WO2013145560A1 - Method for producing optical film, optical film, polarizing plate, and liquid crystal display device - Google Patents

Method for producing optical film, optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2013145560A1
WO2013145560A1 PCT/JP2013/001280 JP2013001280W WO2013145560A1 WO 2013145560 A1 WO2013145560 A1 WO 2013145560A1 JP 2013001280 W JP2013001280 W JP 2013001280W WO 2013145560 A1 WO2013145560 A1 WO 2013145560A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
cellulose ester
mass
dope
Prior art date
Application number
PCT/JP2013/001280
Other languages
French (fr)
Japanese (ja)
Inventor
西村 浩
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013145560A1 publication Critical patent/WO2013145560A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to an optical film manufacturing method, an optical film manufactured by the manufacturing method, a polarizing plate using the optical film, and a liquid crystal display device.
  • a polarizing plate uses a transparent protective film bonded to both sides of a polarizer by a so-called aqueous adhesive in which a polyvinyl alcohol-based material is dissolved in water, and the transparent protective film has high moisture permeability. From this point, cellulose ester resin is used.
  • a film containing a cellulose ester resin has a large dimensional change in a high temperature and high humidity environment
  • a film containing an acrylic resin having a low moisture permeability may be used as a transparent protective film.
  • a film containing an acrylic resin and a cellulose ester resin or a film containing diacetyl cellulose is manufactured by a solution casting film forming method. Is not described.
  • thermoplastic resin has a cause. It is difficult to peel the film from the support belt. In particular, when the film is peeled from the support belt at the time of start-up from the start of production to the steady operation, it becomes difficult to peel the film from the support belt due to the slow line speed. The film is easily broken.
  • the peelability is improved when the film is peeled off from the support belt even at the time of start-up.
  • contamination of the support belt during steady operation causes a haze when used in a polarizing plate, resulting in a problem that the panel contrast is lowered.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a low risk of film breakage at both the start-up and the steady operation from the start of production to the steady operation, and support.
  • An object of the present invention is to provide a method for producing an optical film which does not cause body belt contamination. Furthermore, it is providing the optical film produced by the said manufacturing method, a polarizing plate using the same, and a liquid crystal display device.
  • an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or the substitution degree of the acetyl group of the cellulose ester is
  • the water content is 2.0 to 5.0% by mass at the time of start-up from the start of production to steady operation.
  • the dope having a moisture content of 0.6 to 2.0% by mass is produced by a solution casting film forming method.
  • an object of the present invention is to provide a method for producing an optical film that has a low risk of film breakage and is less susceptible to substrate belt contamination. Furthermore, the optical film produced by the said manufacturing method, the polarizing plate using the same, Comprising: A polarizing plate and a liquid crystal display device with which generation
  • FIG. 1 is a schematic diagram showing a dope preparation step, a casting step, and a drying step of a solution casting film forming method.
  • the method for producing an optical film according to this embodiment includes an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or a substitution degree of acetyl groups of the cellulose ester of 2.0 to
  • the moisture content is 2.0 to 5.0% by mass at the start-up from the start of production to steady operation, and the moisture content is obtained during steady operation. It is produced by a solution casting film forming method using a dope having a rate of 0.6 to 2.0% by mass.
  • a dope preparation step for adjusting the dope composition a casting step for casting the dope composition on a support, and heating to remove a part of the solvent.
  • Solution casting film forming method including a solvent evaporation step, a peeling step for peeling from the support, a drying / stretching step for drying and stretching the peeled film, and a winding step for winding the dried / stretched film Is used.
  • FIG. 1 is a diagram schematically showing a dope preparation step, a casting step, and a drying step of a solution casting film forming method according to an embodiment of the present invention.
  • each symbol represents the following member. 1 Melting pot, 2, 5, 11, 14, 43 Liquid feed pump 3, 6, 12, 15, 44 Filter, 4, 13, 42 Stock tank, 8, 16 conduit, 10 UV absorber charging pot, 20 Merge tube, 21 mixer, 30 die, 31 metal support, 32 web, 33 peeling position, 34 tenter device, 35 roll drying device, 37 take-up roll, 41 fine particle charging pot.
  • Dope preparation step In the dope preparation step, an acrylic resin, a cellulose ester resin, a peeling aid and other additives are stirred in an organic solvent mainly composed of a good solvent for an acrylic resin and a cellulose ester resin. It is a process of dissolving.
  • the moisture content is 2.0 to 5.0 mass% at the start-up from the start of production to the steady operation, and the moisture content is 0.6 to 2.0 mass at the steady operation. Adjust to mass%.
  • the moisture content in the dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol.
  • the rate is calculated and the shortage is mixed with a solvent and then blended as a dope.
  • the line speed is slow at the time of start-up, if the moisture content is less than 2.0% by mass with respect to the total amount of the dope, the peelability of the web from the support belt becomes low, and the film after drying breaks. It becomes easy to do. Once the film breaks, it must be started up again, and productivity deteriorates.
  • the water content is greater than 5.0% by mass, the solubility of the acrylic resin and cellulose ester resin in the solvent is deteriorated, and it does not move to the belt side together with the water molecules to which the peeling aid molecules are attached during the drying process. Therefore, the support belt is easily soiled.
  • the peelability of the web from the support belt is lowered and the dried state is the same as in the start-up.
  • the film is easily broken.
  • the support belt is soiled after peeling.
  • the predetermined acrylic resin, cellulose ester resin, and other additives are adjusted by in-line addition, the moisture content in the resin and alcohol
  • the moisture content in the dope is calculated from the total moisture content in the dope, and the deficiency is adjusted by mixing in a solvent and then preparing as a dope.
  • the acrylic resin used in the present embodiment is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. .
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric anhydride, and these can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin used in the optical film of the present embodiment preferably has a weight average molecular weight (Mw) of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when producing the film.
  • Mw weight average molecular weight
  • the weight average molecular weight of a resin such as an acrylic resin according to this embodiment can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the production method of the acrylic resin in the present embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • a commercially available acrylic resin can also be used as the acrylic resin of the present embodiment.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • one or more acrylic resins may be used.
  • the weight average molecular weight of any acrylic resin is preferably about 80,000 to 1,000,000. By setting it as such molecular weight, coexistence of the heat resistance and brittleness of an optical film can be aimed at.
  • Cellulose ester resin Cellulose ester resin
  • cellulose acetate propionate satisfying the following formulas (1) and (2) is used as the cellulose ester resin contained in the optical film together with the acrylic resin.
  • the cellulose ester resin is preferably a cellulose ester that simultaneously satisfies the following formulas (1) ′ and (2) ′.
  • cellulose acetate propionate having 1.5 ⁇ X ⁇ 2.5 and 0 ⁇ Y ⁇ 0.9 is preferable.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • acyl group substitution degrees can be measured according to the method prescribed in ASTM-D817-96.
  • diacetyl cellulose having an acetyl group substitution degree of 2.0 to 2.5 is used.
  • diacetyl cellulose having a substitution degree of 2.1 to 2.3 is preferably used.
  • the total substitution degree is 2.5 or more, the mechanical strength of the film is increased, and when it is 2.0 or less, the solubility of the cellulose ester is improved or the generation of foreign matters is reduced.
  • the weight average molecular weight of the cellulose ester resin of the present embodiment is preferably 75000 or more, and may be about 1000000 as long as it is 75000 or more. However, in consideration of productivity, those of 75000 to 280000 are preferable, More preferred are 100,000 to 240,000.
  • the acrylic resin and the cellulose ester resin are contained in a compatible state.
  • the physical properties and quality required for the acrylic resin-containing film are achieved by supplementing each other by dissolving different resins.
  • Whether the acrylic resin and the cellulose ester resin are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer Co.) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer Co.) at a heating rate of 20 ° C./min.
  • Tmg point glass transition temperature
  • the total mass of the acrylic resin of this embodiment and the cellulose ester resin satisfying the above formulas (1) and (2), or the total mass of the cellulose ester resin in which the substitution degree of the acetyl group of the cellulose ester is 2.0 to 2.5 Is preferably 55% by mass or more, more preferably 60% by mass or more based on the total amount of the dope.
  • peeling aid In the dope adjusting step of the present embodiment, a peeling aid can be used as necessary, and an ionic surfactant is preferably used.
  • the reason why the ionic surfactant used in the present embodiment has a function as the peeling aid is as follows.
  • a dope is formed by casting a dope on the web (casting support).
  • the film may be called “web”).
  • acrylic resin has high polarity. Therefore, when a dope composition containing such an ionic surfactant is cast on a support belt and dried, a part of the ionic interface in the dope composition (web) on the support belt is obtained.
  • the activator molecules move to the surface on the side of the support belt together with the water molecules deposited by the polarity. As a result, the interaction between the ionic surfactant molecules unevenly distributed on the surface of the support belt and the surface of the support belt is reduced, and the peelability of the web can be improved.
  • the optical film of the present embodiment may contain resins and additives other than acrylic resin and cellulose ester resin within a range not impairing the effects of the present invention.
  • the dope composition in the method for producing an acrylic resin-containing film of the present embodiment preferably contains acrylic particles because the objective effect of the present invention is exhibited well and the pencil hardness is excellent.
  • the acrylic particles according to the present embodiment represent an acrylic component that exists in the state of particles (also referred to as an incompatible state) in the optical film containing the acrylic resin and the cellulose ester resin.
  • the acrylic particles used in the present embodiment are not particularly limited, but are preferably acrylic particles having a multilayer structure of two or more layers, and particularly preferably the following multilayer structure acrylic granular composite.
  • the multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery. It refers to a particulate acrylic polymer having a structure.
  • acrylic particles can also be used as the acrylic particles of this embodiment.
  • Staphyloid AC-3355 manufactured by Ganz Kasei Co., Ltd.
  • Delpet SRB215 manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the like can be mentioned.
  • the dope in such an amount that the content of acrylic particles is 0.05 to 45% by mass with respect to the total mass of the resin constituting the film.
  • a compound that can be added to a normal optical film such as an ultraviolet absorber, an antioxidant, an antistatic agent, and particles, can be used.
  • the organic solvent which forms the dope composition in the manufacturing method of the optical film of this embodiment is an organic solvent mainly having a good solvent for acrylic resin and cellulose ester resin.
  • methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms are preferably used. These simultaneously dissolve acrylic resin, cellulose ester resin, and other additives.
  • the solvent is preferably a mixed solvent having a ratio of methylene chloride to aliphatic alcohol (MA represented by the following formula (i)) of 15 to 30, and 20 to 25. If the MA is less than 15, the peel force increases and the drying property tends to be poor, and thus the productivity may be deteriorated. If the MA is greater than 30, the haze may be increased. is there.
  • MA methylene chloride to aliphatic alcohol
  • the drying efficiency is good in the evaporation step described later.
  • a large number of voids are formed at locations where the aliphatic alcohol to be evaporated was present in the film, and the film can be made thin. As a result, it can be set as the film excellent in adhesiveness with a polarizer.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol.
  • ethanol is most preferable from the viewpoints of the stability of the dope, the boiling point being relatively low, and good drying properties.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544 and JP-A-9-
  • Various dissolution methods can be used such as a method performed by a cooling dissolution method as described in JP-A-95557 or JP-A-9-95538, a method performed at high pressure as described in JP-A No. 11-21379,
  • a method of pressurizing at a temperature equal to or higher than the boiling point of the main solvent is preferable.
  • the total of three types of acrylic resin, cellulose ester resin and acrylic particles in the dope is preferably in the range of 15 to 45% by mass.
  • An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml it is preferable to use.
  • the aggregate remaining when the fine particles are dispersed and the aggregate generated when the main dope is added are only aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can be removed.
  • the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
  • the main dope may contain about 10 to 50% by mass of the recycled material. Since the return material contains acrylic particles, it is preferable to control the addition amount of the acrylic particle addition liquid in accordance with the addition amount of the return material.
  • the return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
  • those obtained by previously kneading and pelletizing acrylic resin and acrylic particles can be preferably used.
  • a liquid feed pump for example, a pressurized metering gear pump
  • the pressure die includes a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • the line speed at the start-up is 4 to 27 m / sec and the line speed at the steady operation is 40 to 60 m / sec. Within such a range, the effects of the present invention can be further enhanced.
  • the web on the support belt after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the residual solvent amount at the time of peeling of the web on the metal support belt at the time of peeling is peeled in a state of 20 to 50% by mass depending on the strength of drying conditions, the length of the metal support, etc. It is preferable that it is 40 mass%.
  • peeling when the residual solvent amount is more than 50% by mass, if the web is too soft, the flatness at the time of peeling tends to be impaired, and slippage and vertical stripes due to peeling tension tend to occur.
  • it peels at the time of less than 20 mass% there exists a possibility that the tear from an edge part may generate
  • the residual solvent concentration (%) of the web is defined by the following formula (ii).
  • the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension when peeling the metal support from the film is usually preferably 196 to 245 N / m. However, when wrinkles are likely to occur during peeling, peeling with a tension of 190 N / m or less is preferable. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a roll drying device 35 that transports the web alternately through a plurality of rolls arranged in the drying device, and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. Use to dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus 34 it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter.
  • the tenter process it is also preferable to intentionally create sections having different temperatures in order to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 150 ° C, more preferably 50 to 120 ° C, and most preferably 70 to 100 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C is most preferable.
  • Winding step This is a step of winding up the optical film by the winding roll 37 after the residual solvent amount in the web is 2% by mass or less, and the residual solvent amount is set to 0.4% by mass or less. A film having good stability can be obtained.
  • a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • optical film The optical film of this embodiment is manufactured by the said manufacturing method, and the substitution degree of the acetyl group of an acrylic resin and the cellulose ester resin which satisfy
  • the acrylic resin and the cellulose ester resin are mixed at a mass ratio of 95: 5 to 50:50. It is preferable to contain. In order to further enhance the effect of the present invention, an optical film containing the following acrylic resin and cellulose ester resin in a mass ratio of 80:20 to 60:40 is preferable.
  • the acrylic resin and the cellulose ester resin have a mass ratio of more than 95: 5, the brittleness improvement effect by the cellulose ester resin may not be sufficiently obtained.
  • the acrylic resin is less than 50:50, the high temperature and high humidity resistance may be insufficient.
  • the optical film of the present embodiment does not cause breakage such as breakage, that is, does not cause ductile breakage even when a large stress is applied to bend the film in two.
  • the ductile fracture in the present application is caused by a stress that is greater than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material before the final fracture.
  • the fracture surface is characterized by numerous indentations called dimples.
  • the thickness of the optical film according to this embodiment is preferably 10 to 30 ⁇ m, more preferably 20 to 30 ⁇ m. If the optical film is thicker than the above region, the polarizing plate after polarizing plate processing becomes too thick, so that it is not suitable for the purpose of thin and light in liquid crystal displays used for notebook personal computers and mobile electronic devices. On the other hand, if it is thinner than the above region, the moisture permeability of the film is increased, and the ability to protect the polarizer from humidity may be reduced, which is not preferable.
  • the optical film according to the present embodiment has a tension softening point of 105 to 95 in consideration of use in a high-temperature environment such as a projector having a high haze and a high temperature such as a projector or an in-vehicle display device.
  • the temperature is preferably 145 ° C., more preferably 110 to 140 ° C.
  • the optical film of the present embodiment preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • Tg glass transition temperature
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer Co.) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • the optical film of the present embodiment preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the optical film of the present embodiment preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the optical film of the present embodiment preferably has a haze value (turbidity) of 1.0% or less, which is one of the indices indicating transparency, from the viewpoint of luminance and contrast when incorporated in a liquid crystal display device. More preferably, it is 0.5% or less.
  • the particle size and addition amount of acrylic particles may be suppressed within the above range, or the surface roughness of the film contact portion during film formation may be reduced. It is valid.
  • the total light transmittance and haze value of the optical film are values measured according to JIS-K7361-1-1997 and JIS-K7136-2000.
  • the optical film of the present embodiment can be preferably used as an optical film for optics as long as it satisfies the physical properties as described above, but by making the following composition, a film excellent in workability and heat resistance can be obtained. Obtainable.
  • the polarizing plate can be produced by a general method.
  • the back side of the optical film according to the present embodiment is subjected to alkali saponification treatment, and the treated optical film is immersed and stretched in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution on at least one surface. It is preferable to bond them together.
  • the optical film may be used on the other surface, or another polarizing plate protective film may be used.
  • the polarizing plate protective film used on the other surface has an in-plane retardation Ro of 590 nm, an optical compensation film having a phase difference of 20 to 70 nm and Rt of 70 to 400 nm ( It is preferable to use a retardation film.
  • a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal.
  • the optically anisotropic layer can be formed by the method described in JP2003-98348A.
  • a non-oriented film having a retardation Ro of 590 nm and 0 to 5 nm and an Rt of ⁇ 20 to +20 nm described in JP-A-2003-12859 is also preferably used.
  • a polarizing plate having excellent planarity and a stable viewing angle expansion effect can be obtained.
  • KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR-1, -2, KC8UE, KC4UE (manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizing film which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction.
  • a typical polarizing film currently known is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film.
  • As the polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxial stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a thickness of 5 to 30 ⁇ m, preferably 8 to 15 ⁇ m is preferably used.
  • one surface of the optical film according to this embodiment is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • Image display device By incorporating a polarizing plate produced using the optical film according to the present embodiment into a display device, various image display devices having excellent visibility can be produced.
  • the optical film according to this embodiment is incorporated in the polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type.
  • the optical film according to the present embodiment is also preferably used for various image display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper.
  • an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or the substitution degree of the acetyl group of the cellulose ester is 2.
  • the water content is 2.0 to 5.0% by mass at the start-up from the start of production to the steady operation, and at the steady operation Is characterized in that it is produced by a solution casting film forming method using a dope having a water content of 0.6 to 2.0 mass%.
  • a mass ratio of the acrylic resin to the cellulose ester resin is 80:20 to 60:40. According to such a configuration, the effect of the present invention can be further enhanced.
  • the line speed at the start-up is 4 to 27 m / sec and the line speed at the steady operation is 40 to 60 m / sec. According to such a configuration, the effect of the present invention can be further enhanced.
  • an optical film according to another aspect of the present invention is manufactured using the method for manufacturing an optical film.
  • an optical film having a high antistatic property that can be used for an optical film such as a protective film for a polarizing plate used in the liquid crystal display device.
  • the film thickness of the optical film is preferably 10 to 30 ⁇ m. According to such a configuration, an optical film excellent in adhesion with a polarizer or the like can be obtained.
  • the polarizing plate according to a further aspect of the present invention is characterized in that the optical film is used on at least one surface. According to such a configuration, since the above-described optical film having high antistatic property is used as the protective film for polarizing plate used in the liquid crystal display device, it is suitable for enlargement of the screen.
  • a liquid crystal display device is characterized by using the optical film or the polarizing plate. According to such a structure, since the said polarizing plate is used for the polarizing plate used for the said liquid crystal display device, it is suitable for the enlargement of a screen.
  • the moisture content in the dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol so that the moisture content at start-up is 1.5% by mass with respect to the total amount of the dope. It adjusted by preparing as a dope after mixing with a solvent.
  • the composition of the K1 dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol, and the moisture content in the dope is calculated.
  • the moisture content during steady operation was adjusted to 0.8 mass% with respect to the total amount of dope by changing to the composition amount of the dope for handling.
  • the produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a support belt casting apparatus.
  • the solvent was evaporated until the residual solvent concentration (residual solvent amount) was 35% by mass, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m.
  • the time required from casting to peeling was 150 seconds at the start-up and 90 seconds at the steady operation.
  • the line speed was 27 m / sec at startup and 40 m / sec during steady operation.
  • the peeled acrylic resin-containing web was evaporated at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter. At this time, the residual solvent concentration when starting stretching with a tenter was 10% by mass.
  • polarizing plate H1 A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
  • a polarizer, the optical film K1, and Konica Minolta Tack KC4UY were bonded to the back side to prepare a polarizing plate H1.
  • Step 1 Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain an optical film saponified on the side to be bonded to the polarizer.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped off and placed on the optical film treated in Step 1.
  • Step 4 The optical film, the polarizer, and the back side optical film laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer, the optical film, and Konica Minolta Tack KC4UY prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes, and a polarizing plate H1 corresponding to the optical film was prepared. .
  • the moisture content in the dope is calculated from the sum of the moisture content in the resin and the alcohol in the alcohol as shown in Table 1 for the moisture content at startup and steady operation.
  • the optical films K2 to 9 are adjusted in the same manner as the optical film K1 except that the line speed during start-up and steady operation is adjusted as shown in Table 1 except that the line speed is adjusted as shown in Table 1. Was made.
  • polarizing plates H2 to 9 corresponding to the optical films K2 to 9 were produced.
  • the optical films K2 to K9 and the polarizing plates H2 to H9 were set as Examples 2 to 6 and Comparative Examples 1 to 3, respectively.
  • the peelability evaluation of the optical films K1 to K9 and the belt dirt evaluation were performed using the following evaluation criteria.
  • Fracture probability is less than 10%.
  • 4 The fracture probability is 10% or more and less than 30%.
  • 3 The fracture probability is 30% or more and less than 50%.
  • 2 The fracture probability is 50% or more and less than 70%.
  • 1 Breaking probability is 70% or more.
  • the antistatic property and haze of the polarizing plates H1 to H9 were evaluated using the following evaluation criteria.
  • the measurement was performed according to JIS K-7136 using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the moisture content at the start-up is 2.0 to 5.0 mass% with respect to the total amount of dope, and the moisture content at the steady operation is 0.6 to 2.2.
  • the optical films K1 to 6 obtained by the production methods of Examples 1 to 6 adjusted to 0% by mass have a low risk of breaking both at the time of start-up and at the time of steady operation. Dirt also became difficult to adhere. Further, in the polarizing plates H1 to 6 using the optical films K1 to 6, the generation of haze was sufficiently suppressed.
  • the optical film K7 in Comparative Example 1 manufactured with a dope having a moisture content at startup of less than 2.0% by mass resulted in a high risk of breakage.
  • the optical film K8 in Comparative Example 2 manufactured with a dope having a water content of more than 5.0% by mass at the time of start-up is considered to have diffused water molecules to the support belt side, and thus the support belt becomes dirty.
  • the polarizing plate H8 using K8 had haze.
  • the optical film K9 in Comparative Example 3 using a dope in which the water content at startup and the water content during steady operation were both adjusted to 3.0% by mass was inferior to support belt contamination. Furthermore, when the polarizing plate H9 using the acrylic resin K9 was used as a polarizing plate, haze was generated.
  • the present invention has wide industrial applicability in the technical field of optical films and manufacturing methods thereof.

Abstract

The present invention relates to a method for producing an optical film that comprises an acrylic resin and a cellulose ester resin fulfilling the equations 2.3 ≤ X+Y ≤ 2.6 and 1.4 ≤ X ≤ 2.6 or an optical film that comprises a cellulose ester resin in which the degree of substitution of an acetyl group in a cellulose ester moiety is 2.0 to 2.5, said method being characterized in that the production is carried out by a solvent-casting film formation process using a dope that has a water content of 2.0 to 5.0 mass% during a period from the initiation of the production to a rising time at which a steady operation is initiated and has a water content of 0.6 to 2.0 mass% during a period in which the steady operation is carried out.

Description

光学フィルムの製造方法及び光学フィルム、偏光板、液晶表示装置Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
 本発明は、光学フィルムの製造方法、前記製造方法によって製造された光学フィルム、及びそれを用いた偏光板、液晶表示装置に関する。 The present invention relates to an optical film manufacturing method, an optical film manufactured by the manufacturing method, a polarizing plate using the optical film, and a liquid crystal display device.
 近年、液晶テレビ、ノートパソコン、カーナビゲーション、携帯電話等の液晶表示装置を搭載した情報機器の薄型、軽量化に関する開発がますます進んでいる。それに伴い、液晶表示装置に用いられる偏光板用保護フィルムに対してもますます薄膜化の要求が強くなっている。 In recent years, the development of thinner and lighter information devices equipped with liquid crystal display devices such as LCD TVs, notebook computers, car navigation systems, and mobile phones has been increasingly advanced. Along with this, there is an increasing demand for thinner protective films for polarizing plates used in liquid crystal display devices.
 一般に偏光板は、偏光子の両面に透明保護フィルムを、ポリビニルアルコール系の材料を水に溶かしたいわゆる水系接着剤により貼り合わせたものが用いられており、透明保護フィルムとしては、透湿度が高いという点からセルロースエステル樹脂が用いられる。 In general, a polarizing plate uses a transparent protective film bonded to both sides of a polarizer by a so-called aqueous adhesive in which a polyvinyl alcohol-based material is dissolved in water, and the transparent protective film has high moisture permeability. From this point, cellulose ester resin is used.
 しかし、セルロースエステル樹脂を含有するフィルムは高温高湿度の環境下において寸法変化が大きいことから、透明保護フィルムとして透湿度の低いアクリル樹脂を含有させたフィルムが用いられることがある。 However, since a film containing a cellulose ester resin has a large dimensional change in a high temperature and high humidity environment, a film containing an acrylic resin having a low moisture permeability may be used as a transparent protective film.
 アクリル樹脂とセルロースエステル樹脂とを含有するフィルムを溶融流延製膜法により製膜する場合、冷却ロールの温度が高温であるとアクリル樹脂の有する熱可塑性が原因となって、剥離時においてフィルムの貼り付きや変形が生じてしまう。特許文献1には、低分子量の析出剤を添加することにより、溶融流塩製膜法において用いられる冷却ロールの表面温度を比較的高い温度に設定することができ、剥離時のフィルムの平面性不良を防止する技術が記載されている。 When a film containing an acrylic resin and a cellulose ester resin is formed by the melt casting film forming method, if the temperature of the cooling roll is high, the acrylic resin has a thermoplasticity, and the film is peeled off at the time of peeling. Sticking and deformation will occur. In Patent Document 1, by adding a low molecular weight precipitant, the surface temperature of the cooling roll used in the melt flow salt film forming method can be set to a relatively high temperature, and the flatness of the film at the time of peeling. A technique for preventing defects is described.
 しかしながら、前記技術は溶融流延製膜法による製造方法によるものであるため、アクリル樹脂とセルロースエステル樹脂とを含有するフィルム、又はジアセチルセルロースを含有するフィルムを溶液流延製膜法によって製造する場合については記載されていない。 However, since the technique is based on a manufacturing method using a melt casting film forming method, a film containing an acrylic resin and a cellulose ester resin or a film containing diacetyl cellulose is manufactured by a solution casting film forming method. Is not described.
 ところが、アクリル樹脂とセルロースエステル樹脂とを含有するドープ、又はジアセチルセルロースを含有するドープを用いて溶液流延製膜法によりフィルムを製造した場合においても、アクリル樹脂の有する熱可塑性が原因となって支持体ベルトからフィルムを剥離することが困難である。特に、製造開始時から定常運転時に至るまでの立ち上げ時において支持体ベルトから前記フィルムを剥離すると、そのラインスピードの遅さが原因となって支持体ベルトからフィルムを剥離することが困難となり、フィルムが破断しやすくなる。 However, even when a film is produced by a solution casting film forming method using a dope containing an acrylic resin and a cellulose ester resin or a dope containing diacetyl cellulose, the thermoplastic resin has a cause. It is difficult to peel the film from the support belt. In particular, when the film is peeled from the support belt at the time of start-up from the start of production to the steady operation, it becomes difficult to peel the film from the support belt due to the slow line speed. The film is easily broken.
 そこでドープの含水率を高くすると、前記立ち上げ時においても支持体ベルトからフィルムを剥離する際にその剥離性が向上する。しかしながら、ドープの含水率を高くすると、定常運転時における支持体ベルトの汚れが原因となり、偏光板に用いた際にヘイズが生じてしまい、パネルのコントラストが低下するといった問題も生じていた。 Therefore, when the moisture content of the dope is increased, the peelability is improved when the film is peeled off from the support belt even at the time of start-up. However, when the moisture content of the dope is increased, contamination of the support belt during steady operation causes a haze when used in a polarizing plate, resulting in a problem that the panel contrast is lowered.
特開2011-68005号公報JP 2011-68005 A
 本発明はかかる事情に鑑みてなされたものであって、その目的は、製造開始時から定常運転時に至るまでの立ち上げ時や定常運転時のいずれにおいてもフィルムの破断危険度が低く、かつ支持体ベルト汚れの発生しない光学フィルムの製造方法を提供することにある。さらに前記製造方法によって作製された光学フィルム、それを用いた偏光板、液晶表示装置を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to provide a low risk of film breakage at both the start-up and the steady operation from the start of production to the steady operation, and support. An object of the present invention is to provide a method for producing an optical film which does not cause body belt contamination. Furthermore, it is providing the optical film produced by the said manufacturing method, a polarizing plate using the same, and a liquid crystal display device.
 前記目的を達成するために本発明者が鋭意検討を行った結果、下記構成によって、支持体ベルトからの剥離性が高く、かつ支持体ベルト汚れが発生しない光学フィルムの製造方法を得られることを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventors to achieve the above object, it is possible to obtain a method for producing an optical film that has high peelability from the support belt and does not cause stain on the support belt by the following configuration. The headline and the present invention were completed.
 すなわち、本発明の一局面にかかる光学フィルムの製造方法は、アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂とを含有する光学フィルム、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂を含有する光学フィルムの製造方法において、製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%であり、定常運転時は含水率が0.6~2.0質量%であるドープを用いて溶液流延製膜法により製造することを特徴とする。 That is, in the method for producing an optical film according to one aspect of the present invention, an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or the substitution degree of the acetyl group of the cellulose ester is In the method for producing an optical film containing a cellulose ester resin of 2.0 to 2.5, the water content is 2.0 to 5.0% by mass at the time of start-up from the start of production to steady operation. During operation, the dope having a moisture content of 0.6 to 2.0% by mass is produced by a solution casting film forming method.
 式(1) 2.3≦X+Y≦2.6
 式(2) 1.4≦X≦2.6
 (上記式中、Xはセルロースエステルのアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度を表す。)
Formula (1) 2.3 <= X + Y <= 2.6
Formula (2) 1.4 ≦ X ≦ 2.6
(In the above formula, X represents the degree of substitution of the acetyl group of the cellulose ester, and Y represents the degree of substitution of the propionyl group or butyryl group.)
 本発明によれば、フィルムの破断危険度が低く、かつ支持体ベルト汚れが発生しにくい光学フィルムの製造方法を提供することにある。さらに前記製造方法によって作製された光学フィルム、それを用いた偏光板であって、ヘイズの発生が生じにくい偏光板、液晶表示装置を提供することができる。 According to the present invention, an object of the present invention is to provide a method for producing an optical film that has a low risk of film breakage and is less susceptible to substrate belt contamination. Furthermore, the optical film produced by the said manufacturing method, the polarizing plate using the same, Comprising: A polarizing plate and a liquid crystal display device with which generation | occurrence | production of haze hardly arises can be provided.
図1は、溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程を示す模式図である。FIG. 1 is a schematic diagram showing a dope preparation step, a casting step, and a drying step of a solution casting film forming method.
 以下、本発明に係る実施形態について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 〔光学フィルムの製造方法〕
 本実施形態に係る光学フィルムの製造方法は、アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂とを含有する光学フィルム、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂を含有する光学フィルムの製造方法において、製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%であり、定常運転時は含水率が0.6~2.0質量%であるドープを用いて溶液流延製膜法により製造することを特徴とする。
[Method for producing optical film]
The method for producing an optical film according to this embodiment includes an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or a substitution degree of acetyl groups of the cellulose ester of 2.0 to In the method for producing an optical film containing a cellulose ester resin of 2.5, the moisture content is 2.0 to 5.0% by mass at the start-up from the start of production to steady operation, and the moisture content is obtained during steady operation. It is produced by a solution casting film forming method using a dope having a rate of 0.6 to 2.0% by mass.
 式(1) 2.3≦X+Y≦2.6
 式(2) 1.4≦X≦2.6
 (上記式中、Xはセルロースエステルのアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度を表す。)
Formula (1) 2.3 <= X + Y <= 2.6
Formula (2) 1.4 ≦ X ≦ 2.6
(In the above formula, X represents the degree of substitution of the acetyl group of the cellulose ester, and Y represents the degree of substitution of the propionyl group or butyryl group.)
 本実施形態における、光学フィルムの製造方法では、ドープ組成物を調整するドープ調製工程と、前記ドープ組成物を支持体上に流延する流延工程と、加熱して溶剤の一部を除去する溶媒蒸発工程と、支持体から剥離する剥離工程と、剥離したフィルムを乾燥して延伸する乾燥・延伸工程と、乾燥・延伸後のフィルムを巻き取る巻取り工程とを含む溶液流延製膜法が用いられる。 In the method for producing an optical film in the present embodiment, a dope preparation step for adjusting the dope composition, a casting step for casting the dope composition on a support, and heating to remove a part of the solvent. Solution casting film forming method including a solvent evaporation step, a peeling step for peeling from the support, a drying / stretching step for drying and stretching the peeled film, and a winding step for winding the dried / stretched film Is used.
 図1は、本発明の一実施形態に係る溶液流延製膜方法のドープ調製工程、流延工程及び乾燥工程を模式的に示した図である。 FIG. 1 is a diagram schematically showing a dope preparation step, a casting step, and a drying step of a solution casting film forming method according to an embodiment of the present invention.
 図1中、各符号は以下の部材を表す。1 溶解釜、2、5、11、14、43 送液ポンプ、3、6、12、15、44 濾過器、4、13、42 ストックタンク、8、16 導管、10 紫外線吸収剤仕込釜、20 合流管、21 混合機、30 ダイ、31 金属支持体、32 ウェブ、33 剥離位置、34 テンター装置、35 ロール乾燥装置、37 巻き取りロール、41 微粒子仕込釜。 In FIG. 1, each symbol represents the following member. 1 Melting pot, 2, 5, 11, 14, 43 Liquid feed pump 3, 6, 12, 15, 44 Filter, 4, 13, 42 Stock tank, 8, 16 conduit, 10 UV absorber charging pot, 20 Merge tube, 21 mixer, 30 die, 31 metal support, 32 web, 33 peeling position, 34 tenter device, 35 roll drying device, 37 take-up roll, 41 fine particle charging pot.
 以下、本実施形態における溶液流延製膜法の各工程について説明する。 Hereinafter, each step of the solution casting film forming method in the present embodiment will be described.
 (1)ドープ調製工程
 ドープ調製工程は、アクリル樹脂やセルロースエステル樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中でアクリル樹脂、セルロースエステル樹脂、剥離助剤及びその他の添加剤を攪拌しながら溶解する工程である。
(1) Dope preparation step In the dope preparation step, an acrylic resin, a cellulose ester resin, a peeling aid and other additives are stirred in an organic solvent mainly composed of a good solvent for an acrylic resin and a cellulose ester resin. It is a process of dissolving.
 まず、ドープの含水率の調整について説明する。 First, the adjustment of the moisture content of the dope will be described.
 (含水率)
 また、本実施形態のドープ調製工程では、製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%、定常運転時は含水率が0.6~2.0質量%となるように調整する。
(Moisture content)
Further, in the dope preparation process of the present embodiment, the moisture content is 2.0 to 5.0 mass% at the start-up from the start of production to the steady operation, and the moisture content is 0.6 to 2.0 mass at the steady operation. Adjust to mass%.
 前記立ち上げ時の含水率をドープ全量に対して0.6~2.0質量%の範囲内にする方法としては、樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合した後にドープとして調合する方法などがある。 As a method of setting the moisture content at the time of start-up within the range of 0.6 to 2.0% by mass with respect to the total amount of the dope, the moisture content in the dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol. There is a method in which the rate is calculated and the shortage is mixed with a solvent and then blended as a dope.
 前記立ち上げ時は、そのラインスピードが遅いことから、含水率がドープ全量に対して2.0質量%より小さいと、ウェブの支持体ベルトからの剥離性が低くなり、乾燥後のフィルムが破断しやすくなる。いったん、フィルムが破断してしまうと、再び立ち上げをおこなわなければならず、生産性が悪化してしまう。また、前記含水率が5.0質量%より大きいと、アクリル樹脂、セルロースエステル樹脂の溶媒に対する溶解性が悪くなり、乾燥工程時に剥離助剤分子が被着した水分子とともにベルト側へ移動しないことから支持体ベルト汚れが生じやすくなる。 Since the line speed is slow at the time of start-up, if the moisture content is less than 2.0% by mass with respect to the total amount of the dope, the peelability of the web from the support belt becomes low, and the film after drying breaks. It becomes easy to do. Once the film breaks, it must be started up again, and productivity deteriorates. In addition, if the water content is greater than 5.0% by mass, the solubility of the acrylic resin and cellulose ester resin in the solvent is deteriorated, and it does not move to the belt side together with the water molecules to which the peeling aid molecules are attached during the drying process. Therefore, the support belt is easily soiled.
 また、定常運転時においては、含水率がドープ全量に対して0.6質量%より小さいと、立ち上げ時における場合と同様に、ウェブの支持体ベルトからの剥離性が低くなるとともに乾燥後のフィルムが破断しやすくなる。また、前記含水率が2.0質量%より多いと、剥離後に支持体ベルトに汚れが生じてしまう。 Further, in the steady operation, when the moisture content is less than 0.6% by mass with respect to the total amount of the dope, the peelability of the web from the support belt is lowered and the dried state is the same as in the start-up. The film is easily broken. On the other hand, if the water content is higher than 2.0% by mass, the support belt is soiled after peeling.
 前記立ち上げ時から定常運転時においてドープの含水率を下げる手段としては、前記所定のアクリル樹脂、セルロースエステル樹脂、その他の添加剤をインライン添加することで調整すること、樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合したのちドープとして調合することにより調整する等が挙げられる。 As means for lowering the moisture content of the dope from the start-up to the steady operation, the predetermined acrylic resin, cellulose ester resin, and other additives are adjusted by in-line addition, the moisture content in the resin and alcohol The moisture content in the dope is calculated from the total moisture content in the dope, and the deficiency is adjusted by mixing in a solvent and then preparing as a dope.
 続いて、ドープ調整工程において添加される各成分について説明する。 Subsequently, each component added in the dope adjusting step will be described.
 (アクリル樹脂)
 本実施形態に用いられるアクリル樹脂は特に制限されるものではないが、メチルメタクリレート単位50~99質量%、およびこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
(acrylic resin)
The acrylic resin used in the present embodiment is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. .
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric anhydride, and these can be used alone or in combination of two or more.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
 本実施形態の光学フィルムに用いられるアクリル樹脂は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が80000~1000000であることが好ましい。 The acrylic resin used in the optical film of the present embodiment preferably has a weight average molecular weight (Mw) of 80,000 to 1,000,000 from the viewpoint of mechanical strength as a film and fluidity when producing the film.
 本実施形態に係るアクリル樹脂等の樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。 The weight average molecular weight of a resin such as an acrylic resin according to this embodiment can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒:塩化メチレン
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した。)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:RI Model 504(GLサイエンス株式会社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (3 used by Showa Denko KK were connected)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 本実施形態におけるアクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The production method of the acrylic resin in the present embodiment is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. Furthermore, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 本実施形態のアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 A commercially available acrylic resin can also be used as the acrylic resin of the present embodiment. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 本実施形態においては、アクリル樹脂は1種以上使用してもよいが、この場合、いずれのアクリル樹脂の重量平均分子量も80000~1000000程度であることが好ましい。このような分子量とすることで、光学フィルムの耐熱性と脆性の両立を図ることができる。 In the present embodiment, one or more acrylic resins may be used. In this case, the weight average molecular weight of any acrylic resin is preferably about 80,000 to 1,000,000. By setting it as such molecular weight, coexistence of the heat resistance and brittleness of an optical film can be aimed at.
 (セルロースエステル樹脂)
 本実施形態において、アクリル樹脂とともに光学フィルムに含有されるセルロースエステル樹脂は、下記式(1)及び(2)を満たすセルロースアセテートプロピオネートが用いられる。
(Cellulose ester resin)
In this embodiment, cellulose acetate propionate satisfying the following formulas (1) and (2) is used as the cellulose ester resin contained in the optical film together with the acrylic resin.
 式(1) 2.3≦X+Y≦2.6
 式(2) 1.4≦X≦2.6
 (上記式中、Xはセルロースエステルのアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度を表す。)
Formula (1) 2.3 <= X + Y <= 2.6
Formula (2) 1.4 ≦ X ≦ 2.6
(In the above formula, X represents the degree of substitution of the acetyl group of the cellulose ester, and Y represents the degree of substitution of the propionyl group or butyryl group.)
 前記セルロースエステル樹脂は好ましくは、下記式(1)’及び(2)’を同時に満たすセルロースエステルであることが好ましい。 The cellulose ester resin is preferably a cellulose ester that simultaneously satisfies the following formulas (1) ′ and (2) ′.
 式(1)’ 2.4≦X+Y≦2.5
 式(2)’ 1.5≦X≦2.5
Formula (1) ′ 2.4 ≦ X + Y ≦ 2.5
Formula (2) ′ 1.5 ≦ X ≦ 2.5
 中でも1.5≦X≦2.5、0≦Y≦0.9のセルロースアセテートプロピオネートが好ましい。アシル基で置換されていない部分は、通常水酸基として存在しているものである。これらは公知の方法で合成することができる。 Among them, cellulose acetate propionate having 1.5 ≦ X ≦ 2.5 and 0 ≦ Y ≦ 0.9 is preferable. The portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
 これらのアシル基置換度は、ASTM-D817-96に規定の方法に準じて測定することができる。 These acyl group substitution degrees can be measured according to the method prescribed in ASTM-D817-96.
 また、前記セルロースエステル樹脂を用いない場合、アセチル基の置換度が2.0~2.5であるジアセチルセルロースが用いられる。特に、前記置換度が2.1~2.3のジアセチルセルロースが好ましく用いられる。総置換度が2.5以上になるとフィルムの機械強度が増加し、2.0以下になるとセルロースエステルの溶解性が向上したり、異物の発生が低減されたりするため、より好ましい。 Further, when the cellulose ester resin is not used, diacetyl cellulose having an acetyl group substitution degree of 2.0 to 2.5 is used. In particular, diacetyl cellulose having a substitution degree of 2.1 to 2.3 is preferably used. When the total substitution degree is 2.5 or more, the mechanical strength of the film is increased, and when it is 2.0 or less, the solubility of the cellulose ester is improved or the generation of foreign matters is reduced.
 本実施形態のセルロースエステル樹脂の重量平均分子量は、75000以上であることが好ましく、75000以上であれば1000000程度のものであってもよいが、生産性を考慮すると75000~280000のものが好ましく、100000~240000のものが更に好ましい。 The weight average molecular weight of the cellulose ester resin of the present embodiment is preferably 75000 or more, and may be about 1000000 as long as it is 75000 or more. However, in consideration of productivity, those of 75000 to 280000 are preferable, More preferred are 100,000 to 240,000.
 本実施形態のアクリル樹脂含有フィルムにおいては、前記アクリル樹脂と前記セルロースエステル樹脂が相溶状態で含有されていることが好ましい。アクリル樹脂含有フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成している。 In the acrylic resin-containing film of the present embodiment, it is preferable that the acrylic resin and the cellulose ester resin are contained in a compatible state. The physical properties and quality required for the acrylic resin-containing film are achieved by supplementing each other by dissolving different resins.
 前記アクリル樹脂と前記セルロースエステル樹脂が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。 Whether the acrylic resin and the cellulose ester resin are in a compatible state can be determined by, for example, the glass transition temperature Tg.
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。 For example, when the two resins have different glass transition temperatures, when the two resins are mixed, there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin. When they are compatible, the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer Co.) at a heating rate of 20 ° C./min. The point glass transition temperature (Tmg).
 本実施形態のアクリル樹脂と前記式(1)及び(2)を満たすセルロースエステル樹脂の総質量、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂の総質量は、ドープ全量に対して55質量%以上であることが好ましく、60質量%以上であることがより好ましい。 The total mass of the acrylic resin of this embodiment and the cellulose ester resin satisfying the above formulas (1) and (2), or the total mass of the cellulose ester resin in which the substitution degree of the acetyl group of the cellulose ester is 2.0 to 2.5 Is preferably 55% by mass or more, more preferably 60% by mass or more based on the total amount of the dope.
 (剥離助剤)
 本実施形態のドープ調整工程においては剥離助剤を必要に応じて用いることができ、イオン性界面活性剤が好ましく用いられる。
(Peeling aid)
In the dope adjusting step of the present embodiment, a peeling aid can be used as necessary, and an ionic surfactant is preferably used.
 本実施形態に用いられるイオン性界面活性剤が前記剥離助剤としての機能を有する理由としては以下の通りである。 The reason why the ionic surfactant used in the present embodiment has a function as the peeling aid is as follows.
 本実施形態のようにアクリル樹脂を含有するフィルムを製造する場合、アクリル樹脂と支持体ベルトとに相互作用が生じて、ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜を「ウェブ」と呼ぶ。)の剥離性を悪化させることがある。これは、アクリル樹脂が極性が高いからである。そこで、このようなイオン性界面活性剤を含有するドープ組成物を支持体ベルト上に流延し、乾燥を行うと、支持体ベルト上のドープ組成物(ウェブ)中の一部のイオン性界面活性剤分子はその極性により被着した水分子と共に支持体ベルト側の面に移動する。その結果、支持体ベルト側の面に偏在するイオン性界面活性剤分子と支持体ベルト表面との相互作用が減少し、ウェブの剥離性を向上させることが可能となる。 When producing a film containing an acrylic resin as in this embodiment, an interaction occurs between the acrylic resin and the support belt, and a dope is formed by casting a dope on the web (casting support). The film may be called “web”). This is because acrylic resin has high polarity. Therefore, when a dope composition containing such an ionic surfactant is cast on a support belt and dried, a part of the ionic interface in the dope composition (web) on the support belt is obtained. The activator molecules move to the surface on the side of the support belt together with the water molecules deposited by the polarity. As a result, the interaction between the ionic surfactant molecules unevenly distributed on the surface of the support belt and the surface of the support belt is reduced, and the peelability of the web can be improved.
 本実施形態の光学フィルムには、本発明の効果を損なわない範囲でアクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有してもよい。 The optical film of the present embodiment may contain resins and additives other than acrylic resin and cellulose ester resin within a range not impairing the effects of the present invention.
 (アクリル粒子)
 本実施形態のアクリル樹脂含有フィルムの製造方法におけるドープ組成物は、本発明の目的効果が良好に発揮されるほか、鉛筆硬度にも優れることから、さらにアクリル粒子を含有することが好ましい。
(Acrylic particles)
The dope composition in the method for producing an acrylic resin-containing film of the present embodiment preferably contains acrylic particles because the objective effect of the present invention is exhibited well and the pencil hardness is excellent.
 本実施形態に係るアクリル粒子とは、前記アクリル樹脂およびセルロースエステル樹脂を含有する光学フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。 The acrylic particles according to the present embodiment represent an acrylic component that exists in the state of particles (also referred to as an incompatible state) in the optical film containing the acrylic resin and the cellulose ester resin.
 本実施形態に用いられるアクリル粒子は特に限定されるものではないが、2層以上の多層構造を有するアクリル粒子であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。 The acrylic particles used in the present embodiment are not particularly limited, but are preferably acrylic particles having a multilayer structure of two or more layers, and particularly preferably the following multilayer structure acrylic granular composite.
 多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、および最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体をいう。 The multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery. It refers to a particulate acrylic polymer having a structure.
 本実施形態のアクリル粒子としては、市販のものも使用することができる。例えば、スタフィロイドAC-3355(ガンツ化成社製)、デルペットSRB215(旭化成ケミカルズ社製)等を挙げることができる。 Commercially available acrylic particles can also be used as the acrylic particles of this embodiment. For example, Staphyloid AC-3355 (manufactured by Ganz Kasei Co., Ltd.), Delpet SRB215 (manufactured by Asahi Kasei Chemicals Co., Ltd.) and the like can be mentioned.
 本実施形態の光学フィルムの製造方法において、アクリル粒子の含有量が当該フィルムを構成する樹脂の総質量に対して、0.05~45質量%となるような量でドープを調整することが好ましい。 In the method for producing an optical film of the present embodiment, it is preferable to adjust the dope in such an amount that the content of acrylic particles is 0.05 to 45% by mass with respect to the total mass of the resin constituting the film. .
 (その他の添加剤)
 本実施形態のドープ組成物には、紫外線吸収剤、酸化防止剤、耐電防止剤、粒子等、通常の光学フィルムに添加することができる化合物を使用することができる。
(Other additives)
In the dope composition of the present embodiment, a compound that can be added to a normal optical film, such as an ultraviolet absorber, an antioxidant, an antistatic agent, and particles, can be used.
 (有機溶媒)
 本実施形態の光学フィルムの製造方法におけるドープ組成物を形成する有機溶媒は、アクリル樹脂、セルロースエステル樹脂に対する良溶媒を主とする有機溶媒であることが好ましい。特に塩化メチレン、炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールが好適に用いられる。これらはアクリル樹脂、セルロースエステル樹脂、その他の添加剤を同時に溶解する。
(Organic solvent)
It is preferable that the organic solvent which forms the dope composition in the manufacturing method of the optical film of this embodiment is an organic solvent mainly having a good solvent for acrylic resin and cellulose ester resin. In particular, methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms are preferably used. These simultaneously dissolve acrylic resin, cellulose ester resin, and other additives.
 なお、前記溶媒は、塩化メチレンと脂肪族アルコールとの比(下記式(i)で表されるMA)は、15~30であり、20~25である混合溶媒を用いことが好ましい。前記MAが15より小さいと、剥離力が上昇することと、乾燥性が悪くなる傾向があることにより生産性が悪くなるおそれがあり、また、前記MAが30より大きくなるとヘイズが上昇する場合がある。 The solvent is preferably a mixed solvent having a ratio of methylene chloride to aliphatic alcohol (MA represented by the following formula (i)) of 15 to 30, and 20 to 25. If the MA is less than 15, the peel force increases and the drying property tends to be poor, and thus the productivity may be deteriorated. If the MA is greater than 30, the haze may be increased. is there.
 式(i):MA=脂肪族アルコールの質量/(脂肪族アルコールの質量+塩化メチレンの質量)×100 Formula (i): MA = mass of aliphatic alcohol / (mass of aliphatic alcohol + mass of methylene chloride) × 100
 上記範囲の脂肪族アルコールをドープ組成物に含有させておくと、後述する蒸発工程において、乾燥効率がよい。また、蒸発する脂肪族アルコールがフィルム内に存在していた箇所に多数の空隙ができ、フィルムを疎膜化させることができる。その結果、偏光子との密着性により優れたフィルムとすることができる。 When the aliphatic alcohol in the above range is contained in the dope composition, the drying efficiency is good in the evaporation step described later. In addition, a large number of voids are formed at locations where the aliphatic alcohol to be evaporated was present in the film, and the film can be made thin. As a result, it can be set as the film excellent in adhesiveness with a polarizer.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの中でもドープの安定性、沸点も比較的低く、乾燥性もよい点などからエタノールが最も好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Among these, ethanol is most preferable from the viewpoints of the stability of the dope, the boiling point being relatively low, and good drying properties.
 アクリル樹脂、セルロースエステル樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることが出来るが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolution of acrylic resin and cellulose ester resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544 and JP-A-9- Various dissolution methods can be used such as a method performed by a cooling dissolution method as described in JP-A-95557 or JP-A-9-95538, a method performed at high pressure as described in JP-A No. 11-21379, In particular, a method of pressurizing at a temperature equal to or higher than the boiling point of the main solvent is preferable.
 ドープ中のアクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種は、計15~45質量%の範囲であることが好ましい。溶解中または後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 The total of three types of acrylic resin, cellulose ester resin and acrylic particles in the dope is preferably in the range of 15 to 45% by mass. An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
 濾過は捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。この方法では、微粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去することができる。主ドープでは粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。 For the filtration, it is preferable to use a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml. In this method, the aggregate remaining when the fine particles are dispersed and the aggregate generated when the main dope is added are only aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml. Can be removed. In the main dope, the concentration of particles is sufficiently thinner than that of the additive solution, so that aggregates do not stick together at the time of filtration and the filtration pressure does not increase suddenly.
 (辺材)
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。返材にはアクリル粒子が含まれているため、返材の添加量に合わせてアクリル粒子添加液の添加量をコントロールすることが好ましい。返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした光学フィルム原反が使用される。
(Sapwood)
In many cases, the main dope may contain about 10 to 50% by mass of the recycled material. Since the return material contains acrylic particles, it is preferable to control the addition amount of the acrylic particle addition liquid in accordance with the addition amount of the return material. The return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
 アクリル粒子仕込釜41より濾過器44で大きな凝集物を除去し、ストックタンク42へ送液する。その後、ストックタンク42より主ドープ溶解釜1へアクリル粒子添加液を添加する。その後主ドープ液は主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。 Large agglomerates are removed from the acrylic particle charging vessel 41 with a filter 44 and fed to the stock tank 42. Thereafter, the acrylic particle additive liquid is added from the stock tank 42 to the main dope dissolving kettle 1. Thereafter, the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.
 また、あらかじめアクリル樹脂とアクリル粒子を混練してペレット化したものも、好ましく用いることができる。 Also, those obtained by previously kneading and pelletizing acrylic resin and acrylic particles can be preferably used.
 (2)流延工程
 上述のドープを送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属支持体ベルト31、例えばステンレス支持体ベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
(2) Casting process An endless metal support belt 31, for example, a stainless support belt, which feeds the dope described above to a pressure die 30 through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it infinitely, or This is a step of casting a dope from a pressure die slit to a casting position on a metal support such as a rotating metal drum.
 ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. The pressure die includes a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 また、生産性、面品質、剥離性などの観点から、前記立ち上げ時のラインスピードが4~27m/秒であり、前記定常運転時のラインスピードが40~60m/秒であることが好ましい。このような範囲であると、本発明の効果をより高めることができる。 Further, from the viewpoint of productivity, surface quality, peelability, etc., it is preferable that the line speed at the start-up is 4 to 27 m / sec and the line speed at the steady operation is 40 to 60 m / sec. Within such a range, the effects of the present invention can be further enhanced.
 (3)溶媒蒸発工程
 ウェブを流延用支持体ベルト上で加熱し、溶媒を蒸発させる工程である。
(3) Solvent evaporation step In this step, the web is heated on the casting support belt to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良いため好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体ベルト上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 In order to evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. It is preferable because of good drying efficiency. A method of combining them is also preferably used. The web on the support belt after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 (4)剥離工程
 金属支持体ベルト上で溶媒が蒸発したウェブを、剥離位置33で剥離する工程である。剥離されたウェブは次工程に送られる。
(4) Peeling step In this step, the web in which the solvent has evaporated on the metal support belt is peeled off at the peeling position 33. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、更に好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
 尚、剥離する時点での金属支持体ベルト上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により20~50質量%の状態で剥離され、30~40質量%であることが好ましい。残留溶媒量が50質量%より多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損なったり、剥離張力によるツレや縦スジが発生し易い。また、20質量%より少ない時点で剥離する場合、乾燥過多で端部からの裂けが発生するおそれがある。 The residual solvent amount at the time of peeling of the web on the metal support belt at the time of peeling is peeled in a state of 20 to 50% by mass depending on the strength of drying conditions, the length of the metal support, etc. It is preferable that it is 40 mass%. In the case of peeling when the residual solvent amount is more than 50% by mass, if the web is too soft, the flatness at the time of peeling tends to be impaired, and slippage and vertical stripes due to peeling tension tend to occur. Moreover, when it peels at the time of less than 20 mass%, there exists a possibility that the tear from an edge part may generate | occur | produce by excessive drying.
 ウェブの残留溶媒濃度(%)は下記式(ii)で定義される。 The residual solvent concentration (%) of the web is defined by the following formula (ii).
 式(ii):残留溶媒濃度(%)=(流延フィルムの質量-乾燥フィルムの質量)/乾燥フィルムの質量×100(%) Formula (ii): Residual solvent concentration (%) = (Mass of cast film−Mass of dry film) / Mass of dry film × 100 (%)
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。 In addition, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mが好ましいが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension when peeling the metal support from the film is usually preferably 196 to 245 N / m. However, when wrinkles are likely to occur during peeling, peeling with a tension of 190 N / m or less is preferable. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本実施形態においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In this embodiment, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 (5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送するロール乾燥装置35、及び/またはクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
(5) Drying and stretching step After peeling, a roll drying device 35 that transports the web alternately through a plurality of rolls arranged in the drying device, and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. Use to dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
 テンター延伸装置34を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御出来る装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 When using the tenter stretching apparatus 34, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。すなわち、例えば、次のような延伸ステップも可能である。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction
 また、同時2軸延伸には、一方向に延伸し、もう一方を張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。 Also, simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~150℃が好ましく、50~120℃が更に好ましく、70~100℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 150 ° C, more preferably 50 to 120 ° C, and most preferably 70 to 100 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C is most preferable.
 (6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってから光学フィルムとして巻き取りロール37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。
(6) Winding step This is a step of winding up the optical film by the winding roll 37 after the residual solvent amount in the web is 2% by mass or less, and the residual solvent amount is set to 0.4% by mass or less. A film having good stability can be obtained.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。 As a winding method, a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
 〔光学フィルム〕
 本実施形態の光学フィルムは、前記製造方法によって製造されたものであり、アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂を含有する。
[Optical film]
The optical film of this embodiment is manufactured by the said manufacturing method, and the substitution degree of the acetyl group of an acrylic resin and the cellulose ester resin which satisfy | fills following formula (1) and (2), or a cellulose ester is 2.0. Contains a cellulose ester resin of ~ 2.5.
 本実施形態に係る光学フィルムに、アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂を用いる場合、アクリル樹脂と前記セルロースエステル樹脂とを95:5~50:50の質量比で含有することが好ましい。更に本発明の効果をより高める為に、下記アクリル樹脂とセルロースエステル樹脂を80:20~60:40の質量比で含有する光学フィルムであることが好ましい。 When an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2) are used for the optical film according to the present embodiment, the acrylic resin and the cellulose ester resin are mixed at a mass ratio of 95: 5 to 50:50. It is preferable to contain. In order to further enhance the effect of the present invention, an optical film containing the following acrylic resin and cellulose ester resin in a mass ratio of 80:20 to 60:40 is preferable.
 また、アクリル樹脂とセルロースエステル樹脂の質量比が、95:5よりもアクリル樹脂が多くなると、セルロースエステル樹脂による脆性改善効果が十分に得られない場合がある。また、同質量比が50:50よりもアクリル樹脂が少なくなると、耐高温高湿性が不十分となる場合がある。 Further, when the acrylic resin and the cellulose ester resin have a mass ratio of more than 95: 5, the brittleness improvement effect by the cellulose ester resin may not be sufficiently obtained. On the other hand, when the acrylic resin is less than 50:50, the high temperature and high humidity resistance may be insufficient.
 また、本実施形態の光学フィルムは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないこと、すなわち延性破壊が起こらないことが好ましい。なお、本願における延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じるものであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。 In addition, it is preferable that the optical film of the present embodiment does not cause breakage such as breakage, that is, does not cause ductile breakage even when a large stress is applied to bend the film in two. The ductile fracture in the present application is caused by a stress that is greater than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material before the final fracture. The fracture surface is characterized by numerous indentations called dimples.
 本実施形態に係る光学フィルムの厚さは10~30μmが好ましく、20~30μmが好ましい。上記領域よりも光学フィルムが厚いと偏光板加工後の偏光板が厚くなり過ぎ、ノート型パソコンやモバイル型電子機器に用いる液晶表示においては、特に薄型軽量の目的には適さない。一方、上記領域よりも薄いと、フィルムの透湿性が高くなり偏光子に対して湿度から保護する能力が低下してしまうおそれがあるために好ましくない。 The thickness of the optical film according to this embodiment is preferably 10 to 30 μm, more preferably 20 to 30 μm. If the optical film is thicker than the above region, the polarizing plate after polarizing plate processing becomes too thick, so that it is not suitable for the purpose of thin and light in liquid crystal displays used for notebook personal computers and mobile electronic devices. On the other hand, if it is thinner than the above region, the moisture permeability of the film is increased, and the ability to protect the polarizer from humidity may be reduced, which is not preferable.
 本実施形態の光学フィルムは、ヘイズを低くし、プロジェクターのような高温になる機器や、車載用表示機器のような、高温の環境下での使用を考慮すると、その張力軟化点を、105~145℃とすることが好ましく、110~140℃に制御することがより好ましい。 The optical film according to the present embodiment has a tension softening point of 105 to 95 in consideration of use in a high-temperature environment such as a projector having a high haze and a high temperature such as a projector or an in-vehicle display device. The temperature is preferably 145 ° C., more preferably 110 to 140 ° C.
 本実施形態の光学フィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。 The optical film of the present embodiment preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer Co.) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
 また、本実施形態の光学フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。 Further, the optical film of the present embodiment preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 本実施形態の光学フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 The optical film of the present embodiment preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 本実施形態の光学フィルムは、透明性を表す指標の1つであるヘイズ値(濁度)が1.0%以下であることが好ましく、液晶表示装置に組み込んだ際の輝度、コントラストの点から0.5%以下であることがさらに好ましい。 The optical film of the present embodiment preferably has a haze value (turbidity) of 1.0% or less, which is one of the indices indicating transparency, from the viewpoint of luminance and contrast when incorporated in a liquid crystal display device. More preferably, it is 0.5% or less.
 かかるヘイズ値を達成するには、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散を低減させることが有効である。 In order to achieve such a haze value, it is effective to remove foreign substances in the polymer by high-precision filtration and reduce the diffusion of light inside the film.
 アクリル粒子を使用する場合は、アクリル系樹脂とアクリル粒子との屈折率差を小さくすることも有効である。 When using acrylic particles, it is also effective to reduce the difference in refractive index between the acrylic resin and the acrylic particles.
 また、表面の粗さも表面ヘイズとしてヘイズ値に影響するため、アクリル粒子の粒子径や添加量を前記範囲内に抑えたり、製膜時のフィルム接触部の表面粗さを小さくしたりすることも有効である。 In addition, since the surface roughness also affects the haze value as surface haze, the particle size and addition amount of acrylic particles may be suppressed within the above range, or the surface roughness of the film contact portion during film formation may be reduced. It is valid.
 なお、上記光学フィルムの全光線透過率およびヘイズ値は、JIS-K7361-1-1997およびJIS-K7136-2000に従い、測定した値である。 The total light transmittance and haze value of the optical film are values measured according to JIS-K7361-1-1997 and JIS-K7136-2000.
 本実施形態の光学フィルムは、上記のような物性を満たしていれば、光学用の光学フィルムとして好ましく用いることができるが、以下の組成とすることにより、加工性、耐熱性に優れたフィルムを得ることができる。 The optical film of the present embodiment can be preferably used as an optical film for optics as long as it satisfies the physical properties as described above, but by making the following composition, a film excellent in workability and heat resistance can be obtained. Obtainable.
 〔偏光板〕
 本実施形態に係る光学フィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。
〔Polarizer〕
A polarizing plate using the optical film according to the present embodiment will be described. The polarizing plate can be produced by a general method.
 本実施形態に係る光学フィルムの裏面側をアルカリ鹸化処理し、処理した光学フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本実施形態に係る光学フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20~70nm、Rtが70~400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いることが好ましい。 The back side of the optical film according to the present embodiment is subjected to alkali saponification treatment, and the treated optical film is immersed and stretched in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution on at least one surface. It is preferable to bond them together. The optical film may be used on the other surface, or another polarizing plate protective film may be used. In contrast to the optical film according to this embodiment, the polarizing plate protective film used on the other surface has an in-plane retardation Ro of 590 nm, an optical compensation film having a phase difference of 20 to 70 nm and Rt of 70 to 400 nm ( It is preferable to use a retardation film.

 これらは例えば、特開2002-71957号公報、特開2003-170492号公報に記載の方法で作製することができる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003-98348号公報に記載の方法で光学異方性層を形成することができる。あるいは、特開2003-12859号公報に記載のリターデーションRoが590nmで0~5nm、Rtが-20~+20nmの無配向フィルムも好ましく用いられる。

These can be produced, for example, by the methods described in JP-A Nos. 2002-71957 and 2003-170492. Alternatively, it is preferable to use a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP2003-98348A. Alternatively, a non-oriented film having a retardation Ro of 590 nm and 0 to 5 nm and an Rt of −20 to +20 nm described in JP-A-2003-12859 is also preferably used.

 本実施形態に係る光学フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。

By using in combination with the optical film according to the present embodiment, a polarizing plate having excellent planarity and a stable viewing angle expansion effect can be obtained.

 裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が好ましく用いられる。

As a polarizing plate protective film used on the back side, as commercially available cellulose ester films, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC4FR-1, -2, KC8UE, KC4UE (manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.

 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5~30μm、好ましくは8~15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本実施形態に係る光学フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。

A polarizing film, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film currently known is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are films in which iodine is dyed on a system film and films in which a dichroic dye is dyed, but the present invention is not limited to this. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxial stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm is preferably used. On the surface of the polarizing film, one surface of the optical film according to this embodiment is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.

 〔画像表示装置〕

 本実施形態に係る光学フィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性に優れた画像表示装置を作製することができる。

(Image display device)

By incorporating a polarizing plate produced using the optical film according to the present embodiment into a display device, various image display devices having excellent visibility can be produced.

 本実施形態に係る光学フィルムは前記偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。また、本実施形態に係る光学フィルムは、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種画像表示装置にも好ましく用いられる。

The optical film according to this embodiment is incorporated in the polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type. The optical film according to the present embodiment is also preferably used for various image display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面にかかる光学フィルムの製造方法は、アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂とを含有する光学フィルム、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂を含有する光学フィルムの製造方法において、製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%であり、定常運転時は含水率が0.6~2.0質量%であるドープを用いて溶液流延製膜法により製造することを特徴とする。 In the method for producing an optical film according to one aspect of the present invention, an optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or the substitution degree of the acetyl group of the cellulose ester is 2. In the method for producing an optical film containing a cellulose ester resin of 0 to 2.5, the water content is 2.0 to 5.0% by mass at the start-up from the start of production to the steady operation, and at the steady operation Is characterized in that it is produced by a solution casting film forming method using a dope having a water content of 0.6 to 2.0 mass%.
 式(1) 2.3≦X+Y≦2.6
 式(2) 1.4≦X≦2.6
 (上記式中、Xはセルロースエステルのアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度を表す。)
Formula (1) 2.3 <= X + Y <= 2.6
Formula (2) 1.4 ≦ X ≦ 2.6
(In the above formula, X represents the degree of substitution of the acetyl group of the cellulose ester, and Y represents the degree of substitution of the propionyl group or butyryl group.)
 このような構成を有することにより、フィルムの破断危険度が低く、かつ支持体ベルト汚れが発生しにくい光学フィルムを製造することができる。 By having such a configuration, it is possible to manufacture an optical film that has a low risk of film breakage and is less likely to cause contamination of the support belt.
 また、前記光学フィルムの製造方法において、前記アクリル樹脂とセルロースエステル樹脂との質量比が80:20~60:40であることが好適である。このような構成によれば、本発明の効果をより高めることができる。 In the method for producing an optical film, it is preferable that a mass ratio of the acrylic resin to the cellulose ester resin is 80:20 to 60:40. According to such a configuration, the effect of the present invention can be further enhanced.
 また、前記光学フィルムの製造方法において、前記立ち上げ時のラインスピードが4~27m/秒であり、前記定常運転時のラインスピードが40~60m/秒であることが好適である。このような構成によれば、本発明の効果をより高めることができる。 In the method for producing an optical film, it is preferable that the line speed at the start-up is 4 to 27 m / sec and the line speed at the steady operation is 40 to 60 m / sec. According to such a configuration, the effect of the present invention can be further enhanced.
 また、本発明の他の局面にかかる光学フィルムは、前記光学フィルムの製造方法を用いて製造されることを特徴とする。 Further, an optical film according to another aspect of the present invention is manufactured using the method for manufacturing an optical film.
 このような構成によれば、前記液晶表示装置に用いられる偏光板用保護フィルム偏光板用保護フィルム等の光学フィルムなどに利用できる帯電性防止性の高い光学フィルムを得ることができる。 According to such a configuration, it is possible to obtain an optical film having a high antistatic property that can be used for an optical film such as a protective film for a polarizing plate used in the liquid crystal display device.
 また、前記光学フィルムの膜厚は10~30μmであることが好適である。このような構成によれば、偏光子等との密着性に優れた光学フィルムを得ることができる。 The film thickness of the optical film is preferably 10 to 30 μm. According to such a configuration, an optical film excellent in adhesion with a polarizer or the like can be obtained.
 また、本発明のさらなる局面にかかる偏光板は、前記光学フィルムを少なくとも一方の面に用いることを特徴とする。このような構成によれば、前記液晶表示装置に用いられる偏光板用保護フィルムとして、前記の帯電性防止性の高い光学フィルムを用いるので、大画面化に好適である。 The polarizing plate according to a further aspect of the present invention is characterized in that the optical film is used on at least one surface. According to such a configuration, since the above-described optical film having high antistatic property is used as the protective film for polarizing plate used in the liquid crystal display device, it is suitable for enlargement of the screen.
 また、本発明のさらなる局面にかかる液晶表示装置は、前記光学フィルム、または前記偏光板を用いることを特徴とする。このような構成によれば、前記液晶表示装置に用いられる偏光板に前記の偏光板を用いるので、大画面化に好適である。 Further, a liquid crystal display device according to a further aspect of the present invention is characterized by using the optical film or the polarizing plate. According to such a structure, since the said polarizing plate is used for the polarizing plate used for the said liquid crystal display device, it is suitable for the enlargement of a screen.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
 [実施例1]
 〈立ち上げ時における光学フィルムK1の作製〉
 (立ち上げ時のドープ液の調製)
 BR85(アクリル樹脂、三菱レイヨン社製)      70 質量部
 セルロースエステル
 (セルロースアセテートプロピオネート アシル基総置換度2.75、ア
セチル基置換度0.19、プロピオニル基置換度2.56、Mw=2000
00)                         30 質量部
 ドデシルベンゼンスルホン酸ナトリウム        0.5 質量部
 塩化メチレン                  232.2 質量部
 エタノール                    44.1 質量部
 水                         2.9 質量部
[Example 1]
<Production of optical film K1 at start-up>
(Preparation of dope solution at startup)
BR85 (acrylic resin, manufactured by Mitsubishi Rayon Co., Ltd.) 70 parts by mass Cellulose ester (cellulose acetate propionate acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw = 2000
00) 30 parts by mass Sodium dodecylbenzenesulfonate 0.5 parts by mass Methylene chloride 232.2 parts by mass Ethanol 44.1 parts by mass Water 2.9 parts by mass
 なお、立ち上げ時の含水率はドープ全量に対して1.5質量%となるように樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合したのちドープとして調合することで調整した。 In addition, the moisture content in the dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol so that the moisture content at start-up is 1.5% by mass with respect to the total amount of the dope. It adjusted by preparing as a dope after mixing with a solvent.
 (定常運転時における用ドープ液の調製)
 BR85(アクリル樹脂、三菱レイヨン社製)      70 質量部
 セルロースエステル
 (セルロースアセテートプロピオネート アシル基総置換度2.75、ア
セチル基置換度0.19、プロピオニル基置換度2.56、Mw=2000
00)                         30 質量部
 ドデシルベンゼンスルホン酸ナトリウム        0.5 質量部
 塩化メチレン                  232.2 質量部
 エタノール                    44.1 質量部
 水                        0.26 質量部
(Preparation of dope solution for steady operation)
BR85 (acrylic resin, manufactured by Mitsubishi Rayon Co., Ltd.) 70 parts by mass Cellulose ester (cellulose acetate propionate acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw = 2000
00) 30 parts by mass Sodium dodecylbenzenesulfonate 0.5 parts by mass Methylene chloride 232.2 parts by mass Ethanol 44.1 parts by mass Water 0.26 parts by mass
 K1用ドープの組成を樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合したのちドープとして調合することにより、上記のように定常運定時用のドープの組成量に変更することにより、定常運転時の含水率をドープ全量に対して0.8質量%に調整した。 The composition of the K1 dope is calculated from the sum of the moisture content in the resin and the moisture content in the alcohol, and the moisture content in the dope is calculated. The moisture content during steady operation was adjusted to 0.8 mass% with respect to the total amount of dope by changing to the composition amount of the dope for handling.
 (光学フィルムの製膜)
 上記作製したドープ液を、支持体ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒濃度(残留溶剤量)が35質量%になるまで溶媒を蒸発させ、剥離張力162N/mでステンレスバンド支持体上から剥離した。流延から剥離までに要した時間は、立ち上げ時において150秒であり、定常運転時においては90秒であった。また、ラインスピードは、立ち上げ時は27m/秒、定常運転時は40m/秒とした。
(Optical film formation)
The produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a support belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent concentration (residual solvent amount) was 35% by mass, and peeling was performed from the stainless steel band support with a peeling tension of 162 N / m. The time required from casting to peeling was 150 seconds at the start-up and 90 seconds at the steady operation. The line speed was 27 m / sec at startup and 40 m / sec during steady operation.
 剥離したアクリル樹脂含有ウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、135℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶媒濃度は10質量%であった。 The peeled acrylic resin-containing web was evaporated at 35 ° C., slit to 1.6 m width, and then dried at a drying temperature of 135 ° C. while being stretched 1.1 times in the width direction by a tenter. At this time, the residual solvent concentration when starting stretching with a tenter was 10% by mass.
 テンターで延伸後130℃で5分間緩和を行った後、120℃、130℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、光学フィルムK1を得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向(流延方向)の延伸倍率は1.1倍であった。 After stretching with a tenter and relaxing at 130 ° C for 5 minutes, drying was completed while transporting the drying zone at 120 ° C and 130 ° C with a number of rolls, slitting to a width of 1.5 m, and 10 mm wide at both ends of the film. A 5 μm knurling process was performed, and the film was wound around a 6-inch inner diameter core with an initial tension of 220 N / m and a final tension of 110 N / m to obtain an optical film K1. The draw ratio in the MD direction (casting direction) calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.
 〈偏光板H1の作製〉
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
<Preparation of polarizing plate H1>
A 120 μm-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
 次いで、下記工程1~5に従って偏光子と前記光学フィルムK1と、裏面側にはコニカミノルタタックKC4UY(コニカミノルタオプト(株)製セルロースエステルフィルム)を貼り合わせて偏光板H1を作製した。 Then, according to the following steps 1 to 5, a polarizer, the optical film K1, and Konica Minolta Tack KC4UY (cellulose ester film manufactured by Konica Minolta Opto Co., Ltd.) were bonded to the back side to prepare a polarizing plate H1.
 工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化した光学フィルムを得た。 Step 1: Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain an optical film saponified on the side to be bonded to the polarizer.
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。 Step 2: The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した光学フィルムの上にのせて配置した。 Step 3: Excess adhesive adhered to the polarizer in Step 2 was gently wiped off and placed on the optical film treated in Step 1.
 工程4:工程3で積層した光学フィルムと偏光子と裏面側光学フィルムを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。 Step 4: The optical film, the polarizer, and the back side optical film laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
 工程5:80℃の乾燥機中に工程4で作製した偏光子と光学フィルムとコニカミノルタタックKC4UYとを貼り合わせた試料を2分間乾燥し、それぞれ、光学フィルムに対応する偏光板H1を作製した。 Step 5: A sample obtained by bonding the polarizer, the optical film, and Konica Minolta Tack KC4UY prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes, and a polarizing plate H1 corresponding to the optical film was prepared. .
 [実施例2~6及び比較例1~3]
 以下、立ち上げ時及び定常運転時の含水率を表1記載の値のように、樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合したのちドープとして調合することで調整し、立ち上げ時及び定常運転時のラインスピードを表1記載の値のように調整した以外は、光学フィルムK1と同様にして、光学フィルムK2~9を作製した。
[Examples 2 to 6 and Comparative Examples 1 to 3]
Hereinafter, the moisture content in the dope is calculated from the sum of the moisture content in the resin and the alcohol in the alcohol as shown in Table 1 for the moisture content at startup and steady operation. The optical films K2 to 9 are adjusted in the same manner as the optical film K1 except that the line speed during start-up and steady operation is adjusted as shown in Table 1 except that the line speed is adjusted as shown in Table 1. Was made.
 また、前記偏光板H1と同様にして、光学フィルムK2~9に対応する偏光板H2~9を作製した。以上の光学フィルムK2~9、偏光板H2~9をそれぞれ実施例2~6、及び比較例1~3とした。 Further, in the same manner as the polarizing plate H1, polarizing plates H2 to 9 corresponding to the optical films K2 to 9 were produced. The optical films K2 to K9 and the polarizing plates H2 to H9 were set as Examples 2 to 6 and Comparative Examples 1 to 3, respectively.
 ここで、下記評価基準を用いて光学フィルムK1~K9の剥離性評価及びベルト汚れ評価を行った。 Here, the peelability evaluation of the optical films K1 to K9 and the belt dirt evaluation were performed using the following evaluation criteria.
 (破断危険度)
 立ち上げ時における光学フィルムの破断危険度を下記のように5段階評価をした。
(Rupture risk)
The risk of breakage of the optical film at the time of start-up was evaluated according to the following five levels.
 5:破断確率が10%未満である。
 4:破断確率が10%以上30%未満である。
 3:破断確率が30%以上50%未満である。
 2:破断確率が50%以上70%未満である。
 1:破断確率が70%以上である。
5: Fracture probability is less than 10%.
4: The fracture probability is 10% or more and less than 30%.
3: The fracture probability is 30% or more and less than 50%.
2: The fracture probability is 50% or more and less than 70%.
1: Breaking probability is 70% or more.
 (溶解性)
 立ち上げ時における光学フィルムK1~K9の溶解性を下記のように5段階評価をした。 
(Solubility)
The solubility of the optical films K1 to K9 at the time of start-up was evaluated in five stages as follows.
 5:完全に溶解している。
 4:液ヘイズが若干上昇しているように見える。
 3:液粘度が高い。
 2:液粘度が高く、ヘイズが高い。
 1:未溶解物が残っている。
5: Completely dissolved.
4: It seems that liquid haze is rising a little.
3: The liquid viscosity is high.
2: Liquid viscosity is high and haze is high.
1: Undissolved material remains.
 (ベルト汚れ評価)
 ステンレスバンド支持体上に流延したドープ組成物を前記ステンレスバンド支持体から剥離した際のベルト汚れを下記のように5段階評価をした。
(Belt dirt evaluation)
The belt contamination when the dope composition cast on the stainless steel band support was peeled off from the stainless steel band support was evaluated in five stages as follows.
 5:どの評価者もムラ全く見られず。
 4:評価者によってかすかにムラが見られる場合もあるが、全く問題なく製品として使えるレベル。
 3:評価者によってかすかにムラが見られる場合があるが、製品として使えるレベル。
 2:評価者によってかすかにムラが見られ、製品としては使えないレベル。
 1:多くの評価者でかすかではあるが、ムラが見られた。
5: None of the evaluators found any unevenness.
4: Although it may be slightly uneven by the evaluator, it is a level that can be used as a product without any problem.
3: A level that can be used as a product although there may be slight unevenness depending on the evaluator.
2: The level at which the evaluator slightly sees unevenness and cannot be used as a product.
1: Although it was faint in many evaluators, the nonuniformity was seen.
 ここで、下記評価基準を用いて偏光板H1~H9の帯電防止性及びヘイズの評価を行った。 Here, the antistatic property and haze of the polarizing plates H1 to H9 were evaluated using the following evaluation criteria.
 (ヘイズ)
 偏光板H1~H9のヘイズを下記のように5段階評価をした。
(Haze)
The haze of the polarizing plates H1 to H9 was evaluated in five stages as follows.
 測定はJIS K-7136に従って、ヘーズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。 The measurement was performed according to JIS K-7136 using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.).
 5:0.1%以下
 4:0.2%以下
 3:0.2~0.3%
 2:0.3~0.5%
 1:0.5%以上
5: 0.1% or less 4: 0.2% or less 3: 0.2-0.3%
2: 0.3-0.5%
1: 0.5% or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、立ち上げ時の含水率をドープ全量に対して2.0~5.0質量%、定常運転時の含水率をドープ全量に対して0.6~2.0質量%となるように調整した実施例1~6の製造方法によって得られた光学フィルムK1~6は、立ち上げ時においても定常運転時においても破断危険度は低いものとなり、支持体ベルトの汚れも付着しにくいものとなった。また、光学フィルムK1~6を用いた偏光板H1~6においてはヘイズの発生も十分に抑制された。 As is apparent from the results in Table 1, the moisture content at the start-up is 2.0 to 5.0 mass% with respect to the total amount of dope, and the moisture content at the steady operation is 0.6 to 2.2. The optical films K1 to 6 obtained by the production methods of Examples 1 to 6 adjusted to 0% by mass have a low risk of breaking both at the time of start-up and at the time of steady operation. Dirt also became difficult to adhere. Further, in the polarizing plates H1 to 6 using the optical films K1 to 6, the generation of haze was sufficiently suppressed.
 一方で、立ち上げ時の含水率が2.0質量%より少ないドープにて製造した比較例1における光学フィルムK7は、破断危険度が高い結果となった。また、立ち上げ時の含水率が5.0質量%より多いドープにて製造した比較例2における光学フィルムK8は、水分子が支持体ベルト側に拡散したと考えられるため、支持体ベルト汚れに劣る結果となり、K8を用いた偏光板H8はヘイズの発生が生じてしまった。 On the other hand, the optical film K7 in Comparative Example 1 manufactured with a dope having a moisture content at startup of less than 2.0% by mass resulted in a high risk of breakage. In addition, the optical film K8 in Comparative Example 2 manufactured with a dope having a water content of more than 5.0% by mass at the time of start-up is considered to have diffused water molecules to the support belt side, and thus the support belt becomes dirty. As a result, the polarizing plate H8 using K8 had haze.
 また、立ち上げ時の含水率と定常運転時の含水率をともに3.0質量%に調整したドープを用いて比較例3における光学フィルムK9は、支持体ベルト汚れに劣る結果となった。さらにアクリル樹脂K9を用いた偏光板H9は、偏光板とした場合にヘイズの発生が生じてしまった。 Further, the optical film K9 in Comparative Example 3 using a dope in which the water content at startup and the water content during steady operation were both adjusted to 3.0% by mass was inferior to support belt contamination. Furthermore, when the polarizing plate H9 using the acrylic resin K9 was used as a polarizing plate, haze was generated.
 この出願は、2012年3月26日に出願された日本国特許出願特願2012-69725を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-69725 filed on March 26, 2012, the contents of which are included in this application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、光学フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of optical films and manufacturing methods thereof.

Claims (7)

  1.  アクリル樹脂と下記式(1)及び(2)を満たすセルロースエステル樹脂とを含有する光学フィルム、又はセルロースエステルのアセチル基の置換度が2.0~2.5であるセルロースエステル樹脂を含有する光学フィルムの製造方法において、
     製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%であり、定常運転時は含水率が0.6~2.0質量%であるドープを用いて、溶液流延製膜法により製造することを特徴とする、光学フィルムの製造方法。
     式(1) 2.3≦X+Y≦2.6
     式(2) 1.4≦X≦2.6
     (上記式中、Xはセルロースエステルのアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度を表す。)
    An optical film containing an acrylic resin and a cellulose ester resin satisfying the following formulas (1) and (2), or an optical film containing a cellulose ester resin having a substitution degree of acetyl group of cellulose ester of 2.0 to 2.5 In the film manufacturing method,
    Using a dope having a moisture content of 2.0 to 5.0% by mass at the start-up from the start of production to steady operation, and having a moisture content of 0.6 to 2.0% by mass during steady operation, A method for producing an optical film, which is produced by a solution casting film forming method.
    Formula (1) 2.3 <= X + Y <= 2.6
    Formula (2) 1.4 ≦ X ≦ 2.6
    (In the above formula, X represents the degree of substitution of the acetyl group of the cellulose ester, and Y represents the degree of substitution of the propionyl group or butyryl group.)
  2.  前記アクリル樹脂と上記式(1)及び(2)を満たす前記セルロースエステル樹脂との質量比が95:5~50:50であることを特徴とする、請求項1に記載の光学フィルムの製造方法。 2. The method for producing an optical film according to claim 1, wherein a mass ratio of the acrylic resin to the cellulose ester resin satisfying the formulas (1) and (2) is 95: 5 to 50:50. .
  3.  前記立ち上げ時のラインスピードが4~27m/秒であり、前記定常運転時のラインスピードが40~60m/秒であることを特徴とする、請求項1または2に記載の光学フィルムの製造方法。 3. The method for producing an optical film according to claim 1, wherein the line speed at the start-up is 4 to 27 m / sec and the line speed at the steady operation is 40 to 60 m / sec. .
  4.  請求項1~3のいずれかに記載の光学フィルムの製造方法によって製造されることを特徴とする、光学フィルム。 An optical film produced by the method for producing an optical film according to any one of claims 1 to 3.
  5.  前記光学フィルムの膜厚が10~30μmであることを特徴とする、請求項4に記載の光学フィルム。 5. The optical film according to claim 4, wherein the optical film has a thickness of 10 to 30 μm.
  6.  請求項4又は5に記載の光学フィルムを少なくとも一方の面に用いることを特徴とする偏光板。 A polarizing plate using the optical film according to claim 4 on at least one surface.
  7.  請求項4又は5に記載の光学フィルム、または請求項6に記載の偏光板を用いることを特徴とする液晶表示装置。 A liquid crystal display device using the optical film according to claim 4 or 5, or the polarizing plate according to claim 6.
PCT/JP2013/001280 2012-03-26 2013-03-01 Method for producing optical film, optical film, polarizing plate, and liquid crystal display device WO2013145560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069725 2012-03-26
JP2012069725 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013145560A1 true WO2013145560A1 (en) 2013-10-03

Family

ID=49258883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001280 WO2013145560A1 (en) 2012-03-26 2013-03-01 Method for producing optical film, optical film, polarizing plate, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2013145560A1 (en)
WO (1) WO2013145560A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093159A1 (en) * 2014-12-11 2016-06-16 コニカミノルタ株式会社 Single-layer resin film, process for producing same, and solar-cell back sheet, polarizer-protecting film, building member, automotive member, and mobile-device decorative sheet each including same
JPWO2015111519A1 (en) * 2014-01-22 2017-03-23 富士フイルム株式会社 Dope composition, optical film, method for producing optical film, polarizing plate and liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123316A (en) * 2009-12-11 2011-06-23 Fujifilm Corp Optical film, method for producing the same, polarizing plate and liquid crystal display
WO2011158627A1 (en) * 2010-06-18 2011-12-22 コニカミノルタオプト株式会社 Optical film, manufacturing method therefor, and liquid-crystal display device and polarization plate using said optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123316A (en) * 2009-12-11 2011-06-23 Fujifilm Corp Optical film, method for producing the same, polarizing plate and liquid crystal display
WO2011158627A1 (en) * 2010-06-18 2011-12-22 コニカミノルタオプト株式会社 Optical film, manufacturing method therefor, and liquid-crystal display device and polarization plate using said optical film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015111519A1 (en) * 2014-01-22 2017-03-23 富士フイルム株式会社 Dope composition, optical film, method for producing optical film, polarizing plate and liquid crystal display device
WO2016093159A1 (en) * 2014-12-11 2016-06-16 コニカミノルタ株式会社 Single-layer resin film, process for producing same, and solar-cell back sheet, polarizer-protecting film, building member, automotive member, and mobile-device decorative sheet each including same
JPWO2016093159A1 (en) * 2014-12-11 2017-09-21 コニカミノルタ株式会社 Single layer resin film, production method thereof, back sheet for solar cell equipped with the same, polarizing plate protective film, building member, automotive member, and decorative sheet for mobile device

Also Published As

Publication number Publication date
JPWO2013145560A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5040688B2 (en) Acrylic resin-containing film, polarizing plate and display device using the same
JP5521552B2 (en) Acrylic resin-containing film, polarizing plate and liquid crystal display device using the same
WO2009139284A1 (en) Polarizing plate and liquid crystal display device
WO2011065124A1 (en) Production method for phase contrast film, and polarizer and liquid crystal display device using said film
JP5533858B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP5397382B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP2013028676A (en) Method for producing acrylic resin-containing film, acrylic resin-containing film, polarizing plate, and liquid crystal display device
JP5533857B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
WO2011055590A1 (en) Protective film roll for liquid crystal polarization plate and manufacturing method thereof
WO2013145560A1 (en) Method for producing optical film, optical film, polarizing plate, and liquid crystal display device
WO2009090900A1 (en) Acrylic resin-containing film and process for the production of the film
JPWO2011114764A1 (en) Retardation film and polarizing plate provided with the same
WO2013035273A1 (en) Method for producing acrylic resin-containing film, acrylic resin-containing film, polarizing plate, and liquid crystal display device
JP5621785B2 (en) Manufacturing method of polarizing plate
JP2011248094A (en) Optical film
JP2017102368A (en) Polarizing plate protective film and polarizing plate having the same
JP5799869B2 (en) Manufacturing method of optical film
JP2021012331A (en) Method for manufacturing polarizing plate and polarizing plate
WO2010116822A1 (en) Optical film, process for producing optical film, liquid crystal panel, and image display device
WO2013145559A1 (en) Method for producing acrylic resin-containing film, and crylic resin-containing film, polarizing plate and liquid crystal display
JP5590116B2 (en) Optical film, polarizing plate, and liquid crystal display device
JP2011241264A (en) Optical film and method for producing optical film
JP5402941B2 (en) Polarizing plate and liquid crystal display device using the same
JP5263299B2 (en) Optical film, polarizing plate, liquid crystal display device, and method of manufacturing optical film
JP2013023523A (en) Acrylic resin-containing cellulose ester film and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767738

Country of ref document: EP

Kind code of ref document: A1