WO2014188807A1 - 燃料電池用セパレータの製造方法及び製造装置 - Google Patents

燃料電池用セパレータの製造方法及び製造装置 Download PDF

Info

Publication number
WO2014188807A1
WO2014188807A1 PCT/JP2014/060306 JP2014060306W WO2014188807A1 WO 2014188807 A1 WO2014188807 A1 WO 2014188807A1 JP 2014060306 W JP2014060306 W JP 2014060306W WO 2014188807 A1 WO2014188807 A1 WO 2014188807A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
elastic member
fuel cell
assembly
positioning
Prior art date
Application number
PCT/JP2014/060306
Other languages
English (en)
French (fr)
Inventor
沼尾 康弘
浩 宮岡
隆行 平尾
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480026662.4A priority Critical patent/CN105210221B/zh
Priority to CA2913316A priority patent/CA2913316C/en
Priority to EP14800588.7A priority patent/EP3001488B1/en
Priority to JP2015518151A priority patent/JP6115633B2/ja
Priority to US14/888,711 priority patent/US9793553B2/en
Publication of WO2014188807A1 publication Critical patent/WO2014188807A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for manufacturing a separator assembly used in a fuel cell formed by stacking fuel cells.
  • a fuel cell has a number of fuel cell cells each having a so-called membrane electrode assembly (hereinafter referred to as MEMBRANE ELECTRODE ASSEMBLY, hereinafter referred to as MEA) in which anode and cathode electrodes are bonded to both surfaces of an electrolyte membrane, and sandwiched between both surfaces by a corrugated separator. About 100 cells are stacked. In order to achieve a desired output, a fuel cell generally has a plurality of fuel cells stacked. Since the stacking mode affects power generation characteristics, research on positioning of each component during stacking is earnest. Has been done.
  • adjacent separators in adjacent fuel cells are energized when the corrugated shapes of the separators contact each other, but the corrugated shapes cannot be sufficiently contacted due to variation in shape, and are generated by the fuel cells.
  • a so-called spring-like member may be provided between adjacent separators to absorb the variation in the shape of the separators and suppress an increase in electrical resistance.
  • the separator is formed with a through-hole for circulating fuel, oxidant, and cooling fluid outside the corrugated shape. Therefore, in order to provide a through-hole for positioning in the separator, it is necessary to prevent the shape of the through-hole of fuel or the like from connecting even if there is a variation, and if you try to satisfy this, it will be more outward than the through-hole. A through hole will be provided in the case, and the outer shape of the separator must be expanded.
  • the spring member functions as long as it has an area that can be in contact with the corrugated shape when laminated, but when positioning by providing a through hole at a corner of a component as in Patent Document 1, Since the outer shape of the spring member is different from that of the spring member, the shape of the spring member must be expanded so that the outer shape is the same as that of the separator. In this case, there is a problem in that the component cost is increased.
  • the present invention has been made to solve the above-described problems, and the separator and the spring member are highly accurate even if the separator is not expanded for alignment or the outer shape of the spring member is not the same as that of the separator. It is an object of the present invention to provide a method and apparatus for manufacturing a separator assembly for a fuel cell that can be aligned with each other.
  • the present invention for achieving the above object is a method for producing a separator assembly for a fuel cell, which is provided adjacent to a membrane electrode assembly and forms a flow path for flowing a fluid.
  • the manufacturing method is smaller than a first separator having a concavo-convex shape in a cross-sectional shape, a second separator having a concavo-convex shape in a cross-sectional shape, and an outer shape in plan view when the first separator and the second separator are viewed from the surface direction. It has an outer shape, and has conductivity to maintain contact between the convex portion of the first separator and the convex portion of the second separator, which are arranged between the first separator and the second separator, and is opposed to each other by elastic deformation.
  • An elastic member is prepared (preparation process). Then, the first positioning member provided on the placement surface is brought into contact with the elastic member, thereby positioning the elastic member and placing it on the placement surface (first placement step). Then, the first separator is positioned with respect to the elastic member by bringing the second positioning member provided in an area outside the area where the first positioning member is provided on the mounting surface into contact with the first separator. And placed on the elastic member (second placing step). And the elastic member and the 1st separator which were positioned and overlapped are joined (joining process).
  • the second placement step is characterized in that the first separator is overlapped with the elastic member while the first positioning member for positioning the elastic member is retracted from the placement surface.
  • the manufacturing apparatus includes a mounting portion on which the elastic member, the first separator, and the second separator are mounted, and a first surface that is provided on the mounting surface of the mounting portion and positions the elastic member by contacting the elastic member.
  • the elastic member positioned by the positioning member and the second positioning member and a joint portion for joining the first separator.
  • the first positioning member can be retracted from the placement surface.
  • FIG. 4A is a plan view showing a state where the elastic member is positioned on the mounting table
  • FIG. 4B is a plan view showing a state where the separator is positioned on the mounting table.
  • FIG. 4 (B) shows the joining position of the separator and elastic member which are joined with the elastic member, and the joining position of the separators which make a pair.
  • 6 (A) to 6 (C) are cross-sectional views taken along line 6-6 of FIG. 4 (B), and are explanatory views showing a state in which a separator assembly is formed. It is a perspective view shown about the lamination process which laminates
  • FIG. 1 is a time chart showing a method for manufacturing a fuel cell separator assembly according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of an apparatus for forming a separator assembly constituting the fuel cell according to the embodiment.
  • 3 is a perspective view showing a mounting table for aligning the separator and the elastic member according to the embodiment
  • FIG. 4A is a plan view showing a state in which the elastic member is positioned on the mounting table
  • FIG. 5 is a plan view showing a state in which the separator is positioned on the mounting table.
  • FIG. 5 is a plan view of a separator constituting the fuel cell, and is a plan view showing a joining position between the separator and the elastic member joined to the elastic member and a joining position between the paired separators.
  • FIGS. 6A to 6C are cross-sectional views taken along line 6-6 in FIG. 4 and are explanatory views showing a state in which a separator assembly is formed.
  • FIG. 7 is a perspective view showing a stacking process for stacking the components of the fuel cell.
  • FIG. 8 is a perspective view showing the fuel cell according to the embodiment
  • FIG. 9 is an exploded perspective view showing the configuration of the fuel cell
  • FIG. 10 is an exploded perspective view showing a part of the configuration of the fuel cell
  • FIG. 11 is the embodiment. It is a perspective view which shows the separator assembly for fuel cells which concerns on.
  • FIG. 12 is a cross-sectional view showing a separator assembly and a membrane electrode assembly according to the embodiment
  • FIG. 13 is a perspective view showing a part of an elastic member constituting the separator assembly according to the embodiment.
  • an elastic member 30 is further disposed between the anode separator 13 and the cathode separator 14 that are disposed adjacent to the membrane electrode assembly 11, and the separator 13 and the separator 14. Are joined.
  • the manufacturing method of the separator assembly 12 includes a preparation process (step ST10), a first placement process (step ST20), a second placement process (step ST30), and a first joining process (joining).
  • Step ST40) corresponding to the process and a second joining step (corresponding to other joining step, Step ST50).
  • a fuel cell manufacturing method is obtained. Details will be described later.
  • the fuel cell 100 has a stacked body 10 in which a plurality of fuel cells 10a are stacked as a main component.
  • the fuel cell 10 a is configured by arranging separators 13 and 14 on both sides of the membrane electrode assembly 11.
  • an anode 11b is joined to one side of the electrolyte membrane 11a, and a cathode 11c is joined to the other side.
  • the separator assembly 12 includes two separators 13 and 14, and an elastic member 30 that contacts the corrugated shapes 13 g and 14 g of the separators 13 and 14 between the separators 13 and 14.
  • current collector plates 16 and 17 are provided at both ends in the stacking direction of the stacked body 10.
  • the fuel cell 100 has a housing 20.
  • the housing 20 includes a pair of fastening plates 21 and 22, reinforcing plates 23 and 24, and end plates 25 and 26 (corresponding to end members).
  • end plates 25 and 26 corresponding to end members
  • the separators 13 and 14 as shown in FIGS. 9 to 12, energize the electric power generated in the membrane electrode assembly 11 while isolating adjacent membrane electrode assemblies 11 in the plurality of stacked fuel cells 10 a. .
  • the separators 13 and 14 are classified into an anode side separator 13 (corresponding to a first separator) and a cathode side separator 14 (corresponding to a second separator).
  • the anode side separator 13 is in contact with the anode 11 b of the membrane electrode assembly 11.
  • the anode side separator 13 is made of a metal having a conductive material, and is formed in a thin plate shape larger than the anode 11b.
  • a corrugated shape having a plurality of concave and convex sections so as to form a flow path for separating a fuel gas (hydrogen) and a cooling fluid such as cooling water. 13g is provided in the corrugated shape 13g of the anode side separator 13, the closed space formed in contact with the anode 11b is used as an anode gas flow path 13h for supplying hydrogen to the anode 11b.
  • the closed space formed between the corrugated shape 13g of the anode-side separator 13 and the corrugated shape 14g of the cathode-side separator 14 via the elastic member 30 is used as a cooling fluid channel 13j for supplying cooling water.
  • the anode separator 13 has a rectangular shape, and has a through hole corresponding to the cathode gas supply port 13a, the cooling fluid supply port 13b, and the anode gas supply port 13c at one end in the longitudinal direction thereof. Similarly, the anode-side separator 13 has a through hole corresponding to the anode gas discharge port 13d, the cooling fluid discharge port 13e, and the cathode gas discharge port 13f at the other end in the longitudinal direction.
  • the cathode separator 14 is in contact with the cathode 11 c of the membrane electrode assembly 11.
  • the cathode side separator 14 is made of a metal having a conductive material, and is formed in a thin plate shape larger than the cathode 11c.
  • the cathode-side separator 14 has a plurality of concave and convex sections in cross section so as to form a flow path that separates the oxidant gas (air containing oxygen or pure oxygen) and cooling water.
  • the waveform shape 14g which consists of a shape is provided.
  • the closed space formed in contact with the cathode 11c is used as a cathode gas flow path 14h for supplying an oxidant gas to the cathode 11c.
  • the closed space formed between the corrugated shape 14g of the cathode-side separator 14 and the corrugated shape 13g of the anode-side separator 13 via the elastic member 30 is used as a cooling fluid channel 14j for supplying cooling water.
  • the elastic member 30 is formed by raising a part of a single steel plate or the like as an upstanding piece 32, and the parts raised from the steel plate are connected to both side surfaces of the base 31. Has been. Therefore, in the adjacent fuel cell 10a, the cooling fluid channel 13j of the anode separator 13 of one fuel cell 10a and the cooling fluid channel 14j provided in the cathode separator 14 of another fuel cell 10a are: A flow path for the cooling fluid connected to one is formed.
  • the cathode side separator 14 has a rectangular shape, and has a through hole corresponding to the cathode gas supply port 14a, the cooling fluid supply port 14b, and the anode gas supply port 14c at one end in the longitudinal direction. Similarly, the cathode separator 14 has a through hole corresponding to the anode gas discharge port 14d, the cooling fluid discharge port 14e, and the cathode gas discharge port 14f at the other end in the longitudinal direction.
  • Cathode gas supply ports 13a and 14a, cooling fluid supply ports 13b and 14b, anode gas supply ports 13c and 14c, anode gas discharge ports 13d and 14d, cooling fluid discharge ports 13e and 14e, and cathode gas discharge ports 13f and 14f are fuels. It corresponds to a separator circulation hole for circulating an oxidizing agent or a cooling fluid.
  • the cooling fluid supply ports 13b and 14b and the cooling fluid discharge ports 13e and 14e are used as shapes that allow the positioning member to be inserted when positioning with the elastic member 30 described later.
  • the cooling fluid supply ports 13b and 14b and the cooling fluid discharge ports 13e and 14e for alignment with the elastic member 30, the position with respect to the elastic member 30 can be obtained without providing a shape dedicated for alignment. Can be combined.
  • the elastic member 30 is deformed by itself as shown in FIG. 11 to FIG. 13 to vary the wavy shape of the flow path between the fuel gas and the cooling water in the anode side separator 13 and the cathode side separator 14 when the fuel cell 100 is assembled. Absorb. Further, the elastic member 30 expands by absorbing the displacement in the stacking direction caused by the thermal expansion of the separators 13 and 14 and the medium supplied with the membrane electrode assembly 11 during the operation of the fuel cell 100. The displacement in the stacking direction caused by the deformation is deformed and absorbed by itself. Accordingly, the stacked fuel battery cells 10a can be brought into close contact with each other by applying a high pressure. As the plurality of stacked fuel battery cells 10a are in close contact with each other, it is possible to suppress an increase in the conduction resistance between the fuel battery cells 10a and improve the power generation efficiency.
  • the elastic member 30 is made of a metal having electrical conductivity and is formed in a thin plate shape.
  • the elastic member 30 is disposed between the anode-side separator 13 and the cathode-side separator 14, and has a plurality of uprights provided in a lattice shape from a thin plate-like base material 31 and a base surface 31 a of the base material 31. And a piece 32. That is, the elastic member 30 is formed in a lattice shape with standing pieces 32 raised so as to form a cantilever after being punched into a U shape from a base material 31 corresponding to one thin plate.
  • FIG. 13 illustrates a part of the elastic member 30 shown in FIGS. 11 and 3 in order to express the configuration of the elastic member 30 in an easy-to-understand manner.
  • the standing piece 32 is, for example, in the width X of the fixed end portion 32 a on the proximal end side of the standing piece 32 provided on the base surface 31 a of the base material 31 and in one direction X ⁇ b> 1 from the fixed end portion 32 a. It is formed in a rectangular shape having the same width as that of the free end portion 32b on the front end side extending along the same.
  • the plurality of standing pieces 32 are formed, for example, in a plurality of rows along the other direction Y1 intersecting with the one direction X1 so that the directions of the free ends 32b are aligned. As shown in FIG.
  • the upright piece 32 has a free end portion 32 b on the distal end side extended from a fixed end portion 32 a on the proximal end side of the upright piece 32 provided on the base surface 31 a of the base material 31. It is made to contact
  • the membrane electrode assembly 11 shown in FIG. 12 generates electric power by chemically reacting the supplied oxygen and hydrogen.
  • the membrane electrode assembly 11 is formed by joining the anode 11b to one side of the electrolyte membrane 11a and joining the cathode 11c to the other side.
  • the membrane electrode assembly 11 is generally referred to as MEA (membrane electrode assembly).
  • the electrolyte membrane 11a is made of, for example, a solid polymer material and is formed in a thin plate shape.
  • the solid polymer material for example, a fluorine-based resin that conducts hydrogen ions and has good electrical conductivity in a wet state is used.
  • the anode 11b is formed by laminating an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is formed in a thin plate shape slightly smaller than the electrolyte membrane 11a.
  • the cathode 11c is formed by laminating an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is formed in a thin plate shape with the same size as the anode 11b.
  • the electrode catalyst layers of the anode 11b and the cathode 11c include an electrode catalyst in which a catalyst component is supported on a conductive carrier and a polymer electrolyte.
  • the gas diffusion layers of the anode 11b and the cathode 11c are formed of, for example, carbon cloth, carbon paper, or carbon felt woven with yarns made of carbon fibers having sufficient gas diffusibility and conductivity.
  • the MEA 11 includes a frame member 15.
  • the frame member 15 integrally holds the outer periphery of the laminated electrolyte membrane 11a, anode 11b, and cathode 11c.
  • the frame member 15 is made of, for example, a resin having electrical insulation, and has an outer shape similar to the outer shape of the outer peripheral portions of the separators 13 and 14.
  • the frame member 15 has a through hole corresponding to the cathode gas supply port 15a, the cooling fluid supply port 15b, and the anode gas supply port 15c at one end in the longitudinal direction.
  • the frame member 15 has through holes corresponding to the anode gas discharge port 15d, the cooling fluid discharge port 15e, and the cathode gas discharge port 15f at the other end in the longitudinal direction.
  • the gap between the separator 13 and the MEA 11 and the gap between the separator 14 and the MEA 11 are sealed by applying a sealing member on the outer periphery.
  • a thermosetting resin is used as the sealing member.
  • the thermosetting resin is selected from, for example, phenol resin, epoxy resin, unsaturated polyester, and the like.
  • an elastic member 30 is disposed between the separator 13 and the separator 14 adjacent to each other in the stacked fuel battery cells 10a, and the outer periphery of the separators 13 and 14 is sealed by welding. However, it can also be sealed with a sealing member as described above.
  • the pair of current collecting plates 16 and 17 are shown in FIGS. 9 and 10 and take out the electric power generated by the fuel cell 10a to the outside.
  • the pair of current collecting plates 16 and 17 are respectively disposed at both ends of the stacked body 10 in which a plurality of fuel battery cells 10a are stacked.
  • the outer shape of the pair of current collector plates 16 and 17 is the same as the outer shape of the MEA 11 with a slightly increased layer thickness, except for some shapes.
  • the pair of current collector plates 16 and 17 have through holes corresponding to the cathode gas supply ports 16a and 17a, the cooling fluid supply ports 16b and 17b, and the anode gas supply ports 16c and 17c at one end in the longitudinal direction. Yes.
  • the pair of current collecting plates 16 and 17 includes a current collecting portion 16h and the like at the center thereof.
  • the current collecting portions 16h of the pair of current collecting plates 16 and 17 are made of, for example, a conductive member such as dense carbon that does not allow gas permeation, and are formed in a thin plate shape slightly smaller than the outer shapes of the anode 11b and the cathode 11c. ing.
  • the pair of current collectors 16h and the like are in contact with the anode 11b or the cathode 11c of the MEA 11 provided in the outermost fuel cell 10a that is stacked.
  • the current collector 16h and the like are provided with a cylindrical protrusion 16g and the like having conductivity from one surface thereof.
  • the protrusions 16g and the like face the outside through the through holes 25g and the like of a pair of end plates 25 and 26 of the casing 20 described later.
  • the shape of the current collector plate 16 corresponding to the protruding portion 16g is similarly provided for the current collector plate 17.
  • the casing 20 holds a plurality of stacked fuel battery cells 10a and a pair of current collector plates 16 and 17 in close contact with each other.
  • the housing 20 includes the pair of fastening plates 21 and 22, the pair of reinforcing plates 23 and 24, the pair of end plates 25 and 26, and the screws 27 as described above.
  • the pair of end plates 25 and 26 sandwich and urge a pair of current collecting plates 16 and 17 disposed at both ends of the stacked fuel battery cells 10a.
  • the outer shape of the pair of end plates 25 and 26 is the same as the outer shape of the MEA 11 with an increased layer thickness, except for some shapes.
  • the pair of end plates 25 and 26 are made of, for example, metal, and an insulator is provided at a portion that contacts the pair of current collector plates 16 and 17.
  • the pair of end plates 25, 26 have through holes corresponding to cathode gas supply ports 25 a, 26 a, cooling fluid supply ports 25 b, 26 b, and anode gas supply ports 25 c, 26 c at one end in the longitudinal direction. .
  • through holes corresponding to the anode gas discharge ports 25d and 26d, the cooling fluid discharge ports 25e and 26e, and the cathode gas discharge ports 25f and 26f are opened at the other end in the longitudinal direction.
  • the pair of end plates 25 and 26 have through holes 25g and 26g through which the protrusions 16g and the like of the pair of current collector plates 16 and 17 described above are inserted.
  • the pair of fastening plates 21 and 22 are made of, for example, metal and are formed in a plate shape.
  • the pair of fastening plates 21 and 22 are formed with part of their edges raised, and contact the surfaces of the pair of end plates 25 and 26 when assembled. Moreover, the surface which contacts the end plates 25 and 26 in the fastening plates 21 and 22 is provided with holes through which the screws 27 are inserted. By tightening the screws 27 attached to the holes, the end plates 25 and 26 and the current collectors are collected.
  • the plates 16 and 17 and the laminated body 10 are pressed in the laminating direction.
  • the pair of reinforcing plates 23 and 24 are made of, for example, metal and are formed in a plate shape that is longer than the pair of fastening plates 21 and 22.
  • the pair of reinforcing plates 23 and 24 are formed by raising a part of the end in the longitudinal direction, and a hole through which the screw 27 is inserted is provided in the part. The holes are formed so that the screws 27 pass through in the stacking direction.
  • the body 10 is pressurized in the stacking direction.
  • the pair of fastening plates 21 and 22 and the pair of reinforcing plates 23 and 24 fasten the screws 27 so that the end plates 25 and 26, the current collector plates 16 and 17, and the stacked body 10 are stacked in the stacking direction. Pressurized.
  • FIG. 7 is a perspective view showing a stacking process for stacking components constituting the fuel cell.
  • the separators 13 and 14, the frame member 15, the current collecting plates 16 and 17, the cooling fluid supply ports 13b to 17b, 25b and 26b of the end plates 25 and 26, and the cooling fluid discharge ports 13e to 17e, 25e and 26e are fuel.
  • the battery cell 10a, the current collector plates 16 and 17, and the end plates 25 and 26 are used as a shape for aligning each component when laminating.
  • An outline of the stacking apparatus 300 used in the stacking process is as follows. In the fuel cell stacking apparatus 300 shown in FIG. 340 are provided.
  • the distance between the positioning columns 330 and 340 is adjusted by inserting the positioning columns 330 and 340 into the reference holes 351 and 352 of the column spacing adjusting jig 350 and bringing the reference side columns 361 and 362 holding the column spacing adjusting jig 350 close to each other. This is done by separating them.
  • the spacer 370 can be sandwiched between the adjacent members so that the adjacent members are not temporarily brought into direct contact.
  • the spacer 370 is rotatably supported by the support column 380. Operations of the reference side columns 361 and 362 are controlled by a control unit 390 including a CPU, a RAM, a ROM, and the like.
  • the fuel cell 10a, the current collector plates 16, 17 and the end plates 25, 26 stacked in the stacking direction of the fuel cell 10a are provided with cooling fluid supply ports 13b-17b, 25b, 26b.
  • the positioning column 330 is inserted into the cooling fluid discharge ports 13e to 17e, 25e, and 26e, and the positioning column 340 is inserted into the cooling fluid discharge ports 13e to 17e.
  • the cooling fluid supply ports 13b to 17b, 25b, and 26b and the cooling fluid discharge ports 13e to 13e are also used when the separators 13 and 14 and the elastic member 30 are aligned.
  • the separators 13 and 14 and the elastic member 30 are aligned. In this way, by using the same shape for positioning when stacking the components of the fuel cell 100 and positioning when forming the separator assembly, the reference for stacking the components of the fuel cell and forming the separator assembly is used. Variations in the positions of the references that occur in different cases do not occur, and assembly variations when stacking the components of the fuel cell or forming the separator assembly can be suppressed.
  • the separator assembly 12 manufacturing apparatus 200 includes a separator 210 that conveys the separators 13 and 14 and the elastic member 30 that constitute the separator assembly 12, a predetermined number of separators 13 and 14 that are installed on the conveyor 210, and an elastic member.
  • a mounting table 220 (corresponding to the mounting unit) on which the member 30 is mounted, a hand robot 240, 250, 260 on which the separators 13, 14 and the elastic member 30 are mounted on the mounting table 220, and a mounting table 220.
  • a welding robot 270 (corresponding to a joining portion) that joins workpieces such as the separators 13 and 14 and the elastic member 30, and a pusher that presses the separator 13 toward the elastic member 30 when the elastic member 30 is joined to the separator 13.
  • a pressing member 280 that applies pressure.
  • the conveyor 210 conveys workpieces such as the separators 13 and 14 and the elastic member 30 constituting the separator assembly 12 from the left side to the right side in FIG. 2 and sends them to the next process.
  • the conveyor 210 is provided with stop positions 210a to 210d for assembling workpieces.
  • the mounting table 220 is provided with a positioning member for aligning the separators 13 and 14 and the elastic member 30.
  • the positioning member includes biasing members 231 to 235 for moving the elastic member 30 or the separator 13 to a predetermined position, and the elastic member 30 and the separator 13 or the separator 14 biased by the biasing members 231 to 235 to the predetermined member. Fixing pins 221 to 227 for positioning at positions are provided.
  • the elastic member 30 is aligned with and bonded to the anode separator 13, but the cathode separator 14 and the elastic member 30 can be aligned and bonded in the same manner.
  • the urging members 231 to 235 and the fixing pins 221 to 227 are used for positioning the elastic member 30 (corresponding to a first positioning member).
  • the urging members 233 to 235 and the fixing pins 225 to 227 are used for positioning the separator 13 (corresponding to a second positioning member).
  • the positioning of the elastic member 30 and the separator 13 on the mounting table 220 is classified into a longitudinal direction d1 and a short direction d2 in the outer shape of the separator 13 in FIG.
  • the urging members 231, 233, 234 and the fixing pins 223, 224, 225, 226 are used for positioning in the short direction d2.
  • the biasing members 232 and 235 and the fixing pins 221, 222, and 227 are used for positioning in the longitudinal direction d1.
  • the power generation characteristics of the fuel cell are greatly influenced by how the corrugations forming the corrugated shapes 13g and 14g of the adjacent separators 13 and 14 come into contact with the elastic member 30. . Therefore, the fixing pins 221 to 227 and the urging members 231 to 235 are positioned by sandwiching the separator 13 and the elastic member 30 from at least the direction in which the corrugations forming the corrugated shapes 13g and 14g are arranged (short direction d2). By doing so, it is possible to accurately match the position of the convex portion of the wavy shape 13g that contacts the elastic member 30 in the standing piece 32 of the elastic member 30 and the separator 13, and it is possible to suppress the electrical resistance between the fuel cells. . Therefore, the fixing pins 221, 222, 227 and the urging members 232, 235 necessary for positioning in the direction d1 in which the uneven cross-sectional shape extends in the waveform shape 13g can be omitted.
  • the positioning of the elastic member 30 is performed by pressing the elastic member 30 toward the fixing pins 221 to 224 by the urging members 231 and 232 to make contact.
  • the separator 13 is positioned by inserting the fixing pins 226 and 227 through the cooling fluid supply port 13b and the fixing pin 225 through the cooling fluid discharge port 13e, and fixing the separator 13 by the urging members 233 to 235. This is done by pressing against the pins 225 to 227 for contact.
  • the separators 13 and 14 are positioned in a cooling fluid supply port 13b and a cooling fluid discharge port which are arranged in pairs with the corrugated shapes 13g and 14g having an uneven shape in the longitudinal direction d1 of the separator 13 therebetween. Positioning is performed by arranging fixing pins 225 and 226 on 13e. Therefore, when the pressing force is applied by the urging members 233 and 234, the situation in which the separator 13 rotates unintentionally when the pressing timing by the urging member 233 and the urging member 234 is shifted is less likely to occur. It is possible to improve the alignment workability.
  • the arrangement of the fixing pins 225 and 226 is not limited to the combination of the cooling fluid supply ports 13b and 14b and the cooling fluid discharge ports 13e and 14e, and the cathode gas supply ports 13a and 14a, the cooling fluid supply ports 13b and 14b, and the anode Any one of the gas supply ports 13c and 14c and any one of the anode gas discharge ports 13d and 14d, the cooling fluid discharge ports 13e and 14e, and the cathode gas discharge ports 13f and 14f may be selected. That's fine. Further, the arrangement of the fixing pins 225 and 226 can be similarly applied to the lamination process described with reference to FIG.
  • the fixing pins 221 to 227 and the urging members 231 to 235 can be freely retracted and retracted from the mounting surface of the mounting table 220 by a spring or the like. Therefore, even when the elastic member 30 is positioned and the separator 13 is positioned on the mounting table 220, the fixing pins 221 to 224 and the urging members 231 and 232 can be depressed in the mounting table 220, so that positioning of the separator 13 is not hindered. Therefore, the elastic member 30 and the separator 13 can be aligned with high accuracy without expanding the separator 13 and without expanding the elastic member 30 to the same shape as the separator 13. The positioning of the separator 13 with respect to the elastic member 30 does not have to be prevented from installing the separator 13, so that at least the fixing pins 221 to 224 and the urging members 231 and 232 can be retracted from the mounting surface. Just do it.
  • the elastic member 30 is configured to be installed first on the mounting table 220 when the elastic member 30 and the separator 13 are joined.
  • the elastic member 30 needs to include the cathode gas supply port 13a, the cooling fluid supply port 13b, the anode gas supply port 13c, the anode gas discharge port 13d, the cooling fluid discharge port 13e, and the cathode gas discharge port 13f of the separator 13. There is no. Therefore, the outer shape becomes smaller than the separator 13.
  • the elastic member 30 by installing the elastic member 30 first on the mounting table 220, the elastic member 30 can be positioned using the fixing pins 221 to 224 and the urging members 231 and 232, and the elastic member 30 is separated from the separator. The alignment of the elastic member 30 and the separator 13 can be performed without expanding to the same outer shape as that of FIG.
  • the height h1 of the fixing pins 221 to 227 and the biasing members 231 to 235 is higher than the height h2 when no load is applied to the elastic member 30 as shown in FIGS. 6 (A) to 6 (C). Is configured to be higher. Therefore, even if the elastic member 30 is pressed against the fixing pins 221 to 224 by the urging members 231 and 232 in a state where the elastic member 30 is not pressed in the stacking direction, the elastic member 30 can be received by the fixing pins 221 to 224. Therefore, it is possible to prevent the elastic member 30 from jumping over the fixing pins 221 to 224 or the urging members 231 and 232 and coming off and improving the alignment workability.
  • the hand robots 240, 250, and 260 are articulated robots, and a hand mechanism for gripping components is provided at the tip.
  • the hand robots 240, 250, and 260 hold the component by the hand mechanism, move the component to the mounting table 220 by rotating the joint portion, and place the component on the mounting table 220.
  • the welding robot 270 has a welding torch attached to the tip, welds and joins the elastic member 30 and the separator 13, and welds and joins the separator 13 and the separator 14.
  • the elastic member 30 and the separator 13 are joined by partially welding along a direction in which the cross-sectional shape of the concavo-convex extends about a part 13 k of the concavo-convex constituting the waveform shape 13 g.
  • the separator 13 and the separator 14 are joined by the edge 13m of the cathode gas supply port 13a, the edge 13n of the anode gas supply port 13c, the edge 13p of the anode gas discharge port 13d, and the cathode gas discharge port 13f.
  • the four sides 13r, 13s, 13t, and 13u that are the outer shape of the edge 13q and the separator 13 are welded.
  • the pressing member 280 applies a pressing force that presses the separator 13 toward the elastic member 30 when the elastic member 30 and the separator 13 are joined. It is necessary for the elastic member 30 and the separator 13 to irradiate a laser or the like from the welding robot 270 on a portion that contacts the elastic member 30 in the plurality of projections and depressions constituting the corrugated shape 13g of the separator 13. Therefore, the pressing member 280 is provided with a slit as shown in FIG. 11A so that the laser beam can be transmitted above the position where the corrugated shape 13g contacts the elastic member 30 when aligned with the separator 13. .
  • the separator assembly is formed by preparing the separators 13 and 14 and the elastic member 30 (step ST10), and a first placement step of placing the elastic member 30 on the placement surface of the placement table 220 (step ST10).
  • Step ST20 a second placement step for installing the separator 13 on the placement table 220 in a state where the elastic member 30 is positioned, and a first joining step (joining) for joining the elastic member 30 and the separator 13 Equivalent to the process, step ST40), and a second joining process for joining the separator 13 and the separator 14 (corresponding to another joining process, step ST50).
  • a part installation place (not shown) is provided at a position where the hand robots 240 and 250 can hold, and parts constituting the fuel cell such as the elastic member 30 and the separators 13 and 14 are prepared.
  • the mounting table 220 installed on the conveyor 210 shown in FIG. 2 is transported to the position 210a.
  • the robot 240 grips the elastic member 30 from the part installation location and conveys it to the mounting table 220 at the position 210a.
  • the robot 240 temporarily moves the biasing members 231 and 232 in the direction away from the fixing pins 221 to 224 by the grasped elastic member 30.
  • the elastic member 30 is moved toward the fixing pins 221 to 224 using the urging force of the urging members 231 and 232, and the elastic member 30 is held between the urging members 231 and 232 and the fixing pins 221 to 224. As a result, the elastic member 30 is positioned on the mounting table 220.
  • the mounting table 220 is transported to the position 210b.
  • the robot 250 grips the anode separator 13 from the component installation location and conveys it to the mounting table 220 at the position 210b.
  • the urging members 233 to 235 are moved away from the fixing pins 225 to 227 by the separator 13, and the separator 13 is moved toward the fixing pins 225 to 227 using the urging force of the urging members 233 to 235.
  • the urging members 233 to 235 and the fixing pins 225 to 227 are sandwiched.
  • the separator 13 is positioned on the mounting table 220, and the elastic member 30 and the separator 13 are aligned. After positioning the separator 13 on the mounting table 220, the pressing member 280 is mounted on the separator 13 in order to bring the separator 13 and the elastic member 30 into sufficient contact.
  • the mounting table 220 is conveyed to the position 210c.
  • the first joining step at the position 210c, first, the position of the elastic member 30 and the separator 13 is confirmed, and the welding head 271 of the welding robot 270 is provided on the pressing member 280 in order to join the elastic member 30 and the separator 13. It is moved between the formed slits, that is, over the head of the weld. And welding joining is performed along the direction where the waveform shapes 13g and 14g of the separator 13 extend.
  • the predetermined position 13k (refer FIG. 5) of the waveform shape 13g of the separator 13 is weld-joined, and the elastic member 30 and the separator 13 are joined.
  • the mounting table 220 is transported to the position 210d.
  • the robot 260 grasps the joined elastic member 30 and the separator 13 and rotates them 180 degrees. Thereby, the positional relationship between the elastic member 30 and the separator 13 changes from the state shown in FIG. 6A to the state shown in FIG.
  • the mounting table 220 is arranged at the position 210b, and the elastic member 30 and the separator 13 that are turned upside down are positioned on the mounting table 220 as shown in FIG.
  • the fixing pins 221 to 224 and the urging members 231 and 232 can be recessed in the mounting table 220, installation of the separator 13 to which the elastic member 30 is joined is not hindered.
  • the positioning of the separator 13 to which the elastic member 30 is joined moves the urging members 233 to 235 away from the fixing pins 225 to 227 in the same manner as described above. Then, the separator 13 to which the elastic member 30 is joined is moved toward the fixing pins 225 to 227 using the urging force of the urging members 233 to 235, and the fixing pins 225 to 227 and the urging members 233 to 235 are used. Hold it. As a result, the separator 13 to which the elastic member 30 is bonded is positioned with respect to the mounting table 220.
  • the separator 14 is positioned on the separator 13 to which the elastic member 30 is joined, using the fixing pins 225 to 227 and the urging members 233 to 235 in the same manner as the separator 13. Thereby, the separator 13 and the separator 14 are aligned.
  • the mounting table 220 is transferred to the position 210b.
  • the welding robot 270 welds the edges 13m, 13n, 13p, 13q and the four sides 13r, 13s, 13t, 13u of the separator 13 to join them. Welding is performed on the edges 13m, 13n, 13p, and 13q, and then four sides 13r, 13s, 13t, and 13u are performed. Since the power generation characteristics of the fuel cell 100 are affected by the contact between the corrugated shapes of the separators 13 and 14, welding of the four sides 13r, 13s, 13t, and 13u causes the sides 13r and 13t to be connected to the sides 13s and 13u. Do it first. Thus, by joining the edge portions 13m, 13n, 13p, and 13q of the separator 13 and the four sides 13r, 13s, 13t, and 13u, the separator 13 and the separator 14 are joined, and the separator assembly 12 is completed.
  • the separator assembly 12 is arranged on both side surfaces of the MEA 11 to form the fuel cell 10a, and a predetermined number of the fuel cells 10a are stacked to form the stacked body 10. Then, the current collector plates 16 and 17 are arranged in the stacking direction of the laminate 10, and the laminate 10 and the current collector plates 16 and 17 are covered with the fastening plates 21 and 22, the reinforcing plates 23 and 24, and the end plates 25 and 26. . Then, the laminated body 10, the current collecting plates 16, 17 and the end plates 25, 26 are pressurized by attaching screws 27 to the fastening plates 21, 22, and the fuel cell 100 is completed.
  • an elastic member may be provided between the separators in order to suppress electrical resistance between the fuel cells due to a contact state between adjacent separators among adjacent fuel cells.
  • the elastic member absorbs the variation in the shape of the portion of the separator that corresponds to the corrugated shape, the fuel, the oxidant, and the cooling provided outside the corrugated shape are considered only by laminating. There is no need to expand the shape to the medium flow hole.
  • the outer shape of the separator is different from that of the elastic member, so the elastic member having a smaller outer shape is the same as the separator. In this case, the cost of the elastic member is increased.
  • the separators 13 and 14 and the elastic member 30 having a smaller outer shape than the separators 13 and 14 are prepared, and the fixing pins 221 to 224 and the urging force are provided.
  • the elastic member 30 is positioned by the members 231 and 232, and the separator 13 is positioned and held by the fixing pins 225 to 227 and the biasing members 233 to 235 so as to be held in contact with the elastic member 30.
  • the fixing pins 221 to 224 and the urging members 233 to 235 corresponding to the first positioning member can be retracted so as not to protrude from the mounting surface.
  • the second mounting process is configured to be performed after the first mounting process. That is, when the elastic member 30 and the separators 13, 14 are installed on the mounting table 220, the separator 13 is installed after the elastic member 30 is installed on the mounting table 220 for alignment. Therefore, even if the elastic member 30 is not provided with the cathode gas supply port 13a, the cooling fluid supply port 13b, the anode gas supply port 13c, the anode gas discharge port 13d, the cooling fluid discharge port 13e, and the cathode gas discharge port 13f, the elastic member 30 is provided. Positioning on the mounting table 220 and positioning with the separator 13 can be performed, and positioning with the separator 13 can be performed with high accuracy while suppressing an increase in the component cost of the elastic member 30.
  • the fixing pins 221 to 224 and the urging members 231 and 232 corresponding to the first positioning member and the fixing pins 225 to 227 and the urging members 233 to 235 corresponding to the second positioning member are at least the waveforms of the separators 13 and 14.
  • the elastic member 30 or the separator 13 is sandwiched from the direction in which the irregularities constituting the shapes 13g and 14g are arranged. In the contact between the adjacent separators, the power generation characteristics of the fuel cell are greatly influenced by how the corrugations forming the corrugated shapes 13g and 14g of the adjacent separators 13 and 14 come into contact with the standing pieces 32 of the elastic member 30. That's what it means.
  • the separator 13 and the elastic member 30 are sandwiched from at least the direction in which the corrugations 13g and 14g are arranged, the positional relationship between the two in the direction in which the corrugations are arranged can be accurately matched. There is no need to expand the shape to the shape of the separators 13 and 14. Therefore, even if the elastic member 30 is not expanded to the same shape as the separators 13 and 14, the position of the elastic member and the separator can be accurately aligned to suppress the electric resistance between the fuel cells.
  • the separators 13 and 14 are cathode gas supply ports 13a and 14a through which fuel, an oxidant, or a cooling medium for generating an electromotive force in the fuel cell 100 is circulated, cooling medium supply ports 13b and 14b, and an anode gas supply port 13c. , 14c, anode gas discharge ports 13d and 14d, cooling medium discharge ports 13e and 14e, and cathode gas discharge ports 13f and 14f.
  • the fixing pins 225 to 227 and the biasing members 233 to 235 corresponding to the second positioning member are The elastic member 30 and the separator 13 are aligned using the cooling medium supply ports 13b and 14b and the cooling medium discharge ports 13e and 14e. Therefore, a positioning-dedicated shape for positioning with the elastic member 30 is provided, and alignment with the elastic member 30 is performed without dividing the specification of the separator with the fuel cell not using the elastic member 30. Can do.
  • the cathode gas supply ports 13a and 14a, the cooling fluid supply ports 13b and 14b, which are arranged in pairs with the corrugated shapes 13g and 14g of the separators 13 and 14 being spaced apart, are anodes.
  • the separator 13 is positioned using the gas supply ports 13c and 14c, the anode gas discharge ports 13d and 14d, the cooling fluid discharge ports 13e and 14e, and the cathode gas discharge ports 13f and 14f. Therefore, when the separator 13 is positioned, the situation in which the separator 13 rotates unintentionally and takes time for positioning can be prevented, and the positioning workability can be improved.
  • the heights of the fixing pins 221 to 227 and the biasing members 231 to 235 used for positioning the elastic member 30 and the separator 13 are higher than the height when the elastic member 30 is not pressed. It is configured as follows. Therefore, even when the elastic member 30 is not pressed and the part of the standing piece 32 is not bent, the elastic member 30 can be firmly held by the fixing pins 221 to 227 and the urging members 231 to 235, and the positioning reliability is improved. Can be improved.
  • a second joining step for aligning and joining the separator 13 and the separator 14 is performed. Since the elastic member 30 is disposed between the separator 13 and the separator 14, for example, after the outer periphery of the separator 13 and the separator 14 is partially bonded, the elastic member 30 is disposed between the separator 13 and the separator 14 and bonded. If it is going to be, since the position cannot be hold
  • the separator assembly can be formed in a state where the elastic member 30 is aligned with the corrugated shapes 13g and 14g of the separators 13 and 14 with high accuracy, and the electrical resistance between the fuel cells can be satisfactorily suppressed.
  • the separator 13 and the separator 14 are joined by the cathode gas supply port 13a, the cooling fluid supply port 13b, the anode gas supply port 13c, the anode gas discharge port 13d, the cooling fluid supply port 13e, the cathode gas discharge.
  • the sides 13r and 13t adjacent to the corrugated shape 13g are welded before the sides 13s and 13u adjacent to the outlet 13f. As described above, the contact state of the corrugated shape of adjacent separators has a great influence on the increase in electrical resistance between fuel cells.
  • the elastic member 30 when the elastic member 30 is sandwiched between the separator 13 and the separator 14 by first joining the sides 13r and 13t close to the waveform shape 13g among the four sides that are the outer shape of the separator 13, the elastic member 30 Can be prevented, and the separators 13 and 14 can be brought into contact with the elastic member 30 with high accuracy to suppress an increase in electrical resistance between the fuel cells.
  • the elastic member 30 is configured to be pressed in the stacking direction of the elastic member 30 and the separator 13 in a state where the elastic member 30 is in contact with the mounting surface of the mounting table 220. Therefore, the elastic member 30 can be further brought into close contact with the separator 13 and joined by the restoring force of the elastic member 30, which can contribute to the suppression of an increase in electrical resistance between the fuel cells.
  • the cooling fluid supply port 13b and the cooling fluid discharge port 13e used for positioning the elastic member 30 and the separator 13 are the stacked body 10 in which the fuel cells 10a are stacked in the stacking process, and current collector plates at both ends of the stacked body 10. It is also used as a positioning shape when positioning by positioning 16 and 17 and end plates 25 and 26. For this reason, it is possible to prevent variations between the standards that are caused by the difference between the reference for stacking the fuel cell components and the reference for forming the separator assembly, and the stacking of the fuel cell components. And assembly variations when forming the separator assembly can be suppressed.
  • the pressing load that presses the separator 13 toward the elastic member 30 by the pressing member 280 in the first joining step applies a larger load than the pressing load that is applied in the stacking step of stacking the fuel cell components. ing.
  • the elastic member 30 and the separator 13 are joined, the elastic member 30 is not sandwiched between the separators 13 and 14 and can return to the extended state by the restoring force.
  • the elastic member 30 can be hardly plastically deformed even when a large load is applied, and the elastic member 30 is buffered.
  • the function as a member can be improved.
  • the elastic member 30 and the separator 13 are joined by forming edge portions 13m, 13n, 13p, 13q, and the like after forming several joint portions 13k (12 locations in FIG. 10) along the extending direction of the corrugated shape of the separator 13.
  • edge portions 13m, 13n, 13p, 13q, and the like after forming several joint portions 13k (12 locations in FIG. 10) along the extending direction of the corrugated shape of the separator 13.
  • edges 13m, 13n, 13p, 13q and the outer circumferences 13r, 13s, 13t. , 13u can be joined, and the remaining part of the joint part 13k in the corrugated shape can be welded.
  • 10 laminates 10a Fuel cell, 100 fuel cells, 11 Membrane electrode assembly, 11a electrolyte membrane, 11b anode, 11c cathode, 12 Separator assembly, 13 Anode separator (first separator), 13g waveform shape, 14 cathode separator (second separator), 14g waveform shape, 15 frame member, 16, 17 current collector plate, 20 housing, 21, 22 fastening plate, 23, 24 Reinforcement plate, 25, 26 End plate (end member), 27 screws, 210 conveyor, 210a to 210d Stop position of mounting table, 220 mounting table (mounting unit), 221 to 227 fixing pin, 231 to 235 biasing member, 240, 250, 260 hand robot, 270 welding robot (joint), 280 pressing member, 13a, 14a Cathode gas supply port (separator flow hole), 13b, 14b Cooling fluid supply port (separator flow hole), 13c, 14c Anode gas supply port (separator flow hole), 13d, 14d Anode gas outlet (s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】位置合わせのためにセパレータを拡張したり、バネ部材の外形をセパレータと同様にしなくてもセパレータとバネ部材を高精度に位置合わせできる燃料電池用セパレータアセンブリの製造方法及び製造装置を提供する。 【解決手段】本発明は、第1セパレータ13と、第2セパレータ14と、弾性部材30と、を準備する準備工程と、弾性部材を位置決めして載置面に載置する第1載置工程と、第1セパレータを弾性部材に対して位置決めして弾性部材に重ねて載置する第2載置工程と、位置決めして重ね合わされた弾性部材と第1セパレータとを接合する接合工程と、を有し、第2載置工程においては、弾性部材を位置決めしている第1位置決め部材を載置面から退避させながら、第1セパレータを弾性部材に重ね合わせる。

Description

燃料電池用セパレータの製造方法及び製造装置
 本発明は燃料電池セルを積層して形成した燃料電池に用いられるセパレータアセンブリの製造方法及び製造装置に関する。
 燃料電池は、電解質膜の両面にアノードとカソードの電極が接合されたいわゆる膜電極接合体(Membrane Electrode Assembly以下MEAと称する)を、その両面から波形形状を有するセパレータで挟持した燃料電池セルを数百セル程度積層して構成される。燃料電池は、所望の出力を達成するために燃料電池セルを複数積層することが一般的であり、積層態様は発電特性に影響を与えるため、積層時の各構成部品の位置決めについての研究が鋭意行われている。燃料電池を構成する構成部品間の位置決めには、例えばMEAの外周に設けられるシール部の4隅のうちの対向する2つの角部及びセパレータの4隅の角部に穴を設けてガイドピンを貫通させる技術が開示されている(特許文献1参照)。
特開2008-59760号公報
 ところで、隣接する燃料電池セルにおいて隣り合うセパレータは、セパレータの波形形状同士が接触することによって通電が行われるが、形状バラつきにより波形形状同士の接触が充分に行えず、燃料電池セルによって生成された電気が燃料電池セル間を移動する際の電気抵抗が上昇してしまう場合がある。そのため、隣接するセパレータの間にはセパレータの形状バラつきを吸収して電気抵抗の上昇を抑制するための、いわゆるバネのような部材が設けられることがある。
 上記のバネ部材も含めて燃料電池を構成する部品同士での位置決めを行う場合、特許文献1の方法によればバネ部材の4隅に貫通穴が設けられ、隣接するセパレータには、積層した際にバネ部材の貫通穴と連通する位置に貫通穴が設けられ、位置決めピンによって位置決めが行われる。
 しかし、セパレータには波形形状以外にも燃料、酸化剤、冷却流体を流通させるための貫通孔が波形形状よりも外方に形成される。そのため、セパレータに位置決めのための貫通穴を設けるためには、バラついても燃料などの貫通孔と形状がつながらないようにする必要があり、これを満足させようとすると、貫通穴よりもさらに外方に貫通穴を設けることになり、セパレータの外形を拡張させなければならない。また、バネ部材は、積層した際に波形形状と接触できるだけの面積を有していれば機能するものの、特許文献1のように構成部品の角部に貫通穴を設けて位置決めする場合、セパレータとバネ部材とは外形が異なるため、バネ部材はセパレータと同等の外形になるように形状を拡張しなければならず、その場合には部品コストを増加させてしまう、といった問題がある。
 そこで本発明は、上述した課題を解決するためになされたものであり、位置合わせのためにセパレータを拡張したり、バネ部材の外形をセパレータと同様にしなくてもセパレータとバネ部材とが高精度に位置合わせできる燃料電池用のセパレータアセンブリの製造方法、及び製造装置を提供することを目的とする。
 上記目的を達成する本発明は、膜電極接合体に隣接して設けられ流体を流す流路を形成する、燃料電池用のセパレータアセンブリの製造方法である。上記製造方法は、断面形状に凹凸形状を有する第1セパレータと、断面形状に凹凸形状を有する第2セパレータと、第1セパレータ及び第2セパレータを面方向から見た平面視の外形形状よりも小さい外形形状を有し、第1セパレータと第2セパレータとの間に配置されて対向する第1セパレータの凸部及び前記第2セパレータの凸部との接触を弾性変形によって維持する導電性を備えた弾性部材と、を準備する(準備工程)。そして、載置面に設けられた第1位置決め部材を弾性部材に当接させることによって、弾性部材を位置決めして載置面に載置する(第1載置工程)。そして、載置面において第1位置決め部材が設けられた領域よりも外側の領域に設けられた第2位置決め部材を第1セパレータに当接させることによって、第1セパレータを弾性部材に対して位置決めして弾性部材に重ねて載置する(第2載置工程)。そして、位置決めして重ね合わされた弾性部材と第1セパレータとを接合する(接合工程)。本発明において、第2載置工程では、弾性部材を位置決めしている第1位置決め部材を載置面から退避させながら、第1セパレータを弾性部材に重ね合わせることを特徴とする。
 また、上記目的を達成する他の本発明は、上記燃料電池用のセパレータアセンブリの製造装置である。上記製造装置は、弾性部材及び第1セパレータ及び第2セパレータを載置する載置部と、載置部の載置面に設けられ、弾性部材に当接させることによって弾性部材を位置決めする第1位置決め部材と、第1位置決め部材が設けられた領域よりも外側の領域に設けられ、第1セパレータに当接させることによって第1セパレータを弾性部材に対して位置決めする第2位置決め部材と、第1位置決め部材及び第2位置決め部材によって位置合わせされた弾性部材と第1セパレータと接合する接合部と、を有する。本発明において、第1位置決め部材は、載置面から退避可能であることを特徴とする。
本発明の一実施形態に係る燃料電池用セパレータアセンブリの製造方法について示すタイムチャートである。 同実施形態に係る燃料電池を構成するセパレータアセンブリを形成する装置の概略平面図である。 同実施形態に係るセパレータと弾性部材との位置合わせを行う載置台を示す斜視図である。 図4(A)は載置台において弾性部材を位置決めした状態を示す平面図、図4(B)は載置台にセパレータを位置決めした状態を示す平面図である。 燃料電池を構成するセパレータの平面図であって、弾性部材と接合されるセパレータと弾性部材との接合位置及び対をなすセパレータ同士の接合位置を示す平面図である。 図6(A)から図6(C)は、図4(B)の6-6線に沿う断面図であって、セパレータアセンブリを形成する様子を示す説明図である。 燃料電池の構成部品を積層する積層工程について示す斜視図である。 同実施形態に係る燃料電池を示す斜視図である。 燃料電池の構成を示す分解斜視図である。 燃料電池の構成の一部を示す分解斜視図である。 同実施形態に係る燃料電池用のセパレータアセンブリを示す斜視図である。 同実施形態に係るセパレータアセンブリ及び膜電極接合体を示す断面図である。 同実施形態に係るセパレータアセンブリを構成する弾性部材の一部を示す斜視図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は本発明の一実施形態に係る燃料電池用セパレータアセンブリの製造方法について示すタイムチャート、図2は同実施形態に係る燃料電池を構成するセパレータアセンブリを形成する装置の概略平面図である。図3は同実施形態に係るセパレータと弾性部材との位置合わせを行う載置台を示す斜視図、図4(A)は載置台において弾性部材を位置決めした状態を示す平面図、図4(B)は載置台にセパレータを位置決めした状態を示す平面図である。図5は燃料電池を構成するセパレータの平面図であって、弾性部材と接合されるセパレータと弾性部材との接合位置及び対をなすセパレータ同士の接合位置を示す平面図である。図6(A)から図6(C)は図4の6-6線に沿う断面図であって、セパレータアセンブリを形成する様子を示す説明図である。図7は燃料電池の構成部品を積層する積層工程について示す斜視図である。
 図8は同実施形態に係る燃料電池を示す斜視図、図9は燃料電池の構成を示す分解斜視図、図10は燃料電池の構成の一部を示す分解斜視図、図11は同実施形態に係る燃料電池用セパレータアセンブリを示す斜視図である。図12は同実施形態に係るセパレータアセンブリ及び膜電極接合体を示す断面図、図13は同実施形態に係るセパレータアセンブリを構成する弾性部材の一部を示す斜視図である。
 本実施形態に係る燃料電池用のセパレータアセンブリ12は、膜電極接合体11に隣接して配置されたアノードセパレータ13とカソードセパレータ14との間に弾性部材30をさらに配置してセパレータ13とセパレータ14とを接合したものである。セパレータアセンブリ12の製造方法は、図1に示すように準備工程(ステップST10)と、第1載置工程(ステップST20)と、第2載置工程(ステップST30)と、第1接合工程(接合工程に相当、ステップST40)と、第2接合工程(他の接合工程に相当、ステップST50)と、を有する。さらに、膜電極接合体11とセパレータアセンブリ12とを積層工程(ステップST60)を行うと燃料電池の製造方法となる。詳細については後述する。
 (燃料電池)
燃料電池用セパレータアセンブリの製造方法と製造装置について説明する前に、燃料電池用セパレータアセンブリを構成部品として備える燃料電池について説明する。燃料電池100は、燃料電池セル10aを複数積層した積層体10を主要な構成要素として有している。燃料電池セル10aは、膜電接合体11の両側にセパレータ13,14を配置して構成している。膜電極接合体11は、電解質膜11aの片側にアノード11b、もう片側にカソード11cが接合されている。セパレータアセンブリ12は、2枚のセパレータ13,14と、セパレータ13とセパレータ14との間にセパレータ13、14の波形形状13g、14gと接触する弾性部材30と、を有する。また、積層体10の積層方向における両端部には集電板16,17が設けられている。また、燃料電池100は、筐体20を有している。筐体20は、一対の締結板21、22と補強板23、24、及びエンドプレート25,26(端部部材に相当)を有している。以下、燃料電池セル100に含まれる各部材について説明する。
 セパレータ13,14は、図9~図12に示し、積層された複数の燃料電池セル10aにおいて隣り合う膜電極接合体11を隔離しつつ、膜電極接合体11で発生した電力を通電させている。セパレータ13,14は、アノード側セパレータ13(第1セパレータに相当)とカソード側セパレータ14(第2セパレータに相当)とに分類される。アノード側セパレータ13は、膜電極接合体11のアノード11bに当接させている。アノード側セパレータ13は、導電性材料を有する金属からなり、アノード11bよりも大きい薄板状に形成している。
 アノード側セパレータ13の中央には、図12に示すように、燃料ガス(水素)と冷却水等の冷却流体とを隔てて流す流路を構成するように断面が複数の凹凸形状からなる波形形状13gを設けている。アノード側セパレータ13の波形形状13gにおいて、アノード11bと接触して形成された閉空間は、アノード11bに対して水素を供給するアノードガス流路13hとして用いている。一方、アノード側セパレータ13の波形形状13gにおいて、弾性部材30を介してカソード側セパレータ14の波形形状14gとの間に形成された閉空間は、冷却水を供給する冷却流体流路13jとして用いている。
 アノード側セパレータ13は、長方形状からなり、その長手方向の一端に、カソードガス供給口13a、冷却流体供給口13b、およびアノードガス供給口13cに相当する貫通孔を開口している。同様に、アノード側セパレータ13は、その長手方向の他端に、アノードガス排出口13d、冷却流体排出口13e、およびカソードガス排出口13fに相当する貫通孔を開口している。
 カソード側セパレータ14は、膜電極接合体11のカソード11cに当接している。カソード側セパレータ14は、導電性材料を有する金属からなり、カソード11cよりも大きい薄板状に形成している。
 カソード側セパレータ14の中央には、図12に示すように、酸化剤ガス(酸素を含有した空気または純酸素)と冷却水とを隔てて流す流路部を構成するように断面が複数の凹凸形状からなる波形形状14gを設けている。カソード側セパレータ14の波形形状14gにおいて、カソード11cと接触して形成された閉空間は、カソード11cに対して酸化剤ガスを供給するカソードガス流路14hとして用いている。一方、カソード側セパレータ14の波形形状14gにおいて、弾性部材30を介してアノード側セパレータ13の波形形状13gとの間に形成された閉空間は、冷却水を供給する冷却流体流路14jとして用いている。後述するように弾性部材30は、一枚の鋼板などからその一部を起立片32として立ち上げて形成しており、鋼板から立ち上げられた部位は基材31の両側面がつながるように構成されている。よって、隣接する燃料電池セル10aにおいて、一の燃料電池セル10aのアノード側セパレータ13の冷却流体流路13jと、他の燃料電池セル10aのカソード側セパレータ14に設けられた冷却流体流路14jは、1つにつながった冷却流体用の流路を形成する。
 カソード側セパレータ14は、長方形状からなり、その長手方向の一端に、カソードガス供給口14a、冷却流体供給口14b、およびアノードガス供給口14cに相当する貫通孔を開口している。同様に、カソード側セパレータ14は、その長手方向の他端に、アノードガス排出口14d、冷却流体排出口14e、およびカソードガス排出口14fに相当する貫通孔を開口している。カソードガス供給口13a、14a、冷却流体供給口13b、14b、アノードガス供給口13c、14c、アノードガス排出口13d、14d、冷却流体排出口13e、14e、及びカソードガス排出口13f、14fは燃料、酸化剤、又は冷却流体を流通させるセパレータ流通孔に相当する。
 貫通孔の中でも冷却流体供給口13b、14b及び冷却流体排出口13e、14eは、後述する弾性部材30との位置合わせの際に位置決め部材を挿通させる形状として利用される。このように冷却流体供給口13b、14b及び冷却流体排出口13e、14eを弾性部材30との位置合わせのために利用することによって、位置合わせ専用の形状を設けなくても弾性部材30との位置合わせを行なうことができる。
 弾性部材30は、図11~図13に示し、燃料電池100の組み付け時において、アノード側セパレータ13およびカソード側セパレータ14の燃料ガスと冷却水の流路をなす波形形状のバラつきを、自ら変形して吸収する。さらに、弾性部材30は、燃料電池100の運転中において、セパレータ13,14が熱膨張することに起因した積層方向の変位、および膜電極接合体11が供給された媒体を吸収して膨張することに起因した積層方向の変位を、自ら変形して吸収する。したがって、複数積層した燃料電池セル10aに高い圧力を掛けて互いに密着させることができる。複数積層した燃料電池セル10aが互いに密着する程、燃料電池セル10a間の通電抵抗の上昇を抑制して、発電効率を向上させることができる。
 弾性部材30は、図13に示すように、通電性を備えた金属からなり、薄板状に形成している。弾性部材30は、アノード側セパレータ13とカソード側セパレータ14との間に配設し、薄板状の基材31と、基材31の基部面31aから格子状にそれぞれ起立して設けた複数の起立片32と、を備えている。すなわち、弾性部材30は、一枚の薄板に相当する基材31からUの字形状に打ち抜いた後に片持ち梁となるように起ち上げた起立片32を、格子状に形成している。起立片32は、基材31に対して片持ち梁の構造を有していることから、弾性変形可能な復元力を備えたバネの機能を備えている。なお、図13は弾性部材30の構成をわかりやすく表現するために、図11や図3に示す弾性部材30の一部を図示している。
 起立片32は、図13に示すように、たとえば、基材31の基部面31aに設けた起立片32の基端側の固定端部32aの幅と、固定端部32aから一の方向X1に沿って延在させた先端側の自由端部32bの幅とが等しい矩形状に形成している。複数の起立片32は、たとえば、一の方向X1と交差する他の方向Y1に沿った複数の行において、自由端部32bの向きを揃えて形成している。起立片32は、図5に示すように、基材31の基部面31aに設けた起立片32の基端側の固定端部32aから延在させた先端側の自由端部32bを、カソード側セパレータ14に対して当接させている。
 膜電極接合体11は、図12に示し、供給された酸素と水素を化学反応させて電力を生成する。膜電極接合体11は、電解質膜11aの片側にアノード11bを接合し、もう一方の側にカソード11cを接合して形成している。膜電極接合体11は、一般的にMEA(membrane electrode assembly)と称している。電解質膜11aは、たとえば、固体の高分子材料からなり、薄板状に形成している。固体高分子材料には、たとえば、水素イオンを伝導し、湿潤状態で良好な電気伝導性を有するフッ素系樹脂を用いている。アノード11bは、電極触媒層、撥水層、およびガス拡散層を積層して構成し、電解質膜11aよりも若干小さい薄板状に形成している。カソード11cは、電極触媒層、撥水層、およびガス拡散層を積層して構成し、アノード11bと同様の大きさで薄板状に形成している。アノード11bおよびカソード11cの電極触媒層は、導電性の担体に触媒成分が担持された電極触媒と高分子電解質を含んでいる。アノード11bおよびカソード11cのガス拡散層は、たとえば、充分なガス拡散性および導電性を有する炭素繊維からなる糸で織成したカーボンクロス、カーボンペーパ、またはカーボンフェルトから形成している。
 MEA11は、フレーム部材15を備えている。フレーム部材15は、積層した電解質膜11a、アノード11b、およびカソード11cの外周を一体に保持している。フレーム部材15は、たとえば、電気絶縁性を有する樹脂からなり、セパレータ13,14の外周部分の外形形状と同様の外形形状で形成している。フレーム部材15は、その長手方向の一端に、カソードガス供給口15a、冷却流体供給口15b、およびアノードガス供給口15cに相当する貫通孔を開口している。同様に、フレーム部材15は、その長手方向の他端に、アノードガス排出口15d、冷却流体排出口15e、およびカソードガス排出口15fに相当する貫通孔を開口している。
 上記の燃料電池セル10aは、互いに密封した状態で複数積層する必要がある。このため、積層する燃料電池セル10aの中でもセパレータ13とMEA11との間及びセパレータ14とMEA11との間は、外周に封止部材を塗布することによって封止している。封止部材は、たとえば、熱硬化性樹脂を用いる。熱硬化性樹脂は、たとえば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル等から選択する。また、積層する燃料電池セル10aにおいて隣り合うセパレータ13とセパレータ14との間には弾性部材30が配置されて、セパレータ13,14の外周を溶接することによって封止している。しかし、上記と同様に封止部材によって封止することもできる。
 一対の集電板16,17は、図9、図10に示し、燃料電池セル10aで生成された電力を外部に取り出す。
 一対の集電板16,17は、燃料電池セル10aが複数積層された積層体10の両端にそれぞれ配設している。一対の集電板16,17の外形形状は、一部の形状を除いて、層厚を少し厚くしたMEA11の外形形状と同様である。一対の集電板16,17は、その長手方向の一端に、カソードガス供給口16a、17a、冷却流体供給口16b、17b、およびアノードガス供給口16c、17cに相当する貫通孔を開口している。同様に、長手方向の他端には、アノードガス排出口16d、17d、冷却流体排出口16e、17eおよびカソードガス排出口16f、17fに相当する貫通孔を開口している。一対の集電板16、17は、その中央に集電部16h等を備えている。
 一対の集電板16,17の集電部16h等は、たとえば、ガスを透過させない緻密質カーボンのような導電性部材からなり、アノード11bおよびカソード11cの外形よりも若干小さい薄板状に形成している。一対の集電部16h等は、複数積層した最外層の燃料電池セル10aに設けたMEA11のアノード11bまたはカソード11cに当接している。集電部16h等は、その一面から導電性を備えた円柱形状の突起部16g等を突出して設けている。突起部16g等は、後述する筺体20の一対のエンドプレート25、26の貫通孔25g等を挿通して、外部に臨んでいる。また、集電板16の突起部16gに当る形状は集電板17についても同様に設けられている。
 筺体20は、図8および図9に示し、複数積層した燃料電池セル10aおよび一対の集電板16,17を互いに密着させた状態で保持している。
 筺体20は、上記のように一対の締結板21、22、一対の補強板23,24、および一対のエンドプレート25,26、及びネジ27を含んでいる。以下、筺体20に含まれた各部材について説明する。一対のエンドプレート25,26は、複数積層された燃料電池セル10aの両端に配設した一対の集電板16,17を挟持して付勢している。一対のエンドプレート25,26の外形形状は、一部の形状を除いて、層厚を増したMEA11の外形形状と同様である。一対のエンドプレート25,26は、たとえば、金属からなり、一対の集電板16,17と当接する部分に絶縁体を設けている。一対のエンドプレート25,26は、その長手方向の一端に、カソードガス供給口25a、26a、冷却流体供給口25b、26b、およびアノードガス供給口25c、26cに相当する貫通孔を開口している。同様に、その長手方向の他端には、アノードガス排出口25d、26d、冷却流体排出口25e、26eおよびカソードガス排出口25f、26fに相当する貫通孔を開口している。一対のエンドプレート25,26は、前述した一対の集電板16,17の突起部16g等を挿通させる貫通孔25g、26gを有している。
 一対の締結板21、22は、たとえば、金属からなり、板状に形成している。一対の締結板21、22は、縁部が一部立ち上げて形成されており、組み付けた際に一対のエンドプレート25、26の面と接触する。また、締結板21,22においてエンドプレート25,26と接触する面にはネジ27を挿通させる穴が設けられており、当該穴に取り付けたネジ27を締め付けることによってエンドプレート25、26、集電板16,17、及び積層体10が積層方向に加圧される。一対の補強板23、24は、たとえば、金属からなり、一対の締結板21、22よりも細長い板状に形成している。一対の補強板23、24は、長手方向における端部が一部立ち上げて形成されており、当該部分にはネジ27を挿通させる穴が設けられている。当該穴はネジ27を積層方向に通すように形成されており、ネジ27を取り付けて締結することによって、締結板21,22と同様にエンドプレート25,26、集電板16,17、及び積層体10が積層方向に加圧される。このように、一対の締結板21、22および一対の補強板23、24は、ネジ27を締結することによって、エンドプレート25、26、集電板16,17、及び積層体10を積層方向に加圧している。
 図7は燃料電池を構成する部品を積層する積層工程について示す斜視図である。上記のセパレータ13,14、フレーム部材15、集電板16,17、エンドプレート25,26の冷却流体供給口13b~17b、25b、26b及び冷却流体排出口13e~17e、25e、26eは、燃料電池セル10a、集電板16,17、及びエンドプレート25,26を積層する際の各構成部品の位置合わせの形状として利用される。積層工程において用いられる積層装置300について概説すると、図7に示す燃料電池の積層装置300において、支持台310の上に基準台320が設置され、基準台320には間隔の調整可能な位置決め柱330、340が設けられる。位置決め柱330、340の間隔の調整は、位置決め柱330、340を柱間隔調整治具350の基準孔351、352に挿通させ、柱間隔調整治具350を保持する基準側柱361、362を近接離間させることによって行われる。なお、セパレータ13,14やMEA11を積層する際には隣接する部材を暫定的に直接接触させないようにスペーサ370を間に挟むこともできる。スペーサ370は支持柱380によって回転可能に保持されている。基準側柱361、362等の動作はCPU,RAM、ROM等からなる制御部390によって制御されている。
 燃料電池100を構成する部品において燃料電池セル10aの積層方向に積層される燃料電池セル10a、集電板16,17、及びエンドプレート25、26は、冷却流体供給口13b~17b、25b、26bに位置決め柱330を挿入し、冷却流体排出口13e~17e、25e、26eに位置決め柱340を挿入することによって、位置合わせが行われる。また、後述するように、セパレータアセンブリ12を形成する際に、セパレータ13,14と弾性部材30とを位置合わせする際にも冷却流体供給口13b~17b、25b、26b及び冷却流体排出口13e~17e、25e、26eに位置決め部材を挿通させることによってセパレータ13,14と弾性部材30との位置合わせが行なわれる。このように、燃料電池100の構成部品を積層する際の位置決め形状とセパレータアセンブリを形成する際の位置決めに同一の形状を用いることによって、燃料電池の構成部品の積層とセパレータアセンブリの形成の基準が異なる場合に生じる基準同士の位置のバラつきが生じることがなく、燃料電池の構成部品を積層する際やセパレータアセンブリを形成する際の組み立てバラつきを抑制することができる。
 (セパレータアセンブリの製造装置)
次に本実施形態に係る燃料電池を構成するセパレータアセンブリの製造について詳細に説明する。なお、セパレータアセンブリ以外の燃料電池の構成部品を製造する工程及び各構成部品を組み立てる工程は公知の装置を用いるため、説明を省略する。
 本実施形態に係るセパレータアセンブリ12の製造装置200は、セパレータアセンブリ12を構成するセパレータ13,14や弾性部材30を搬送するコンベヤー210と、コンベヤー210上に所定数設置されたセパレータ13,14及び弾性部材30を載置する載置台220(載置部に相当)と、載置台220にセパレータ13,14や弾性部材30を載置するハンドロボット240、250、260と、載置台220に載置されたセパレータ13,14や弾性部材30などのワーク同士を接合する溶接ロボット270(接合部に相当)と、弾性部材30をセパレータ13に接合する際にセパレータ13を弾性部材30に向けて押圧する押圧力を付与する押圧部材280と、を有する。
 コンベヤー210は、セパレータアセンブリ12を構成するセパレータ13,14、及び弾性部材30などのワークを図2における左側から右側へと搬送して次工程へと送る。コンベヤー210には、ワークの組み立てを行なうための停止位置210a~210dが設けられている。
 載置台220には、セパレータ13,14及び弾性部材30を位置合わせするための位置決め部材が設置されている。位置決め部材は、弾性部材30またはセパレータ13を所定の位置に移動させるための付勢部材231~235と、付勢部材231~235によって付勢された弾性部材30及びセパレータ13またはセパレータ14を所定の位置に位置決めする固定ピン221~227を有する。なお、本実施形態において弾性部材30はアノードセパレータ13と位置合わせされ、接合されるが、同様の方法でカソードセパレータ14と弾性部材30を位置合わせして接合することもできる。
 付勢部材231~235及び固定ピン221~227の中でも付勢部材231、232及び固定ピン221~224は弾性部材30の位置決めに利用される(第1位置決め部材に相当)。また、付勢部材233~235及び固定ピン225~227はセパレータ13の位置決めに利用される(第2位置決め部材に相当)。また、弾性部材30とセパレータ13の載置台220における位置決めは、図4(A)におけるセパレータ13の外形形状における長手方向d1と短手方向d2に分類される。付勢部材231、233、234及び固定ピン223、224、225,226は短手方向d2における位置決めに利用される。また、付勢部材232、235及び固定ピン221、222、227は長手方向d1の位置決めに利用される。
 隣接するセパレータ同士の接触において、燃料電池の発電特性に大きく影響するのは隣接するセパレータ13,14の波形形状13g、14gを構成する凹凸が弾性部材30とどのように接触するかということである。そのため、固定ピン221~227及び付勢部材231~235においては、少なくとも波形形状13g、14gを構成する凹凸の並ぶ方向(短手方向d2)からセパレータ13及び弾性部材30を各々挟持して位置合わせすれば、弾性部材30の起立片32とセパレータ13において弾性部材30と接触する波形形状13gの凸部の位置を正確に合わせすることができ、燃料電池セル間の電気抵抗を抑制することができる。そのため、波形形状13gにおいて凹凸の断面形状が延在する方向d1の位置決めに必要な固定ピン221、222、227及び付勢部材232、235は省略することができる。
 弾性部材30の位置決めは、付勢部材231、232によって弾性部材30を固定ピン221~224に向けて押し付けて当接させることによって行われる。これに対してセパレータ13の位置決めは、固定ピン226,227を冷却流体供給口13bに挿通させ、固定ピン225を冷却流体排出口13eに挿通させて、付勢部材233~235によってセパレータ13を固定ピン225~227に向けて押し付けて当接させることによって行われる。
 また、セパレータ13、14の位置決めは、セパレータ13の長手方向d1において断面が凹凸形状となっている波形形状13g、14gを隔てて対になって配置された冷却流体供給口13b及び冷却流体排出口13eに固定ピン225,226を配置して位置決めを行っている。そのため、付勢部材233,234によって押圧力を付加した際に付勢部材233と付勢部材234による押圧のタイミングがずれた際にセパレータ13が意図に反して回転しまうような状況を起こりにくくすることができ、位置合わせの作業性を向上させることができる。なお、固定ピン225,226の配置は、冷却流体供給口13b、14bと冷却流体排出口13e、14eの組み合わせに限定されず、カソードガス供給口13a、14a、冷却流体供給口13b、14b、アノードガス供給口13c、14cの中からいずれか1組とアノードガス排出口13d、14d、冷却流体排出口13e、14e、カソードガス排出口13f、14fの中からいずれか1組を選択したものであればよい。また、固定ピン225,226の配置は図12で説明した積層工程についても同様に適用することができる。
 また、固定ピン221~227及び付勢部材231~235は、スプリングなどによって載置台220の載置面からの陥没させ、退避させることが自在にできる。そのため、弾性部材30を位置決めしてセパレータ13を載置台220に位置決めする際にも固定ピン221~224及び付勢部材231、232は載置台220に陥没できるため、セパレータ13の位置決めを妨げない。よって、セパレータ13を拡張させず、弾性部材30をセパレータ13、と同様の形状に拡張にしなくても弾性部材30とセパレータ13とを高精度に位置合わせすることができる。なお、セパレータ13を弾性部材30に位置決めする際にセパレータ13の設置が妨げられなければよいため、少なくとも固定ピン221~224及び付勢部材231、232が載置面から退避できるように構成されていればよい。
 また、弾性部材30とセパレータ13との接合において載置台220には弾性部材30を先に設置するように構成している。上記のように弾性部材30はセパレータ13のカソードガス供給口13a、冷却流体供給口13b、アノードガス供給口13c、アノードガス排出口13d、冷却流体排出口13e、カソードガス排出口13fなどを備える必要はない。そのため、セパレータ13よりも外形は小さくなってしまう。これに対し、載置台220に弾性部材30を先に設置することによって、固定ピン221~224及び付勢部材231、232を利用して弾性部材30を位置決めすることができ、弾性部材30をセパレータ13と同等の外形に拡張しなくても弾性部材30とセパレータ13との位置合わせを行うことができる。
 また、固定ピン221~227及び付勢部材231~235の高さh1は、図6(A)~6(C)に示すように弾性部材30に荷重が付加されていない時の高さh2よりも高くなるように構成している。そのため、弾性部材30が積層方向に押圧されていない状態で付勢部材231,232によって弾性部材30を固定ピン221~224に押しつけても固定ピン221~224によって弾性部材30を受け止めることができる。よって、弾性部材30が固定ピン221~224または付勢部材231,232を飛び越えて外れてしまうような事態を防止でき、位置合わせの作業性を向上させることができる。
 ハンドロボット240、250、260は、多関節のロボットであり、先端には部品を把持するハンド機構が設けられている。ハンドロボット240、250、260は、ハンド機構によって部品を把持し、関節部分の回動によって部品を載置台220にまで移動、載置台220に部品を設置する。
 溶接ロボット270は、先端には溶接トーチが取り付けられていて、弾性部材30とセパレータ13を溶接接合し、セパレータ13とセパレータ14を溶接接合する。弾性部材30とセパレータ13との接合は、図5に示すように、波形形状13gを構成する凹凸の一部13kについて凹凸の断面形状が伸びる方向に沿って部分的に溶接して行っている。また、セパレータ13とセパレータ14との接合は、セパレータ13のカソードガス供給口13aの縁部13m、アノードガス供給口13cの縁部13n、アノードガス排出口13dの縁部13p、カソードガス排出口13fの縁部13q、セパレータ13の外形となる4つの辺13r、13s、13t、13uを溶接して行っている。
 押圧部材280は、弾性部材30とセパレータ13との接合の際にセパレータ13を弾性部材30に向けて押圧する押圧力を付加する。弾性部材30とセパレータ13とは、セパレータ13の波形形状13gを構成する複数の凹凸において弾性部材30と接触する部分に溶接ロボット270からのレーザーなどを照射する必要がある。そのため、押圧部材280は、セパレータ13と位置合わせした際に波形形状13gが弾性部材30と接触する位置の頭上にレーザーを透過できるように、図11(A)に示すようにスリットを設けている。
 (セパレータアセンブリの製造方法)
次に本実施形態に係るセパレータアセンブリを形成する工程について説明する。セパレータアセンブリの形成は、セパレータ13,14及び弾性部材30を準備する準備工程(ステップST10)と、弾性部材30を載置台220の載置面に位置決めするように載置する第1載置工程(ステップST20)と、弾性部材30が位置決めされた状態で載置台220にセパレータ13を設置する第2載置工程(ステップST30)と、弾性部材30とセパレータ13とを接合する第1接合工程(接合工程に相当、ステップST40)と、セパレータ13とセパレータ14とを接合する第2接合工程(他の接合工程に相当、ステップST50)と、を有する。
 (準備工程、第1載置工程)
準備工程では、ハンドロボット240、250が把持できる位置に不図示の部品設置場所が設けられ、弾性部材30、セパレータ13,14等の燃料電池を構成する部品が用意される。第1載置工程において、図2に示すコンベヤー210に設置された載置台220は、位置210aに搬送される。ロボット240は、部品設置場所から弾性部材30を把持し、位置210aの載置台220まで搬送する。ロボット240は、把持した弾性部材30によって付勢部材231、232を固定ピン221~224から遠ざける方向に一旦移動させる。そして、付勢部材231、232の付勢力を利用して弾性部材30を固定ピン221~224に向かって移動させ、付勢部材231,232と固定ピン221~224によって弾性部材30を挟持させる。これによって、弾性部材30は、載置台220に位置決めされる。
 (第2載置工程)
弾性部材30の位置決めが完了したら、載置台220は位置210bへと搬送される。第2載置工程においてロボット250は、部品設置場所からアノードセパレータ13を把持し、位置210bの載置台220まで搬送する。そして、セパレータ13によって付勢部材233~235を固定ピン225~227から離れるように移動させて、付勢部材233~235の付勢力を利用してセパレータ13を固定ピン225~227に向かって移動させて、付勢部材233~235及び固定ピン225~227によって挟持させる。これによってセパレータ13は載置台220に位置決めされ、弾性部材30とセパレータ13とが位置合わせされる。セパレータ13を載置台220に位置決めした後にはセパレータ13と弾性部材30とを充分に接触させるために押圧部材280をセパレータ13の上に載置する。
 (第1接合工程)
次に、載置台220は位置210cに搬送される。第1接合工程において位置210cでは、まず、弾性部材30とセパレータ13との位置を確認し、弾性部材30とセパレータ13とを接合するために、溶接ロボット270の溶接ヘッド271を押圧部材280に設けられたスリットの間、すなわち溶接箇所の頭上に移動させる。そして、セパレータ13の波形形状13g、14gの延びる方向に沿って溶接接合を行う。これにより、セパレータ13の波形形状13gの所定位置13k(図5参照)が溶接接合されて、弾性部材30とセパレータ13とが接合される。
 (第2接合工程)
第1接合工程が終了したら、載置台220は位置210dまで搬送される。第2接合工程において位置210dでは、ロボット260が接合された弾性部材30とセパレータ13を把持して180度回転させる。これにより、弾性部材30とセパレータ13との位置関係が図6(A)に示す状態から図6(B)に示す状態に変化する。そして、位置210bに載置台220を配置して、図6(B)に示すように上下を反転させた弾性部材30及びセパレータ13を載置台220に位置決めする。上記のように固定ピン221~224及び付勢部材231、232は載置台220に陥没できるため、弾性部材30が接合されたセパレータ13の設置を妨げることはない。
 弾性部材30が接合されたセパレータ13の位置決めは、上記と同様に付勢部材233~235を固定ピン225~227から離れるように移動させる。そして、付勢部材233~235の付勢力を利用して弾性部材30が接合されたセパレータ13を固定ピン225~227に向かって移動させて、固定ピン225~227及び付勢部材233~235によって挟持する。これによって弾性部材30が接合されたセパレータ13が載置台220に対して位置決めされる。
 次に図6(C)に示すように弾性部材30が接合されたセパレータ13の上にセパレータ14をセパレータ13と同様に固定ピン225~227及び付勢部材233~235を用いて位置決めを行なう。これによってセパレータ13とセパレータ14とが位置合わせされる。
 セパレータ13とセパレータ14とが位置合わせできたら、位置210bに載置台220を位置210cに搬送する。そして、溶接ロボット270によってセパレータ13の縁部13m、13n、13p、13q及び4つの辺13r、13s、13t、13uを溶接して、両者を接合する。溶接は、縁部13m、13n、13p、13qについて行い、その後に4つの辺13r、13s、13t、13uを行う。燃料電池100の発電特性はセパレータ13,14の波形形状同士の接触が影響を与えるため、4つの辺13r、13s、13t、13uの溶接は、辺13r及び辺13tを辺13s及び辺13uよりも先に行う。このようにセパレータ13の縁部13m、13n、13p、13q及び4つの辺13r、13s、13t、13uを接合することによって、セパレータ13とセパレータ14とが接合され、セパレータアセンブリ12が完成する。
 (積層工程)
セパレータアセンブリ12が完成したら、MEA11の両側面にセパレータアセンブリ12を配置して燃料電池セル10aを形成し、燃料電池セル10aを所定数積層して積層体10を形成する。そして、積層体10の積層方向に集電板16,17を配置し、締結板21、22、補強板23、24、及びエンドプレート25,26によって積層体10及び集電板16,17を覆う。そして、締結板21,22にネジ27取り付けて締結することによって積層体10、集電板16,17、及びエンドプレート25,26が加圧されて燃料電池100が完成する。
 次に本実施形態に係る作用及び効果について説明する。燃料電池には、隣接する燃料電池セルの中でも隣り合うセパレータ同士の接触状況に起因する燃料電池セル間の電気抵抗を抑制するためにセパレータの間に弾性部材を設置することがある。しかし、弾性部材はセパレータの形状の中でも波形形状に当る部分の形状バラつきを吸収するため、単に積層することのみを考慮すれば、波形形状よりも外方に設けられた燃料、酸化剤、及び冷却媒体の流通孔にまで形状を拡張する必要はない。しかし、従来のように構成部品の4隅の角部に貫通穴を設けて位置決めピンを挿通させて位置決めする場合、セパレータと弾性部材とは外形が異なるため、外形の小さい弾性部材をセパレータと同じ外形に拡張しなければならず、その場合には弾性部材のコストを増加させることになってしまう。
 これに対し、本実施形態に係る燃料電池用セパレータアセンブリの製造方法及び装置では、セパレータ13,14及びセパレータ13,14よりも外形の小さい弾性部材30を準備し、固定ピン221~224及び付勢部材231、232によって弾性部材30を位置決めし、固定ピン225~227及び付勢部材233~235によってセパレータ13を挟持して当接させて弾性部材30に対してセパレータ13を位置決めしている。セパレータ13を弾性部材30に位置決めする際に第1位置決め部材に相当する固定ピン221~224及び付勢部材233~235は載置面から突出しないように退避させることができる。そのため、セパレータ13を弾性部材30の上に設置する際にもセパレータ13の設置が固定ピン221~224及び付勢部材233~235によって妨げられることはない。よって、弾性部材30をセパレータ13と同様の形状まで拡張しなくてもセパレータ13と弾性部材30とを高精度に位置合わせしたセパレータアセンブリを製造することができる。
 また、第2載置工程は、第1載置工程の後に行うように構成している。つまり、載置台220に弾性部材30とセパレータ13,14を設置する際には、載置台220に弾性部材30を設置した後にセパレータ13を設置して位置合わせを行うように構成している。そのため、弾性部材30にカソードガス供給口13a、冷却流体供給口13b、アノードガス供給口13c、アノードガス排出口13d、冷却流体排出口13e及びカソードガス排出口13fを設けなくても弾性部材30を載置台220に位置決めしてセパレータ13と位置合わせすることができ、弾性部材30の部品コスト増加を抑制しつつセパレータ13との位置合わせを高精度に行なうことができる。
 また、第1位置決め部材に相当する固定ピン221~224及び付勢部材231、232と第2位置決め部材に相当する固定ピン225~227及び付勢部材233~235は、少なくともセパレータ13,14の波形形状13g、14gを構成する凹凸が並ぶ方向から弾性部材30又はセパレータ13を挟持するように構成している。隣接するセパレータ同士の接触において、燃料電池の発電特性に大きく影響するのは隣接するセパレータ13,14の波形形状13g、14gを構成する凹凸が弾性部材30の起立片32とどのように接触するかということである。そのため、少なくとも波形形状13g、14gを構成する凹凸の並ぶ方向からセパレータ13及び弾性部材30を各々挟持すれば、凹凸の並ぶ方向における両者の位置関係を正確に合わせることができ、弾性部材30の形状をセパレータ13、14の形状まで拡張する必要はない。よって、弾性部材30をセパレータ13,14の形状と同形状にまで拡張しなくても弾性部材とセパレータとの位置を正確に位置合わせして燃料電池セル間の電気抵抗を抑制することができる。
 また、セパレータ13,14は燃料電池100に起電力を発生させるための燃料、酸化剤、又は冷却媒体を流通させるカソードガス供給口13a、14a、冷却媒体供給口13b、14b、アノードガス供給口13c、14c、アノードガス排出口13d、14d、冷却媒体排出口13e、14e、及びカソードガス排出口13f、14fを有し、第2位置決め部材にあたる固定ピン225~227及び付勢部材233~235は、冷却媒体供給口13b、14b及び冷却媒体排出口13e、14eを用いて弾性部材30とセパレータ13との位置合わせを行なっている。そのため、弾性部材30との位置合わせのための位置決め専用の形状を設け、弾性部材30を使用しない燃料電池との間でセパレータの仕様分けをしなくても弾性部材30との位置合わせを行うことができる。
 また、第2載置工程ではセパレータ13,14において断面が凹凸形状の波形形状13g、14gを隔てて対になって配置されたカソードガス供給口13a、14a、冷却流体供給口13b、14b、アノードガス供給口13c、14cとアノードガス排出口13d、14d、冷却流体排出口13e、14e、カソードガス排出口13f、14fとを用いてセパレータ13の位置決めを行うように構成している。そのため、セパレータ13の位置決めの際にセパレータ13が意図に反して回転等することによって位置決めに時間がかかるような事態を防止し、位置決めの作業性を向上させることができる。
 また、弾性部材30とセパレータ13との位置合わせに用いられる固定ピン221~227及び付勢部材231~235の高さは、いずれも弾性部材30に加圧されていない際の高さよりも高くなるように構成している。そのため、弾性部材30が押圧されず、起立片32の部位が撓んでいない場合でも固定ピン221~227及び付勢部材231~235によって弾性部材30をしっかりと挟持することができ、位置決めの信頼性を向上させることができる。
 また、弾性部材30とセパレータ13とを接合する第1接合工程の後には、セパレータ13とセパレータ14とを位置合わせして接合する第2接合工程を行うように構成している。弾性部材30は、セパレータ13とセパレータ14との間に配置されるため、例えばセパレータ13とセパレータ14の外周を部分的に接合した後に弾性部材30をセパレータ13とセパレータ14の間に配置して接合しようとすれば、弾性部材30がセパレータ13、14の間に配置されたのでは位置の保持ができないため、ずれた位置で接合されるおぞれがある。これに対し、先に弾性部材30をセパレータ13に接合することによって、セパレータ13に対して弾性部材30の位置が固定され、セパレータ13とセパレータ14との間に配置しても弾性部材30の位置がずれることを防止できる。よって、弾性部材30をセパレータ13,14の波形形状13g、14gと高精度に位置合わせした状態でセパレータアセンブリを形成することができ、燃料電池セル間の電気抵抗を良好に抑制することができる。
 また、第2接合工程において、セパレータ13とセパレータ14との接合はカソードガス供給口13a、冷却流体供給口13b、アノードガス供給口13c、アノードガス排出口13d、冷却流体供給口13e、カソードガス排出口13fと隣接する辺13s、13uよりも先に波形形状13gと隣接する辺13r、13tを先に溶接接合するように構成している。上記のように、隣接するセパレータの波形形状の接触の状態は燃料電池セル間の電気抵抗の上昇に与える影響が大きい。そのため、セパレータ13の外形である4つの辺の中でも波形形状13gに近い辺13r、13tから先に接合することによって、セパレータ13とセパレータ14との間で弾性部材30を挟持した際に弾性部材30の位置がずれることを防止し、弾性部材30にセパレータ13,14を高精度に接触させて燃料電池セル間の電気抵抗の上昇を抑制することができる。
 また、第1接合工程において、弾性部材30は載置台220の載置面と接触した状態で弾性部材30及びセパレータ13の積層方向に押圧するように構成している。そのため、弾性部材30の復元力によって弾性部材30をセパレータ13にさらに密着させて接合することができ、燃料電池セル間の電気抵抗の上昇の抑制に寄与することができる。
 また、弾性部材30とセパレータ13との位置決めに用いられる冷却流体供給口13b及び冷却流体排出口13eは、積層工程において燃料電池セル10aを積層した積層体10と積層体10の両端に集電板16,17及びエンドプレート25,26を配置して位置決めする際の位置決め形状としても用いられる。そのため、燃料電池の構成部品を積層する際の基準とセパレータアセンブリを形成する際の基準が異なることによって生じる基準同士のバラつきを生じないようにすることができ、燃料電池の構成部品を積層する際やセパレータアセンブリを形成する際の組み立てバラつきを抑制することができる。
 また、第1接合工程において押圧部材280によってセパレータ13を弾性部材30に向けて押圧する押圧荷重は、燃料電池の構成部品を積層する積層工程の際に付加する押圧荷重よりも大きな荷重を付加している。弾性部材30とセパレータ13との接合の際において弾性部材30はセパレータ13,14によって挟持されておらず、復元力によって延びた状態に戻ることができる。このような状況において弾性部材30に積層工程の際よりも大きな荷重を付加することによって、大きな荷重が付加された際にも弾性部材30が塑性変形しにくくすることができ、弾性部材30の緩衝部材としての機能を向上させることができる。
 本発明は上述した実施形態のみに限定されず、特許請求の範囲内において種々の変更が可能である。
 弾性部材30とセパレータ13との接合は、セパレータ13の波形形状の延在する方向に沿って数箇所(図10では12箇所)接合箇所13kを形成した後に縁部13m、13n、13p、13q及び外周13r、13s、13t、13uの接合を行う実施形態について説明したが、これに限定されない。弾性部材30とセパレータ13とは12箇所全てを溶接しなくても弾性部材30とセパレータ13とを暫定的に固定することはできる。そのため、第1接合工程において図10に示す波形形状13gの12の接合箇所13hのうちの一部を溶接し、第2接合工程において縁部13m、13n、13p、13q及び外周13r、13s、13t、13uを接合して、波形形状における接合箇所13kの残りの箇所を溶接することもできる。
  本出願は、2013年5月23日に出願された日本特許出願番号2013-109325号に基づいており、その開示内容は参照され、全体として組み込まれている。
10 積層体、
10a 燃料電池セル、
100 燃料電池、
11 膜電極接合体、
11a 電解質膜、
11b アノード、
11c カソード、
12 セパレータ組み立て体、
13 アノードセパレータ(第1セパレータ)、
13g 波形形状、
14 カソードセパレータ(第2セパレータ)、
14g 波形形状、
15 フレーム部材、
16、17 集電板、
20 筐体、
21、22 締結板、
23、24 補強板、
25、26 エンドプレート(端部部材)、
27 ネジ、
210 コンベヤー、
210a~210d 載置台の停止位置、
220 載置台(載置部)、
221~227 固定ピン、
231~235 付勢部材、
240、250、260 ハンドロボット、
270 溶接ロボット(接合部)、
280 押圧部材、
13a、14a カソードガス供給口(セパレータ流通孔)、
13b、14b 冷却流体供給口(セパレータ流通孔)、
13c、14c アノードガス供給口(セパレータ流通孔)、
13d、14d アノードガス排出口(セパレータ流通孔)、
13e、14e 冷却流体排出口(セパレータ流通孔)、
13f、14f カソードガス排出口(セパレータ流通孔)、
15a、16a、17a、25a、26a カソードガス供給口(連通孔)、
15b、16b、17b、25b、26b 冷却流体供給口(連通孔)、
15c、16c、17c、25c、26c アノードガス供給口(連通孔)、
15d、16d、17d、25d、26d アノードガス排出口(連通孔)、
15e、16e、17e、25e、26e 冷却流体排出口(連通孔)、
15f、16f、17f、25f、26f カソードガス排出口(連通孔)、
13k 波形形状における溶接箇所、
13m、13n、13p、13q カソードガス供給口、アノードガス供給口、アノードガス排出口、カソードガス排出口における溶接箇所、
13r、13s、13t、13u セパレータの外周における溶接箇所、
30 弾性部材、
31 基部面、
32 起立片、
32a 固定端部、
32b 自由端部、
300 積層装置、
310 支持台、
320 基準台、
330、340 位置決め柱、
350 柱間隔、
351,352 基準孔、
361、362 基準側柱、
370 スペーサ、
380 支持柱、
390 コントローラー、
d1 セパレータの長手方向(波形形状が延在する方向)、
d2 セパレータの短手方向(波形形状を構成する複数の凹凸が並ぶ方向)。

Claims (12)

  1.  膜電極接合体に隣接して設けられ流体を流す流路を形成する、燃料電池用のセパレータアセンブリの製造方法であって、
     断面形状に凹凸形状を有する第1セパレータと、断面形状に凹凸形状を有する第2セパレータと、前記第1セパレータ及び前記第2セパレータを面方向から見た平面視の外形形状よりも小さい外形形状を有し、前記第1セパレータと前記第2セパレータとの間に配置されて対向する前記第1セパレータの凸部及び前記第2セパレータの凸部との接触を弾性変形によって維持する導電性を備えた弾性部材と、を準備する準備工程と、
     載置面に設けられた第1位置決め部材を前記弾性部材に当接させることによって、前記弾性部材を位置決めして前記載置面に載置する第1載置工程と、
     前記載置面において前記第1位置決め部材が設けられた領域よりも外側の領域に設けられた第2位置決め部材を前記第1セパレータに当接させることによって、前記第1セパレータを前記弾性部材に対して位置決めして前記弾性部材に重ねて載置する第2載置工程と、
     位置決めして重ね合わされた前記弾性部材と前記第1セパレータとを接合する接合工程と、を有し、
     前記第2載置工程においては、前記弾性部材を位置決めしている前記第1位置決め部材を前記載置面から退避させながら、前記第1セパレータを前記弾性部材に重ね合わせる、燃料電池用のセパレータアセンブリの製造方法。
  2.  前記第2載置工程は前記第1載置工程の後に行われる請求項1に記載の燃料電池用のセパレータアセンブリの製造方法。
  3.  前記第1位置決め部材及び前記第2位置決め部材は、少なくとも前記第1セパレータ及び前記第2セパレータの前記凹凸形状が並ぶ方向から前記第1セパレータ及び前記弾性部材を挟持するように配置される請求項1または2に記載の燃料電池用のセパレータアセンブリの製造方法。
  4.  前記第1セパレータ及び前記第2セパレータは、前記燃料電池に起電力を発生させるための燃料、酸化剤、又は前記燃料電池を冷却する冷却流体を流通させる複数のセパレータ流通孔を有し、
     前記第2位置決め部材は、前記セパレータ流通孔を用いて前記第1セパレータの位置決めを行う請求項1~3のいずれか1項に記載の燃料電池用のセパレータアセンブリの製造方法。
  5.  前記セパレータ流通孔は、平面視した際に断面形状が凹凸形状となる部位を隔てて対になって配置され、
     前記第2載置工程では、対になって配置された前記セパレータ流通孔を用いて前記第1セパレータの位置決めを行なう請求項4に記載の燃料電池用のセパレータアセンブリの製造方法。
  6.  前記第1位置決め部材及び前記第2位置決め部材は、荷重を付加していない場合の前記弾性部材の高さよりも高く構成される請求項1~5のいずれか1項に記載の燃料電池用のセパレータアセンブリの製造方法。
  7.  前記接合工程の後に前記第1セパレータと前記第2セパレータとを接合する他の接合工程と、をさらに有する請求項1~6のいずれか1項に記載の燃料電池用のセパレータアセンブリの製造方法。
  8.  前記第1セパレータ及び前記第2セパレータは、前記セパレータ流通孔と隣接する第1の辺の対と、
     前記第1の辺の対よりも前記断面形状が凹凸形状となる部位と隣接する第2の辺の対と、を有し、
     前記他の接合工程では、前記第2の辺の対を前記第1の辺の対よりも先に接合する請求項7に記載の燃料電池用のセパレータアセンブリの製造方法。
  9.  前記接合工程において前記弾性部材は、前記載置面と接触した状態で前記弾性部材及び前記第1セパレータの積層方向に押圧される請求項1~8のいずれか1項に記載の燃料電池用のセパレータアセンブリの製造方法。
  10.  請求項1~9のいずれか1項に記載の前記セパレータアセンブリと前記膜電極接合体とを交互に積層し、積層された前記膜電極接合体及び前記セパレータアセンブリよりも積層方向における両端に集電板及び端部部材を少なくとも配置し、前記積層方向から押圧荷重を付加する積層工程、をさらに有し、
     前記膜電極接合体は、外周部にフレーム部材を有し、
     前記フレーム部材、前記集電板、及び前記端部部材は、積層の際に前記セパレータ流通孔と連通する連通孔を各々有し、
     前記積層工程では、前記セパレータ流通孔と、前記フレーム部材、前記集電板及び前記端部部材の前記連通孔の縁部を用いて前記セパレータアセンブリ、前記膜電極接合体、前記集電板、及び前記端部部材の位置合わせを行う燃料電池の製造方法。
  11.  前記接合工程において前記弾性部材には前記積層工程の際よりも大きな押圧荷重が前記積層方向から付加される請求項10に記載の燃料電池の製造方法。
  12.  膜電極接合体に隣接して設けられ流体を流す流路を形成する、燃料電池用のセパレータアセンブリの製造装置であって、
     前記セパレータアセンブリは、断面形状に凹凸形状を有する第1セパレータと、断面形状に凹凸形状を有する第2セパレータと、前記第1セパレータ及び前記第2セパレータを面方向から見た平面視の外形形状よりも小さい外形形状を有し、前記第1セパレータと前記第2セパレータとの間に配置されて対向する前記第1セパレータの凸部及び前記第2セパレータの凸部との接触を弾性変形によって維持する導電性を備えた弾性部材と、を有し、
     前記製造装置は、前記弾性部材及び前記第1セパレータ及び前記第2セパレータを載置する載置部と、
     前記載置部の載置面に設けられ、前記弾性部材に当接させることによって前記弾性部材を位置決めする第1位置決め部材と、
     前記第1位置決め部材が設けられた領域よりも外側の領域に設けられ、前記第1セパレータに当接させることによって前記第1セパレータを前記弾性部材に対して位置決めする第2位置決め部材と、
     前記第1位置決め部材及び前記第2位置決め部材によって位置合わせされた前記弾性部材と前記第1セパレータとを接合する接合部と、を有し、
     前記第1位置決め部材は、前記載置面から退避可能である燃料電池用のセパレータアセンブリの製造装置。
PCT/JP2014/060306 2013-05-23 2014-04-09 燃料電池用セパレータの製造方法及び製造装置 WO2014188807A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480026662.4A CN105210221B (zh) 2013-05-23 2014-04-09 燃料电池用分隔件的制造方法和制造装置
CA2913316A CA2913316C (en) 2013-05-23 2014-04-09 Method and apparatus for manufacturing separator for fuel cell
EP14800588.7A EP3001488B1 (en) 2013-05-23 2014-04-09 Method and apparatus for manufacturing separator for fuel cell
JP2015518151A JP6115633B2 (ja) 2013-05-23 2014-04-09 燃料電池用セパレータの製造方法及び製造装置
US14/888,711 US9793553B2 (en) 2013-05-23 2014-04-09 Method and apparatus for manufacturing separator for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013109325 2013-05-23
JP2013-109325 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014188807A1 true WO2014188807A1 (ja) 2014-11-27

Family

ID=51933373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060306 WO2014188807A1 (ja) 2013-05-23 2014-04-09 燃料電池用セパレータの製造方法及び製造装置

Country Status (6)

Country Link
US (1) US9793553B2 (ja)
EP (1) EP3001488B1 (ja)
JP (1) JP6115633B2 (ja)
CN (1) CN105210221B (ja)
CA (1) CA2913316C (ja)
WO (1) WO2014188807A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192372A (ja) * 2018-04-19 2019-10-31 トヨタ自動車株式会社 燃料電池用のセパレータ材の搬送方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026743B1 (en) * 2013-07-22 2018-02-21 Nissan Motor Co., Ltd Fuel cell production method and fuel cell
FR3039931B1 (fr) * 2015-08-07 2017-08-25 Michelin & Cie Empilement pour la fabrication de plaques bipolaires pour piles a combustibles
DE102020201367A1 (de) * 2020-02-05 2021-08-05 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellenstapel ohne Dichtungsmaterial

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048435U (ja) * 1983-09-12 1985-04-05 積水化学工業株式会社 板状体のセンタ−位置合わせ装置
JP2002056882A (ja) * 2000-08-11 2002-02-22 Honda Motor Co Ltd 燃料電池スタック
JP2006318863A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 燃料電池のセパレータ
JP2008059760A (ja) 2006-08-29 2008-03-13 Toyota Motor Corp 燃料電池および燃料電池の製造方法
JP2010118306A (ja) * 2008-11-14 2010-05-27 Nissan Motor Co Ltd 燃料電池用セパレータ接合体、燃料電池、燃料電池用セパレータ接合体の製造方法および製造装置、燃料電池の製造方法および製造装置
JP2012059383A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 燃料電池スタック

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046795A1 (de) * 2005-09-30 2007-04-12 Behr Gmbh & Co. Kg Kühlbare Bipolarplatte
JP5224649B2 (ja) * 2006-03-29 2013-07-03 日本碍子株式会社 導電性接続部材および固体酸化物形燃料電池
DE112012000854B4 (de) * 2011-02-18 2023-01-12 Sumitomo Electric Industries, Ltd. Poröser Aluminiumkörper mit dreidimensionalem Netzwerk, Elektrode unter Verwendung des porösen Aluminiumkörpers und nicht-wässrige Elektrolytbatterie, Kondensator und Lithiumionenkondensator mit nicht-wässriger elektrolytischer Lösung, die jeweils die Elektrode verwenden
JP6014548B2 (ja) * 2012-12-07 2016-10-25 本田技研工業株式会社 燃料電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048435U (ja) * 1983-09-12 1985-04-05 積水化学工業株式会社 板状体のセンタ−位置合わせ装置
JP2002056882A (ja) * 2000-08-11 2002-02-22 Honda Motor Co Ltd 燃料電池スタック
JP2006318863A (ja) * 2005-05-16 2006-11-24 Toyota Motor Corp 燃料電池のセパレータ
JP2008059760A (ja) 2006-08-29 2008-03-13 Toyota Motor Corp 燃料電池および燃料電池の製造方法
JP2010118306A (ja) * 2008-11-14 2010-05-27 Nissan Motor Co Ltd 燃料電池用セパレータ接合体、燃料電池、燃料電池用セパレータ接合体の製造方法および製造装置、燃料電池の製造方法および製造装置
JP2012059383A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001488A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192372A (ja) * 2018-04-19 2019-10-31 トヨタ自動車株式会社 燃料電池用のセパレータ材の搬送方法
JP6996408B2 (ja) 2018-04-19 2022-02-04 トヨタ自動車株式会社 燃料電池用のセパレータ材の搬送方法

Also Published As

Publication number Publication date
EP3001488A4 (en) 2016-06-01
JP6115633B2 (ja) 2017-04-19
CA2913316C (en) 2017-10-10
CN105210221A (zh) 2015-12-30
JPWO2014188807A1 (ja) 2017-02-23
US9793553B2 (en) 2017-10-17
CA2913316A1 (en) 2014-11-27
EP3001488A1 (en) 2016-03-30
CN105210221B (zh) 2018-10-30
EP3001488B1 (en) 2017-10-04
US20160079611A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6056964B2 (ja) 燃料電池の製造方法及び製造装置
JP6115633B2 (ja) 燃料電池用セパレータの製造方法及び製造装置
EP2991148B1 (en) Insulating structure, fuel cell and fuel cell stack
JP6020718B2 (ja) 燃料電池用セパレータアセンブリの製造装置及び製造方法
JP4889880B2 (ja) 燃料電池
JP2009152123A (ja) セパレータ、燃料電池スタックおよび燃料電池スタックの製造方法
JP5061755B2 (ja) 燃料電池
JP2007273433A (ja) セルユニット、セル接続方法、及び、燃料電池
JP2007179815A (ja) 燃料電池モジュール、燃料電池スタック及び燃料電池モジュールの作製方法
JP7245858B2 (ja) 燃料電池用のセパレータ及び発電セル積層体の製造方法
JP2006269159A (ja) 燃料電池スタック
JP2013131371A5 (ja)
JP5756653B2 (ja) 燃料電池スタック
JP4452585B2 (ja) 燃料電池スタック
JP2009064734A (ja) 燃料電池用金属セパレータ、燃料電池スタック、および燃料電池用金属セパレータの製造方法
JP2015022813A (ja) 変形吸収部材とセパレータとの接合方法および変形吸収部材とセパレータとの接合装置
EP3026741B1 (en) Deformation absorption member and attachment method for deformation absorption member
JP7212704B2 (ja) 燃料電池用のセパレータ及び燃料電池スタック
JP7095425B2 (ja) 固体酸化物形燃料電池のセルユニット、および固体酸化物形燃料電池
JP2022112216A (ja) 燃料電池用のセパレータ及び燃料電池スタック
JP2021044199A (ja) 燃料電池スタック、燃料電池スタック用のターミナル構造及び燃料電池スタック用のターミナル構造の製造方法
JP2012182031A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14888711

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2913316

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014800588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014800588

Country of ref document: EP