WO2014187709A1 - Schnüffellecksucher mit nanoporöser membrane - Google Patents
Schnüffellecksucher mit nanoporöser membrane Download PDFInfo
- Publication number
- WO2014187709A1 WO2014187709A1 PCT/EP2014/059845 EP2014059845W WO2014187709A1 WO 2014187709 A1 WO2014187709 A1 WO 2014187709A1 EP 2014059845 W EP2014059845 W EP 2014059845W WO 2014187709 A1 WO2014187709 A1 WO 2014187709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- membrane
- schnüffellecksucher
- pores
- leak detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/20—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
- G01M3/202—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
- G01M3/205—Accessories or associated equipment; Pump constructions
Definitions
- the invention relates to a sniffer leak detector for aspirating a gas to be analyzed.
- a sniffer leak detector is used for gas analysis and is equipped with a sniffer probe for aspirating the gas to be analyzed.
- the gas analysis is typically carried out with a mass spectrometer in a high vacuum.
- air at atmospheric pressure ambient air
- the test specimen is filled with a test gas such. As hydrogen or helium filled.
- the test gas pressure inside the test specimen is greater than the atmospheric pressure of the environment, so that the test gas escapes through a leak from the test specimen and into the air in the area of the test specimen Environment of the specimen arrives.
- the air sucked in with the sniffer probe is admitted into the high vacuum in the main or partial flow, where it is measured by means of a mass spectrometer the partial pressure of the test gas (hydrogen or helium).
- a critical measure of the quality of the measurement is the detection limit of the sniffer leak detector for the test gas.
- the detection limit is the minimum detectable concentration of the test gas in the intake air. The lower the detection limit, the more sensitive the measuring system is and with even greater accuracy the test gas content can be determined.
- a gas-permeable membrane which is flowed through by a part of the sucked gas.
- the known membranes are sintered ceramic disks which are intended to favor the relatively light test gas helium or hydrogen and to pass less of the heavier gas components.
- the known sintered ceramic discs are suitable for a mass spectrometric gas analysis with direct gas inlet into the high vacuum of the mass spectrometer (total pressure ⁇ 1CT 4 mbar).
- the object of the invention is to improve the detection limit of a sniffer leak detector for mass spectrometric gas analysis by providing a sufficiently large but nevertheless molecular conductance, which preferably admits hydrogen to heavier gases of the air.
- the sniffer corner finder according to the invention is defined by the features of claim 1.
- the gas inlet to the mass spectrometer via a flowed through by the aspirated gas membrane whose pore diameter is less than or equal to the free path of air at atmospheric pressure and at room temperature is considered to be in the range of about 950 hPa to 1050 hPa.
- room temperature a temperature in the range of about 15 ° C to 25 ° C is considered.
- the conductance for the light test gases hydrogen or helium is particularly high, while the conductance of the heavier, undesirable in the analysis of gases is low.
- a molecular gas flow containing the test gas is generated in the vacuum, which is not viscous, but in which the different molecules move independently of one another and at different speeds.
- the light gases, which include the test gases hydrogen and helium are moving very fast, which means that their proportion is higher in a high vacuum than in the intake gas stream and thus the detection limit is improved.
- the gas flow admitted is so small that the detection limit is even worse than with direct inlet (for example via a diaphragm).
- the invention is thus based on the idea of making the pore openings as small as possible and preferably with the same diameter as possible. It is particularly advantageous to provide as many pores as possible in order to pass a comparatively large amount of gas despite the small pore size.
- Similar membranes are known from another field of technology - namely the ultrafiltration of macromolecules in liquids - and serve there not to improve the detection limit of a sniffer leak detector but a defined filtering of macromolecules with high accuracy.
- the pore diameter may be less than or equal to 20 nanometers (nm).
- the diameter of each pore should be at most about 50% and preferably at most about 20% different from the mean diameter of all pores, so that the pores are of similar size, so as not to pass unwanted, heavy gases even with large pressure differences.
- the area fraction of all the pores should be at least about 20% and preferably at least 40% of the total membrane surface area.
- the area fraction of all pores can be in a range between 25% and 50% of the membrane surface.
- the pore density should be as large as possible.
- the membrane should have at least 20 and preferably at least 25 pores per square micrometer (Mm 2 ) of its surface.
- the wall thickness between adjacent pores, ie the smallest distance between the edges of adjacent pores, should be as low as possible and less than 100 nm and preferably less than 80 nm.
- the slice thickness of the membrane should be less than 100 ⁇ m, and preferably less than 50 ⁇ m, and possibly only a few tens of meters or less in order to minimize the length of the pores.
- the quotient of the average diameter of all pores and the mean free path of the sucked Gas (air) at atmospheric pressure and room temperature is greater than 0.5. This quotient is called the Knudsen number.
- Tp 6.65- 10 "5 m-mbar (at 273.15 K), which at about 1000 mbar a mean free path of
- the maximum high vacuum pressure of 10 "4 mbar to produce with the recessed over the pre-vacuum in countercurrent gas that causes the best possible limit of detection in mass spectrometric gas analysis.
- the features of the invention are particularly simple and reliable to implement in a nanoporous membrane of alumina.
- Figure 1 is a schematic representation of the sniffer leak detector
- Figure 2 is a microscopic section of a plan view of the membrane.
- the sniffer leak detector 10 which consists of a sniffer probe 12, a feed pump 13, a mass spectrometer 14 and a vacuum pump 15, 16.
- the sniffer probe 12 is provided with a Feed pump 13 for the suction of gas through the sniffer probe 12 connected gas-conducting.
- the gas drawn in by the feed pump 13 through the sniffer probe 12 is supplied to the gas inlet 17 of a turbomolecular pump 15.
- the turbomolecular pump 15 forms together with an associated backing pump 16, the vacuum pump 15, 16 for the mass spectrometer 14.
- the gas inlet 17 know a gas-permeable, porous membrane 18, through which the gas is sucked into the turbomolecular pump 15.
- the turbomolecular pump 15 is gas-conducting connected to the mass spectrometer 14 for its evacuation. Valves or pressure gauges are not needed.
- the mass spectrometric sniffer leak detector 10 is a countercurrent leak detector for light gases.
- the gas is admitted in the pre-vacuum of the vacuum pump 15, 16 and not in the high vacuum of the mass spectrometer 14.
- the slight proportion of the sucked gas preferably diffuses into the mass spectrometer 14.
- a large amount of gas can be sucked in to a particularly high sensitivity while enriching the light gas across the membrane 18.
- FIG. 1 A microscopic section of a plan view of the surface of the membrane 18 is shown in FIG.
- the membrane 18 has a plurality of pores 20 which are randomly distributed over the surface of the membrane 18. Each pore 20 passes completely through the membrane 18.
- the membrane is a disk with a thickness of about 30 ⁇ , so that the length of each pore 20 is about 30 pm. The length of each pore 20 is therefore equal to the thickness of the membrane 18th
- Fig. 2 shows that the membrane 18 has about 26 pores per ⁇ m 2 of its surface.
- the mean minimum distance d of adjacent pores 20 (midpoint - midpoint) is 100 nm. With the mean minimum distance, the mean of all the smallest is measured from midpoint to midpoint of the pores Mean distances directly adjacent pores meant.
- the mean diameter D of all pores 20 is 20 nm and, in an alternative embodiment, may also be less than 20 nm.
- the area fraction of all the pores 20 on the surface of the membrane 18 is 50%, so that a total of half of the membrane surface is gas-permeable.
- the invention is thus based on the idea that as a gas inlet not a diaphragm with only one opening, but rather a gas-porous membrane is used, meet the individual holes at the prevailing pressure at the gas inlet Knudsen condition for molecular flow.
- the hole density is that, despite the small pore size of such a quantity of gas is passed, that the high-vacuum pressure of 10 "4 mbar can be achieved so high.
- the physical principle is used that at the molecular flow of gas, the gas components of a gas stream is (independently Molecular conductances are inversely proportional to the root of the molecular weight of the particular gas, so hydrogen has a much better conductance through a given aperture than nitrogen and oxygen and all other constituents of air.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016514331A JP2016520196A (ja) | 2013-05-22 | 2014-05-14 | ナノ多孔質膜を有する嗅気型漏洩検出器 |
| US14/892,397 US20160091386A1 (en) | 2013-05-22 | 2014-05-14 | Sniffing Leak Detector Having a Nanoporous Membrane |
| EP14725411.4A EP2999950B1 (de) | 2013-05-22 | 2014-05-14 | Schnüffellecksucher mit nanoporöser membrane |
| CN201480029105.8A CN105229439A (zh) | 2013-05-22 | 2014-05-14 | 具有纳米多孔薄膜的嗅觉泄漏检测器 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102013209438.8 | 2013-05-22 | ||
| DE102013209438.8A DE102013209438A1 (de) | 2013-05-22 | 2013-05-22 | Schnüffellecksucher mit nanoporöser Membrane |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014187709A1 true WO2014187709A1 (de) | 2014-11-27 |
Family
ID=50771259
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/059845 Ceased WO2014187709A1 (de) | 2013-05-22 | 2014-05-14 | Schnüffellecksucher mit nanoporöser membrane |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20160091386A1 (enExample) |
| EP (1) | EP2999950B1 (enExample) |
| JP (2) | JP2016520196A (enExample) |
| CN (1) | CN105229439A (enExample) |
| DE (1) | DE102013209438A1 (enExample) |
| WO (1) | WO2014187709A1 (enExample) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3034192B1 (fr) * | 2015-03-23 | 2017-04-07 | Pfeiffer Vacuum Sas | Detecteur de fuites et procede de detection de fuites |
| US10101238B2 (en) * | 2016-05-16 | 2018-10-16 | General Electric Company | Integrated ventilation and leak detection system and method of assembly |
| DE102017007149A1 (de) * | 2017-07-27 | 2019-01-31 | DILO Armaturen und Anlagenbau GmbH | Verfahren zur Lokalisierung von Leckstellen |
| CN107449642A (zh) * | 2017-08-28 | 2017-12-08 | 广西电网有限责任公司电力科学研究院 | 六氟化硫气体泄漏带电检测采样装置及采样方法 |
| DE102018201313A1 (de) * | 2018-01-29 | 2019-08-01 | Inficon Gmbh | Verfahren zur Leckprüfung mit einer Folienkammer mit belüftetem Messvolumen |
| CN113984292B (zh) * | 2021-09-30 | 2024-02-09 | 北京航天试验技术研究所 | 一种液氢阀外漏检测装置及方法 |
| US12117369B2 (en) | 2022-06-17 | 2024-10-15 | Packaging Technologies & Inspection, LLC | System and method for leak testing a sealed package |
| CN118565732B (zh) * | 2024-07-30 | 2024-12-10 | 安徽诺益科技有限公司 | 一种质谱检漏仪用嗅探器 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080202212A1 (en) * | 2007-02-28 | 2008-08-28 | Varian, Inc. | Methods and apparatus for test gas leak detection |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0816634B2 (ja) * | 1991-05-16 | 1996-02-21 | 日本真空技術株式会社 | ガス洩れ検査装置 |
| US5317900A (en) * | 1992-10-02 | 1994-06-07 | The Lyle E. & Barbara L. Bergquist Trust | Ultrasensitive helium leak detector for large systems |
| JP2612999B2 (ja) * | 1992-10-26 | 1997-05-21 | 日本電信電話株式会社 | 質量分析型ガス漏れ検知器 |
| DE4326267A1 (de) * | 1993-08-05 | 1995-02-09 | Leybold Ag | Lecksuchgerät |
| JPH09142964A (ja) * | 1995-11-28 | 1997-06-03 | Kyocera Corp | アルミナ多孔質膜の製造方法 |
| JP3116830B2 (ja) * | 1996-07-31 | 2000-12-11 | 株式会社島津製作所 | ヘリウムリークディテクタ |
| JP3675983B2 (ja) * | 1996-09-12 | 2005-07-27 | 株式会社アルバック | ヘリウムリークディテクター |
| JP3971546B2 (ja) * | 2000-03-03 | 2007-09-05 | 株式会社ノリタケカンパニーリミテド | 多孔質セラミック積層体及びその製造方法 |
| DE102004050762A1 (de) * | 2004-10-16 | 2006-04-20 | Inficon Gmbh | Verfahren zur Lecksuche |
| CN100462706C (zh) * | 2005-01-06 | 2009-02-18 | 清华大学 | 标准漏孔 |
| DE102005021909A1 (de) * | 2005-05-12 | 2006-11-16 | Inficon Gmbh | Schnüffellecksucher mit Quarzfenstersensor |
| DE102006045282C5 (de) * | 2006-09-22 | 2012-11-22 | Helmholtz-Zentrum Geesthacht Zentrum für Material-und Küstenforschung GmbH | Isoporöse Membran und Verfahren zu ihrer Herstellung |
| US20080202210A1 (en) * | 2007-02-28 | 2008-08-28 | Varian, Inc. | Test gas leak detection using a composite membrane |
| DE102008008262A1 (de) * | 2008-02-08 | 2009-08-13 | Inficon Gmbh | Schnüffellecksucher nach dem Referenzmessprinzip |
| IT1400850B1 (it) * | 2009-07-08 | 2013-07-02 | Varian Spa | Apparecchiatura di analisi gc-ms. |
| US20110290006A1 (en) * | 2010-05-28 | 2011-12-01 | Charles Perkins | Leak test probe for use in industrial facilities |
| JP5621965B2 (ja) * | 2010-06-08 | 2014-11-12 | 川研ファインケミカル株式会社 | アルミナ複合分離膜及びその製造方法 |
-
2013
- 2013-05-22 DE DE102013209438.8A patent/DE102013209438A1/de not_active Withdrawn
-
2014
- 2014-05-14 WO PCT/EP2014/059845 patent/WO2014187709A1/de not_active Ceased
- 2014-05-14 JP JP2016514331A patent/JP2016520196A/ja active Pending
- 2014-05-14 CN CN201480029105.8A patent/CN105229439A/zh active Pending
- 2014-05-14 US US14/892,397 patent/US20160091386A1/en not_active Abandoned
- 2014-05-14 EP EP14725411.4A patent/EP2999950B1/de active Active
-
2018
- 2018-09-19 JP JP2018175427A patent/JP6725614B2/ja active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080202212A1 (en) * | 2007-02-28 | 2008-08-28 | Varian, Inc. | Methods and apparatus for test gas leak detection |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6725614B2 (ja) | 2020-07-22 |
| CN105229439A (zh) | 2016-01-06 |
| DE102013209438A1 (de) | 2014-11-27 |
| JP2016520196A (ja) | 2016-07-11 |
| EP2999950B1 (de) | 2019-12-11 |
| US20160091386A1 (en) | 2016-03-31 |
| EP2999950A1 (de) | 2016-03-30 |
| JP2019053062A (ja) | 2019-04-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2999950B1 (de) | Schnüffellecksucher mit nanoporöser membrane | |
| EP0712488B1 (de) | Testgasdetektion mit Quarzglasschicht, Heizung und gasaufzehrendem Vakuummeter | |
| EP2238422B1 (de) | Schnüffellecksucher nach dem referenzmessprinzip | |
| EP2446243B1 (de) | Wasserstoffsensor | |
| DE102009004363B4 (de) | Leckdetektionsverfahren | |
| DE112020000560T5 (de) | Flüchtigkeitsaufgelöste chemische Charakterisierung von Schwebstoffen | |
| DE1673239B2 (de) | Vorrichtung zum Zuführen von nachzuweisenden Gasen oder Dämpfen in ein Gasanalysegerät | |
| EP3377870B1 (de) | Lecksuche mit sauerstoff | |
| DE2926112A1 (de) | Testleck-sonde | |
| DE102005021909A1 (de) | Schnüffellecksucher mit Quarzfenstersensor | |
| US20030150255A1 (en) | Barrier test apparatus and method | |
| DE102016202609A1 (de) | Mobilgerät zum Bestimmen eines Bestandteils in Umgebungsluft | |
| DE102018008636A1 (de) | Feuchtemessvorrichtung für Gase | |
| DE4316196C2 (de) | Verfahren und Vorrichtung zur Gasanalyse | |
| DE4133300C2 (de) | Verfahren und Vorrichtung zum Bestimmen strippbarer Substanzen aus Flüssigkeiten | |
| EP3688438B1 (de) | Vorrichtung und verfahren zur unterscheidung eines aus einem leck austretenden prüfgases von störgas | |
| EP1045242B1 (de) | Verfahren und Vorrichtung zur grössenaufgelösten chemischen und physikalischen Bestimmung von Aerosolpartikeln | |
| US7690241B2 (en) | Pre-concentrator for trace gas analysis | |
| DE10149219A1 (de) | Verfahren zur Partialdruck-Kalibrierung und Kalibriereinrichtung zur Durchführung des Verfahrens | |
| EP3227673B1 (de) | Vorrichtung zum erfassen eines gases und verfahren zum herstellen derselben | |
| DE112019007990T5 (de) | Sensoreinrichtung und Verfahren zum Messen eines gasförmigen Fluids | |
| DE102023129743A1 (de) | Vorrichtung und Verfahren zur massenspektrometrischen Hochvakuumlecksuche | |
| EP4659015A1 (de) | Verfahren und vorrichtung zur bestimmung von stoffanteilen eines fluiden stoffgemischs sowie medizintechnisches gerät | |
| DE102021134647A1 (de) | Vakuumlecksucher mit Ansprüh-Membran-Testleck und Verfahren | |
| EP4616163A1 (de) | Trägergas-lecksuchsystem und trägergas-lecksuchverfahren zur leckagedetektion an einem prüfling |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480029105.8 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14725411 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14892397 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2016514331 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014725411 Country of ref document: EP |