) may be performed.
 延伸倍率は、光学フィルムを、例えばIPS用の位相差フィルムとして用いる観点では、1.01~2倍とすることができる。延伸倍率は、(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The draw ratio can be 1.01 to 2 times from the viewpoint of using the optical film as a retardation film for IPS, for example. The stretch ratio is defined as (size of the film after stretching in the stretching direction) / (size of the film before stretching in the stretching direction). When biaxial stretching is performed, it is preferable to set the stretching ratio in each of the TD direction and the MD direction.
 なお、光学フィルムの面内遅相軸方向(面内において屈折率が最大となる方向)は、通常、延伸倍率が最大となる方向である。 The in-plane slow-phase axial direction of the optical film (the direction in which the refractive index is maximized in-plane) is usually the direction in which the draw ratio is maximized.
 延伸時の乾燥温度(延伸温度)は、前述と同様に、(メタ)アクリル系樹脂のガラス転移温度をTgとしたとき、Tg(℃)以上であることが好ましく、(Tg+10)~(Tg+50)℃であることがより好ましい。延伸温度がTg(℃)以上、好ましくは(Tg+10)℃以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。延伸温度は、例えば115℃以上としうる。延伸温度は、前述と同様に、(a)延伸機内温度などの雰囲気温度を測定することが好ましい。 The drying temperature (stretching temperature) at the time of stretching is preferably Tg (° C.) or higher, and is preferably (Tg + 10) to (Tg + 50), when the glass transition temperature of the (meth) acrylic resin is Tg, as described above. More preferably, it is ° C. When the stretching temperature is Tg (° C.) or higher, preferably (Tg + 10) ° C. or higher, the solvent is likely to volatilize appropriately, so that the stretching tension can be easily adjusted to an appropriate range, and when it is (Tg + 50) ° C. or lower, the solvent Does not volatilize too much, so stretchability is not easily impaired. The stretching temperature can be, for example, 115 ° C. or higher. As for the stretching temperature, it is preferable to measure the ambient temperature such as (a) the temperature inside the stretching machine, as described above.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば20~30質量%であることが好ましく、25~30質量%であることがより好ましい。 The amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, for example, preferably 20 to 30% by mass, and 25 to 30% by mass. More preferably.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。 Stretching of the film-like object in the TD direction (width direction) can be performed by, for example, fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). Stretching of the film-like material in the MD direction can be performed by, for example, a method (roll method) in which a plurality of rolls are provided with a peripheral speed difference and the roll peripheral speed difference is used between them.
 (後乾燥工程)
 残留溶媒量をより低減させる観点から、延伸後に得られた膜状物をさらに乾燥(後乾燥)させることが好ましい。例えば、延伸後に得られた膜状物を、ロールなどで搬送しながらさらに乾燥させることが好ましい。
(Post-drying process)
From the viewpoint of further reducing the amount of residual solvent, it is preferable to further dry (post-dry) the film-like substance obtained after stretching. For example, it is preferable that the film-like substance obtained after stretching is further dried while being conveyed by a roll or the like.
 後乾燥温度(延伸しない場合の乾燥温度)は、(メタ)アクリル系樹脂のガラス転移温度をTgとしたとき、(Tg-50)~(Tg-30)℃であることが好ましく、(Tg-40)~(Tg-30)であることがより好ましい。後乾燥温度が(Tg-50)℃以上であると、延伸後の膜状物から溶媒を十分に揮発除去しやすく、(Tg-30)℃以下であると、膜状物の変形などを高度に抑制しうる。後乾燥温度は、前述と同様に、(a)熱風温度などの雰囲気温度を測定することが好ましい。 The post-drying temperature (drying temperature when not stretched) is preferably (Tg-50) to (Tg-30) ° C., where Tg is the glass transition temperature of the (meth) acrylic resin, and is preferably (Tg-). It is more preferably 40) to (Tg-30). When the post-drying temperature is (Tg-50) ° C. or higher, it is easy to sufficiently volatilize and remove the solvent from the film-like material after stretching, and when it is (Tg-30) ° C. or lower, the film-like material is highly deformed. Can be suppressed. As the post-drying temperature, it is preferable to measure the ambient temperature such as (a) hot air temperature as described above.
 本発明では、膜状物が、所定量の残留モノマーを含む。そのような膜状物は、溶媒が移動可能なミクロな空間(隙間)を有しうることから、乾燥工程、特に初期乾燥工程や後乾燥工程において、膜状物から溶媒を揮発除去させやすくしうる。それにより、乾燥速度を従来よりも高めることができるか、または低い乾燥温度でも従来と同等以上の乾燥速度を実現することができる。 In the present invention, the film-like substance contains a predetermined amount of residual monomer. Since such a film-like substance may have a micro space (gap) in which the solvent can move, it is easy to volatilize and remove the solvent from the film-like substance in the drying step, particularly in the initial drying step and the post-drying step. sell. Thereby, the drying speed can be increased as compared with the conventional one, or the drying speed can be equal to or higher than the conventional one even at a low drying temperature.
 このようにして、本発明の光学フィルムを得ることができる。本発明の光学フィルムは、液晶表示装置や有機EL表示装置などの各種表示装置における光学フィルムとして用いられる。光学フィルムの例には、偏光板保護フィルム(位相差フィルムなどを含む)、透明基板、光拡散フィルムが含まれ、好ましくは偏光板保護フィルムである。 In this way, the optical film of the present invention can be obtained. The optical film of the present invention is used as an optical film in various display devices such as a liquid crystal display device and an organic EL display device. Examples of the optical film include a polarizing plate protective film (including a retardation film and the like), a transparent substrate, and a light diffusing film, and a polarizing plate protective film is preferable.
 3.偏光板
 本発明の偏光板は、偏光子と、本発明の光学フィルムと、それらの間に配置された接着層とを有する。
3. 3. Polarizing Plate The polarizing plate of the present invention has a polarizing element, an optical film of the present invention, and an adhesive layer arranged between them.
 3-1.偏光子
 偏光子は、一定方向の偏波面の光だけを通す素子であり、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
3-1. Polarizer A polarizing element is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based polarizing film. The polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a film obtained by dyeing a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl. An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound). The absorption axis of the polarizer is usually parallel to the maximum stretching direction.
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。 For example, the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the saponification degree is 99.0 to 99.99 mol%. Ethylene-modified polyvinyl alcohol is used.
 偏光子の厚みは、5~30μmであることが好ましく、偏光板を薄型化するため等から、5~20μmであることがより好ましい。 The thickness of the polarizer is preferably 5 to 30 μm, and more preferably 5 to 20 μm in order to reduce the thickness of the polarizing plate.
 3-2.光学フィルム
 本発明の光学フィルムは、偏光子の少なくとも一方の面(少なくとも液晶セルと対向する面)に配置されている。光学フィルムは、偏光板保護フィルムとして機能しうる。
3-2. Optical film The optical film of the present invention is arranged on at least one surface of the polarizer (at least the surface facing the liquid crystal cell). The optical film can function as a polarizing plate protective film.
 本発明の光学フィルムが偏光子の一方の面のみに配置されている場合、偏光子の他方の面には、他の光学フィルムが配置されうる。他の光学フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC8UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フィルム(株)製)などが含まれる。 When the optical film of the present invention is arranged on only one surface of the polarizer, another optical film may be arranged on the other surface of the polarizer. Examples of other optical films include commercially available cellulose ester films (eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC6UY, KC4UY KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd. The above includes Fuji Film Co., Ltd.).
 他の光学フィルムの厚みは、例えば5~100μm、好ましくは40~80μmでありうる。 The thickness of the other optical film can be, for example, 5 to 100 μm, preferably 40 to 80 μm.
 3-3.接着層
 接着層は、光学フィルム(または他の光学フィルム)と偏光子との間に配置されている。接着層の厚みは、例えば0.01~10μm、好ましくは0.03~5μm程度でありうる。
3-3. Adhesive layer The adhesive layer is located between the optical film (or other optical film) and the polarizer. The thickness of the adhesive layer can be, for example, 0.01 to 10 μm, preferably about 0.03 to 5 μm.
 3-4.偏光板の製造方法
 本発明の偏光板は、偏光子と本発明の光学フィルムを、接着剤を介して貼り合わせて得ることができる。接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)、または活性エネルギー線硬化性接着剤でありうる。活性エネルギー線硬化性接着剤は、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、またはそれらの併用物のいずれであってもよい。
3-4. Method for manufacturing a polarizing plate The polarizing plate of the present invention can be obtained by laminating a polarizing element and an optical film of the present invention via an adhesive. The adhesive can be a fully saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive. The active energy ray-curable adhesive may be any of a photoradical polymerization type composition utilizing photoradical polymerization, a photocationic polymerization type composition utilizing photocationic polymerization, or a combination thereof.
 4.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、液晶セルの一方の面に配置された第1偏光板と、液晶セルの他方の面に配置された第2偏光板とを含む。
4. Liquid crystal display device The liquid crystal display device of the present invention includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell.
 液晶セルの表示モードは、例えばSTN(Super-Twisted Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、HAN(Hybridaligned Nematic)、VA(Vertical Alignment、MVA(Multi-domain Vertical Alignment)、PVA(Patterned Vertical Alignment))、IPS(In-Plane-Switching)などでありうる。中でも、VA(MVA,PVA)モードおよびIPSモードが好ましい。 The display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridaligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), etc. Of these, the VA (MVA, PVA) mode and the IPS mode are preferable.
 第1および第2偏光板のうち一方または両方が、本発明の偏光板である。本発明の偏光板は、本発明の光学フィルムが液晶セル側となるように配置されることが好ましい。 One or both of the first and second polarizing plates are the polarizing plates of the present invention. The polarizing plate of the present invention is preferably arranged so that the optical film of the present invention is on the liquid crystal cell side.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
 1.光学フィルムの材料
 1-1.樹脂組成物((メタ)アクリル系樹脂と残留モノマーの混合物))の調製
 <樹脂組成物1の調製>
 (重合)
 攪拌機を備えたSUS製重合反応装置に、脱イオン水を入れ、分散安定剤、分散安定助剤を加え、攪拌・溶解させた。また、別の攪拌機を備えた容器に、メタクリル酸メチル(MMA)およびメタクリル酸n-ブチル(BA)を、表1に示される質量比で含むモノマー混合物に、重合開始剤として2,2’-アゾビスイソブチロニトリル、連鎖移動剤としてn-オクチルメルカプタン、離型剤としてステアリルアルコールを加え、攪拌・溶解させた。このようにして得られた重合開始剤、連鎖移動剤および離形剤を溶解したモノマー混合物を、上述した攪拌機を備えたSUS製重合反応装置に投入し、窒素置換しながら攪拌した後、80℃に加温して重合させた。重合終了後、115℃で10分間の熱処理を行い、重合を完結させた。得られたビーズ状重合体を濾過および水洗した後、乾燥させて、重合生成物(メタクリル酸メチルとアクリル酸n-ブチルの共重合体)を得た。
1. 1. Optical film material 1-1. Preparation of resin composition (mixture of (meth) acrylic resin and residual monomer)) <Preparation of resin composition 1>
(polymerization)
Deionized water was put into a SUS polymerization reactor equipped with a stirrer, a dispersion stabilizer and a dispersion stabilizer were added, and the mixture was stirred and dissolved. Further, in a container equipped with another stirrer, methyl methacrylate (MMA) and n-butyl methacrylate (BA) are contained in a monomer mixture containing the mass ratios shown in Table 1 as a polymerization initiator, 2,2'-. Azobisisobutyronitrile, n-octyl mercaptan as a chain transfer agent, and stearyl alcohol as a release agent were added, and the mixture was stirred and dissolved. The monomer mixture in which the polymerization initiator, chain transfer agent and mold release agent thus obtained were dissolved was put into a SUS polymerization reaction apparatus equipped with the above-mentioned stirrer, stirred while replacing nitrogen, and then at 80 ° C. Was heated to polymerize. After completion of the polymerization, heat treatment was performed at 115 ° C. for 10 minutes to complete the polymerization. The obtained beaded polymer was filtered and washed with water, and then dried to obtain a polymerization product (copolymer of methyl methacrylate and n-butyl acrylate).
 (再沈殿)
 次いで、得られた重合生成物を、良溶媒であるメチルエチルケトンに溶解させた。得られた溶液を、貧溶媒であるメタノール中に滴下して、再沈殿させた。その後、デカンテーションして、水分を除き、精製された重合生成物(樹脂組成物)を採取した。
(Reprecipitation)
The resulting polymerization product was then dissolved in a good solvent, methyl ethyl ketone. The obtained solution was added dropwise to methanol, which is a poor solvent, and reprecipitated. Then, decantation was performed to remove water, and a purified polymerization product (resin composition) was collected.
 <樹脂組成物3~8および10~14の調製>
 重合過程で用いるモノマーの組成を表1に示されるように変更し、かつ得られる樹脂組成物中の残留モノマー量が表1に示される量となるように再沈殿の回数を変更した以外は樹脂組成物1と同様にして樹脂組成物を得た。
<Preparation of resin compositions 3 to 8 and 10 to 14>
Resins except that the composition of the monomers used in the polymerization process was changed as shown in Table 1 and the number of reprecipitations was changed so that the amount of residual monomers in the obtained resin composition was the amount shown in Table 1. A resin composition was obtained in the same manner as in Composition 1.
 <樹脂組成物9の調製>
 樹脂組成物中のモノマー量が表1に示される値となるように、樹脂組成物8にシクロペンテンをさらに添加して、樹脂組成物9を得た。
<Preparation of resin composition 9>
Cyclopentene was further added to the resin composition 8 so that the amount of the monomers in the resin composition was as shown in Table 1 to obtain the resin composition 9.
 得られた樹脂組成物に含まれる(メタ)アクリル系樹脂のガラス転移温度(Tg)、重量平均分子量(Mw)および残留モノマーの量((メタ)アクリル系樹脂に対する量)を、以下の方法で測定した。 The glass transition temperature (Tg), weight average molecular weight (Mw), and amount of residual monomer (amount with respect to the (meth) acrylic resin) of the (meth) acrylic resin contained in the obtained resin composition are determined by the following method. It was measured.
 〔ガラス転移温度(Tg)〕
 得られた樹脂組成物について、前述の再沈殿を繰り返し行い、モノマーを含まない(メタ)アクリル系樹脂を分離回収した。
 そして、分離回収した(メタ)アクリル系樹脂のガラス転移温度を、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
[Glass transition temperature (Tg)]
The obtained resin composition was repeatedly subjected to the above-mentioned reprecipitation to separate and recover a (meth) acrylic resin containing no monomer.
Then, the glass transition temperature of the (meth) acrylic resin separated and recovered was measured using DSC (Differential Scanning Colorimetry) according to JIS K 7121-2012.
 〔重量平均分子量(Mw)〕
 前述で分離回収した(メタ)アクリル系樹脂の重量平均分子量(Mw)を、ゲル浸透クロマトグラフィー(東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mlに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100ml注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) of the (meth) acrylic resin separated and recovered as described above was measured by gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and column (TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). Was measured using. 20 mg ± 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature 40 ° C.), measured at a detector RI temperature of 40 ° C., and a styrene-converted value was used.
 〔樹脂組成物中の残留モノマーの量〕
 得られた樹脂組成物中の残留モノマーの量((メタ)アクリル系樹脂に対する量)および組成を、液体クロマトグラフィー法により測定した。測定条件は、以下の通りとした。
 (測定条件)
 ・カラム種(吸着剤):シリカゲル
 ・移動相:テトラヒドロフラン
 ・カラム温度:40℃
 ・流速:1ml/分
[Amount of residual monomer in resin composition]
The amount (amount with respect to the (meth) acrylic resin) and composition of the residual monomer in the obtained resin composition was measured by a liquid chromatography method. The measurement conditions were as follows.
(Measurement condition)
-Column type (adsorbent): Silica gel-Mobile phase: Tetrahydrofuran-Column temperature: 40 ° C
・ Flow velocity: 1 ml / min
 樹脂組成物1~14の構成および物性を、表1に示す。 Table 1 shows the composition and physical properties of the resin compositions 1 to 14.
 なお、表中の略称を以下に示す。
 MMA:メタクリル酸メチル
 MA:アクリル酸メチル
 LMA:メタクリル酸ラウリル
 BA:アクリル酸n-ブチル
 EHA:アクリル酸2-エチルヘキシル
 SMA:メタクリル酸ステアリル
 CHMA:メタクリル酸シクロヘキシル
 IMA:メタクリル酸イソボルニル
 N-EMI:N-エチルマレイミド
 N-PMI:N-フェニルマレイミド
 N-CHMI:N-シクロヘキシルマレイミド
The abbreviations in the table are shown below.
MMA: Methyl methacrylate MA: Methyl acrylate LMA: Lauryl methacrylate BA: n-butyl acrylate EHA: 2-ethylhexyl acrylate SMA: Stearyl methacrylate CHMA: Cyclohexyl methacrylate IMA: Isobornyl methacrylate N-EMI: N- Ethylmaleimide N-PMI: N-phenylmaleimide N-CHMI: N-cyclohexylmaleimide
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1-2.ゴム粒子
 ゴム粒子C1:アクリル系ゴム粒子M-210(コア部:多層構造のアクリル系ゴム状重合体、シェル部:メタアクリル酸メチルを主成分とするメタクリル酸エステル系重合体、のコアシェル型のゴム粒子、Tg:約-10℃、平均粒子径:220nm)
1-2. Rubber particles Rubber particles C1: Acrylic rubber particles M-210 (core part: acrylic rubber-like polymer with a multi-layer structure, shell part: methacrylic acid ester-based polymer containing methyl methacrylate as a main component, core-shell type Rubber particles, Tg: about -10 ° C, average particle size: 220 nm)
 ゴム粒子C1の平均粒子径は、以下の方法で測定した。 The average particle size of the rubber particles C1 was measured by the following method.
 (平均粒子径)
 得られた分散液中のゴム粒子C1の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。なお、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)を用いて測定されるゴム粒子の平均粒子径は、光学フィルムをTEM観察して測定されるゴム粒子C1の平均粒子径とほぼ一致するものである。
(Average particle size)
The dispersed particle size of the rubber particles C1 in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.). The average particle size of the rubber particles measured using the zeta potential / particle size measurement system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.) is the average particle size of the rubber particles C1 measured by TEM observation of the optical film. It is almost the same as.
 2.光学フィルムの作製および評価
 <光学フィルム1の作製>
 (ゴム粒子分散液の調製)
 20質量部のゴム粒子C1と、380質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。
2. Fabrication and evaluation of optical film <Preparation of optical film 1>
(Preparation of rubber particle dispersion)
20 parts by mass of rubber particles C1 and 380 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then dispersed under a milder disperser (manufactured by Pacific Machinery & Engineering Co., Ltd.) at 1500 rpm. , A rubber particle dispersion was obtained.
 (ドープの調製)
 下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、およびエタノールを添加した。次いで、加圧溶解タンクに、上記樹脂組成物1((メタ)アクリル系樹脂と残留モノマーの混合物)を撹拌しながら投入した。次いで、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を濾過した後、ドープを得た。
 樹脂組成物1((メタ)アクリル系樹脂と残留モノマーの混合物):100質量部
 メチレンクロライド:504質量部
 エタノール;64質量部
 ゴム粒子分散液:384質量部
(Preparation of doping)
A dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressurized dissolution tank. Next, the resin composition 1 (a mixture of a (meth) acrylic resin and a residual monomer) was charged into the pressure dissolution tank with stirring. It was then heated to 60 ° C. and completely dissolved with stirring. The heating temperature was raised from room temperature at 5 ° C./min, melted in 30 minutes, and then lowered at 3 ° C./min. The resulting solution was filtered to give a dope.
Resin composition 1 (mixture of (meth) acrylic resin and residual monomer): 100 parts by mass Methylene chloride: 504 parts by mass Ethanol; 64 parts by mass Rubber particle dispersion: 384 parts by mass
 (製膜)
 次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が30%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを多数のロールで搬送させながら、(Tg+20)℃(Tgは、(メタ)アクリル系樹脂のTgを示す、以下も同様)で乾燥(初期乾燥)させた後、得られた膜状物を、テンターにて(Tg+10)℃の条件下で幅方向に1.2倍延伸した。その後、ロールで搬送しながら、(Tg-30)℃でさらに乾燥(後乾燥)させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、膜厚40μmの光学フィルムを得た。
(Film formation)
The dope was then uniformly cast on the stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm using an endless belt casting device. The temperature of the stainless steel belt was controlled to 28 ° C. The transport speed of the stainless steel belt was 20 m / min.
On the stainless belt support, the solvent was evaporated until the amount of residual solvent in the cast film was 30%. Then, it was peeled from the stainless belt support at a peeling tension of 128 N / m. While transporting the peeled film with a large number of rolls, it was dried (initially dried) at (Tg + 20) ° C. (Tg indicates Tg of (meth) acrylic resin, the same applies hereinafter), and then the obtained film-like film. The product was stretched 1.2 times in the width direction under the condition of (Tg + 10) ° C. in a tenter. Then, the film was further dried (post-dried) at (Tg-30) ° C. while being conveyed by a roll, and the end portion sandwiched between the tenter clips was slit with a laser cutter and wound up to obtain an optical film having a film thickness of 40 μm.
 <光学フィルム2~14>
 樹脂組成物1を、表2に示される樹脂組成物に変更した以外は光学フィルム1と同様にして光学フィルムを作製した。
<Optical film 2-14>
An optical film was produced in the same manner as the optical film 1 except that the resin composition 1 was changed to the resin composition shown in Table 2.
 得られた光学フィルム1~14の残留モノマー量、ガラス転移温度(Tg)、乾燥性および折り曲げ性を、それぞれ以下の方法で評価した。 The amount of residual monomer, glass transition temperature (Tg), dryness and bendability of the obtained optical films 1 to 14 were evaluated by the following methods, respectively.
 〔残留モノマー量〕
 得られた光学フィルムにおける残留モノマーの含有量は、液体クロマトグラフィーにより測定した。測定条件は、前述と同様とした。
[Amount of residual monomer]
The content of residual monomer in the obtained optical film was measured by liquid chromatography. The measurement conditions were the same as described above.
 〔ガラス転移温度(Tg)〕
 得られた光学フィルムのガラス転移温度(Tg)は、前述と同様に、JIS K 7121-2012に準拠して測定した。
[Glass transition temperature (Tg)]
The glass transition temperature (Tg) of the obtained optical film was measured according to JIS K 7121-2012 in the same manner as described above.
 〔乾燥性〕
 得られた光学フィルムを、室温で2時間静置した後、10cm角の正方形に2枚切り出し、試験片とした。そのうち一つの試験片を、140℃のオーブンで15分間乾燥させた後、重量を測定し、その重量をXとした。もう一つの試験片を、110℃のオーブンで60分間乾燥させた後、重量を測定し、その重量をYとした。そして、測定値を、下記式に当てはめて、140℃で15分間乾燥させた後の残留溶媒量(%)を算出した。
 残留溶媒量(%)=〔(Y-X)*100〕/Y
 得られた残留溶媒量に基づいて、乾燥性を評価した。
 5:残留溶媒量が0.1%以下
 4:残留溶媒量が0.1%超0.2%以下
 3:残留溶媒量が0.2%超0.3%以下
 2:残留溶媒量が0.3%超0.5%以下
 1:残留溶媒量が0.5%超
 3以上であれば、良好と判断した。
[Dryness]
The obtained optical film was allowed to stand at room temperature for 2 hours, and then cut into two 10 cm square squares to prepare test pieces. One of the test pieces was dried in an oven at 140 ° C. for 15 minutes, then weighed and the weight was defined as X. The other test piece was dried in an oven at 110 ° C. for 60 minutes, then weighed and the weight was defined as Y. Then, the measured value was applied to the following formula to calculate the residual solvent amount (%) after drying at 140 ° C. for 15 minutes.
Residual solvent amount (%) = [(YX) * 100] / Y
Dryness was evaluated based on the amount of residual solvent obtained.
5: Residual solvent amount is 0.1% or less 4: Residual solvent amount is more than 0.1% and 0.2% or less 3: Residual solvent amount is more than 0.2% and 0.3% or less 2: Residual solvent amount is 0 .3% or more and 0.5% or less 1: If the residual solvent amount is more than 0.5% and 3 or more, it is judged to be good.
 〔折り曲げ性〕
 得られた光学フィルムを、幅15mm×長さ150mmに切り出して、試験片とした。この試験片を、温度25℃、相対湿度65%RHの状態に1時間以上静置させた後、荷重500gの条件で、JIS P8115:2001に準拠してMIT屈曲試験を行い、破断するまでの回数を測定した。MIT屈曲試験は、耐折度試験機(テスター産業株式会社製、MIT、BE-201型、折り曲げ曲率半径0.38mm)を用いて行った。そして、下記の評価基準で評価した。
 ◎:2000回以上
 ○:1500回以上2000回未満
 △:500回以上1500回未満
 ×:500回未満
 ○以上であれば、良好と判断した。
[Bendability]
The obtained optical film was cut into a width of 15 mm and a length of 150 mm to obtain a test piece. After allowing this test piece to stand at a temperature of 25 ° C. and a relative humidity of 65% RH for 1 hour or more, a MIT bending test is performed in accordance with JIS P8115: 2001 under a load of 500 g until the test piece breaks. The number of times was measured. The MIT bending test was performed using a folding resistance tester (manufactured by Tester Sangyo Co., Ltd., MIT, BE-201 type, bending radius of curvature 0.38 mm). Then, it was evaluated according to the following evaluation criteria.
⊚: 2000 times or more ○: 1500 times or more and less than 2000 times Δ: 500 times or more and less than 1500 times ×: less than 500 times ○ If it is more than that, it was judged to be good.
 光学フィルム1~14の構成および評価結果を、表2に示す。なお、得られた光学フィルム1~14の残留溶媒量を前述のヘッドスペースガスクロマトグラフィーにより測定したところ、いずれも30~600質量ppmの範囲内であった。 Table 2 shows the configurations and evaluation results of the optical films 1 to 14. The amount of residual solvent in the obtained optical films 1 to 14 was measured by the above-mentioned headspace gas chromatography, and all of them were in the range of 30 to 600 mass ppm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、残留モノマーの含有量が0.1~2質量%である光学フィルム2、4、5、7、11、12および14は、いずれも良好な乾燥性と折り曲げ性とを有することがわかる。 As shown in Table 2, the optical films 2, 4, 5, 7, 11, 12 and 14 having a residual monomer content of 0.1 to 2% by mass all have good drying properties and bendability. It can be seen that it has.
 特に、(メタ)アクリル系樹脂に由来する残留モノマーの含有量が0.2質量%超であると、乾燥性が特に高まることがわかる(光学フィルム2と11の対比)。 In particular, it can be seen that the drying property is particularly enhanced when the content of the residual monomer derived from the (meth) acrylic resin is more than 0.2% by mass (comparison between the optical films 2 and 11).
 これに対して、残留モノマーの含有量が0.1質量%未満である光学フィルム6および10は、いずれも乾燥性が低いことがわかる。これは、当該残留モノマーの含有量が少なすぎると、当該残留モノマーによる樹脂分子の配向を乱す作用が得られにくいからであると考えられる。また、残留モノマーの含有量が2質量%を超える光学フィルム1および13は、いずれも折り曲げ性も低いことがわかる。これは、残留モノマー量が多すぎて、柔軟性が損なわれるためと考えられる。 On the other hand, it can be seen that the optical films 6 and 10 having a residual monomer content of less than 0.1% by mass have low drying properties. It is considered that this is because if the content of the residual monomer is too small, it is difficult to obtain the action of disturbing the orientation of the resin molecules by the residual monomer. Further, it can be seen that the optical films 1 and 13 having a residual monomer content of more than 2% by mass have low bendability. It is considered that this is because the amount of residual monomer is too large and the flexibility is impaired.
 本出願は、2019年3月29日出願の特願2019-067499に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-067499 filed on March 29, 2019. All the contents described in the application specification are incorporated in the application specification.
 本発明によれば、(メタ)アクリル系樹脂を主成分として含むにも係わらず、高い乾燥性を有することにより高い製造効率で得ることができ、かつ十分な靱性を有する光学フィルムを提供することができる。 According to the present invention, it is possible to provide an optical film which can be obtained with high production efficiency by having high drying property and has sufficient toughness even though it contains a (meth) acrylic resin as a main component. Can be done.

Claims (7)

  1.  ガラス転移温度が115℃以上であり、かつ重量平均分子量が60万~300万である(メタ)アクリル系樹脂と、
     前記(メタ)アクリル系樹脂に由来する残留モノマーと、
     ゴム粒子とを含む光学フィルムであって、
     前記残留モノマーの含有量は、前記光学フィルムに対して0.1~2質量%である、
     光学フィルム。
    A (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million.
    Residual monomer derived from the (meth) acrylic resin and
    An optical film containing rubber particles
    The content of the residual monomer is 0.1 to 2% by mass with respect to the optical film.
    Optical film.
  2.  前記残留モノマーの含有量は、前記光学フィルムに対して0.2質量%超1質量%以下である、
     請求項1に記載の光学フィルム。
    The content of the residual monomer is more than 0.2% by mass and 1% by mass or less with respect to the optical film.
    The optical film according to claim 1.
  3.  前記(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位と、それと共重合可能なモノマーに由来する構造単位とを含む共重合体である、
     請求項1または2に記載の光学フィルム。
    The (meth) acrylic resin is a copolymer containing a structural unit derived from methyl methacrylate and a structural unit derived from a monomer copolymerizable therewith.
    The optical film according to claim 1 or 2.
  4.  偏光子と、
     前記偏光子の少なくとも一方の面に配置された、請求項1~3のいずれか一項に記載の光学フィルムとを含む、
     偏光板。
    Polarizer and
    The optical film according to any one of claims 1 to 3, which is arranged on at least one surface of the polarizer.
    Polarizer.
  5.  ガラス転移温度が115℃以上であり、かつ重量平均分子量が60万~300万である(メタ)アクリル系樹脂と、前記(メタ)アクリル系樹脂に由来する残留モノマーと、ゴム粒子とを含み、
     前記残留モノマーの含有量が、前記(メタ)アクリル系樹脂と前記残留モノマーの合計量に対して0.1質量%超3質量%未満であるドープを得る工程と、
     前記ドープを支持体上に流延した後、剥離して膜状物を得る工程と、
     前記膜状物を乾燥させる工程とを含む、
     光学フィルムの製造方法。
    It contains a (meth) acrylic resin having a glass transition temperature of 115 ° C. or higher and a weight average molecular weight of 600,000 to 3 million, a residual monomer derived from the (meth) acrylic resin, and rubber particles.
    A step of obtaining a dope in which the content of the residual monomer is more than 0.1% by mass and less than 3% by mass with respect to the total amount of the (meth) acrylic resin and the residual monomer.
    A step of casting the dope on a support and then peeling it off to obtain a film-like substance.
    Including a step of drying the film-like material.
    A method for manufacturing an optical film.
  6.  前記残留モノマーの含有量は、前記(メタ)アクリル系樹脂の原料の精製によって調整される、
     請求項5に記載の光学フィルムの製造方法。
    The content of the residual monomer is adjusted by purifying the raw material of the (meth) acrylic resin.
    The method for producing an optical film according to claim 5.
  7.  前記(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位と、それと共重合可能なモノマーに由来する構造単位とを含む共重合体である、
     請求項5または6に記載の光学フィルムの製造方法。
    The (meth) acrylic resin is a copolymer containing a structural unit derived from methyl methacrylate and a structural unit derived from a monomer copolymerizable therewith.
    The method for producing an optical film according to claim 5 or 6.
PCT/JP2020/014179 2019-03-29 2020-03-27 Optical film, polarizing plate, and production method for optical film WO2020203833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021512039A JPWO2020203833A1 (en) 2019-03-29 2020-03-27
KR1020217028981A KR20210125543A (en) 2019-03-29 2020-03-27 Optical film, polarizing plate and manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067499 2019-03-29
JP2019067499 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203833A1 true WO2020203833A1 (en) 2020-10-08

Family

ID=72668299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014179 WO2020203833A1 (en) 2019-03-29 2020-03-27 Optical film, polarizing plate, and production method for optical film

Country Status (3)

Country Link
JP (1) JPWO2020203833A1 (en)
KR (1) KR20210125543A (en)
WO (1) WO2020203833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145436A1 (en) * 2021-01-04 2022-07-07 株式会社カネカ Method for producing stretched film
CN116046941A (en) * 2022-12-30 2023-05-02 徐州博康信息化学品有限公司 Method for testing residual monomer content in photoresist resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584231A (en) * 1983-12-02 1986-04-22 Vcf Packaging Films, Inc. Solvent cast acrylic film
JP2017155142A (en) * 2016-03-02 2017-09-07 コニカミノルタ株式会社 Acrylic resin film, polarizing plate and liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508038B1 (en) 2011-06-01 2015-04-08 주식회사 엘지화학 Resin composition for optical film and optical film using the same
JP2014133885A (en) 2012-12-14 2014-07-24 Keio Gijuku Acrylic copolymer, optical film, polarizing plate, and liquid crystal display device
JP6468786B2 (en) 2014-10-09 2019-02-13 旭化成株式会社 the film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584231A (en) * 1983-12-02 1986-04-22 Vcf Packaging Films, Inc. Solvent cast acrylic film
JP2017155142A (en) * 2016-03-02 2017-09-07 コニカミノルタ株式会社 Acrylic resin film, polarizing plate and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145436A1 (en) * 2021-01-04 2022-07-07 株式会社カネカ Method for producing stretched film
CN116046941A (en) * 2022-12-30 2023-05-02 徐州博康信息化学品有限公司 Method for testing residual monomer content in photoresist resin

Also Published As

Publication number Publication date
JPWO2020203833A1 (en) 2020-10-08
KR20210125543A (en) 2021-10-18

Similar Documents

Publication Publication Date Title
WO2020203833A1 (en) Optical film, polarizing plate, and production method for optical film
JP7533217B2 (en) Optical film, polarizing plate, and method for manufacturing optical film
JP7314988B2 (en) Optical film, polarizing plate, method for producing optical film
JP7314942B2 (en) Optical films, protective films for polarizers and polarizers
JP7452421B2 (en) Optical film, polarizing plate protective film, optical film roll, and optical film manufacturing method
JP7298617B2 (en) (Meth)acrylic resin film, optical film, method for producing (meth)acrylic resin film
WO2020166682A1 (en) Optical film, polarizing plate, and optical film production method
CN113454502B (en) Optical film mixture, optical film, method for producing optical film, and polarizing plate
KR102596316B1 (en) Polarizers and liquid crystal displays
JP7293691B2 (en) Optical film, polarizing plate, method for producing optical film
JP6940013B2 (en) Resin compositions for optical materials, optical films and display devices
JP2021009178A (en) Optical film and polarization plate
JP7379933B2 (en) Method for producing dope for optical film and method for producing optical film
WO2024122626A1 (en) Acrylic resin powder and film
JP2020071449A (en) Optical film and method of manufacturing polarizing plate using the same
JP2008242426A (en) Manufacturing method of retardation film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512039

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028981

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784564

Country of ref document: EP

Kind code of ref document: A1