WO2011065124A1 - Production method for phase contrast film, and polarizer and liquid crystal display device using said film - Google Patents

Production method for phase contrast film, and polarizer and liquid crystal display device using said film Download PDF

Info

Publication number
WO2011065124A1
WO2011065124A1 PCT/JP2010/067223 JP2010067223W WO2011065124A1 WO 2011065124 A1 WO2011065124 A1 WO 2011065124A1 JP 2010067223 W JP2010067223 W JP 2010067223W WO 2011065124 A1 WO2011065124 A1 WO 2011065124A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
retardation film
resin
producing
Prior art date
Application number
PCT/JP2010/067223
Other languages
French (fr)
Japanese (ja)
Inventor
隆 建部
正高 瀧本
直輝 高橋
伸夫 久保
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011543157A priority Critical patent/JPWO2011065124A1/en
Publication of WO2011065124A1 publication Critical patent/WO2011065124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates

Definitions

  • the present invention relates to a method for producing a retardation film that is transparent, resistant to high temperature and high humidity, and excellent in long-term storage, and a polarizing plate and a liquid crystal display device using the film.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, two polarizing plates provided on both sides thereof, and a retardation film for optical compensation.
  • Each polarizing plate has a configuration in which a polarizer (also referred to as a polarizing film or a polarizing film) is sandwiched between two polarizing plate protective films.
  • a cellulose triacetate film is usually used, but by selecting a specific resin such as alicyclic polyolefin, cellulose acetate propionate, acrylic resin-cellulose ester resin mixed resin, etc.
  • a specific resin such as alicyclic polyolefin, cellulose acetate propionate, acrylic resin-cellulose ester resin mixed resin, etc.
  • the function as a phase difference film is also given (patent documents 1 and 2).
  • the retardation of the retardation film is appropriately adjusted to a desired value by providing a stretching process in the normal film manufacturing process.
  • the phase difference is adjusted by appropriately combining stretching in the transport direction (also referred to as longitudinal stretching or MD stretching) and stretching in the direction perpendicular to the transport direction (also referred to as lateral stretching, width stretching, or TD stretching).
  • MD stretching stretching in the transport direction
  • TD stretching stretching in the direction perpendicular to the transport direction
  • TD stretching also referred to as lateral stretching, width stretching, or TD stretching.
  • the stretching ratio of the MD stretching is increased, a slippage occurs. There existed a subject that flatness deteriorated or it was easy to fracture
  • the flatness of the film is generally higher by the solution casting method than by the hot melt casting method. Therefore, in the retardation film in which the flatness is particularly important, the TD by the solution casting method is used. Adjustment of phase difference has been attempted with stretching as the main stretching (Patent Document 2).
  • liquid crystal display devices can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage.
  • the present invention has been made in view of the above problems, and its object is to provide a method for producing a retardation film having high-temperature and high-humidity resistance and excellent long-term storage stability, and a polarizing plate and a liquid crystal using the film. It is to provide a display device.
  • the object of the present invention was achieved by the following.
  • thermoplastic resin having an elastic modulus at 80 ° C. and 5% RH of 1000 MPa or more, an elastic modulus E1 at (Tg ⁇ 10) ° C., and an elastic modulus E2 at (Tg + 10) ° C. satisfying the following formula (1):
  • a method for producing a retardation film having a main component by a solution casting method the method comprising a step of stretching a stretching ratio of 11 to 100% in a film transport direction. (1) 500 ⁇ E1 / E2 ⁇ 10 2.
  • thermoplastic resin contains an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70. Manufacturing method.
  • the step of stretching in the transport direction has at least two steps, and the step of stretching in a direction perpendicular to the transport direction is between the two steps, of the at least two steps
  • the method for producing a retardation film according to 4 wherein the following formula (4) is satisfied when a stretching ratio in the step of stretching in a direction perpendicular to the transport direction is T1. (4) 15 ⁇ (M1 + M2) /T1 ⁇ 0.5 6).
  • the present invention it was possible to provide a method for producing a retardation film having high-temperature and high-humidity resistance and excellent long-term storage stability, and a polarizing plate and a liquid crystal display device using the film.
  • the present invention has been found to solve the problems of the present invention by producing a retardation film containing a resin having a specific physical property as a main component under the conditions of the present invention.
  • the effect of the present invention is that a film excellent in flatness can be produced by the solution casting method, and the resin whose physical property (elastic modulus) changes remarkably across the glass transition temperature (hereinafter referred to as Tg) is the first MD. It is presumed that the strain generated in the stretching step is once eliminated by TD stretching, and even if the second MD stretching is performed, the absolute residual strain is reduced, so that the strain is exhibited.
  • the resin capable of exhibiting the effect of the present invention has an elastic modulus at 80 ° C. and 5% RH of 1000 MPa or more, and has an elastic modulus E1 at (Tg ⁇ 10) ° C. and an elastic modulus E2 at (Tg + 10) ° C. It is a resin whose main component is a thermoplastic resin that satisfies the following formula (1). (1) 500 ⁇ E1 / E2 ⁇ 10
  • the main component means a resin constituting 50% by mass or more of the resin constituting the thermoplastic resin.
  • Such resins include alicyclic polyolefins, acrylic resins, methyl methacrylate-styrene copolymers, and acrylic resin-cellulose ester resin mixed resins, and acrylic resin-cellulose ester resin mixed resins are particularly preferable.
  • the elastic modulus was conditioned at 23 ° C. and 55% RH for 24 hours, under the respective conditions (80 ° C. 5% RH, (Tg + 10) ° C. 5% RH, (Tg ⁇ 10) ° C. 5% RH), JIS It measured according to the method of K7127. Tensillon made by ORIENTEC Co., Ltd. was used as the tensile tester, the test piece was 100 mm ⁇ 10 mm, the distance between chucks was 50 mm, and the test speed was 100 mm / min.
  • the acrylic resin-cellulose ester resin mixed resin of the present invention is characterized by containing the following acrylic resin (A) and cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70.
  • Acrylic resin (A) used in the present invention includes a methacrylic resin.
  • the resin is preferably composed of 50 to 100% by mass of methyl methacrylate units and 0 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric anhydride, and these can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin (A) used in the retardation film of the present invention has a weight average molecular weight (Mw) of 75,000 to 1100000 from the viewpoint of mechanical strength as a film and fluidity when producing the film, 150,000 to 400,000.
  • the weight average molecular weight of the acrylic resin (A) of the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • the production method of the acrylic resin (A) of the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide can be used, an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. Furthermore, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resin (A) of the present invention Commercially available products can also be used as the acrylic resin (A) of the present invention.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • acrylic particles (C) may be contained in the retardation film.
  • a PTFE membrane filter having a pore size smaller than the average particle size of the acrylic particles (C) is obtained. It is preferable that the weight of the insoluble matter that has been filtered and collected by filtration is 90% by mass or more of the acrylic particles (C) added to the retardation film.
  • the acrylic particles (C) used in the present invention are preferably acrylic particles (C) having a layer structure of two or more layers, and particularly preferably the following multilayered acrylic granular composite.
  • the method of blending the acrylic particles (C) with the acrylic resin (A) is not particularly limited. After the acrylic resin (A) and other optional components are previously blended, usually at 200 to 350 ° C. A method of uniformly kneading with a single-screw or twin-screw extruder while adding acrylic particles is preferably used.
  • a solution in which acrylic particles are dispersed in advance is added to and mixed with a solution (dope solution) in which acrylic resin (A) is dissolved, and acrylic particles (C) and other optional additives are dissolved and mixed.
  • a method such as adding the solution in-line can be used.
  • acrylic particles (C) of the present invention commercially available particles can also be used.
  • the retardation film of the present invention preferably contains 0.1 to 5% by mass of acrylic particles (C) with respect to the total mass of the resin constituting the film.
  • the cellulose ester resin (B) of the present invention has a total substitution degree (T) of acyl groups of 2.0 to 3.0 and a substitution degree of acyl groups of 3 to 7 carbon atoms of 1.2 to 3.0.
  • T total substitution degree
  • the cellulose ester resin (B) is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferably used. .
  • the resin is not sufficiently compatible with the acrylic resin (A), and haze becomes a problem.
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease.
  • the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.
  • the compatibility is lowered and the haze is increased.
  • the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3. If it is 0.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less.
  • acyl group is meant to include those having a substituent.
  • the carbon number of the acyl group includes a substituent of the acyl group.
  • the number of substituents X substituted on the aromatic ring is preferably 0 to 5. Also in this case, it is necessary to pay attention so that the degree of substitution of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0.
  • the benzyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
  • substituents substituted on the aromatic ring may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (eg, naphthalene, indene, indane, phenanthrene, quinoline) , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound eg, naphthalene, indene, indane, phenanthrene, quinoline
  • Isoquinoline chromene, chroman, phthalazine, acridine, indole, indoline, etc.
  • cellulose ester resin (B) a structure having at least one kind of a substituted or unsubstituted aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used in the cellulose resin of the present invention.
  • the substitution degree of the cellulose ester resin (B) of the present invention is such that the total substitution degree (T) of the acyl group is 2.00 to 3.00, the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3 .0.
  • the total substitution degree of acyl groups other than an acyl group having 3 to 7 carbon atoms, that is, an acetyl group and an acyl group having 8 or more carbon atoms is 1.3 or less.
  • the cellulose ester resin (B) of the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, particularly cellulose acetate. Propionate and cellulose propionate are more preferable.
  • cellulose ester resins (B) are cellulose acetate propionate and cellulose acetate butyrate, and those having an acyl group having 3 or 4 carbon atoms as a substituent are preferable.
  • the portion not substituted with an acyl group is usually present as a hydroxyl group (hydroxyl group). These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin (B) of the present invention is in the range of 75,000 to 320,000, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and in the range of 100,000 to 24,000. Some are preferred, and those having 160000 to 240,000 are particularly preferred.
  • the weight average molecular weight can be measured by the above GPC method.
  • alicyclic polyolefin examples include ZEONOR, ZEONEX (manufactured by ZEON Corporation), ARTON (manufactured by JSR Corporation), APPEL (manufactured by Mitsui Chemicals), and TOPAS (manufactured by Polyplastics Corporation). Can be used.
  • acrylic resin As the acrylic resin, the above acrylic resin (A) can be used alone, or one obtained by copolymerizing maleic acid (for example, Delpet 980N (manufactured by Asahi Kasei Chemicals Corporation)) can be used. .
  • methyl methacrylate-styrene copolymer for example, Dianal BR52 (manufactured by Mitsubishi Rayon Co., Ltd.) can be used.
  • the retardation film of the present invention can contain a plasticizer, an ultraviolet absorber, a retardation control agent, a matting agent, and an antioxidant as other additives.
  • thermoplastic resin glass transition temperature
  • a sample conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH is performed with a differential scanning calorimeter (DSC 6220, manufactured by Seiko Instruments Inc.).
  • the film is heated from room temperature to 220 ° C. at a rate of 20 ° C./minute, once cooled to room temperature, then heated again under the same conditions, and the calorific value change obtained by the second temperature increase is used.
  • the high temperature side and the low temperature side are point A and B, respectively, and linear approximation is performed in each of the temperature range above point A and the temperature range below point B.
  • Tg be the midpoint of each intersection with the straight line l1 passing through the inflection point between B.
  • the method for producing a retardation film of the present invention is a production method by a solution casting method, and is characterized by having a step of stretching 11 to 100% in the film transport direction.
  • the stretch rate is 1000 mm before stretching but is 1100 mm after stretching
  • the stretch rate is 10% (stretch ratio 1.1 times).
  • Dissolution step In an organic solvent mainly composed of a good solvent for the acrylic resin (A) and the cellulose ester resin (B), the acrylic resin (A), the cellulose ester resin (B), the resin (D), It is a step of dissolving the additive while stirring to form a dope, or a step of mixing the additive solution with the acrylic resin (A) or cellulose ester resin (B) solution to form a dope.
  • a method carried out at normal pressure a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544
  • Various melting methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure as described in JP-A-11-21379, and the like.
  • a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
  • the acrylic resin (A) and cellulose ester resin (B) in the dope are preferably in the range of 15 to 45% by mass in total.
  • An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
  • a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml it is preferable to use.
  • the aggregate remaining when the fine particles are dispersed and the aggregate generated when the main dope is added are only aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 ⁇ m and a drainage time of 10 to 25 sec / 100 ml. Can be removed.
  • the concentration of fine particles is sufficiently thinner than that of the additive solution, so that the aggregates do not stick together during filtration and the filtration pressure does not increase rapidly.
  • FIG. 1 is a diagram schematically showing a dope preparation step, a casting step, and a drying step of a solution casting manufacturing method preferable for the present invention.
  • Large agglomerates are removed from the acrylic fine particle charging vessel 41 by the filter 44 and fed to the stock vessel 42.
  • the acrylic fine particle additive solution is added from the stock kettle 42 to the main dope dissolving kettle 1. Thereafter, the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.
  • the main dope may contain about 10 to 50% by weight of recycled material. Since the return material contains acrylic fine particles, it is preferable to control the addition amount of the acrylic fine particle addition liquid in accordance with the addition amount of the return material.
  • Recycled material is a product obtained by finely pulverizing a retardation film, which is generated when a retardation film is formed, and is obtained by cutting out both sides of the film, or a retardation film original that is speculated out due to scratches, etc. used.
  • those obtained by previously kneading and pelletizing acrylic resin and acrylic fine particles can be preferably used.
  • An endless metal belt 31 such as a stainless steel belt, or a rotating metal drum, which feeds the dope through a liquid feed pump (for example, a pressurized metering gear pump) to the pressure die 30 and transfers it indefinitely.
  • a liquid feed pump for example, a pressurized metering gear pump
  • the pressure die includes a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C.
  • Peeling step This is a step of peeling the web where the solvent has evaporated on the metal support at the peeling position (peeling roll 33).
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of residual solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support from the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • the web peeled in the peeling step is the next step and is sent to the stretching step which is a feature of the present invention.
  • the stretching step of the present invention is characterized by having a step of stretching a stretching ratio of 11 to 100% in the transport direction.
  • the stretching ratio of 11 to 100% in this conveying direction refers to the rate at which the web that has undergone the peeling process is stretched before winding, and the value calculated from the rotation speed of the peeling roll and the rotation speed of the winding roll. Using. For example, in FIG. 1, the rotation speed of the peeling roll 33 and the rotation speed of the take-up roll 42 are calculated.
  • the process of stretching in the transport direction has at least two stages, and the process of stretching in the direction perpendicular to the transport direction (TD stretching process) is between the at least two stages.
  • the stretching ratio M1 in the upstream process from the TD stretching process and all stretching ratios M2 in the downstream process from the TD stretching process are expressed by the following formulas (2) and (3). It is preferable that the above is satisfied.
  • the stretching rate in the step of stretching in the direction perpendicular to the transport direction (TD stretching step) is T1
  • it is more preferable that the following formula (4) is satisfied.
  • a first MD stretching step 34 and a second MD stretching step 39 are provided from the upstream process of the manufacturing process, and a TD stretching process 36 is provided therebetween. You may have the 3rd MD extending process or more further downstream of the 2nd MD extending process.
  • MD stretching is performed by adjusting the tension of a roll such as a transport roll.
  • the stretching ratio M1 in the first MD stretching process is calculated from the rotational speed of the peeling roll 33 and the rotational speed of the TD stretching process starting roll 37.
  • the stretching ratio M2 in the second MD stretching process is calculated from the rotational speed of the final roll 38 in the TD stretching process and the rotational speed of the take-up roll 42. The same applies when the third MD stretching step or more is included.
  • M1 ⁇ M2 and M1 + M2 ⁇ 11 are preferable, but M1 / M2 ⁇ 1.5 to 3, and 30 ⁇ M1 + M2 ⁇ 12 are more preferable. Further, 30 ⁇ M1 ⁇ 10, 10 ⁇ M2 ⁇ 2 is preferable.
  • the residual solvent amount is in the range of 20 to 100% by mass, the temperature is in the range of 15 to 70 ° C., and the tension is 50 to 300 N / m.
  • the residual solvent amount is in the range of 1 to 30% by mass
  • the temperature is in the range of 50 to 160 ° C.
  • the tension is 50 to 300 N / m.
  • a TD stretching step is included after the first MD stretching step.
  • TD stretching is preferably performed with a tenter stretching apparatus.
  • the stretching ratio T1 in the TD stretching step is calculated by comparing the film (web) width in the TD stretching step starting roll 37 and the film (web) width in the TD stretching step final roll 38.
  • tenter stretching apparatus it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter.
  • TD stretching step it is also preferable to intentionally create compartments having different temperatures in order to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
  • the residual solvent amount of the web in the TD stretching step is preferably 20 to 100% by mass at the start of stretching, and drying is preferably performed while applying a tenter until the residual solvent amount of the web becomes 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably Tg + 10 to Tg + 90 ° C., more preferably Tg + 15 to Tg + 70 ° C., and most preferably Tg + 20 to Tg + 50 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film, and the temperature distribution in the width direction in each stretching step is preferably within ⁇ 5 ° C., and ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding step This is a step of winding the phase difference film by the winder 42 after the residual solvent amount in the web is 2% by mass or less, and the residual solvent amount is 0.4% by mass or less. A film having good stability can be obtained.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the retardation film of the present invention is preferably a long film. Specifically, the retardation film shows a thickness of about 100 m to 5000 m, and is usually in the form of a roll.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the thickness of the retardation film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and 30 to 80 ⁇ m. It is particularly preferred.
  • the polarizing plate used in the present invention can be produced by a general method. That is, it is preferable that an adhesive layer is provided on the back side of the retardation film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • surface treatment such as corona treatment can be performed.
  • adhesion with the polarizer can be improved.
  • the film may be used on the other surface, or another polarizing plate protective film may be used.
  • cellulose ester films for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KV8UY-HA, KV8UX-RHA, KV8UX-RHA Co., Ltd.
  • cycloolefin films for example, ZEONOR film (manufactured by ZEON Corporation), ARTON film (manufactured by JSR Corporation)
  • ZEONOR film manufactured by ZEON Corporation
  • ARTON film manufactured by JSR Corporation
  • a polarizer which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • an adhesive layer having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the adhesive layer is used. It is preferable to use a curable adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the adhesive layer is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture curable urethane adhesives, polyether methacrylate types, Examples include anaerobic adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instant adhesives, acrylate-peroxide-based two-component instant adhesives, and the like.
  • the adhesive may be a one-component type, or a type in which two or more components are mixed before use.
  • the adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • the concentration of the adhesive solution may be appropriately determined depending on the film thickness after bonding, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • ⁇ Liquid crystal display device> By incorporating the polarizing plate bonded with the retardation film of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced.
  • the polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate according to the present invention is a reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, etc. Preferably used.
  • the produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and it was peeled off from the stainless steel band support with a peeling roll at a peeling tension of 180 N / m.
  • the peeled web was MD stretched at a transport tension of 180 N / m while evaporating the solvent at 60 ° C. in the first MD stretching step, then slit to 1.6 m width, and transported to a tenter (TD stretching step). At this time, the stretching ratio M1 in the transport direction from the peeling roll to the TD stretching process starting roll was 15%.
  • the above is charged into the reactor and the reactor is replaced with nitrogen gas.
  • the reaction was allowed to proceed at 70 ° C. until converted to.
  • the obtained aqueous solution was used as a suspending agent.
  • a solution in which 0.05 part by mass of the above suspending agent is dissolved in 165 parts by mass of ion-exchanged water is supplied to a stainless steel autoclave having a capacity of 5 liters and equipped with a baffle and a foudra-type stirring blade, and the system is filled with nitrogen gas. It stirred at 400 rpm, replacing.
  • Methacrylic acid 27 parts by weight Methyl methacrylate 73 parts by weight t-dodecyl mercaptan 1.2 parts by weight 2,2′-azobisisobutyronitrile 0.4 part by weight
  • the temperature was raised to 70 ° C. and the internal temperature was 70 ° C.
  • the time at which the polymerization was reached was set as the polymerization start time, and the polymerization was continued for 180 minutes.
  • the reaction system was cooled, the polymer was separated, washed, and dried according to the usual method to obtain a bead-shaped copolymer.
  • the polymerization rate of this copolymer was 97%, and the weight average molecular weight was 130,000.
  • the produced retardation film was divided into 10 equal parts with the width and each thickness was measured with a contact-type film thickness meter manufactured by Mitutoyo Corporation.
  • the thickness unevenness was calculated as ⁇ (T MAX ⁇ T MIN ) / T AVE ⁇ ⁇ 100, and evaluated as follows.
  • Thickness variation is 3% or less
  • Thickness variation is 3% to 5%
  • Thickness unevenness is 5% or more (phase difference fluctuation)
  • the average refractive index and film thickness d of the film constituent material measured with an Abbe refractometer were input, and the values of in-plane retardation (Ro) and thickness direction retardation (Rth) were obtained. Further, the values of the three-dimensional refractive indexes nx, ny, and nz are calculated by the above device.

Abstract

Disclosed is a production method for a phase contrast film that is resistant to high temperature and high humidity and has an excellent long-term storing capability. The phase contrast film production method is a method for producing, by means of solution casting, a phase contrast film having, as the main component, a thermoplastic resin with an elastic modulus of at least 1000 MPa at 80°C and 5% RH, wherein the elastic modulus (E1) at (Tg-10)°C and the elastic modulus (E2) at (Tg+10)°C satisfy formula (1) below, and is characterized by involving a process for extending the phase contrast film at an extension rate of 11 to 100% in the direction of conveyance of the film. (1) 500 ? E1/E2 ? 10

Description

位相差フィルムの製造方法、該フィルムを用いた偏光板および液晶表示装置Method for producing retardation film, polarizing plate using the film, and liquid crystal display device
 本発明は、透明で、高温高湿耐性があり、長期保存性に優れる位相差フィルムの製造方法、および該フィルムを用いた偏光板、液晶表示装置に関する。 The present invention relates to a method for producing a retardation film that is transparent, resistant to high temperature and high humidity, and excellent in long-term storage, and a polarizing plate and a liquid crystal display device using the film.
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で需要が拡大している。通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板および光学補償のための位相差フィルムで構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の偏光板保護フィルムで挟まれた構成となっている。 Demand for liquid crystal display devices is expanding for applications such as liquid crystal televisions and personal computer liquid crystal displays. Usually, a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, two polarizing plates provided on both sides thereof, and a retardation film for optical compensation. Each polarizing plate has a configuration in which a polarizer (also referred to as a polarizing film or a polarizing film) is sandwiched between two polarizing plate protective films.
 この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられているが、特定の樹脂、例えば脂環式ポリオレフィン、セルロースアセテートプロピオネート、アクリル樹脂-セルロースエステル樹脂混合樹脂等を選択することにより位相差フィルムとしての機能も付与されている(特許文献1、2)。 As this polarizing plate protective film, a cellulose triacetate film is usually used, but by selecting a specific resin such as alicyclic polyolefin, cellulose acetate propionate, acrylic resin-cellulose ester resin mixed resin, etc. The function as a phase difference film is also given (patent documents 1 and 2).
 位相差フィルムの位相差は、通常フィルムの製造工程に延伸工程を設けることにより、適宜所望の値が調整されている。その延伸工程では、搬送方向の延伸(縦延伸、MD延伸ともいう)および搬送方向に垂直な方向の延伸(横延伸、幅延伸、TD延伸ともいう)を適宜組み合わせて位相差が調整されるが、熱溶融流延法においては、MD延伸、TD延伸ともに延伸率の大きい場合であっても安定な延伸ができるものの、溶液流延法においては、MD延伸の延伸率を大きくするとツレが発生し平面性が劣化したり製造工程において破断し易いという課題があった。 The retardation of the retardation film is appropriately adjusted to a desired value by providing a stretching process in the normal film manufacturing process. In the stretching step, the phase difference is adjusted by appropriately combining stretching in the transport direction (also referred to as longitudinal stretching or MD stretching) and stretching in the direction perpendicular to the transport direction (also referred to as lateral stretching, width stretching, or TD stretching). In the hot melt casting method, stable stretching can be performed even when both the MD stretching and TD stretching have a large stretching ratio. However, in the solution casting method, if the stretching ratio of the MD stretching is increased, a slippage occurs. There existed a subject that flatness deteriorated or it was easy to fracture | rupture in a manufacturing process.
 一方、フィルムの平面性は、一般に熱溶融流延法よりも溶液流延法による方が高い品質が得られるため、平面性が特に重要視される位相差フィルムにおいては、溶液流延法によるTD延伸を主たる延伸として位相差の調整が図られてきた(特許文献2)。 On the other hand, the flatness of the film is generally higher by the solution casting method than by the hot melt casting method. Therefore, in the retardation film in which the flatness is particularly important, the TD by the solution casting method is used. Adjustment of phase difference has been attempted with stretching as the main stretching (Patent Document 2).
 近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。 Recent advances in technology have accelerated the increase in size of liquid crystal display devices and diversified uses for liquid crystal display devices. For example, it can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage.
 このような用途においては、屋外での利用が想定されるため、偏光子の高温高湿による劣化が問題になり、位相差フィルムを兼ねる偏光板保護フィルムには、より高い耐高温高湿性および長期位相差安定性(長期保存性ともいう)が求められているが、上記の位相差フィルムではいまだ不十分であった。 In such an application, since it is assumed that it is used outdoors, deterioration of the polarizer due to high temperature and high humidity becomes a problem, and the polarizing plate protective film that also serves as the retardation film has higher resistance to high temperature and high humidity and long-term use. Although retardation stability (also referred to as long-term storage stability) is required, the above retardation film is still insufficient.
特開2007-2027号公報JP 2007-2027 A 特開2009-179731号公報JP 2009-179731 A
 従って、本発明は上記課題に鑑み成されたものであり、その目的は、高温高湿耐性があり、長期保存性に優れた位相差フィルムの製造方法、および該フィルムを用いた偏光板、液晶表示装置を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and its object is to provide a method for producing a retardation film having high-temperature and high-humidity resistance and excellent long-term storage stability, and a polarizing plate and a liquid crystal using the film. It is to provide a display device.
 本発明においては、ある特定の物性を有する樹脂を主たる成分とする位相差フィルムを、本発明の条件で製造することにより、上記課題が解決されることを見出した。 In the present invention, it has been found that the above-mentioned problems can be solved by producing a retardation film mainly composed of a resin having a specific physical property under the conditions of the present invention.
 本発明の目的は、下記によって達成された。 The object of the present invention was achieved by the following.
 1.80℃5%RHにおける弾性率が1000MPa以上であり、(Tg-10)℃での弾性率E1と、(Tg+10)℃での弾性率E2が下記式(1)を満たす熱可塑性樹脂を主成分とする位相差フィルムを、溶液流延法によって製造する方法であって、フィルムの搬送方向に延伸率11~100%延伸する工程を有することを特徴とする位相差フィルムの製造方法。
(1)500≧E1/E2≧10
 2.前記熱可塑性樹脂が、アクリル樹脂を主成分とすることを特徴とする前記1に記載の位相差フィルムの製造方法。
1. A thermoplastic resin having an elastic modulus at 80 ° C. and 5% RH of 1000 MPa or more, an elastic modulus E1 at (Tg−10) ° C., and an elastic modulus E2 at (Tg + 10) ° C. satisfying the following formula (1): A method for producing a retardation film having a main component by a solution casting method, the method comprising a step of stretching a stretching ratio of 11 to 100% in a film transport direction.
(1) 500 ≧ E1 / E2 ≧ 10
2. 2. The method for producing a retardation film as described in 1 above, wherein the thermoplastic resin contains an acrylic resin as a main component.
 3.前記熱可塑性樹脂が、アクリル樹脂(A)およびセルロースエステル樹脂(B)を95:5~30:70の質量比で含有するものであることを特徴とする前記1または2に記載の位相差フィルムの製造方法。 3. 3. The retardation film as described in 1 or 2 above, wherein the thermoplastic resin contains an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70. Manufacturing method.
 4.前記搬送方向に延伸する工程が少なくとも2段の工程を有し、該2段の工程の間には搬送方向に垂直な方向に延伸する工程を有するものであり、該少なくとも2段の工程のうち上流工程での延伸率M1と下流工程での延伸率M2とが、下記式(2)、(3)を満たすことを特徴とする前記1~3いずれかの項に記載の位相差フィルムの製造方法。
(2)M1≧M2、(3)M1+M2≧11
 5.前記搬送方向に垂直な方向に延伸する工程での延伸率をT1とした場合に、下記式(4)を満たすことを特徴とする前記4に記載の位相差フィルムの製造方法。
(4)15≧(M1+M2)/T1≧0.5
 6.前記1~5いずれかの項に記載の位相差フィルムの製造方法によって作製した位相差フィルムを用いたことを特徴とする偏光板。
4). The step of stretching in the transport direction has at least two steps, and the step of stretching in a direction perpendicular to the transport direction is between the two steps, of the at least two steps The production of the retardation film as described in any one of 1 to 3 above, wherein the stretch ratio M1 in the upstream process and the stretch ratio M2 in the downstream process satisfy the following formulas (2) and (3): Method.
(2) M1 ≧ M2, (3) M1 + M2 ≧ 11
5. 5. The method for producing a retardation film according to 4, wherein the following formula (4) is satisfied when a stretching ratio in the step of stretching in a direction perpendicular to the transport direction is T1.
(4) 15 ≧ (M1 + M2) /T1≧0.5
6). A polarizing plate using a retardation film produced by the method for producing a retardation film as described in any one of 1 to 5 above.
 7.前記6に記載の偏光板を用いたことを特徴とする液晶表示装置。 7. 7. A liquid crystal display device using the polarizing plate described in 6 above.
 本発明によれば、高温高湿耐性があり、長期保存性に優れた位相差フィルムの製造方法、および該フィルムを用いた偏光板、液晶表示装置を提供することができた。 According to the present invention, it was possible to provide a method for producing a retardation film having high-temperature and high-humidity resistance and excellent long-term storage stability, and a polarizing plate and a liquid crystal display device using the film.
本発明に用いられる溶液流延装置の概略図である。It is the schematic of the solution casting apparatus used for this invention.
 本発明は、ある特定の物性を有する樹脂を主たる成分とする位相差フィルムを、本発明の条件で製造することにより、本発明の課題が解決されることを見出したものである。 The present invention has been found to solve the problems of the present invention by producing a retardation film containing a resin having a specific physical property as a main component under the conditions of the present invention.
 この本発明の効果は、溶液流延法では平面性に優れたフィルムが作製可能となり、さらにガラス転移温度(以下Tg)を跨いで著しく物性(弾性率)が変化する樹脂は、第1のMD延伸する工程で生じた歪みが、TD延伸にて一旦解消され、さらに第2のMD延伸をしても、絶対的な残留歪みが小さくなることから発揮されるものと推測される。 The effect of the present invention is that a film excellent in flatness can be produced by the solution casting method, and the resin whose physical property (elastic modulus) changes remarkably across the glass transition temperature (hereinafter referred to as Tg) is the first MD. It is presumed that the strain generated in the stretching step is once eliminated by TD stretching, and even if the second MD stretching is performed, the absolute residual strain is reduced, so that the strain is exhibited.
 また、主たる延伸方向とフィルムの製造方向が一致していることから、ロール状態で保存されたフィルムの歪み緩和が、位相差の保存状態での変化に影響しにくいことも本発明の効果を発揮する要因と推測している。
<熱可塑性樹脂>
 本発明の効果を発揮することができる樹脂は、80℃5%RHにおける弾性率が1000MPa以上であり、(Tg-10)℃での弾性率E1と、(Tg+10)℃での弾性率E2が下記式(1)を満たす熱可塑性樹脂を主成分とする樹脂である。
(1)500≧E1/E2≧10
 ここで主成分とは、熱可塑性樹脂を構成する樹脂のうち50質量%以上であるものをいう。
In addition, since the main stretching direction and the film production direction coincide with each other, the strain relaxation of the film stored in the roll state hardly affects the change in the storage state of the retardation. I guess it is a factor.
<Thermoplastic resin>
The resin capable of exhibiting the effect of the present invention has an elastic modulus at 80 ° C. and 5% RH of 1000 MPa or more, and has an elastic modulus E1 at (Tg−10) ° C. and an elastic modulus E2 at (Tg + 10) ° C. It is a resin whose main component is a thermoplastic resin that satisfies the following formula (1).
(1) 500 ≧ E1 / E2 ≧ 10
Here, the main component means a resin constituting 50% by mass or more of the resin constituting the thermoplastic resin.
 このような樹脂としては、脂環式ポリオレフィン、アクリル樹脂、メチルメタクリレート-スチレン共重合体、アクリル樹脂-セルロースエステル樹脂混合樹脂が挙げられ、特にアクリル樹脂-セルロースエステル樹脂混合樹脂が好ましい。 Examples of such resins include alicyclic polyolefins, acrylic resins, methyl methacrylate-styrene copolymers, and acrylic resin-cellulose ester resin mixed resins, and acrylic resin-cellulose ester resin mixed resins are particularly preferable.
 20≦E1/E2≦400であることがさらに好ましい。 More preferably, 20 ≦ E1 / E2 ≦ 400.
 なお、弾性率は、サンプルを23℃55%RHで24hr調湿し、それぞれの条件下(80℃5%RH、(Tg+10)℃5%RH、(Tg-10)℃5%RH)、JIS K7127の方法に準じて測定した。引っ張り試験機は(株)ORIENTEC製テンシロンを使用し、試験片は100mm×10mmでチャック間距離50mm、試験速度は100mm/分で行ったものである。 Note that the elastic modulus was conditioned at 23 ° C. and 55% RH for 24 hours, under the respective conditions (80 ° C. 5% RH, (Tg + 10) ° C. 5% RH, (Tg−10) ° C. 5% RH), JIS It measured according to the method of K7127. Tensillon made by ORIENTEC Co., Ltd. was used as the tensile tester, the test piece was 100 mm × 10 mm, the distance between chucks was 50 mm, and the test speed was 100 mm / min.
 〈アクリル樹脂-セルロースエステル樹脂混合樹脂〉
 本発明のアクリル樹脂-セルロースエステル樹脂混合樹脂は、下記のアクリル樹脂(A)およびセルロースエステル樹脂(B)を95:5~30:70の質量比の範囲内で含有することを特徴とする。
<Acrylic resin-cellulose ester resin mixed resin>
The acrylic resin-cellulose ester resin mixed resin of the present invention is characterized by containing the following acrylic resin (A) and cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70.
 《アクリル樹脂(A)》
 本発明に用いられるアクリル樹脂(A)には、メタクリル樹脂も含まれる。樹脂としては、メチルメタクリレート単位50~100質量%、およびこれと共重合可能な他の単量体単位0~50質量%からなるものが好ましい。
<< Acrylic resin (A) >>
The acrylic resin (A) used in the present invention includes a methacrylic resin. The resin is preferably composed of 50 to 100% by mass of methyl methacrylate units and 0 to 50% by mass of other monomer units copolymerizable therewith.
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, and glutaric anhydride, and these can be used alone or in combination of two or more.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.
 本発明の位相差フィルムに用いられるアクリル樹脂(A)は、フィルムとしての機械的強度、フィルムを生産する際の流動性の点から重量平均分子量(Mw)が75000~1100000であり、好ましくは、150000~400000である。 The acrylic resin (A) used in the retardation film of the present invention has a weight average molecular weight (Mw) of 75,000 to 1100000 from the viewpoint of mechanical strength as a film and fluidity when producing the film, 150,000 to 400,000.
 本発明のアクリル樹脂(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。 The weight average molecular weight of the acrylic resin (A) of the present invention can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 本発明のアクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイできおよびアゾ系のものを用いることができ、また、レドックス系とすることもできる。 The production method of the acrylic resin (A) of the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide can be used, an azo type can be used, and a redox type can also be used.
 重合温度については、懸濁または乳化重合では30~100℃、塊状又は溶液重合では80~160℃で実施しうる。さらに、生成共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. Furthermore, in order to control the reduced viscosity of the produced copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 この分子量とすることで、耐熱性と脆性の両立を図ることができる。 By using this molecular weight, both heat resistance and brittleness can be achieved.
 本発明のアクリル樹脂(A)としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 Commercially available products can also be used as the acrylic resin (A) of the present invention. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 〈アクリル粒子(C)〉
 本発明においては、位相差フィルム中にアクリル粒子(C)を含有させても良い。
<Acrylic particles (C)>
In the present invention, acrylic particles (C) may be contained in the retardation film.
 例えば、作製した位相差フィルムを所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子(C)の平均粒子径より小さな孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶解物の重さが、位相差フィルムに添加したアクリル粒子(C)の90質量%以上あることが好ましい。 For example, when a predetermined amount of the prepared retardation film is collected, dissolved in a solvent, stirred, and sufficiently dissolved and dispersed, a PTFE membrane filter having a pore size smaller than the average particle size of the acrylic particles (C) is obtained. It is preferable that the weight of the insoluble matter that has been filtered and collected by filtration is 90% by mass or more of the acrylic particles (C) added to the retardation film.
 本発明に用いられるアクリル粒子(C)は、2層以上の層構造を有するアクリル粒子(C)であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。 The acrylic particles (C) used in the present invention are preferably acrylic particles (C) having a layer structure of two or more layers, and particularly preferably the following multilayered acrylic granular composite.
 本発明においてアクリル樹脂(A)に、アクリル粒子(C)を配合する方法には、特に制限はなく、アクリル樹脂(A)とその他の任意成分を予めブレンドした後、通常200~350℃において、アクリル粒子を添加しながら一軸又は二軸押出機により均一に溶融混練する方法が好ましく用いられる。 In the present invention, the method of blending the acrylic particles (C) with the acrylic resin (A) is not particularly limited. After the acrylic resin (A) and other optional components are previously blended, usually at 200 to 350 ° C. A method of uniformly kneading with a single-screw or twin-screw extruder while adding acrylic particles is preferably used.
 また、アクリル粒子を予め分散した溶液を、アクリル樹脂(A)を溶解した溶液(ドープ液)に添加して混合する方法や、アクリル粒子(C)およびその他の任意の添加剤を溶解、混合した溶液をインライン添加する等の方法を用いることができる。 In addition, a solution in which acrylic particles are dispersed in advance is added to and mixed with a solution (dope solution) in which acrylic resin (A) is dissolved, and acrylic particles (C) and other optional additives are dissolved and mixed. A method such as adding the solution in-line can be used.
 本発明のアクリル粒子(C)としては、市販のものも使用することができ、例えば、三菱レイヨン社製メタブレンW-341(C2)、ケミスノーMR-2G(C3)、MS-300X(C4)(綜研化学(株)製)、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。 As the acrylic particles (C) of the present invention, commercially available particles can also be used. For example, METABRENE W-341 (C2), Chemisnow MR-2G (C3), MS-300X (C4) (manufactured by Mitsubishi Rayon Co., Ltd.) "Kane Ace" manufactured by Kaneken Chemical Co., Ltd., "Paraloid" manufactured by Kureha Chemical Industry Co., Ltd., "Acryloid" manufactured by Rohm and Haas Co., Ltd. Parapet SA ″ and the like can be mentioned, and these can be used alone or in combination of two or more.
 本発明の位相差フィルムにおいて、該フィルムを構成する樹脂の総質量に対して、0.1~5質量%のアクリル粒子(C)を含有することが好ましい。 The retardation film of the present invention preferably contains 0.1 to 5% by mass of acrylic particles (C) with respect to the total mass of the resin constituting the film.
 《セルロースエステル樹脂(B)》
 本発明のセルロースエステル樹脂(B)は、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0であることが好ましい。即ち、セルロースエステル樹脂(B)は炭素数が3~7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
<< Cellulose ester resin (B) >>
The cellulose ester resin (B) of the present invention has a total substitution degree (T) of acyl groups of 2.0 to 3.0 and a substitution degree of acyl groups of 3 to 7 carbon atoms of 1.2 to 3.0. Preferably there is. That is, the cellulose ester resin (B) is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used, and a propionyl group is particularly preferably used. .
 セルロースエステル樹脂(B)の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位のヒドロキシル基(水酸基)の残度が1.0を上回る場合には、アクリル樹脂(A)と十分に相溶せずヘイズが問題となる。 When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups (hydroxyl groups) at the 2, 3 and 6-positions of the cellulose ester molecule is more than 1.0. In this case, the resin is not sufficiently compatible with the acrylic resin (A), and haze becomes a problem.
 また、アシル基の総置換度が2.0以上であっても、炭素数が3~7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られないか、脆性が低下することとなる。例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘイズが上昇する。また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、脆性が低下し、所望の特性が得られない。 In addition, even when the total substitution degree of the acyl group is 2.0 or more, if the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease. For example, even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1. When it is less than 2, the compatibility is lowered and the haze is increased. Even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 8 or more carbon atoms is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2. In such a case, the brittleness is lowered and desired characteristics cannot be obtained.
 本発明のセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0~3.0であり、炭素数が3~7のアシル基の置換度が1.2~3.0であれば問題ないが、炭素数が3~7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。 In the cellulose ester resin (B) of the present invention, the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3. If it is 0.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less.
 本発明において、「アシル基」とは、さらに置換基を有するものも包含する意味である。但し、アシル基の炭素数は、アシル基の置換基を包含するものである。 In the present invention, “acyl group” is meant to include those having a substituent. However, the carbon number of the acyl group includes a substituent of the acyl group.
 上記セルロースエステル樹脂(B)が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0~5個であることが好ましい。この場合も、置換基を含めた炭素数が3~7であるアシル基の置換度が1.2~3.0となるように留意が必要である。 When the cellulose ester resin (B) has an aromatic acyl group as a substituent, the number of substituents X substituted on the aromatic ring is preferably 0 to 5. Also in this case, it is necessary to pay attention so that the degree of substitution of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0.
 例えば、ベンジル基は炭素数が7になる為、炭素を含む置換基を有する場合は、ベンジル基としての炭素数は8以上となり、炭素数が3~7のアシル基には含まれないこととなる。 For example, since the benzyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
 さらに、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。 Further, when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (eg, naphthalene, indene, indane, phenanthrene, quinoline) , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
 上記セルロースエステル樹脂(B)においては、置換もしくは無置換の炭素数3~7の脂肪族アシル基の少なくとも1種を有する構造を有することが本発明のセルロース樹脂に用いる構造として用いられる。 In the cellulose ester resin (B), a structure having at least one kind of a substituted or unsubstituted aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used in the cellulose resin of the present invention.
 本発明のセルロースエステル樹脂(B)の置換度は、アシル基の総置換度(T)が2.00~3.00、炭素数が3~7のアシル基の置換度が1.2~3.0である。 The substitution degree of the cellulose ester resin (B) of the present invention is such that the total substitution degree (T) of the acyl group is 2.00 to 3.00, the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3 .0.
 また、炭素数が3~7のアシル基以外、即ちアセチル基と炭素数が8以上のアシル基の置換度の総和が1.3以下であることが好ましい構造である。 Further, it is preferable that the total substitution degree of acyl groups other than an acyl group having 3 to 7 carbon atoms, that is, an acetyl group and an acyl group having 8 or more carbon atoms is 1.3 or less.
 本発明のセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、特にセルロースアセテートプロピオネート、セルロースプロピオネートがさらに好ましい。 The cellulose ester resin (B) of the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, particularly cellulose acetate. Propionate and cellulose propionate are more preferable.
 これらの中で特に好ましいセルロースエステル樹脂(B)は、セルロースアセテートプロピオネートやセルロースアセテートブチレートであり、炭素原子数3又は4のアシル基を置換基として有するものが好ましい。 Among these, particularly preferable cellulose ester resins (B) are cellulose acetate propionate and cellulose acetate butyrate, and those having an acyl group having 3 or 4 carbon atoms as a substituent are preferable.
 アシル基で置換されていない部分は、通常ヒドロキシル基(水酸基)として存在しているものである。これらは公知の方法で合成することができる。 The portion not substituted with an acyl group is usually present as a hydroxyl group (hydroxyl group). These can be synthesized by known methods.
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。 Incidentally, the substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
 本発明のセルロースエステル樹脂(B)の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000~320000の範囲であり、100000~240000の範囲内であることが好ましく、160000~240000のものが特に好ましい。 The weight average molecular weight (Mw) of the cellulose ester resin (B) of the present invention is in the range of 75,000 to 320,000, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and in the range of 100,000 to 24,000. Some are preferred, and those having 160000 to 240,000 are particularly preferred.
 重量平均分子量は、上記GPCによる方法によって測定することができる。 The weight average molecular weight can be measured by the above GPC method.
 〈脂環式ポリオレフィン〉
 脂環式ポリオレフィンとしては、例えば、ゼオノア、ゼオネックス(日本ゼオン(株)製)、ARTON(JSR(株)製)、アペル(三井化学(株)製)、TOPAS(ポリプラスチックス(株)製)を使用することができる。
<Alicyclic polyolefin>
Examples of the alicyclic polyolefin include ZEONOR, ZEONEX (manufactured by ZEON Corporation), ARTON (manufactured by JSR Corporation), APPEL (manufactured by Mitsui Chemicals), and TOPAS (manufactured by Polyplastics Corporation). Can be used.
 〈アクリル樹脂〉
 アクリル樹脂としては、上記アクリル樹脂(A)を単独で使用することができ、またマレイン酸を共重合させたもの(例えば、デルペット980N(旭化成ケミカルズ(株)製))を使用することができる。
<acrylic resin>
As the acrylic resin, the above acrylic resin (A) can be used alone, or one obtained by copolymerizing maleic acid (for example, Delpet 980N (manufactured by Asahi Kasei Chemicals Corporation)) can be used. .
 〈メチルメタクリレート-スチレン共重合体〉
 メチルメタクリレート-スチレン共重合体としては、例えば、ダイヤナールBR52(三菱レイヨン(株)製)を使用することができる。
<Methyl methacrylate-styrene copolymer>
As the methyl methacrylate-styrene copolymer, for example, Dianal BR52 (manufactured by Mitsubishi Rayon Co., Ltd.) can be used.
 〈その他の添加剤〉
 本発明の位相差フィルムには、その他の添加剤として、可塑剤、紫外線吸収剤、位相差制御剤、マット剤、酸化防止剤を含有させることができる。
<Other additives>
The retardation film of the present invention can contain a plasticizer, an ultraviolet absorber, a retardation control agent, a matting agent, and an antioxidant as other additives.
 なお、熱可塑性樹脂のTg(ガラス転移温度)は、下記の方法により測定した。 In addition, Tg (glass transition temperature) of the thermoplastic resin was measured by the following method.
 23℃55%RHの雰囲気下で24時間調室した試料を、示差走査熱量計(セイコーインスツル株式会社製DSC6220)にて行う。フィルムを室温から220℃まで20℃/分の割合で昇温させ、一度室温まで冷却したのち、再び同条件で昇温を行い、二度目の昇温で得た発熱量変化を用いる。温度-発熱曲線の2点の屈曲点のうち、高温側と低温側それぞれを点A・Bとし、点A以上の温度範囲と点Bの以下の温度範囲のそれぞれで直線近似し、点A・B間の変曲点を通過する直線l1とのそれぞれの交点の中点をTgとする。なお、変曲点が読み取れない場合には、l1の代わりに、点A・B間のみを直線近似した線l2を用いる。
<製造方法>
 本発明の位相差フィルムの製造方法は、溶液流延法による製造方法であって、フィルムの搬送方向に延伸率11~100%延伸する工程を有することを特徴とする。
A sample conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH is performed with a differential scanning calorimeter (DSC 6220, manufactured by Seiko Instruments Inc.). The film is heated from room temperature to 220 ° C. at a rate of 20 ° C./minute, once cooled to room temperature, then heated again under the same conditions, and the calorific value change obtained by the second temperature increase is used. Of the two inflection points of the temperature-heat generation curve, the high temperature side and the low temperature side are point A and B, respectively, and linear approximation is performed in each of the temperature range above point A and the temperature range below point B. Let Tg be the midpoint of each intersection with the straight line l1 passing through the inflection point between B. When the inflection point cannot be read, a line l2 obtained by linearly approximating only between the points A and B is used instead of l1.
<Manufacturing method>
The method for producing a retardation film of the present invention is a production method by a solution casting method, and is characterized by having a step of stretching 11 to 100% in the film transport direction.
 ここで延伸率は、例えば延伸前は1000mmの長さがあったものが、延伸後に1100mmとなっていた場合、延伸率10%(延伸倍率1.1倍)という。 Here, for example, when the stretch rate is 1000 mm before stretching but is 1100 mm after stretching, the stretch rate is 10% (stretch ratio 1.1 times).
 以下、本発明の位相差フィルムの好ましい製造方法について説明する。 Hereinafter, a preferred method for producing the retardation film of the present invention will be described.
 1)溶解工程
 アクリル樹脂(A)、セルロースエステル樹脂(B)に対する良溶媒を主とする有機溶媒に、溶解釜中で該アクリル樹脂(A)、セルロースエステル樹脂(B)、樹脂(D)、添加剤を攪拌しながら溶解しドープを形成する工程、あるいは該アクリル樹脂(A)、セルロースエステル樹脂(B)溶液に、添加剤溶液を混合してドープを形成する工程である。
1) Dissolution step In an organic solvent mainly composed of a good solvent for the acrylic resin (A) and the cellulose ester resin (B), the acrylic resin (A), the cellulose ester resin (B), the resin (D), It is a step of dissolving the additive while stirring to form a dope, or a step of mixing the additive solution with the acrylic resin (A) or cellulose ester resin (B) solution to form a dope.
 アクリル樹脂(A)、セルロースエステル樹脂(B)の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、または特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolving the acrylic resin (A) and the cellulose ester resin (B), a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544 Various melting methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure as described in JP-A-11-21379, and the like. Although it can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
 ドープ中のアクリル樹脂(A)と、セルロースエステル樹脂(B)は、計15~45質量%の範囲であることが好ましい。溶解中または後のドープに添加剤を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 The acrylic resin (A) and cellulose ester resin (B) in the dope are preferably in the range of 15 to 45% by mass in total. An additive is added to the dope during or after dissolution to dissolve and disperse, then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
 濾過は捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることが好ましい。この方法では、微粒子分散時に残存する凝集物や主ドープ添加時発生する凝集物を、捕集粒子径0.5~5μmでかつ濾水時間10~25sec/100mlの濾材を用いることで凝集物だけ除去できる。 For the filtration, it is preferable to use a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml. In this method, the aggregate remaining when the fine particles are dispersed and the aggregate generated when the main dope is added are only aggregated by using a filter medium having a collected particle diameter of 0.5 to 5 μm and a drainage time of 10 to 25 sec / 100 ml. Can be removed.
 主ドープでは微粒子の濃度も添加液に比べ十分に薄いため、濾過時に凝集物同士がくっついて急激な濾圧上昇することもない。 In the main dope, the concentration of fine particles is sufficiently thinner than that of the additive solution, so that the aggregates do not stick together during filtration and the filtration pressure does not increase rapidly.
 図1は本発明に好ましい溶液流延製造方法のドープ調製工程、流延工程及び乾燥工程を模式的に示した図である。アクリル微粒子仕込釜41より濾過器44で大きな凝集物を除去し、ストック釜42へ送液する。 FIG. 1 is a diagram schematically showing a dope preparation step, a casting step, and a drying step of a solution casting manufacturing method preferable for the present invention. Large agglomerates are removed from the acrylic fine particle charging vessel 41 by the filter 44 and fed to the stock vessel 42.
 その後、ストック釜42より主ドープ溶解釜1へアクリル微粒子添加液を添加する。その後主ドープ液は主濾過器3にて濾過され、これに紫外線吸収剤添加液が16よりインライン添加される。 Thereafter, the acrylic fine particle additive solution is added from the stock kettle 42 to the main dope dissolving kettle 1. Thereafter, the main dope solution is filtered by the main filter 3, and an ultraviolet absorbent additive solution is added in-line from 16 to this.
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。返材にはアクリル微粒子が含まれているため、返材の添加量に合わせてアクリル微粒子添加液の添加量をコントロールすることが好ましい。 In many cases, the main dope may contain about 10 to 50% by weight of recycled material. Since the return material contains acrylic fine particles, it is preferable to control the addition amount of the acrylic fine particle addition liquid in accordance with the addition amount of the return material.
 返材とは、位相差フィルムを細かく粉砕した物で、位相差フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした位相差フィルム原反が使用される。 Recycled material is a product obtained by finely pulverizing a retardation film, which is generated when a retardation film is formed, and is obtained by cutting out both sides of the film, or a retardation film original that is speculated out due to scratches, etc. used.
 また、予めアクリル樹脂とアクリル微粒子を混練してペレット化したものも、好ましく用いる事ができる。 Also, those obtained by previously kneading and pelletizing acrylic resin and acrylic fine particles can be preferably used.
 2)流延工程
 ドープを送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する無端の金属ベルト31、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt 31, such as a stainless steel belt, or a rotating metal drum, which feeds the dope through a liquid feed pump (for example, a pressurized metering gear pump) to the pressure die 30 and transfers it indefinitely. This is a step of casting the dope from the pressure die slit to the casting position on the support.
 ダイの口金部分のスリット形状を調整出来、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、何れも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. The pressure die includes a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/または支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が乾燥効率が良く好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc., but the back side liquid heat transfer method is dry. High efficiency and preferable.
 又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 Also, a method of combining them is preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置(剥離ロール33)で剥離する工程である。
4) Peeling step This is a step of peeling the web where the solvent has evaporated on the metal support at the peeling position (peeling roll 33).
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、更に好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C., more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損なったり、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. When peeling off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be impaired, and slippage and vertical stripes are likely to occur due to peeling tension, so the balance between economic speed and quality The amount of residual solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 尚、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、更には、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support from the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 前記剥離工程で剥離されたウェブは次工程であって本発明の特徴である延伸工程に送られる。 The web peeled in the peeling step is the next step and is sent to the stretching step which is a feature of the present invention.
 5)延伸工程
 本発明の延伸工程は、搬送方向に延伸率11~100%延伸する工程を有するものであることを特徴とする。この搬送方向に延伸率11~100%延伸するとは、剥離工程をでたウェブが巻き取りまでに延伸される率をいい、剥離ロールの回転速度と巻き取りロールの回転速度から算出される値を用いた。例えば、図1では、剥離ロール33の回転速度と巻き取りロール42の回転速度から算出する。
5) Stretching Step The stretching step of the present invention is characterized by having a step of stretching a stretching ratio of 11 to 100% in the transport direction. The stretching ratio of 11 to 100% in this conveying direction refers to the rate at which the web that has undergone the peeling process is stretched before winding, and the value calculated from the rotation speed of the peeling roll and the rotation speed of the winding roll. Using. For example, in FIG. 1, the rotation speed of the peeling roll 33 and the rotation speed of the take-up roll 42 are calculated.
 そして搬送方向に延伸する工程(MD延伸工程)が少なくとも2段の工程を有し、該少なくとも2段の工程の間には搬送方向に垂直な方向に延伸する工程(TD延伸工程)を有するものであり、該2段の工程のうちTD延伸工程よりも上流工程での延伸率M1と、TD延伸工程よりも下流工程での全ての延伸率M2とが、下記式(2)、(3)を満たすことを好ましい特徴とする。
(2)M1≧M2、(3)M1+M2≧11
 また、前記搬送方向に垂直な方向に延伸する工程(TD延伸工程)での延伸率をT1とした場合に、下記式(4)であることがさらに好ましい。
(4)15≧(M1+M2)/T1≧0.5
 図1に示すように、製造工程の上流工程から第1MD延伸工程34および第2MD延伸工程39を有し、その間にTD延伸工程36を有している。第2MD延伸工程の下流にさらに第3MD延伸工程以上を有していてもよい。
The process of stretching in the transport direction (MD stretching process) has at least two stages, and the process of stretching in the direction perpendicular to the transport direction (TD stretching process) is between the at least two stages. Of the two stages, the stretching ratio M1 in the upstream process from the TD stretching process and all stretching ratios M2 in the downstream process from the TD stretching process are expressed by the following formulas (2) and (3). It is preferable that the above is satisfied.
(2) M1 ≧ M2, (3) M1 + M2 ≧ 11
Further, when the stretching rate in the step of stretching in the direction perpendicular to the transport direction (TD stretching step) is T1, it is more preferable that the following formula (4) is satisfied.
(4) 15 ≧ (M1 + M2) /T1≧0.5
As shown in FIG. 1, a first MD stretching step 34 and a second MD stretching step 39 are provided from the upstream process of the manufacturing process, and a TD stretching process 36 is provided therebetween. You may have the 3rd MD extending process or more further downstream of the 2nd MD extending process.
 本発明においては、MD延伸は搬送ロール等ロールの張力を調整することにより行う。 In the present invention, MD stretching is performed by adjusting the tension of a roll such as a transport roll.
 第1MD延伸工程での延伸率M1は、剥離ロール33の回転速度とTD延伸工程起点ロール37の回転速度から算出する。同様に第2MD延伸工程での延伸率M2は、TD延伸工程最終ロール38の回転速度と巻き取りロール42の回転速度から算出する。第3MD延伸工程以上を有している場合も同様である。 The stretching ratio M1 in the first MD stretching process is calculated from the rotational speed of the peeling roll 33 and the rotational speed of the TD stretching process starting roll 37. Similarly, the stretching ratio M2 in the second MD stretching process is calculated from the rotational speed of the final roll 38 in the TD stretching process and the rotational speed of the take-up roll 42. The same applies when the third MD stretching step or more is included.
 本発明においては、M1≧M2、M1+M2≧11であることが好ましいが、さらに好ましくはM1/M2≧1.5~3、30≧M1+M2≧12である。また30≧M1≧10、10≧M2≧2が好ましい。 In the present invention, M1 ≧ M2 and M1 + M2 ≧ 11 are preferable, but M1 / M2 ≧ 1.5 to 3, and 30 ≧ M1 + M2 ≧ 12 are more preferable. Further, 30 ≧ M1 ≧ 10, 10 ≧ M2 ≧ 2 is preferable.
 第1MD延伸工程では、残留溶媒量が20~100質量%の範囲であり、温度が15~70℃の温度範囲で、50~300N/mの張力で行うのが好ましい。 In the first MD stretching step, it is preferable that the residual solvent amount is in the range of 20 to 100% by mass, the temperature is in the range of 15 to 70 ° C., and the tension is 50 to 300 N / m.
 第2MD延伸工程では、残留溶媒量が1~30質量%の範囲であり、50~160℃の温度範囲で、50~300N/mの張力で行うのが好ましい。 In the second MD stretching step, it is preferable that the residual solvent amount is in the range of 1 to 30% by mass, the temperature is in the range of 50 to 160 ° C., and the tension is 50 to 300 N / m.
 本発明においては、第1MD延伸工程の後にTD延伸工程を有する。TD延伸は、テンター延伸装置で行うのが好ましい。TD延伸工程における延伸率T1は、TD延伸工程起点ロール37におけるフィルム(ウェブ)幅とTD延伸工程最終ロール38におけるフィルム(ウェブ)幅を比較することにより算出する。 In the present invention, a TD stretching step is included after the first MD stretching step. TD stretching is preferably performed with a tenter stretching apparatus. The stretching ratio T1 in the TD stretching step is calculated by comparing the film (web) width in the TD stretching step starting roll 37 and the film (web) width in the TD stretching step final roll 38.
 本発明においては、15≧(M1+M2)/T1≧0.5であることが好ましいが、より好ましくは、10≧(M1+M2)/T1≧0.6である。30≧T1≧0.1が好ましい。 In the present invention, it is preferable that 15 ≧ (M1 + M2) /T1≧0.5, but more preferably 10 ≧ (M1 + M2) /T1≧0.6. 30 ≧ T1 ≧ 0.1 is preferable.
 テンター延伸装置は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。 As the tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter.
 また、TD延伸工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 In the TD stretching step, it is also preferable to intentionally create compartments having different temperatures in order to improve planarity. It is also preferable to provide a neutral zone between different temperature zones so that the zones do not interfere with each other.
 TD延伸工程でのウェブの残留溶媒量は、延伸開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、更に好ましくは5質量%以下である。 The residual solvent amount of the web in the TD stretching step is preferably 20 to 100% by mass at the start of stretching, and drying is preferably performed while applying a tenter until the residual solvent amount of the web becomes 10% by mass or less. More preferably, it is 5% by mass or less.
 テンター延伸を行う場合の乾燥温度は、Tg+10~Tg+90℃が好ましく、Tg+15~Tg+70℃が更に好ましく、Tg+20~Tg+50℃が最も好ましい。 In the tenter stretching, the drying temperature is preferably Tg + 10 to Tg + 90 ° C., more preferably Tg + 15 to Tg + 70 ° C., and most preferably Tg + 20 to Tg + 50 ° C.
 延伸工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、各延伸工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the stretching step, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film, and the temperature distribution in the width direction in each stretching step is preferably within ± 5 ° C., and ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってから位相差フィルムとして巻き取り機42により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることが出来る。
6) Winding step This is a step of winding the phase difference film by the winder 42 after the residual solvent amount in the web is 2% by mass or less, and the residual solvent amount is 0.4% by mass or less. A film having good stability can be obtained.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明の位相差フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The retardation film of the present invention is preferably a long film. Specifically, the retardation film shows a thickness of about 100 m to 5000 m, and is usually in the form of a roll. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明の位相差フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。
<偏光板>
 本発明に用いられる偏光板は一般的な方法で作製することが出来る。すなわち、本発明の位相差フィルムの裏面側に接着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
The thickness of the retardation film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 μm, more preferably 25 to 100 μm, and 30 to 80 μm. It is particularly preferred.
<Polarizing plate>
The polarizing plate used in the present invention can be produced by a general method. That is, it is preferable that an adhesive layer is provided on the back side of the retardation film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
 また、必要に応じてコロナ処理などの表面処理を行うこともできる。表面処理することにより、偏光子との接着性を改善することができる。もう一方の面には該フィルムを用いても、別の偏光板保護フィルムを用いてもよい。 Also, if necessary, surface treatment such as corona treatment can be performed. By performing the surface treatment, adhesion with the polarizer can be improved. The film may be used on the other surface, or another polarizing plate protective film may be used.
 例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KV8UY-HA、KV8UX-RHA、以上コニカミノルタオプト(株)製)、シクロオレフィンフィルム(例えば、ゼオノアフィルム(日本ゼオン社製)、ARTONフィルム(JSR社製))等が好ましく用いられる。 For example, commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KV8UY-HA, KV8UX-RHA, KV8UX-RHA Co., Ltd.), cycloolefin films (for example, ZEONOR film (manufactured by ZEON Corporation), ARTON film (manufactured by JSR Corporation)) and the like are preferably used.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 上記接着層に用いられる接着剤としては、接着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である接着層が用いられていることが好ましく、接着層を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型接着剤が好適に用いられる。 As the adhesive used in the adhesive layer, an adhesive layer having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 Pa to 1.0 × 10 9 Pa in at least a part of the adhesive layer is used. It is preferable to use a curable adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the adhesive layer is applied and bonded.
 具体例としては、例えば、ウレタン系接着剤、エポキシ系接着剤、水性高分子-イソシアネート系接着剤、熱硬化型アクリル接着剤等の硬化型接着剤、湿気硬化ウレタン接着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性接着剤、シアノアクリレート系の瞬間接着剤、アクリレートとペルオキシド系の2液型瞬間接着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture curable urethane adhesives, polyether methacrylate types, Examples include anaerobic adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instant adhesives, acrylate-peroxide-based two-component instant adhesives, and the like.
 上記接着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。また上記接着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。 The adhesive may be a one-component type, or a type in which two or more components are mixed before use. The adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
 上記接着剤液の濃度は、接着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。
<液晶表示装置>
 本発明の位相差フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来る。本発明に係る偏光板は、前記粘着層等を介して液晶セルに貼合する。
The concentration of the adhesive solution may be appropriately determined depending on the film thickness after bonding, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
<Liquid crystal display device>
By incorporating the polarizing plate bonded with the retardation film of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced. The polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
 本発明に係る偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。 The polarizing plate according to the present invention is a reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, etc. Preferably used.
 特に画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。また、色ムラ、ギラツキや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。 Especially in the case of a large-screen display device having a screen of 30 or more types, particularly 30 to 54 type, there is no white spot at the periphery of the screen and the effect is maintained for a long time. In addition, there was little color unevenness, glare and wavy unevenness, and the eyes were not tired even during long-time viewing.
<位相差フィルムの作製>
 <位相差フィルム1(以下、R1)の作製>
 (ドープ液1組成)
 ダイヤナールBR85(三菱レイヨン(株)製)      70質量部
 CAP:セルロースアセテートプロピオネート
  (アシル基総置換度2.75、アセチル基置換度0.20、
  プロピオニル基置換度2.55、Mw=200000)  30質量部
 メチレンクロライド                  300質量部
 エタノール                       40質量部
 上記組成物を、加熱しながら十分に溶解し、ドープ液1を作製した。
<Production of retardation film>
<Preparation of Retardation Film 1 (hereinafter R1)>
(Dope solution 1 composition)
Dianar BR85 (Mitsubishi Rayon Co., Ltd.) 70 parts by mass CAP: cellulose acetate propionate (acyl group total substitution degree 2.75, acetyl group substitution degree 0.20,
Propionyl group substitution degree 2.55, Mw = 200000) 30 parts by mass Methylene chloride 300 parts by mass Ethanol 40 parts by mass The above composition was sufficiently dissolved while heating to prepare Dope Solution 1.
 この作製したドープ液を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、剥離張力180N/mでステンレスバンド支持体上から剥離ロールによって剥離した。 The produced dope solution was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and it was peeled off from the stainless steel band support with a peeling roll at a peeling tension of 180 N / m.
 剥離したウェブを第1MD延伸工程において60℃で溶媒を蒸発させながら搬送張力180N/mでMD延伸し、その後1.6m幅にスリットし、テンター(TD延伸工程)へと搬送した。この時、剥離ロールからTD延伸工程起点ロールまでの搬送方向の延伸率M1は15%であった。 The peeled web was MD stretched at a transport tension of 180 N / m while evaporating the solvent at 60 ° C. in the first MD stretching step, then slit to 1.6 m width, and transported to a tenter (TD stretching step). At this time, the stretching ratio M1 in the transport direction from the peeling roll to the TD stretching process starting roll was 15%.
 その後、テンターで幅方向に1.15倍(延伸率T1:15%)に延伸しながら、145℃の乾燥温度(Tg+25℃)で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。 Then, it was dried at a drying temperature of 145 ° C. (Tg + 25 ° C.) while being stretched 1.15 times in the width direction (stretching ratio T1: 15%) with a tenter. At this time, the residual solvent amount when starting stretching with a tenter was 10%.
 テンターで延伸後、第2MD延伸工程において130℃で緩和を行った後、120℃で多数のロールで搬送張力100N/mの力で搬送させながら乾燥させ、1.5m幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径15.24cmコアに巻き取り、位相差フィルムR1を得た。この時、TD延伸工程起点ロールから巻き取りロールまでの搬送方向の延伸率は8%であった。 After stretching with a tenter, after relaxing at 130 ° C in the second MD stretching step, it was dried while being transported with a number of rolls at 120 ° C with a transport tension of 100 N / m, slit to 1.5 m width, Was subjected to a knurling process having a width of 10 mm and a height of 5 μm, and wound around a core having an initial tension of 220 N / m and a final tension of 110 N / m, and an inner diameter of 15.24 cm, to obtain a retardation film R1. At this time, the stretching ratio in the transport direction from the TD stretching step starting roll to the take-up roll was 8%.
 以下、表1に記載のように素材を変更し、製膜時の剥離力や搬送張力を調整して、表1のような延伸倍率に設定し、位相差フィルムR1と同様にしてその他の位相差フィルム試料を作製した。なお、使用した素材は以下の通りである。 Hereinafter, the raw materials are changed as shown in Table 1, the peeling force and the transport tension at the time of film formation are adjusted, and the stretching ratio is set as shown in Table 1. A phase difference film sample was prepared. The materials used are as follows.
 また比較として、A:コニカミノルタタックKC8UX(コニカミノルタオプト(株)製)、B:フジタックTD(富士フイルム(株)製)、C:WO06/1323671実施例101に記載の位相差フィルム、D:同実施例111に記載の位相差フィルムを使用した。 For comparison, A: Konica Minolta Tack KC8UX (manufactured by Konica Minolta Opto Co., Ltd.), B: Fujitac TD (manufactured by Fuji Film Co., Ltd.), C: Retardation film described in Example 101 of WO06 / 1323671, D: The retardation film described in Example 111 was used.
 (各種樹脂)
 ダイヤナールBR85:アクリル樹脂(三菱レイヨン(株)製)
 MS:メチルメタクリレート-スチレン共重合体(質量比=60:40)、Mw100000
 ARTON:環状ポリオレフィンARTON-G7810(JSR(株)製)
 デルペット80N:ポリメチルメタクリレート(旭化成ケミカルズ(株)製)
 HAC:下記のようにして製造した。
(Various resins)
Dianar BR85: Acrylic resin (Mitsubishi Rayon Co., Ltd.)
MS: Methyl methacrylate-styrene copolymer (mass ratio = 60: 40), Mw 100000
ARTON: Cyclic polyolefin ARTON-G7810 (manufactured by JSR Corporation)
Delpet 80N: Polymethylmethacrylate (Asahi Kasei Chemicals Corporation)
HAC: Manufactured as follows.
 メチルメタクリレート                 20質量部
 アクリルアミド                    80質量部
 過硫酸カリウム                   0.3質量部
 イオン交換水                   1500質量部
 上記を反応器中に仕込み、反応器中を窒素ガスで置換しながら、単量体が完全に重合体に転化するまで、70℃に保ち反応を進行させた。得られた水溶液を懸濁剤とした。容量が5リットルで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、上記懸濁剤0.05質量部をイオン交換水165質量部に溶解した溶液を供給し、系内を窒素ガスで置換しながら400rpmで撹拌した。
Methyl methacrylate 20 parts by weight Acrylamide 80 parts by weight Potassium persulfate 0.3 part by weight Ion-exchanged water 1500 parts by weight The above is charged into the reactor and the reactor is replaced with nitrogen gas. The reaction was allowed to proceed at 70 ° C. until converted to. The obtained aqueous solution was used as a suspending agent. A solution in which 0.05 part by mass of the above suspending agent is dissolved in 165 parts by mass of ion-exchanged water is supplied to a stainless steel autoclave having a capacity of 5 liters and equipped with a baffle and a foudra-type stirring blade, and the system is filled with nitrogen gas. It stirred at 400 rpm, replacing.
 次に、下記仕込み組成の混合物質を、反応系を撹拌しながら添加した。 Next, a mixed substance having the following charge composition was added while stirring the reaction system.
 メタクリル酸                     27質量部
 メチルメタクリレート                 73質量部
 t-ドデシルメルカプタン              1.2質量部
 2,2′-アゾビスイソブチロニトリル        0.4質量部
 添加後、70℃まで昇温し、内温が70℃に達した時点を重合開始時点として、180分間保ち、重合を進行させた。
Methacrylic acid 27 parts by weight Methyl methacrylate 73 parts by weight t-dodecyl mercaptan 1.2 parts by weight 2,2′-azobisisobutyronitrile 0.4 part by weight The temperature was raised to 70 ° C. and the internal temperature was 70 ° C. The time at which the polymerization was reached was set as the polymerization start time, and the polymerization was continued for 180 minutes.
 その後、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行い、ビーズ状の共重合体を得た。この共重合体の重合率は97%であり、重量平均分子量は13万であった。 Thereafter, the reaction system was cooled, the polymer was separated, washed, and dried according to the usual method to obtain a bead-shaped copolymer. The polymerization rate of this copolymer was 97%, and the weight average molecular weight was 130,000.
 この共重合体に添加剤(NaOCH)を0.2質量%配合し、2軸押出機(TEX30(日本製鋼社製、L/D=44.5))を用いて、ホッパー部より窒素を10L/分の量でパージしながら、スクリュー回転数100rpm、原料供給量5kg/時、シリンダ温度290℃で分子内環化反応を行い、ペレットを作製し、80℃で8時間真空乾燥してアクリル樹脂HACを得た。HACの重量平均分子量(Mw)は130000、Tgは130℃であった。 Add 0.2% by mass of additive (NaOCH 3 ) to this copolymer and use a twin screw extruder (TEX30 (manufactured by Nippon Steel Co., Ltd., L / D = 44.5)) to add nitrogen from the hopper. While purging at a rate of 10 L / min, an intramolecular cyclization reaction is performed at a screw rotation speed of 100 rpm, a raw material supply rate of 5 kg / hour, and a cylinder temperature of 290 ° C. Resin HAC was obtained. The weight average molecular weight (Mw) of HAC was 130,000, and Tg was 130 ° C.
 位相差フィルム試料について下記の評価を行った。結果を表1、2に示す。
(ヘーズ)
 フィルム試料を、23℃、55%RHの空調室で24時間調湿した後、同条件下においてフィルム試料1枚をJIS K-7136に従って、ヘーズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。
(ツレ)
 作製した位相差フィルムに関して、フィルム外観を目視で評価し、以下の基準に従って評価した。
○:非常に平滑な平面性である
△:ややツレや皺、段が確認できる
×:はっきりとツレや皺、段が確認できる
(膜厚ムラ)
 23℃55%RHの雰囲気下において、作製した位相差フィルムを、幅手で10等分してそれぞれの厚さをミツトヨ(株)製 接触式膜厚計により測定し、これをフィルム巻き100m毎に10箇所、計100箇所の測定を行い、平均厚みTAVE、最大厚さTMAX、最小厚さTMINとした場合、
厚さムラ={(TMAX-TMIN)/TAVE}×100として算出し、下記のように評価した。
○:厚さムラが3%以下
△:厚さムラが3%~5%
×:厚さムラが5%以上
(位相差変動)
 自動複屈折計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下24時間放置したフィルムにおいて、同環境下、波長が589nmにおけるフィルムのリターデーション測定を行った。
The following evaluation was performed about the retardation film sample. The results are shown in Tables 1 and 2.
(Haze)
A film sample was conditioned in an air-conditioned room at 23 ° C. and 55% RH for 24 hours, and then one film sample was conditioned according to JIS K-7136 under the same conditions as a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.). ).
(Slip)
Regarding the produced retardation film, the film appearance was visually evaluated and evaluated according to the following criteria.
○: Very smooth flatness Δ: Slightly creased, wrinkled, and step can be confirmed ×: Clearly creased, wrinkled, and step can be confirmed (film thickness unevenness)
Under an atmosphere of 23 ° C. and 55% RH, the produced retardation film was divided into 10 equal parts with the width and each thickness was measured with a contact-type film thickness meter manufactured by Mitutoyo Corporation. When measuring the average thickness T AVE , maximum thickness T MAX , and minimum thickness T MIN ,
The thickness unevenness was calculated as {(T MAX −T MIN ) / T AVE } × 100, and evaluated as follows.
○: Thickness variation is 3% or less △: Thickness variation is 3% to 5%
X: Thickness unevenness is 5% or more (phase difference fluctuation)
Using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), in a film that was allowed to stand for 24 hours in an environment of 23 ° C. and 55% RH, the retardation of the film at a wavelength of 589 nm was measured in the same environment. went.
 アッベ屈折率計で測定したフィルム構成材料の平均屈折率と膜厚dを入力し、面内リターデーション(Ro)および厚み方向のリターデーション(Rth)の値を得た。また、上記装置によって3次元屈折率nx、ny、nzの値が算出される。
式(i)Ro=(nx-ny)×d
式(ii)Rth=((nx+ny)/2-nz)×d
(式中、フィルム面内の遅相軸方向の屈折率をnx、面内で遅相軸に直交する方向の屈折率をny、厚み方向の屈折率をnz、dは各々の厚み(nm)を表す。)
 ついで、40℃、95%RHで1000時間処理したのち同様に測定し、位相差値の変動を下記基準で3段階評価した。
・Roの変動
○:1nm未満
△:1以上2nm未満
×:2nm以上
・Rthの変動
○:2nm未満
△:2以上5nm未満
×:5nm以上
The average refractive index and film thickness d of the film constituent material measured with an Abbe refractometer were input, and the values of in-plane retardation (Ro) and thickness direction retardation (Rth) were obtained. Further, the values of the three-dimensional refractive indexes nx, ny, and nz are calculated by the above device.
Formula (i) Ro = (nx−ny) × d
Formula (ii) Rth = ((nx + ny) / 2−nz) × d
(In the formula, the refractive index in the slow axis direction in the film plane is nx, the refractive index in the direction perpendicular to the slow axis in the plane is ny, the refractive index in the thickness direction is nz, and d is each thickness (nm). Represents.)
Subsequently, after 1000 hours of treatment at 40 ° C. and 95% RH, the measurement was performed in the same manner, and the fluctuation of the retardation value was evaluated in three stages according to the following criteria.
・ Ro variation ○: less than 1 nm Δ: 1 to less than 2 nm ×: 2 nm or more ・ Rth variation ○: less than 2 nm Δ: 2 to less than 5 nm ×: 5 nm or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2から明らかなように、本発明の製造方法によるものは、高温高湿において長期保存性に優れていることがわかる。 As is clear from Tables 1 and 2, it can be seen that the production method of the present invention is excellent in long-term storage at high temperature and high humidity.
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストックタンク
 5、14 送液ポンプ
 8、16 導管
 10 添加剤仕込釜
 20 合流管
 21 混合機
 30 ダイ
 31 金属支持体
 32 ウェブ
 33 剥離ロール
 34 第1MD延伸工程
 35 第1MD延伸最終ロール
 36 TD延伸工程(テンター延伸)
 37 TD延伸工程起点ロール
 38 TD延伸工程最終ロール
 39 第2MD延伸工程
 40 第2MD延伸工程起点ロール
 41 第2MD延伸工程最終ロール
 42 巻き取りロール
DESCRIPTION OF SYMBOLS 1 Melting pot 3, 6, 12, 15 Filter 4, 13 Stock tank 5, 14 Liquid feed pump 8, 16 Conduit 10 Additive charging pot 20 Merge pipe 21 Mixer 30 Die 31 Metal support 32 Web 33 Peeling roll 34 First MD Stretching Step 35 First MD Stretching Final Roll 36 TD Stretching Step (Tenter Stretching)
37 TD stretching process starting roll 38 TD stretching process final roll 39 2nd MD stretching process 40 2nd MD stretching process starting roll 41 2nd MD stretching process final roll 42 Winding roll

Claims (7)

  1.  80℃5%RHにおける弾性率が1000MPa以上であり、(Tg-10)℃での弾性率E1と、(Tg+10)℃での弾性率E2が下記式(1)を満たす熱可塑性樹脂を主成分とする位相差フィルムを、溶液流延法によって製造する方法であって、フィルムの搬送方向に延伸率11~100%延伸する工程を有することを特徴とする位相差フィルムの製造方法。
    (1)500≧E1/E2≧10
    The main component is a thermoplastic resin having an elastic modulus at 80 ° C. and 5% RH of 1000 MPa or more, and an elastic modulus E1 at (Tg−10) ° C. and an elastic modulus E2 at (Tg + 10) ° C. satisfying the following formula (1) A method for producing a retardation film comprising a step of stretching a film with a stretching ratio of 11 to 100% in a film transport direction.
    (1) 500 ≧ E1 / E2 ≧ 10
  2.  前記熱可塑性樹脂が、アクリル樹脂を主成分とすることを特徴とする請求項1に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1, wherein the thermoplastic resin contains an acrylic resin as a main component.
  3.  前記熱可塑性樹脂が、アクリル樹脂(A)およびセルロースエステル樹脂(B)を95:5~30:70の質量比で含有するものであることを特徴とする請求項1または2に記載の位相差フィルムの製造方法。 3. The retardation according to claim 1, wherein the thermoplastic resin contains the acrylic resin (A) and the cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70. A method for producing a film.
  4.  前記搬送方向に延伸する工程が少なくとも2段の工程を有し、該2段の工程の間には搬送方向に垂直な方向に延伸する工程を有するものであり、該少なくとも2段の工程のうち上流工程での延伸率M1と下流工程での延伸率M2とが、下記式(2)、(3)を満たすことを特徴とする請求項1~3いずれかの項に記載の位相差フィルムの製造方法。
    (2)M1≧M2、(3)M1+M2≧11
    The step of stretching in the transport direction has at least two steps, and the step of stretching in a direction perpendicular to the transport direction is between the two steps, of the at least two steps The retardation film according to any one of claims 1 to 3, wherein the stretch ratio M1 in the upstream process and the stretch ratio M2 in the downstream process satisfy the following formulas (2) and (3): Production method.
    (2) M1 ≧ M2, (3) M1 + M2 ≧ 11
  5.  前記搬送方向に垂直な方向に延伸する工程での延伸率をT1とした場合に、下記式(4)を満たすことを特徴とする請求項4に記載の位相差フィルムの製造方法。
    (4)15≧(M1+M2)/T1≧0.5
    5. The method for producing a retardation film according to claim 4, wherein the following formula (4) is satisfied when a stretching ratio in the step of stretching in a direction perpendicular to the transport direction is T <b> 1.
    (4) 15 ≧ (M1 + M2) /T1≧0.5
  6.  請求項1~5いずれかの項に記載の位相差フィルムの製造方法によって作製した位相差フィルムを用いたことを特徴とする偏光板。 A polarizing plate using a retardation film produced by the method for producing a retardation film according to any one of claims 1 to 5.
  7.  請求項6に記載の偏光板を用いたことを特徴とする液晶表示装置。 A liquid crystal display device using the polarizing plate according to claim 6.
PCT/JP2010/067223 2009-11-26 2010-10-01 Production method for phase contrast film, and polarizer and liquid crystal display device using said film WO2011065124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543157A JPWO2011065124A1 (en) 2009-11-26 2010-10-01 Method for producing retardation film, polarizing plate using the film, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009268564 2009-11-26
JP2009-268564 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065124A1 true WO2011065124A1 (en) 2011-06-03

Family

ID=44066228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067223 WO2011065124A1 (en) 2009-11-26 2010-10-01 Production method for phase contrast film, and polarizer and liquid crystal display device using said film

Country Status (2)

Country Link
JP (1) JPWO2011065124A1 (en)
WO (1) WO2011065124A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136773A (en) * 2013-02-25 2013-07-11 Fujifilm Corp Acrylic film and method for manufacturing the same
JP2014024254A (en) * 2012-07-27 2014-02-06 Konica Minolta Inc Method for manufacturing optical film, polarizing plate and display device
JP2014177089A (en) * 2013-03-15 2014-09-25 Fujifilm Corp Film and method for producing film
JP2015227458A (en) * 2015-07-06 2015-12-17 富士フイルム株式会社 Acrylic film and production method thereof
JP2017025333A (en) * 2016-10-11 2017-02-02 富士フイルム株式会社 Acrylic film and method of manufacturing the same
JP2018017925A (en) * 2016-07-28 2018-02-01 住友化学株式会社 Polarizing plate
WO2019167471A1 (en) * 2018-02-27 2019-09-06 株式会社カネカ Resin composition and dope for film manufacturing by solution casting method
JP2020140217A (en) * 2020-06-10 2020-09-03 コニカミノルタ株式会社 Polarizing plate protection film and polarizing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014933A (en) * 2001-07-02 2003-01-15 Konica Corp Optical retardation film, method for manufacturing the same and composite polarizing plate
WO2009047924A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. Optical film
JP2009271284A (en) * 2008-05-07 2009-11-19 Konica Minolta Opto Inc Polarizing plate protective film, polarizing plate and liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014933A (en) * 2001-07-02 2003-01-15 Konica Corp Optical retardation film, method for manufacturing the same and composite polarizing plate
WO2009047924A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. Optical film
JP2009271284A (en) * 2008-05-07 2009-11-19 Konica Minolta Opto Inc Polarizing plate protective film, polarizing plate and liquid crystal display

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024254A (en) * 2012-07-27 2014-02-06 Konica Minolta Inc Method for manufacturing optical film, polarizing plate and display device
JP2013136773A (en) * 2013-02-25 2013-07-11 Fujifilm Corp Acrylic film and method for manufacturing the same
JP2014177089A (en) * 2013-03-15 2014-09-25 Fujifilm Corp Film and method for producing film
JP2015227458A (en) * 2015-07-06 2015-12-17 富士フイルム株式会社 Acrylic film and production method thereof
TWI718322B (en) * 2016-07-28 2021-02-11 日商住友化學股份有限公司 Polarizing plate
JP2018017925A (en) * 2016-07-28 2018-02-01 住友化学株式会社 Polarizing plate
CN107664785A (en) * 2016-07-28 2018-02-06 住友化学株式会社 Polarization plates
CN107664785B (en) * 2016-07-28 2022-05-10 住友化学株式会社 Polarizing plate
JP2017025333A (en) * 2016-10-11 2017-02-02 富士フイルム株式会社 Acrylic film and method of manufacturing the same
CN111788264A (en) * 2018-02-27 2020-10-16 株式会社钟化 Resin composition and liquid for film production based on solution casting method
JPWO2019167471A1 (en) * 2018-02-27 2021-02-04 株式会社カネカ Resin composition and doping for film production by solution casting method
WO2019167471A1 (en) * 2018-02-27 2019-09-06 株式会社カネカ Resin composition and dope for film manufacturing by solution casting method
JP7124050B2 (en) 2018-02-27 2022-08-23 株式会社カネカ Resin composition and dope for film production by solution casting method
CN111788264B (en) * 2018-02-27 2022-12-16 株式会社钟化 Resin composition and liquid for film production based on solution casting method
US11845820B2 (en) 2018-02-27 2023-12-19 Kaneka Corporation Resin composition and dope for use in film production by solution casting
JP2020140217A (en) * 2020-06-10 2020-09-03 コニカミノルタ株式会社 Polarizing plate protection film and polarizing plate

Also Published As

Publication number Publication date
JPWO2011065124A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP4379547B2 (en) Manufacturing method of optical film
WO2011065124A1 (en) Production method for phase contrast film, and polarizer and liquid crystal display device using said film
JP5545294B2 (en) Optical element
JP5040688B2 (en) Acrylic resin-containing film, polarizing plate and display device using the same
JP5234113B2 (en) Retardation film, polarizing plate, liquid crystal display
WO2009096071A1 (en) Film containing acrylic resin, polarizer comprising the same, and liquid-crystal display
WO2009139284A1 (en) Polarizing plate and liquid crystal display device
JP5533858B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP5397382B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP5533857B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
WO2011055590A1 (en) Protective film roll for liquid crystal polarization plate and manufacturing method thereof
WO2010116830A1 (en) Optical film
WO2013145560A1 (en) Method for producing optical film, optical film, polarizing plate, and liquid crystal display device
JP2012088358A (en) Optical film, polarizing plate, and liquid crystal display device
JP2011248094A (en) Optical film
JP5621785B2 (en) Manufacturing method of polarizing plate
WO2010116822A1 (en) Optical film, process for producing optical film, liquid crystal panel, and image display device
JP2013023522A (en) Acrylic resin-containing cellulose ester film and method of manufacturing the same
JP2011241264A (en) Optical film and method for producing optical film
JP2013023523A (en) Acrylic resin-containing cellulose ester film and method of manufacturing the same
JP5263299B2 (en) Optical film, polarizing plate, liquid crystal display device, and method of manufacturing optical film
JP2014139688A (en) Method of producing optical film, and optical film
WO2010064527A1 (en) Polarizing plate and liquid crystal display device using same
WO2013145559A1 (en) Method for producing acrylic resin-containing film, and crylic resin-containing film, polarizing plate and liquid crystal display
JPWO2010055740A1 (en) Optical film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543157

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832971

Country of ref document: EP

Kind code of ref document: A1