WO2024122626A1 - Acrylic resin powder and film - Google Patents

Acrylic resin powder and film Download PDF

Info

Publication number
WO2024122626A1
WO2024122626A1 PCT/JP2023/043936 JP2023043936W WO2024122626A1 WO 2024122626 A1 WO2024122626 A1 WO 2024122626A1 JP 2023043936 W JP2023043936 W JP 2023043936W WO 2024122626 A1 WO2024122626 A1 WO 2024122626A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
film
resin powder
less
parts
Prior art date
Application number
PCT/JP2023/043936
Other languages
French (fr)
Japanese (ja)
Inventor
浩嗣 山田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024122626A1 publication Critical patent/WO2024122626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to acrylic resin powder, a dope solution, a method for producing a dope solution, a film, and a method for producing a film.
  • TAC film triacetyl cellulose (TAC) film has been used as a polarizer protection film for LCD displays.
  • TAC film is highly hygroscopic, and as screens become larger and more highly defined, issues have become apparent in which LCD panels warp during transportation, causing a deterioration in image quality.
  • Patent Document 1 describes an acrylic resin powder used in the production of films by a solution casting method, which contains an acrylic polymer whose constituent units are 30 to 100% by weight of methyl methacrylate units and 0 to 70% by weight of other monomer units copolymerizable therewith, and an ionic emulsifier.
  • the content of the ionic emulsifier is 0.1 to 10 parts by weight per 100 parts by weight of the acrylic polymer.
  • the present invention aims to provide an acrylic resin powder that can suppress foaming marks on films and the loss of transparency in high-temperature, high-humidity environments.
  • the acrylic resin powder described in (1) has a glass transition temperature of 110°C or higher.
  • the acrylic resin powder described in (3) has a structural unit derived from an N-substituted maleimide.
  • a method for producing a dope solution comprising dissolving the acrylic resin powder described in any one of (1) to (8) in a solvent to produce the dope solution.
  • the content of structural units derived from methyl methacrylate in the acrylic resin is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 70% by weight or more, and particularly preferably 80% by weight or more. Furthermore, from the viewpoint of the optical properties and heat resistance of the film, the content of structural units derived from methyl methacrylate in the acrylic resin is preferably 99.9% by weight or less, more preferably 99% by weight or less, even more preferably 97% by weight or less, and particularly preferably 95% by weight or less.
  • the acrylic resin powder of this embodiment is used to manufacture a film by a solution casting method, it is preferable that the other monomers include a drying-accelerating comonomer that can increase the evaporation rate of the solvent.
  • an organic peroxide When an organic peroxide is used as a polymerization initiator, the organic peroxide may be cleaved by thermal decomposition alone to generate radicals, which are then used to polymerize the monomer.
  • an organic peroxide may be combined with an oxidizing agent such as ferrous sulfate and a reducing agent such as sodium formaldehyde sulfoxylate to generate radicals at low temperatures, and the monomer may be polymerized by redox polymerization (see, for example, Japanese Patent No. 3,960,631).
  • the acrylic resin powder of the present embodiment is dissolved in a solvent.
  • the solvent is not particularly limited as long as it is a good solvent for the acrylic resin powder of the present embodiment, and examples of the solvent include chlorine-based organic solvents such as methylene chloride, and non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone, methyl ethyl ketone, and tetrahydrofuran.
  • methylene chloride is preferred from the viewpoint of the solubility of the acrylic resin powder of the present embodiment.
  • the dope solution of this embodiment may further contain, as necessary, known additives such as light stabilizers, ultraviolet absorbers, heat stabilizers, antioxidants, matting agents, light diffusing agents, colorants, dyes, pigments, antistatic agents, heat reflecting materials, lubricants, plasticizers, and fillers, styrene resins such as acrylonitrile-styrene resin and styrene-maleic anhydride resin, fluororesins such as polycarbonate resin, polyvinyl acetal resin, cellulose acylate resin, polyvinylidene fluoride, and polyfluorinated alkyl (meth)acrylate resin, silicone resin, polyolefin resin, polyethylene terephthalate resin, and polybutylene terephthalate resin, and other resins, as well as inorganic fine particles having birefringence (see Patent No. 3648201 and Patent No. 4336586), low molecular weight compounds having birefringence and a molecular weight of
  • the dope solution of this embodiment is produced by dissolving the acrylic resin powder of this embodiment in a solvent.
  • the temperature and pressure can be adjusted as appropriate.
  • post-treatment such as filtration and degassing can be performed as necessary.
  • the thickness of the film of this embodiment is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the film of this embodiment is 5 ⁇ m or more, the handling property and the function as a protective film are improved, and when the thickness is 200 ⁇ m or less, the uniformity of the optical properties and the drying speed are improved.
  • the film of this embodiment contains an acrylic resin, which has a structural unit containing a heterocycle in the main chain, has a glass transition temperature of 110°C or higher, and has a weight average molecular weight of 400,000 or more and 4,000,000 or less.
  • the change in haze ⁇ Hz before and after storage for 96 hours under conditions of 85° C. and 95% RH is 2.5% or less, preferably 2% or less, and more preferably 1.5% or less.
  • ⁇ Hz is 2.5% or less
  • the film of this embodiment can be suitably applied to optical components that require light transparency.
  • the haze Hz is preferably 2% or less, more preferably 1.5% or less, more preferably 1% or less, even more preferably 0.8% or less, even more preferably 0.6% or less, and particularly preferably 0.4% or less.
  • the film of this embodiment can be suitably applied to optical components that require light transparency.
  • the change in yellowness ⁇ YI before and after storage for 96 hours under conditions of 85° C. and 95% RH is 3.5 or less, preferably 3.0 or less, and more preferably 2.0 or less.
  • ⁇ YI is 3.5 or less
  • the film of this embodiment can be suitably applied to optical components that require light transparency.
  • the yellowness index YI is preferably 2.0 or less, more preferably 1.5 or less, more preferably 1.0 or less, even more preferably 0.8 or less, even more preferably 0.65% or less, and particularly preferably 0.5% or less.
  • YI is 2.0 or less, the film of this embodiment can be suitably applied to optical components that require light transparency.
  • the film of this embodiment can be suitably used, for example, as an optical film for displays.
  • optical films for displays include protective films such as polarizer protective films.
  • the film of this embodiment When the film of this embodiment is used as a polarizer protective film, it is preferable that the film of this embodiment has small optical isotropy. In particular, it is preferable that the film of this embodiment has small optical isotropy not only in the in-plane directions (length direction, width direction) but also in the thickness direction.
  • the absolute value of the in-plane retardation of the film of this embodiment is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 3 nm or less.
  • the absolute value of the thickness direction retardation of the film of this embodiment is preferably 50 nm or less, more preferably 20 nm or less, even more preferably 10 nm or less, and particularly preferably 5 nm or less.
  • the retardation is an index value calculated based on birefringence
  • nx, ny, and nz are the refractive indexes in the respective axial directions, where the stretching direction (the orientation direction of the polymer chain) in the plane of the molded article is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis, d is the thickness of the molded article, and nx-ny is the orientation birefringence.)
  • the in-plane retardation (Re) and thickness direction retardation (Rth) are 0.
  • the MD direction of the molded body is taken as the
  • the orientation birefringence of the film of this embodiment is preferably -2.6 x 10 -4 or more and 2.6 x 10 -4 or less, more preferably -1.7 x 10 -4 or more and 1.7 x 10 -4 or less, even more preferably -1.0 x 10 -4 or more and 1.0 x 10 -4 or less, particularly preferably -0.5 x 10 -4 or more and 0.5 x 10 -4 or less, and most preferably -0.2 x 10 -4 or more and 0.2 x 10 -4 or less.
  • the film of this embodiment can be used as an optical film used in liquid crystal displays and the like.
  • the film of this embodiment has a photoelastic constant of preferably -6 x 10 -12 Pa -1 or more and 6 x 10 -12 Pa -1 or less, more preferably -4 x 10 -12 Pa -1 or more and 4 x 10 -12 Pa -1 or less, even more preferably -2 x 10 -12 Pa -1 or more and 2 x 10 -12 Pa -1 or less, even more preferably -1 x 10 -12 Pa -1 or more and 1 x 10 -12 Pa -1 or less, particularly preferably -0.5 x 10 -12 Pa -1 or more and 0.5 x 10 -12 Pa -1 or less, and most preferably -0.2 x 10 -12 Pa -1 or more and 0.2 x 10 -12 Pa -1 or less.
  • the photoelastic constant of the film of this embodiment is -6 ⁇ 10 -12 Pa -1 or more and 6 ⁇ 10 -12 Pa -1 or less, even when the film of this embodiment is subjected to stress and deformed, birefringence is suppressed and optical isotropy is reduced.
  • the film of this embodiment is used as a polarizer protective film, even if the liquid crystal panel is deformed during transportation due to the influence of moisture in the air or temperature, the optical properties are maintained and image quality is less likely to deteriorate.
  • Example 1 In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.6 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while replacing the inside of the reactor with nitrogen. Next, a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor, and then t-BHP (0.006 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.005 parts) were added to the reactor in sequence, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores).
  • BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.5%, and the volume average particle size was 850 ⁇ .
  • a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.037 parts) was continuously added to the reactor over 70 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer.
  • SDSS (0.3 parts) was continuously added to the reactor in conjunction with the addition of the mixture.
  • the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition.
  • SFS 0.0052 parts
  • SDSS 0.2 parts
  • t-BHP 0.005 parts
  • the polymerization conversion rate was 99.9%, and the volume average particle diameter was 1690 ⁇ .
  • the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours to obtain a white acrylic resin powder having a volume average particle diameter of 120 ⁇ m.
  • the volatile component content of the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 791,000.
  • Example 2 A white acrylic resin powder having a volume average particle size of 120 ⁇ m was obtained in the same manner as in Example 1, except that PhMI was replaced with ChMI. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 869,000.
  • the polymerization conversion rate of the latex containing crosslinked polymer particles (core) was 97.0%, and the volume average particle diameter was 700 ⁇ .
  • the polymerization conversion rate of the latex containing the graft copolymer with a core-shell structure was 99.9%, and the volume average particle diameter was 1475 ⁇ .
  • Example 3 In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.3 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while replacing the inside of the reactor with nitrogen. Next, a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor, and then t-BHP (0.009 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.0076 parts) were added to the reactor in sequence, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores).
  • BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.1%, and the volume average particle size was 750 ⁇ .
  • a mixture of MMA (80.6 parts), n-BMA (1 part), PhMI (5 parts), and 2-EHTG (0.029 parts) was continuously added to the reactor over 135 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer.
  • SDSS (0.6 parts) was continuously added to the reactor in conjunction with the addition of the mixture.
  • the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after, 300 rpm 35 minutes after, and 325 rpm 50 minutes after.
  • MMA 5 parts was continuously added to the reactor over 5 minutes, and reacted for 30 minutes to react PhMI in the shell layer.
  • SFS 0.0026 parts
  • t-BHP 0.005 parts
  • the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1610 ⁇ .
  • the latex was evaporated to dryness in a hot air oven at 50°C for 24 hours, and a white acrylic resin powder having a volume average particle diameter of 120 ⁇ m was obtained.
  • the content of volatile components in the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 770,000.
  • Example 4 In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.15 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while the inside of the reactor was replaced with nitrogen. Next, t-BHP (0.024 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.02 parts) were added to the reactor in sequence, and then a mixture of BA (8.5 parts) and ALMA (0.043 parts) was continuously added to the reactor over 20 minutes, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores).
  • deionized water 110 parts
  • sodium hydroxide 0.004 parts
  • SDSS 0.15 parts
  • BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.9%, and the volume average particle size was 775 ⁇ .
  • a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.02 parts) was continuously added to the reactor over 70 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer.
  • SDSS (0.75 parts) was continuously added to the reactor in conjunction with the addition of the mixture.
  • the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition.
  • SFS 0.01 parts
  • SDSS 0.1%
  • t-BHP t-BHP
  • the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1670 ⁇ .
  • the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours to obtain a white acrylic resin powder having a volume average particle diameter of 120 ⁇ m.
  • the volatile component content of the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 753,000.
  • Example 5 In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.2 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 80° C. while the inside of the reactor was replaced with nitrogen. Next, NPS (0.0321 parts) and SFS (0.0005 parts) were added to the reactor in sequence, and then a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor continuously over 20 minutes, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores).
  • NPS 0.0321 parts
  • SFS 0.0005 parts
  • BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.2%, and the volume average particle size was 590 ⁇ .
  • a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.0235 parts) was continuously added to the reactor over 70 minutes to emulsion-polymerize MMA, n-BMA, and PhMI to form a shell layer.
  • SDSS 0.7 parts
  • the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition.
  • EDTA 0.0055 parts
  • FeSO 4 0.0015 parts
  • SFS 0.0077 parts
  • SDSS 0.2 parts
  • t-BHP 0.015 parts
  • the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1310 ⁇ .
  • the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours, and a white acrylic resin powder having a volume average particle diameter of 120 ⁇ m was obtained.
  • the content of volatile components in the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 692,000.
  • BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.5%, and the volume average particle size was 600 ⁇ .
  • a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.02 parts) was continuously added to the reactor over 70 minutes to emulsion-polymerize MMA, n-BMA, and PhMI to form a shell layer.
  • SDSS 0.7 parts
  • the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition.
  • EDTA 0.0055 parts
  • FeSO 4 0.0015 parts
  • SFS 0.0616 parts
  • SDSS 0.02 parts
  • t-BHP t-BHP
  • the polymerization conversion rate was 99.8%, and the volume average particle diameter was 1310 ⁇ .
  • the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours, obtaining a white acrylic resin powder having a volume average particle diameter of 120 ⁇ m.
  • the content of volatile components in the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 683,000.
  • Comparative Example 2 a white acrylic resin powder having a volume average particle size of 120 ⁇ m was obtained in the same manner as in Comparative Example 1, except that the latex containing the graft copolymer having a core-shell structure was cooled to 50° C., and then EDTA (0.025 parts) and sodium hydroxide (0.04 parts) were added to the reactor in that order.
  • the volatile component content of the acrylic resin powder was less than 0.5% by weight.
  • the weight average molecular weight of the acrylic resin powder was 683,000.
  • Comparative Example 3 A white acrylic resin powder having a volume average particle size of 120 ⁇ m was obtained in the same manner as in Comparative Example 1, except that PhMI was replaced with ChMI. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 645,000.
  • the polymerization conversion rate of the latex containing crosslinked polymer particles (core) was 93.5%, and the volume average particle diameter was 500 ⁇ .
  • the polymerization conversion rate of the latex containing the graft copolymer with a core-shell structure was 100.0%, and the volume average particle diameter was 1120 ⁇ .
  • the reactor was heated to 65 ° C., and MMA, 2-EHMA and PhMI were suspension polymerized. At this time, the reactor was heated to 65 ° C. and reached 85 ° C. 100 minutes after it was heated, and then the temperature was gradually lowered. Next, the reactor was heated to 95°C, and the temperature was maintained for 60 minutes to complete the polymerization, and a slurry containing bead-like particles was obtained. At this time, the polymerization conversion rate was 99.5%, and the volume average particle diameter was 50 ⁇ m. Next, the slurry was evaporated to dryness in a hot air oven at 50°C for 24 hours, and a white acrylic resin powder with a volume average particle diameter of 55 ⁇ m was obtained. The content of volatile components in the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 1,900,000.
  • volume average particle size of latex The volume average particle size of the latex was measured by dynamic light scattering using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.).
  • volume average particle size of slurry The volume average particle size of the slurry was measured by a laser diffraction scattering method using a Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • Acrylic resin powder particles were dispersed at a predetermined concentration in water containing a surfactant, and then the volume average particle size of the acrylic resin powder particles was measured by a laser diffraction scattering method using a Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the content of volatile components in the acrylic resin powder particles was measured using a heat-drying moisture meter MX-50 (manufactured by A&D Co., Ltd.) equipped with a straight-tube halogen lamp. Specifically, the content of volatile components in the acrylic resin powder particles was measured using 5 g of acrylic resin powder particles under conditions of a maximum temperature of 130° C. and a measurement accuracy of MID (minimum display 0.01%, 0.05%/min).
  • the weight average molecular weight of the acrylic resin powder was calculated by the standard polystyrene conversion method using gel permeation chromatography (GPC). At this time, a TSK gel Super HZM-H (manufactured by Tosoh) filled with polystyrene crosslinked gel was used as the GPC column, and tetrahydrofuran (THF) was used as the GPC solvent. In addition, as the sample solution, 20 mg of the acrylic resin powder was dissolved in 10 ml of THF, and then filtered through a membrane filter with a pore size of 0.2 ⁇ m. The column temperature of the GPC was set to 40 ° C.
  • Teflon (registered trademark) container After weighing 8 g of acrylic resin powder and 80 g of ultrapure water in a Teflon (registered trademark) container, the Teflon (registered trademark) container was placed in a pressure-resistant container, and the outer lid was closed with a special tool to seal it. Next, the pressure-resistant container was gently shaken, the acrylic resin powder and ultrapure water were mixed, and the pressure-resistant container was placed in a hot air oven at 100 ° C. and heated for 20 hours. Next, the pressure-resistant container was left until it was completely cooled, and then the outer lid was loosened with a special tool to remove the Teflon (registered trademark) container.
  • the liquid in the Teflon (registered trademark) container was sucked out, and then filtered with a membrane filter with a pore size of 0.2 ⁇ m to obtain an aqueous solution (filtrate).
  • the aqueous solution was stored in a thermostatic room at 23 ° C. and 50% RH for 24 hours, and then the electrical conductivity of the aqueous solution was measured using a compact electrical conductivity meter LAQUAtwin EC-33B (manufactured by HORIBA).
  • the acrylic resin powder is crushed until the volume average particle diameter is 100 ⁇ m or more and 250 ⁇ m or less, and then the electrical conductivity of the aqueous solution is measured in the same manner as above.
  • the method for measuring the volume average particle diameter of the acrylic resin powder is the same as described above. Examples of devices for crushing the acrylic resin powder include a mortar and a food cutter.
  • the content of sulfate ions in the aqueous solution used for measuring the electrical conductivity was measured using an ion chromatograph (manufactured by Shimadzu Corporation) under the following measurement conditions: Specifically, the peak area derived from sulfate ions in the aqueous solution was measured, and then the content of sulfate ions (SO 4 2 ⁇ ) was calculated from the ratio to the peak area derived from sulfate ions in a standard solution whose sulfate ion content was known in advance.
  • Acrylic resin powder was added to a mixed solvent of methylene chloride and methanol (weight ratio 8:2) so that the concentration was 10% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution.
  • the dope solution was cast on a glass plate as a support with a thickness of 1.1 mm using a bar coater.
  • the glass plate on which the dope solution was cast was dried at room temperature for 10 minutes, and then the semi-dried film was peeled off from the glass plate.
  • the semi-dried film was cut to a size of 5.5 cm x 5.5 cm, and then dried in a drying oven at 175 ° C.
  • the acrylic resin powder was added to a mixed solvent of methylene chloride and methanol (weight ratio 8:2) so that the concentration was 20% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution.
  • the dope solution was left to stand for 24 hours, degassed, and then cast onto a transparent glass plate as a support.
  • the dope solution was applied in a uniform film shape using an applicator, and the clearance was adjusted so that the thickness of the film for constant temperature and humidity testing was 40 ⁇ m.
  • the transparent glass plate on which the dope solution was cast was dried at room temperature for 8 minutes, and then the semi-dried film was peeled off from the transparent glass plate.
  • the semi-dried film was fixed to a stainless steel frame, and then dried in a hot air oven at 160 ° C for 15 minutes to obtain a film for constant temperature and humidity testing.
  • haze (Hz) The haze (Hz) of the test piece was measured using a haze meter HZ-V3 (manufactured by Suga Test Instruments Co., Ltd.) according to the method described in JIS K7105.
  • the yellowness index (YI) of the test piece was measured in transmission mode using a color meter SC-P (manufactured by Suga Test Instruments Co., Ltd.) according to the method described in JIS K7373.
  • the acrylic resin powder was added to a mixed solvent of methylene chloride and ethanol (weight ratio 9:1) so that the concentration was 10% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution.
  • the dope solution was left to stand for 24 hours, degassed, and then cast onto a PET film as a support. At this time, the dope solution was applied in a uniform film shape using an applicator, and the clearance was adjusted so that the thickness of the dried film was approximately 60 ⁇ m.
  • Cosmoshine A4100 manufactured by Toyobo
  • the PET film on which the dope solution was cast was dried in a dry atmosphere at 40° C. for 1 hour, and then the semi-dried film was peeled off from the PET film.
  • the semi-dried film was fixed to a stainless steel frame, and then dried in a dry atmosphere at 140° C. for 60 minutes to obtain a dry film.
  • the dry film was preheated for 5 minutes at a temperature condition of +10°C relative to the glass transition temperature of the dry film, and then the dry film was uniaxially stretched with a stretching speed of 100 mm/min and a stretching ratio of 1.4 times, with the width fixed, to obtain a film for phase difference measurement with a thickness of 40 ⁇ m.
  • the in-plane retardation Re of the test piece was measured using an automatic birefringence meter KOBRA-WR (manufactured by Oji Measurement Co., Ltd.) under conditions of a wavelength of 590 nm and an incident angle of 0°. At this time, the thickness direction retardation Rth of the test piece was also measured under conditions of an incident angle of 40°. The test piece was moved to change the measurement location and measure the retardation three times each, and the average value was calculated.
  • the Tg of the glass transition temperature measuring film was measured using a differential scanning calorimeter (DSC) Q1000 (manufactured by TA instruments). Specifically, the glass transition temperature measuring film was heated to 200°C at a heating rate of 10°C/min under a nitrogen gas flow, then rapidly cooled to 40°C, and heated again to 200°C at a heating rate of 10°C/min. The average value of the extrapolated glass transition onset temperature and the extrapolated glass transition end temperature was calculated for the glass transition observed during the second heating, and was taken as Tg.
  • DSC differential scanning calorimeter
  • Table 1 shows the evaluation results for the electrical conductivity, Tg, foaming marks on the film, Hz, internal Hz, and phase difference of the acrylic resin powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is an acrylic resin powder, wherein the electrical conductivity at 23°C, 50% RH of an aqueous solution obtained by mixing the acrylic resin powder and ultrapure water in a 1:10 weight ratio, placing the resultant mixture in a pressure-proof container, heating for 20 hours at 100°C, and then filtering, is 300 μS/cm or less and the content of volatile components is less than 1.0 wt%.

Description

アクリル樹脂粉粒体およびフィルムAcrylic resin powder and film
 本発明は、アクリル樹脂粉粒体、ドープ溶液、ドープ溶液の製造方法、フィルムおよびフィルムの製造方法に関する。 The present invention relates to acrylic resin powder, a dope solution, a method for producing a dope solution, a film, and a method for producing a film.
 従来、液晶ディスプレイの偏光子保護フィルムとして、トリアセチルセルロース(TAC)フィルムが使用されている。しかしながら、TACフィルムは、吸湿性が高いため、画面の大型化および高精細化に伴い、輸送中に液晶パネルが反り、画質が低下するという課題が顕在化している。  Traditionally, triacetyl cellulose (TAC) film has been used as a polarizer protection film for LCD displays. However, TAC film is highly hygroscopic, and as screens become larger and more highly defined, issues have become apparent in which LCD panels warp during transportation, causing a deterioration in image quality.
 一方、アクリル樹脂フィルムは、光学特性に優れ、吸湿性が低いため、TACフィルムの代替フィルムとして、注目されている。 On the other hand, acrylic resin film has been attracting attention as an alternative to TAC film due to its excellent optical properties and low moisture absorption.
 特許文献1には、溶液流延法によるフィルムの製造に用いられるアクリル樹脂粉粒体として、メタクリル酸メチル単位30~100重量%、及び、これと共重合可能な他の単量体単位0~70重量%を構成単位とするアクリル系重合体と、イオン系乳化剤とを含む粉粒体が記載されている。ここで、イオン系乳化剤の含有量は、アクリル系重合体100重量部に対して、0.1重量部~10重量部である。 Patent Document 1 describes an acrylic resin powder used in the production of films by a solution casting method, which contains an acrylic polymer whose constituent units are 30 to 100% by weight of methyl methacrylate units and 0 to 70% by weight of other monomer units copolymerizable therewith, and an ionic emulsifier. The content of the ionic emulsifier is 0.1 to 10 parts by weight per 100 parts by weight of the acrylic polymer.
国際公開第2022/124402号International Publication No. 2022/124402
 しかしながら、アクリル樹脂粉粒体には、重合時に使用される吸湿性物質(例えば、硫酸第一鉄・7水和物、ホルムアルデヒドスルホキシル酸ナトリウム、過硫酸ナトリウム、水酸化ナトリウム、エチレンジアミン四酢酸二ナトリウム、無水リン酸水素二ナトリウム等)が含まれる。このため、フィルムの製造時に、支持体の表面に流延したドープ溶液から溶剤が揮発した後に、吸湿性物質に吸着した水分等の極性物質が揮発して、発泡する、すなわち、フィルムに発泡痕が発生する場合がある。また、フィルムを高温高湿環境下で長時間保管すると、フィルムに含まれる吸湿性物質が吸湿するため、フィルムの透明性が低下する場合がある。 However, acrylic resin powder contains hygroscopic substances used during polymerization (e.g., ferrous sulfate heptahydrate, sodium formaldehyde sulfoxylate, sodium persulfate, sodium hydroxide, disodium ethylenediaminetetraacetate, anhydrous disodium hydrogen phosphate, etc.). For this reason, during film production, after the solvent evaporates from the dope solution cast onto the surface of the support, polar substances such as moisture adsorbed to the hygroscopic substances evaporate and foam, i.e., foam marks may appear on the film. In addition, if the film is stored for a long time in a high-temperature, high-humidity environment, the hygroscopic substances contained in the film will absorb moisture, which may reduce the transparency of the film.
 本発明は、フィルムの発泡痕および高温高湿環境下における透明性の低下を抑制することが可能なアクリル樹脂粉粒体を提供することを目的とする。 The present invention aims to provide an acrylic resin powder that can suppress foaming marks on films and the loss of transparency in high-temperature, high-humidity environments.
 (1)アクリル樹脂粉粒体であって、当該アクリル樹脂粉粒体および超純水を重量比1:10で混合した後、耐圧容器に入れて、100℃で20時間加熱した後、ろ過して得られる水溶液の23℃、50%RHにおける電気伝導度が300μS/cm以下であり、揮発性成分の含有率が1.0重量%未満である、アクリル樹脂粉粒体。 (1) An acrylic resin powder that is prepared by mixing the acrylic resin powder with ultrapure water in a weight ratio of 1:10, placing the mixture in a pressure vessel, heating at 100°C for 20 hours, and filtering the mixture to obtain an aqueous solution that has an electrical conductivity of 300 μS/cm or less at 23°C and 50% RH and has a volatile component content of less than 1.0% by weight.
 (2)ガラス転移温度が110℃以上である、(1)に記載のアクリル樹脂粉粒体。 (2) The acrylic resin powder described in (1) has a glass transition temperature of 110°C or higher.
 (3)当該アクリル樹脂粉粒体に含まれるアクリル樹脂は、主鎖に複素環を含む構成単位を有する、(1)または(2)に記載のアクリル樹脂粉粒体。 (3) The acrylic resin powder according to (1) or (2), wherein the acrylic resin contained in the acrylic resin powder has a structural unit containing a heterocycle in the main chain.
 (4)前記アクリル樹脂は、N-置換マレイミドに由来する構成単位を有する、(3)に記載のアクリル樹脂粉粒体。 (4) The acrylic resin powder described in (3) has a structural unit derived from an N-substituted maleimide.
 (5)前記N-置換マレイミドは、N-シクロヘキシルマレイミドまたはN-フェニルマレイミドである、(4)に記載のアクリル樹脂粉粒体。 (5) The acrylic resin powder according to (4), wherein the N-substituted maleimide is N-cyclohexylmaleimide or N-phenylmaleimide.
 (6)前記水溶液は、硫酸イオンの含有率が350ppm以下である、(4)または(5)に記載のアクリル樹脂粉粒体。 (6) The acrylic resin powder according to (4) or (5), wherein the aqueous solution has a sulfate ion content of 350 ppm or less.
 (7)重量平均分子量が40万以上400万以下である、(1)から(6)のいずれか一項に記載のアクリル樹脂粉粒体。 (7) An acrylic resin powder or granule according to any one of (1) to (6), having a weight average molecular weight of 400,000 or more and 4,000,000 or less.
 (8)溶液流延法によるフィルムの製造に用いられる、(1)から(7)のいずれか一項に記載のアクリル樹脂粉粒体。 (8) An acrylic resin powder or granule described in any one of (1) to (7) for use in the production of a film by a solution casting method.
 (9)(1)から(8)のいずれか一項に記載のアクリル樹脂粉粒体が溶剤に溶解している、ドープ溶液。 (9) A dope solution in which the acrylic resin powder particles described in any one of (1) to (8) are dissolved in a solvent.
 (10)(1)から(8)のいずれか一項に記載のアクリル樹脂粉粒体を溶剤に溶解させて、ドープ溶液を製造する、ドープ溶液の製造方法。 (10) A method for producing a dope solution, comprising dissolving the acrylic resin powder described in any one of (1) to (8) in a solvent to produce the dope solution.
 (11)(9)に記載のドープ溶液を支持体の表面に流延した後、前記溶剤を揮発させて製造される、フィルム。 (11) A film produced by casting the dope solution described in (9) onto the surface of a support and then volatilizing the solvent.
 (12)(9)に記載のドープ溶液を支持体の表面に流延した後、前記溶剤を揮発させて、フィルムを製造する、フィルムの製造方法。 (12) A method for producing a film, comprising casting the dope solution described in (9) onto the surface of a support, and then volatilizing the solvent to produce a film.
 (13)アクリル樹脂を含み、前記アクリル樹脂は、主鎖に複素環を含む構成単位を有し、ガラス転移温度が110℃以上であり、重量平均分子量が40万以上400万以下であり、厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後のヘイズの変化ΔHzが2.5%以下であり、厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後の黄色度の変化ΔYIが3.5以下である、フィルム。 (13) A film containing an acrylic resin, the acrylic resin having a structural unit containing a heterocycle in the main chain, a glass transition temperature of 110°C or higher, a weight average molecular weight of 400,000 or more and 4,000,000 or less, a change in haze ΔHz before and after storage for 96 hours at 85°C and 95% RH when the film has a thickness of 40 μm being 2.5% or less, and a change in yellowness ΔYI before and after storage for 96 hours at 85°C and 95% RH when the film has a thickness of 40 μm being 3.5 or less.
 (14)厚みが40μmである場合のヘイズHzが2%以下であり、厚みが40μmである場合の黄色度YIが2.0以下である、(13)に記載のフィルム。 (14) The film described in (13) has a haze Hz of 2% or less when the thickness is 40 μm, and a yellowness index YI of 2.0 or less when the thickness is 40 μm.
 (15)前記アクリル樹脂は、N-置換マレイミドに由来する構成単位を有する、(13)または(14)に記載のフィルム。 (15) The film according to (13) or (14), in which the acrylic resin has a structural unit derived from an N-substituted maleimide.
 (16)前記N-置換マレイミドは、N-シクロヘキシルマレイミドまたはN-フェニルマレイミドである、(15)に記載のフィルム。 (16) The film according to (15), wherein the N-substituted maleimide is N-cyclohexylmaleimide or N-phenylmaleimide.
 本発明によれば、フィルムの発泡痕および高温高湿環境下における透明性の低下を抑制することが可能なアクリル樹脂粉粒体を提供することができる。 The present invention provides an acrylic resin powder that can suppress foaming marks on the film and the loss of transparency in high-temperature, high-humidity environments.
 以下、本発明の実施形態について説明する。 The following describes an embodiment of the present invention.
 (アクリル樹脂粉粒体)
 本実施形態のアクリル樹脂粉粒体は、例えば、溶液流延法によるフィルムの製造に用いられ、揮発性成分の含有率が1.0重量%未満である。中でも揮発性成分の含有率が0.5重量%未満であることが好ましい。本実施形態のアクリル樹脂粉粒体および超純水を重量比1:10で混合した後、耐圧容器に入れて、100℃で20時間加熱した後、ろ過して得られる水溶液の23℃、50%RHにおける電気伝導度は、300μS/cm以下である。上記水溶液の23℃、50%RHにおける電気伝導度が300μS/cm以下であると、本実施形態のアクリル樹脂粉粒体中の吸湿性物質の含有量が少なくなるため、フィルムの発泡痕および高温高湿環境下における透明性の低下を抑制することができる。フィルムの発泡痕および高温高湿環境下での透明性の低下をより抑制する観点から、上記水溶液の23℃、50%RHにおける電気伝導度は、300μS/cm未満であることが好ましく、290μS/cm以下であることがより好ましく、280μS/cm以下であることがさらに好ましく、260μS/cm以下であることが特に好ましい。
(Acrylic resin powder)
The acrylic resin powder of the present embodiment is used, for example, in the production of a film by a solution casting method, and has a volatile component content of less than 1.0% by weight. In particular, the volatile component content is preferably less than 0.5% by weight. The acrylic resin powder of the present embodiment and ultrapure water are mixed in a weight ratio of 1:10, placed in a pressure-resistant container, heated at 100° C. for 20 hours, and then filtered to obtain an aqueous solution having an electrical conductivity of 300 μS/cm or less at 23° C. and 50% RH. If the electrical conductivity of the aqueous solution at 23° C. and 50% RH is 300 μS/cm or less, the content of the hygroscopic substance in the acrylic resin powder of the present embodiment is reduced, and therefore, foaming marks on the film and a decrease in transparency in a high-temperature and high-humidity environment can be suppressed. From the viewpoint of further suppressing foaming marks on the film and a decrease in transparency in a high-temperature and high-humidity environment, the electrical conductivity of the above aqueous solution at 23°C and 50% RH is preferably less than 300 μS/cm, more preferably 290 μS/cm or less, even more preferably 280 μS/cm or less, and particularly preferably 260 μS/cm or less.
 本明細書および特許請求の範囲において、アクリル樹脂とは、アクリロイル基を有する単量体および/またはメタクリロイル基を有する単量体の重合体を意味する。このとき、アクリル樹脂は、単独重合体および共重合体のいずれであってもよい。アクリル樹脂が共重合体である場合、アクリル樹脂は、アクリロイル基またはメタクリロイル基を有しない単量体の共重合体であってもよい。 In this specification and claims, acrylic resin means a polymer of a monomer having an acryloyl group and/or a monomer having a methacryloyl group. In this case, the acrylic resin may be either a homopolymer or a copolymer. When the acrylic resin is a copolymer, it may be a copolymer of a monomer not having an acryloyl group or a methacryloyl group.
 また、粉粒体とは、体積平均粒子径が0.01mm以上0.1mm未満である粉体、および/または、体積平均粒子径が0.1mm以上10mm未満である粒体を意味する。 Also, powder and granules refer to powders with a volume average particle diameter of 0.01 mm or more and less than 0.1 mm, and/or granules with a volume average particle diameter of 0.1 mm or more and less than 10 mm.
 本実施形態のアクリル樹脂粉粒体のガラス転移温度は、フィルムの耐熱性の観点から、110℃以上であることが好ましく、114℃以上であることがより好ましく、115℃以上であることがさらに好ましく、117℃以上であることがさらにより好ましく、119℃以上であることがさらにより好ましく、120℃以上であることがさらにより好ましく、121℃以上であることがさらにより好ましく、122℃以上であることがさらにより好ましく、125℃以上であることが特に好ましく、126℃以上であることが最も好ましい。 From the viewpoint of heat resistance of the film, the glass transition temperature of the acrylic resin powder particles of this embodiment is preferably 110°C or higher, more preferably 114°C or higher, even more preferably 115°C or higher, even more preferably 117°C or higher, even more preferably 119°C or higher, even more preferably 120°C or higher, even more preferably 121°C or higher, even more preferably 122°C or higher, particularly preferably 125°C or higher, and most preferably 126°C or higher.
 本実施形態のアクリル樹脂粉粒体の重量平均分子量は、フィルムの強靭性および製膜性の観点から、40万以上400万以下であることが好ましく、50万以上350万以下であることがより好ましく、50万以上300万以下であることがさらにより好ましく、60万以上300万以下であることが特に好ましい。また、本実施形態のアクリル樹脂粉粒体の重量平均分子量は、50万以上250万以下であってもよく、50万以上200万以下であってもよい。さらに、本実施形態のアクリル樹脂粉粒体の重量平均分子量は、70万以上であってもよく、80万以上であってもよい。 From the viewpoint of film toughness and film formability, the weight average molecular weight of the acrylic resin powder of this embodiment is preferably 400,000 or more and 4,000,000 or less, more preferably 500,000 or more and 3,500,000 or less, even more preferably 500,000 or more and 3,000,000 or less, and particularly preferably 600,000 or more and 3,000,000 or less. The weight average molecular weight of the acrylic resin powder of this embodiment may be 500,000 or more and 2,500,000 or less, or may be 500,000 or more and 2,000,000 or less. The weight average molecular weight of the acrylic resin powder of this embodiment may be 700,000 or more, or may be 800,000 or more.
 本実施形態のアクリル樹脂粉粒体は、フィルムの発泡痕の抑制の観点から、イオン系乳化剤を含むことが好ましい。 The acrylic resin powder of this embodiment preferably contains an ionic emulsifier from the viewpoint of suppressing foaming marks on the film.
 (アクリル樹脂)
 本実施形態のアクリル樹脂粉粒体を構成するアクリル樹脂は、例えば、メタクリル酸メチルに由来する構成単位の含有率が30重量%以上であり、メタクリル酸メチルと共重合することが可能な他の単量体(以下、他の単量体という。)に由来する構成単位の含有率が70重量%以下である。
(acrylic resin)
The acrylic resin constituting the acrylic resin powder of this embodiment has, for example, a content of structural units derived from methyl methacrylate of 30% by weight or more and a content of structural units derived from other monomers capable of copolymerizing with methyl methacrylate (hereinafter referred to as other monomers) of 70% by weight or less.
 フィルムの外観および耐候性の観点から、アクリル樹脂中のメタクリル酸メチルに由来する構成単位の含有率は、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましく、80重量%以上であることが特に好ましい。また、フィルムの光学特性および耐熱性の観点から、アクリル樹脂中のメタクリル酸メチルに由来する構成単位の含有率は、99.9重量%以下であることが好ましく、99重量%以下であることがより好ましく、97重量%以下であることがさらに好ましく、95重量%以下であることが特に好ましい。 From the viewpoint of the appearance and weather resistance of the film, the content of structural units derived from methyl methacrylate in the acrylic resin is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 70% by weight or more, and particularly preferably 80% by weight or more. Furthermore, from the viewpoint of the optical properties and heat resistance of the film, the content of structural units derived from methyl methacrylate in the acrylic resin is preferably 99.9% by weight or less, more preferably 99% by weight or less, even more preferably 97% by weight or less, and particularly preferably 95% by weight or less.
 なお、アクリル樹脂は、分子内に2個以上の重合性官能基を有する多官能性単量体に由来する構成単位を含んでいてもよい。 The acrylic resin may contain structural units derived from a polyfunctional monomer having two or more polymerizable functional groups in the molecule.
 他の単量体としては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ベンジル、メタクリル酸オクチル、メタクリル酸ステアリル、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸ジメチルアミノエチル、メタクリル酸2-ヒドロキシルエチル、メタクリル酸2-ヒドロキシルプロピル、メタクリル酸ジシクロペンタニル、メタクリル酸2,2,2-トリフルオロエチル、メタクリル酸2,2,2-トリクロロエチル、メタクリル酸イソボルニル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等の、エステル部位の炭素数が1~20である(メタ)アクリル酸エステル(ただし、メタクリル酸メチルを除く。);メタクリルアミド、N-メチロールメタクリルアミド、アクリルアミド、N-メチロールアクリルアミド等の(メタ)アクリルアミド;メタクリル酸、アクリル酸等のカルボン酸類およびその塩;アクリロニトリル、メタクリロニトリル等のビニルシアン;スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン;N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-メチルマレイミド等のN-置換マレイミド;マレイン酸、フマル酸およびそれらのエステル類;塩化ビニル、臭化ビニル、クロロプレン等のハロゲン化ビニル類;蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレン等のアルケン類等が挙げられ、二種以上を併用してもよい。これらの中でも、エステル部位の炭素数が1~20である(メタ)アクリル酸エステル(ただし、メタクリル酸メチルを除く。)、ビニルアレーンおよびN-置換マレイミドが好ましく、エステル部位の炭素数が1~20である(メタ)アクリル酸エステル(ただし、メタクリル酸メチルを除く。)およびN-置換マレイミドが特に好ましい。 Other monomers include, for example, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, benzyl methacrylate, octyl methacrylate, stearyl methacrylate, glycidyl methacrylate, epoxycyclohexylmethyl methacrylate, dimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, dicyclopentanyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, isobornyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, glycidyl acrylate, epoxycyclohexylmethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, etc. Examples of the vinyl are (meth)acrylic acid esters having 1 to 20 carbon atoms in the ester moiety (excluding methyl methacrylate); (meth)acrylamides such as methacrylamide, N-methylol methacrylamide, acrylamide, and N-methylol acrylamide; carboxylic acids and salts thereof such as methacrylic acid and acrylic acid; vinyl cyanides such as acrylonitrile and methacrylonitrile; vinyl arenes such as styrene, α-methylstyrene, monochlorostyrene, and dichlorostyrene; N-substituted maleimides such as N-phenylmaleimide, N-cyclohexylmaleimide, and N-methylmaleimide; maleic acid, fumaric acid, and esters thereof; vinyl halides such as vinyl chloride, vinyl bromide, and chloroprene; vinyl esters such as vinyl formate, vinyl acetate, and vinyl propionate; and alkenes such as ethylene, propylene, butylene, butadiene, and isobutylene. Two or more of these may be used in combination. Among these, (meth)acrylic acid esters (excluding methyl methacrylate) having 1 to 20 carbon atoms in the ester moiety, vinylarenes, and N-substituted maleimides are preferred, and (meth)acrylic acid esters (excluding methyl methacrylate) having 1 to 20 carbon atoms in the ester moiety and N-substituted maleimides are particularly preferred.
 ここで、他の単量体として、N-置換マレイミドを使用する場合に、重合開始剤として、過硫酸塩を使用すると、フィルムの黄色度の変化が大きくなる場合がある。このため、前述した23℃、50%RHにおける電気伝導度の測定に使用される水溶液中の硫酸イオンの含有率は、350ppm以下であることが好ましく、150ppm以下であることがさらに好ましく、100ppm以下であることが特に好ましい。ここで、硫酸イオンは、過硫酸塩が加水分解して生成する。 Here, when an N-substituted maleimide is used as the other monomer, using a persulfate as the polymerization initiator may result in a large change in the yellowness of the film. For this reason, the content of sulfate ions in the aqueous solution used to measure the electrical conductivity at 23°C and 50% RH described above is preferably 350 ppm or less, more preferably 150 ppm or less, and particularly preferably 100 ppm or less. Here, sulfate ions are generated by hydrolysis of persulfate.
 本実施形態のアクリル樹脂粉粒体は、溶液流延法によるフィルムの製造に用いられるため、他の単量体は、溶剤の揮発速度を高くすることが可能な乾燥促進性コモノマーを含むことが好ましい。 Since the acrylic resin powder of this embodiment is used to manufacture a film by a solution casting method, it is preferable that the other monomers include a drying-accelerating comonomer that can increase the evaporation rate of the solvent.
 乾燥促進性コモノマーとしては、N-置換マレイミド、エステル部位が炭素数2~8の第一級もしくは第二級炭化水素基、または芳香族系炭化水素基であるメタクリル酸エステル、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル、エステル部位がエーテル結合を含む直鎖状または分岐鎖状の基であるメタクリル酸エステル、ビニルアレーン等が挙げられ、二種以上を併用してもよい。乾燥促進性コモノマーを用いると、アクリル樹脂の耐熱性が高くなるとともに、フィルムの製造時に、支持体の表面に流延したドープ溶液から溶剤が揮発する速度が高くなる。 Drying-accelerating comonomers include N-substituted maleimides, methacrylic acid esters in which the ester moiety is a primary or secondary hydrocarbon group having 2 to 8 carbon atoms or an aromatic hydrocarbon group, methacrylic acid esters in which the ester moiety is a saturated hydrocarbon group having 7 to 16 carbon atoms and a condensed ring structure, methacrylic acid esters in which the ester moiety is a linear or branched group containing an ether bond, vinyl arenes, etc., and two or more of these may be used in combination. The use of drying-accelerating comonomers increases the heat resistance of the acrylic resin and also increases the rate at which the solvent evaporates from the dope solution cast onto the surface of the support during film production.
 N-置換マレイミドとしては、例えば、N-フェニルマレイミド、N-ベンジルマレイミド、N-シクロヘキシルマレイミド、N-メチルマレイミド等が挙げられる。これらの中でも、N-フェニルマレイミドおよびN-シクロヘキシルマレイミドが好ましい。 Examples of N-substituted maleimides include N-phenylmaleimide, N-benzylmaleimide, N-cyclohexylmaleimide, and N-methylmaleimide. Among these, N-phenylmaleimide and N-cyclohexylmaleimide are preferred.
 エステル部位が炭素数2~8の第一級もしくは第二級炭化水素基、または芳香族系炭化水素基であるメタクリル酸エステルとしては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸フェニル、メタクリル酸ベンジル等が挙げられる。これらの中でも、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシルおよびメタクリル酸ベンジルが好ましい。 Methacrylic acid esters in which the ester moiety is a primary or secondary hydrocarbon group having 2 to 8 carbon atoms, or an aromatic hydrocarbon group, include, for example, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, phenyl methacrylate, and benzyl methacrylate. Among these, ethyl methacrylate, n-butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, and benzyl methacrylate are preferred.
 エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステルとしては、例えば、メタクリル酸ジシクロペンタニル、メタクリル酸イソボルニル等が挙げられる。飽和炭化水素基の炭素数は、8~14であることが好ましく、9~12であることがより好ましい。また、縮合環構造は、連続する3つの炭素原子によって2つの五員環が縮環した構造であることが好ましい。 Examples of methacrylic acid esters in which the ester moiety is a saturated hydrocarbon group having 7 to 16 carbon atoms and a condensed ring structure include dicyclopentanyl methacrylate and isobornyl methacrylate. The saturated hydrocarbon group preferably has 8 to 14 carbon atoms, and more preferably has 9 to 12 carbon atoms. The condensed ring structure is preferably a structure in which two five-membered rings are condensed by three consecutive carbon atoms.
 エステル部位がエーテル結合を含む直鎖状または分岐鎖状の基であるメタクリル酸エステルとしては、例えば、メタクリル酸2-メトキシエチル等が挙げられる。 An example of a methacrylic acid ester in which the ester moiety is a linear or branched group containing an ether bond is 2-methoxyethyl methacrylate.
 ビニルアレーンとしては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等が挙げられる。これらの中でも、スチレンが好ましい。 Vinyl arenes include, for example, styrene, α-methylstyrene, monochlorostyrene, dichlorostyrene, etc. Among these, styrene is preferred.
 アクリル樹脂中の他の単量体に由来する構成単位の含有率は、50重量%以下であることが好ましく、40重量%以下であることがより好ましく、30重量%以下であることがさらに好ましく、20重量%以下であることが特に好ましい。一方、フィルムの光学特性および耐熱性を調整できることから、アクリル樹脂中の他の単量体に由来する構成単位の含有率は、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、3重量%以上であることがさらに好ましく、5重量%以上であることが特に好ましい。 The content of structural units derived from other monomers in the acrylic resin is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 30% by weight or less, and particularly preferably 20% by weight or less. On the other hand, since the optical properties and heat resistance of the film can be adjusted, the content of structural units derived from other monomers in the acrylic resin is preferably 0.1% by weight or more, more preferably 1% by weight or more, even more preferably 3% by weight or more, and particularly preferably 5% by weight or more.
 アクリル樹脂は、フィルムの耐熱性の観点から、主鎖に複素環を含む構成単位を有することが好ましい。複素環としては、例えば、グルタルイミド環、ラクトン環、無水マレイン酸環、マレイミド環、無水グルタル酸環等が挙げられ、二種以上を併用してもよい。これらの中でも、フィルムの耐熱性および光学特性の観点から、グルタルイミド環、ラクトン環およびマレイミド環が好ましい。 From the viewpoint of the heat resistance of the film, it is preferable that the acrylic resin has a structural unit containing a heterocycle in the main chain. Examples of heterocycles include glutarimide rings, lactone rings, maleic anhydride rings, maleimide rings, glutaric anhydride rings, etc., and two or more of them may be used in combination. Among these, from the viewpoint of the heat resistance and optical properties of the film, glutarimide rings, lactone rings, and maleimide rings are preferred.
 (アクリル樹脂の重合方法)
 アクリル樹脂を構成する単量体の重合方法としては、特に限定されないが、アクリル樹脂の構造設計の自由度や、重合の簡便さ、生産性等の観点から、乳化重合法および懸濁重合法が好ましい。ここで、他の単量体として、N-置換マレイミドを使用する場合は、重合せずに残存したN-置換マレイミドが加水分解してアクリル樹脂が着色する傾向にあるが、N-置換マレイミドの残存量の低減の観点から、乳化重合法が好ましい。このとき、N-置換マレイミドを、アクリル樹脂を構成するN-置換マレイミド以外の単量体と予め溶解混合した混合物を反応器に供給して反応させてもよい。また、N-置換マレイミドを、アクリル樹脂を構成するN-置換マレイミド以外の単量体が含まれる反応器に直接供給し、反応器内で溶解混合して反応させてもよい。ここで、N-置換マレイミドとアクリル樹脂を構成するN-置換マレイミド以外の単量体を溶解混合した混合物を、そのまま反応器に供給して反応させてもよい。ただし、例えば、N-置換マレイミドとアクリル樹脂を構成するN-置換マレイミド以外の単量体の重合反応性が低い場合は、N-置換マレイミドが残存しやすい傾向がある。このため、混合物を反応器に供給して反応させた後に、更にアクリル樹脂を構成するN-置換マレイミド以外の単量体を供給して反応させることで、効果的にN-置換マレイミドを重合することができ、アクリル樹脂が着色する原因であるN-置換マレイミドの残存量を低減することができる。
(Acrylic resin polymerization method)
The polymerization method of the monomers constituting the acrylic resin is not particularly limited, but from the viewpoints of the degree of freedom in the structural design of the acrylic resin, the ease of polymerization, productivity, etc., emulsion polymerization and suspension polymerization are preferred. Here, when N-substituted maleimide is used as the other monomer, the N-substituted maleimide remaining without polymerization tends to hydrolyze and color the acrylic resin, but from the viewpoint of reducing the amount of remaining N-substituted maleimide, emulsion polymerization is preferred. At this time, a mixture in which the N-substituted maleimide and a monomer other than the N-substituted maleimide constituting the acrylic resin are dissolved and mixed in advance may be supplied to a reactor and reacted. In addition, the N-substituted maleimide may be directly supplied to a reactor containing a monomer other than the N-substituted maleimide constituting the acrylic resin, and dissolved and mixed in the reactor and reacted. Here, a mixture in which the N-substituted maleimide and a monomer other than the N-substituted maleimide constituting the acrylic resin are dissolved and mixed may be supplied directly to a reactor and reacted. However, for example, when the polymerization reactivity of the N-substituted maleimide with a monomer other than the N-substituted maleimide constituting the acrylic resin is low, the N-substituted maleimide tends to remain. Therefore, by supplying the mixture to a reactor and reacting it, and then supplying a monomer other than the N-substituted maleimide constituting the acrylic resin and reacting it, the N-substituted maleimide can be effectively polymerized, and the amount of remaining N-substituted maleimide, which is the cause of coloring of the acrylic resin, can be reduced.
 アクリル樹脂は、フィルムの発泡痕の抑制の観点から、イオン系乳化剤の存在下で、単量体を乳化重合して製造されることが好ましい。このとき、イオン系乳化剤を一括添加してもよいし、逐次添加してもよい。例えば、イオン系乳化剤の存在下で、単量体を乳化重合して得られるラテックスを洗浄せずに、乾燥させると、イオン系乳化剤を含むアクリル樹脂粉粒体が得られる。 In order to prevent foaming marks on the film, it is preferable that the acrylic resin is produced by emulsion polymerization of the monomers in the presence of an ionic emulsifier. In this case, the ionic emulsifier may be added all at once or gradually. For example, if the latex obtained by emulsion polymerization of the monomers in the presence of an ionic emulsifier is dried without washing, an acrylic resin powder containing the ionic emulsifier is obtained.
 イオン系乳化剤は、カチオン系乳化剤、アニオン系乳化剤および両性乳化剤のいずれであってもよいが、アニオン系乳化剤であることが好ましい。 The ionic emulsifier may be any of a cationic emulsifier, an anionic emulsifier, and an amphoteric emulsifier, but is preferably an anionic emulsifier.
 アニオン系乳化剤としては、例えば、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、α-オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン塩等が挙げられる。これらの中でも、フィルムの発泡痕の抑制および乳化重合の重合安定性の観点から、ジアルキルスルホコハク酸塩およびアルキルベンゼンスルホン酸塩が好ましい。 Examples of anionic emulsifiers include dialkyl sulfosuccinates, alkanesulfonates, α-olefinsulfonates, alkylbenzenesulfonates, naphthalenesulfonate-formaldehyde condensates, alkylnaphthalenesulfonates, N-methyl-N-acyltaurate salts, etc. Among these, dialkyl sulfosuccinates and alkylbenzenesulfonates are preferred from the viewpoints of suppressing foam marks on the film and improving polymerization stability in emulsion polymerization.
 アニオン系乳化剤としては、例えば、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。これらの中でも、フィルムの発泡痕の観点から、リチウム塩、ナトリウム塩およびカリウム塩が好ましい。 Examples of anionic emulsifiers include lithium salts, sodium salts, potassium salts, calcium salts, and magnesium salts. Among these, lithium salts, sodium salts, and potassium salts are preferred from the viewpoint of foaming marks on the film.
 単量体に対するイオン系乳化剤の重量比は、0.1%以上10%以下であることが好ましく、0.3%以上7%以下であることがより好ましく、0.4%以上6%以下であることがさらに好ましく、0.5%以上5%以下であることがより更に好ましく、0.8%以上3%以下であることが特に好ましく、1%以上3%以下であることが最も好ましい。単量体に対するイオン系乳化剤の重量比が10%以下であると、フィルムの発泡痕が抑制され、10%以下であると、乳化重合の重合安定性が向上する。 The weight ratio of the ionic emulsifier to the monomer is preferably 0.1% to 10%, more preferably 0.3% to 7%, even more preferably 0.4% to 6%, even more preferably 0.5% to 5%, particularly preferably 0.8% to 3%, and most preferably 1% to 3%. When the weight ratio of the ionic emulsifier to the monomer is 10% or less, foaming marks on the film are suppressed, and when it is 10% or less, the polymerization stability of the emulsion polymerization is improved.
 単量体を重合する際に、重合開始剤を使用することができる。重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩;t-ブチルハイドロパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ビス(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物等が挙げられる。 When polymerizing the monomers, a polymerization initiator can be used. Examples of polymerization initiators include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate; and organic peroxides such as t-butyl hydroperoxide, t-butylperoxyisopropyl carbonate, cumene hydroperoxide, p-menthane hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, bis(3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, and benzoyl peroxide.
 重合開始剤として、有機過酸化物を使用する場合は、熱分解機構のみで有機過酸化物を開裂させてラジカルを発生させて、単量体を重合してもよい。また、硫酸第一鉄等の酸化剤およびホルムアルデヒドスルホキシル酸ナトリウム等の還元剤と有機過酸化物を組み合わせて、低温でラジカルを発生させて、単量体をレドックス重合してもよい(例えば、特許第3960631号公報参照)。 When an organic peroxide is used as a polymerization initiator, the organic peroxide may be cleaved by thermal decomposition alone to generate radicals, which are then used to polymerize the monomer. Alternatively, an organic peroxide may be combined with an oxidizing agent such as ferrous sulfate and a reducing agent such as sodium formaldehyde sulfoxylate to generate radicals at low temperatures, and the monomer may be polymerized by redox polymerization (see, for example, Japanese Patent No. 3,960,631).
 単量体を重合する際に、アクリル樹脂の分子量を調整するために、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、アルキルメルカプタン、アルキルサルファイド、アルキルジサルファイド、チオグリコール酸2-エチルヘキシル等のチオグリコール酸エステル;α-メチルスチレンダイマー、β-メルカプトプロピオン酸等のメルカプト酸;ベンジルメルカプタン、チオフェノール、チオクレゾール、チオナフトール等の芳香族メルカプタン等が挙げられる。 When polymerizing the monomers, a chain transfer agent may be used to adjust the molecular weight of the acrylic resin. Examples of chain transfer agents include thioglycolic acid esters such as alkyl mercaptans, alkyl sulfides, alkyl disulfides, and 2-ethylhexyl thioglycolate; mercapto acids such as α-methylstyrene dimer and β-mercaptopropionic acid; and aromatic mercaptans such as benzyl mercaptan, thiophenol, thiocresol, and thionaphthol.
 (グラフト共重合体)
 本実施形態のアクリル樹脂粉粒体を構成するアクリル樹脂は、コア・シェル構造を有するグラフト共重合体であってもよい。これにより、フィルムの耐折り曲げ性、耐割れ性等の機械的強度が高くなる。
(Graft Copolymer)
The acrylic resin constituting the acrylic resin powder of the present embodiment may be a graft copolymer having a core-shell structure, which increases the mechanical strength of the film, such as bending resistance and crack resistance.
 コア・シェル構造を有するグラフト共重合体は、例えば、架橋重合体粒子(コア層)の存在下で、単量体組成物を重合してシェル層を形成することにより得られる。コア層およびシェル層は、それぞれ1層から構成されてもよいし、2層以上から構成されてもよい。コア・シェル構造を有するグラフト共重合体の製造方法としては、特に限定されないが、例えば、アクリル酸エステルを主成分とする単量体組成物を架橋剤の存在下で重合させて、ゴム状重合体粒子を形成した後、メタクリル酸エステルを主成分とする単量体組成物を重合する方法等が挙げられる。 A graft copolymer having a core-shell structure can be obtained, for example, by polymerizing a monomer composition in the presence of crosslinked polymer particles (core layer) to form a shell layer. The core layer and shell layer may each be composed of one layer, or two or more layers. There are no particular limitations on the method for producing a graft copolymer having a core-shell structure, but examples include a method in which a monomer composition mainly composed of an acrylic acid ester is polymerized in the presence of a crosslinking agent to form rubber-like polymer particles, and then a monomer composition mainly composed of a methacrylic acid ester is polymerized.
 コア・シェル構造を有するグラフト共重合体は、例えば、単量体組成物を乳化重合することにより得られるが、フィルムの発泡痕の抑制の観点から、イオン系乳化剤の存在下で単量体組成物を乳化重合することが好ましい。これにより、コア・シェル構造を有するグラフト共重合体粒子の相互凝集が抑制されるため、分散状態が良好であることに加え、ドープ溶液の経時安定性が向上する。 A graft copolymer having a core-shell structure can be obtained, for example, by emulsion polymerization of a monomer composition. From the viewpoint of suppressing foaming marks on the film, it is preferable to emulsion polymerize the monomer composition in the presence of an ionic emulsifier. This suppresses mutual aggregation of the graft copolymer particles having a core-shell structure, resulting in a good dispersion state and improved stability over time of the dope solution.
 (ドープ溶液)
 本実施形態のドープ溶液は、本実施形態のアクリル樹脂粉粒体が溶剤に溶解している。溶剤としては、本実施形態のアクリル樹脂粉粒体の良溶媒であれば、特に限定されないが、例えば、塩化メチレン等の塩素系有機溶媒、酢酸メチル、酢酸エチル、アセトン、メチルエチルケトン、テトラヒドロフラン等の非塩素系有機溶媒等が挙げられる。これらの中でも、本実施形態のアクリル樹脂粉粒体の溶解性の観点から、塩化メチレンが好ましい。
(Dope solution)
In the dope solution of the present embodiment, the acrylic resin powder of the present embodiment is dissolved in a solvent. The solvent is not particularly limited as long as it is a good solvent for the acrylic resin powder of the present embodiment, and examples of the solvent include chlorine-based organic solvents such as methylene chloride, and non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone, methyl ethyl ketone, and tetrahydrofuran. Among these, methylene chloride is preferred from the viewpoint of the solubility of the acrylic resin powder of the present embodiment.
 溶剤は、アルコールを含むことが好ましい。アルコールは、本実施形態のアクリル樹脂粉粒体の貧溶媒であるが、本実施形態のドープ溶液の乾燥効率が高くなることに加え、偏光子等の他基材とのフィルムの密着性が高くなる。アルコールとしては、特に限定されないが、例えば、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコール等が挙げられる。これらの中でも、エタノールおよびメタノールが好ましい。 The solvent preferably contains alcohol. Alcohol is a poor solvent for the acrylic resin powder of this embodiment, and not only does it increase the drying efficiency of the dope solution of this embodiment, but it also increases the adhesion of the film to other substrates such as a polarizer. The alcohol is not particularly limited, but examples include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. Among these, ethanol and methanol are preferred.
 溶剤中のアルコールの含有率は、1重量%以上25重量%以下であることが好ましく、2重量%以上20重量%以下であることがより好ましく、3重量%以上15重量%以下であることがさらに好ましい。 The alcohol content in the solvent is preferably 1% by weight or more and 25% by weight or less, more preferably 2% by weight or more and 20% by weight or less, and even more preferably 3% by weight or more and 15% by weight or less.
 本実施形態のドープ溶液は、必要に応じて、光安定剤、紫外線吸収剤、熱安定剤、酸化防止剤、艶消し剤、光拡散剤、着色剤、染料、顔料、帯電防止剤、熱線反射材、滑剤、可塑剤、フィラー等の公知の添加剤、アクリロニトリル・スチレン樹脂、スチレン・無水マレイン酸樹脂等のスチレン樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、セルロースアシレート樹脂、ポリフッ化ビニリデン、ポリフッ化アルキル(メタ)アクリレート樹脂等のフッ素樹脂、シリコーン樹脂、ポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等、その他の樹脂、また、複屈折性を有する無機微粒子(特許第3648201号公報、特許第4336586号公報参照)、複屈折性を有する、分子量5000以下、好ましくは、1000以下の低分子化合物(特許第3696649号公報参照)等をさらに含んでいてもよい。 The dope solution of this embodiment may further contain, as necessary, known additives such as light stabilizers, ultraviolet absorbers, heat stabilizers, antioxidants, matting agents, light diffusing agents, colorants, dyes, pigments, antistatic agents, heat reflecting materials, lubricants, plasticizers, and fillers, styrene resins such as acrylonitrile-styrene resin and styrene-maleic anhydride resin, fluororesins such as polycarbonate resin, polyvinyl acetal resin, cellulose acylate resin, polyvinylidene fluoride, and polyfluorinated alkyl (meth)acrylate resin, silicone resin, polyolefin resin, polyethylene terephthalate resin, and polybutylene terephthalate resin, and other resins, as well as inorganic fine particles having birefringence (see Patent No. 3648201 and Patent No. 4336586), low molecular weight compounds having birefringence and a molecular weight of 5000 or less, preferably 1000 or less (see Patent No. 3696649), etc.
 本実施形態のドープ溶液は、本実施形態のアクリル樹脂粉粒体を溶剤に溶解させて製造される。本実施形態のアクリル樹脂粉粒体を溶剤に溶解させる際には、温度および圧力を適宜調整することもできる。本実施形態のアクリル樹脂粉粒体を溶剤に溶解させた後、必要に応じて、濾過、脱泡等の後処理を実施することもできる。 The dope solution of this embodiment is produced by dissolving the acrylic resin powder of this embodiment in a solvent. When dissolving the acrylic resin powder of this embodiment in a solvent, the temperature and pressure can be adjusted as appropriate. After dissolving the acrylic resin powder of this embodiment in a solvent, post-treatment such as filtration and degassing can be performed as necessary.
 (フィルム)
 本実施形態のフィルムは、本実施形態のドープ溶液を支持体の表面に流延した後、溶剤を揮発させて製造される。例えば、まず、送液ポンプにより送液された本実施形態のドープ溶液を加圧ダイのスリットから、金属製または合成樹脂製の無端ベルト、ドラム等の支持体の表面(鏡面)に流延して、流延膜を形成した後、支持体上で流延膜を加熱し、溶剤を揮発させて、本実施形態のフィルムが製造される。支持体としては、特に限定されないが、例えば、PETフィルム、ガラス板等が挙げられる。溶剤を揮発させる際の温度条件は、使用する溶剤の沸点に応じて、適宜決定することができる。次に、支持体からフィルムを剥離した後、必要に応じて、乾燥、加熱、延伸等の後処理を実施することもできる。
(film)
The film of the present embodiment is produced by casting the dope solution of the present embodiment on the surface of the support and then volatilizing the solvent. For example, the dope solution of the present embodiment delivered by the liquid delivery pump is first cast from the slit of the pressure die onto the surface (mirror surface) of a support such as an endless belt or drum made of metal or synthetic resin to form a casting film, and then the casting film is heated on the support to volatilize the solvent, thereby producing the film of the present embodiment. The support is not particularly limited, but examples thereof include a PET film and a glass plate. The temperature conditions for volatilizing the solvent can be appropriately determined depending on the boiling point of the solvent used. Next, after peeling the film from the support, post-treatment such as drying, heating, and stretching can also be performed as necessary.
 本実施形態のフィルムの厚みは、5μm以上200μm以下であることが好ましく、5μm以上100μm以下であることがより好ましく、10μm以上80μm以下であることが特に好ましい。本実施形態のフィルムの厚みが5μm以上であると、取り扱い性および保護フィルムとしての機能が高くなり、200μm以下であると、光学特性の均一性および乾燥速度が高くなる。 The thickness of the film of this embodiment is preferably 5 μm or more and 200 μm or less, more preferably 5 μm or more and 100 μm or less, and particularly preferably 10 μm or more and 80 μm or less. When the thickness of the film of this embodiment is 5 μm or more, the handling property and the function as a protective film are improved, and when the thickness is 200 μm or less, the uniformity of the optical properties and the drying speed are improved.
 本実施形態のフィルムは、アクリル樹脂を含み、アクリル樹脂は、主鎖に複素環を含む構成単位を有し、ガラス転移温度が110℃以上であり、重量平均分子量が40万以上400万以下である。 The film of this embodiment contains an acrylic resin, which has a structural unit containing a heterocycle in the main chain, has a glass transition temperature of 110°C or higher, and has a weight average molecular weight of 400,000 or more and 4,000,000 or less.
 ここで、本実施形態のフィルムの厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後のヘイズの変化ΔHzは、2.5%以下であり、2%以下であることが好ましく、1.5%以下であることがさらに好ましい。ΔHzが2.5%以下であると、本実施形態のフィルムを光透過性が要求される光学部材に好適に適用することができる。 When the thickness of the film of this embodiment is 40 μm, the change in haze ΔHz before and after storage for 96 hours under conditions of 85° C. and 95% RH is 2.5% or less, preferably 2% or less, and more preferably 1.5% or less. When ΔHz is 2.5% or less, the film of this embodiment can be suitably applied to optical components that require light transparency.
 このとき、本実施形態のフィルムの厚みが40μmである場合のヘイズHzが2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがより好ましく、0.8%以下であることがさらに好ましく、0.6%以下であることがさらにより好ましく、0.4%以下であることが特に好ましい。Hzが2%以下であると、本実施形態のフィルムを光透過性が要求される光学部材に好適に適用することができる。 In this case, when the thickness of the film of this embodiment is 40 μm, the haze Hz is preferably 2% or less, more preferably 1.5% or less, more preferably 1% or less, even more preferably 0.8% or less, even more preferably 0.6% or less, and particularly preferably 0.4% or less. When Hz is 2% or less, the film of this embodiment can be suitably applied to optical components that require light transparency.
 また、本実施形態のフィルムの厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後の黄色度の変化ΔYIは、3.5以下であり、3.0以下であることが好ましく、2.0以下であることがさらに好ましい。ΔYIが3.5以下であると、本実施形態のフィルムを光透過性が要求される光学部材に好適に適用することができる。 In addition, when the thickness of the film of this embodiment is 40 μm, the change in yellowness ΔYI before and after storage for 96 hours under conditions of 85° C. and 95% RH is 3.5 or less, preferably 3.0 or less, and more preferably 2.0 or less. When ΔYI is 3.5 or less, the film of this embodiment can be suitably applied to optical components that require light transparency.
 このとき、本実施形態のフィルムの厚みが40μmである場合の黄色度YIが2.0以下であることが好ましく、1.5以下であることがより好ましく、1.0以下であることがより好ましく、0.8以下であることがさらに好ましく、0.65%以下であることがさらにより好ましく、0.5%以下であることが特に好ましい。YIが2.0以下であると、本実施形態のフィルムを光透過性が要求される光学部材に好適に適用することができる。 In this case, when the thickness of the film of this embodiment is 40 μm, the yellowness index YI is preferably 2.0 or less, more preferably 1.5 or less, more preferably 1.0 or less, even more preferably 0.8 or less, even more preferably 0.65% or less, and particularly preferably 0.5% or less. When YI is 2.0 or less, the film of this embodiment can be suitably applied to optical components that require light transparency.
 本実施形態のフィルムは、例えば、ディスプレイ用の光学フィルムとして好適に使用することができる。ディスプレイ用の光学フィルムとしては、例えば、偏光子保護フィルム等の保護フィルムが挙げられる。 The film of this embodiment can be suitably used, for example, as an optical film for displays. Examples of optical films for displays include protective films such as polarizer protective films.
 本実施形態のフィルムを偏光子保護フィルムとして使用する場合、本実施形態のフィルムは、光学等方性が小さいことが好ましい。特に、本実施形態のフィルムは、面内方向(長さ方向、幅方向)の光学等方性だけでなく、厚み方向の光学等方性も小さいことが好ましい。具体的には、本実施形態のフィルムの面内位相差の絶対値は、10nm以下であることが好ましく、5nm以下であることがより好ましく、3nm以下であることが特に好ましい。また、本実施形態のフィルムの厚み方向位相差の絶対値は、50nm以下であることが好ましく、20nm以下であることがより好ましく、10nm以下であることが更に好ましく、5nm以下であることが特に好ましい。 When the film of this embodiment is used as a polarizer protective film, it is preferable that the film of this embodiment has small optical isotropy. In particular, it is preferable that the film of this embodiment has small optical isotropy not only in the in-plane directions (length direction, width direction) but also in the thickness direction. Specifically, the absolute value of the in-plane retardation of the film of this embodiment is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 3 nm or less. Furthermore, the absolute value of the thickness direction retardation of the film of this embodiment is preferably 50 nm or less, more preferably 20 nm or less, even more preferably 10 nm or less, and particularly preferably 5 nm or less.
 ここで、位相差は、複屈折をベースに算出される指標値であり、面内位相差(Re)、厚み方向位相差(Rth)は、それぞれ式
 Re=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×d
(式中、nx、nyおよびnzは、それぞれ成形体の面内のうち、伸張方向(ポリマー鎖の配向方向)をX軸、X軸に垂直な方向をY軸とし、フィルムの厚み方向をZ軸とすると、それぞれの軸方向の屈折率であり、dは、成形体の厚みであり、nx-nyは、配向複屈折である。)
により算出することができる。完全光学等方性を有する理想的な成形体では、面内位相差(Re)および厚み方向位相差(Rth)が0となる。なお、成形体のMD方向をX軸とするが、延伸成形体の場合は、延伸方向をX軸とする。
Here, the retardation is an index value calculated based on birefringence, and the in-plane retardation (Re) and the thickness direction retardation (Rth) are expressed by the formula: Re=(nx-ny)×d
Rth = ((nx + ny) / 2 - nz) x d
(In the formula, nx, ny, and nz are the refractive indexes in the respective axial directions, where the stretching direction (the orientation direction of the polymer chain) in the plane of the molded article is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis, d is the thickness of the molded article, and nx-ny is the orientation birefringence.)
In an ideal molded body having perfect optical isotropy, the in-plane retardation (Re) and thickness direction retardation (Rth) are 0. The MD direction of the molded body is taken as the X-axis, but in the case of a stretched molded body, the stretching direction is taken as the X-axis.
 本実施形態のフィルムの配向複屈折は、-2.6×10-4以上2.6×10-4以下であることが好ましく、-1.7×10-4以上1.7×10-4以下であることがより好ましく、-1.0×10-4以上1.0×10-4以下であることが更に好ましく、-0.5×10-4以上0.5×10-4以下であることが特に好ましく、-0.2×10-4以上0.2×10-4以下であることが最も好ましい。本実施形態のフィルムの配向複屈折が-2.6×10-4以上2.6×10-4以下であると、本実施形態のフィルムの成形加工時の複屈折が抑制され、光学特性が安定する。このため、本実施形態のフィルムは、液晶ディスプレイ等に使用される光学フィルムとして、使用することができる。 The orientation birefringence of the film of this embodiment is preferably -2.6 x 10 -4 or more and 2.6 x 10 -4 or less, more preferably -1.7 x 10 -4 or more and 1.7 x 10 -4 or less, even more preferably -1.0 x 10 -4 or more and 1.0 x 10 -4 or less, particularly preferably -0.5 x 10 -4 or more and 0.5 x 10 -4 or less, and most preferably -0.2 x 10 -4 or more and 0.2 x 10 -4 or less. When the orientation birefringence of the film of this embodiment is -2.6 x 10 -4 or more and 2.6 x 10 -4 or less, the birefringence during the molding process of the film of this embodiment is suppressed, and the optical characteristics are stabilized. Therefore, the film of this embodiment can be used as an optical film used in liquid crystal displays and the like.
 本実施形態のフィルムは、光弾性定数が-6×10-12Pa-1以上6×10-12Pa-1以下であることが好ましく、-4×10-12Pa-1以上4×10-12Pa-1以下であることがより好ましく、-2×10-12Pa-1以上2×10-12Pa-1以下であることが更に好ましく、-1×10-12Pa-1以上1×10-12Pa-1以下であることがことさらに好ましく、-0.5×10-12Pa-1以上0.5×10-12Pa-1以下であることが特に好ましく、-0.2×10-12Pa-1以上0.2×10-12Pa-1以下であることが最も好ましい。本実施形態のフィルムの光弾性定数が-6×10-12Pa-1以上6×10-12Pa-1以下であると、本実施形態のフィルムに応力が印加されて、変形した場合でも、複屈折が抑制されるため、光学等方性が小さくなる。例えば、本実施形態のフィルムを偏光子保護フィルムとして使用する場合に、空気中の湿分や温度の影響により、輸送中に液晶パネルが変形しても、光学特性が維持されるため、画質が低下しにくくなる。 The film of this embodiment has a photoelastic constant of preferably -6 x 10 -12 Pa -1 or more and 6 x 10 -12 Pa -1 or less, more preferably -4 x 10 -12 Pa -1 or more and 4 x 10 -12 Pa -1 or less, even more preferably -2 x 10 -12 Pa -1 or more and 2 x 10 -12 Pa -1 or less, even more preferably -1 x 10 -12 Pa -1 or more and 1 x 10 -12 Pa -1 or less, particularly preferably -0.5 x 10 -12 Pa -1 or more and 0.5 x 10 -12 Pa -1 or less, and most preferably -0.2 x 10 -12 Pa -1 or more and 0.2 x 10 -12 Pa -1 or less. When the photoelastic constant of the film of this embodiment is -6×10 -12 Pa -1 or more and 6×10 -12 Pa -1 or less, even when the film of this embodiment is subjected to stress and deformed, birefringence is suppressed and optical isotropy is reduced. For example, when the film of this embodiment is used as a polarizer protective film, even if the liquid crystal panel is deformed during transportation due to the influence of moisture in the air or temperature, the optical properties are maintained and image quality is less likely to deteriorate.
 以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されず、本発明の趣旨の範囲内で、上記の実施形態を適宜変更してもよい。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment, and the above embodiment may be modified as appropriate within the scope of the spirit of the present invention.
 以下、本発明の実施例を説明するが、本発明は、実施例に限定されるものではない。なお、略号は、それぞれ以下の物質を意味する。また、各物質の部数は、重量基準であり、純分(固形分)を表す。
 単量体
 BA:アクリル酸ブチル
 ALMA:メタクリル酸アリル
 MMA:メタクリル酸メチル
 n-BMA:メタクリル酸n-ブチル
 PhMI:N-フェニルマレイミド
 ChMI:N-シクロヘキシルマレイミド
 2-EHMA:メタクリル酸2-エチルヘキシル
 アニオン系乳化剤
 SDSS:ジオクチルスルホコハク酸ナトリウム
 重合開始剤
 t-BHP:t-ブチルハイドロパーオキサイド
 FeSO:硫酸第一鉄・7水和物
 SFS:ホルムアルデヒドスルホキシル酸ナトリウム
 NPS:過硫酸ナトリウム
 LPO:過酸化ラウロイル
 連鎖移動剤
 2-EHTG:チオグリコール酸2-エチルヘキシル
 懸濁剤
 HPMC:ヒドロキシプロピルメチルセルロース;メトローズ60SH50(信越化学工業製)
 その他
 EDTA:エチレンジアミン四酢酸二ナトリウム
 DSHP:無水リン酸水素二ナトリウム
Examples of the present invention will be described below, but the present invention is not limited to these examples. The abbreviations respectively mean the following substances. The number of parts of each substance is based on weight and represents the pure content (solid content).
Monomers BA: butyl acrylate ALMA: allyl methacrylate MMA: methyl methacrylate n-BMA: n-butyl methacrylate PhMI: N-phenylmaleimide ChMI: N-cyclohexylmaleimide 2-EHMA: 2-ethylhexyl methacrylate Anionic emulsifier SDSS: sodium dioctyl sulfosuccinate Polymerization initiator t-BHP: t-butyl hydroperoxide FeSO 4 : ferrous sulfate heptahydrate SFS: sodium formaldehyde sulfoxylate NPS: sodium persulfate LPO: lauroyl peroxide Chain transfer agent 2-EHTG: 2-ethylhexyl thioglycolate Suspension agent HPMC: hydroxypropyl methylcellulose; Metolose 60SH50 (Shin-Etsu Chemical Co., Ltd.)
Others EDTA: Disodium ethylenediaminetetraacetate DSHP: Disodium hydrogen phosphate anhydrous
 (実施例1)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(110部)、水酸化ナトリウム(0.004部)、SDSS(0.6部)を仕込んだ後、回転数175rpmで攪拌し、反応器内を窒素置換しながら、60℃に昇温した。次に、BA(8.5部)、ALMA(0.043部)の混合物を反応器に加えた後、t-BHP(0.006部)、EDTA(0.0055部)、FeSO(0.0015部)、SFS(0.005部)を順次反応器に加えて、BAおよびALMAを乳化重合させ、架橋重合体粒子(コア)を含むラテックスを得た。ここで、混合物の添加が終了した後、BAおよびALMAを30分間乳化重合させた。このとき、重合転化率は99.5%であり、体積平均粒子径は850Åであった。次に、MMA(83.5部)、n-BMA(1部)、PhMI(7部)、2-EHTG(0.037部)の混合物を70分間かけて連続的に反応器に加えて、MMA、n-BMAおよびPhMIを乳化重合させ、シェル層を形成した。このとき、混合物の添加と連動する形で、SDSS(0.3部)を連続的に反応器に加えた。また、回転数を、混合物の添加開始時に200rpm、添加開始から10分後に235rpm、20分後に260rpm、35分後に300rpm、50分後に325rpmに調整した。次に、SFS(0.0052部)、SDSS(0.2部)、t-BHP(0.005部)を順次反応器に加え、90℃に昇温した後、120分間反応させて重合を完結し、コア・シェル構造を有するグラフト共重合体を含むラテックスを得た。このとき、重合転化率は99.9%であり、体積平均粒子径は1690Åであった。次に、50℃の熱風オーブンでラテックスを24時間蒸発乾固させ、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は79.1万であった。
Example 1
In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.6 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while replacing the inside of the reactor with nitrogen. Next, a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor, and then t-BHP (0.006 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.005 parts) were added to the reactor in sequence, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores). Here, after the addition of the mixture was completed, BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.5%, and the volume average particle size was 850 Å. Next, a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.037 parts) was continuously added to the reactor over 70 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer. At this time, SDSS (0.3 parts) was continuously added to the reactor in conjunction with the addition of the mixture. In addition, the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition. Next, SFS (0.0052 parts), SDSS (0.2 parts), and t-BHP (0.005 parts) were added to the reactor in sequence, and the temperature was raised to 90° C., and the mixture was reacted for 120 minutes to complete the polymerization, and a latex containing a graft copolymer having a core-shell structure was obtained. At this time, the polymerization conversion rate was 99.9%, and the volume average particle diameter was 1690 Å. Next, the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours to obtain a white acrylic resin powder having a volume average particle diameter of 120 μm. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 791,000.
 (実施例2)
 実施例1において、PhMIをChMIに変更した以外は、実施例1と同様の方法で、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は86.9万であった。
Example 2
A white acrylic resin powder having a volume average particle size of 120 μm was obtained in the same manner as in Example 1, except that PhMI was replaced with ChMI. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 869,000.
 なお、架橋重合体粒子(コア)を含むラテックスの重合転化率は97.0%であり、体積平均粒子径は700Åであった。また、コア・シェル構造を有するグラフト共重合体を含むラテックスの重合転化率は99.9%であり、体積平均粒子径は1475Åであった。 The polymerization conversion rate of the latex containing crosslinked polymer particles (core) was 97.0%, and the volume average particle diameter was 700 Å. The polymerization conversion rate of the latex containing the graft copolymer with a core-shell structure was 99.9%, and the volume average particle diameter was 1475 Å.
 (実施例3)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(110部)、水酸化ナトリウム(0.004部)、SDSS(0.3部)を仕込んだ後、回転数175rpmで攪拌し、反応器内を窒素置換しながら、60℃に昇温した。次に、BA(8.5部)、ALMA(0.043部)の混合物を反応器に加えた後、t-BHP(0.009部)、EDTA(0.0055部)、FeSO(0.0015部)、SFS(0.0076部)を順次反応器に加え、BAおよびALMAを乳化重合させ、架橋重合体粒子(コア)を含むラテックスを得た。ここで、混合物の添加が終了した後、BAおよびALMAを30分間乳化重合させた。このとき、重合転化率は99.1%であり、体積平均粒子径は750Åであった。次に、MMA(80.6部)、n-BMA(1部)、PhMI(5部)、2-EHTG(0.029部)の混合物を135分間かけて連続的に反応器に加えて、MMA、n-BMAおよびPhMIを乳化重合させ、シェル層を形成した。このとき、混合物の添加と連動する形で、SDSS(0.6部)を連続的に反応器に加えた。また、回転数を、混合物の添加開始時に200rpm、添加開始から10分後に235rpm、20分後に260rpm、35分後に300rpm、50分後に325rpmに調整した。次に、混合物の添加が終了してから15分後に、MMA(5部)を5分間かけて連続的に反応器に加えて、30分間反応させることで、シェル層中のPhMIを反応させた。次に、SFS(0.0026部)、t-BHP(0.005部)を順次反応器に加え、80℃に昇温した後、120分間反応させて重合を完結し、コア・シェル構造を有するグラフト共重合体を含むラテックスを得た。このとき、重合転化率は100.0%、体積平均粒子径は1610Åであった。次に、50℃の熱風オーブンでラテックスを24時間蒸発乾固させ、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は77.0万であった。
Example 3
In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.3 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while replacing the inside of the reactor with nitrogen. Next, a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor, and then t-BHP (0.009 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.0076 parts) were added to the reactor in sequence, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores). Here, after the addition of the mixture was completed, BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.1%, and the volume average particle size was 750 Å. Next, a mixture of MMA (80.6 parts), n-BMA (1 part), PhMI (5 parts), and 2-EHTG (0.029 parts) was continuously added to the reactor over 135 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer. At this time, SDSS (0.6 parts) was continuously added to the reactor in conjunction with the addition of the mixture. In addition, the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after, 300 rpm 35 minutes after, and 325 rpm 50 minutes after. Next, 15 minutes after the end of the addition of the mixture, MMA (5 parts) was continuously added to the reactor over 5 minutes, and reacted for 30 minutes to react PhMI in the shell layer. Next, SFS (0.0026 parts) and t-BHP (0.005 parts) were added to the reactor in this order, and the temperature was raised to 80°C. The reaction was continued for 120 minutes to complete the polymerization, and a latex containing a graft copolymer having a core-shell structure was obtained. At this time, the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1610 Å. Next, the latex was evaporated to dryness in a hot air oven at 50°C for 24 hours, and a white acrylic resin powder having a volume average particle diameter of 120 μm was obtained. The content of volatile components in the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 770,000.
 (実施例4)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(110部)、水酸化ナトリウム(0.004部)、SDSS(0.15部)を仕込んだ後、回転数175rpmで攪拌し、反応器内を窒素置換しながら、60℃に昇温した。次に、t-BHP(0.024部)、EDTA(0.0055部)、FeSO(0.0015部)、SFS(0.02部)を順次反応器に加えた後、BA(8.5部)、ALMA(0.043部)の混合物を20分間かけて連続的に反応器に加え、BAおよびALMAを乳化重合させ、架橋重合体粒子(コア)を含むラテックスを得た。ここで、混合物の添加が終了した後、BAおよびALMAを30分間乳化重合させた。このとき、重合転化率は99.9%であり、体積平均粒子径は775Åであった。次に、MMA(83.5部)、n-BMA(1部)、PhMI(7部)、2-EHTG(0.02部)の混合物を70分間かけて連続的に反応器に加えて、MMA、n-BMAおよびPhMIを乳化重合させ、シェル層を形成した。このとき、混合物の添加と連動する形でSDSS(0.75部)を連続的に反応器に加えた。また、回転数を、混合物の添加開始時に200rpm、添加開始から10分後に235rpm、20分後に260rpm、35分後に300rpm、50分後に325rpmに調整した。次に、SFS(0.01部)、SDSS(0.2部)、t-BHP(0.01部)を順次反応器に加え、90℃に昇温した後、120分間反応させて重合を完結し、コア・シェル構造を有するグラフト共重合体を含むラテックスを得た。このとき、重合転化率は100.0%であり、体積平均粒子径は1670Åであった。次に、50℃の熱風オーブンでラテックスを24時間蒸発乾固させ、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は75.3万であった。
Example 4
In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.15 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 60° C. while the inside of the reactor was replaced with nitrogen. Next, t-BHP (0.024 parts), EDTA (0.0055 parts), FeSO 4 (0.0015 parts), and SFS (0.02 parts) were added to the reactor in sequence, and then a mixture of BA (8.5 parts) and ALMA (0.043 parts) was continuously added to the reactor over 20 minutes, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores). Here, after the addition of the mixture was completed, BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.9%, and the volume average particle size was 775 Å. Next, a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.02 parts) was continuously added to the reactor over 70 minutes, and MMA, n-BMA, and PhMI were emulsion-polymerized to form a shell layer. At this time, SDSS (0.75 parts) was continuously added to the reactor in conjunction with the addition of the mixture. In addition, the rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition. Next, SFS (0.01 parts), SDSS (0.2 parts), and t-BHP (0.01 parts) were added to the reactor in sequence, and the temperature was raised to 90° C., and the mixture was reacted for 120 minutes to complete the polymerization, and a latex containing a graft copolymer having a core-shell structure was obtained. At this time, the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1670 Å. Next, the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours to obtain a white acrylic resin powder having a volume average particle diameter of 120 μm. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 753,000.
 (実施例5)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(110部)、水酸化ナトリウム(0.004部)、SDSS(0.2部)を仕込んだ後、回転数175rpmで攪拌し、反応器内を窒素置換しながら、80℃に昇温した。次に、NPS(0.0321部)、SFS(0.0005部)を順次反応器に加えた後、BA(8.5部)、ALMA(0.043部)の混合物を20分間かけて連続的に反応器に加えて、BAおよびALMAを乳化重合させ、架橋重合体粒子(コア)を含むラテックスを得た。ここで、混合物の添加が終了した後、BAおよびALMAを30分間乳化重合させた。このとき、重合転化率は99.2%であり、体積平均粒子径は590Åであった。次に、MMA(83.5部)、n-BMA(1部)、PhMI(7部)、2-EHTG(0.0235部)の混合物を70分間かけて連続的に反応器に加えて、MMA、n-BMAおよびPhMIを乳化重合させ、シェル層を形成した。このとき、混合物の添加と連動する形でSDSS(0.7部)を連続的に反応器に加えた。また、回転数を、混合物の添加開始時に200rpm、添加開始から10分後に235rpm、20分後に260rpm、35分後に300rpm、50分後に325rpmに調整した。次に、EDTA(0.0055部)、FeSO(0.0015部)、SFS(0.0077部)、SDSS(0.2部)、t-BHP(0.015部)を順次反応器に加え、90℃に昇温した後、120分間反応させて重合を完結し、コア・シェル構造を有するグラフト共重合体を含むラテックスを得た。このとき、重合転化率は100.0%であり、体積平均粒子径は1310Åであった。次に、50℃の熱風オーブンでラテックスを24時間蒸発乾固させ、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は69.2万であった。
Example 5
In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.2 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 80° C. while the inside of the reactor was replaced with nitrogen. Next, NPS (0.0321 parts) and SFS (0.0005 parts) were added to the reactor in sequence, and then a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor continuously over 20 minutes, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores). Here, after the addition of the mixture was completed, BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.2%, and the volume average particle size was 590 Å. Next, a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.0235 parts) was continuously added to the reactor over 70 minutes to emulsion-polymerize MMA, n-BMA, and PhMI to form a shell layer. At this time, SDSS (0.7 parts) was continuously added to the reactor in conjunction with the addition of the mixture. The rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition. Next, EDTA (0.0055 parts), FeSO 4 (0.0015 parts), SFS (0.0077 parts), SDSS (0.2 parts), and t-BHP (0.015 parts) were added to the reactor in order, and the temperature was raised to 90° C., and the reaction was continued for 120 minutes to complete the polymerization, and a latex containing a graft copolymer having a core-shell structure was obtained. At this time, the polymerization conversion rate was 100.0%, and the volume average particle diameter was 1310 Å. Next, the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours, and a white acrylic resin powder having a volume average particle diameter of 120 μm was obtained. The content of volatile components in the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 692,000.
 (比較例1)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(110部)、水酸化ナトリウム(0.004部)、SDSS(0.2部)を仕込んだ後、回転数175rpmで攪拌し、反応器内を窒素置換しながら、80℃に昇温した。次に、NPS(0.0321部)、SFS(0.0005部)を順次反応器に加えた後、BA(8.5部)、ALMA(0.043部)の混合物を20分間かけて連続的に反応器に加えて、BAおよびALMAを乳化重合させ、架橋重合体粒子(コア)を含むラテックスを得た。ここで、混合物の添加が終了した後、BAおよびALMAを30分間乳化重合させた。このとき、重合転化率は99.5%であり、体積平均粒子径は600Åであった。次に、MMA(83.5部)、n-BMA(1部)、PhMI(7部)、2-EHTG(0.02部)の混合物を70分間かけて連続的に反応器に加えて、MMA、n-BMAおよびPhMIを乳化重合させ、シェル層を形成した。このとき、混合物の添加と連動する形でSDSS(0.7部)を連続的に反応器に加えた。また、回転数を、混合物の添加開始時に200rpm、添加開始から10分後に235rpm、20分後に260rpm、35分後に300rpm、50分後に325rpmに調整した。次に、EDTA(0.0055部)、FeSO(0.0015部)、SFS(0.0616部)、SDSS(0.2部)、t-BHP(0.06部)を順次反応器に加えた後、60分間反応させて重合を完結し、コア・シェル構造を有するグラフト共重合体を含むラテックスを得た。このとき、重合転化率は99.8%であり、体積平均粒子径は1310Åであった。次に、50℃の熱風オーブンでラテックスを24時間蒸発乾固させ、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は68.3万であった。
(Comparative Example 1)
In an 8L glass reactor equipped with a paddle stirrer, deionized water (110 parts), sodium hydroxide (0.004 parts), and SDSS (0.2 parts) were charged, and the mixture was stirred at a rotation speed of 175 rpm, and the temperature was raised to 80° C. while the inside of the reactor was replaced with nitrogen. Next, NPS (0.0321 parts) and SFS (0.0005 parts) were added to the reactor in sequence, and then a mixture of BA (8.5 parts) and ALMA (0.043 parts) was added to the reactor continuously over 20 minutes, and BA and ALMA were emulsion-polymerized to obtain a latex containing crosslinked polymer particles (cores). Here, after the addition of the mixture was completed, BA and ALMA were emulsion-polymerized for 30 minutes. At this time, the polymerization conversion rate was 99.5%, and the volume average particle size was 600 Å. Next, a mixture of MMA (83.5 parts), n-BMA (1 part), PhMI (7 parts), and 2-EHTG (0.02 parts) was continuously added to the reactor over 70 minutes to emulsion-polymerize MMA, n-BMA, and PhMI to form a shell layer. At this time, SDSS (0.7 parts) was continuously added to the reactor in conjunction with the addition of the mixture. The rotation speed was adjusted to 200 rpm at the start of the addition of the mixture, 235 rpm 10 minutes after the start of the addition, 260 rpm 20 minutes after the start of the addition, 300 rpm 35 minutes after the start of the addition, and 325 rpm 50 minutes after the start of the addition. Next, EDTA (0.0055 parts), FeSO 4 (0.0015 parts), SFS (0.0616 parts), SDSS (0.2 parts), and t-BHP (0.06 parts) were added to the reactor in order, and the reaction was carried out for 60 minutes to complete the polymerization, thereby obtaining a latex containing a graft copolymer having a core-shell structure. At this time, the polymerization conversion rate was 99.8%, and the volume average particle diameter was 1310 Å. Next, the latex was evaporated to dryness in a hot air oven at 50° C. for 24 hours, obtaining a white acrylic resin powder having a volume average particle diameter of 120 μm. The content of volatile components in the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 683,000.
 (比較例2)
 比較例1において、コア・シェル構造を有するグラフト共重合体を含むラテックスを50℃に冷却した後、EDTA(0.025部)、水酸化ナトリウム(0.04部)を順次反応器に加えた以外は、比較例1と同様の方法で、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は68.3万であった。
(Comparative Example 2)
In Comparative Example 1, a white acrylic resin powder having a volume average particle size of 120 μm was obtained in the same manner as in Comparative Example 1, except that the latex containing the graft copolymer having a core-shell structure was cooled to 50° C., and then EDTA (0.025 parts) and sodium hydroxide (0.04 parts) were added to the reactor in that order. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 683,000.
 (比較例3)
 比較例1において、PhMIをChMIに変更した以外は、比較例1と同様の方法で、体積平均粒子径120μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は64.5万であった。
(Comparative Example 3)
A white acrylic resin powder having a volume average particle size of 120 μm was obtained in the same manner as in Comparative Example 1, except that PhMI was replaced with ChMI. The volatile component content of the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 645,000.
 なお、架橋重合体粒子(コア)を含むラテックスの重合転化率は93.5%であり、体積平均粒子径は500Åであった。また、コア・シェル構造を有するグラフト共重合体を含むラテックスの重合転化率は100.0%であり、体積平均粒子径は1120Åであった。 The polymerization conversion rate of the latex containing crosslinked polymer particles (core) was 93.5%, and the volume average particle diameter was 500 Å. The polymerization conversion rate of the latex containing the graft copolymer with a core-shell structure was 100.0%, and the volume average particle diameter was 1120 Å.
 (比較例4)
 パドル型撹拌機を備えた8Lガラス製反応器に、脱イオン水(170部)、DSHP(0.1部)を仕込んだ後、回転数300rpmで攪拌し、反応器内を窒素置換しながら、40℃に昇温した。次に、LPO(0.3部)を反応器に加えた後、MMA(85部)、2-EHMA(5部)、PhMI(10部)の混合物を30分間かけて連続的に反応器に加えた。ここで、混合物の添加が終了した後、30分間攪拌した。次に、HPMC(0.375部)を30分間かけて連続的に反応器に加えた後、30分間攪拌した。次に、反応器を65℃に昇温し、MMA、2-EHMAおよびPhMIを懸濁重合させた。このとき、反応器を65℃に昇温してから100分後に85℃に到達し、その後、緩やかに降温した。次に、反応器を95℃に昇温した後、60分間保持して重合を完結させ、ビーズ状粒子を含むスラリーを得た。このとき、重合転化率は99.5%であり、体積平均粒子径は50μmであった。次に、50℃の熱風オーブンでスラリーを24時間蒸発乾固させ、体積平均粒子径55μmの白色のアクリル樹脂粉粒体を得た。アクリル樹脂粉粒体の揮発性成分の含有率は0.5重量%未満であった。アクリル樹脂粉粒体の重量平均分子量は190.0万であった。
(Comparative Example 4)
In an 8L glass reactor equipped with a paddle-type stirrer, deionized water (170 parts) and DSHP (0.1 parts) were charged, and the temperature was raised to 40 ° C. while stirring at a rotation speed of 300 rpm and replacing the inside of the reactor with nitrogen. Next, LPO (0.3 parts) was added to the reactor, and then a mixture of MMA (85 parts), 2-EHMA (5 parts), and PhMI (10 parts) was continuously added to the reactor over 30 minutes. Here, after the addition of the mixture was completed, the mixture was stirred for 30 minutes. Next, HPMC (0.375 parts) was continuously added to the reactor over 30 minutes, and then stirred for 30 minutes. Next, the reactor was heated to 65 ° C., and MMA, 2-EHMA and PhMI were suspension polymerized. At this time, the reactor was heated to 65 ° C. and reached 85 ° C. 100 minutes after it was heated, and then the temperature was gradually lowered. Next, the reactor was heated to 95°C, and the temperature was maintained for 60 minutes to complete the polymerization, and a slurry containing bead-like particles was obtained. At this time, the polymerization conversion rate was 99.5%, and the volume average particle diameter was 50 μm. Next, the slurry was evaporated to dryness in a hot air oven at 50°C for 24 hours, and a white acrylic resin powder with a volume average particle diameter of 55 μm was obtained. The content of volatile components in the acrylic resin powder was less than 0.5% by weight. The weight average molecular weight of the acrylic resin powder was 1,900,000.
 <試験方法>
 (重合転化率)
 約2gの試料(ラテックスまたはスラリー)を採取した後、試料の重量を精秤した。次に、120℃の熱風オーブンで試料を1時間乾燥させた後、試料の乾燥物の重量を固形分量として精秤した。次に、乾燥前後の試料の重量の比率を試料中の固形分比率として求めた。最後に、式
 {(仕込み原料の総重量×固形分比率-水および単量体以外の原料の総重量)/仕込み単量体の重量}×100
により、重合転化率を計算した。なお、多官能性単量体および連鎖移動剤は、仕込み単量体として取り扱った。
<Test Method>
(Polymerization Conversion Rate)
After taking about 2 g of sample (latex or slurry), the weight of the sample was precisely weighed. Next, the sample was dried in a hot air oven at 120°C for 1 hour, and the weight of the dried sample was precisely weighed as the solid content. Next, the ratio of the sample weights before and after drying was calculated as the solid content ratio in the sample. Finally, the formula {(total weight of charged raw materials x solid content ratio - total weight of raw materials other than water and monomers) / weight of charged monomer} x 100
The polymerization conversion was calculated based on the above formula: The polyfunctional monomer and the chain transfer agent were treated as charged monomers.
 (ラテックスの体積平均粒子径)
 Microtrac UPA150(日機装製)を使用し、動的光散乱法により、ラテックスの体積平均粒子径を測定した。
(Volume average particle size of latex)
The volume average particle size of the latex was measured by dynamic light scattering using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.).
 (スラリーの体積平均粒子径)
 Microtrac MT3300EXII(日機装製)を使用し、レーザー回折散乱法により、スラリーの体積平均粒子径を測定した。
(Volume average particle size of slurry)
The volume average particle size of the slurry was measured by a laser diffraction scattering method using a Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 (アクリル樹脂粉粒体の体積平均粒子径)
 界面活性剤を含有した水中にアクリル樹脂粉粒体を所定濃度で分散させた後、Microtrac MT3300EXII(日機装製)を使用し、レーザー回折散乱法により、アクリル樹脂粉粒体の体積平均粒子径を測定した。
(Volume average particle size of acrylic resin powder)
Acrylic resin powder particles were dispersed at a predetermined concentration in water containing a surfactant, and then the volume average particle size of the acrylic resin powder particles was measured by a laser diffraction scattering method using a Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
 (揮発性成分の含有率)
 直管型ハロゲンランプを備えた加熱乾燥式水分計MX-50(エー・アンド・デイ製)を使用し、アクリル樹脂粉粒体の揮発性成分の含有率を測定した。具体的には、アクリル樹脂粉粒体5gを使用し、最大温度130℃、測定精度MID(最小表示0.01%、0.05%/min)の条件で、アクリル樹脂粉粒体の揮発性成分の含有率を測定した。
(Content of Volatile Components)
The content of volatile components in the acrylic resin powder particles was measured using a heat-drying moisture meter MX-50 (manufactured by A&D Co., Ltd.) equipped with a straight-tube halogen lamp. Specifically, the content of volatile components in the acrylic resin powder particles was measured using 5 g of acrylic resin powder particles under conditions of a maximum temperature of 130° C. and a measurement accuracy of MID (minimum display 0.01%, 0.05%/min).
 (重量平均分子量)
 ゲルパーミエーションクロマトグラフィー(GPC)を使用し、標準ポリスチレン換算法により、アクリル樹脂粉粒体の重量平均分子量を算出した。このとき、GPCカラムとしては、ポリスチレン架橋ゲルを充填したTSK gel Super HZM-H(東ソー製)を使用し、GPC溶媒としては、テトラヒドロフラン(THF)を使用した。また、試料溶液としては、アクリル樹脂粉粒体20mgをTHF10mlに溶解させた後、孔径0.2μmのメンブレンフィルターでろ過したものを使用し、GPCのカラム温度を40℃に設定した。
(Weight average molecular weight)
The weight average molecular weight of the acrylic resin powder was calculated by the standard polystyrene conversion method using gel permeation chromatography (GPC). At this time, a TSK gel Super HZM-H (manufactured by Tosoh) filled with polystyrene crosslinked gel was used as the GPC column, and tetrahydrofuran (THF) was used as the GPC solvent. In addition, as the sample solution, 20 mg of the acrylic resin powder was dissolved in 10 ml of THF, and then filtered through a membrane filter with a pore size of 0.2 μm. The column temperature of the GPC was set to 40 ° C.
 (電気伝導度)
 テフロン(登録商標)容器内に、アクリル樹脂粉粒体8g、超純水80gを秤量した後、テフロン(登録商標)容器を耐圧容器に入れ、専用工具で外フタを閉めて密閉した。次に、耐圧容器を軽く振り、アクリル樹脂粉粒体と超純水を混合した後、耐圧容器を100℃の熱風オーブンに入れ、20時間加熱した。次に、耐圧容器が完全に冷却するまで放置した後、専用工具で外フタを緩めて、テフロン(登録商標)容器を取り出した。次に、テフロン(登録商標)容器内の液を吸い出した後、孔径0.2μmのメンブレンフィルターでろ過して、水溶液(ろ液)を得た。次に、23℃、50%RHの恒温室で24時間水溶液を保管した後、コンパクト電気伝導度計LAQUAtwin EC-33B(HORIBA製)を使用して、水溶液の電気伝導度を測定した。
(Electrical Conductivity)
After weighing 8 g of acrylic resin powder and 80 g of ultrapure water in a Teflon (registered trademark) container, the Teflon (registered trademark) container was placed in a pressure-resistant container, and the outer lid was closed with a special tool to seal it. Next, the pressure-resistant container was gently shaken, the acrylic resin powder and ultrapure water were mixed, and the pressure-resistant container was placed in a hot air oven at 100 ° C. and heated for 20 hours. Next, the pressure-resistant container was left until it was completely cooled, and then the outer lid was loosened with a special tool to remove the Teflon (registered trademark) container. Next, the liquid in the Teflon (registered trademark) container was sucked out, and then filtered with a membrane filter with a pore size of 0.2 μm to obtain an aqueous solution (filtrate). Next, the aqueous solution was stored in a thermostatic room at 23 ° C. and 50% RH for 24 hours, and then the electrical conductivity of the aqueous solution was measured using a compact electrical conductivity meter LAQUAtwin EC-33B (manufactured by HORIBA).
 なお、アクリル樹脂粉粒体の体積平均粒子径が250μmよりも大きい場合は、体積平均粒子径が100μm以上250μm以下になるまでアクリル樹脂粉粒体を粉砕した後、上記と同様にして、水溶液の電気伝導度を測定する。ここで、アクリル樹脂粉粒体の体積平均粒子径の測定方法は、前述と同様である。また、アクリル樹脂粉粒体を粉砕する装置としては、乳鉢、フードカッター等が挙げられる。 If the volume average particle diameter of the acrylic resin powder is greater than 250 μm, the acrylic resin powder is crushed until the volume average particle diameter is 100 μm or more and 250 μm or less, and then the electrical conductivity of the aqueous solution is measured in the same manner as above. The method for measuring the volume average particle diameter of the acrylic resin powder is the same as described above. Examples of devices for crushing the acrylic resin powder include a mortar and a food cutter.
 (硫酸イオンの含有率)
 イオンクロマトグラフ(SHIMADZU製)を使用して、以下の測定条件で、電気伝導度の測定に使用した水溶液中の硫酸イオンの含有率を測定した。具体的には、水溶液の硫酸イオンに由来するピーク面積を測定した後、予め測定した硫酸イオンの含有率が既知である標準液の硫酸イオンに由来するピーク面積に対する比から、硫酸イオン(SO 2-)の含有率を求めた。
 <測定条件>
 電気伝導度検出器:CDD-10A VP(SHIMADZU製)
 分析カラム:内径4mm、長さ250mmのShim-pack IC-SA2(SHIMADZU製)
 ガードカラム:内径4.6mm、長さ10mmのShim-pack、IC-SA2(G)(SHIMADZU製)
 溶離液:0.6mmolのNaCO、12mmolのNaHCOの水溶液
 溶離液の流量:1.0mL/min
(Sulfate ion content)
The content of sulfate ions in the aqueous solution used for measuring the electrical conductivity was measured using an ion chromatograph (manufactured by Shimadzu Corporation) under the following measurement conditions: Specifically, the peak area derived from sulfate ions in the aqueous solution was measured, and then the content of sulfate ions (SO 4 2− ) was calculated from the ratio to the peak area derived from sulfate ions in a standard solution whose sulfate ion content was known in advance.
<Measurement conditions>
Electrical conductivity detector: CDD-10A VP (manufactured by Shimadzu)
Analytical column: Shim-pack IC-SA2 (manufactured by Shimadzu) with an inner diameter of 4 mm and a length of 250 mm
Guard column: Shim-pack with an inner diameter of 4.6 mm and a length of 10 mm, IC-SA2(G) (manufactured by Shimadzu)
Eluent: aqueous solution of 0.6 mmol Na2CO3 and 12 mmol NaHCO3 Eluent flow rate: 1.0 mL/min
 (フィルムの発泡痕)
 濃度が10重量%となるように、塩化メチレンおよびメタノールの混合溶媒(重量比8:2)にアクリル樹脂粉粒体を添加した後、マグネチックスターラーで攪拌混合し、透明なドープ溶液を作製した。次に、バーコーターを使用して、支持体としての、ガラス板上に厚み1.1mmでドープ溶液を流延した。次に、ドープ溶液が流延されたガラス板を室温で10分間乾燥させた後、ガラス板から生乾きフィルムを剥離した。次に、生乾きフィルムを5.5cm×5.5cmのサイズにカットした後、6cm×6cmの金枠に固定した状態で、175℃の乾燥オーブンで7分間乾燥させて、発泡痕評価用フィルムを得た。次に、光学顕微鏡を使用して、発泡痕評価用フィルムの表面を観察し、発泡痕を評価した。なお、発泡痕の状態を、以下の指標に基づき、1(良い)~5(悪い)の5段階で官能評価した。
 1:フィルムの表面に発泡痕が無く、非常に綺麗な表面である場合
 2:フィルムの表面に僅かに発泡痕が認められるが、概ね綺麗な表面である場合
 3:フィルムの表面に発泡痕が認められるが、発泡痕の数が少ない場合
 4:フィルムの全面ではないが、発泡痕が認められ、発泡痕の数が多い場合
 5:フィルムの全面に発泡痕が認められる場合
(Film foaming marks)
Acrylic resin powder was added to a mixed solvent of methylene chloride and methanol (weight ratio 8:2) so that the concentration was 10% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution. Next, the dope solution was cast on a glass plate as a support with a thickness of 1.1 mm using a bar coater. Next, the glass plate on which the dope solution was cast was dried at room temperature for 10 minutes, and then the semi-dried film was peeled off from the glass plate. Next, the semi-dried film was cut to a size of 5.5 cm x 5.5 cm, and then dried in a drying oven at 175 ° C. for 7 minutes while fixed to a metal frame of 6 cm x 6 cm to obtain a film for evaluating foam marks. Next, the surface of the film for evaluating foam marks was observed using an optical microscope to evaluate the foam marks. The state of the foam marks was sensorily evaluated on a five-level scale from 1 (good) to 5 (bad) based on the following index.
1: No foaming marks on the film surface, very clean surface 2: A few foaming marks are visible on the film surface, but the surface is generally clean 3: Foaming marks are visible on the film surface, but only a few are visible 4: Foaming marks are visible, but not all over the film, and many are visible 5: Foaming marks are visible all over the film
 (恒温恒湿試験用フィルム)
 濃度が20重量%となるように、塩化メチレンおよびメタノールの混合溶媒(重量比8:2)にアクリル樹脂粉粒体を添加した後、マグネチックスターラーで攪拌混合し、透明なドープ溶液を作製した。次に、ドープ溶液を24時間静置し、脱泡した後、支持体としての、透明ガラス板上に流延した。このとき、アプリケーターを使用して、均一な膜状に塗布し、恒温恒湿試験用フィルムの厚みが40μmとなるように、クリアランスを調整した。次に、ドープ溶液が流延された透明ガラス板を室温で8分間乾燥させた後、透明ガラス板から生乾きフィルムを剥離した。次に、ステンレス鋼製の枠に生乾きフィルムを固定した後、160℃の熱風オーブンで15分間乾燥させて、恒温恒湿試験用フィルムを得た。
(Film for constant temperature and humidity testing)
The acrylic resin powder was added to a mixed solvent of methylene chloride and methanol (weight ratio 8:2) so that the concentration was 20% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution. Next, the dope solution was left to stand for 24 hours, degassed, and then cast onto a transparent glass plate as a support. At this time, the dope solution was applied in a uniform film shape using an applicator, and the clearance was adjusted so that the thickness of the film for constant temperature and humidity testing was 40 μm. Next, the transparent glass plate on which the dope solution was cast was dried at room temperature for 8 minutes, and then the semi-dried film was peeled off from the transparent glass plate. Next, the semi-dried film was fixed to a stainless steel frame, and then dried in a hot air oven at 160 ° C for 15 minutes to obtain a film for constant temperature and humidity testing.
 (恒温恒湿試験)
 厚みが40μmである恒温恒湿試験用フィルムから4cm×4cmの試験片を切り出した後、恒温恒湿試験装置LHU-123(エスペック製)を使用し、85℃、95%RHの条件で、試験片の恒温恒湿試験を実施した。なお、恒温恒湿試験は、恒温恒湿試験装置に投入する前(初期値)および投入してから96時間後の試験片のヘイズ(Hz)、内部ヘイズ(内部Hz)および黄色度(YI)を測定した。また、恒温恒湿試験装置に投入してから96時間後の値と初期値との差を計算し、Δヘイズ(ΔHz)、Δ内部ヘイズ(Δ内部Hz)およびΔ黄色度(ΔYI)も求めた。
(Constant temperature and humidity test)
After cutting out a 4 cm x 4 cm test piece from a 40 μm thick constant temperature and humidity test film, a constant temperature and humidity tester LHU-123 (manufactured by Espec) was used to carry out a constant temperature and humidity test on the test piece under conditions of 85 ° C. and 95% RH. The constant temperature and humidity test was carried out by measuring the haze (Hz), internal haze (internal Hz) and yellowness (YI) of the test piece before (initial value) and 96 hours after being placed in the constant temperature and humidity tester. In addition, the difference between the value 96 hours after being placed in the constant temperature and humidity tester and the initial value was calculated, and Δ haze (Δ Hz), Δ internal haze (Δ internal Hz) and Δ yellowness (Δ YI) were also obtained.
 (ヘイズ(Hz))
 ヘイズメーターHZ-V3(スガ試験機製)を使用して、JIS K7105に記載されている方法により、試験片のヘイズ(Hz)を測定した。
(Haze (Hz))
The haze (Hz) of the test piece was measured using a haze meter HZ-V3 (manufactured by Suga Test Instruments Co., Ltd.) according to the method described in JIS K7105.
 (内部ヘイズ(内部Hz))
 試験片の表面散乱の影響をキャンセルした状態で、試験片のヘイズを測定することにより、試験片の内部ヘイズを測定した。具体的には、まず、アクリル樹脂粉粒体の屈折率に近いグリセリンを試験片の表裏に滴下した後、ガラス板でサンドイッチし、試験片とガラス板の界面がグリセリンで満たされた状態とした。この状態で前述の要領でヘイズを測定した後、予め測定したガラス板のみのヘイズを引き、試験片の内部ヘイズ(内部Hz)を求めた。
(Internal Haze (Internal Hz))
The haze of the test piece was measured in a state where the influence of surface scattering of the test piece was cancelled, and the internal haze of the test piece was measured. Specifically, glycerin having a refractive index close to that of the acrylic resin powder was dropped on the front and back of the test piece, and then the test piece was sandwiched between glass plates so that the interface between the test piece and the glass plate was filled with glycerin. In this state, the haze was measured as described above, and the internal haze (internal Hz) of the test piece was calculated by subtracting the haze of the glass plate only, which was previously measured.
 (黄色度(YI))
 カラーメーターSC-P(スガ試験機製)を使用して、透過モードで、JIS K7373に記載されている方法により、試験片の黄色度(YI)を測定した。
(Yellowness Index (YI))
The yellowness index (YI) of the test piece was measured in transmission mode using a color meter SC-P (manufactured by Suga Test Instruments Co., Ltd.) according to the method described in JIS K7373.
 (位相差測定用フィルム)
 濃度が10重量%となるように、塩化メチレンおよびエタノールの混合溶媒(重量比9:1)にアクリル樹脂粉粒体を添加した後、マグネチックスターラーで攪拌混合し、透明なドープ溶液を作製した。次に、ドープ溶液を24時間静置し、脱泡した後、支持体としての、PETフィルム上に流延した。このとき、アプリケーターを使用して、均一な膜状に塗布し、乾燥フィルムの厚みがおよそ60μmとなるように、クリアランスを調整した。また、PETフィルムとしては、コスモシャインA4100(東洋紡製)を使用した。次に、ドープ溶液が流延されたPETフィルムを、40℃の乾燥雰囲気下で1時間乾燥させた後、PETフィルムから生乾きフィルムを剥離した。次に、ステンレス鋼製の枠に生乾きフィルムを固定した後、140℃の乾燥雰囲気下で60分間乾燥させて、乾燥フィルムを得た。
(Film for measuring phase difference)
The acrylic resin powder was added to a mixed solvent of methylene chloride and ethanol (weight ratio 9:1) so that the concentration was 10% by weight, and then the mixture was stirred and mixed with a magnetic stirrer to prepare a transparent dope solution. Next, the dope solution was left to stand for 24 hours, degassed, and then cast onto a PET film as a support. At this time, the dope solution was applied in a uniform film shape using an applicator, and the clearance was adjusted so that the thickness of the dried film was approximately 60 μm. In addition, Cosmoshine A4100 (manufactured by Toyobo) was used as the PET film. Next, the PET film on which the dope solution was cast was dried in a dry atmosphere at 40° C. for 1 hour, and then the semi-dried film was peeled off from the PET film. Next, the semi-dried film was fixed to a stainless steel frame, and then dried in a dry atmosphere at 140° C. for 60 minutes to obtain a dry film.
 熱風オーブン機能付きの延伸機を使用して、乾燥フィルムのガラス転移温度に対して、+10℃の温度条件で、乾燥フィルムを5分間予熱した後、延伸速度100mm/min、延伸倍率1.4倍の条件で、幅を固定して、乾燥フィルムを一軸延伸し、厚み40μmの位相差測定用フィルムを得た。 Using a stretching machine with a hot air oven function, the dry film was preheated for 5 minutes at a temperature condition of +10°C relative to the glass transition temperature of the dry film, and then the dry film was uniaxially stretched with a stretching speed of 100 mm/min and a stretching ratio of 1.4 times, with the width fixed, to obtain a film for phase difference measurement with a thickness of 40 μm.
 (位相差)
 位相差測定用フィルムの中央部から試験片を切り出した後、自動複屈折計KOBRA-WR(王子計測製)を使用して、波長590nm、入射角0゜の条件で、試験片の面内位相差Reを測定した。このとき、入射角40°の条件で、試験片の厚み方向位相差Rthも測定した。なお、試験片を移動させることにより、測定箇所を変えて3回ずつ位相差を測定し、平均値を求めた。
(Phase difference)
After cutting out a test piece from the center of the film for retardation measurement, the in-plane retardation Re of the test piece was measured using an automatic birefringence meter KOBRA-WR (manufactured by Oji Measurement Co., Ltd.) under conditions of a wavelength of 590 nm and an incident angle of 0°. At this time, the thickness direction retardation Rth of the test piece was also measured under conditions of an incident angle of 40°. The test piece was moved to change the measurement location and measure the retardation three times each, and the average value was calculated.
 (ガラス転移温度測定用フィルム)
 位相差測定用フィルムと同様の要領で得られた乾燥フィルムをステンレス鋼製の枠に固定し、175℃の熱風オーブンで10分間乾燥させ、ガラス転移温度測定用フィルムを得た。
(Film for measuring glass transition temperature)
The dried film obtained in the same manner as for the film for retardation measurement was fixed on a stainless steel frame and dried in a hot air oven at 175° C. for 10 minutes to obtain a film for glass transition temperature measurement.
 (ガラス転移温度(Tg))
 示差走査熱量計(DSC)Q1000(TA instruments製)を使用して、ガラス転移温度測定用フィルムのTgを測定した。具体的には、窒素気流下で、ガラス転移温度測定用フィルムを10℃/分の昇温速度で200℃まで加熱した後、40℃まで急冷し、再度、10℃/分の昇温速度で200℃まで加熱した。二回目の昇温中に観測されたガラス転移に対して、補外ガラス転移開始温度と補外ガラス転移終了温度の平均値を求め、Tgとした。
(Glass Transition Temperature (Tg))
The Tg of the glass transition temperature measuring film was measured using a differential scanning calorimeter (DSC) Q1000 (manufactured by TA instruments). Specifically, the glass transition temperature measuring film was heated to 200°C at a heating rate of 10°C/min under a nitrogen gas flow, then rapidly cooled to 40°C, and heated again to 200°C at a heating rate of 10°C/min. The average value of the extrapolated glass transition onset temperature and the extrapolated glass transition end temperature was calculated for the glass transition observed during the second heating, and was taken as Tg.
 表1に、アクリル樹脂粉粒体の電気伝導度、Tg、フィルムの発泡痕、Hz、内部Hz、位相差の評価結果を示す。 Table 1 shows the evaluation results for the electrical conductivity, Tg, foaming marks on the film, Hz, internal Hz, and phase difference of the acrylic resin powder.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~5のアクリル樹脂粉粒体を使用すると、フィルムの発泡痕および高温高湿環境下における透明性の低下が抑制されることがわかる。これに対して、比較例1~4のアクリル樹脂粉粒体は、電気伝導度が325~386μS/cmであるため、フィルムの発泡痕が多くなったり、高温高湿環境下における透明性が低下したりする。 From Table 1, it can be seen that the use of the acrylic resin powders of Examples 1 to 5 suppresses foaming marks on the film and the decrease in transparency in a high-temperature, high-humidity environment. In contrast, the acrylic resin powders of Comparative Examples 1 to 4 have electrical conductivity of 325 to 386 μS/cm, which causes more foaming marks on the film and decreases transparency in a high-temperature, high-humidity environment.

Claims (16)

  1.  アクリル樹脂粉粒体であって、
     当該アクリル樹脂粉粒体および超純水を重量比1:10で混合した後、耐圧容器に入れて、100℃で20時間加熱した後、ろ過して得られる水溶液の23℃、50%RHにおける電気伝導度が300μS/cm以下であり、
     揮発性成分の含有率が1.0重量%未満である、アクリル樹脂粉粒体。
    An acrylic resin powder,
    the acrylic resin powder and ultrapure water are mixed in a weight ratio of 1:10, the mixture is placed in a pressure-resistant container, and the mixture is heated at 100° C. for 20 hours. The aqueous solution obtained by filtering the mixture has an electrical conductivity of 300 μS/cm or less at 23° C. and 50% RH;
    An acrylic resin powder having a volatile component content of less than 1.0% by weight.
  2.  ガラス転移温度が110℃以上である、請求項1に記載のアクリル樹脂粉粒体。 The acrylic resin powder according to claim 1, having a glass transition temperature of 110°C or higher.
  3.  当該アクリル樹脂粉粒体に含まれるアクリル樹脂は、主鎖に複素環を含む構成単位を有する、請求項1に記載のアクリル樹脂粉粒体。 The acrylic resin powder according to claim 1, wherein the acrylic resin contained in the acrylic resin powder has a structural unit containing a heterocycle in the main chain.
  4.  前記アクリル樹脂は、N-置換マレイミドに由来する構成単位を有する、請求項3に記載のアクリル樹脂粉粒体。 The acrylic resin powder according to claim 3, wherein the acrylic resin has structural units derived from an N-substituted maleimide.
  5.  前記N-置換マレイミドは、N-シクロヘキシルマレイミドまたはN-フェニルマレイミドである、請求項4に記載のアクリル樹脂粉粒体。 The acrylic resin powder according to claim 4, wherein the N-substituted maleimide is N-cyclohexylmaleimide or N-phenylmaleimide.
  6.  前記水溶液は、硫酸イオンの含有率が350ppm以下である、請求項4に記載のアクリル樹脂粉粒体。 The acrylic resin powder and granules according to claim 4, wherein the aqueous solution has a sulfate ion content of 350 ppm or less.
  7.  重量平均分子量が40万以上400万以下である、請求項1に記載のアクリル樹脂粉粒体。 The acrylic resin powder according to claim 1, having a weight average molecular weight of 400,000 or more and 4,000,000 or less.
  8.  溶液流延法によるフィルムの製造に用いられる、請求項1に記載のアクリル樹脂粉粒体。 The acrylic resin powder and granules according to claim 1, which are used to manufacture films by a solution casting method.
  9.  請求項1から8のいずれか一項に記載のアクリル樹脂粉粒体が溶剤に溶解している、ドープ溶液。 A dope solution in which the acrylic resin powder according to any one of claims 1 to 8 is dissolved in a solvent.
  10.  請求項1から8のいずれか一項に記載のアクリル樹脂粉粒体を溶剤に溶解させて、ドープ溶液を製造する、ドープ溶液の製造方法。 A method for producing a dope solution, comprising dissolving the acrylic resin powder according to any one of claims 1 to 8 in a solvent to produce the dope solution.
  11.  請求項9に記載のドープ溶液を支持体の表面に流延した後、前記溶剤を揮発させて製造される、フィルム。 A film produced by casting the dope solution according to claim 9 onto the surface of a support and then volatilizing the solvent.
  12.  請求項9に記載のドープ溶液を支持体の表面に流延した後、前記溶剤を揮発させて、フィルムを製造する、フィルムの製造方法。 A method for producing a film, comprising casting the dope solution according to claim 9 onto the surface of a support, and then volatilizing the solvent to produce a film.
  13.  アクリル樹脂を含み、
     前記アクリル樹脂は、主鎖に複素環を含む構成単位を有し、ガラス転移温度が110℃以上であり、重量平均分子量が40万以上400万以下であり、
     厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後のヘイズの変化ΔHzが2.5%以下であり、
     厚みが40μmである場合の85℃、95%RHの条件で96時間保管する前後の黄色度の変化ΔYIが3.5以下である、フィルム。
    Contains acrylic resin,
    The acrylic resin has a structural unit containing a heterocycle in its main chain, a glass transition temperature of 110° C. or higher, and a weight average molecular weight of 400,000 or higher and 4,000,000 or lower,
    When the thickness is 40 μm, the change in haze ΔHz before and after storage for 96 hours under conditions of 85° C. and 95% RH is 2.5% or less;
    A film having a thickness of 40 μm, in which the change in yellowness index ΔYI before and after storage for 96 hours under conditions of 85° C. and 95% RH is 3.5 or less.
  14.  厚みが40μmである場合のヘイズHzが2%以下であり、
     厚みが40μmである場合の黄色度YIが2.0以下である、請求項13に記載のフィルム。
    The haze Hz is 2% or less when the thickness is 40 μm,
    The film according to claim 13, having a yellowness index YI of 2.0 or less when the film has a thickness of 40 μm.
  15.  前記アクリル樹脂は、N-置換マレイミドに由来する構成単位を有する、請求項13または14に記載のフィルム。 The film according to claim 13 or 14, wherein the acrylic resin has structural units derived from an N-substituted maleimide.
  16.  前記N-置換マレイミドは、N-シクロヘキシルマレイミドまたはN-フェニルマレイミドである、請求項15に記載のフィルム。 The film of claim 15, wherein the N-substituted maleimide is N-cyclohexylmaleimide or N-phenylmaleimide.
PCT/JP2023/043936 2022-12-08 2023-12-08 Acrylic resin powder and film WO2024122626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022196167 2022-12-08
JP2022-196167 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024122626A1 true WO2024122626A1 (en) 2024-06-13

Family

ID=91379066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043936 WO2024122626A1 (en) 2022-12-08 2023-12-08 Acrylic resin powder and film

Country Status (1)

Country Link
WO (1) WO2024122626A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533203A (en) * 2016-09-27 2019-11-14 エルジー エムエムエー コープ.Lg Mma Corp. Dope solution for producing optical film and optical film using the same
WO2022124402A1 (en) * 2020-12-11 2022-06-16 株式会社カネカ Acrylic resin composition and resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533203A (en) * 2016-09-27 2019-11-14 エルジー エムエムエー コープ.Lg Mma Corp. Dope solution for producing optical film and optical film using the same
WO2022124402A1 (en) * 2020-12-11 2022-06-16 株式会社カネカ Acrylic resin composition and resin film

Similar Documents

Publication Publication Date Title
US10597525B2 (en) Resin composition and film thereof
JP6986510B2 (en) Resin composition, its molded product and film
US10578773B2 (en) Optical resin composition and film
WO2014162370A1 (en) Optical resin material and optical film
US10184019B2 (en) Optical thermoplastic resin and formed body
JP6594207B2 (en) Optical resin composition and film
US10391694B2 (en) Method of producing film
JP2013182070A (en) Polarizer protective film and polarizing plate
JP6523176B2 (en) Resin material and film thereof
US20230312905A1 (en) Acrylic resin composition and resin film
JP7533217B2 (en) Optical film, polarizing plate, and method for manufacturing optical film
JPWO2018168402A1 (en) Optical film, polarizing plate having the same, and display device
WO2020203833A1 (en) Optical film, polarizing plate, and production method for optical film
WO2024122626A1 (en) Acrylic resin powder and film
WO2022131365A1 (en) Graft copolymer and resin film
JP7452421B2 (en) Optical film, polarizing plate protective film, optical film roll, and optical film manufacturing method
JPWO2020026960A1 (en) Optical film, polarizing plate protective film and polarizing plate
WO2020027078A1 (en) (meth)acrylic resin film, optical film, and (meth)acrylic resin film production method
JP2024082369A (en) Method for producing acrylic resin
KR102598379B1 (en) Optical film, polarizer, manufacturing method of optical film
JP2023147507A (en) Method for producing resin film
WO2023149421A1 (en) Transparent resin substrate for flexible display, and hard coat film
WO2022131366A1 (en) Graft copolymer and resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900738

Country of ref document: EP

Kind code of ref document: A1