WO2014187709A1 - Schnüffellecksucher mit nanoporöser membrane - Google Patents

Schnüffellecksucher mit nanoporöser membrane Download PDF

Info

Publication number
WO2014187709A1
WO2014187709A1 PCT/EP2014/059845 EP2014059845W WO2014187709A1 WO 2014187709 A1 WO2014187709 A1 WO 2014187709A1 EP 2014059845 W EP2014059845 W EP 2014059845W WO 2014187709 A1 WO2014187709 A1 WO 2014187709A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
membrane
schnüffellecksucher
pores
leak detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2014/059845
Other languages
German (de)
English (en)
French (fr)
Inventor
Ludolf Gerdau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inficon GmbH Deutschland
Original Assignee
Inficon GmbH Deutschland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inficon GmbH Deutschland filed Critical Inficon GmbH Deutschland
Priority to JP2016514331A priority Critical patent/JP2016520196A/ja
Priority to US14/892,397 priority patent/US20160091386A1/en
Priority to EP14725411.4A priority patent/EP2999950B1/de
Priority to CN201480029105.8A priority patent/CN105229439A/zh
Publication of WO2014187709A1 publication Critical patent/WO2014187709A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions

Definitions

  • the invention relates to a sniffer leak detector for aspirating a gas to be analyzed.
  • a sniffer leak detector is used for gas analysis and is equipped with a sniffer probe for aspirating the gas to be analyzed.
  • the gas analysis is typically carried out with a mass spectrometer in a high vacuum.
  • air at atmospheric pressure ambient air
  • the test specimen is filled with a test gas such. As hydrogen or helium filled.
  • the test gas pressure inside the test specimen is greater than the atmospheric pressure of the environment, so that the test gas escapes through a leak from the test specimen and into the air in the area of the test specimen Environment of the specimen arrives.
  • the air sucked in with the sniffer probe is admitted into the high vacuum in the main or partial flow, where it is measured by means of a mass spectrometer the partial pressure of the test gas (hydrogen or helium).
  • a critical measure of the quality of the measurement is the detection limit of the sniffer leak detector for the test gas.
  • the detection limit is the minimum detectable concentration of the test gas in the intake air. The lower the detection limit, the more sensitive the measuring system is and with even greater accuracy the test gas content can be determined.
  • a gas-permeable membrane which is flowed through by a part of the sucked gas.
  • the known membranes are sintered ceramic disks which are intended to favor the relatively light test gas helium or hydrogen and to pass less of the heavier gas components.
  • the known sintered ceramic discs are suitable for a mass spectrometric gas analysis with direct gas inlet into the high vacuum of the mass spectrometer (total pressure ⁇ 1CT 4 mbar).
  • the object of the invention is to improve the detection limit of a sniffer leak detector for mass spectrometric gas analysis by providing a sufficiently large but nevertheless molecular conductance, which preferably admits hydrogen to heavier gases of the air.
  • the sniffer corner finder according to the invention is defined by the features of claim 1.
  • the gas inlet to the mass spectrometer via a flowed through by the aspirated gas membrane whose pore diameter is less than or equal to the free path of air at atmospheric pressure and at room temperature is considered to be in the range of about 950 hPa to 1050 hPa.
  • room temperature a temperature in the range of about 15 ° C to 25 ° C is considered.
  • the conductance for the light test gases hydrogen or helium is particularly high, while the conductance of the heavier, undesirable in the analysis of gases is low.
  • a molecular gas flow containing the test gas is generated in the vacuum, which is not viscous, but in which the different molecules move independently of one another and at different speeds.
  • the light gases, which include the test gases hydrogen and helium are moving very fast, which means that their proportion is higher in a high vacuum than in the intake gas stream and thus the detection limit is improved.
  • the gas flow admitted is so small that the detection limit is even worse than with direct inlet (for example via a diaphragm).
  • the invention is thus based on the idea of making the pore openings as small as possible and preferably with the same diameter as possible. It is particularly advantageous to provide as many pores as possible in order to pass a comparatively large amount of gas despite the small pore size.
  • Similar membranes are known from another field of technology - namely the ultrafiltration of macromolecules in liquids - and serve there not to improve the detection limit of a sniffer leak detector but a defined filtering of macromolecules with high accuracy.
  • the pore diameter may be less than or equal to 20 nanometers (nm).
  • the diameter of each pore should be at most about 50% and preferably at most about 20% different from the mean diameter of all pores, so that the pores are of similar size, so as not to pass unwanted, heavy gases even with large pressure differences.
  • the area fraction of all the pores should be at least about 20% and preferably at least 40% of the total membrane surface area.
  • the area fraction of all pores can be in a range between 25% and 50% of the membrane surface.
  • the pore density should be as large as possible.
  • the membrane should have at least 20 and preferably at least 25 pores per square micrometer (Mm 2 ) of its surface.
  • the wall thickness between adjacent pores, ie the smallest distance between the edges of adjacent pores, should be as low as possible and less than 100 nm and preferably less than 80 nm.
  • the slice thickness of the membrane should be less than 100 ⁇ m, and preferably less than 50 ⁇ m, and possibly only a few tens of meters or less in order to minimize the length of the pores.
  • the quotient of the average diameter of all pores and the mean free path of the sucked Gas (air) at atmospheric pressure and room temperature is greater than 0.5. This quotient is called the Knudsen number.
  • Tp 6.65- 10 "5 m-mbar (at 273.15 K), which at about 1000 mbar a mean free path of
  • the maximum high vacuum pressure of 10 "4 mbar to produce with the recessed over the pre-vacuum in countercurrent gas that causes the best possible limit of detection in mass spectrometric gas analysis.
  • the features of the invention are particularly simple and reliable to implement in a nanoporous membrane of alumina.
  • Figure 1 is a schematic representation of the sniffer leak detector
  • Figure 2 is a microscopic section of a plan view of the membrane.
  • the sniffer leak detector 10 which consists of a sniffer probe 12, a feed pump 13, a mass spectrometer 14 and a vacuum pump 15, 16.
  • the sniffer probe 12 is provided with a Feed pump 13 for the suction of gas through the sniffer probe 12 connected gas-conducting.
  • the gas drawn in by the feed pump 13 through the sniffer probe 12 is supplied to the gas inlet 17 of a turbomolecular pump 15.
  • the turbomolecular pump 15 forms together with an associated backing pump 16, the vacuum pump 15, 16 for the mass spectrometer 14.
  • the gas inlet 17 know a gas-permeable, porous membrane 18, through which the gas is sucked into the turbomolecular pump 15.
  • the turbomolecular pump 15 is gas-conducting connected to the mass spectrometer 14 for its evacuation. Valves or pressure gauges are not needed.
  • the mass spectrometric sniffer leak detector 10 is a countercurrent leak detector for light gases.
  • the gas is admitted in the pre-vacuum of the vacuum pump 15, 16 and not in the high vacuum of the mass spectrometer 14.
  • the slight proportion of the sucked gas preferably diffuses into the mass spectrometer 14.
  • a large amount of gas can be sucked in to a particularly high sensitivity while enriching the light gas across the membrane 18.
  • FIG. 1 A microscopic section of a plan view of the surface of the membrane 18 is shown in FIG.
  • the membrane 18 has a plurality of pores 20 which are randomly distributed over the surface of the membrane 18. Each pore 20 passes completely through the membrane 18.
  • the membrane is a disk with a thickness of about 30 ⁇ , so that the length of each pore 20 is about 30 pm. The length of each pore 20 is therefore equal to the thickness of the membrane 18th
  • Fig. 2 shows that the membrane 18 has about 26 pores per ⁇ m 2 of its surface.
  • the mean minimum distance d of adjacent pores 20 (midpoint - midpoint) is 100 nm. With the mean minimum distance, the mean of all the smallest is measured from midpoint to midpoint of the pores Mean distances directly adjacent pores meant.
  • the mean diameter D of all pores 20 is 20 nm and, in an alternative embodiment, may also be less than 20 nm.
  • the area fraction of all the pores 20 on the surface of the membrane 18 is 50%, so that a total of half of the membrane surface is gas-permeable.
  • the invention is thus based on the idea that as a gas inlet not a diaphragm with only one opening, but rather a gas-porous membrane is used, meet the individual holes at the prevailing pressure at the gas inlet Knudsen condition for molecular flow.
  • the hole density is that, despite the small pore size of such a quantity of gas is passed, that the high-vacuum pressure of 10 "4 mbar can be achieved so high.
  • the physical principle is used that at the molecular flow of gas, the gas components of a gas stream is (independently Molecular conductances are inversely proportional to the root of the molecular weight of the particular gas, so hydrogen has a much better conductance through a given aperture than nitrogen and oxygen and all other constituents of air.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
PCT/EP2014/059845 2013-05-22 2014-05-14 Schnüffellecksucher mit nanoporöser membrane Ceased WO2014187709A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016514331A JP2016520196A (ja) 2013-05-22 2014-05-14 ナノ多孔質膜を有する嗅気型漏洩検出器
US14/892,397 US20160091386A1 (en) 2013-05-22 2014-05-14 Sniffing Leak Detector Having a Nanoporous Membrane
EP14725411.4A EP2999950B1 (de) 2013-05-22 2014-05-14 Schnüffellecksucher mit nanoporöser membrane
CN201480029105.8A CN105229439A (zh) 2013-05-22 2014-05-14 具有纳米多孔薄膜的嗅觉泄漏检测器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013209438.8 2013-05-22
DE102013209438.8A DE102013209438A1 (de) 2013-05-22 2013-05-22 Schnüffellecksucher mit nanoporöser Membrane

Publications (1)

Publication Number Publication Date
WO2014187709A1 true WO2014187709A1 (de) 2014-11-27

Family

ID=50771259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/059845 Ceased WO2014187709A1 (de) 2013-05-22 2014-05-14 Schnüffellecksucher mit nanoporöser membrane

Country Status (6)

Country Link
US (1) US20160091386A1 (enExample)
EP (1) EP2999950B1 (enExample)
JP (2) JP2016520196A (enExample)
CN (1) CN105229439A (enExample)
DE (1) DE102013209438A1 (enExample)
WO (1) WO2014187709A1 (enExample)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034192B1 (fr) * 2015-03-23 2017-04-07 Pfeiffer Vacuum Sas Detecteur de fuites et procede de detection de fuites
US10101238B2 (en) * 2016-05-16 2018-10-16 General Electric Company Integrated ventilation and leak detection system and method of assembly
DE102017007149A1 (de) * 2017-07-27 2019-01-31 DILO Armaturen und Anlagenbau GmbH Verfahren zur Lokalisierung von Leckstellen
CN107449642A (zh) * 2017-08-28 2017-12-08 广西电网有限责任公司电力科学研究院 六氟化硫气体泄漏带电检测采样装置及采样方法
DE102018201313A1 (de) * 2018-01-29 2019-08-01 Inficon Gmbh Verfahren zur Leckprüfung mit einer Folienkammer mit belüftetem Messvolumen
CN113984292B (zh) * 2021-09-30 2024-02-09 北京航天试验技术研究所 一种液氢阀外漏检测装置及方法
US12117369B2 (en) 2022-06-17 2024-10-15 Packaging Technologies & Inspection, LLC System and method for leak testing a sealed package
CN118565732B (zh) * 2024-07-30 2024-12-10 安徽诺益科技有限公司 一种质谱检漏仪用嗅探器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202212A1 (en) * 2007-02-28 2008-08-28 Varian, Inc. Methods and apparatus for test gas leak detection

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816634B2 (ja) * 1991-05-16 1996-02-21 日本真空技術株式会社 ガス洩れ検査装置
US5317900A (en) * 1992-10-02 1994-06-07 The Lyle E. & Barbara L. Bergquist Trust Ultrasensitive helium leak detector for large systems
JP2612999B2 (ja) * 1992-10-26 1997-05-21 日本電信電話株式会社 質量分析型ガス漏れ検知器
DE4326267A1 (de) * 1993-08-05 1995-02-09 Leybold Ag Lecksuchgerät
JPH09142964A (ja) * 1995-11-28 1997-06-03 Kyocera Corp アルミナ多孔質膜の製造方法
JP3116830B2 (ja) * 1996-07-31 2000-12-11 株式会社島津製作所 ヘリウムリークディテクタ
JP3675983B2 (ja) * 1996-09-12 2005-07-27 株式会社アルバック ヘリウムリークディテクター
JP3971546B2 (ja) * 2000-03-03 2007-09-05 株式会社ノリタケカンパニーリミテド 多孔質セラミック積層体及びその製造方法
DE102004050762A1 (de) * 2004-10-16 2006-04-20 Inficon Gmbh Verfahren zur Lecksuche
CN100462706C (zh) * 2005-01-06 2009-02-18 清华大学 标准漏孔
DE102005021909A1 (de) * 2005-05-12 2006-11-16 Inficon Gmbh Schnüffellecksucher mit Quarzfenstersensor
DE102006045282C5 (de) * 2006-09-22 2012-11-22 Helmholtz-Zentrum Geesthacht Zentrum für Material-und Küstenforschung GmbH Isoporöse Membran und Verfahren zu ihrer Herstellung
US20080202210A1 (en) * 2007-02-28 2008-08-28 Varian, Inc. Test gas leak detection using a composite membrane
DE102008008262A1 (de) * 2008-02-08 2009-08-13 Inficon Gmbh Schnüffellecksucher nach dem Referenzmessprinzip
IT1400850B1 (it) * 2009-07-08 2013-07-02 Varian Spa Apparecchiatura di analisi gc-ms.
US20110290006A1 (en) * 2010-05-28 2011-12-01 Charles Perkins Leak test probe for use in industrial facilities
JP5621965B2 (ja) * 2010-06-08 2014-11-12 川研ファインケミカル株式会社 アルミナ複合分離膜及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202212A1 (en) * 2007-02-28 2008-08-28 Varian, Inc. Methods and apparatus for test gas leak detection

Also Published As

Publication number Publication date
JP6725614B2 (ja) 2020-07-22
CN105229439A (zh) 2016-01-06
DE102013209438A1 (de) 2014-11-27
JP2016520196A (ja) 2016-07-11
EP2999950B1 (de) 2019-12-11
US20160091386A1 (en) 2016-03-31
EP2999950A1 (de) 2016-03-30
JP2019053062A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
EP2999950B1 (de) Schnüffellecksucher mit nanoporöser membrane
EP0712488B1 (de) Testgasdetektion mit Quarzglasschicht, Heizung und gasaufzehrendem Vakuummeter
EP2238422B1 (de) Schnüffellecksucher nach dem referenzmessprinzip
EP2446243B1 (de) Wasserstoffsensor
DE102009004363B4 (de) Leckdetektionsverfahren
DE112020000560T5 (de) Flüchtigkeitsaufgelöste chemische Charakterisierung von Schwebstoffen
DE1673239B2 (de) Vorrichtung zum Zuführen von nachzuweisenden Gasen oder Dämpfen in ein Gasanalysegerät
EP3377870B1 (de) Lecksuche mit sauerstoff
DE2926112A1 (de) Testleck-sonde
DE102005021909A1 (de) Schnüffellecksucher mit Quarzfenstersensor
US20030150255A1 (en) Barrier test apparatus and method
DE102016202609A1 (de) Mobilgerät zum Bestimmen eines Bestandteils in Umgebungsluft
DE102018008636A1 (de) Feuchtemessvorrichtung für Gase
DE4316196C2 (de) Verfahren und Vorrichtung zur Gasanalyse
DE4133300C2 (de) Verfahren und Vorrichtung zum Bestimmen strippbarer Substanzen aus Flüssigkeiten
EP3688438B1 (de) Vorrichtung und verfahren zur unterscheidung eines aus einem leck austretenden prüfgases von störgas
EP1045242B1 (de) Verfahren und Vorrichtung zur grössenaufgelösten chemischen und physikalischen Bestimmung von Aerosolpartikeln
US7690241B2 (en) Pre-concentrator for trace gas analysis
DE10149219A1 (de) Verfahren zur Partialdruck-Kalibrierung und Kalibriereinrichtung zur Durchführung des Verfahrens
EP3227673B1 (de) Vorrichtung zum erfassen eines gases und verfahren zum herstellen derselben
DE112019007990T5 (de) Sensoreinrichtung und Verfahren zum Messen eines gasförmigen Fluids
DE102023129743A1 (de) Vorrichtung und Verfahren zur massenspektrometrischen Hochvakuumlecksuche
EP4659015A1 (de) Verfahren und vorrichtung zur bestimmung von stoffanteilen eines fluiden stoffgemischs sowie medizintechnisches gerät
DE102021134647A1 (de) Vakuumlecksucher mit Ansprüh-Membran-Testleck und Verfahren
EP4616163A1 (de) Trägergas-lecksuchsystem und trägergas-lecksuchverfahren zur leckagedetektion an einem prüfling

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029105.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14725411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892397

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016514331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014725411

Country of ref document: EP