WO2015111519A1 - Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device - Google Patents

Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2015111519A1
WO2015111519A1 PCT/JP2015/051100 JP2015051100W WO2015111519A1 WO 2015111519 A1 WO2015111519 A1 WO 2015111519A1 JP 2015051100 W JP2015051100 W JP 2015051100W WO 2015111519 A1 WO2015111519 A1 WO 2015111519A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dope composition
mass
acrylic resin
optical film
Prior art date
Application number
PCT/JP2015/051100
Other languages
French (fr)
Japanese (ja)
Inventor
元 中山
克己 篠田
修介 有田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015558826A priority Critical patent/JP6211103B2/en
Publication of WO2015111519A1 publication Critical patent/WO2015111519A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a dope composition, an optical film and a method for producing the same, a polarizing plate, and a liquid crystal display device.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof.
  • the optical element polarizing plate protective film
  • a child also referred to as a polarizing film or a polarizing film.
  • a cellulose triacetate film is usually used as this polarizing plate protective film.
  • liquid crystal display devices Due to recent technological advances, the enlargement of liquid crystal display devices has accelerated, and the applications of liquid crystal display devices have diversified. For example, it can be used as a large display installed in a street or a store, or used as an advertising display in a public place using a display device called digital signage.
  • PMMA polymethyl methacrylate
  • Patent Document 1 discloses a polarizing plate protective film containing an acrylic resin and a cellulose ester.
  • This polarizing plate protective film can reduce moisture permeability by mixing an acrylic resin with cellulose ester, and it is said that relatively good dimensional stability can be obtained even under high humidity conditions.
  • a resin film made of an acrylic resin or the like is generally manufactured by a melt film forming method in which a resin is heated to a molten state to form a film.
  • the acrylic resin used in this melt film forming method those having a weight average molecular weight of about 50,000 to 150,000 are usually used. The reason for this is that if the weight average molecular weight of the acrylic resin is less than 50,000, the resin film becomes fragile. Conversely, if the weight average molecular weight of the acrylic resin is greater than 150,000, fluidity cannot be obtained even when heated. This is because in either case, it is difficult to form a film.
  • a solution film forming method using a solution (dope composition) in which a resin is dissolved in a solvent is known as a film forming method.
  • Patent Document 2 discloses that when an acrylic resin having a weight average molecular weight of 8 to 150,000 is made into a film by a solution casting method, a polyethylene terephthalate (PET) film is dried until the acrylic film has a self-supporting property. Is described as a temporary support, and then a method for producing an acrylic film is described in which a film is obtained by peeling.
  • PET polyethylene terephthalate
  • a dope composition using an acrylic resin having a relatively small weight average molecular weight of 8 to 150,000 has a low viscosity and a low flow rate. It has been found that production problems such as streaks are likely to occur during discharge from the cutting edge of the extended die.
  • the present inventors have obtained a high viscosity, hardly cause streaks in the casting film during discharge from the casting die, and have dried the casting film.
  • the present inventors have studied for the purpose of providing a dope composition that can easily peel a polymer film obtained by drying to have a self-supporting property from a metal support. Furthermore, studies have been conducted for the purpose of providing an optical film having a good surface shape and excellent optical characteristics, a method for producing a highly productive optical film, and a polarizing plate and a liquid crystal display device including the optical film. It was.
  • the inventors of the present invention have made extensive studies in order to solve the above problems, and as a result, have obtained the following findings (1) to (4).
  • (1) By making the weight average molecular weight of an acrylic resin 250,000 or more, the dope can be increased in viscosity at a relatively low concentration.
  • (2) When a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is used as a solvent and the concentration of the acrylic resin in the dope composition is lowered (that is, the proportion of the solvent is increased) In the process of drying the cast film, the difference in drying speed between methylene chloride and alcohol becomes more prominent, and the rate of slow drying alcohol increases.
  • a cast film formed using a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is peeled off from the support when the ratio of the alcohol in the mixed solvent is high. Easy to do.
  • a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is used, if the dope composition contains a large amount of cellulose ester, the ratio of alcohol in the mixed solvent is high.
  • the polymer film is whitened, the whitening problem is eliminated when the composition is such that the cellulose ester content is less than 0.5% by mass with respect to the acrylic resin.
  • a mass ratio (A: B) of an acrylic resin having a weight average molecular weight Mw of 250,000 or more, (A) methylene chloride, and (B) an alcohol having 1 to 4 carbon atoms is 85:15 to 50:50
  • the dope composition which contains a certain solvent and whose content of a cellulose ester is less than 0.5 mass% with respect to the above-mentioned acrylic resin.
  • a solid content contained in the dope composition was mixed with a solvent having a mass ratio (A: C) of (A) methylene chloride and (C) methanol of 82:18, a mixture was prepared.
  • the solid content of the material other than the acrylic resin is 2% by mass or more based on the total solid content, and the equilibrium water content of the solid content of the material other than the acrylic resin is the equilibrium water content of the acrylic resin.
  • a liquid crystal display device comprising the polarizing plate according to [9].
  • the dope composition of the present invention a high viscosity can be obtained, and streaks can be prevented from entering the casting film during discharge from the casting die. Further, whitening of the cast film during the drying process is suppressed, and the polymer film obtained by drying the cast film can be easily peeled from the metal support. Thereby, it is possible to efficiently obtain a polymer film having a uniform surface shape and excellent optical characteristics.
  • optical film of the present invention since the above-described dope composition is used, an optical film having excellent optical characteristics can be obtained with high productivity.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acryl represents methacryl or acryl.
  • the acrylic resin used in the present invention means a (meth) acrylic resin and also includes a methacrylic resin.
  • Dope composition The dope composition is cast on a support to form a cast film, and the cast film is dried to form a polymer film by peeling the polymer film from the metal support. It is.
  • the cast membrane dried to have self-supporting property is called a polymer membrane.
  • the dope composition of the present invention has a mass ratio (A: B) of 85:15 between an acrylic resin having a weight average molecular weight Mw of 250,000 or more, (A) methylene chloride, and (B) an alcohol having 1 to 4 carbon atoms. And a solvent having a cellulose ester content of less than 0.5% by mass with respect to the above-mentioned acrylic resin.
  • A: B mass ratio
  • the dope composition includes a solid content including at least a resin component and an additive, and a solvent.
  • the solid content will be described first.
  • the acrylic resin used in the present invention includes a methacrylic resin. It is preferable that the methyl methacrylate unit is 50 to 100% by mass and the other monomer unit copolymerizable therewith is less than 5% by mass. A homopolymer of methyl methacrylate may be used without using any other copolymerizable monomer. As other copolymerizable monomers, alkyl (meth) acrylate units (b) other than methyl methacrylate are preferred. More preferably, the acrylic resin includes a methyl methacrylate unit (a) and the mass fraction of the alkyl (meth) acrylate unit (b) other than methyl methacrylate is less than 5% by mass.
  • alkyl (meth) acrylate unit (b) examples include the following.
  • alkyl (meth) acrylate units other than methyl methacrylate (b) examples include, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and acrylic acid.
  • Acrylic acid ester such as benzyl (preferably alkyl acrylate having 1 to 18 carbon atoms in alkyl); ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate
  • Methacrylic acid esters such as benzyl methacrylate (preferably an alkyl methacrylate having 2 to 18 carbon atoms in the alkyl number), and the like. These may be used alone or in combination of two or more. Good.
  • the acrylic resin used in the present invention may also contain constituent units other than the alkyl (meth) acrylate units (a) and (b).
  • Examples of such structural units include ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid, divalent carboxylic acids containing unsaturated groups such as maleic acid, fumaric acid and itaconic acid, styrene, ⁇ -methylstyrene and the like.
  • Examples include aromatic vinyl compounds, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and lactone rings.
  • One type of these structural units may be introduced alone into the acrylic resin, or two or more types of structural units may be combined and introduced into the acrylic resin.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the alkyl resin is most preferably composed of a single methyl methacrylate unit (a) from the viewpoint of increasing the glass transition temperature and obtaining heat resistance.
  • the alkyl resin is a copolymer of the methyl methacrylate unit (a) and other structural units, characteristics other than the characteristics expressed by the methyl methacrylate unit (a) can be imparted to the acrylic resin.
  • the content ratio of methyl methacrylate in the monomer component used in the polymerization step is preferably 95 to 100% by mass, more preferably 97 to 100% by mass, in order to sufficiently exhibit the effects of the present invention. %, More preferably 100% by mass.
  • the acrylic resin includes a methyl methacrylate unit (a), and the mass fraction of the alkyl (meth) acrylate unit (b) other than methyl methacrylate is preferably less than 5% by mass, and less than 3% by mass. More preferably, it is particularly preferably 0% by mass.
  • the acrylic resin that can be used in the present invention is commercially available or can be obtained by a known synthesis method.
  • emulsion polymerization, solution polymerization, bulk polymerization, and suspension polymerization can be applied.
  • emulsion polymerization and suspension polymerization are more preferable in producing a high molecular weight acrylic resin that can be used in the present invention.
  • the initiator for suspension polymerization those used in usual suspension polymerization can be used, and examples thereof include organic peroxides and azo compounds.
  • the suspension stabilizer conventionally known ones can be used, and examples thereof include organic colloidal polymer substances, inorganic colloidal polymer substances, inorganic fine particles, and combinations of these with surfactants.
  • the acrylic resin (A) used in the dope composition of the present invention has a weight average molecular weight (Mw) of 250,000 or more. Since the acrylic resin is such a polymer, the viscosity of the dope composition can be sufficiently increased even when the concentration of the acrylic resin in the dope composition is relatively low. As a result, streaks are prevented from entering the surface of the casting film during discharge from the casting die, and a polymer film having a good surface shape can be obtained.
  • the concentration of the acrylic resin can be lowered (the ratio of the solvent can be increased) while making the dope composition high viscosity, so that the effect of the present invention that facilitates film peeling can be achieved. Remarkably can be obtained. This effect will be described in detail later.
  • the weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 250,000 to 2,200,000, particularly preferably in the range of 300,000 to 2,000,000, and 500,000 to 1,800,000. The range is more preferable, and the range of 1 to 1.8 million is most preferable.
  • the upper limit of the weight average molecular weight (Mw) of the acrylic resin (A) is preferably 2.5 million or less from the viewpoint of production.
  • An acrylic resin having such a weight average molecular weight is higher than the weight average molecular weight of the acrylic resin used for melt film formation, and is suitable for solution film formation.
  • “weight average molecular weight (Mw)” refers to that measured by gel permeation chromatography under the following conditions.
  • the concentration of the acrylic resin in the dope composition is preferably 8% by mass or more and 40% by mass or less. It is preferably 10 to 35% by mass, more preferably 12 to 33% by mass, still more preferably 14 to 30% by mass, particularly preferably 14 to 28% by mass, and 14 to 26%. Most preferably, it is mass%.
  • the dope composition of the present invention may be added with a solid content such as a resin other than an acrylic resin and an additive as long as the function of the polymer film to be formed is not impaired.
  • the dope composition of the present invention has a cellulose ester content of less than 0.5% by mass based on the above-mentioned acrylic resin. If the dope composition contains a large amount of cellulose ester, the cast film is whitened during the drying process of the cast film, and transparency is impaired.
  • the dope composition of the present invention there is no problem even if cellulose is contained as long as it is a trace amount that does not impair the effect of the invention without impairing the transparency of the cast film.
  • the dope composition The cellulose content with respect to the total solid content is less than 0.5% by mass, and it is more preferable that the content is not contained at all. This corresponds to “substantially free of cellulose ester”.
  • the cellulose ester content is less than 0.5% by mass with respect to the acrylic resin described above, whitening of the cast film during the drying process is suppressed, and a polymer film with reduced optical properties and moisture permeability is efficiently used. Can get well.
  • the cellulose ester content relative to the acrylic resin is such that after the dope composition of the present invention is dried and formed into a polymer film, the cellulose ester content is 0 relative to the acrylic resin described above. It can be confirmed by less than 5% by mass.
  • the content of the cellulose ester relative to the acrylic resin has a peak area peculiar to the cellulose ester that does not appear in the acrylic resin by infrared spectrum measurement. It can be determined by quantifying.
  • the cellulose content was determined as follows. After obtaining a film from a dope in which cellulose ester of 0.1, 0.3, 0.5, 1.0, and 2.0 mass% is mixed in advance with respect to the amount of acrylic resin, infrared of these films is obtained. The spectrum was measured, and the height from the baseline of the peak at 1370 cm ⁇ 1 which does not appear in the acrylic resin and is characteristic of the cellulose ester was determined. A calibration curve was created based on the peak height from this baseline, and the amount of cellulose ester was determined by measuring the infrared spectrum of the sample film. This measurement was performed with a NICOLET 6700 FT-IR infrared spectrometer.
  • additives other than the resin component may be added to the dope composition.
  • additives include plasticizers, UV absorbers, thermal decomposability and thermal colorability during molding, transportability, and various antioxidants, brittleness improvers, and film balances to improve optical performance. Examples thereof include an additive for reducing the water content / moisture permeability and an optical developer.
  • the plasticizer has a function of improving the fluidity and flexibility of the dope composition.
  • plasticizer examples include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • ultraviolet absorber examples include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole
  • 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone And benzophenones.
  • the antioxidant include phenolic and amine-based compounds such as hindered phenol having radical scavenging ability.
  • brittleness improver examples include rubbery compounds that improve the brittleness of acrylic resins such as acrylic-butadiene rubber, and copolymers of MMA (methyl methacrylate) and butyl acrylate.
  • Additives that reduce the equilibrium water content / moisture permeability of the film include low molecular weight compounds, oligomers, and resins that are more hydrophobic than acrylic resins and have a low equilibrium water content.
  • phenol resin, phenol novolac resin, coumarone resin, norbornene resin, rosin resin, and other alicyclic polymers can be preferably used.
  • the resin and additive are preferably materials having a lower equilibrium water content than the acrylic resin.
  • the equilibrium moisture content of the dope composition of the present invention is lowered, and further, the equilibrium moisture content of the optical film made of the dope composition of the present invention is lowered.
  • the moisture permeability of the optical film of the present invention tends to be reduced and the moisture permeability tends to be reduced, and the polarizing plate and the liquid crystal display device using the optical film of the present invention are subject to variations in temperature and humidity due to environmental changes. In contrast, the display performance can be kept favorable.
  • the solid content of the material other than the acrylic resin is such that the content of the acrylic resin is 70% by mass or more with respect to the total solid content contained in the dope composition, that is, It is preferable that it is less than 30 mass% with respect to the total amount of solid content.
  • the solid content (addition amount of the solid content) of the material is preferably 2% by mass or more based on the total solid content.
  • the content is more preferably 2 to 28% by mass, and further preferably 5 to 25% by mass.
  • the concentration of the solid content in the dope composition is preferably 10% by mass or more, and more preferably 40% by mass or less. As a result, a high quality polymer film with reduced film thickness unevenness can be obtained.
  • the concentration of the solid content in the dope composition is preferably 35% by mass or less, more preferably 33% by mass or less, still more preferably 30% by mass or less, and 28% by mass or less. Particularly preferred is 26% by mass or less. Thereby, the effect of facilitating film peeling by the alcohol described later can be obtained with certainty.
  • the dope composition of the present invention contains (A) a mixed solvent of methylene chloride and (B) an alcohol having 1 to 4 carbon atoms as a solvent, and (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms.
  • the mass ratio (A: B) is 85:15 to 50:50.
  • methylene chloride may be referred to as a solvent (A)
  • an alcohol having 1 to 4 carbon atoms may be referred to as a solvent (B).
  • FIG. 1 is a graph showing the change over time of the methanol content in the residual solvent (volatile matter) during the drying process for four types of cast films with different weight average molecular weights of acrylic resin.
  • FIG. 2 is a graph showing the relationship between the remaining solvent component (total volatile content) and the peeling load when peeling the polymer film from the metal support during the drying process.
  • the amount of residual methanol was detected by gas chromatography.
  • the residual solvent amount (volatile matter) of the polymer film is defined by the following formula.
  • Residual solvent amount (volatile content) (%) (film weight including solvent ⁇ film weight after removing solvent by heating) / (film weight after removing solvent by heating) ⁇ 100
  • the solvent was removed by heating at 140 ° C. for 1 hour.
  • Each cast film is cast on a metal support using a mixed solvent in which methylene chloride and methanol are mixed in a mass ratio of 82:18 as a solvent.
  • methylene chloride having a low boiling point volatilizes faster than alcohol having 1 to 4 carbon atoms. For this reason, as shown in FIG. 1, the content ratio of methanol in the mixed solvent increases with time.
  • FIG. 1 the content ratio of methanol in the mixed solvent increases with time.
  • the “peeling load” in the present specification is a region where the residual solvent (volatile content) in the casting film is 100% or less on the metal support, and the end from which the casting film has been peeled is suspended from the load cell. It is a value measured based on the tension required when peeling a cast film of a certain area from a metal support.
  • the peeling load is preferably 50 gf / cm or less, more preferably 30 gf / cm or less, and further preferably 15 gf / cm or less.
  • Step unevenness means that when the peeling load between the polymer film and the metal support is large, the peeling point increases or decreases at the time of peeling, or the peeling load increases or decreases, resulting in the width direction of the finished film. This is a phenomenon in which a difference in film thickness occurs, resulting in stepped unevenness and causing a surface failure.
  • the dope composition of the present invention was obtained by drying the casting film because the content ratio of alcohol in the mixed solvent increased with time and the peeling load decreased in the drying process of the casting film.
  • the polymer film can be easily peeled from the metal support.
  • a polymer film having a good surface shape can be obtained efficiently.
  • Such an effect of facilitating film peeling by alcohol is presumed to be due to the fact that alcohol has an action of inhibiting a hydrogen bond formed between the metal support and the acrylic resin.
  • a cellulose ester is contained in the dope composition, the cellulose ester becomes difficult to dissolve with an increase in the methanol ratio, causing a phenomenon that the cast film is whitened, resulting in a matte surface.
  • the film surface shape smoothness
  • the dope composition of the present invention does not contain a cellulose ester, such whitening is avoided, and the obtained polymer film has an excellent film surface shape.
  • the alcohol having 1 to 4 carbon atoms used in the mixed solvent is preferably methanol, ethanol, isopropanol, n-butanol, iso-butanol, sec-butanol, or tert-butanol, and methanol or ethanol is used. More preferably, methanol is most preferably used.
  • the mass ratio of A: B is preferably 84:16 to 55:45, and more preferably 83:17 to 60:40.
  • the mass ratio (A: B) is set so that the ratio of B is 15% by mass or more, the difference in the drying rate between the ethylene chloride and the alcohol can be made remarkable in the drying process of the cast film, and the peeling The alcohol content ratio of the polymer film at the time can be made higher. As a result, the polymer film can be more easily peeled from the support. Moreover, when the ratio of the mixed solvent is 50% by mass or less, whitening of the dope composition due to insoluble acrylic resin can be avoided, and the dope composition can be cast favorably.
  • the weight average molecular weight of the acrylic resin is as large as 250,000 or more, a sufficient viscosity can be obtained even when the proportion of the mixed solvent is high (the acrylic resin concentration is low). it can. For this reason, it is possible to reliably suppress the streaks from entering the casting film at the time of discharging from the casting die while sufficiently enjoying the effect of facilitating film peeling by alcohol.
  • the dope composition of the present invention has a solvent (other than (A) and (B) other than (A) and (B) as long as the effect of the mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is not hindered. Solvent). Any other solvent can be used without limitation as long as it dissolves the solid content used in the dope composition.
  • the total mass of the mixed solvent of (A) methylene chloride and (B) alcohol having 1 to 4 carbon atoms and the mass ratio of the other solvent is 99.9: 0.1 to 90 : 10, preferably 99.9: 0.1 to 95: 5, more preferably 99.9: 0.1 to 98: 2.
  • the solid content contained in the dope composition is mixed with a solvent in which the mass ratio (A: C) of (A) methylene chloride and (C) methanol is 82:18;
  • the dope solid content concentration is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • the lower limit is preferably 10% by mass or more.
  • complex viscosity is a value measured using 1 mL of a sample solution as a rheometer (CLS 500) with a Steel Cone having a diameter of 4 cm / 2 ° (both manufactured by TA Instruments).
  • the complex viscosity of the dope composition in the present invention is preferably 1 to 100 Pa ⁇ s, more preferably 2 to 70 Pa ⁇ s, still more preferably 20 to 80 Pa ⁇ s, and more preferably 25 to 70 Pa ⁇ s. Most preferred. When the complex viscosity is in such a range, the solution casting suitability is further improved, and the whitening suppression effect of the film is further enhanced.
  • the dope composition satisfying this condition can obtain a sufficient viscosity during casting even when the solid concentration is low (the ratio of the mixed solvent is high). For this reason, after the casting film is dried to the extent that it has self-supporting property, the film can be easily discharged at the time of discharge from the casting die while fully enjoying the effect of facilitating film peeling by alcohol when peeling from the metal support. It is also possible to reliably suppress streaks from entering the film.
  • the polymer film obtained by forming the dope composition of the present invention has a uniform surface shape and high transparency and can be efficiently produced, it is useful for various applications.
  • the polymer film can be suitably used as an optical film such as a polarizing plate protective film or an optical compensation film.
  • an optical film (the optical film of the present invention) will be described as a suitable application of the polymer film obtained by forming the dope composition of the present invention.
  • the optical film of the present invention has at least one polymer film obtained by forming the dope composition of the present invention, and the high film obtained by forming the dope composition of the present invention.
  • the structure which has only 1 layer of molecular films may be sufficient, the structure which has two or more layers may be sufficient, It is preferable that it is the structure which has only 1 layer of said polymer films.
  • the optical film of the present invention may have a multilayer structure having layers other than the above polymer film. A three-layer configuration in which the dope composition of the present invention is a central layer and an outer layer is provided on both sides, and a plurality of outer layers may be provided.
  • each polymer film is obtained by forming the same dope composition.
  • it may be obtained by forming different dope compositions.
  • the optical film may be provided with a surface treatment or a functional layer described later on the surface of the polymer film.
  • the optical film of the present invention preferably has a configuration having the above polymer film as at least one outermost layer (layer having an air interface).
  • the description in the section ⁇ Dope composition> can be referred to.
  • this optical film can be manufactured by the following optical film manufacturing methods (the optical film manufacturing method of the present invention).
  • the “equilibrium moisture content” of an optical film refers to a moisture content (measured at a temperature of 25 ° C. and a relative humidity of 80% according to the Karl Fischer method for a 24 mm ⁇ 36 mm film sample cut from the optical film). This is a value calculated by dividing g) by the sample mass (g).
  • the equilibrium moisture content can be measured using a moisture measuring device (trade name CA-03, manufactured by Mitsubishi Chemical Corporation) and a sample drying apparatus (trade name VA-05, manufactured by Mitsubishi Chemical Corporation).
  • the adhesiveness with water-soluble thermoplastics such as polyvinyl alcohol is not impaired, so that the temperature is 25 ° C. and the relative humidity is 80% regardless of the film thickness.
  • the equilibrium water content is preferably 0 to 4% by mass.
  • the content is more preferably 0.1 to 3% by mass, and further preferably 0.5 to 2% by mass.
  • the optical film of the present invention preferably has a small maximum height difference (PV value) (step unevenness).
  • the maximum height difference (PV value) of the film thickness can be measured using, for example, a fringe analyzer, a laser displacement meter, a contact film thickness meter, or the like.
  • the “maximum difference in film thickness (PV value)” of an optical film is measured using a fringe analyzer FX-03 (manufactured by FUJINON) with a measurement area of 60 mm in diameter. The maximum difference in film thickness.
  • the maximum height difference (PV value) is preferably 3.0 ⁇ m or less, more preferably 1.1 ⁇ m or less, and particularly preferably 0.9 ⁇ m or less. preferable. Since the optical film of the present invention is composed of a polymer film obtained by forming the dope composition of the present invention, the maximum film thickness difference (PV value) is surely 3.0 ⁇ m or less. Can be suppressed.
  • the method for producing an optical film of the present invention is a method for producing an optical film by a solution casting method.
  • This production method includes a dissolution step (1) in which the dope composition of the present invention is dissolved in a solvent to prepare a dope, and a casting film in which the above-described dope composition is cast on a metal support to form a cast film. It includes at least a stretching step (2) and a peeling step (3) in which the cast film is dried and then peeled from the metal support to obtain a polymer film. After the peeling step, a drying step of further drying the peeled polymer film to eliminate residual solvent (volatile matter) may be performed. Moreover, you may perform the extending
  • the film production line used in the method for producing an optical film of the present invention is not limited to the one shown in FIG.
  • the optical film in the present invention includes all the films after the peeling step.
  • the film production line 20 shown in FIG. 3 includes a stock tank 21, a filtration device 30, a casting die 31, a metal support 34 stretched over rotating rollers 32 and 33, a tenter dryer 35, and the like.
  • an ear-cutting device 40, a drying chamber 41, a cooling chamber 42, a winding chamber 43, and the like are arranged.
  • a stirrer 61 that is rotated by a motor 60 is attached to the stock tank 21.
  • the stock tank 21 is connected to the casting die 31 via the pump 62 and the filtration device 30.
  • the width of the casting die 31 is preferably 1.1 to 2.0 times the width of the final film.
  • a metal support 34 that is stretched around the rotating rollers 32 and 33 is provided below the casting die 31 .
  • the rotating rollers 32 and 33 are rotated by a driving device (not shown), and the metal support 34 travels endlessly with the rotation.
  • the heat transfer medium circulation device 63 is attached to the rotary rollers 32 and 33.
  • the metal support 34 is preferably one whose surface temperature can be adjusted to ⁇ 20 ° C. to 40 ° C.
  • the width of the metal support 34 is preferably in the range of 1.1 to 2.0 times the casting width of the dope composition 22.
  • the length is preferably 20 to 200 m
  • the film thickness is 0.5 to 2.5 mm
  • the surface is preferably polished so that the surface roughness is 0.05 ⁇ m or less.
  • the metal support 34 is preferably made of stainless steel, and more preferably made of SUS316 so as to have sufficient corrosion resistance and strength. Moreover, it is preferable to use the metal support 34 having an overall film thickness unevenness of 0.5% or less. It is also possible to use the rotating rollers 32 and 33 directly as a support.
  • the casting die 31, the metal support 34, etc. are accommodated in the casting chamber 64.
  • the casting chamber 64 is provided with a temperature control facility 65 for keeping the internal temperature at a predetermined value, and a condenser (condenser) 66 for condensing and recovering the volatile organic solvent.
  • a recovery device 67 for recovering the condensed and liquefied organic solvent is provided outside the casting chamber 64.
  • a decompression chamber 68 for controlling the pressure of the back surface of the casting bead formed from the casting die 31 to the metal support 34 is disposed, and this is also used in this embodiment. .
  • air blowing ports 70, 71 and 72 are provided near the peripheral surface of the metal support 34.
  • the crossover portion 80 is provided with a blower 81, and the ear-cutting device 40 downstream of the tenter dryer 35 is used for finely cutting the waste at the side end (referred to as an ear) of the cut film 82.
  • Crusher 90 is connected.
  • the drying chamber 41 is provided with a large number of rollers 91, and an adsorption / recovery device 92 for adsorbing / recovering the solvent gas generated by evaporation is attached.
  • a forced static elimination device (static elimination bar) 93 for adjusting the charged voltage of the film 82 to a predetermined range (for example, ⁇ 3 kV to +3 kV) is provided downstream of the cooling chamber 42.
  • a knurling application roller 94 for applying knurling to both edges of the film 82 by embossing is appropriately provided downstream of the forced static elimination device 93.
  • a winding roller 95 for winding the film 82 and a press roller 96 for controlling the tension at the time of winding are provided in the winding chamber 43.
  • the dope composition 22 is always made uniform by the rotation of the stirrer 61.
  • the dope composition 22 may be mixed with additives such as a retardation developer, a plasticizer, and an ultraviolet absorber during the stirring.
  • the dissolution step is a step for preparing the dope composition of the present invention.
  • the dissolution step in the present invention is a step of dissolving a solid content such as acrylic resin in an organic solvent mainly containing methylene chloride while stirring to form a dope composition, or further mixing an additive solution. And a step of forming a dope composition.
  • the material of the dope composition the description in the section of ⁇ Dope composition> can be referred to.
  • the dope composition can be prepared at a temperature of 0 ° C. or higher (ordinary temperature or high temperature).
  • the dope composition of the present invention can be prepared using a dope preparation method and apparatus in a normal solvent cast method.
  • a method carried out at normal pressure a method carried out below the boiling point of methylene chloride, a method carried out under pressure above the boiling point of methylene chloride, JP-A-9-95544, JP-A-9-95557, or
  • Various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used.
  • pressurization may be performed particularly above the boiling point of methylene chloride.
  • the acrylic resin, the solvent (A) and the solvent (B) are put in a pressure vessel and sealed, and stirred while heating to a temperature not lower than the boiling point of the solvent at normal temperature and in a range where the solvent does not boil.
  • the heating temperature is usually 40 ° C. or higher, preferably 60 to 200 ° C., more preferably 80 to 110 ° C.
  • the concentration of the acrylic resin in the dope composition is preferably 10 to 35% by mass. It is preferable that an additive is added to the dope during or after dissolution to dissolve and disperse, and then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
  • the casting process is a process of casting the above-mentioned dope composition on a metal support to form a cast film.
  • the dope composition 22 is sent to the filtration device 30 by a pump (for example, a pressurized metering gear pump) 62 and filtered there, and then cast from the casting die 31 onto the metal support 34.
  • a casting bead is formed from the casting die 31 to the metal support 34, and a casting film 69 is formed on the metal support 34.
  • the temperature of the dope composition 22 at the time of casting is preferably ⁇ 10 ° C. to 57 ° C.
  • the casting film 69 moves as the metal support 34 moves.
  • a pressure die that can adjust the slit shape of the die base and facilitates uniform film thickness is preferred.
  • the pressure die includes a coat hanger die and a T die, and any of them is preferably used.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • the casting film 69 is continuously conveyed to the location where the air blowing port 73 is arranged in the upper part. Dry air is blown toward the casting film 69 from the nozzle of the air blowing port 73.
  • the solvent evaporation process is a process in which the casting film is heated on the metal support and the solvent is evaporated until the casting film can be peeled from the metal support (until the casting film has a self-supporting property and becomes a polymer film). is there.
  • the cast film 69 is peeled off from the metal support 34 while being supported by the peeling roller 75 as the polymer film 74 after becoming a polymer film having self-supporting property as a result of evaporation of the solvent by drying.
  • the temperature at the peeling position on the metal support 34 is preferably ⁇ 50 to 40 ° C., more preferably ⁇ 30 to 35 ° C., and further preferably ⁇ 10 to 30 ° C.
  • the amount of residual solvent (volatile matter) at the time of peeling of the polymer film on the metal support at the time of peeling is in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. Peeling is preferable, but when peeling is performed when the amount of residual solvent (volatile matter) is larger, if the polymer film is too soft, the flatness is impaired when peeling from the metal support, and vertical streaks due to peeling tension occur. Therefore, the residual solvent amount (volatile content) at the time of peeling is determined in consideration of the economic speed and quality.
  • the polymer film (wet film) 74 peeled off under the conditions as described above is transported to the transfer section 80 provided with a number of rollers, and the polymer film 74 is fed into the tenter dryer 35.
  • the drying of the polymer film 74 is advanced by blowing dry air of a desired temperature from the blower 81.
  • the temperature of the drying air is preferably 20 ° C. to 250 ° C.
  • the polymer film 74 is preferably stretched in the width direction (TD direction) perpendicular to the transport direction (MD direction). By stretching in the width direction, unevenness generated at the time of drying and stripping on the support can be reduced, and a good surface shape can be obtained in the film plane.
  • the draw ratio in the width direction is preferably 10% or more, more preferably 20% or more, and still more preferably 30% or more.
  • the polymer film 74 sent to the tenter dryer 35 is dried while being transported while being gripped by clips at both ends.
  • stretching in the width direction can be performed using a tenter dryer 35. It is preferable to divide the inside of the tenter dryer 35 into temperature zones and adjust the drying conditions appropriately for each of the zones. In this way, the polymer film 74 can be stretched in the width direction by the crossover 80 and / or the tenter dryer 35. Stretching in the transport direction may be performed, and by making the rotational speed of the downstream roller faster than the rotational speed of the upstream roller at the crossover portion 80, the polymer film 74 is given draw tension in the transport direction. be able to.
  • the polymer film 74 is dried without being stretched, and the residual solvent amount in the film is 3.0% by mass or less, preferably 1.0% by mass or less. More preferably, the stretching may be performed after the content is 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.2% by mass or less.
  • stretching the polymer film which made the residual solvent amount 3.0 mass% or less you may extend
  • the polymer film to be stretched may be a dry film or a wet film, but is preferably a wet film.
  • the stretching treatment may be performed in any one of the transport direction (MD) and the width direction (TD), and it is preferable to perform biaxial stretching in both the transport direction and the width direction.
  • Each stretching may be performed in one stage or in multiple stages.
  • biaxial stretching it is preferable to perform stretching in the order of the transport direction and then the width direction.
  • the stretching ratio in the width direction is preferably 110% to 500%, more preferably 120% to 400%, and particularly preferably 130% to 300%, assuming that 100% is not stretched. preferable.
  • the draw ratio in the conveying direction is preferably 110% to 500%, more preferably 120% to 400%, and particularly preferably 130% to 300%.
  • the glass transition temperature of the unstretched polymer film after drying is the glass transition temperature of the aforementioned thermoplastic resin, preferably 90 to 200 ° C., more preferably 100 to 180 ° C.
  • the temperature during stretching is preferably a temperature range of Tg ⁇ 30 ° C. with respect to the glass transition temperature Tg of the unstretched polymer film after drying, more preferably a temperature range of Tg ⁇ 25 ° C., and Tg ⁇ 20 A temperature range of ° C is more preferred.
  • Stretching in this temperature range has good film handling suitability, and a desired optical film can be produced without breaking the polymer film. By stretching at a temperature of (Tg-30 ° C.) or higher, the film can be prevented from being broken. Moreover, extending
  • the stretching treatment may be performed in a drying process after the polymer film 74 is formed and then passed through the crossing section 80 and the tenter dryer 35, or may be performed after the polymer film 74 is dried and wound up.
  • the casting conditions are preferably such that when the film is unstretched, the film thickness is 10 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, and more preferably 10 to 200 ⁇ m. Most preferably, the conditions are 60 ⁇ m.
  • the polymer film 74 is dried to a predetermined residual solvent amount (volatile matter) by the tenter dryer 35 and then sent to the downstream side as a film 82. Both ends of the film 82 are cut at both edges by the edge-cutting device 40. The cut side end portion is sent to the crusher 90 by a cutter blower (not shown). The crusher 90 pulverizes the film side end portion into a chip. Since this chip is reused for the preparation of the dope composition, this method is effective in terms of cost. In addition, although it can also abbreviate
  • the film 82 from which both ends have been removed is sent to the drying chamber 41 and further dried.
  • the temperature in the drying chamber 41 is preferably in the range of 50 ° C to 160 ° C.
  • the film 82 is conveyed while being wound around a roller 91, and the solvent gas generated by evaporation here is adsorbed and recovered by an adsorption recovery device 92.
  • the air from which the solvent component has been removed is blown again as dry air inside the drying chamber 41.
  • the drying chamber 41 is more preferably divided into a plurality of sections in order to change the drying temperature.
  • the film 82 is cooled to approximately room temperature in the cooling chamber 42.
  • a humidity control chamber (not shown) may be provided between the drying chamber 41 and the cooling chamber 42. When providing this humidity control chamber, it is preferable that air adjusted to a desired humidity and temperature is blown onto the film 82. Thereby, generation
  • a knurling roller 94 to give knurling to at least one end of the film 82 by embossing.
  • the knurling width is preferably 3 mm to 50 mm, more preferably 5 mm to 30 mm, and the height is preferably 0.5 to 500 ⁇ m, more preferably 1 to 200 ⁇ m. This may be knurled only on one side or knurled on both sides.
  • the film 82 is taken up by the take-up roller 95 in the take-up chamber 43. At this time, it is preferable to wind the sheet while applying a desired tension with the press roller 96. More preferably, the tension is gradually changed from the start to the end of winding.
  • the film 82 to be wound is preferably at least 100 m in the transport direction.
  • the width of the film 82 is preferably 600 mm or more, more preferably 1100 mm or more and 2900 mm or less, and further preferably 1800 mm or more and 2500 mm or less.
  • the dope composition when casting the dope composition, two or more kinds of dope compositions can be simultaneously co-casting or sequentially stacking co-casting. Furthermore, you may combine both casting.
  • a casting die to which a feed block is attached may be used, or a multi-manifold casting die may be used.
  • a multi-layer film can be obtained by co-casting. In this multilayer film, at least one of the thickness of the air side layer and the thickness of the support side layer is preferably 0.5% to 30% of the film thickness of the entire film.
  • it is preferable that the high-viscosity dope composition is wrapped with the low-viscosity dope composition when the dope composition is cast from the die slit to the metal support.
  • the optical film of the present invention preferably has excellent functions as a polarizing plate protective film and an optical compensation film by satisfying the following characteristics.
  • the film thickness of the optical film of the present invention is preferably 10 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, still more preferably 10 to 60 ⁇ m.
  • Glass transition temperature Tg means that when a film sample is heated at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC), the measured temperature is from the baseline. It means the average value of the temperature that begins to change and the temperature that returns to the baseline again. Note that the change in the measured temperature from the baseline is due to the glass transition of the film.
  • the optical film of the present invention preferably has a glass transition temperature of 90 ° C. or higher, more preferably 90 to 200 ° C., and still more preferably 90 to 180 ° C.
  • the optical film of the present invention can be preferably used as, for example, a polarizing plate protective film and an optical compensation film for a liquid crystal display device.
  • the optical compensation film is generally used for a liquid crystal display device and refers to an optical material that compensates for a retardation, and is synonymous with a retardation plate, an optical compensation sheet, and the like.
  • the optical compensation film has birefringence and is used for the purpose of removing the color of the display screen of the liquid crystal display device or improving the viewing angle characteristics.
  • the optical film obtained by forming the dope composition of the present invention may be an optical compensation film itself, or may be used as a support for the optical compensation film, and an optical anisotropic layer is provided thereon. Also good.
  • the optically anisotropic layer is not limited to the optical performance or driving method of the liquid crystal cell of the liquid crystal display device in which the optical film of the present invention is used, and any optically anisotropic layer required as an optical compensation film Can be used together.
  • the optically anisotropic layer used in combination may be formed from a composition containing a liquid crystalline compound or may be formed from a thermoplastic film having birefringence.
  • the optical film of the present invention may have an additional configuration depending on its application.
  • Examples of such a configuration include a surface treatment applied to the surface of the optical film and a functional layer provided on the surface of the optical film.
  • the surface treatment and the functional layer will be described.
  • the optical film of the present invention can achieve improved adhesion between the optical film and other layers (for example, a polarizer, an undercoat layer, and a back layer) by optionally performing a surface treatment.
  • a surface treatment for example, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment can be used.
  • the glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 ⁇ 3 to 20 Torr, and plasma treatment under atmospheric pressure is also preferred.
  • a plasma-excitable gas is a gas that is plasma-excited under the above conditions, and includes chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof. It is done. Details of these are described in detail on pages 30 to 32 in the Japan Institute of Invention Disclosure Bulletin (Public Technical No. 2001-1745, published on March 15, 2001, Japan Institute of Invention), and are preferably used in the present invention. be able to.
  • a functional layer having a thickness of 0.1 to 20 ⁇ m may be laminated on at least one surface of the polymer film.
  • the types of the functional layer include a hard coat layer, an antireflection layer (a layer having a refractive index adjusted such as a low refractive index layer, a medium refractive index layer, a high refractive index layer), an antiglare layer, an antistatic layer, an ultraviolet absorbing layer, A moisture permeation reducing layer is exemplified.
  • the functional layer described above may be a single layer or a plurality of layers.
  • the functional layer laminating method described above includes the co-flow with the dope composition of the present invention to form the above polymer film, or the above polymer film formed using the dope composition of the present invention. It is preferable to be coated on top.
  • the functional layer is formed by coating and drying, it is preferable to use a monomer having an ethylenically unsaturated group as a binder.
  • the aforementioned monomers may be monofunctional or polyfunctional. Among them, it is preferable to use a polymerizable polyfunctional monomer, more preferably a photopolymerizable polyfunctional monomer, and particularly preferably a coating solution containing a monomer having two or more (meth) acryloyl groups. .
  • the monomer having two or more (meth) acryloyl groups include (meth) acrylic of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate and the like.
  • Acid diesters (Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; (Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis ⁇ 4- (acryloxy-diethoxy) phenyl ⁇ propane and 2-2bis ⁇ 4- (acryloxy-polypropoxy) phenyl ⁇ propane ; Etc.
  • polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth)
  • epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.
  • esters of polyhydric alcohol and (meth) acrylic acid are preferable.
  • a polyhydric alcohol means a dihydric or higher alcohol. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable.
  • pentaerythritol tetra (meth) acrylate pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, Ethylene oxide modified tri (meth) acrylate phosphate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, Li ester polyacrylate, caprolactone-modified tris
  • resins having three or more (meth) acryloyl groups such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins And oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
  • dendrimers described in JP-A-2005-76005 and JP-A-2005-36105 can also be used.
  • esters of polyhydric alcohol and (meth) acrylic acid, and amides of polyhydric alcohol and isocyanate containing a plurality of (meth) acryloyl groups are also preferably used.
  • the polyhydric alcohol is not particularly limited, but is preferably an aliphatic alcohol, and more preferably an alcohol having a cyclic aliphatic hydrocarbon group.
  • the aliphatic group of the monocyclic alicyclic alcohol is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopentyl group, a cyclobutyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the aliphatic group of the polycyclic alicyclic alcohol include groups having a bicyclo, tricyclo, or tetracyclo structure having 5 or more carbon atoms, and a cycloalkyl group having 6 to 20 carbon atoms is preferable.
  • a part of carbon atoms in the cycloalkyl group may be substituted with a hetero atom such as an oxygen atom.
  • examples of the polycyclic alcohol include an adamantyl group, a norbornyl group, a dicyclopentyl group, a tricyclodecanyl group, a tetracyclododecyl group, and a central skeleton of the compound described in the claims of JP-A-2006-215096
  • Polyhydric alcohols having a central skeleton of the compounds described in JP-A No. 2001-10999 are particularly preferred from the viewpoint of reducing moisture permeability.
  • Two or more kinds of polymerizable polyfunctional monomers may be used in combination. Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator. Among these, it is preferable to use a photopolymerization initiator.
  • a photopolymerization initiator a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
  • a monomer having one (meth) acryloyl group is preferable, and a monomer having one (meth) acryloyl group is usually obtained from a monohydric alcohol and acrylic acid.
  • the monohydric alcohol may be an aromatic alcohol or an aliphatic alcohol.
  • Monohydric alcohols include methyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, diacetone alcohol, 1-methoxy-2-propanol, furfuryl alcohol 2-octanol, 2-ethylhexanol, nonanol, n-decanol, undecanol, n-dodecanol, trimethylnonyl alcohol, benzyl alcohol, phenethyl alcohol, ethylene glycol monoisoamyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, Examples include ethylene glycol monohexyl ether.
  • cycloaliphatic may be sufficient.
  • the cycloaliphatic may be monocyclic, polycyclic, or may be bridged in the case of polycyclic.
  • the monocyclic type is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopentyl group, a cyclohexyl group, a cyclobutyl group, and a cyclooctyl group.
  • Examples of the polycyclic type include groups having a bicyclo, tricyclo or tetracyclo structure having 5 or more carbon atoms, and preferably a cycloalkyl group having 6 to 20 carbon atoms, such as an adamantyl group, norbornyl group, dicyclopentyl group. , Tricyclodecanyl group, tetracyclododecyl group, central skeleton of the compound described in the claims of JP-A-2006-215096, central skeleton of the compound described in JP-A-2001-10999, and the like. . A part of carbon atoms in the cycloalkyl group may be substituted with a hetero atom such as an oxygen atom.
  • the monovalent alcohol whether it is an aromatic alcohol or an aliphatic alcohol, preferably has 6 or more carbon atoms.
  • an antireflection layer (a layer having a adjusted refractive index such as a low refractive index layer, a middle refractive index layer, or a high refractive index layer), an antiglare layer, an antistatic layer, an ultraviolet absorption layer, or a moisture permeability reducing layer is provided as a functional layer Therefore, various additives may be added.
  • the thickness of the aforementioned functional layer is more preferably from 0.01 to 100 ⁇ m, particularly preferably from 0.02 to 50 ⁇ m. Furthermore, the thickness of the functional layer for reducing moisture permeability is more preferably 0.1 to 20 ⁇ m.
  • the moisture permeability (C) of the optical film on which the moisture permeability reducing layer is laminated and the moisture permeability (D) of the optical film without the moisture permeability reducing laminate are C / D of 0. It should be 9 or less. More preferably, it is 0.85 or less, and more preferably 0.8 or less.
  • the polarizing plate of the present invention has at least one optical film of the present invention as a polarizing plate protective film.
  • the polarizing plate is produced by, for example, a method in which the optical film of the present invention is treated with an alkali and bonded to both sides of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. There is.
  • polarizing plate protective film treated surface and the polarizer examples include polyvinyl alcohol adhesives such as polyvinyl alcohol and polyvinyl butyral, vinyl latexes such as butyl acrylate, and the like.
  • the polarizing plate protective film and the polarizer may be bonded together with other adhesives or pressure-sensitive adhesives, or may be directly laminated without using any adhesives or pressure-sensitive adhesives.
  • the polarizing plate is preferably composed of a polarizer and a polarizing plate protective film that protects both sides of the polarizer, and further comprises a protective film on one side of the polarizing plate and a separate film on the opposite side. Is more preferable.
  • the protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
  • the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the liquid crystal plate.
  • a separate film is used in order to cover the adhesive layer bonded to a liquid crystal plate, and is used for the surface side which bonds a polarizing plate to a liquid crystal plate.
  • a substrate including a liquid crystal cell is usually disposed between two polarizing plates.
  • the optical film of the present invention can be used as any protective film of two polarizing plates.
  • the two polarizing plate protective films of the plate it is preferably used as a polarizing plate protective film disposed on the liquid crystal cell side with respect to the polarizer.
  • the liquid crystal display device of the present invention includes the polarizing plate of the present invention.
  • the liquid crystal display device preferably includes a liquid crystal cell and the polarizing plate of the present invention disposed in at least one of the liquid crystal cells, and the optical film of the present invention contained in the polarizing plate is the outermost layer. It is more preferable that they are arranged in the.
  • the liquid crystal display device includes a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizing plates disposed on both sides thereof, and at least one between the liquid crystal cell and the polarizing plate as necessary. It is preferable to have a configuration in which a single optical compensation film is disposed.
  • the liquid crystal layer of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates.
  • the transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance.
  • the liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer, or an undercoat layer (undercoat layer) (used for adhesion of the transparent electrode layer). These layers are usually provided on the substrate.
  • the substrate of the liquid crystal cell generally has a thickness of 50 ⁇ m to 2 mm.
  • the optical film of the present invention can be used for liquid crystal cells in various display modes.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FLC Fluoroelectric Liquid Crystals
  • AFLC Anti-Ferroelectric Liquid Crystals
  • OCB Opticly Liquid Ties.
  • Various display modes such as ECB (Electrically Controlled Birefringence) and HAN (Hybrid Aligned Nematic) have been proposed.
  • a display mode in which the above display mode is oriented and divided has been proposed.
  • the optical film of the present invention is effective in any display mode liquid crystal display device. Further, it is effective in any of a transmissive type, a reflective type, and a transflective liquid crystal display device.
  • the acrylic resin having a weight average molecular weight of 300,000 and MMA / styrene copolymer (80/20, polymerization ratio) used in Example 5 was changed to 80 g of methyl methacrylate and 20 g of styrene.
  • the synthesis was performed in the same manner except that the amount of benzoyl oxide charged was changed to 0.6 g.
  • An acrylic resin having a weight average molecular weight of 200,000 and an MMA ratio of 100% used in Comparative Example 1 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 0.92 g.
  • An acrylic resin having a weight average molecular weight of 100,000 and an MMA ratio of 100% used in Comparative Example 2 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 1.83 g.
  • Example 1 ⁇ Dissolution process: preparation of dope composition> The composition described below was put into a mixing tank and stirred at room temperature to dissolve each component to prepare a dope.
  • the produced dope composition had a dope solid content of 19%, and the viscosity was measured to be 30 Pas ⁇ sec.
  • the turbidity of the dope composition prepared above was visually evaluated by separating 50 mL of the sample solution into a 100 mL glass sample tube. No turbidity: Evaluation was made based on a judgment criterion that the other side of the glass sample tube was visible and the turbidity was clearly transparent: the turbidity was white and the other side of the sample tube was not visible.
  • Methanol was detected at a retention time of 1.9 minutes, and methylene chloride was detected at a retention time of 5.5 minutes.
  • a calibration curve was prepared with each solvent prepared to a specified concentration in advance, and the concentration was determined.
  • the residual methanol ratio was calculated
  • the equilibrium moisture content is measured using a Karl Fischer using a 7 mm x 35 mm film sample cut from an optical film with a moisture meter, sample drying equipment “CA-03” and “VA-05” (both manufactured by Mitsubishi Chemical Corporation). Measured by the method. The water content (g) was calculated by dividing by the sample mass (g).
  • the occurrence location (number of occurrences) of stepped unevenness having a pitch of 0.5 to 2.0 cm and a thickness difference of 2.0 to 3.0 ⁇ m was measured.
  • a total of nine places were evaluated from the areas of 1 m in the longitudinal direction and 1 m in the width direction of the formed film, with three places at 50 cm intervals, and the number was averaged.
  • the thickness height difference was measured with a FUJINON fringe analyzer (FX-03) as the maximum height difference (PV value) within an area of 6 cm in diameter.
  • FX-03 FUJINON fringe analyzer
  • the average refractive index of 1.49 of acrylic resin was used as the value of the refractive index to be input.
  • the resolution of this apparatus is 512 ⁇ 512.
  • the film surface condition was evaluated according to the following criteria based on the obtained measurement values.
  • a or B is an acceptable level, and is preferably A.
  • B One to three stepped irregularities having a maximum height difference (PV value) of 2.0 to 3.0 ⁇ m occurred.
  • D 16 or more stepped irregularities having a maximum height difference (PV value) of 2.0 to 3.0 ⁇ m occurred.
  • Examples 2-5, Comparative Examples 1-2 As the composition of the dope composition, the resin and the solid content were changed as shown in Table 1, respectively, except that the dope solid content concentration was such that the viscosity of the dope was 30 Pas ⁇ sec. Optical films of Examples and Comparative Examples were produced and evaluated in the same manner.
  • Example 6 A dope composition was prepared in the same manner as in Example 1 except that 2.7 parts by mass of the following compound 1 was added as an ultraviolet absorber to 100 parts by mass of the acrylic resin, and an optical film was produced.
  • Compound 1
  • the optical film of each example has an initial methanol ratio of more than 15%, so that the residual alcohol concentration at the time of peeling tends to increase, both of which have a small peel load, It was excellent in transparency. In each example, no streak was observed when the casting film was discharged from the casting die.
  • the optical films of Comparative Examples 1 and 2 in which the weight average molecular weight of the acrylic resin was less than 250,000 had many stepped irregularities on the surface and were inferior in flatness.
  • Comparative Example 3 in which the mass ratio of methanol is less than 15%, a large load is required when the polymer film is peeled off, and a part of the polymer film remains on the metal support to form a film surface (stepped shape).
  • Example 5 Furthermore, the cellulose ester 35 having an acetyl group substitution degree of 0.19 and a propionyl group substitution degree of 2.56 was added to 65 parts by mass of the PMMA resin having a weight average molecular weight of 1,200,000 used in Example 1 in accordance with JP2013-120278A.
  • a dope composition was prepared in the same manner as in Example 1 except that the amount was in parts by mass.
  • the optical film of Comparative Example 5 was as high as 2.3% with respect to 1.5%, and as an optical film, the temperature and humidity were insufficient in wet heat durability against environmental changes.
  • the optical film of each example was subjected to corona treatment by roll-to-roll so that the absorption axis of the polarizer and the longitudinal direction of the tack film and the optical film are parallel to each other.
  • the polarizing plate was produced by bonding.
  • an optical film containing the ultraviolet absorber of Example 6 was used in place of the above-mentioned Fujitac TD60UL, and a polarizing plate was prepared by laminating the optical film of Example 1 with an acrylic adhesive on both sides of the polarizer. All of the optical films of each Example had sufficient bonding properties with polyvinyl alcohol, and had excellent polarizing plate processing suitability.
  • the polarizing plate sandwiching the liquid crystal cell is peeled off from a commercially available liquid crystal television (IPS mode slim type 42-inch liquid crystal television), and the above-prepared polarizing plate is placed on the liquid crystal cell side on the optical film side of each example. As shown in the figure, it was re-bonded to the liquid crystal cell via an adhesive.
  • the reassembled LCD TV was held in an environment of 50 ° C. and 80% relative humidity for 3 days, then moved to an environment of 25 ° C. and 60% relative humidity, kept on in a black display state, and visually observed after 48 hours. Light unevenness was evaluated. When observing luminance unevenness during black display when observed from the front of the apparatus, it was found that the unevenness was hardly visually recognized in an environment with an illuminance of 100 lx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Materials Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Through the dope composition of the present invention, containing an acrylic resin having a weight-average molecular weight (Mw) of at least 250,000, and a solvent in which the mass ratio (A:B) of methylene chloride (A) and a C1-4 alcohol is 85:15-50:50, the cellulose ester content of the doping composition being less than 0.5% by mass with respect to the acrylic resin, high viscosity is obtained, streaks do not readily form in a flow-cast film when the dope composition is discharged from a flow casting die, and the resultant polymer film can easily be separated from a metal support. The present invention also provides an optical film, a method for manufacturing an optical film, a polarizing plate, and a liquid crystal display device.

Description

ドープ組成物、光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置Dope composition, optical film, method for producing optical film, polarizing plate and liquid crystal display device
 本発明は、ドープ組成物、光学フィルム及びその製造方法、偏光板ならびに液晶表示装置に関する。 The present invention relates to a dope composition, an optical film and a method for producing the same, a polarizing plate, and a liquid crystal display device.
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟まれた構成となっている。この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられている。 Demand for liquid crystal display devices is expanding for applications such as liquid crystal televisions and personal computer liquid crystal displays. In general, a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof. The optical element (polarizing plate protective film) is sandwiched between a child (also referred to as a polarizing film or a polarizing film). As this polarizing plate protective film, a cellulose triacetate film is usually used.
 一方、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。 On the other hand, due to recent technological advances, the enlargement of liquid crystal display devices has accelerated, and the applications of liquid crystal display devices have diversified. For example, it can be used as a large display installed in a street or a store, or used as an advertising display in a public place using a display device called digital signage.
 このような用途においては、屋外での利用が想定されるため、偏光板の吸湿による劣化が問題になり、偏光板保護フィルムには透湿度の低減が求められている。しかしながら、従来用いられているセルローストリアセテートフィルム等のセルロースエステルフィルムでは十分に透湿度を低減するのは困難であり、透湿度を低減する為に厚膜化すると光学的な影響が大きくなるという問題があった。更には、近年は装置の薄型化も求められているため、偏光板自体が厚くなることも問題となった。 In such applications, since it is assumed to be used outdoors, deterioration due to moisture absorption of the polarizing plate becomes a problem, and the polarizing plate protective film is required to reduce moisture permeability. However, it is difficult to sufficiently reduce the moisture permeability with a cellulose ester film such as a cellulose triacetate film that has been conventionally used, and there is a problem that the optical influence increases when the film thickness is increased in order to reduce the moisture permeability. there were. Furthermore, in recent years, there has been a demand for thinning of the apparatus, so that the thickness of the polarizing plate itself has also become a problem.
 一方、透湿度の低い光学フィルム材料として、アクリル樹脂の代表であるポリメチルメタクリレート(以下、PMMAと略す)は、透湿度の低さに加え、優れた透明性や寸法安定性を示すことから、光学フィルムに用いられている。 On the other hand, as an optical film material with low moisture permeability, polymethyl methacrylate (hereinafter abbreviated as PMMA), which is a representative of acrylic resin, exhibits excellent transparency and dimensional stability in addition to low moisture permeability. Used in optical films.
 例えば、特許文献1には、アクリル樹脂とセルロースエステルとを含んだ偏光板保護フィルムが開示されている。この偏光板保護フィルムは、セルロースエステルにアクリル樹脂が混合されていることによって透湿度を低減することができ、高湿度条件下においても比較的良好な寸法安定性が得られるとされている。 For example, Patent Document 1 discloses a polarizing plate protective film containing an acrylic resin and a cellulose ester. This polarizing plate protective film can reduce moisture permeability by mixing an acrylic resin with cellulose ester, and it is said that relatively good dimensional stability can be obtained even under high humidity conditions.
 ところで、アクリル樹脂等からなる樹脂フィルムは、一般に、樹脂を加熱した溶融状態とし、フィルムを形成する溶融製膜法によって製造される。 By the way, a resin film made of an acrylic resin or the like is generally manufactured by a melt film forming method in which a resin is heated to a molten state to form a film.
 この溶融製膜法で用いられるアクリル樹脂としては、通常、重量平均分子量が5~15万程度のものが使用される。この理由は、アクリル樹脂の重量平均分子量が5万より小さいと樹脂膜が脆弱になり、逆にアクリル樹脂の重量平均分子量が15万よりも大きいと、加熱しても流動性が得られず、いずれの場合にもフィルム状に製膜することが困難であるからである。 As the acrylic resin used in this melt film forming method, those having a weight average molecular weight of about 50,000 to 150,000 are usually used. The reason for this is that if the weight average molecular weight of the acrylic resin is less than 50,000, the resin film becomes fragile. Conversely, if the weight average molecular weight of the acrylic resin is greater than 150,000, fluidity cannot be obtained even when heated. This is because in either case, it is difficult to form a film.
 一方、フィルムの製膜法としては、樹脂を溶剤で溶解した溶液(ドープ組成物)を用いる溶液製膜法が知られている。 On the other hand, a solution film forming method using a solution (dope composition) in which a resin is dissolved in a solvent is known as a film forming method.
 例えば、特許文献2には、重量平均分子量8~15万のアクリル樹脂を、溶液製膜法でフィルムとするにあたって、アクリルフィルムが自己支持性を持つように乾燥するまで、ポリエチレンテレフタレート(PET)フィルムを仮支持体として配置しておき、その後剥離することでフィルムを得るアクリル系フィルムの製造方法が記載されている。 For example, Patent Document 2 discloses that when an acrylic resin having a weight average molecular weight of 8 to 150,000 is made into a film by a solution casting method, a polyethylene terephthalate (PET) film is dried until the acrylic film has a self-supporting property. Is described as a temporary support, and then a method for producing an acrylic film is described in which a film is obtained by peeling.
特開2013-120278号公報JP 2013-120278 A 特開2007-118266号公報JP 2007-118266 A
 しかしながら、本発明者らが溶液製膜法で用いられる従来のドープ組成物について検討したところ、重量平均分子量が8~15万と比較的小さいアクリル樹脂を用いるドープ組成物は、粘度が低く、流延ダイの刃口からの吐出時に、スジが出やすい等生産上の問題が大きいことが判明した。 However, when the present inventors examined a conventional dope composition used in a solution casting method, a dope composition using an acrylic resin having a relatively small weight average molecular weight of 8 to 150,000 has a low viscosity and a low flow rate. It has been found that production problems such as streaks are likely to occur during discharge from the cutting edge of the extended die.
 これを解決するためにはドープ組成物の固形分濃度を高くして、粘度を上げることが考えられる。その場合、ドープ組成物の固形分濃度が高くなるために、固形分を溶媒に溶解し、ドープ組成物とする段階で時間がかかり生産性に不利である。また高濃度のドープ組成物から溶液製膜すると、得られた高分子膜が金属支持体から剥ぎ取りにくいという難点がある。 In order to solve this problem, it is conceivable to increase the viscosity by increasing the solid content concentration of the dope composition. In that case, since the solid content concentration of the dope composition becomes high, it takes time in the stage where the solid content is dissolved in a solvent to obtain a dope composition, which is disadvantageous for productivity. Further, when a solution film is formed from a high concentration dope composition, there is a problem that the obtained polymer film is difficult to peel off from the metal support.
 そこで本発明者らは、このような従来技術の課題を解決するために、高い粘度が得られ、流延ダイからの吐出時に流延膜にスジが生じ難く、また、流延膜を乾燥し、自己支持性を持つまでに乾燥して得られた高分子膜を、金属支持体から容易に剥離することができるドープ組成物を提供することを目的として検討を進めた。さらに、良好な表面形状を有し、光学特性に優れる光学フィルム、生産性の高い光学フィルムの製造方法、さらに、その光学フィルムを備える偏光板および液晶表示装置を提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have obtained a high viscosity, hardly cause streaks in the casting film during discharge from the casting die, and have dried the casting film. The present inventors have studied for the purpose of providing a dope composition that can easily peel a polymer film obtained by drying to have a self-supporting property from a metal support. Furthermore, studies have been conducted for the purpose of providing an optical film having a good surface shape and excellent optical characteristics, a method for producing a highly productive optical film, and a polarizing plate and a liquid crystal display device including the optical film. It was.
 本発明の発明者らは、上記の課題を解決するために鋭意検討の結果、下記(1)~(4)の知見を得るに至った。
(1)アクリル樹脂の重量平均分子量を、25万以上のものとすることで、上記ドープを比較的低い濃度で、粘度を高くすることができること。
(2)溶媒として(A)メチレンクロライドと(B)炭素数が1~4のアルコールとの混合溶剤を用い、かつドープ組成物のアクリル樹脂の濃度を低くすると(すなわち溶媒の割合を多くすると)、流延膜を乾燥する過程で、メチレンクロライドとアルコールの乾燥速度の差がより顕著となり、乾燥の遅いアルコールの比率が上がること。
(3)(A)メチレンクロライドと(B)炭素数1~4のアルコールの混合溶媒を用いて形成された流延膜は、その混合溶媒におけるアルコールの比率が高いときに、支持体から剥ぎ取りやすいこと。
(4)(A)メチレンクロライドと(B)炭素数1~4のアルコールの混合溶媒を用いた場合に、ドープ組成物にセルロースエステルが多く含まれていると、混合溶媒におけるアルコールの比率が高くなったときに高分子膜が白化するが、セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満である組成にすると、このような白化の問題が解消されること。
The inventors of the present invention have made extensive studies in order to solve the above problems, and as a result, have obtained the following findings (1) to (4).
(1) By making the weight average molecular weight of an acrylic resin 250,000 or more, the dope can be increased in viscosity at a relatively low concentration.
(2) When a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is used as a solvent and the concentration of the acrylic resin in the dope composition is lowered (that is, the proportion of the solvent is increased) In the process of drying the cast film, the difference in drying speed between methylene chloride and alcohol becomes more prominent, and the rate of slow drying alcohol increases.
(3) A cast film formed using a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is peeled off from the support when the ratio of the alcohol in the mixed solvent is high. Easy to do.
(4) When a mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is used, if the dope composition contains a large amount of cellulose ester, the ratio of alcohol in the mixed solvent is high. When the polymer film is whitened, the whitening problem is eliminated when the composition is such that the cellulose ester content is less than 0.5% by mass with respect to the acrylic resin.
 さらに、上記(3)のアルコールによる流延膜の剥離を容易にする効果は、含有比率が大きくなった(B)炭素数1~4のアルコールが、金属支持体と、流延膜中のアクリル樹脂との間に形成される水素結合を阻害することが起因している可能性が高いことも明らかにした。 Furthermore, the effect of facilitating the peeling of the cast film with the alcohol of (3) above is that (B) the alcohol having 1 to 4 carbon atoms, whose content ratio has been increased, is increased between the metal support and the acrylic in the cast film. It was also clarified that there is a high possibility that it is caused by inhibiting the hydrogen bond formed with the resin.
 上記課題は、以下の構成により解決される。
[1] 重量平均分子量Mwが25万以上のアクリル樹脂と、(A)メチレンクロライドと(B)炭素数1~4のアルコールとの質量比率(A:B)が85:15~50:50である溶媒とを含有し、セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満であるドープ組成物。
[2]ドープ組成物に含まれる固形分を、(A)メチレンクロライドと(C)メタノールとの質量比率(A:C)が82:18である溶媒に混合して混合物を調製したとき、この混合物の22℃における複素粘度が30Pas・秒となるときの固形分濃度が30質量%以下のものである[1]に記載のドープ組成物。
[3] 固形分濃度が10質量%以上、30質量%以下である[1]または[2]に記載のドープ組成物。
[4] 前述のアクリル樹脂の含有量が、固形分全量に対して70質量%以上である[1]~[3]のいずれか一つに記載のドープ組成物。
[5] 前述のアクリル樹脂以外の素材の固形分量が、固形分全量に対して2質量%以上であり、前述のアクリル樹脂以外の素材の固形分の平衡含水率が前述のアクリル樹脂の平衡含水率よりも小さい[1]~[4]のいずれか一つに記載のドープ組成物。
[6] [1]~[5]のいずれか一つに記載のドープ組成物を製膜して得られた高分子フィルムを有する光学フィルム。
[7] 任意に設定した中心から直径6cmの領域内において、ピッチが0.5~2.0cm、厚み高低差が2.0~3.0μmの段状ムラの発生箇所が10個より少ない[6]に記載の光学フィルム。
[8] [1]~[5]のいずれか一つに記載のドープ組成物を調製する溶解工程と、ドープ組成物を金属支持体上に流延して流延膜を形成する流延工程と、流延膜を乾燥して高分子膜を形成し、この高分子膜を前述の金属支持体から剥離して高分子フィルムを得る剥離工程とを有する光学フィルムの製造方法。
[9] [6]または[7]に記載の光学フィルムを、偏光板保護フィルムとして少なくとも1枚有する偏光板。
[10] [9]に記載の偏光板を含む液晶表示装置。
The above problem is solved by the following configuration.
[1] A mass ratio (A: B) of an acrylic resin having a weight average molecular weight Mw of 250,000 or more, (A) methylene chloride, and (B) an alcohol having 1 to 4 carbon atoms is 85:15 to 50:50 The dope composition which contains a certain solvent and whose content of a cellulose ester is less than 0.5 mass% with respect to the above-mentioned acrylic resin.
[2] When a solid content contained in the dope composition was mixed with a solvent having a mass ratio (A: C) of (A) methylene chloride and (C) methanol of 82:18, a mixture was prepared. The dope composition according to [1], wherein the solid content concentration when the complex viscosity at 22 ° C. of the mixture is 30 Pas · sec is 30% by mass or less.
[3] The dope composition according to [1] or [2], wherein the solid content concentration is 10% by mass or more and 30% by mass or less.
[4] The dope composition according to any one of [1] to [3], wherein the content of the acrylic resin is 70% by mass or more based on the total solid content.
[5] The solid content of the material other than the acrylic resin is 2% by mass or more based on the total solid content, and the equilibrium water content of the solid content of the material other than the acrylic resin is the equilibrium water content of the acrylic resin. The dope composition according to any one of [1] to [4], which is smaller than the rate.
[6] An optical film having a polymer film obtained by forming the dope composition according to any one of [1] to [5].
[7] In a region 6 cm in diameter from an arbitrarily set center, the number of occurrences of stepped unevenness having a pitch of 0.5 to 2.0 cm and a thickness height difference of 2.0 to 3.0 μm is less than 10 [ 6].
[8] A dissolution step of preparing the dope composition according to any one of [1] to [5], and a casting step of casting the dope composition on a metal support to form a cast film. And a peeling step of drying the cast film to form a polymer film and peeling the polymer film from the metal support to obtain a polymer film.
[9] A polarizing plate having at least one optical film according to [6] or [7] as a polarizing plate protective film.
[10] A liquid crystal display device comprising the polarizing plate according to [9].
 本発明のドープ組成物によれば、高い粘度が得られ、流延ダイからの吐出時に流延膜にスジが入るのを抑えることができる。また、乾燥過程での流延膜の白化が抑えられるとともに、流延膜の乾燥によって得られた高分子膜を金属支持体から容易に剥離することができる。これにより、均一な表面形状を有し、光学特性に優れた高分子フィルムを効率よく得ることができる。 According to the dope composition of the present invention, a high viscosity can be obtained, and streaks can be prevented from entering the casting film during discharge from the casting die. Further, whitening of the cast film during the drying process is suppressed, and the polymer film obtained by drying the cast film can be easily peeled from the metal support. Thereby, it is possible to efficiently obtain a polymer film having a uniform surface shape and excellent optical characteristics.
 また、本発明の光学フィルムおよびその製造方法によれば、上記のようなドープ組成物を用いるため、光学特性に優れた光学フィルムを生産性よく得ることができる。 Moreover, according to the optical film of the present invention and the method for producing the same, since the above-described dope composition is used, an optical film having excellent optical characteristics can be obtained with high productivity.
アクリル樹脂の重量平均分子量を変えた4種類の流延膜において、乾燥過程でのメタノール含有比率の経時的変化を示すグラフである。It is a graph which shows the time-dependent change of the methanol content ratio in a drying process in four types of cast films which changed the weight average molecular weight of an acrylic resin. アクリル樹脂の重量平均分子量が異なる4種類の流延膜において、乾燥過程での揮発した成分(揮発分)の割合と剥離荷重との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the component (volatile matter) volatilized in the drying process, and peeling load in four types of cast films from which the weight average molecular weight of an acrylic resin differs. 溶液製膜方法を実施するためのフィルム製造ラインの概略図である。It is the schematic of the film manufacturing line for enforcing the solution casting method.
 以下、本発明を実施するための最良の形態について詳細に説明するが、これらに限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、(メタ)アクリルとは、メタクリル又はアクリルを表す。本発明に用いられるアクリル樹脂は(メタ)アクリル樹脂を意味し、メタクリル樹脂も含まれる。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Moreover, (meth) acryl represents methacryl or acryl. The acrylic resin used in the present invention means a (meth) acrylic resin and also includes a methacrylic resin.
<<ドープ組成物>>
 ドープ組成物は、支持体上に流延されて流延膜を形成し、この流延膜を乾燥して得た高分子膜を金属支持体から剥離することで高分子フィルムに成形されるものである。
 本明細書では流延膜を、自己支持性を持つまで乾燥したものを高分子膜という。
 本発明のドープ組成物は、重量平均分子量Mwが25万以上のアクリル樹脂と、(A)メチレンクロライドと(B)炭素数1~4のアルコールとの質量比率(A:B)が85:15~50:50である溶媒とを含有し、セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満であるものである。
 以下、ドープ組成物の各成分について説明する。なお、ドープ組成物は、少なくとも樹脂成分と添加剤とを含む固形分と、溶媒とからなる。ここでは、まず、固形分について説明する。
<< Dope composition >>
The dope composition is cast on a support to form a cast film, and the cast film is dried to form a polymer film by peeling the polymer film from the metal support. It is.
In this specification, the cast membrane dried to have self-supporting property is called a polymer membrane.
The dope composition of the present invention has a mass ratio (A: B) of 85:15 between an acrylic resin having a weight average molecular weight Mw of 250,000 or more, (A) methylene chloride, and (B) an alcohol having 1 to 4 carbon atoms. And a solvent having a cellulose ester content of less than 0.5% by mass with respect to the above-mentioned acrylic resin.
Hereinafter, each component of the dope composition will be described. The dope composition includes a solid content including at least a resin component and an additive, and a solvent. Here, the solid content will be described first.
<固形分>
[アクリル樹脂]
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。メチルメタクリレート単位50~100質量%、およびこれと共重合可能な他の単量体単位が5質量%未満からなるものが好ましい。共重合可能な他の単量体を用いず、メチルメタクリレートのホモポリマーであってもよい。共重合可能な他の単量体としては、メチルメタクリレート以外のアルキル(メタ)アクリレート単位(b)が好ましい。前述のアクリル樹脂は、メチルメタクリレート単位(a)を含み、メチルメタクリレート以外のアルキル(メタ)アクリレート単位(b)の質量分率が5質量%未満であるものがより好ましい。
<Solid content>
[acrylic resin]
The acrylic resin used in the present invention includes a methacrylic resin. It is preferable that the methyl methacrylate unit is 50 to 100% by mass and the other monomer unit copolymerizable therewith is less than 5% by mass. A homopolymer of methyl methacrylate may be used without using any other copolymerizable monomer. As other copolymerizable monomers, alkyl (meth) acrylate units (b) other than methyl methacrylate are preferred. More preferably, the acrylic resin includes a methyl methacrylate unit (a) and the mass fraction of the alkyl (meth) acrylate unit (b) other than methyl methacrylate is less than 5% by mass.
 アクリレート樹脂がメチルメタクリレート以外のアルキル(メタ)アクリレート単位(b)を含む場合、そのアルキル(メタ)アクリレート単位(b)としては、以下のものを挙げることができる。 When the acrylate resin contains an alkyl (meth) acrylate unit (b) other than methyl methacrylate, examples of the alkyl (meth) acrylate unit (b) include the following.
(メチルメタクリレート以外のアルキル(メタ)アクリレート単位(b))
 前述のメチルメタクリレート以外のアルキル(メタ)アクリレート単位(b)としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル(好ましくはアルキル数の炭素数が1~18のアルキルアクリレート);メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル(好ましくはアルキル数の炭素数が2~18のアルキルメタクリレート);などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。
(Alkyl (meth) acrylate units other than methyl methacrylate (b))
Examples of the alkyl (meth) acrylate unit (b) other than the aforementioned methyl methacrylate include, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and acrylic acid. Acrylic acid ester such as benzyl (preferably alkyl acrylate having 1 to 18 carbon atoms in alkyl); ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate Methacrylic acid esters such as benzyl methacrylate (preferably an alkyl methacrylate having 2 to 18 carbon atoms in the alkyl number), and the like. These may be used alone or in combination of two or more. Good.
(他の構成単位)
 本発明で用いるアクリル樹脂は、アルキル(メタ)アクリレート単位(a)、(b)以外の構成単位も含んでいてもよい。そのような構成単位としては、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物、ラクトン環等が挙げられる。これらの構成単位は、1種類単独でアクリル樹脂に導入されていてもよいし、2種類以上が組み合わされてアクリル樹脂に導入されていてもよい。
(Other structural units)
The acrylic resin used in the present invention may also contain constituent units other than the alkyl (meth) acrylate units (a) and (b). Examples of such structural units include α, β-unsaturated acids such as acrylic acid and methacrylic acid, divalent carboxylic acids containing unsaturated groups such as maleic acid, fumaric acid and itaconic acid, styrene, α-methylstyrene and the like. Examples include aromatic vinyl compounds, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and lactone rings. One type of these structural units may be introduced alone into the acrylic resin, or two or more types of structural units may be combined and introduced into the acrylic resin.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
(メチルメタクリレート単位(a)の質量分率)
 アルキル樹脂は、ガラス転移温度を上げて耐熱性を得る観点からは、メチルメタクリレート単位(a)の単独で構成されていることが最も好ましい。一方、アルキル樹脂を、メチルメタクリレート単位(a)と他の構成単位との共重合体にした場合には、メチルメタクリレート単位(a)が発現する特性以外の特性をアクリル樹脂に付与することができる。
 前述のアクリル樹脂中、重合工程に供する単量体成分中のメチルメタクリレートの含有割合は、本発明の効果を十分に発揮させる上で、好ましくは95~100質量%、より好ましくは97~100質量%、更に好ましくは100質量%である。
 メチルメタクリレートの割合を95質量%以上とすることで、耐熱性の高いアクリル樹脂を得ることができ、本発明のドープ組成物を用いて得られる本発明の光学フィルムの耐熱性を高めることができる。
 また、前述のアクリル樹脂は、メチルメタクリレート単位(a)を含み、メチルメタクリレート以外のアルキル(メタ)アクリレート単位(b)の質量分率が5質量%未満であることが好ましく、3質量%未満であることがより好ましく、0質量%であることが特に好ましい。
(Mass fraction of methyl methacrylate unit (a))
The alkyl resin is most preferably composed of a single methyl methacrylate unit (a) from the viewpoint of increasing the glass transition temperature and obtaining heat resistance. On the other hand, when the alkyl resin is a copolymer of the methyl methacrylate unit (a) and other structural units, characteristics other than the characteristics expressed by the methyl methacrylate unit (a) can be imparted to the acrylic resin. .
In the acrylic resin described above, the content ratio of methyl methacrylate in the monomer component used in the polymerization step is preferably 95 to 100% by mass, more preferably 97 to 100% by mass, in order to sufficiently exhibit the effects of the present invention. %, More preferably 100% by mass.
By setting the ratio of methyl methacrylate to 95% by mass or more, an acrylic resin having high heat resistance can be obtained, and the heat resistance of the optical film of the present invention obtained using the dope composition of the present invention can be improved. .
The acrylic resin includes a methyl methacrylate unit (a), and the mass fraction of the alkyl (meth) acrylate unit (b) other than methyl methacrylate is preferably less than 5% by mass, and less than 3% by mass. More preferably, it is particularly preferably 0% by mass.
(アクリル樹脂の製造方法)
 本発明に用いることができるアクリル樹脂は市販品や公知の合成方法により入手可能である。
 本発明に用いることができるアクリル樹脂の製造方法としては、乳化重合、溶液重合、塊状重合および懸濁重合が適用できる。これらの内、本発明に用いることができる高分子量体のアクリル樹脂を製造する上で、乳化重合および懸濁重合がより好ましい。
 懸濁重合の開始剤としては通常の懸濁重合に使用されるものを用いることができ、有機過酸化物、アゾ化合物を挙げることができる。
 懸濁安定剤としては通常用いられる公知のものを使用することができ、有機コロイド性高分子物質、無機コロイド性高分子物質、無機微粒子およびこれらと界面活性剤との組み合わせを挙げることができる。
(Manufacturing method of acrylic resin)
The acrylic resin that can be used in the present invention is commercially available or can be obtained by a known synthesis method.
As the method for producing an acrylic resin that can be used in the present invention, emulsion polymerization, solution polymerization, bulk polymerization, and suspension polymerization can be applied. Among these, emulsion polymerization and suspension polymerization are more preferable in producing a high molecular weight acrylic resin that can be used in the present invention.
As the initiator for suspension polymerization, those used in usual suspension polymerization can be used, and examples thereof include organic peroxides and azo compounds.
As the suspension stabilizer, conventionally known ones can be used, and examples thereof include organic colloidal polymer substances, inorganic colloidal polymer substances, inorganic fine particles, and combinations of these with surfactants.
(アクリル樹脂の重量平均分子量Mw)
 本発明のドープ組成物に用いられるアクリル樹脂(A)は、重量平均分子量(Mw)が25万以上である。アクリル樹脂がこのように高分子であることにより、ドープ組成物におけるアクリル樹脂の濃度を比較的低くした場合でも、ドープ組成物の粘度を十分に高くすることができる。これにより、流延ダイからの吐出時に流延膜の表面にスジが入ることが抑えられ、良好な表面形状を有する高分子フィルムを得ることができる。一方、粘度との関係で、ドープ組成物を高粘度としながらアクリル樹脂の濃度を低くすることができる(溶媒の割合を大きくすることできる)ことにより、膜剥離を容易にする本発明の効果を顕著に得ることができる。この効果については後に詳述する。
(Weight average molecular weight Mw of acrylic resin)
The acrylic resin (A) used in the dope composition of the present invention has a weight average molecular weight (Mw) of 250,000 or more. Since the acrylic resin is such a polymer, the viscosity of the dope composition can be sufficiently increased even when the concentration of the acrylic resin in the dope composition is relatively low. As a result, streaks are prevented from entering the surface of the casting film during discharge from the casting die, and a polymer film having a good surface shape can be obtained. On the other hand, in relation to the viscosity, the concentration of the acrylic resin can be lowered (the ratio of the solvent can be increased) while making the dope composition high viscosity, so that the effect of the present invention that facilitates film peeling can be achieved. Remarkably can be obtained. This effect will be described in detail later.
 アクリル樹脂(A)の重量平均分子量(Mw)は、25万~220万の範囲内であることが更に好ましく、30万~200万の範囲内であることが特に好ましく、50万~180万の範囲であることが更に好ましく、100万~180万の範囲であることが最も好ましい。アクリル樹脂(A)の重量平均分子量(Mw)の上限値は、製造上の観点から250万以下とされることが好ましい。このような重量平均分子量の範囲のアクリル樹脂は、溶融製膜に用いられていたアクリル樹脂の重量平均分子量よりも高いものであり、溶液製膜に適するものである。
 本発明において「重量平均分子量(Mw)」は、ゲル浸透クロマトグラフィーにより下記の条件で測定されたものをいう。
溶媒       テトラヒドロフラン
装置名      TOSOH HLC-8220GPC
カラム      TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用。
カラム温度    25℃
試料濃度     0.1質量%
流速       0.35ml/min
校正曲線     TOSOH製TSK標準ポリスチレン Mw=2800000~1050までの7サンプルによる校正曲線を使用。
The weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 250,000 to 2,200,000, particularly preferably in the range of 300,000 to 2,000,000, and 500,000 to 1,800,000. The range is more preferable, and the range of 1 to 1.8 million is most preferable. The upper limit of the weight average molecular weight (Mw) of the acrylic resin (A) is preferably 2.5 million or less from the viewpoint of production. An acrylic resin having such a weight average molecular weight is higher than the weight average molecular weight of the acrylic resin used for melt film formation, and is suitable for solution film formation.
In the present invention, “weight average molecular weight (Mw)” refers to that measured by gel permeation chromatography under the following conditions.
Solvent Tetrahydrofuran Equipment TOSOH HLC-8220GPC
Three columns TOSOH TSKgel Super HZM-H (4.6 mm × 15 cm) are connected and used.
Column temperature 25 ° C
Sample concentration 0.1% by mass
Flow rate 0.35ml / min
Calibration curve TSK standard polystyrene made by TOSOH Mw = 2800000-1050 calibration curves with 7 samples are used.
(アクリル樹脂の濃度)
 ドープ組成物におけるアクリル樹脂の濃度は8質量%以上40質量%以下が好ましい。10~35質量%であることが好ましく、12~33質量%であることがより好ましく、14~30質量%であることが更に好ましく、14~28質量%であることが特に好ましく、14~26質量%であることが最も好ましい。アクリル樹脂の濃度を、8質量%以上にすることにより、膜厚ムラが抑えられた品質の高い高分子フィルムを得ることができる。また、アクリル樹脂の濃度を40質量%以下にすることにより、後述のアルコールによる膜剥離を容易にする効果を確実に得ることができる。
(Concentration of acrylic resin)
The concentration of the acrylic resin in the dope composition is preferably 8% by mass or more and 40% by mass or less. It is preferably 10 to 35% by mass, more preferably 12 to 33% by mass, still more preferably 14 to 30% by mass, particularly preferably 14 to 28% by mass, and 14 to 26%. Most preferably, it is mass%. By setting the concentration of the acrylic resin to 8% by mass or more, a high-quality polymer film with suppressed film thickness unevenness can be obtained. Moreover, the effect which makes easy film | membrane peeling by the below-mentioned alcohol can be acquired reliably by making the density | concentration of an acrylic resin into 40 mass% or less.
[アクリル樹脂以外の固形分]
 本発明のドープ組成物は、形成される高分子フィルムの、その用途での機能を損なわない限り、アクリル樹脂以外の樹脂や添加剤等の固形分を添加しても良い。ただし、本発明のドープ組成物は、セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満である。ドープ組成物にセルロースエステルが多く含まれていると、流延膜の乾燥過程で流延膜が白化し、透明性が損なわれる。ただし、本発明のドープ組成物においては、流延膜の透明性を損なわず発明の効果を阻害しない程度に微量であればセルロースを含んでいても問題は無く、具体的にはドープ組成物中の全固形分に対するセルロース含有量は0.5質量%未満であり、全く含まないことが更に好ましい。これは「セルロースエステルを実質的に含まない」ことに相当する。セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満であることにより、乾燥過程での流延膜の白化が抑えられ、光学特性、透湿度を低減した高分子フィルムを効率よく得ることができる。
 ドープ組成物中において、アクリル樹脂に対するセルロースエステルの含有量は、本発明のドープ組成物を乾燥・製膜して高分子フィルムを得た後セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満であることで確認できる。本発明のドープ組成物を製膜して得られた高分子フィルム中の、アクリル樹脂に対するセルロースエステルの含有量は、赤外スペクトル測定によって、アクリル樹脂には現われずセルロースエステルに特有なピーク面積を定量することで求めることができる。
 本発明では、セルロース含有量に関しては、以下のように定量を行った。
 あらかじめ、アクリル樹脂量に対し、0.1、0.3、0.5、1.0、2.0質量%のセルロースエステルを混合させたドープからフィルムを得た後、これらのフィルムの赤外スペクトル測定を行い、アクリル樹脂には現われずセルロースエステルに特有な1370cm-1のピークの、ベースラインからの高さを求めた。このベースラインからのピーク高さを元に検量線を作成して、試料フィルムの赤外スペクトル測定よりセルロースエステル量をもとめた。この測定はNICOLET 6700 FT-IR赤外分光計にて行った。
[Solid content other than acrylic resin]
The dope composition of the present invention may be added with a solid content such as a resin other than an acrylic resin and an additive as long as the function of the polymer film to be formed is not impaired. However, the dope composition of the present invention has a cellulose ester content of less than 0.5% by mass based on the above-mentioned acrylic resin. If the dope composition contains a large amount of cellulose ester, the cast film is whitened during the drying process of the cast film, and transparency is impaired. However, in the dope composition of the present invention, there is no problem even if cellulose is contained as long as it is a trace amount that does not impair the effect of the invention without impairing the transparency of the cast film. Specifically, in the dope composition The cellulose content with respect to the total solid content is less than 0.5% by mass, and it is more preferable that the content is not contained at all. This corresponds to “substantially free of cellulose ester”. When the cellulose ester content is less than 0.5% by mass with respect to the acrylic resin described above, whitening of the cast film during the drying process is suppressed, and a polymer film with reduced optical properties and moisture permeability is efficiently used. Can get well.
In the dope composition, the cellulose ester content relative to the acrylic resin is such that after the dope composition of the present invention is dried and formed into a polymer film, the cellulose ester content is 0 relative to the acrylic resin described above. It can be confirmed by less than 5% by mass. In the polymer film obtained by forming the dope composition of the present invention, the content of the cellulose ester relative to the acrylic resin has a peak area peculiar to the cellulose ester that does not appear in the acrylic resin by infrared spectrum measurement. It can be determined by quantifying.
In the present invention, the cellulose content was determined as follows.
After obtaining a film from a dope in which cellulose ester of 0.1, 0.3, 0.5, 1.0, and 2.0 mass% is mixed in advance with respect to the amount of acrylic resin, infrared of these films is obtained. The spectrum was measured, and the height from the baseline of the peak at 1370 cm −1 which does not appear in the acrylic resin and is characteristic of the cellulose ester was determined. A calibration curve was created based on the peak height from this baseline, and the amount of cellulose ester was determined by measuring the infrared spectrum of the sample film. This measurement was performed with a NICOLET 6700 FT-IR infrared spectrometer.
 ドープ組成物にアクリル樹脂以外の樹脂を添加する場合、添加される樹脂が相溶状態であっても、フィルムを形成したときに白化しない限りにおいては溶解せずに混合されていてもよい。
 また、ドープ組成物には樹脂成分以外の添加剤が添加されていてもよい。そのような添加剤としては、可塑剤、紫外線吸収剤、成形加工時の熱分解性や熱着色性、搬送適性、光学性能を改良するために各種の酸化防止剤、脆性改良剤、フィルムの平衡含水率/透湿度を低減させる添加剤、光学発現剤等を挙げることができる。
 可塑剤は、ドープ組成物の流動性や柔軟性を向上させる機能を有する。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 酸化防止剤としては、ラジカル補足能を持つヒンダードフェノールなどフェノール系、アミン系などが挙げることができる。
 脆性改良剤としては、アクリルーブタジエンゴムなどアクリル系樹脂を脆性改良するゴム状化合物や、MMA(メチルメタクリレート)とブチルアクリレートの共重合体などが挙げられる。
 フィルムの平衡含水率/透湿度を低減させる添加剤としては、アクリル樹脂よりも疎水的で、そのものの平衡含水率が小さい低分子化合物、オリゴマー、樹脂類が挙げられる。例えば、フェノール樹脂、フェノールノボラック樹脂、クマロン樹脂、ノルボルネン系樹脂、ロジン樹脂、その他脂環式ポリマーなどを好ましく用いることができる。
When a resin other than an acrylic resin is added to the dope composition, even if the added resin is in a compatible state, it may be mixed without being dissolved unless it is whitened when a film is formed.
Moreover, additives other than the resin component may be added to the dope composition. Such additives include plasticizers, UV absorbers, thermal decomposability and thermal colorability during molding, transportability, and various antioxidants, brittleness improvers, and film balances to improve optical performance. Examples thereof include an additive for reducing the water content / moisture permeability and an optical developer.
The plasticizer has a function of improving the fluidity and flexibility of the dope composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
Examples of the ultraviolet absorber include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone And benzophenones.
Examples of the antioxidant include phenolic and amine-based compounds such as hindered phenol having radical scavenging ability.
Examples of the brittleness improver include rubbery compounds that improve the brittleness of acrylic resins such as acrylic-butadiene rubber, and copolymers of MMA (methyl methacrylate) and butyl acrylate.
Additives that reduce the equilibrium water content / moisture permeability of the film include low molecular weight compounds, oligomers, and resins that are more hydrophobic than acrylic resins and have a low equilibrium water content. For example, phenol resin, phenol novolac resin, coumarone resin, norbornene resin, rosin resin, and other alicyclic polymers can be preferably used.
 アクリル樹脂以外の樹脂や添加剤を添加する場合、その樹脂および添加剤は、アクリル樹脂よりも平衡含水率の低い素材であることが好ましい。これにより、本発明のドープ組成物の平衡含水率が下がり、さらには、本発明のドープ組成物からなる光学フィルムの平衡含水率が下がる。このことによって、本発明の光学フィルムの透湿度が低減し、透湿度も小さくなる傾向にあり、本発明の光学フィルムを用いた偏光板および液晶表示装置が、温度および湿度が環境変化によって変動に対しても、表示性能を好ましく保つことができる。 When a resin or additive other than acrylic resin is added, the resin and additive are preferably materials having a lower equilibrium water content than the acrylic resin. Thereby, the equilibrium moisture content of the dope composition of the present invention is lowered, and further, the equilibrium moisture content of the optical film made of the dope composition of the present invention is lowered. As a result, the moisture permeability of the optical film of the present invention tends to be reduced and the moisture permeability tends to be reduced, and the polarizing plate and the liquid crystal display device using the optical film of the present invention are subject to variations in temperature and humidity due to environmental changes. In contrast, the display performance can be kept favorable.
 また、アクリル樹脂以外の素材の固形分量(固形分の添加量)は、ドープ組成物に含まれる固形分全量に対してアクリル樹脂の含有率が70質量%以上になるような添加量、すなわち、固形分全量に対して30質量%未満であることが好ましい。また、特にアクリル樹脂よりも平衡含水率が小さい固形分を添加する場合には、その素材の固形分量(固形分の添加量)は、固形分全量に対して2質量%以上であることが好ましく、2~28質量%であることがより好ましく、5~25質量%であることがさらに好ましい。 The solid content of the material other than the acrylic resin (addition amount of the solid content) is such that the content of the acrylic resin is 70% by mass or more with respect to the total solid content contained in the dope composition, that is, It is preferable that it is less than 30 mass% with respect to the total amount of solid content. In particular, when a solid content having an equilibrium water content smaller than that of the acrylic resin is added, the solid content (addition amount of the solid content) of the material is preferably 2% by mass or more based on the total solid content. The content is more preferably 2 to 28% by mass, and further preferably 5 to 25% by mass.
[ドープ組成物における固形分の濃度]
 ドープ組成物における固形分の濃度は、10質量%以上であることが好ましく、40質量%以下であることがより好ましい。これにより、膜厚ムラが抑えられた品質の高い高分子フィルムを得ることができる。また、ドープ組成物における固形分の濃度は、35質量%以下であることが好ましく、33質量%以下であることがより好ましく、30質量%以下であることが更に好ましく、28質量%以下であることが特に好ましく、26質量%以下であることが最も好ましい。これにより、後述のアルコールによる膜剥離を容易にする効果を確実に得ることができる。
[Concentration of solid content in dope composition]
The concentration of the solid content in the dope composition is preferably 10% by mass or more, and more preferably 40% by mass or less. As a result, a high quality polymer film with reduced film thickness unevenness can be obtained. The concentration of the solid content in the dope composition is preferably 35% by mass or less, more preferably 33% by mass or less, still more preferably 30% by mass or less, and 28% by mass or less. Particularly preferred is 26% by mass or less. Thereby, the effect of facilitating film peeling by the alcohol described later can be obtained with certainty.
<溶媒>
[溶媒(A)と溶媒(B)との混合溶媒]
 本発明のドープ組成物は、溶媒として(A)メチレンクロライドと(B)炭素数1~4のアルコールとの混合溶媒を含み、(A)メチレンクロライドと(B)炭素数1~4のアルコールとの質量比率(A:B)は85:15~50:50である。なお、以下の説明では、メチレンクロライドを溶媒(A)、炭素数1~4のアルコールを溶媒(B)ということがある。
 このような溶媒組成であることにより、このドープ組成物では、その流延膜を乾燥して得た高分子膜を金属支持体から容易に剥離することができるという効果が得られる。この効果について、図1および図2を参照しながら説明する。
 図1は、アクリル樹脂の重量平均分子量を変えた4種類の流延膜について、乾燥過程での、残留溶剤(揮発分)中の、メタノール含有比率の経時的変化を示すグラフである。
 図2は、乾燥過程において、残留した溶剤成分(全揮発分)と、高分子膜を金属支持体から剥離する際の剥離荷重との関係を示すグラフである。残留メタノール量はガスクロマトグラフィーで検出した。
高分子膜の残留溶剤量(揮発分)は、以下の式で定義される。
 残留溶剤量(揮発分)(%)=(溶剤を含むフィルム重量-溶剤を加熱除去したフィルム重量)/(溶剤を加熱除去したフィルム重量)×100
 なお、溶剤の加熱除去は、140℃で1時間処理とした。
 各流延膜は、いずれも溶媒としてメチレンクロライドとメタノールとが82:18の質量比率で混合された混合溶媒を用い、金属支持体上に流延したものである。
 このような流延膜の乾燥過程では、沸点の低いメチレンクロライドが炭素数1~4のアルコールよりも速く揮発する。このため、図1に示すように、混合溶媒におけるメタノールの含有比率は経時的に増加する。一方、図2に示すように、乾燥による揮発分が増加するのに伴って、金属支持体と流延膜との間の剥離荷重は一旦増加するが、さらに揮発分が増加すると、逆に剥離荷重は減少していく。この剥離荷重の減少とメタノール比率の増大には相関関係が認められる。
<Solvent>
[Mixed solvent of solvent (A) and solvent (B)]
The dope composition of the present invention contains (A) a mixed solvent of methylene chloride and (B) an alcohol having 1 to 4 carbon atoms as a solvent, and (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms. The mass ratio (A: B) is 85:15 to 50:50. In the following description, methylene chloride may be referred to as a solvent (A), and an alcohol having 1 to 4 carbon atoms may be referred to as a solvent (B).
With such a solvent composition, this dope composition has an effect that the polymer film obtained by drying the cast film can be easily peeled off from the metal support. This effect will be described with reference to FIGS.
FIG. 1 is a graph showing the change over time of the methanol content in the residual solvent (volatile matter) during the drying process for four types of cast films with different weight average molecular weights of acrylic resin.
FIG. 2 is a graph showing the relationship between the remaining solvent component (total volatile content) and the peeling load when peeling the polymer film from the metal support during the drying process. The amount of residual methanol was detected by gas chromatography.
The residual solvent amount (volatile matter) of the polymer film is defined by the following formula.
Residual solvent amount (volatile content) (%) = (film weight including solvent−film weight after removing solvent by heating) / (film weight after removing solvent by heating) × 100
The solvent was removed by heating at 140 ° C. for 1 hour.
Each cast film is cast on a metal support using a mixed solvent in which methylene chloride and methanol are mixed in a mass ratio of 82:18 as a solvent.
In such a casting film drying process, methylene chloride having a low boiling point volatilizes faster than alcohol having 1 to 4 carbon atoms. For this reason, as shown in FIG. 1, the content ratio of methanol in the mixed solvent increases with time. On the other hand, as shown in FIG. 2, as the volatile content due to drying increases, the peeling load between the metal support and the cast film once increases. However, when the volatile content further increases, the peeling load is reversed. The load decreases. There is a correlation between the decrease in peel load and the increase in methanol ratio.
[剥離荷重]
 本明細書中における「剥離荷重」とは、金属支持体上で流延膜中の残留溶剤(揮発分)が100%以下となった領域で、流延膜を剥離した末端をロードセルに吊るし、金属支持体から一定面積の流延膜を剥離する際に必要な張力に基づいて測定される値である。
 剥離荷重は50gf/cm以下であることが好ましく、30gf/cm以下であることがより好ましく、15gf/cm以下であることがさらに好ましい。剥離荷重が50gf/cm以下であることで、金属支持体からの高分子膜の剥離を、無理な力を与えることなく安定に行うことができ、段状ムラを防ぎ表面形状に優れた高分子フィルムを得ることができる。
 段ムラとは、高分子膜と金属支持体との間の剥離荷重が大きいときに、剥離時に、剥離点が上下、あるいは剥離荷重が増減してしまい、結果として完成したフィルムの幅手方向に膜厚差が生じ、段状ムラとなって面状故障を引き起こしてしまう現象である。
[Peeling load]
The “peeling load” in the present specification is a region where the residual solvent (volatile content) in the casting film is 100% or less on the metal support, and the end from which the casting film has been peeled is suspended from the load cell. It is a value measured based on the tension required when peeling a cast film of a certain area from a metal support.
The peeling load is preferably 50 gf / cm or less, more preferably 30 gf / cm or less, and further preferably 15 gf / cm or less. When the peeling load is 50 gf / cm or less, the polymer film can be stably peeled from the metal support without applying an excessive force, and a polymer having excellent surface shape that prevents stepped unevenness. A film can be obtained.
Step unevenness means that when the peeling load between the polymer film and the metal support is large, the peeling point increases or decreases at the time of peeling, or the peeling load increases or decreases, resulting in the width direction of the finished film. This is a phenomenon in which a difference in film thickness occurs, resulting in stepped unevenness and causing a surface failure.
 本発明のドープ組成物は、このように流延膜の乾燥過程で、混合溶媒におけるアルコールの含有比率が経時的に増大して剥離荷重が減少することにより、流延膜の乾燥によって得られた高分子膜を金属支持体から容易に剥離することができる。その結果、表面形状の良好な高分子フィルムを効率よく得ることができる。このようなアルコールによる膜剥離を容易にする効果は、アルコールが、金属支持体と、アクリル樹脂との間に形成される水素結合を阻害する作用があることに起因するものと推測される。
 ここで、仮にドープ組成物にセルロースエステルが含まれていると、メタノール比率の増大に伴ってセルロースエステルが溶解しづらくなるため流延膜が白化する現象が生じ、結果的に表面がマット化されたようになり、フィルム表面形状(平滑性)が損なわれる。これに対して、本発明のドープ組成物は、セルロースエステルを含んでいないため、このような白化が回避され、得られた高分子フィルムは優れたフィルム表面形状を有する。
Thus, the dope composition of the present invention was obtained by drying the casting film because the content ratio of alcohol in the mixed solvent increased with time and the peeling load decreased in the drying process of the casting film. The polymer film can be easily peeled from the metal support. As a result, a polymer film having a good surface shape can be obtained efficiently. Such an effect of facilitating film peeling by alcohol is presumed to be due to the fact that alcohol has an action of inhibiting a hydrogen bond formed between the metal support and the acrylic resin.
Here, if a cellulose ester is contained in the dope composition, the cellulose ester becomes difficult to dissolve with an increase in the methanol ratio, causing a phenomenon that the cast film is whitened, resulting in a matte surface. As a result, the film surface shape (smoothness) is impaired. On the other hand, since the dope composition of the present invention does not contain a cellulose ester, such whitening is avoided, and the obtained polymer film has an excellent film surface shape.
(炭素数1~4のアルコール)
 混合溶媒に用いられる(B)炭素数1~4のアルコールとしては、メタノール、エタノール、イソプロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノールを用いることが好ましく、メタノール、エタノールを用いることがより好ましく、メタノールを用いるのがもっとも好ましい。
(C1-C4 alcohol)
(B) The alcohol having 1 to 4 carbon atoms used in the mixed solvent is preferably methanol, ethanol, isopropanol, n-butanol, iso-butanol, sec-butanol, or tert-butanol, and methanol or ethanol is used. More preferably, methanol is most preferably used.
(質量比率A:B)
 溶媒における(A)メチレンクロライドと(B)炭素数1~4のアルコールの質量比率(A:B)は(A)メチレンクロライドと(B)炭素数1~4のアルコールの質量比率がA:B=85:15~50:50である。A:Bの質量比率について、好ましくは84:16~55:45であり、より好ましくは83:17~60:40である。
(Mass ratio A: B)
The mass ratio (A: B) of (A) methylene chloride and (B) alcohol having 1 to 4 carbon atoms in the solvent is (A) B: The mass ratio of (A) methylene chloride to (B) alcohol having 1 to 4 carbon atoms is A: B. = 85: 15 to 50:50. The mass ratio of A: B is preferably 84:16 to 55:45, and more preferably 83:17 to 60:40.
 質量比率(A:B)を、Bの割合が、15質量%以上とすることにより、流延膜の乾燥過程で、エチレンクロライドとアルコールとの乾燥速度の差を顕著にすることができ、剥離時の高分子膜のアルコール含有比率をより高いものにできる。その結果、支持体から高分子膜をより容易に剥離できる。また、混合溶媒の割合が50質量%以下であることにより、アクリル樹脂の不溶解によるドープ組成物の白化を回避することができ、ドープ組成物の流延を良好に行うことができる。ここで、本発明のドープ組成物では、アクリル樹脂の重量平均分子量が25万以上と大きいため、混合溶媒の割合を高く(アクリル樹脂の濃度を低く)した場合でも、十分な粘度を得ることができる。このため、アルコールによる膜剥離を容易にする効果を十分に享受しつつ、流延ダイからの吐出時に流延膜にスジが入ることも確実に抑えることができる。 When the mass ratio (A: B) is set so that the ratio of B is 15% by mass or more, the difference in the drying rate between the ethylene chloride and the alcohol can be made remarkable in the drying process of the cast film, and the peeling The alcohol content ratio of the polymer film at the time can be made higher. As a result, the polymer film can be more easily peeled from the support. Moreover, when the ratio of the mixed solvent is 50% by mass or less, whitening of the dope composition due to insoluble acrylic resin can be avoided, and the dope composition can be cast favorably. Here, in the dope composition of the present invention, since the weight average molecular weight of the acrylic resin is as large as 250,000 or more, a sufficient viscosity can be obtained even when the proportion of the mixed solvent is high (the acrylic resin concentration is low). it can. For this reason, it is possible to reliably suppress the streaks from entering the casting film at the time of discharging from the casting die while sufficiently enjoying the effect of facilitating film peeling by alcohol.
[溶媒(A)と溶媒(B)以外の溶媒]
 本発明のドープ組成物は、(A)メチレンクロライドと(B)炭素数が1~4のアルコールとの混合溶媒による効果を阻害しない範囲で、(A)および(B)以外の溶媒(他の溶媒)を含んでいてもよい。他の溶媒としては、ドープ組成物に用いられる固形分を溶解するものであれば制限なく用いることが出来る。
[Solvents other than solvent (A) and solvent (B)]
The dope composition of the present invention has a solvent (other than (A) and (B) other than (A) and (B) as long as the effect of the mixed solvent of (A) methylene chloride and (B) an alcohol having 1 to 4 carbon atoms is not hindered. Solvent). Any other solvent can be used without limitation as long as it dissolves the solid content used in the dope composition.
 例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
 他の溶媒を用いる場合、(A)メチレンクロライドと(B)炭素数1~4のアルコールとの混合溶媒の合計質量と、他の溶媒との質量比率は、99.9:0.1~90:10であることが好ましく、99.9:0.1~95:5であることがより好ましく、99.9:0.1~98:2であることがさらに好ましい。
For example, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3- Hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3 Examples include 3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like, and methyl acetate, ethyl acetate, and acetone can be preferably used.
When other solvent is used, the total mass of the mixed solvent of (A) methylene chloride and (B) alcohol having 1 to 4 carbon atoms and the mass ratio of the other solvent is 99.9: 0.1 to 90 : 10, preferably 99.9: 0.1 to 95: 5, more preferably 99.9: 0.1 to 98: 2.
<ドープ組成物の特性>
[複素粘度が30Pas・秒となるときの固形分濃度]
 本発明のドープ組成物は、ドープ組成物に含まれる固形分を、(A)メチレンクロライドと(C)メタノールとの質量比率(A:C)が82:18である溶媒に混合して混合物としたとき、その混合物の22℃における複素粘度が30Pas・秒となるときのドープ固形分濃度が30質量%以下であることが好ましく、25質量%以下であることがより好ましい。下限は10質量%以上であることが好ましい。
 また、本発明において「複素粘度」とは、試料溶液1mLをレオメーター(CLS 500)に直径4cm/2°のSteel Cone(共にTA Instrumennts社製)を用いて測定される値である。
 本発明におけるドープ組成物の複素粘度は、1~100Pa・sが好ましく、2~70Pa・sであることがより好ましく、20~80Pa・sであることが更に好ましく、25~70Pa・sであることが最も好ましい。複素粘度がこのような範囲にあると、溶液流延適性がより向上し、フィルムの白化抑制効果が更に高まる。この条件を満たすドープ組成物は、固形分濃度を低く(混合溶媒の割合を高く)した場合でも、流延に際し十分な粘度を得ることができる。このため、流延膜を自己支持性を持つ程度に乾燥したあと、金属支持体から剥離するときにアルコールによる膜剥離を容易にする効果を十分に享受しつつ、流延ダイからの吐出時に流延膜にスジが入ることも確実に抑えることができる。
<Characteristics of the dope composition>
[Solid content concentration when complex viscosity is 30 Pas · sec]
In the dope composition of the present invention, the solid content contained in the dope composition is mixed with a solvent in which the mass ratio (A: C) of (A) methylene chloride and (C) methanol is 82:18; When the complex viscosity at 22 ° C. of the mixture is 30 Pas · sec, the dope solid content concentration is preferably 30% by mass or less, and more preferably 25% by mass or less. The lower limit is preferably 10% by mass or more.
In the present invention, “complex viscosity” is a value measured using 1 mL of a sample solution as a rheometer (CLS 500) with a Steel Cone having a diameter of 4 cm / 2 ° (both manufactured by TA Instruments).
The complex viscosity of the dope composition in the present invention is preferably 1 to 100 Pa · s, more preferably 2 to 70 Pa · s, still more preferably 20 to 80 Pa · s, and more preferably 25 to 70 Pa · s. Most preferred. When the complex viscosity is in such a range, the solution casting suitability is further improved, and the whitening suppression effect of the film is further enhanced. The dope composition satisfying this condition can obtain a sufficient viscosity during casting even when the solid concentration is low (the ratio of the mixed solvent is high). For this reason, after the casting film is dried to the extent that it has self-supporting property, the film can be easily discharged at the time of discharge from the casting die while fully enjoying the effect of facilitating film peeling by alcohol when peeling from the metal support. It is also possible to reliably suppress streaks from entering the film.
<<ドープ組成物を製膜して得られた高分子フィルム>>
 本発明のドープ組成物を製膜して得られた高分子フィルムは、均一な表面形状を有するとともに透明性が高く、効率よく製造することができるため、様々な用途に有用である。特に、この高分子フィルムは、偏光板保護フィルムや光学補償フィルム等の光学フィルムとして好適に用いることができる。
 以下、本発明のドープ組成物を製膜して得られた高分子フィルムの好適な用途として、光学フィルム(本発明の光学フィルム)について説明する。
<< Polymer Film Obtained by Forming Dope Composition >>
Since the polymer film obtained by forming the dope composition of the present invention has a uniform surface shape and high transparency and can be efficiently produced, it is useful for various applications. In particular, the polymer film can be suitably used as an optical film such as a polarizing plate protective film or an optical compensation film.
Hereinafter, an optical film (the optical film of the present invention) will be described as a suitable application of the polymer film obtained by forming the dope composition of the present invention.
<光学フィルム>
 本発明の光学フィルムは、本発明のドープ組成物を製膜することによって得られた高分子フィルムを少なくとも1層有するものであり、本発明のドープ組成物を製膜することによって得られた高分子フィルムを1層のみ有する構成であってもよいし、2層以上有する構成であってもよいが、上記の高分子フィルムを1層のみを有する構成であることが好ましい。
 また、本発明の光学フィルムは、上記の高分子フィルム以外の層を有する多層構成であってもよい。本発明のドープ組成物を中心層として、両側に外層を設ける3層構成、さらに外層を複数層設ける構成であってもよい。本発明のドープ組成物を製膜することによって得られた高分子フィルムを2層以上有する多層構成である場合、各高分子フィルムは同じドープ組成物を製膜して得られたものであってもよいし、異なるドープ組成物を製膜して得られたものであってもよい。また、光学フィルムは、上記の高分子フィルムの表面に後述する表面処理や機能層が設けられていてもよい。本発明の光学フィルムは、上記の高分子フィルムを少なくとも一方の最外層(空気界面を有する層)として有する構成であることが好ましい。
 この光学フィルムで用いるドープ組成物の構成については、上記の<ドープ組成物>の欄の記載を参照することができる。また、この光学フィルムは、以下のような光学フィルムの製造方法(本発明の光学フィルムの製造方法)によって製造することができる。
<Optical film>
The optical film of the present invention has at least one polymer film obtained by forming the dope composition of the present invention, and the high film obtained by forming the dope composition of the present invention. Although the structure which has only 1 layer of molecular films may be sufficient, the structure which has two or more layers may be sufficient, It is preferable that it is the structure which has only 1 layer of said polymer films.
The optical film of the present invention may have a multilayer structure having layers other than the above polymer film. A three-layer configuration in which the dope composition of the present invention is a central layer and an outer layer is provided on both sides, and a plurality of outer layers may be provided. In the case of a multilayer structure having two or more polymer films obtained by forming the dope composition of the present invention, each polymer film is obtained by forming the same dope composition. Alternatively, it may be obtained by forming different dope compositions. The optical film may be provided with a surface treatment or a functional layer described later on the surface of the polymer film. The optical film of the present invention preferably has a configuration having the above polymer film as at least one outermost layer (layer having an air interface).
Regarding the constitution of the dope composition used in this optical film, the description in the section <Dope composition> can be referred to. Moreover, this optical film can be manufactured by the following optical film manufacturing methods (the optical film manufacturing method of the present invention).
(光学フィルムの平衡含水率)
 本明細書中において光学フィルムの「平衡含水率」とは、光学フィルムから切り出した24mm×36mmのフィルム試料について、カールフィッシャー法に従い、温度25℃相対湿度80%の条件で測定される含水量(g)を、試料質量(g)で除して算出される値である。ここで平衡含水率は、水分測定器(三菱化学社製、商品名CA-03)および試料乾燥装置(三菱化学社製、商品名VA-05)を用いて測定することができる。
 本発明の光学フィルムは、偏光板の保護フィルムとして用いる際、ポリビニルアルコールなどの水溶性熱可塑性との接着性を損なわないために、膜厚のいかんに関わらず、温度25℃相対湿度80%における平衡含水率が、0~4質量%であることが好ましい。0.1~3質量%であることがより好ましく、0.5~2質量%であることが更に好ましい。
(Equilibrium moisture content of optical film)
In this specification, the “equilibrium moisture content” of an optical film refers to a moisture content (measured at a temperature of 25 ° C. and a relative humidity of 80% according to the Karl Fischer method for a 24 mm × 36 mm film sample cut from the optical film). This is a value calculated by dividing g) by the sample mass (g). Here, the equilibrium moisture content can be measured using a moisture measuring device (trade name CA-03, manufactured by Mitsubishi Chemical Corporation) and a sample drying apparatus (trade name VA-05, manufactured by Mitsubishi Chemical Corporation).
When the optical film of the present invention is used as a protective film for a polarizing plate, the adhesiveness with water-soluble thermoplastics such as polyvinyl alcohol is not impaired, so that the temperature is 25 ° C. and the relative humidity is 80% regardless of the film thickness. The equilibrium water content is preferably 0 to 4% by mass. The content is more preferably 0.1 to 3% by mass, and further preferably 0.5 to 2% by mass.
(光学フィルムの面状)
 本発明の光学フィルムは、膜厚の最大高低差(P-V値)(段状ムラ)が小さいことが好ましい。
 フィルムの膜厚の最大高低差(P-V値)は、例えば、縞解析装置、レーザー変位計、接触式膜厚計などを用いて測定することができる。
 本明細書中において光学フィルムの「膜厚の最大高低差(P-V値)」とは、このうち縞解析装置FX-03(FUJINON社製)を用い、直径60mmの測定面積で測定される膜厚の最大高低差のことをいう。
 本発明の光学フィルムは、膜厚の最大高低差(P-V値)が3.0μm以下であることが好ましく、1.1μm以下であることがより好ましく、0.9μm以下であることが特に好ましい。本発明の光学フィルムは、本発明のドープ組成物を製膜して得られた高分子フィルムによって構成されているため、膜厚の最大高低差(P-V値)を確実に3.0μm以下に抑えることができる。
(Surface shape of optical film)
The optical film of the present invention preferably has a small maximum height difference (PV value) (step unevenness).
The maximum height difference (PV value) of the film thickness can be measured using, for example, a fringe analyzer, a laser displacement meter, a contact film thickness meter, or the like.
In this specification, the “maximum difference in film thickness (PV value)” of an optical film is measured using a fringe analyzer FX-03 (manufactured by FUJINON) with a measurement area of 60 mm in diameter. The maximum difference in film thickness.
In the optical film of the present invention, the maximum height difference (PV value) is preferably 3.0 μm or less, more preferably 1.1 μm or less, and particularly preferably 0.9 μm or less. preferable. Since the optical film of the present invention is composed of a polymer film obtained by forming the dope composition of the present invention, the maximum film thickness difference (PV value) is surely 3.0 μm or less. Can be suppressed.
[光学フィルムの製造方法]
 本発明の光学フィルムの製造方法は、溶液製膜法によって光学フィルムを製造する方法である。
 この製造方法は、本発明のドープ組成物を溶媒に溶解してドープを調製する溶解工程(1)と、前述のドープ組成物を金属支持体上に流延して流延膜を形成する流延工程(2)と、前述の流延膜を乾燥させてから前述の金属支持体から剥離して高分子フィルムを得る剥離工程(3)と、を少なくとも含む。
 剥離工程の後に、剥離した高分子フィルムをさらに乾燥させて残留溶剤(揮発分)をなくす乾燥工程をさらに行ってもよい。
 また、剥離工程の後に、高分子フィルムを少なくとも一軸方向、あるいはニ軸方向に延伸する延伸工程(4)を行ってもよい。
[Method for producing optical film]
The method for producing an optical film of the present invention is a method for producing an optical film by a solution casting method.
This production method includes a dissolution step (1) in which the dope composition of the present invention is dissolved in a solvent to prepare a dope, and a casting film in which the above-described dope composition is cast on a metal support to form a cast film. It includes at least a stretching step (2) and a peeling step (3) in which the cast film is dried and then peeled from the metal support to obtain a polymer film.
After the peeling step, a drying step of further drying the peeled polymer film to eliminate residual solvent (volatile matter) may be performed.
Moreover, you may perform the extending | stretching process (4) which extends | stretches a polymer film at least to a uniaxial direction or a biaxial direction after a peeling process.
 これらの工程は、例えば図3に示すフィルム製造ラインによって連続的に行うことができる。ただし、本発明の光学フィルムの製造方法で用いるフィルム製造ラインは、図3に示すものに限定されるものではない。本発明における光学フィルムは剥離工程後のフィルムの全てを含むこととする。
 図3に示すフィルム製造ライン20には、ストックタンク21、濾過装置30、流延ダイ31、回転ローラ32,33に掛け渡された金属支持体34及びテンタ式乾燥機35などが備えられている。更に耳切装置40、乾燥室41、冷却室42及び巻取室43などが配されている。
These steps can be performed continuously by, for example, a film production line shown in FIG. However, the film production line used in the method for producing an optical film of the present invention is not limited to the one shown in FIG. The optical film in the present invention includes all the films after the peeling step.
The film production line 20 shown in FIG. 3 includes a stock tank 21, a filtration device 30, a casting die 31, a metal support 34 stretched over rotating rollers 32 and 33, a tenter dryer 35, and the like. . Further, an ear-cutting device 40, a drying chamber 41, a cooling chamber 42, a winding chamber 43, and the like are arranged.
 ストックタンク21には、モータ60で回転する攪拌機61が取り付けられている。そして、ストックタンク21は、ポンプ62及び濾過装置30を介して流延ダイ31と接続している。 A stirrer 61 that is rotated by a motor 60 is attached to the stock tank 21. The stock tank 21 is connected to the casting die 31 via the pump 62 and the filtration device 30.
 流延ダイ31の幅は、最終製品となるフィルムの幅の1.1倍~2.0倍であることが好ましい。 The width of the casting die 31 is preferably 1.1 to 2.0 times the width of the final film.
 流延ダイ31の下方には、回転ローラ32,33に掛け渡された金属支持体34が設けられている。回転ローラ32,33は図示しない駆動装置により回転し、この回転に伴い金属支持体34は無端で走行する。 Below the casting die 31, a metal support 34 that is stretched around the rotating rollers 32 and 33 is provided. The rotating rollers 32 and 33 are rotated by a driving device (not shown), and the metal support 34 travels endlessly with the rotation.
 また、金属支持体34の表面温度を所定の値にするために、回転ローラ32,33に伝熱媒体循環装置63が取り付けられていることが好ましい。金属支持体34は、その表面温度が-20℃~40℃に調整可能なものであることが好ましい。 Further, in order to set the surface temperature of the metal support 34 to a predetermined value, it is preferable that the heat transfer medium circulation device 63 is attached to the rotary rollers 32 and 33. The metal support 34 is preferably one whose surface temperature can be adjusted to −20 ° C. to 40 ° C.
 金属支持体34の幅は、ドープ組成物22の流延幅の1.1倍~2.0倍の範囲のものを用いることが好ましい。また、長さは20m~200m、膜厚は0.5mm~2.5mmであり、表面粗さは0.05μm以下となるように研磨されていることが好ましい。金属支持体34は、ステンレス製であることが好ましく、十分な耐腐食性と強度とを有するようにSUS316製であることがより好ましい。また、金属支持体34の全体の膜厚ムラは0.5%以下のものを用いることが好ましい。
 なお、回転ローラ32,33を直接支持体として用いることも可能である。
The width of the metal support 34 is preferably in the range of 1.1 to 2.0 times the casting width of the dope composition 22. The length is preferably 20 to 200 m, the film thickness is 0.5 to 2.5 mm, and the surface is preferably polished so that the surface roughness is 0.05 μm or less. The metal support 34 is preferably made of stainless steel, and more preferably made of SUS316 so as to have sufficient corrosion resistance and strength. Moreover, it is preferable to use the metal support 34 having an overall film thickness unevenness of 0.5% or less.
It is also possible to use the rotating rollers 32 and 33 directly as a support.
 流延ダイ31、金属支持体34などは流延室64に収められている。流延室64には、その内部温度を所定の値に保つための温調設備65と、揮発している有機溶媒を凝縮回収するための凝縮器(コンデンサ)66とが設けられている。そして、凝縮液化した有機溶媒を回収するための回収装置67が流延室64の外部に設けられている。また、流延ダイ31から金属支持体34にかけて形成される流延ビードの背面部を圧力制御するための減圧チャンバ68が配されていることが好ましく、本実施形態においてもこれを使用している。 The casting die 31, the metal support 34, etc. are accommodated in the casting chamber 64. The casting chamber 64 is provided with a temperature control facility 65 for keeping the internal temperature at a predetermined value, and a condenser (condenser) 66 for condensing and recovering the volatile organic solvent. A recovery device 67 for recovering the condensed and liquefied organic solvent is provided outside the casting chamber 64. Further, it is preferable that a decompression chamber 68 for controlling the pressure of the back surface of the casting bead formed from the casting die 31 to the metal support 34 is disposed, and this is also used in this embodiment. .
 流延膜69中の溶媒を蒸発させるため送風口70,71,72が金属支持体34の周面近くに設けられている。 In order to evaporate the solvent in the casting film 69, air blowing ports 70, 71 and 72 are provided near the peripheral surface of the metal support 34.
 渡り部80には、送風機81が備えられ、テンタ式乾燥機35の下流の耳切装置40には、切り取られたフィルム82の側端部(耳と称される)の屑を細かく切断処理するためのクラッシャ90が接続されている。 The crossover portion 80 is provided with a blower 81, and the ear-cutting device 40 downstream of the tenter dryer 35 is used for finely cutting the waste at the side end (referred to as an ear) of the cut film 82. Crusher 90 is connected.
 乾燥室41には、多数のローラ91が備えられており、蒸発して発生した溶媒ガスを吸着回収するための吸着回収装置92が取り付けられている。冷却室42の下流には、フィルム82の帯電圧を所定の範囲(例えば、-3kV~+3kV)となるように調整するための強制除電装置(除電バー)93が設けられている。更に、本実施形態においては、フィルム82の両縁にエンボス加工でナーリングを付与するためのナーリング付与ローラ94が強制除電装置93の下流に適宜設けられる。また、巻取室43の内部には、フィルム82を巻き取るための巻取ローラ95と、その巻き取り時のテンションを制御するためのプレスローラ96とが備えられている。 The drying chamber 41 is provided with a large number of rollers 91, and an adsorption / recovery device 92 for adsorbing / recovering the solvent gas generated by evaporation is attached. A forced static elimination device (static elimination bar) 93 for adjusting the charged voltage of the film 82 to a predetermined range (for example, −3 kV to +3 kV) is provided downstream of the cooling chamber 42. Furthermore, in this embodiment, a knurling application roller 94 for applying knurling to both edges of the film 82 by embossing is appropriately provided downstream of the forced static elimination device 93. Further, a winding roller 95 for winding the film 82 and a press roller 96 for controlling the tension at the time of winding are provided in the winding chamber 43.
 次に、以上のようなフィルム製造ライン(バンド製造装置という)20を使用してフィルム82を製造する方法の一例を以下に説明する。
 ドープ組成物22は、攪拌機61の回転により常に均一化されている。ドープ組成物22には、この攪拌の際にもレターデーション発現剤、可塑剤、紫外線吸収剤などの添加剤を混合させることもできる。
Next, an example of a method for manufacturing the film 82 using the above-described film manufacturing line (referred to as a band manufacturing apparatus) 20 will be described below.
The dope composition 22 is always made uniform by the rotation of the stirrer 61. The dope composition 22 may be mixed with additives such as a retardation developer, a plasticizer, and an ultraviolet absorber during the stirring.
(1)溶解工程
 溶解工程は、本発明のドープ組成物を調製する工程である。本発明における溶解工程は、メチレンクロライドを主とする有機溶媒に、溶解釜中でアクリル樹脂を始めとする固形分を攪拌しながら溶解しドープ組成物を形成する工程、あるいはさらに添加剤溶液を混合してドープ組成物を形成する工程であることが好ましい。
 ドープ組成物の材料については、上記の<ドープ組成物>の欄の記載を参照することができる。
(1) Dissolution Step The dissolution step is a step for preparing the dope composition of the present invention. The dissolution step in the present invention is a step of dissolving a solid content such as acrylic resin in an organic solvent mainly containing methylene chloride while stirring to form a dope composition, or further mixing an additive solution. And a step of forming a dope composition.
Regarding the material of the dope composition, the description in the section of <Dope composition> can be referred to.
 ドープ組成物は、0℃以上の温度(常温又は高温)で調製することができる。本発明のドープ組成物の調製は、通常のソルベントキャスト法におけるドープの調製方法及び装置を用いて実施することができる。
 ポリマーの溶解には、常圧で行う方法、メチレンクロライドの沸点以下で行う方法、メチレンクロライドの沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができる。溶解効率の観点から、特にメチレンクロライドの沸点以上で加圧しても良い。この場合、アクリル樹脂と、溶媒(A)および溶媒(B)とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。
 加熱する場合の温度は、通常は40℃以上であり、好ましくは60~200℃であり、更に好ましくは80~110℃である。
 ドープ組成物中のアクリル樹脂の濃度は10~35質量%が好ましい。溶解中または後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送ることが好ましい。
The dope composition can be prepared at a temperature of 0 ° C. or higher (ordinary temperature or high temperature). The dope composition of the present invention can be prepared using a dope preparation method and apparatus in a normal solvent cast method.
For the dissolution of the polymer, a method carried out at normal pressure, a method carried out below the boiling point of methylene chloride, a method carried out under pressure above the boiling point of methylene chloride, JP-A-9-95544, JP-A-9-95557, or Various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. From the viewpoint of dissolution efficiency, pressurization may be performed particularly above the boiling point of methylene chloride. In this case, the acrylic resin, the solvent (A) and the solvent (B) are put in a pressure vessel and sealed, and stirred while heating to a temperature not lower than the boiling point of the solvent at normal temperature and in a range where the solvent does not boil. To do.
The heating temperature is usually 40 ° C. or higher, preferably 60 to 200 ° C., more preferably 80 to 110 ° C.
The concentration of the acrylic resin in the dope composition is preferably 10 to 35% by mass. It is preferable that an additive is added to the dope during or after dissolution to dissolve and disperse, and then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
(2)流延工程
 流延工程は、前述のドープ組成物を金属支持体上に流延して流延膜を形成する工程である。ドープ組成物22は、ポンプ(例えば、加圧型定量ギヤポンプ)62により濾過装置30に送られてここで濾過された後に、流延ダイ31から金属支持体34上に流延される。
 流延ダイ31から金属支持体34にかけては流延ビードが形成され、金属支持体34上には流延膜69が形成される。流延時のドープ組成物22の温度は、-10℃~57℃であることが好ましい。
 流延膜69は金属支持体34の移動に伴い移動する。ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。
(2) Casting process The casting process is a process of casting the above-mentioned dope composition on a metal support to form a cast film. The dope composition 22 is sent to the filtration device 30 by a pump (for example, a pressurized metering gear pump) 62 and filtered there, and then cast from the casting die 31 onto the metal support 34.
A casting bead is formed from the casting die 31 to the metal support 34, and a casting film 69 is formed on the metal support 34. The temperature of the dope composition 22 at the time of casting is preferably −10 ° C. to 57 ° C.
The casting film 69 moves as the metal support 34 moves. A pressure die that can adjust the slit shape of the die base and facilitates uniform film thickness is preferred. The pressure die includes a coat hanger die and a T die, and any of them is preferably used. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
(3)溶媒乾燥および剥離工程
 次に、流延膜69は送風口73が上部に配置されている箇所まで連続的に搬送される。送風口73のノズルから乾燥風が流延膜69に向けて送風される。溶媒蒸発工程は、流延膜を金属支持体上で加熱し、金属支持体から剥離可能になるまで(流延膜が自己支持性を持ち、高分子膜となるまで)溶媒を蒸発させる工程である。
 溶媒を蒸発させるには、流延膜側から風を吹かせる方法及び/または金属支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法、マイクロウェーブや遠赤外線等のエネルギー線をあてる方法等があるが、裏面液体伝熱の方法が、乾燥効率がよく好ましい。またそれらを組み合わせる方法も好ましい。裏面液体伝熱の場合は、メチレンクロライドの沸点以下で加熱するのが好ましい。
(3) Solvent drying and peeling process Next, the casting film 69 is continuously conveyed to the location where the air blowing port 73 is arranged in the upper part. Dry air is blown toward the casting film 69 from the nozzle of the air blowing port 73. The solvent evaporation process is a process in which the casting film is heated on the metal support and the solvent is evaporated until the casting film can be peeled from the metal support (until the casting film has a self-supporting property and becomes a polymer film). is there.
In order to evaporate the solvent, air is blown from the casting film side and / or heat is transferred from the back of the metal support by liquid, heat is transferred from the front and back by radiant heat, energy such as microwave and far infrared Although there is a method of applying a wire, the method of backside liquid heat transfer is preferable because of good drying efficiency. A method of combining them is also preferable. In the case of backside liquid heat transfer, it is preferable to heat at a boiling point of methylene chloride or less.
 流延膜69は、乾燥により溶媒が蒸発した結果、自己支持性を有する高分子膜となった後に、高分子膜74として剥取ローラ75で支持されながら金属支持体34から剥ぎ取られる。
 ここで、金属支持体34上の剥離位置における温度は、-50~40℃が好ましく、-30~35℃がより好ましく、-10~30℃がさらに好ましい。
The cast film 69 is peeled off from the metal support 34 while being supported by the peeling roller 75 as the polymer film 74 after becoming a polymer film having self-supporting property as a result of evaporation of the solvent by drying.
Here, the temperature at the peeling position on the metal support 34 is preferably −50 to 40 ° C., more preferably −30 to 35 ° C., and further preferably −10 to 30 ° C.
 尚、剥離する時点での金属支持体上での高分子膜の剥離時残留溶剤量(揮発分)は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶剤量(揮発分)がより多い時点で剥離する場合、高分子膜が柔らか過ぎると金属支持体から剥離する際に平面性を損ねてしまい、剥離張力による縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶剤量(揮発分)が決められる。 The amount of residual solvent (volatile matter) at the time of peeling of the polymer film on the metal support at the time of peeling is in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. Peeling is preferable, but when peeling is performed when the amount of residual solvent (volatile matter) is larger, if the polymer film is too soft, the flatness is impaired when peeling from the metal support, and vertical streaks due to peeling tension occur. Therefore, the residual solvent amount (volatile content) at the time of peeling is determined in consideration of the economic speed and quality.
 以上のような条件で剥離された高分子膜(湿潤フィルム)74を、その後に多数のローラが設けられている渡り部80を搬送させて、テンタ式乾燥機35に高分子膜74を送り込む。渡り部80では、送風機81から所望の温度の乾燥風を送風することで高分子膜74の乾燥を進行させる。このとき乾燥風の温度が、20℃~250℃であることが好ましい。 The polymer film (wet film) 74 peeled off under the conditions as described above is transported to the transfer section 80 provided with a number of rollers, and the polymer film 74 is fed into the tenter dryer 35. In the transfer part 80, the drying of the polymer film 74 is advanced by blowing dry air of a desired temperature from the blower 81. At this time, the temperature of the drying air is preferably 20 ° C. to 250 ° C.
 高分子膜74は、搬送方向(MD方向)に直交する、幅方向(TD方向)に延伸することが好ましい。幅方向への延伸により、支持体での乾燥時及び剥ぎ取り時に発生したムラを軽減しフィルム面内で良好な面状を得ることが出来る。幅方向への延伸倍率は、10%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましい。 The polymer film 74 is preferably stretched in the width direction (TD direction) perpendicular to the transport direction (MD direction). By stretching in the width direction, unevenness generated at the time of drying and stripping on the support can be reduced, and a good surface shape can be obtained in the film plane. The draw ratio in the width direction is preferably 10% or more, more preferably 20% or more, and still more preferably 30% or more.
(4)乾燥および延伸工程
 テンタ式乾燥機35に送られている高分子膜74は、その両端部がクリップで把持されて搬送されながら乾燥される。幅方向への延伸は、この際、テンタ式乾燥機35を用いて行うことができる。
 なお、テンタ式乾燥機35の内部を温度ゾーンに区画分割して、その区画毎に乾燥条件を適宜調整することが好ましい。
 このように、渡り部80及び/又はテンタ式乾燥機35で高分子膜74を幅方向に延伸することができる。
 搬送方向への延伸を行ってもよく、渡り部80で下流側のローラの回転速度を上流側のローラの回転速度より速くすることにより高分子膜74に搬送方向にドローテンションを付与させて行うことができる。
 ここで、渡り部80及び/又はテンタ式乾燥機35において、高分子膜74を未延伸のまま乾燥し、フィルム中の残留溶剤量が3.0質量%以下、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下、特に好ましくは0.2質量%以下とした後に、延伸を行っても良い。
 なお、残留溶媒量を3.0質量%以下とした高分子膜を延伸する場合、未延伸のまま一度巻き取った後、延伸を行っても良い。
 延伸をする高分子膜は乾燥フィルムでも湿潤フィルムでも良いが、湿潤フィルムであることがより好ましい。延伸処理は、搬送方向(MD)及び幅方向(TD)のいずれか一方向に行ってもよく、搬送方向と幅方向の双方の方向に2軸延伸することが好ましい。それぞれの延伸は1段で実施しても、多段で実施してもよい。2軸延伸する場合には、まず搬送方向、次に幅方向の順に延伸処理を行うのが好ましい。
(4) Drying and stretching step The polymer film 74 sent to the tenter dryer 35 is dried while being transported while being gripped by clips at both ends. In this case, stretching in the width direction can be performed using a tenter dryer 35.
It is preferable to divide the inside of the tenter dryer 35 into temperature zones and adjust the drying conditions appropriately for each of the zones.
In this way, the polymer film 74 can be stretched in the width direction by the crossover 80 and / or the tenter dryer 35.
Stretching in the transport direction may be performed, and by making the rotational speed of the downstream roller faster than the rotational speed of the upstream roller at the crossover portion 80, the polymer film 74 is given draw tension in the transport direction. be able to.
Here, in the transfer part 80 and / or the tenter dryer 35, the polymer film 74 is dried without being stretched, and the residual solvent amount in the film is 3.0% by mass or less, preferably 1.0% by mass or less. More preferably, the stretching may be performed after the content is 0.5% by mass or less, more preferably 0.3% by mass or less, and particularly preferably 0.2% by mass or less.
In addition, when extending | stretching the polymer film which made the residual solvent amount 3.0 mass% or less, you may extend | stretch, after winding up once, without extending | stretching.
The polymer film to be stretched may be a dry film or a wet film, but is preferably a wet film. The stretching treatment may be performed in any one of the transport direction (MD) and the width direction (TD), and it is preferable to perform biaxial stretching in both the transport direction and the width direction. Each stretching may be performed in one stage or in multiple stages. In the case of biaxial stretching, it is preferable to perform stretching in the order of the transport direction and then the width direction.
 幅方向の延伸倍率は、延伸しない場合を100%としたときに、110%~500%であることが好ましく、120%~400%であることが好ましく、130%~300%であることが特に好ましい。搬送方向の延伸倍率も同様に110%~500%であることが好ましく、120%~400%であることが好ましく、130%~300%であることが特に好ましい。 The stretching ratio in the width direction is preferably 110% to 500%, more preferably 120% to 400%, and particularly preferably 130% to 300%, assuming that 100% is not stretched. preferable. Similarly, the draw ratio in the conveying direction is preferably 110% to 500%, more preferably 120% to 400%, and particularly preferably 130% to 300%.
 ここで、乾燥後の未延伸の高分子膜のガラス転移温度とは、前述の熱可塑性樹脂のガラス転移温度であり、90~200℃が好ましく、100~180℃がより好ましい。延伸時の温度は、乾燥後の未延伸の高分子膜のガラス転移温度Tgに対してTg±30℃の温度範囲とすることが好ましく、Tg±25℃の温度範囲がより好ましく、Tg±20℃の温度範囲が更に好ましい。この温度範囲で延伸は、フィルムのハンドリング適性がよく、高分子膜を破断させることなく所望の光学フィルムを作製することができる。(Tg-30℃)以上の温度で延伸することにより、フィルムの破断を防ぐことができる。また(Tg+30℃)以下の温度で延伸することで、フィルムの自重により延伸を防ぐことができる。また、フィルム内の相分離による全ヘイズ、内部ヘイズの増加を抑えることができる。 Here, the glass transition temperature of the unstretched polymer film after drying is the glass transition temperature of the aforementioned thermoplastic resin, preferably 90 to 200 ° C., more preferably 100 to 180 ° C. The temperature during stretching is preferably a temperature range of Tg ± 30 ° C. with respect to the glass transition temperature Tg of the unstretched polymer film after drying, more preferably a temperature range of Tg ± 25 ° C., and Tg ± 20 A temperature range of ° C is more preferred. Stretching in this temperature range has good film handling suitability, and a desired optical film can be produced without breaking the polymer film. By stretching at a temperature of (Tg-30 ° C.) or higher, the film can be prevented from being broken. Moreover, extending | stretching at the temperature below (Tg + 30 degreeC) can prevent extending | stretching by the dead weight of a film. Moreover, the increase in the total haze and internal haze due to phase separation in the film can be suppressed.
 このように延伸処理は高分子膜74を製膜後、渡り部80及びテンタ式乾燥機35を経る乾燥工程で行ってもよいし、高分子膜74を乾燥後巻き取った後に行ってもよい。流延条件は、未延伸でフィルムを作製した場合に、フィルムの膜厚が10~200μmとなるような条件で行うことが好ましく、10~150μmがより好ましく、10~100μmが更に好ましく、10~60μmとなるような条件とすることが最も好ましい。 As described above, the stretching treatment may be performed in a drying process after the polymer film 74 is formed and then passed through the crossing section 80 and the tenter dryer 35, or may be performed after the polymer film 74 is dried and wound up. . The casting conditions are preferably such that when the film is unstretched, the film thickness is 10 to 200 μm, preferably 10 to 150 μm, more preferably 10 to 100 μm, and more preferably 10 to 200 μm. Most preferably, the conditions are 60 μm.
 高分子膜74は、テンタ式乾燥機35で所定の残留溶剤量(揮発分)まで乾燥された後、フィルム82として下流側に送り出される。フィルム82の両側端部は、耳切装置40によりその両縁が切断される。切断された側端部は、図示しないカッターブロワによりクラッシャ90に送られる。クラッシャ90により、フィルム側端部は粉砕されてチップとなる。このチップはドープ組成物調製用に再利用されるので、この方法はコストの点において有効である。なお、このフィルム両側端部の切断工程については省略することもできるが、前述の流延工程から前述のフィルムを巻き取る工程までのいずれかで行うことが好ましい。 The polymer film 74 is dried to a predetermined residual solvent amount (volatile matter) by the tenter dryer 35 and then sent to the downstream side as a film 82. Both ends of the film 82 are cut at both edges by the edge-cutting device 40. The cut side end portion is sent to the crusher 90 by a cutter blower (not shown). The crusher 90 pulverizes the film side end portion into a chip. Since this chip is reused for the preparation of the dope composition, this method is effective in terms of cost. In addition, although it can also abbreviate | omit about the cutting process of this film both ends, it is preferable to carry out in any one from the above-mentioned casting process to the process of winding up the above-mentioned film.
 両側端部を切断除去されたフィルム82は、乾燥室41に送られ、更に乾燥される。乾燥室41内の温度は、50℃~160℃の範囲であることが好ましい。乾燥室41においては、フィルム82は、ローラ91に巻き掛けられながら搬送されており、ここで蒸発により発生した溶媒ガスは、吸着回収装置92により吸着回収される。溶媒成分が除去された空気は、乾燥室41の内部に乾燥風として再度送風される。なお、乾燥室41は、乾燥温度を変えるために複数の区画に分割されていることがより好ましい。 The film 82 from which both ends have been removed is sent to the drying chamber 41 and further dried. The temperature in the drying chamber 41 is preferably in the range of 50 ° C to 160 ° C. In the drying chamber 41, the film 82 is conveyed while being wound around a roller 91, and the solvent gas generated by evaporation here is adsorbed and recovered by an adsorption recovery device 92. The air from which the solvent component has been removed is blown again as dry air inside the drying chamber 41. The drying chamber 41 is more preferably divided into a plurality of sections in order to change the drying temperature.
 フィルム82は、冷却室42で略室温まで冷却される。なお、乾燥室41と冷却室42との間に調湿室(図示しない)を設けても良い。この調湿室を設ける場合は、フィルム82に対して、所望の湿度及び温度に調整された空気を吹き付けられることが好ましい。これにより、フィルム82のカールの発生や巻き取る際の巻き取り不良の発生を抑制することができる。 The film 82 is cooled to approximately room temperature in the cooling chamber 42. A humidity control chamber (not shown) may be provided between the drying chamber 41 and the cooling chamber 42. When providing this humidity control chamber, it is preferable that air adjusted to a desired humidity and temperature is blown onto the film 82. Thereby, generation | occurrence | production of the curling of the film 82 and the winding defect at the time of winding can be suppressed.
 更に、本発明においてはナーリング付与ローラ94を設けて、フィルム82の少なくとも片端にエンボス加工でナーリングを付与することが好ましい。ナーリングの幅は3mm~50mmが好ましく、より好ましくは5mm~30mm、高さは0.5~500μmが好ましく、より好ましくは1~200μmである。これは片面のみにナーリング付与するものであっても両面にナーリング付与するものであってもよい。 Furthermore, in the present invention, it is preferable to provide a knurling roller 94 to give knurling to at least one end of the film 82 by embossing. The knurling width is preferably 3 mm to 50 mm, more preferably 5 mm to 30 mm, and the height is preferably 0.5 to 500 μm, more preferably 1 to 200 μm. This may be knurled only on one side or knurled on both sides.
(巻き取り)
 最後に、フィルム82を巻取室43内の巻取ローラ95で巻き取る。この際には、プレスローラ96で所望のテンションを付与しつつ巻き取ることが好ましい。なお、テンションは巻取開始時から終了時まで徐々に変化させることがより好ましい。巻き取られるフィルム82は、搬送方向に少なくとも100m以上とすることが好ましい。また、フィルム82の幅は600mm以上であることが好ましく、1100mm以上2900mm以下であることがより好ましく、1800mm以上2500mm以下が更に好ましい。
(Winding)
Finally, the film 82 is taken up by the take-up roller 95 in the take-up chamber 43. At this time, it is preferable to wind the sheet while applying a desired tension with the press roller 96. More preferably, the tension is gradually changed from the start to the end of winding. The film 82 to be wound is preferably at least 100 m in the transport direction. The width of the film 82 is preferably 600 mm or more, more preferably 1100 mm or more and 2900 mm or less, and further preferably 1800 mm or more and 2500 mm or less.
 溶液製膜方法において、ドープ組成物を流延する際に、2種類以上のドープ組成物を同時積層共流延又は逐次積層共流延させることもできる。更に両共流延を組み合わせても良い。同時積層共流延を行う際には、フィードブロックを取り付けた流延ダイを用いても良いし、マルチマニホールド型流延ダイを用いても良い。共流延により多層からなるフィルムを得ることが出来る。この多層フィルムは、空気面側の層の厚さと支持体側の層の厚さとの少なくともいずれか一方が、フィルム全体の膜厚の0.5%~30%であることが好ましい。更に、同時積層共流延を行う場合には、ダイスリットから金属支持体にドープ組成物を流延する際に、高粘度ドープ組成物が低粘度ドープ組成物により包み込まれることが好ましい。 In the solution casting method, when casting the dope composition, two or more kinds of dope compositions can be simultaneously co-casting or sequentially stacking co-casting. Furthermore, you may combine both casting. When performing simultaneous lamination and co-casting, a casting die to which a feed block is attached may be used, or a multi-manifold casting die may be used. A multi-layer film can be obtained by co-casting. In this multilayer film, at least one of the thickness of the air side layer and the thickness of the support side layer is preferably 0.5% to 30% of the film thickness of the entire film. Furthermore, when performing simultaneous lamination co-casting, it is preferable that the high-viscosity dope composition is wrapped with the low-viscosity dope composition when the dope composition is cast from the die slit to the metal support.
 流延ダイ、減圧チャンバ、金属支持体などの構造、共流延、剥離法、延伸、各工程の乾燥条件、ハンドリング方法、カール、平面性矯正後の巻取方法から、溶媒回収方法、フィルム回収方法まで、特開2005-104148号公報の[0617]段落から[0889]段落に詳しく記述されている。
 また、上記では、本発明の光学フィルムの製造方法の一例を、流延工程においてドープ組成物をバンド上に流延させた例で説明したが、本発明の光学フィルムの製造方法は流延工程においてドープ組成物をドラム上に流延させた場合にも同様のメカニズムで成立する。この場合は特開2013-82192号公報に記載の装置や製造条件が好ましく用いられる。
From casting die, decompression chamber, metal support structure, co-casting, peeling method, stretching, drying conditions of each process, handling method, curling, winding method after flatness correction, solvent recovery method, film recovery The method is described in detail in paragraphs [0617] to [0889] of JP-A-2005-104148.
In the above description, an example of the method for producing the optical film of the present invention has been described in an example in which the dope composition is cast on a band in the casting process. The same mechanism is established when the dope composition is cast on a drum. In this case, the apparatus and manufacturing conditions described in JP2013-82192A are preferably used.
[光学フィルムの膜厚、特性]
 次に、本発明の光学フィルムの膜厚および特性について説明する。本発明の光学フィルムは、好ましくは下記の特性を満たすことにより、偏光板保護フィルムや光学補償フィルムとして優れた機能を得ることができる。
[Thickness and characteristics of optical film]
Next, the film thickness and characteristics of the optical film of the present invention will be described. The optical film of the present invention preferably has excellent functions as a polarizing plate protective film and an optical compensation film by satisfying the following characteristics.
(膜厚)
 本発明の光学フィルムの膜厚は10~150μmであることが好ましく、10~100μmであることがより好ましく、10~60μmであることがさらに好ましい。
(Film thickness)
The film thickness of the optical film of the present invention is preferably 10 to 150 μm, more preferably 10 to 100 μm, still more preferably 10 to 60 μm.
(ガラス転移温度)
 本明細書中において「ガラス転移温度Tg」とは、フィルム試料を、示差走査型熱量計(DSC)を用いて昇温速度10℃/分で昇温したときに、その測定温度がベースラインから変化しはじめる温度と、再びベースラインに戻る温度との平均値のことをいう。なお、この測定温度のベースラインからの変化は、フィルムのガラス転移に起因する。
 本発明の光学フィルムは、ガラス転移温度が90℃以上であることが好ましく、90~200℃であることがより好ましく、90~180℃であることがさらに好ましい。
(Glass-transition temperature)
In this specification, “glass transition temperature Tg” means that when a film sample is heated at a rate of temperature increase of 10 ° C./min using a differential scanning calorimeter (DSC), the measured temperature is from the baseline. It means the average value of the temperature that begins to change and the temperature that returns to the baseline again. Note that the change in the measured temperature from the baseline is due to the glass transition of the film.
The optical film of the present invention preferably has a glass transition temperature of 90 ° C. or higher, more preferably 90 to 200 ° C., and still more preferably 90 to 180 ° C.
[光学フィルムの応用例]
 本発明の光学フィルムは、例えば、液晶表示装置の偏光板保護フィルム、光学補償フィルムとしても好ましく用いることができる。なお、光学補償フィルムとは、一般に液晶表示装置に用いられ、位相差を補償する光学材料のことを指し、位相差板、光学補償シートなどと同義である。光学補償フィルムは複屈折性を有し、液晶表示装置の表示画面の着色を取り除いたり、視野角特性を改善したりする目的で用いられる。
[Application example of optical film]
The optical film of the present invention can be preferably used as, for example, a polarizing plate protective film and an optical compensation film for a liquid crystal display device. The optical compensation film is generally used for a liquid crystal display device and refers to an optical material that compensates for a retardation, and is synonymous with a retardation plate, an optical compensation sheet, and the like. The optical compensation film has birefringence and is used for the purpose of removing the color of the display screen of the liquid crystal display device or improving the viewing angle characteristics.
 本発明のドープ組成物を製膜して得られた光学フィルムは、それ自体を光学補償フィルムとしてもよいし、光学補償フィルムの支持体として用いて、その上に光学異方性層を設けてもよい。光学異方性層は、本発明の光学フィルムが使用される液晶表示装置の液晶セルの光学性能や駆動方式に制限されず、光学補償フィルムとして要求される、どのような光学異方性層も併用することができる。併用される光学異方性層としては、液晶性化合物を含有する組成物から形成しても良いし、複屈折を持つ熱可塑性フィルムから形成しても良い。 The optical film obtained by forming the dope composition of the present invention may be an optical compensation film itself, or may be used as a support for the optical compensation film, and an optical anisotropic layer is provided thereon. Also good. The optically anisotropic layer is not limited to the optical performance or driving method of the liquid crystal cell of the liquid crystal display device in which the optical film of the present invention is used, and any optically anisotropic layer required as an optical compensation film Can be used together. The optically anisotropic layer used in combination may be formed from a composition containing a liquid crystalline compound or may be formed from a thermoplastic film having birefringence.
[光学フィルムに付加される構成]
 本発明の光学フィルムは、その用途に応じて付加的な構成を有していてもよい。そのような構成としては、光学フィルムの表面に施される表面処理や光学フィルムの表面に設けられる機能層等を挙げることができる。以下、この表面処理および機能層について説明する。
[Configuration added to optical film]
The optical film of the present invention may have an additional configuration depending on its application. Examples of such a configuration include a surface treatment applied to the surface of the optical film and a functional layer provided on the surface of the optical film. Hereinafter, the surface treatment and the functional layer will be described.
(表面処理)
 本発明の光学フィルムは、場合により表面処理を行うことによって、光学フィルムと他の層(例えば、偏光子、下塗層及びバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸又はアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3~20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001-1745、2001年3月15日発行、発明協会)にて30頁~32頁に詳細に記載されており、本発明において好ましく用いることができる。
(surface treatment)
The optical film of the present invention can achieve improved adhesion between the optical film and other layers (for example, a polarizer, an undercoat layer, and a back layer) by optionally performing a surface treatment. For example, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment can be used. The glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 −3 to 20 Torr, and plasma treatment under atmospheric pressure is also preferred. A plasma-excitable gas is a gas that is plasma-excited under the above conditions, and includes chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof. It is done. Details of these are described in detail on pages 30 to 32 in the Japan Institute of Invention Disclosure Bulletin (Public Technical No. 2001-1745, published on March 15, 2001, Japan Institute of Invention), and are preferably used in the present invention. be able to.
(機能層)
 また本発明の光学フィルムは、前述の高分子フィルムの少なくとも一方の表面に、膜厚0.1~20μmの機能層を積層してもよい。この機能層の種類は、ハードコート層、反射防止層(低屈折率層、中屈折率層、高屈折率層など屈折率を調整した層)、防眩層、帯電防止層、紫外線吸収層、透湿度低減層などが挙げられる。
 前述の機能層は、1層であっても良いし、複数層設けても良い。前述の機能層の積層方法は、前述の高分子フィルムを形成するための本発明のドープ組成物との共流涎、あるいは、本発明のドープ組成物を用いて形成されてなる前述の高分子フィルム上に塗設して設けることが好ましい。
 機能層を塗布・乾燥にて形成する場合には、バインダーとしてエチレン性不飽和基をもつモノマーを用いることが好ましい。前述のモノマーは、単官能であっても多官能であっても良い。なかでも重合性の多官能モノマーを用いることが好ましく、光重合性多官能モノマーを用いることがより好ましく、2個以上の(メタ)アクリロイル基を有するモノマーを含有した塗布液を用いることが特に好ましい。
(Functional layer)
In the optical film of the present invention, a functional layer having a thickness of 0.1 to 20 μm may be laminated on at least one surface of the polymer film. The types of the functional layer include a hard coat layer, an antireflection layer (a layer having a refractive index adjusted such as a low refractive index layer, a medium refractive index layer, a high refractive index layer), an antiglare layer, an antistatic layer, an ultraviolet absorbing layer, A moisture permeation reducing layer is exemplified.
The functional layer described above may be a single layer or a plurality of layers. The functional layer laminating method described above includes the co-flow with the dope composition of the present invention to form the above polymer film, or the above polymer film formed using the dope composition of the present invention. It is preferable to be coated on top.
When the functional layer is formed by coating and drying, it is preferable to use a monomer having an ethylenically unsaturated group as a binder. The aforementioned monomers may be monofunctional or polyfunctional. Among them, it is preferable to use a polymerizable polyfunctional monomer, more preferably a photopolymerizable polyfunctional monomer, and particularly preferably a coating solution containing a monomer having two or more (meth) acryloyl groups. .
 2個以上の(メタ)アクリロイル基を有するモノマーの具体例としては、ネオペンチルグリコールアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
 トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
 ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
 2,2-ビス{4-(アクリロキシ・ジエトキシ)フェニル}プロパン、2-2-ビス{4-(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;
等を挙げることができる。
Specific examples of the monomer having two or more (meth) acryloyl groups include (meth) acrylic of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate and the like. Acid diesters;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxy-diethoxy) phenyl} propane and 2-2bis {4- (acryloxy-polypropoxy) phenyl} propane ;
Etc.
 更にはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。 Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.
 中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。多価アルコールとは、2価以上のアルコールをいう。
 更に好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. A polyhydric alcohol means a dihydric or higher alcohol.
More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. For example, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, Ethylene oxide modified tri (meth) acrylate phosphate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, Li ester polyacrylate, caprolactone-modified tris (acryloyloxyethyl) isocyanurate.
 さらに、3個以上の(メタ)アクリロイル基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマー又はプレポリマー等もあげられる。 Furthermore, resins having three or more (meth) acryloyl groups, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins And oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
 その他の前述の多官能モノマーとしては、例えば特開2005-76005号公報、同2005-36105号公報に記載されたデンドリマーを用いることもできる。 As other polyfunctional monomers described above, for example, dendrimers described in JP-A-2005-76005 and JP-A-2005-36105 can also be used.
 また、多官能モノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル類、多価アルコールと複数の(メタ)アクリロイル基を含有するイソシアネートとのアミド類も好ましく用いられる。
 多価アルコールとしては、特に制限されないが、脂肪族アルコールが好ましく、なかでも環状脂肪族炭化水素基を持つアルコールがより好ましい。単環式の脂環式アルコールの脂肪族基としては、炭素数3~8のシクロアルキル基が好ましく、例えば、シクロペンチル基、シクロブチル基、シクロヘキシル基、シクロオクチル基等を挙げることができる。
 多環式の脂環式アルコールの脂肪族基としては、炭素数5以上のビシクロ、トリシクロ、テトラシクロ構造等を有する基を挙げることができ、炭素数6~20のシクロアルキル基が好ましく、例えば、アダマンチル基、ノルボルニル基、ジシクロペンチル基、トリシクロデカニル基、テトラシクロドデシル基、特開2006-215096号公報の特許請求の範囲記載の化合物の中心骨格、特開2001-10999号公報記載の化合物の中心骨格等を挙げることができる。なお、シクロアルキル基中の炭素原子の一部が、酸素原子等のヘテロ原子によって置換されていてもよい。
 なかでも、多環式のアルコールとしては、アダマンチル基、ノルボルニル基、ジシクロペンチル基、トリシクロデカニル基、テトラシクロドデシル基、特開2006-215096号公報の特許請求の範囲記載の化合物の中心骨格、特開2001-10999号公報記載の化合物の中心骨格を持つ多価アルコール類が、透湿度を低下させる観点から特に好ましい。
As the polyfunctional monomer, esters of polyhydric alcohol and (meth) acrylic acid, and amides of polyhydric alcohol and isocyanate containing a plurality of (meth) acryloyl groups are also preferably used.
The polyhydric alcohol is not particularly limited, but is preferably an aliphatic alcohol, and more preferably an alcohol having a cyclic aliphatic hydrocarbon group. The aliphatic group of the monocyclic alicyclic alcohol is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopentyl group, a cyclobutyl group, a cyclohexyl group, and a cyclooctyl group.
Examples of the aliphatic group of the polycyclic alicyclic alcohol include groups having a bicyclo, tricyclo, or tetracyclo structure having 5 or more carbon atoms, and a cycloalkyl group having 6 to 20 carbon atoms is preferable. Adamantyl group, norbornyl group, dicyclopentyl group, tricyclodecanyl group, tetracyclododecyl group, central skeleton of the compound described in the claims of JP-A-2006-2115096, compound described in JP-A-2001-10999 And the like. A part of carbon atoms in the cycloalkyl group may be substituted with a hetero atom such as an oxygen atom.
Among them, examples of the polycyclic alcohol include an adamantyl group, a norbornyl group, a dicyclopentyl group, a tricyclodecanyl group, a tetracyclododecyl group, and a central skeleton of the compound described in the claims of JP-A-2006-215096 Polyhydric alcohols having a central skeleton of the compounds described in JP-A No. 2001-10999 are particularly preferred from the viewpoint of reducing moisture permeability.
 重合性多官能モノマーは、二種類以上を併用してもよい。これらのエチレン性不飽和基を持つモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。そのなかでも光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。 Two or more kinds of polymerizable polyfunctional monomers may be used in combination. Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator. Among these, it is preferable to use a photopolymerization initiator. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
 また、前述の重合性多官能モノマーと、単官能モノマーを併用することも好ましい。 It is also preferable to use a monofunctional monomer in combination with the polymerizable polyfunctional monomer described above.
 単官能モノマーとしては、(メタ)アクリロイル基を1個有するモノマーが好ましく、通常(メタ)アクリロイル基を1個有するモノマーは、1価のアルコールとアクリル酸から得られる。 As the monofunctional monomer, a monomer having one (meth) acryloyl group is preferable, and a monomer having one (meth) acryloyl group is usually obtained from a monohydric alcohol and acrylic acid.
 1価のアルコールは、芳香族アルコールであっても、脂肪族アルコールであってもよい。
 1価のアルコールとしては、メチルアルコール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール、n-アミルアルコール、ジアセトンアルコール、1-メトキシ-2-プロパノール、フルフリルアルコール、2-オクタノール、2-エチルヘキサノール、ノナノール、n-デカノール、ウンデカノール、n-ドデカノール、トリメチルノニルアルコール、ベンジルアルコール、フェネチルアルコール、エチレングリコールモノイソアミルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノヘキシルエーテルが挙げられる。
 また、脂肪族アルコールの脂肪族部分については、環状脂肪族であってもよい。環状脂肪族としては単環型でもよく、多環型でもよく、多環型の場合は有橋式であってもよい。単環型としては、炭素数3~8のシクロアルキル基が好ましく、例えば、シクロペンチル基、シクロヘキシル基、シクロブチル基、シクロオクチル基等を挙げることができる。多環型としては、炭素数5以上のビシクロ、トリシクロ、テトラシクロ構造等を有する基を挙げることができ、炭素数6~20のシクロアルキル基が好ましく、例えば、アダマンチル基、ノルボルニル基、ジシクロペンチル基、トリシクロデカニル基、テトラシクロドデシル基、特開2006-215096号公報の特許請求の範囲記載の化合物の中心骨格、特開2001-10999号公報記載の化合物の中心骨格等を挙げることができる。なお、シクロアルキル基中の炭素原子の一部が、酸素原子等のヘテロ原子によって置換されていてもよい。
The monohydric alcohol may be an aromatic alcohol or an aliphatic alcohol.
Monohydric alcohols include methyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, diacetone alcohol, 1-methoxy-2-propanol, furfuryl alcohol 2-octanol, 2-ethylhexanol, nonanol, n-decanol, undecanol, n-dodecanol, trimethylnonyl alcohol, benzyl alcohol, phenethyl alcohol, ethylene glycol monoisoamyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, Examples include ethylene glycol monohexyl ether.
Moreover, about the aliphatic part of aliphatic alcohol, cycloaliphatic may be sufficient. The cycloaliphatic may be monocyclic, polycyclic, or may be bridged in the case of polycyclic. The monocyclic type is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopentyl group, a cyclohexyl group, a cyclobutyl group, and a cyclooctyl group. Examples of the polycyclic type include groups having a bicyclo, tricyclo or tetracyclo structure having 5 or more carbon atoms, and preferably a cycloalkyl group having 6 to 20 carbon atoms, such as an adamantyl group, norbornyl group, dicyclopentyl group. , Tricyclodecanyl group, tetracyclododecyl group, central skeleton of the compound described in the claims of JP-A-2006-215096, central skeleton of the compound described in JP-A-2001-10999, and the like. . A part of carbon atoms in the cycloalkyl group may be substituted with a hetero atom such as an oxygen atom.
 1価のアルコールは、芳香族アルコールであっても脂肪族アルコールであっても、炭素数6以上が好ましい。 The monovalent alcohol, whether it is an aromatic alcohol or an aliphatic alcohol, preferably has 6 or more carbon atoms.
 また、機能層として反射防止層(低屈折率層、中屈折率層、高屈折率層など屈折率を調整した層)、防眩層、帯電防止層、紫外線吸収層、透湿度低減層とするために、各種添加物を添加しても良い。 In addition, an antireflection layer (a layer having a adjusted refractive index such as a low refractive index layer, a middle refractive index layer, or a high refractive index layer), an antiglare layer, an antistatic layer, an ultraviolet absorption layer, or a moisture permeability reducing layer is provided as a functional layer Therefore, various additives may be added.
 前述の機能層の厚みは、0.01~100μmであることがより好ましく、0.02~50μmであることが特に好ましい。さらに、透湿度を低減する機能層としては、厚み0.1~20μmであることがより特に好ましい。 The thickness of the aforementioned functional layer is more preferably from 0.01 to 100 μm, particularly preferably from 0.02 to 50 μm. Furthermore, the thickness of the functional layer for reducing moisture permeability is more preferably 0.1 to 20 μm.
 前述の透湿度低減層を設ける場合、透湿度低減層を積層した光学フィルムの透湿度(C)と、透湿度低減積層なしの光学フィルムの透湿度(D)とが、C/Dが0.9以下となることがのぞましい。0.85以下であることがよりのぞましく、0.8以下であることがさらにのぞましい。 When the moisture permeability reducing layer is provided, the moisture permeability (C) of the optical film on which the moisture permeability reducing layer is laminated and the moisture permeability (D) of the optical film without the moisture permeability reducing laminate are C / D of 0. It should be 9 or less. More preferably, it is 0.85 or less, and more preferably 0.8 or less.
<<偏光板>>
 次に、本発明の偏光板について説明する。
 本発明の偏光板は、本発明の光学フィルムを、偏光板保護フィルムとして少なくとも1枚有する。光学フィルムの構成については、上記の<光学フィルム>の欄の記載を参照することができる。偏光板の作製方法は、たとえば、本発明の光学フィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリ処理の代わりに特開平6-94915号、特開平6-118232号に記載されているような易接着加工を施してもよい。また前述のような表面処理を行ってもよい。
 偏光板保護フィルム処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
 偏光板保護フィルムと偏光子は、その他の接着剤や粘着剤で貼り合わされていてもよいし、接着剤や粘着剤を介さずに直接積層されていてもよい。
 偏光板は偏光子及びその両面を保護する偏光板保護フィルムで構成されていることが好ましく、更に偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成されることがより好ましい。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
 液晶表示装置には通常2枚の偏光板の間に液晶セルを含む基板が配置されているが、本発明の光学フィルムは、2枚の偏光板のいずれの保護フィルムとして用いることができるが、各偏光板の2枚の偏光板保護フィルムのうち、偏光子に対して液晶セル側に配置される偏光板保護フィルムとして用いられることが好ましい。
<< Polarizing plate >>
Next, the polarizing plate of the present invention will be described.
The polarizing plate of the present invention has at least one optical film of the present invention as a polarizing plate protective film. For the configuration of the optical film, the description in the section <Optical film> can be referred to. The polarizing plate is produced by, for example, a method in which the optical film of the present invention is treated with an alkali and bonded to both sides of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. There is. Instead of alkali treatment, easy adhesion processing as described in JP-A-6-94915 and JP-A-6-118232 may be performed. Further, the surface treatment as described above may be performed.
Examples of the adhesive used to bond the polarizing plate protective film treated surface and the polarizer include polyvinyl alcohol adhesives such as polyvinyl alcohol and polyvinyl butyral, vinyl latexes such as butyl acrylate, and the like.
The polarizing plate protective film and the polarizer may be bonded together with other adhesives or pressure-sensitive adhesives, or may be directly laminated without using any adhesives or pressure-sensitive adhesives.
The polarizing plate is preferably composed of a polarizer and a polarizing plate protective film that protects both sides of the polarizer, and further comprises a protective film on one side of the polarizing plate and a separate film on the opposite side. Is more preferable. The protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection. In this case, the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the liquid crystal plate. Moreover, a separate film is used in order to cover the adhesive layer bonded to a liquid crystal plate, and is used for the surface side which bonds a polarizing plate to a liquid crystal plate.
In a liquid crystal display device, a substrate including a liquid crystal cell is usually disposed between two polarizing plates. The optical film of the present invention can be used as any protective film of two polarizing plates. Of the two polarizing plate protective films of the plate, it is preferably used as a polarizing plate protective film disposed on the liquid crystal cell side with respect to the polarizer.
<<液晶表示装置>>
 本発明の液晶表示装置は、本発明の偏光板を含む。液晶表示装置は、液晶セルと、この液晶セルの少なくとも一方に配置された本発明の偏光板とを含むことが好ましく、前述の偏光板中に含まれる本発明の光学フィルムが最表層となるように配置されることがより好ましい。
<< Liquid Crystal Display >>
The liquid crystal display device of the present invention includes the polarizing plate of the present invention. The liquid crystal display device preferably includes a liquid crystal cell and the polarizing plate of the present invention disposed in at least one of the liquid crystal cells, and the optical film of the present invention contained in the polarizing plate is the outermost layer. It is more preferable that they are arranged in the.
(一般的な液晶表示装置の構成)
 液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光板、及び必要に応じて液晶セルと偏光板との間に少なくとも一枚の光学補償フィルムを配置した構成を有していることが好ましい。
 液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、更にガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、一般に50μm~2mmの厚さを有する。
(General liquid crystal display device configuration)
The liquid crystal display device includes a liquid crystal cell in which liquid crystal is supported between two electrode substrates, two polarizing plates disposed on both sides thereof, and at least one between the liquid crystal cell and the polarizing plate as necessary. It is preferable to have a configuration in which a single optical compensation film is disposed.
The liquid crystal layer of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates. The transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance. The liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer, or an undercoat layer (undercoat layer) (used for adhesion of the transparent electrode layer). These layers are usually provided on the substrate. The substrate of the liquid crystal cell generally has a thickness of 50 μm to 2 mm.
(液晶表示装置の種類)
 本発明の光学フィルムは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、及びHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。本発明の光学フィルムは、いずれの表示モードの液晶表示装置においても有効である。また、透過型、反射型、半透過型のいずれの液晶表示装置においても有効である。
(Types of liquid crystal display devices)
The optical film of the present invention can be used for liquid crystal cells in various display modes. TN (Twisted Nematic), IPS (In-Plane Switching), FLC (Ferroelectric Liquid Crystals), AFLC (Anti-Ferroelectric Liquid Crystals), OCB (Opticly Liquid Ties). Various display modes such as ECB (Electrically Controlled Birefringence) and HAN (Hybrid Aligned Nematic) have been proposed. In addition, a display mode in which the above display mode is oriented and divided has been proposed. The optical film of the present invention is effective in any display mode liquid crystal display device. Further, it is effective in any of a transmissive type, a reflective type, and a transflective liquid crystal display device.
 以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be specifically described based on examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention.
<材料の調製>
(アクリル樹脂)
 下記に記載のアクリル樹脂を使用した。
<Preparation of material>
(acrylic resin)
The acrylic resin described below was used.
-製造例1-
 実施例1、6で用いる重量平均分子量120万、MMA比率100%のアクリル樹脂を、以下の方法で合成した。
 メカニカルスターラー、温度計、冷却管をつけた1Lの三ツ口フラスコにイオン交換水300g、ポリビニルアルコール(ケン化度80%、重合度1700)0.6gを加えて攪拌し、ポリビニルアルコールを完全に溶解した後、メチルメタクリレート100g、過酸化ベンゾイル0.15gを添加し、85℃で6時間反応させた。得られた懸濁液をナイロン製ろ過布によりろ過、水洗し、ろ過物を50℃で終夜乾燥することで、目的のポリマーをビーズ状で得た(92.0g)。
-Production Example 1-
An acrylic resin having a weight average molecular weight of 1,200,000 and an MMA ratio of 100% used in Examples 1 and 6 was synthesized by the following method.
300 g of ion-exchanged water and 0.6 g of polyvinyl alcohol (saponification degree 80%, polymerization degree 1700) were added to a 1 L three-necked flask equipped with a mechanical stirrer, thermometer and cooling tube and stirred to completely dissolve the polyvinyl alcohol. Thereafter, 100 g of methyl methacrylate and 0.15 g of benzoyl peroxide were added and reacted at 85 ° C. for 6 hours. The obtained suspension was filtered with a nylon filter cloth, washed with water, and the filtrate was dried at 50 ° C. overnight to obtain the desired polymer in the form of beads (92.0 g).
-その他の製造例-
 実施例2で用いる重量平均分子量80万、MMA比率100%のアクリル樹脂を、製造例1において、過酸化ベンゾイルの添加量を0.23gに変更した以外は同様の方法で合成した。
 実施例3で用いる重量平均分子量50万、MMA比率100%のアクリル樹脂を、製造例1において、過酸化ベンゾイルの添加量を0.36gに変更した以外は同様の方法で合成した。
 実施例4、比較例3、4で用いる重量平均分子量30万、MMA比率100%のアクリル樹脂を、製造例1において、過酸化ベンゾイルの添加量を0.61gに変更した以外は同様の方法で合成した。
 実施例5で用いる重量平均分子量30万、MMA/スチレン共重合体(80/20、重合比)のアクリル樹脂を、製造例1において、モノマー仕込み量をメチルメタクリレート80g、スチレン20gに変更し、過酸化ベンゾイルの仕込み量を0.6gに変更した以外は同様の方法で合成した。
 比較例1で用いる重量平均分子量20万、MMA比率100%のアクリル樹脂を、製造例1において、過酸化ベンゾイルの添加量を0.92gに変更した以外は同様の方法で合成した。
 比較例2で用いる重量平均分子量10万、MMA比率100%のアクリル樹脂を、製造例1において、過酸化ベンゾイルの添加量を1.83gに変更した以外は同様の方法で合成した。
-Other manufacturing examples-
An acrylic resin having a weight average molecular weight of 800,000 and an MMA ratio of 100% used in Example 2 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 0.23 g.
An acrylic resin having a weight average molecular weight of 500,000 and an MMA ratio of 100% used in Example 3 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 0.36 g.
The acrylic resin having a weight average molecular weight of 300,000 and an MMA ratio of 100% used in Example 4 and Comparative Examples 3 and 4 was the same as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 0.61 g. Synthesized.
The acrylic resin having a weight average molecular weight of 300,000 and MMA / styrene copolymer (80/20, polymerization ratio) used in Example 5 was changed to 80 g of methyl methacrylate and 20 g of styrene. The synthesis was performed in the same manner except that the amount of benzoyl oxide charged was changed to 0.6 g.
An acrylic resin having a weight average molecular weight of 200,000 and an MMA ratio of 100% used in Comparative Example 1 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 0.92 g.
An acrylic resin having a weight average molecular weight of 100,000 and an MMA ratio of 100% used in Comparative Example 2 was synthesized in the same manner as in Production Example 1 except that the amount of benzoyl peroxide added was changed to 1.83 g.
[実施例1]
<溶解工程:ドープ組成物の作製>
 下記に記載の組成物をミキシングタンクに投入し、常温で攪拌して、各成分を溶解し、ドープを調製した。
[Example 1]
<Dissolution process: preparation of dope composition>
The composition described below was put into a mixing tank and stirred at room temperature to dissolve each component to prepare a dope.
(ドープ組成)
重量平均分子量120万のPMMA樹脂       100質量部
メチレンクロライド                350質量部
メタノール                     77質量部
(Dope composition)
PMMA resin with a weight average molecular weight of 1,200,000 100 parts by mass Methylene chloride 350 parts by mass Methanol 77 parts by mass
 上記作製したドープ組成物は、ドープ固形分19%であり、粘度を測定したところ、30Pas・秒となった。 The produced dope composition had a dope solid content of 19%, and the viscosity was measured to be 30 Pas · sec.
<ドープ特性の測定およびドープの評価>
(複素粘度が30Pas・秒となるときのドープ固形分濃度の測定方法)
 上記にて調製したドープ組成物に用いた固形分濃度を10%から50%まで1%ずつ変更したドープ組成物を調製し、かつ溶媒を(A)メチレンクロライドと(C)メタノールの質量比率がA:C=82:18となるように調製した。このドープ組成物の22℃における複素粘度をそれぞれ上記複素粘度測定方法で測定し、30Pas・秒となるときのドープ固形分濃度を求めた。
<Measurement of dope characteristics and evaluation of dope>
(Measurement method of dope solid content concentration when complex viscosity is 30 Pas · sec)
A dope composition was prepared in which the solid content concentration used in the dope composition prepared above was changed by 1% from 10% to 50%, and the solvent had a mass ratio of (A) methylene chloride and (C) methanol. A: C = 82: 18. The complex viscosity at 22 ° C. of this dope composition was measured by the above-described complex viscosity measurement method, and the dope solid content concentration at 30 Pas · sec was obtained.
(濁り)
 上記で調製したドープ組成物の濁りは、試料溶液50mLをガラス製の100mLサンプル管に取り分け、目視評価した。
濁りなし:ガラス製サンプル管の向こう側が見え、明らかに透明である
濁りあり:白濁してサンプル管の向こうが見えない
の判断基準で評価した。
(Turbidity)
The turbidity of the dope composition prepared above was visually evaluated by separating 50 mL of the sample solution into a 100 mL glass sample tube.
No turbidity: Evaluation was made based on a judgment criterion that the other side of the glass sample tube was visible and the turbidity was clearly transparent: the turbidity was white and the other side of the sample tube was not visible.
(残留MeOH比率測定:ガスクロマトグラフィー揮発分測定)
 上記にて調製したドープ組成物を用いて、金属支持体から高分子フィルムを残留揮発分50%で剥ぎ取る際の残留MeOH量を、次に示す方法で測定した。
 剥ぎ取ったフィルム0.2gをクロロホルム20gに溶解し、ガスクロマトグラフィーにてフィルム中のメチレンクロライド濃度およびメタノール濃度を測定した。ガスクロマトグラフィーはGC-2014(株式会社島津製作所製)を用い、パックドカラム54を使用し、昇温条件は、気化室温度200℃、カラム昇温条件はスタート時160℃から昇温速度3℃/分で180℃まで昇温した。メタノールはリテンションタイム1.9分、メチレンクロライドはリテンションタイム5.5分で検出され、事前に規定濃度に調製したそれぞれの溶剤で検量線を作成しておき、濃度決定した。
 以上より得られたフィルム中の残留しているメチレンクロライド量およびメタノール量と、ドープ調製時の初期のメチレンクロライド量およびメタノール量から、残留メタノール比率を求めた。
(Residual MeOH ratio measurement: gas chromatography volatile content measurement)
Using the dope composition prepared above, the amount of residual MeOH when the polymer film was stripped from the metal support with a residual volatile content of 50% was measured by the following method.
0.2 g of the peeled film was dissolved in 20 g of chloroform, and the methylene chloride concentration and the methanol concentration in the film were measured by gas chromatography. GC-2014 (manufactured by Shimadzu Corporation) is used for gas chromatography, packed column 54 is used, the temperature rising condition is the vaporization chamber temperature 200 ° C., and the column temperature rising condition is 160 ° C. from the starting temperature to 3 ° C. The temperature was increased to 180 ° C./min. Methanol was detected at a retention time of 1.9 minutes, and methylene chloride was detected at a retention time of 5.5 minutes. A calibration curve was prepared with each solvent prepared to a specified concentration in advance, and the concentration was determined.
The residual methanol ratio was calculated | required from the amount of methylene chloride and methanol which remain | survived in the film obtained from the above, and the initial amount of methylene chloride and methanol at the time of dope preparation.
<光学フィルムの製膜>
(流延工程)
 図3に示したようなフィルム製造ラインを用い、前述の調製したドープを2000mm幅でステンレス製の金属支持体に流延ダイから均一に流延し、流延膜を形成した。
<Film formation of optical film>
(Casting process)
Using the film production line as shown in FIG. 3, the above prepared dope was uniformly cast from a casting die onto a stainless steel metal support having a width of 2000 mm to form a casting film.
(剥離工程)
 流延膜中の残留溶剤量(揮発分)が50質量%になった時点で金属支持体から剥離する際にMD方向に40%延伸し、テンターにてTD方向に40%延伸して、乾燥ゾーンにて140℃で乾燥を行った。
 以上の工程で厚み40μmの高分子フィルムを作製した。このようにして得られた高分子フィルムの単層膜を、実施例1の光学フィルムとした。
(Peeling process)
When the residual solvent amount (volatile content) in the cast film reaches 50% by mass, it is stretched by 40% in the MD direction when peeling from the metal support, and stretched by 40% in the TD direction by a tenter and dried. Drying was performed at 140 ° C. in the zone.
A polymer film having a thickness of 40 μm was produced through the above steps. The single-layer film of the polymer film thus obtained was used as the optical film of Example 1.
[光学フィルムの評価]
(ガラス転移温度)
 得られた光学フィルムのガラス転移温度は、光学フィルムから切り出したフィルム試料7mm×35mmを用いて、示差走査型熱量計(DSC)により昇温速度10℃/分で測定したときにサンプルフィルムのガラス転移に由来するベースラインが変化しはじめる温度と再びベースラインに戻る温度との平均値として求めた。
[Evaluation of optical film]
(Glass-transition temperature)
When the glass transition temperature of the obtained optical film was measured with a differential scanning calorimeter (DSC) using a film sample 7 mm × 35 mm cut out from the optical film at a heating rate of 10 ° C./min, the glass of the sample film It was determined as the average value of the temperature at which the baseline derived from the transition begins to change and the temperature at which the baseline returns again.
(平衡含水率)
 平衡含水率の測定法は、光学フィルムから切り出したフィルム試料7mm×35mmを水分測定器、試料乾燥装置“CA-03”及び“VA-05”{共に三菱化学(株)製}にてカールフィッシャー法で測定した。水分量(g)を試料質量(g)で除して算出した。
(Equilibrium moisture content)
The equilibrium moisture content is measured using a Karl Fischer using a 7 mm x 35 mm film sample cut from an optical film with a moisture meter, sample drying equipment “CA-03” and “VA-05” (both manufactured by Mitsubishi Chemical Corporation). Measured by the method. The water content (g) was calculated by dividing by the sample mass (g).
(フィルム面状)
 フィルム中の直径6cmの領域内で、ピッチが0.5~2.0cm、厚み高低差2.0~3.0μmの段状ムラの発生箇所(発生個数)を測定した。製膜したフィルムの長手方向1m、幅方向1mの領域から、50cm間隔で3箇所ずつ、合計9箇所を評価し、個数を平均した。
 厚み高低差は、直径6cmの領域内で、最大高低差(P-V値)として、FUJINON 縞解析装置(FX-03)により測定した。この時、入力する屈折率の値としては、アクリル樹脂の平均屈折率1.49を用いた。また、本装置の解像度は512×512である。
 フィルム面状は、得られた測定値に基づいて、以下の基準により評価した。本発明においては、AまたはBが許容水準であり、Aであることが好ましい。
A:最大高低差(P-V値)が2.0~3.0μmの段状ムラの発生なし。
B:最大高低差(P-V値)が2.0~3.0μmの段状ムラが1~3個発生。
C:最大高低差(P-V値)が2.0~3.0μmの段状ムラが4~15個発生。
D:最大高低差(P-V値)が2.0~3.0μmの段状ムラが16個以上発生。
(Film surface)
Within a 6 cm diameter region in the film, the occurrence location (number of occurrences) of stepped unevenness having a pitch of 0.5 to 2.0 cm and a thickness difference of 2.0 to 3.0 μm was measured. A total of nine places were evaluated from the areas of 1 m in the longitudinal direction and 1 m in the width direction of the formed film, with three places at 50 cm intervals, and the number was averaged.
The thickness height difference was measured with a FUJINON fringe analyzer (FX-03) as the maximum height difference (PV value) within an area of 6 cm in diameter. At this time, the average refractive index of 1.49 of acrylic resin was used as the value of the refractive index to be input. The resolution of this apparatus is 512 × 512.
The film surface condition was evaluated according to the following criteria based on the obtained measurement values. In the present invention, A or B is an acceptable level, and is preferably A.
A: No stepped unevenness having a maximum height difference (PV value) of 2.0 to 3.0 μm.
B: One to three stepped irregularities having a maximum height difference (PV value) of 2.0 to 3.0 μm occurred.
C: 4 to 15 stepped irregularities having a maximum height difference (PV value) of 2.0 to 3.0 μm occurred.
D: 16 or more stepped irregularities having a maximum height difference (PV value) of 2.0 to 3.0 μm occurred.
(実施例2~5、比較例1~2)
 ドープ組成物の組成として、それぞれ樹脂および固形分を表1に示すように変え、ドープの粘度が30Pas・秒となるようなドープ固形分濃度としたこと以外は、実施例1と同様にして各実施例および比較例の光学フィルムを作製し、同様の評価を行った。
(Examples 2-5, Comparative Examples 1-2)
As the composition of the dope composition, the resin and the solid content were changed as shown in Table 1, respectively, except that the dope solid content concentration was such that the viscosity of the dope was 30 Pas · sec. Optical films of Examples and Comparative Examples were produced and evaluated in the same manner.
(実施例6)
 アクリル樹脂100質量部に対して、下記の化合物1を紫外線吸収剤として2.7質量部追加した以外は、実施例1と同様にしてドープ組成物を調製し、光学フィルムを作製した。
化合物1
Figure JPOXMLDOC01-appb-C000001
(Example 6)
A dope composition was prepared in the same manner as in Example 1 except that 2.7 parts by mass of the following compound 1 was added as an ultraviolet absorber to 100 parts by mass of the acrylic resin, and an optical film was produced.
Compound 1
Figure JPOXMLDOC01-appb-C000001
(比較例3)
(ドープ組成)
重量平均分子量30万のPMMA樹脂        100質量部
メチレンクロライド                226質量部
メタノール                     31質量部
(Comparative Example 3)
(Dope composition)
PMMA resin having a weight average molecular weight of 300,000 100 parts by mass Methylene chloride 226 parts by mass Methanol 31 parts by mass
(比較例4)
(ドープ組成)
重量平均分子量30万のPMMA樹脂        100質量部
メチレンクロライド                116質量部
メタノール                    141質量部
(Comparative Example 4)
(Dope composition)
PMMA resin having a weight average molecular weight of 300,000 100 parts by mass Methylene chloride 116 parts by mass Methanol 141 parts by mass
 得られた結果を表1に示す。 The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、各実施例の光学フィルムは、初期メタノール比率を15%より大きくすることで、剥ぎ取り時の残留アルコール濃度も大きくなりやすく、いずれも剥離荷重が小さく、フィルム面状および透明性に優れるものであった。また、各実施例において、流延ダイから流延膜を吐出した時には、いずれもスジの発生が見られなかった。
 これに対して、アクリル樹脂の重量平均分子量が25万より小さい比較例1、2の光学フィルムは、表面に段状ムラが多く見られ、平面性に劣るものであった。
 また、メタノールの質量比率が15%を下回る比較例3では、高分子膜を剥離する際に大きな荷重を要し、高分子膜の一部が金属支持体に残存し、フィルム面状(段状ムラ)が悪かった。
 また、メタノールの質量比率が50%を超える比較例4では、溶解不十分でドープが濁っており、粘度は測定できなかった。フィルム作製を試みたが白化したフィルムとなり、フィルムが金属支持体上で一部はげ残り、剥離荷重も大きく、フィルム面状(段状ムラ)も白化して測定不能だった。
 なお、各実施例で用いたドープ組成物中において、上述のアクリル樹脂に対するセルロースエステルの含有量を、本明細書中に記載の方法で確認した。その結果、セルロースエステルは検出限界以下であり、セルロースエステルの含有量が上述のアクリル樹脂に対して0.5質量%未満であることが確認された。
As shown in Table 1, the optical film of each example has an initial methanol ratio of more than 15%, so that the residual alcohol concentration at the time of peeling tends to increase, both of which have a small peel load, It was excellent in transparency. In each example, no streak was observed when the casting film was discharged from the casting die.
On the other hand, the optical films of Comparative Examples 1 and 2 in which the weight average molecular weight of the acrylic resin was less than 250,000 had many stepped irregularities on the surface and were inferior in flatness.
Further, in Comparative Example 3 in which the mass ratio of methanol is less than 15%, a large load is required when the polymer film is peeled off, and a part of the polymer film remains on the metal support to form a film surface (stepped shape). (Mura) was bad.
In Comparative Example 4 in which the mass ratio of methanol exceeded 50%, the dope was cloudy due to insufficient dissolution, and the viscosity could not be measured. An attempt was made to produce a film, but the film became whitened. The film remained partially peeled on the metal support, the peeling load was large, and the film surface (step unevenness) was also whitened, making measurement impossible.
In addition, in the dope composition used in each Example, content of the cellulose ester with respect to the above-mentioned acrylic resin was confirmed by the method as described in this specification. As a result, the cellulose ester was below the detection limit, and it was confirmed that the content of the cellulose ester was less than 0.5% by mass with respect to the acrylic resin described above.
(比較例5)
 さらに、実施例1で用いた重量平均分子量120万のPMMA樹脂65質量部に、特開2013-120278号公報に準じてアセチル基置換度0.19、プロピオニル基置換度2.56のセルロースエステル35質量部とした以外は実施例1と同様にしてドープ組成物を作製したところ、セルロースエステルに由来した白化が認められ、光学フィルムを作製したが、フィルムに濁りが見られ、また平衡含水率が実施例1の光学フィルムでは1.5%に対して比較例5の光学フィルムは2.3%と高く、光学フィルムとして温度および湿度が環境変化に対する湿熱耐久性が不足したものであった。
(Comparative Example 5)
Furthermore, the cellulose ester 35 having an acetyl group substitution degree of 0.19 and a propionyl group substitution degree of 2.56 was added to 65 parts by mass of the PMMA resin having a weight average molecular weight of 1,200,000 used in Example 1 in accordance with JP2013-120278A. A dope composition was prepared in the same manner as in Example 1 except that the amount was in parts by mass. As a result, whitening derived from the cellulose ester was observed, and an optical film was produced. However, the film was turbid and the equilibrium moisture content was low. In the optical film of Example 1, the optical film of Comparative Example 5 was as high as 2.3% with respect to 1.5%, and as an optical film, the temperature and humidity were insufficient in wet heat durability against environmental changes.
<偏光板の作製>
 フジタックTD60UL(富士フイルム(株)製)を37℃に調温した4.5mol/Lの水酸化ナトリウム水溶液(けん化液)に1分間浸漬した後、フィルムを水洗し、その後、0.05mol/Lの硫酸水溶液に30秒浸漬した後、更に水洗浴を通した。そして、エアナイフによる水切りを3回繰り返し、水を落とした後に70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したタックフィルムを作製した。
 次に、特開2001-141926号公報の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸し、厚み20μmの偏光子を調製した。
 このようにして得た偏光子の片方の面に、前述の鹸化処理したタックフィルムをPVA((株)クラレ製、PVA-117H)3%水溶液を接着剤として貼りあわせ、偏光子のもう一方の面に、アクリル系接着剤を用いて、各実施例の光学フィルムにコロナ処理をしたものを、偏光子の吸収軸とタックフィルムおよび光学フィルムの長手方向とが平行となるようにロールツーロールで貼り合わせて偏光板を作製した。
 また、実施例6の紫外線吸収剤を含む光学フィルムを上記フジタックTD60ULの代わりに用い、偏光子の両面にアクリル系接着剤で実施例1の光学フィルムと貼り合わせた偏光板も作製した。
 各実施例の光学フィルムはいずれもポリビニルアルコールとの貼合性は十分であり、優れた偏光板加工適性を有していた。
<Preparation of polarizing plate>
After immersing Fujitac TD60UL (manufactured by FUJIFILM Corporation) in a 4.5 mol / L sodium hydroxide aqueous solution (saponification solution) adjusted to 37 ° C. for 1 minute, the film was washed with water, and then 0.05 mol / L. After being immersed in an aqueous sulfuric acid solution for 30 seconds, it was further passed through a washing bath. Then, draining with an air knife was repeated three times, and after dropping the water, it was retained in a drying zone at 70 ° C. for 15 seconds and dried to produce a saponified tack film.
Next, according to Example 1 of Japanese Patent Application Laid-Open No. 2001-141926, a circumferential speed difference was given between two pairs of nip rolls, and the film was stretched in the longitudinal direction to prepare a polarizer having a thickness of 20 μm.
On one side of the polarizer thus obtained, the above-mentioned saponified tack film was bonded with a 3% aqueous solution of PVA (manufactured by Kuraray Co., Ltd., PVA-117H) as an adhesive, and the other side of the polarizer was bonded. Using an acrylic adhesive on the surface, the optical film of each example was subjected to corona treatment by roll-to-roll so that the absorption axis of the polarizer and the longitudinal direction of the tack film and the optical film are parallel to each other. The polarizing plate was produced by bonding.
In addition, an optical film containing the ultraviolet absorber of Example 6 was used in place of the above-mentioned Fujitac TD60UL, and a polarizing plate was prepared by laminating the optical film of Example 1 with an acrylic adhesive on both sides of the polarizer.
All of the optical films of each Example had sufficient bonding properties with polyvinyl alcohol, and had excellent polarizing plate processing suitability.
(IPS型液晶表示装置における表示性能評価)
 市販の液晶テレビ(IPSモードのスリム型42型液晶テレビ)から、液晶セルを挟んでいる偏光板を剥がし取り、前述の作製した偏光板を、各実施例の光学フィルム側が液晶セル側に配置されるように、粘着剤を介して液晶セルに再貼合した。組みなおした液晶テレビを、50℃・相対湿度80%の環境で3日間保持した後に、25℃・相対湿度60%の環境に移し、黒表示状態で点灯させ続け、48時間後に目視観察して、光ムラを評価した。
 装置正面から観察した場合の黒表示時の輝度ムラを観察したところ、照度100lxの環境下でムラがほとんど視認されないことがわかった。
(Display performance evaluation in IPS liquid crystal display device)
The polarizing plate sandwiching the liquid crystal cell is peeled off from a commercially available liquid crystal television (IPS mode slim type 42-inch liquid crystal television), and the above-prepared polarizing plate is placed on the liquid crystal cell side on the optical film side of each example. As shown in the figure, it was re-bonded to the liquid crystal cell via an adhesive. The reassembled LCD TV was held in an environment of 50 ° C. and 80% relative humidity for 3 days, then moved to an environment of 25 ° C. and 60% relative humidity, kept on in a black display state, and visually observed after 48 hours. Light unevenness was evaluated.
When observing luminance unevenness during black display when observed from the front of the apparatus, it was found that the unevenness was hardly visually recognized in an environment with an illuminance of 100 lx.
1   重量平均分子量120万のアクリル樹脂を用いた系列
2   重量平均分子量30万のアクリル樹脂を用いた系列
3   重量平均分子量12万のアクリル樹脂を用いた系列
4   重量平均分子量10万のアクリル樹脂を用いた系列
20  フィルム製造ライン
21  ストックタンク
22  ドープ組成物
30  濾過装置
31  流延ダイ
32、33  回転ローラ
34  金属支持体
35  テンタ式乾燥機
40  耳切装置
41  乾燥室
42  冷却室
43  巻取室
60  モータ
61  攪拌機
63  熱媒体循環装置
64  流延室
65  温調設備
66  凝縮器(コンデンサ)
67  回収装置
68  減圧チャンバ
69  流延膜
70、71、72、73  送風口
74  高分子膜
80  渡り部
81  送風機
82  フィルム
90  クラッシャ
91  ローラ
92  吸着回収装置
93  強制除電装置(除電バー)
94  ナーリング付与ローラ
95  巻取ローラ
96  プレスローラ
1 Series using acrylic resin with a weight average molecular weight of 1,200,000 2 Series using acrylic resin with a weight average molecular weight of 300,000 Series 4 using acrylic resin with a weight average molecular weight of 120,000 Use acrylic resin with a weight average molecular weight of 100,000 Series 20 Film production line 21 Stock tank 22 Dope composition 30 Filtration device 31 Casting dies 32, 33 Rotating roller 34 Metal support 35 Tenter dryer 40 Ear-cut device 41 Drying chamber 42 Cooling chamber 43 Winding chamber 60 Motor 61 Stirrer 63 Heat medium circulation device 64 Casting chamber 65 Temperature control facility 66 Condenser
67 Recovery Device 68 Decompression Chamber 69 Casting Films 70, 71, 72, 73 Blowing Port 74 Polymer Film 80 Crossing Portion 81 Blower 82 Film 90 Crusher 91 Roller 92 Adsorption Recovery Device 93 Forced Static Removal Device (Static Removal Bar)
94 Knurling roller 95 Winding roller 96 Press roller

Claims (10)

  1.  重量平均分子量Mwが25万以上のアクリル樹脂と、AメチレンクロライドとB炭素数1~4のアルコールの質量比率A:Bが85:15~50:50である溶媒とを含有し、セルロースエステルの含有量が前記アクリル樹脂に対して0.5質量%未満であるドープ組成物。 An acrylic resin having a weight average molecular weight Mw of 250,000 or more and a solvent having a mass ratio A: B of 85:15 to 50:50 of A methylene chloride and B alcohol having 1 to 4 carbon atoms. The dope composition whose content is less than 0.5 mass% with respect to the said acrylic resin.
  2.  ドープ組成物に含まれる固形分を、AメチレンクロライドとCメタノールの質量比率がA:C=82:18である溶媒に混合して混合物を調製したとき、前記混合物の22℃における複素粘度が30Pas・秒となるときのドープ固形分濃度が30質量%以下である請求項1に記載のドープ組成物。 When the solid content contained in the dope composition was mixed with a solvent having a mass ratio of A methylene chloride and C methanol of A: C = 82: 18 to prepare a mixture, the complex viscosity at 22 ° C. of the mixture was 30 Pas. The dope composition according to claim 1, wherein the dope solid content concentration at 30 seconds is 30% by mass or less.
  3.  固形分濃度が10質量%以上、30質量%以下である請求項1または2に記載のドープ組成物。 The dope composition according to claim 1 or 2, wherein the solid content concentration is 10% by mass or more and 30% by mass or less.
  4.  前記アクリル樹脂の含有量が、固形分全量に対して70質量%以上である請求項1~3のいずれか1項に記載のドープ組成物。 The dope composition according to any one of claims 1 to 3, wherein the content of the acrylic resin is 70% by mass or more based on the total solid content.
  5.  前記アクリル樹脂以外の素材の固形分量が、固形分全量に対して2質量%以上であり、前記アクリル樹脂以外の素材の固形分の平衡含水率が前記アクリル樹脂の平衡含水率よりも小さい請求項1~4のいずれか1項に記載のドープ組成物。 The solid content of a material other than the acrylic resin is 2% by mass or more based on the total solid content, and the equilibrium moisture content of the solid content of the material other than the acrylic resin is smaller than the equilibrium moisture content of the acrylic resin. 5. The dope composition according to any one of 1 to 4.
  6.  請求項1~5のいずれか1項に記載のドープ組成物を製膜して得られた高分子フィルムを有する光学フィルム。 An optical film having a polymer film obtained by forming the dope composition according to any one of claims 1 to 5.
  7.  任意に設定した中心から直径6cmの領域内において、ピッチが0.5~2.0cm、厚み高低差2.0~3.0μmの段状ムラの発生箇所が10個より少ない請求項6に記載の光学フィルム。 The number of occurrences of stepped unevenness having a pitch of 0.5 to 2.0 cm and a thickness height difference of 2.0 to 3.0 μm within an area of 6 cm in diameter from an arbitrarily set center is less than 10. Optical film.
  8.  請求項1~5のいずれか1項に記載のドープ組成物を調製する溶解工程と、
     ドープ組成物を金属支持体上に流延して流延膜を形成する流延工程と、
     流延膜を乾燥して高分子膜を形成し、前記高分子膜を前記金属支持体から剥離して高分子フィルムを得る剥離工程とを有する光学フィルムの製造方法。
    A dissolving step of preparing the dope composition according to any one of claims 1 to 5;
    A casting step of casting a dope composition on a metal support to form a casting film;
    A method for producing an optical film, comprising: drying a cast film to form a polymer film; and peeling the polymer film from the metal support to obtain a polymer film.
  9.  請求項6または7に記載の光学フィルムを、偏光板保護フィルムとして少なくとも1枚有する偏光板。 A polarizing plate having at least one optical film according to claim 6 or 7 as a polarizing plate protective film.
  10.  請求項9に記載の偏光板を含む液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 9.
PCT/JP2015/051100 2014-01-22 2015-01-16 Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device WO2015111519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558826A JP6211103B2 (en) 2014-01-22 2015-01-16 Dope composition, optical film, method for producing optical film, polarizing plate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009191 2014-01-22
JP2014-009191 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111519A1 true WO2015111519A1 (en) 2015-07-30

Family

ID=53681323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051100 WO2015111519A1 (en) 2014-01-22 2015-01-16 Dope composition, optical film, method for manufacturing optical film, polarizing plate, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP6211103B2 (en)
WO (1) WO2015111519A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079490A (en) * 2016-12-30 2018-07-11 주식회사 효성 Ips lcd pannel
JP2019533203A (en) * 2016-09-27 2019-11-14 エルジー エムエムエー コープ.Lg Mma Corp. Dope solution for producing optical film and optical film using the same
WO2020027082A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film
WO2020175586A1 (en) * 2019-02-28 2020-09-03 コニカミノルタ株式会社 Optical film, polarizing plate, and method for manufacturing optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112028B1 (en) * 2018-02-06 2020-05-19 효성화학 주식회사 Acryl Film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236259A (en) * 2010-04-30 2011-11-24 Fujifilm Corp Optical film and method of manufacturing the optical film
JP2012093714A (en) * 2010-09-29 2012-05-17 Fujifilm Corp Optical film and manufacturing method thereof, polarizing plate and liquid-crystal display
JP2012215688A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Optical film, method for manufacturing the same, polarizing plate, and liquid crystal display device
JP2013035141A (en) * 2011-08-03 2013-02-21 Fujifilm Corp Peelable laminated film, peelable laminated film roll, method of manufacturing them, film, polarizing plate, method of manufacturing polarizing plate, and liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726625B2 (en) * 2011-05-10 2015-06-03 富士フイルム株式会社 Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
JP5872851B2 (en) * 2011-11-08 2016-03-01 富士フイルム株式会社 Peelable laminated film and manufacturing method thereof, polarizing plate and manufacturing method thereof, and liquid crystal display device
WO2013145560A1 (en) * 2012-03-26 2013-10-03 コニカミノルタ株式会社 Method for producing optical film, optical film, polarizing plate, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236259A (en) * 2010-04-30 2011-11-24 Fujifilm Corp Optical film and method of manufacturing the optical film
JP2012093714A (en) * 2010-09-29 2012-05-17 Fujifilm Corp Optical film and manufacturing method thereof, polarizing plate and liquid-crystal display
JP2012215688A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Optical film, method for manufacturing the same, polarizing plate, and liquid crystal display device
JP2013035141A (en) * 2011-08-03 2013-02-21 Fujifilm Corp Peelable laminated film, peelable laminated film roll, method of manufacturing them, film, polarizing plate, method of manufacturing polarizing plate, and liquid crystal display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533203A (en) * 2016-09-27 2019-11-14 エルジー エムエムエー コープ.Lg Mma Corp. Dope solution for producing optical film and optical film using the same
JP7175275B2 (en) 2016-09-27 2022-11-18 エルジー エムエムエー コープ. Dope solution for optical film production and optical film using the same
JP2022153396A (en) * 2016-09-27 2022-10-12 エルジー エムエムエー コープ. Dope solution for preparing optical film and optical film using the same
US11421060B2 (en) 2016-09-27 2022-08-23 Lg Mma Corp. Dope solution for preparing optical film and optical film using the same
KR20180079490A (en) * 2016-12-30 2018-07-11 주식회사 효성 Ips lcd pannel
JPWO2020027082A1 (en) * 2018-07-31 2021-08-26 コニカミノルタ株式会社 Optical film, polarizing plate protective film, roll body of optical film, and method for manufacturing optical film
CN112513698A (en) * 2018-07-31 2021-03-16 柯尼卡美能达株式会社 Optical film, polarizer protective film, roll of optical film, and method for producing optical film
WO2020027082A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, protective film for polarizing plates, optical film roll, and method for producing optical film
CN112513698B (en) * 2018-07-31 2023-08-15 柯尼卡美能达株式会社 Optical film, polarizing plate protective film, roll of optical film, and method for producing optical film
JP7452421B2 (en) 2018-07-31 2024-03-19 コニカミノルタ株式会社 Optical film, polarizing plate protective film, optical film roll, and optical film manufacturing method
JPWO2020175586A1 (en) * 2019-02-28 2020-09-03
WO2020175586A1 (en) * 2019-02-28 2020-09-03 コニカミノルタ株式会社 Optical film, polarizing plate, and method for manufacturing optical film
JP7314988B2 (en) 2019-02-28 2023-07-26 コニカミノルタ株式会社 Optical film, polarizing plate, method for producing optical film

Also Published As

Publication number Publication date
JP6211103B2 (en) 2017-10-11
JPWO2015111519A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6232072B2 (en) Polarizing plate protective film, dope composition, polarizing plate protective film manufacturing method, polarizing plate and liquid crystal display device
JP6140840B2 (en) Dope composition, polarizing plate protective film, method for producing polarizing plate protective film, polarizing plate and liquid crystal display device
JP6211103B2 (en) Dope composition, optical film, method for producing optical film, polarizing plate and liquid crystal display device
JP6200868B2 (en) Manufacturing method of optical film
US9715040B2 (en) Optical film and manufacturing method thereof, polarizing plate protective film, polarizing plate and liquid crystal display device
JP2014206725A (en) Polarizing plate and liquid crystal display device
JP6143369B2 (en) Resin composition, film, polarizing plate protective film, polarizing plate and liquid crystal display device, bis-type alicyclic cardophenol compound
JP5597438B2 (en) Optical film manufacturing method, optical film, polarizing plate, and image display device
US9676956B2 (en) (Meth)acrylic resin composition, film, polarizing plate protective film, polarizing plate, and liquid crystal display device
JP2014119539A (en) Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2016071264A (en) Optical film, polarizing plate protection film, polarizing plate, and liquid crystal display device
JP5481338B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
JP5980465B2 (en) Polarizing plate and liquid crystal display device using the same
JP2014081598A (en) Optical film and production method of the same, and polarizing plate
JP2014178485A (en) Polarizing plate and liquid crystal display device
JP5555117B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
WO2015147114A1 (en) (meth)acrylic resin composition, film, polarizing plate protective film, polarizing plate, and liquid crystal display device
JP2014098883A (en) Optical film and production method of the same, polarizing plate and liquid crystal display device
JP2014098893A (en) Optical film and production method of the same, polarizing plate and liquid crystal display device
JP2014119538A (en) Polarizing plate protective film, polarizing plate and liquid crystal display device
JP6142075B2 (en) (Meth) acrylic resin composition, film, polarizing plate protective film, polarizing plate and liquid crystal display device
JP6013870B2 (en) Optical film and method for manufacturing the same, polarizing plate, and liquid crystal display device
WO2022255076A1 (en) Base material film, optical multilayer body and method for producing same, and method for producing polarizing plate
JP2014167577A (en) Polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740841

Country of ref document: EP

Kind code of ref document: A1