WO2014188576A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2014188576A1
WO2014188576A1 PCT/JP2013/064451 JP2013064451W WO2014188576A1 WO 2014188576 A1 WO2014188576 A1 WO 2014188576A1 JP 2013064451 W JP2013064451 W JP 2013064451W WO 2014188576 A1 WO2014188576 A1 WO 2014188576A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode electrode
plasma
gas
plasma processing
processing apparatus
Prior art date
Application number
PCT/JP2013/064451
Other languages
English (en)
French (fr)
Inventor
厚文 大岸
猿渡 哲也
鈴木 正康
健 三科
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2015518013A priority Critical patent/JP6065111B2/ja
Priority to PCT/JP2013/064451 priority patent/WO2014188576A1/ja
Publication of WO2014188576A1 publication Critical patent/WO2014188576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32036AC powered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32596Hollow cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a plasma processing apparatus for generating a plasma to perform substrate processing.
  • a plasma processing apparatus is used in a film forming process, an etching process, an ashing process, and the like because of high-precision process control.
  • a plasma processing apparatus for example, a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like are known.
  • CVD plasma chemical vapor deposition
  • a plasma etching apparatus a plasma ashing apparatus, and the like are known.
  • a plasma CVD apparatus a raw material gas is turned into plasma by high-frequency power or the like, and a thin film is formed on a substrate by a chemical reaction.
  • plasma processing equipment that uses a shower electrode that supplies process gas from the inside of the cathode electrode to make the plasma density uniform
  • plasma processing equipment that uses hollow cathode discharge to generate high-density plasma.
  • a plasma processing apparatus using hollow cathode discharge it is common to dispose an uneven structure on the surface of the cathode electrode by forming a through hole or a groove in the cathode electrode. In this structure, collision of electrons in the plasma is repeated, and high-density plasma is generated.
  • the surface of the cathode electrode When a cylindrical through-hole is formed in the cathode electrode for hollow cathode discharge, the surface of the cathode electrode has an area where the plasma density is high and an opening is arranged because the opening of the through-hole is arranged. Therefore, it is divided into regions with low plasma density. That is, the plasma density is biased within the surface of the cathode electrode, and a high density plasma region and a low density plasma region are generated. As a result, there arises a problem that the film quality of the film formed on the substrate is not uniform in the plane.
  • an object of the present invention is to provide a plasma processing apparatus in which a deviation in plasma density on the surface of a cathode electrode in which a through hole is formed is suppressed.
  • an anode electrode on which a substrate to be processed is mounted, and (b) an opening is provided in each of two main surfaces facing each other so as to penetrate between the two main surfaces. And a through hole having a tapered opening so that the diameter of the opening is larger than the diameter of the intermediate portion, and at least one of the two main surfaces faces the substrate mounted on the anode electrode (C) a gas supply device for introducing a process gas between the anode electrode and the cathode electrode; (d) supplying AC power between the anode electrode and the cathode electrode; There is provided a plasma processing apparatus provided with an AC power source for bringing a process gas into an AC plasma state on each of two main surfaces.
  • the present invention it is possible to provide a plasma processing apparatus in which an uneven plasma density on the surface of the cathode electrode in which the through hole is formed is suppressed.
  • the plasma processing apparatus 1 is disposed so as to face the anode electrode 10 on which the substrate 100 to be processed is mounted and the substrate 100 mounted on the anode electrode 10.
  • a cathode electrode 20, a gas supply device 30 that introduces a process gas 300 between the anode electrode 10 and the cathode electrode 20, and an AC power source 40 that supplies AC power between the anode electrode 10 and the cathode electrode 20 are provided.
  • the AC power supply 40 turns the process gas 300 into an AC plasma state on the first main surface 21 and the second main surface 22 of the cathode electrode 20 with the supplied AC power.
  • the anode electrode 10 and the cathode electrode 20 are flat plate types, and the plasma processing apparatus 1 uses capacitively coupled plasma.
  • the distance between the capacitive coupling electrodes is preferably substantially uniform.
  • a boat type sample holder having two substrate plates is used as the anode electrode 10, and the substrates 100 are vertically mounted on the two substrate plates, respectively.
  • the first main surface 21 and the second main surface 22 of the cathode electrode 20 face the substrate 100, respectively.
  • the cathode electrode 20 and the anode electrode 10 are disposed in the chamber 50.
  • the anode electrode 10 is disposed on the heater 60, and the temperature of the substrate 100 mounted on the anode electrode 10 can be set by the heater 60.
  • a predetermined process gas 300 is introduced from the gas supply device 30 into the chamber 50. Then, after the pressure in the chamber 50 is adjusted by the gas exhaust device 70 that exhausts the inside of the chamber 50, the process gas 300 is converted into plasma in the chamber 50.
  • the cathode electrode 20 is provided with openings in the first main surface 21 and the second main surface 22 that face each other, and between the first main surface 21 and the second main surface 22.
  • the cathode electrode 20 provided with an opening on the surface functions as a hollow cathode electrode that causes a hollow cathode discharge. That is, the plasma generation inside the through hole 200 is a hollow cathode discharge. In this hollow cathode discharge, electrons are confined in the through hole 200 and have kinetic energy, so that a high density electron space is obtained. A plasma region is formed in the through hole 200.
  • the first main surface 21 and the second main surface 22 of the cathode electrode 20 are formed by forming a large number of through holes 200 in which hollow cathode discharge is generated at a constant density on the surface of the cathode electrode 20.
  • a uniform high electron density electric field can be easily formed. This is because the space in which high-density plasma is generated is the through-hole 200, and thus the continuity of plasma is ensured between the first main surface 21 and the second main surface 22 of the cathode electrode 20. .
  • the difference in plasma density between the first main surface 21 and the second main surface 22 is automatically corrected by the bipolar diffusion property of the plasma through the through hole 200. Therefore, the plasma processing apparatus 1 can generate a uniform high-density plasma region on both sides of the cathode electrode 20.
  • the surface portion of the cathode electrode 20A is larger than that of the cathode electrode 20 shown in FIG.
  • the area where the low-density plasma region is generated on the main surface 21A and the second main surface 22A is large. For this reason, the deviation of the plasma density is large within the surface of the cathode electrode 20A.
  • the through hole 200 has a diameter d ⁇ b> 2 of the opening that is larger than the central portion of the through hole 200, i.e., the diameter d ⁇ b> 1 of the through hole 200 inside the cathode electrode 20.
  • the opening is tapered.
  • the flat regions in the first main surface 21 and the second main surface 22 of the cathode electrode 20 where the openings are not arranged are the same as in the case of the cathode electrode 20A in which the through hole 200A has a cylindrical shape without a taper. Small compared.
  • High density plasma is also formed in the opening portion having the taper of the through hole 200. Therefore, according to the cathode electrode 20, the area where the low density plasma region is generated can be narrowed, and the area of the high density plasma region can be widened.
  • the surface of the cathode electrode 20 has a high plasma density as a whole.
  • the quality of a film formed using a plasma CVD apparatus having the cathode electrode 20 is improved.
  • the cathode electrode 20 shown in FIG. 2 has an effect that the efficiency of the hollow cathode discharge is hardly lowered.
  • a discharge is always performed on the cathode electrode during processing, and a thin film is continuously deposited on the cathode electrode.
  • the cathode electrode has a through hole, a film is deposited not only on the surface of the cathode electrode but also inside the through hole.
  • the film deposited inside the through hole by hollow cathode discharge is very hard and does not peel easily.
  • the area in which high-density plasma is generated decreases, and the efficiency of hollow cathode discharge decreases.
  • problems such as a decrease in film formation rate, deterioration in film thickness distribution, and deterioration in film quality occur.
  • the maintenance period of the cathode electrode is shortened, causing problems such as an increase in apparatus downtime and an increase in running cost.
  • the film deposited inside the through-hole 200 is not easily peeled off, resulting in a problem that the efficiency of the hollow cathode discharge gradually decreases.
  • the cathode electrode 20 shown in FIG. 2 since the opening portion of the through hole 200 is tapered, the first main surface 21, the second main surface 22, and the through hole 200 of the cathode electrode 20 are formed inside.
  • the adhering films are formed at an angle, and a stress that peels itself acts on these films. For this reason, when the cathode electrode 20 is used for a long-term film formation process, the cumulative film thickness of the film deposited in the through hole 200 is reduced.
  • the maintenance cycle of the cathode electrode 20 can be extended.
  • the plasma processing apparatus 1 shown in FIG. 1 is applicable to a plasma CVD apparatus, a plasma etching apparatus, a plasma ashing apparatus, and the like.
  • a gas containing a raw material gas for film formation is used as the process gas 300, and the process gas 300 is introduced from the gas supply apparatus 30 into the chamber 50.
  • the pressure of the process gas 300 in the chamber 50 is adjusted to a predetermined gas pressure by the gas exhaust device 70, a predetermined AC power is supplied between the cathode electrode 20 and the anode electrode 10 by the AC power source 40.
  • the process gas 300 in the chamber 50 is turned into plasma.
  • a desired thin film mainly composed of the raw material contained in the raw material gas is formed on the exposed surface of the substrate 100. Note that by setting the temperature of the substrate 100 during the film formation process by the heater 60, the film formation rate can be increased or the film quality can be improved.
  • the source gas is efficiently decomposed, and a thin film is uniformly formed on the substrate 100 at a high speed and in a large area. Therefore, the film thickness and film quality uniformity of the formed film are improved, and the film formation rate is improved.
  • a desired thin film can be formed by appropriately selecting a source gas by a plasma CVD apparatus employing the plasma processing apparatus 1.
  • a silicon semiconductor thin film, a silicon nitride thin film, a silicon oxide thin film, a silicon oxynitride thin film, a carbon thin film, or the like can be formed on the substrate 100.
  • a silicon nitride (SiN) film is formed on the substrate 100 using a mixed gas of ammonia (NH 3 ) gas and monosilane (SiH 4 ) gas.
  • a silicon oxide (SiOx) film is formed on the substrate 100 using a mixed gas of monosilane (SiH 4 ) gas and N 2 O gas, or TEOS gas and oxygen gas.
  • FIG. 5 shows minority carriers of silicon nitride films formed using the plasma CVD apparatus using the cathode electrode 20 shown in FIG. 2 and the plasma CVD apparatus using the cathode electrode 20A of the comparative example shown in FIG. The result of having measured the career lifetime of is shown.
  • a carbon material having a main surface area of 200 mm ⁇ 200 mm and a thickness t of 5 mm was used as the cathode electrode 20.
  • the through holes 200 were arranged such that the distance (pitch) between the centers of the closest through holes 200 was 7.5 mm.
  • the cathode electrode 20A of the comparative example a carbon material in which cylindrical through holes 200A having a diameter d1 of 5 mm are arranged at a pitch of 6.5 mm was used.
  • the area of the main surface of the cathode electrode 20A is 200 mm ⁇ 200 mm, and the thickness t is 5 mm.
  • a 200 mm ⁇ 200 mm carbon plate was used for the anode electrode 10, and a CZ—N type silicon substrate was used for the substrate 100.
  • Plasma discharge was performed by applying high-frequency power of 250 kHz and 700 W, and a silicon nitride film was formed on the substrate 100. Further, the anode electrode 10 was heated to 450 ° C. by the heater 60 during film formation.
  • characteristics C1 to C3 are measurement results when the cathode electrode 20 is used, the characteristic C1 is the carrier lifetime immediately after film formation, and the characteristic C2 is the carrier when the substrate 100 is heated to 700 ° C. after film formation.
  • the lifetime and characteristic C3 are carrier lifetimes when the substrate 100 is heated to 800 ° C. after film formation.
  • the characteristics A1 to A3 are the measurement results when the cathode electrode 20A is used.
  • the characteristic A1 is the carrier lifetime immediately after the film formation
  • the characteristic A2 is the carrier lifetime when the substrate 100 is heated to 700 ° C. after the film formation.
  • Characteristic A3 is the carrier lifetime when the substrate 100 is heated to 800 ° C. after film formation.
  • the carrier lifetime was measured by the ⁇ -PCD method for measuring the amount of carriers generated in the sample irradiated with the laser.
  • the carrier lifetime immediately after film formation is 1835 ⁇ s when the cathode electrode 20A is used, whereas it is 2585 ⁇ s when the cathode electrode 20 is used. That is, the carrier lifetime of the silicon nitride film formed using the cathode electrode 20 is longer than when the cathode electrode 20A is used.
  • the carrier lifetime when the substrate 100 is heated to 700 ° C. or 800 ° C. is longer than that immediately after film formation. However, at any temperature at which the substrate 100 is heated to 700 ° C.
  • the carrier lifetime is longer when the cathode electrode 20 is used than when the cathode electrode 20A is used. That is, when the cathode electrode 20 having the through hole 200 having the tapered opening portion is used, the cathode electrode 20A having the cylindrical through hole 200A having no taper is formed. It was confirmed that the quality of the obtained film was good.
  • FIG. 6 shows the result of measuring the film formation rate in continuous use using the plasma CVD apparatus used for forming the silicon nitride film whose carrier lifetime was measured as shown in FIG. In this measurement, a film formation process with a thickness of 70 ⁇ m performed by discharging for a total of 10.8 hours per day was carried out for 10 days.
  • characteristic C4 is a film formation rate when the cathode electrode 20 is used
  • characteristic A4 is a film formation rate when the cathode electrode 20A is used.
  • the film formation rate is 100 nm / min or more from the start of use until 5 days later.
  • the film formation rate started to decrease from the 5.2th day onward, and then decreased to 74.3 nm / min after 10 days.
  • the film formation rate was 100 nm / min or more until 7.6 days, and thereafter the film formation rate began to decrease.
  • the film formation rate after 10 days is 89.5 nm / min. In other words, it was confirmed that the deposition rate stabilization period was longer when the cathode electrode 20 was used than when the cathode electrode 20A was used.
  • the taper angle is about 32 degrees.
  • the taper angle is an acute angle formed by the direction in which the inner wall of the central portion of the through hole 200 extends and the direction in which the opening extends.
  • the taper angle is preferably about 30 to 60 degrees
  • the diameter d1 of the central portion of the through hole 200 is preferably about 3 mm to 6 mm.
  • the through hole 200 is formed in the cathode electrode 20 so as to make the region where the opening is not disposed as small as possible.
  • the through-hole 200 is formed so that the openings are arranged closest to the surface of the cathode electrode 20 as in a hexagonal close-packed arrangement. As a result, uniformly high-density plasma is formed on the surface of the cathode electrode 20.
  • the opening of the through hole 200 is circular has been described above, the opening may be polygonal.
  • the cathode electrode 20 is preferably a carbon material that is inexpensive, easy to process, and easy to maintain such as cleaning.
  • the cathode electrode 20 made of a carbon material can be cleaned by hydrofluoric acid treatment. Further, by using the carbon material, the cathode electrode 20 is not deformed due to a high temperature in the plasma processing step.
  • carbon containing carbon fiber, aluminum alloy, stainless alloy, copper, copper alloy, glass, ceramics, and the like can be used for the cathode electrode 20.
  • the above material may be coated by alumite treatment, plating, or thermal spraying.
  • the same material as the cathode electrode 20 can be used.
  • a carbon material is suitably used for the anode electrode 10.
  • the process gas 300 between the anode electrode 10 and the cathode electrode 20 from below to above.
  • the process gas 300 from below the gas molecules and radical particles that have been converted to plasma with a low specific gravity naturally flow upward on the surface of the cathode electrode 20 as an upward flow. Therefore, the process gas 300 is uniformly supplied to the surface of the cathode electrode 20 without using a complicated structure such as a shower electrode.
  • the opening portion of the through hole 200 of the cathode electrode 20 is formed into a tapered shape, so that the surface of the cathode electrode 20 has a uniform high density.
  • a plasma region can be formed over a wide range. For this reason, the deviation of the plasma density in the first main surface 21 and the second main surface 22 of the cathode electrode 20 is suppressed.
  • the maintenance cycle of the cathode electrode 20 is long, and the apparatus downtime can be reduced and the running cost can be reduced.
  • FIG. 7 shows an example in which the number of cathode electrodes 20 is three, it is needless to say that the number of cathode electrodes 20 is not limited to three.
  • the number of substrates 100 mounted on the anode electrode 10 can be increased. Thereby, the processing capability of the plasma processing apparatus 1 improves.
  • the plasma processing apparatus 1 is applied to the plasma CVD apparatus.
  • the plasma processing apparatus 1 can be applied to a plasma etching apparatus or a plasma ashing apparatus.
  • a plasma etching apparatus that etches and removes a film formed on the substrate 100 can be realized by introducing a plasma etching gas into the chamber 50 as the process gas 300.
  • the plasma etching gas is appropriately selected depending on the material to be etched.
  • a fluorine-based gas such as nitrogen trifluoride (NF 3 ) gas or carbon tetrafluoride (CF 4 ) gas can be used.
  • a plasma ashing apparatus using the cathode electrode 20 can be realized.
  • the carbon film or the photoresist film formed on the substrate 100 as an etching mask can be ashed.
  • plasma processing apparatus 1 that can stably generate a uniform high-density plasma region on the first main surface 21 and the second main surface 22 of the cathode electrode 20
  • plasma etching can be performed.
  • the processing speed and accuracy of the apparatus and the plasma ashing apparatus can be improved.
  • the plasma processing apparatus of the present invention can be used for the purpose of generating high-density plasma on both sides of a cathode electrode having a through hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 処理対象の基板が装着されるアノード電極と、互いに対向する2つの主面にそれぞれ開口部が設けられて2つの主面間を貫通し、且つ、開口部の口径が中間部分での直径よりも大きいように開口部分にテーパがつけられた貫通孔を有し、2つの主面の少なくとも一方がアノード電極に装着された基板と対向するように配置されたカソード電極と、アノード電極とカソード電極間にプロセスガスを導入するガス供給装置と、アノード電極とカソード電極間に交流電力を供給して、カソード電極の2つの主面上それぞれにおいてプロセスガスを交流プラズマ状態にする交流電源とを備える。

Description

プラズマ処理装置
 本発明は、プラズマを発生して基板処理を行うプラズマ処理装置に関する。
 半導体デバイスの製造工程において、高精度のプロセス制御が容易であるという利点から、成膜工程、エッチング工程、アッシング工程などにおいてプラズマ処理装置が用いられている。プラズマ処理装置として、例えばプラズマ化学気相成長(CVD)装置、プラズマエッチング装置、プラズマアッシング装置などが知られている。例えばプラズマCVD装置では、高周波電力などにより原料ガスがプラズマ化され、化学反応によって基板上に薄膜が形成される。
 また、プラズマ密度を均一にするためにカソード電極の内部からプロセスガスを供給するシャワー電極を使用したプラズマ処理装置や、高密度のプラズマを発生させるためにホローカソード放電を利用したプラズマ処理装置が提案されている(例えば、特許文献1参照)。
特開2004-296526号公報
 ホローカソード放電を利用したプラズマ処理装置においては、カソード電極に貫通孔や溝を形成することで、カソード電極の表面に凹凸形状の構造体を配置することが一般的である。この構造体においてプラズマ中の電子の衝突が繰り返され、高密度プラズマが発生される。
 ホローカソード放電のためにカソード電極に筒状の貫通孔を形成した場合、カソード電極の表面は、貫通孔の開口部が配置されているためにプラズマ密度が高い領域と、開口部が配置されていないためにプラズマ密度が低い領域とに分かれる。つまり、カソード電極の表面内でプラズマ密度の偏りが生じ、高密度プラズマ領域と低密度プラズマ領域とが生成される。その結果、基板上に成膜された膜の膜質が面内で一様でなくなるなどの問題が生じる。
 上記問題点に鑑み、本発明は、貫通孔が形成されたカソード電極の表面におけるプラズマ密度の偏りが抑制されたプラズマ処理装置を提供することを目的とする。
 本発明の一態様によれば、(イ)処理対象の基板が装着されるアノード電極と、(ロ)互いに対向する2つの主面にそれぞれ開口部が設けられて前記2つの主面間を貫通し、且つ、開口部の口径が中間部分での直径よりも大きいように開口部分にテーパがつけられた貫通孔を有し、2つの主面の少なくとも一方がアノード電極に装着された基板と対向するように配置されたカソード電極と、(ハ)アノード電極とカソード電極間にプロセスガスを導入するガス供給装置と、(ニ)アノード電極とカソード電極間に交流電力を供給して、カソード電極の2つの主面上それぞれにおいてプロセスガスを交流プラズマ状態にする交流電源とを備えるプラズマ処理装置が提供される。
 本発明によれば、貫通孔が形成されたカソード電極の表面におけるプラズマ密度の偏りが抑制されたプラズマ処理装置を提供できる。
本発明の実施形態に係るプラズマ処理装置の構成を示す模式図である。 本発明の実施形態に係るプラズマ処理装置のカソード電極の貫通孔の形状を説明するための、貫通孔の中心軸に沿った断面図である。 本発明の実施形態に係るプラズマ処理装置のカソード電極の主面を示す模式図である。 比較例のカソード電極の貫通孔の形状を説明するための、貫通孔の中心軸に沿った断面図である。 キャリアライフタイムの測定結果を示すグラフである。 成膜レートの測定結果を示すグラフである。 本発明の実施形態の変形例に係るプラズマ処理装置の構成を示す模式図である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。
 本発明の実施形態に係るプラズマ処理装置1は、図1に示すように、処理対象の基板100が装着されるアノード電極10と、アノード電極10に装着された基板100と対向して配置されたカソード電極20と、アノード電極10とカソード電極20間にプロセスガス300を導入するガス供給装置30と、アノード電極10とカソード電極20間に交流電力を供給する交流電源40とを備える。交流電源40は、供給する交流電力によって、カソード電極20の第1の主面21上及び第2の主面22上それぞれにおいて、プロセスガス300を交流プラズマ状態にする。
 アノード電極10とカソード電極20は平板型であり、プラズマ処理装置1は容量結合型プラズマを利用したものである。容量結合方式の電極間の距離は概略均一であることが好ましい。図1に示した例では、2枚の基板プレートを有するボートタイプのサンプルホルダがアノード電極10として使用され、基板100が2つの基板プレートにそれぞれ垂直に装着されている。カソード電極20の第1の主面21及び第2の主面22は、基板100にそれぞれ対向している。
 カソード電極20及びアノード電極10は、チャンバー50内に配置される。アノード電極10はヒータ60上に配置されており、アノード電極10に装着された基板100の温度をヒータ60によって設定可能である。
 チャンバー50内には、ガス供給装置30から所定のプロセスガス300が導入される。そして、チャンバー50内を排気するガス排気装置70によってチャンバー50内の圧力が調整された後、チャンバー50内でプロセスガス300がプラズマ化される。
 図2に示すように、カソード電極20は、互いに対向する第1の主面21と第2の主面22にそれぞれ開口部が設けられ、第1の主面21と第2の主面22間を貫通する貫通孔200を有する。貫通孔200の開口部分には外側が広くなるようにテーパがつけられているため、貫通孔200の開口部分は漏斗形状である。
 表面に開口部が設けられたカソード電極20は、ホローカソード放電を生じさせるホローカソード電極として機能する。つまり、貫通孔200内部でのプラズマ生成がホローカソード放電であり、このホローカソード放電においては、電子が貫通孔200内部に閉じ込められ且つ運動エネルギーを持つことで、高密度電子の空間である高密度プラズマ領域が貫通孔200に形成される。
 図3に示すように、ホローカソード放電が生じる多数の貫通孔200をカソード電極20の表面に一定の密度で形成することにより、カソード電極20の第1の主面21と第2の主面22に均一の高電子密度電界を容易に形成することができる。これは、高密度プラズマが生成される空間が貫通孔200であるため、カソード電極20の第1の主面21と第2の主面22間でプラズマの連続性が確保されているためである。つまり、貫通孔200を介するプラズマの両極性拡散の性質により、第1の主面21と第2の主面22間におけるプラズマ密度の濃淡の差が自動的に補正される。このため、プラズマ処理装置1では、カソード電極20の両面で均一な高密度プラズマ領域の生成が可能である。
 図4に示すようにテーパのない筒形状である貫通孔200Aが形成されたカソード電極20Aの場合には、図2に示したカソード電極20と比較して表面の平面部分が多く、第1の主面21A及び第2の主面22Aに低密度プラズマ領域が生成される面積が広い。このため、カソード電極20Aの表面内でプラズマ密度の偏りが大きい。
 これに対し、図2に示したカソード電極20では、開口部の口径d2が、貫通孔200の中央部分、即ちカソード電極20内部での貫通孔200の直径d1よりも大きいように、貫通孔200の開口部分にテーパがつけられている。このため、カソード電極20の第1の主面21と第2の主面22における開口部の配置されていない平坦な領域は、貫通孔200Aがテーパのない筒形状であるカソード電極20Aの場合と比較して小さい。
 貫通孔200のテーパを有する開口部分においても高密度プラズマが形成される。したがって、カソード電極20によれば、低密度プラズマ領域が生成される面積を狭く、高密度プラズマ領域の面積を広くできる。
 その結果、カソード電極20の表面では全体的にプラズマ密度が高く、例えばカソード電極20を有するプラズマCVD装置を用いて形成した膜の膜質が向上するなどの効果を奏する。更に、以下に述べるように、図2に示したカソード電極20では、ホローカソード放電の効率が低下しにくいという効果を奏する。
 一般的なプラズマ処理装置においては、処理中はカソード電極上で常時放電されており、カソード電極に薄膜が連続的に堆積される。そして、カソード電極が貫通孔を有する場合、カソード電極の表面のみならず、貫通孔内部にも膜が堆積する。通常、ホローカソード放電により貫通孔内部に堆積した膜は非常に硬度が高く、容易に剥離しない。貫通孔内部に厚く膜が堆積すると、高密度プラズマが発生する領域が減少するため、ホローカソード放電の効率が落ちる。その結果、成膜レートの低下、膜厚分布の悪化、膜質の劣化などの問題が生じる。更に、上記問題の発生頻度が高いと、カソード電極のメンテナンス周期が短くなり、装置ダウンタイムの増加、ランニングコストの上昇といった問題が生じる。
 したがって、図4に示したカソード電極20Aでは、貫通孔200内部に堆積した膜が容易に剥離せず、ホローカソード放電の効率が徐々に低下する問題が生じる。
 しかし、図2に示したカソード電極20では、貫通孔200の開口部分がテーパ形状であるために、カソード電極20の第1の主面21、第2の主面22及び貫通孔200の内部に付着する膜は角度を有して形成され、これらの膜には自ら剥離する応力が働く。このため、カソード電極20を長期間の成膜処理に使用した場合における、貫通孔200に堆積する膜の累積膜厚が減少する。
 したがって、プラズマ処理装置1によって連続的にプラズマ処理が行われても、カソード電極20の表面における高密度プラズマが発生する領域の減少が抑制され、ホローカソード放電の効率は低下しない。このため、カソード電極20のメンテナンス周期を延ばすことができる。
 図1に示したプラズマ処理装置1は、プラズマCVD装置、プラズマエッチング装置、プラズマアッシング装置などに適用可能である。
 プラズマ処理装置1をプラズマCVD装置として使用する場合は、プロセスガス300として成膜用の原料ガスを含むガスが使用され、ガス供給装置30からチャンバー50内にプロセスガス300が導入される。ガス排気装置70によってチャンバー50内のプロセスガス300の圧力が所定のガス圧に調整された後、交流電源40により所定の交流電力がカソード電極20とアノード電極10間に供給される。これにより、チャンバー50内のプロセスガス300がプラズマ化される。形成されたプラズマに基板100を曝すことにより、原料ガスに含まれる原料を主成分とする所望の薄膜が基板100の露出した表面に形成される。なお、ヒータ60によって、成膜処理中の基板100の温度を設定することにより、成膜レートを速めたり、膜質を向上させたりすることができる。
 既に説明したように、カソード電極20の第1の主面21と第2の主面22に均一な高密度プラズマ領域が生成される。このため、カソード電極20を使用したプラズマCVD装置によれば、原料ガスが効率よく分解され、高速で大面積に薄膜が基板100上に均一に形成される。したがって、形成される膜の膜厚、膜質の均一性が向上すると共に、成膜レートが向上する。
 プラズマ処理装置1を採用したプラズマCVD装置により、原料ガスを適宜選択することによって、所望の薄膜を形成できる。例えば、シリコン半導体薄膜、シリコン窒化薄膜、シリコン酸化薄膜、シリコン酸窒化薄膜、カーボン薄膜などを基板100上に形成することができる。具体的には、アンモニア(NH3)ガスとモノシラン(SiH4)ガスの混合ガスを用いて、基板100上に窒化シリコン(SiN)膜が形成される。或いは、モノシラン(SiH4)ガスとN2Oガスの混合ガスを、又はTEOSガスと酸素ガスを用いて、基板100上に酸化シリコン(SiOx)膜が形成される。
 図5に、図2に示したカソード電極20を使用したプラズマCVD装置と図4に示した比較例のカソード電極20Aを使用したプラズマCVD装置とをそれぞれ用いて形成した窒化シリコン膜の、少数キャリアのキャリアライフタイムを測定した結果を示す。
 このとき、カソード電極20として、主面の面積が200mm×200mm、厚さtが5mmの炭素材を用いた。そして、カソード電極20に、直径d1が5mm、口径d2が7mmの貫通孔200を形成した。貫通孔200は、最近接の貫通孔200同士の中心間距離(ピッチ)が7.5mmであるように配置した。
 一方、比較例のカソード電極20Aとして、直径d1が5mmの筒形状の貫通孔200Aが6.5mmピッチで配置された炭素材を用いた。カソード電極20Aの主面の面積は200mm×200mm、厚さtは5mmである。
 アノード電極10には200mm×200mmのカーボン板を使用し、基板100にはCZ-N型シリコン基板を使用した。そして、SiH4ガスの流量が215sccm、NH3ガスの流量が950sccm、チャンバー50内の圧力が67Paのプロセス条件で、カソード電極20とアノード電極10間、及びカソード電極20Aとアノード電極10間に周波数250kHz、700Wの高周波電力を印加してプラズマ放電を行い、基板100上に窒化シリコン膜を成膜した。また、成膜時にはヒータ60によってアノード電極10を450℃に加熱した。
 図5において、特性C1~C3がカソード電極20を使用した場合における測定結果であり、特性C1が成膜直後のキャリアライフタイム、特性C2が成膜後に基板100を700℃に加熱した場合のキャリアライフタイム、特性C3が成膜後に基板100を800℃に加熱した場合のキャリアライフタイムである。また、特性A1~A3がカソード電極20Aを使用した場合における測定結果であり、特性A1が成膜直後のキャリアライフタイム、特性A2が成膜後に基板100を700℃に加熱した場合のキャリアライフタイム、特性A3が成膜後に基板100を800℃に加熱した場合のキャリアライフタイムである。キャリアライフタイムは、レーザが照射されたサンプルに発生するキャリアの量を測定するμ-PCD法により測定した。
 図5に示すように、成膜直後のキャリアライフタイムは、カソード電極20Aを使用した場合に1835μ秒であるのに対し、カソード電極20を使用した場合には2585μ秒である。つまり、カソード電極20を使用して形成した窒化シリコン膜のキャリアライフタイムの方が、カソード電極20Aを使用した場合よりも長い。カソード電極20Aとカソード電極20を使用したいずれの場合も、基板100を700℃又は800℃に加熱した場合のキャリアライフタイムは、成膜直後に比べて長い。しかし、基板100を700℃又は800℃に加熱した温度のいずれにおいても、カソード電極20を使用した場合の方がカソード電極20Aを使用した場合に比べてキャリアライフタイムが長い。即ち、開口部分がテーパ形状である貫通孔200を形成したカソード電極20を使用した場合の方が、テーパのない筒形状である貫通孔200Aを形成したカソード電極20Aを使用した場合よりも、形成された膜の膜質がよいことが確認された。
 図5に示したキャリアライフタイムを測定した窒化シリコン膜の形成に使用したプラズマCVD装置を用いて、連続使用における成膜レートを測定した結果を、図6に示す。この測定では、1日あたり累計10.8時間の放電により行う70μmの厚さの成膜処理を、10日間実施した。図6において、特性C4がカソード電極20を使用した場合における成膜レート、特性A4がカソード電極20Aを使用した場合における成膜レートである。
 図6に示すように、カソード電極20Aとカソード電極20を使用したいずれの場合も、使用開始から5日後までは100nm/min以上の成膜レートである。しかし、カソード電極20Aを使用した場合には、5.2日目以降から成膜レートが低下し始め、10日後では74.3nm/minに低下した。一方、カソード電極20を使用した場合には、7.6日までは成膜レートが100nm/min以上であり、その後に成膜レートが低下し始めた。10日後の成膜レートは89.5nm/minである。即ち、カソード電極20を使用した場合の方がカソード電極20Aを使用した場合よりも、成膜レートの安定期間が長いことが確認された。
 上記の測定において、厚みtが5mmのカソード電極20について、貫通孔200の中央部分の直径d1を5mm、開口部の口径d2を7mmとした。そして、貫通孔200の筒状の中央部分の長さt1を1.8mm、テーパが形成される開口部分の長さt2を1.6mmとしたために、テーパ角は約32度である。ここでテーパ角は、貫通孔200の中央部分の内壁が延伸する方向と開口部分が延伸する方向とのなす鋭角である。プラズマが安定して形成されるためには、テーパ角は30度~60度程度が好ましく、貫通孔200の中心部分の直径d1は3mm~6mm程度が好ましい。
 また、貫通孔200は、カソード電極20の表面にできるだけ数多く形成することが好ましい。つまり、開口部が配置されていない領域をできるだけ小さくするように、カソード電極20に貫通孔200を形成する。例えば六方最密配置などのように、カソード電極20の表面に開口部が最密に配置されるように、貫通孔200を形成する。これにより、カソード電極20の表面で均一に高密度のプラズマが形成される。上記では貫通孔200の開口部が円形である例を示したが、開口部が多角形であってもよい。
 カソード電極20には安価且つ加工が容易で、洗浄などのメンテナンスが容易なカーボン材などが好適である。例えばフッ酸処理によって、カーボン材からなるカソード電極20を洗浄できる。また、カーボン材を使用することにより、プラズマ処理工程における高温によるカソード電極20の変形が生じない。他に、カーボン繊維入りカーボン、アルミニウム合金、ステンレス合金、銅、銅合金、ガラス、セラミックスなどをカソード電極20に使用できる。または、上記の材料にアルマイト処理、めっき、溶射でコーティングを施してもよい。
 アノード電極10についても、カソード電極20と同様の材料を使用可能である、例えば、アノード電極10にカーボン材が好適に用いられる。
 なお、プラズマ処理装置1では、アノード電極10とカソード電極20間に、下方から上方に向かってプロセスガス300を導入することが好ましい。下方からプロセスガス300を導入することにより、比重の軽いプラズマ化したガス分子、ラジカル粒子は上方流としてカソード電極20の表面を自然に流れ上がる。したがって、シャワー電極のような複雑な構造を用いなくても、カソード電極20の表面にプロセスガス300が均一に供給される。
 以上に説明したように、本発明の実施形態に係るプラズマ処理装置1によれば、カソード電極20の貫通孔200の開口部分をテーパ形状にすることによって、カソード電極20の表面において均一な高密度プラズマ領域を広範囲に形成することができる。このため、カソード電極20の第1の主面21及び第2の主面22におけるプラズマ密度の偏りが抑制される。更に、貫通孔200の内部における膜の堆積を抑制できるため、カソード電極20のメンテナンス周期が長く、装置ダウンタイムの減少、ランニングコストの低下を実現できる。
<変形例>
 プラズマ処理装置1が、複数のカソード電極20を有する例を図7に示す。図7に示したプラズマ処理装置1では、アノード電極10として使用されるサンプルホルダの基板プレートとカソード電極20とが交互に配置され、且つ、最も外側には基板プレートが配置されている。図7ではカソード電極20が3枚である例を示したが、カソード電極20の枚数が3枚に限られないことはもちろんである。
 図7に示した構成を採用することにより、アノード電極10に搭載される基板100の枚数を増やすことができる。これにより、プラズマ処理装置1の処理能力が向上する。
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 既に述べた実施形態においては、プラズマ処理装置1をプラズマCVD装置に適用した例を説明した。プロセスガス300のガス種を替えることによって、プラズマ処理装置1をプラズマエッチング装置やプラズマアッシング装置などに適用可能である。
 例えば、プラズマエッチング用ガスをプロセスガス300としてチャンバー50内に導入することによって、基板100上に形成された膜をエッチング除去するプラズマエッチング装置を実現できる。プラズマエッチング用ガスはエッチング対象の材料によって適宜選択されるが、例えば、三フッ化窒素(NF3)ガスや四フッ化炭素(CF4)ガスなどのフッ素系ガスを採用可能である。
 また、プラズマアッシング用ガスをプロセスガス300としてチャンバー50内に導入することによって、カソード電極20を用いたプラズマアッシング装置を実現できる。例えば、プロセスガス300として酸素及びアルゴンガスを使用することにより、エッチング用マスクとして基板100に形成されたカーボン膜やフォトレジスト膜などをアッシングできる。
 上記のように、カソード電極20の第1の主面21及び第2の主面22において均一の高密度プラズマ領域を安定して生成することができるプラズマ処理装置1を使用することにより、プラズマエッチング装置、プラズマアッシング装置などの処理速度や精度を向上できる。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明のプラズマ処理装置は、貫通孔を有するカソード電極の両面に高密度のプラズマを生成する用途に利用可能である。

Claims (8)

  1.  処理対象の基板が装着されるアノード電極と、
     互いに対向する2つの主面にそれぞれ開口部が設けられて前記2つの主面間を貫通し、且つ、前記開口部の口径が中間部分での直径よりも大きいように開口部分にテーパがつけられた貫通孔を有し、前記2つの主面の少なくとも一方が前記アノード電極に装着された前記基板と対向するように配置されたカソード電極と、
     前記アノード電極と前記カソード電極間にプロセスガスを導入するガス供給装置と、
     前記アノード電極と前記カソード電極間に交流電力を供給して、前記カソード電極の2つの前記主面上それぞれにおいて前記プロセスガスを交流プラズマ状態にする交流電源と
     を備えることを特徴とするプラズマ処理装置。
  2.  前記カソード電極の前記2つの主面にそれぞれ対向して配置された2つの前記アノード電極を有することを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記カソード電極を複数備えることを特徴とする請求項1に記載のプラズマ処理装置。
  4.  前記アノード電極及び前記カソード電極の少なくともいずれかがカーボンからなることを特徴とする請求項1に記載のプラズマ処理装置。
  5.  前記カソード電極の表面に前記開口部が最密に配置されていることを特徴とする請求項1に記載のプラズマ処理装置。
  6.  前記プロセスガスとして成膜用の原料ガスを含むガスを使用して、前記アノード電極上に配置された前記基板に前記原料ガスに含まれる原料を主成分とする膜を形成することを特徴とする請求項1項に記載のプラズマ処理装置。
  7.  前記アノード電極上に配置された前記基板の表面に形成された膜をエッチングするガスを前記プロセスガスとして使用することを特徴とする請求項1に記載のプラズマ処理装置。
  8.  前記プロセスガスとして酸素ガス及びアルゴンガスを含むガスを使用して、前記アノード電極上に配置された前記基板の表面に形成された膜をアッシングすることを特徴とする請求項1に記載のプラズマ処理装置。
PCT/JP2013/064451 2013-05-24 2013-05-24 プラズマ処理装置 WO2014188576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015518013A JP6065111B2 (ja) 2013-05-24 2013-05-24 プラズマ処理装置
PCT/JP2013/064451 WO2014188576A1 (ja) 2013-05-24 2013-05-24 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064451 WO2014188576A1 (ja) 2013-05-24 2013-05-24 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2014188576A1 true WO2014188576A1 (ja) 2014-11-27

Family

ID=51933157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064451 WO2014188576A1 (ja) 2013-05-24 2013-05-24 プラズマ処理装置

Country Status (2)

Country Link
JP (1) JP6065111B2 (ja)
WO (1) WO2014188576A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950414B2 (en) 2017-10-23 2021-03-16 Samsung Electronics Co., Ltd. Plasma processing apparatus and method of manufacturing semiconductor device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228054A (ja) * 2008-03-21 2009-10-08 Shimadzu Corp プラズマ電極及びプラズマ化学気相堆積装置
WO2013008344A1 (ja) * 2011-07-14 2013-01-17 株式会社島津製作所 プラズマ処理装置
WO2013046286A1 (ja) * 2011-09-26 2013-04-04 株式会社島津製作所 プラズマ成膜装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212277A (ja) * 2009-03-06 2010-09-24 Sharp Corp 成膜装置
JP2012072425A (ja) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd プラズマcvd装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228054A (ja) * 2008-03-21 2009-10-08 Shimadzu Corp プラズマ電極及びプラズマ化学気相堆積装置
WO2013008344A1 (ja) * 2011-07-14 2013-01-17 株式会社島津製作所 プラズマ処理装置
WO2013046286A1 (ja) * 2011-09-26 2013-04-04 株式会社島津製作所 プラズマ成膜装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950414B2 (en) 2017-10-23 2021-03-16 Samsung Electronics Co., Ltd. Plasma processing apparatus and method of manufacturing semiconductor device using the same

Also Published As

Publication number Publication date
JP6065111B2 (ja) 2017-01-25
JPWO2014188576A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5804059B2 (ja) プラズマ処理装置
CN110391122B (zh) 基底加工装置以及基底加工方法
TWI810254B (zh) 與氫自由基一起使用的設備及使用該設備的方法
US9460898B2 (en) Plasma generation chamber with smooth plasma resistant coating
KR100416308B1 (ko) 플라즈마 처리 장치
US8394231B2 (en) Plasma process device and plasma process method
JP2006100305A (ja) プラズマ処理装置
US6344420B1 (en) Plasma processing method and plasma processing apparatus
JP2007227375A (ja) 遠距離プラズマ発生装置
JP5854225B2 (ja) プラズマcvd成膜装置
US20170200587A1 (en) Atomic layer etching system with remote plasma source and dc electrode
WO2012160718A1 (ja) 薄膜形成装置
JP5377749B2 (ja) プラズマ生成装置
US6863926B2 (en) Corrosive-resistant coating over aluminum substrates for use in plasma deposition and etch environments
JP2009228054A (ja) プラズマ電極及びプラズマ化学気相堆積装置
JP6065111B2 (ja) プラズマ処理装置
KR100381205B1 (ko) 플라즈마 화학증기증착 장치 및 플라즈마 화학증기증착막형성방법
KR102229990B1 (ko) 플라즈마 처리 장치용 부재 및 플라즈마 처리 장치
JP2008211243A (ja) プラズマ処理装置
JP2016197528A (ja) プラズマ処理装置
US20220044938A1 (en) Silicon dry etching method
JP2017054943A (ja) プラズマ処理装置
JP2006324603A (ja) プラズマ処理方法及び装置並びにプラズマcvd方法及び装置
JP6194850B2 (ja) 薄膜形成装置
JP2011146745A (ja) プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885119

Country of ref document: EP

Kind code of ref document: A1