WO2014185413A1 - Procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan - Google Patents

Procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan Download PDF

Info

Publication number
WO2014185413A1
WO2014185413A1 PCT/JP2014/062719 JP2014062719W WO2014185413A1 WO 2014185413 A1 WO2014185413 A1 WO 2014185413A1 JP 2014062719 W JP2014062719 W JP 2014062719W WO 2014185413 A1 WO2014185413 A1 WO 2014185413A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
carbon atoms
liquid crystal
coating film
Prior art date
Application number
PCT/JP2014/062719
Other languages
English (en)
Japanese (ja)
Inventor
隆之 根木
亮一 芦澤
淳彦 萬代
達哉 名木
喜弘 川月
瑞穂 近藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201480040018.2A priority Critical patent/CN105393167B/zh
Priority to KR1020157035246A priority patent/KR102254609B1/ko
Priority to JP2015517089A priority patent/JPWO2014185413A1/ja
Publication of WO2014185413A1 publication Critical patent/WO2014185413A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material

Definitions

  • the present invention relates to a method for manufacturing a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element. More specifically, the present invention relates to a novel method for manufacturing a liquid crystal display device having excellent image sticking characteristics.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
  • Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a decomposition type photo-alignment method is known as a main photo-alignment method.
  • a polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependency of ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
  • photo-crosslinking type and photoisomerization type photo-alignment methods are also known.
  • the photo-crosslinking type photo-alignment method for example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (cross-linking reaction) at double bond portions of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1).
  • the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity.
  • An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
  • the photo-alignment method has a great advantage because the rubbing process itself is not necessary as compared with the rubbing method that has been industrially used as an alignment treatment method for liquid crystal display elements. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light. However, the photo-alignment method may require a large amount of polarized light irradiation to achieve the same degree of alignment control ability as the rubbing method, and stable liquid crystal alignment cannot be realized. There is.
  • the present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. With the goal. It is another object of the present invention to provide a method for manufacturing a substrate having a liquid crystal alignment film capable of expanding a margin region of polarized UV light irradiation amount capable of realizing good liquid crystal alignment in the liquid crystal alignment film. .
  • the cooling temperature of the coating film in the [IV] step is a temperature that is 10 ° C. or lower than the glass transition temperature (Tg) of the side chain polymer of the component (A). Good.
  • Tg glass transition temperature
  • the heating temperature of the coating film after ultraviolet irradiation and the reheating temperature after cooling are equal to or higher than the glass transition temperature of the coating film surface, and The temperature should be lower than the isotropic phase transition temperature.
  • the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6): Good.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10): Good.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13): Good.
  • A, X, l, m, m1 and R have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (14) or (15).
  • A, Y 1 , l, m1 and m2 have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (18) or (19).
  • A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31). Good.
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
  • ⁇ 13> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured according to any of the above ⁇ 1> to ⁇ 12>.
  • ⁇ 14> A lateral electric field drive type liquid crystal display device having the substrate of ⁇ 13> above.
  • ⁇ 15> a step of preparing a substrate (first substrate) of ⁇ 13>above;
  • Obtaining the second substrate comprises: [IV ′]
  • the method further comprises the step of cooling the coating film heated in [III ′] to a temperature lower than the glass transition temperature of the surface of the coating film and then reheating to a temperature equal to or higher than the glass transition temperature.
  • Good. ⁇ 17> A lateral electric field drive type liquid crystal display device manufactured according to the above ⁇ 15> or ⁇ 16>.
  • the cooling temperature of the coating film in the [IV] step is a temperature that is 10 ° C. or lower than the glass transition temperature (Tg) of the side chain polymer of the component (A). Good.
  • Tg glass transition temperature
  • the heating temperature of the coating film after UV irradiation and the reheating temperature after cooling are equal to or higher than the glass transition temperature of the coating film surface, and The temperature should be lower than the isotropic phase transition temperature.
  • the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6). Good.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently a single bond, a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof.
  • I is a group selected from However, when X is —CH ⁇ CH—CO—O— or —O—CO—CH ⁇ CH—, P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring; H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10): Good.
  • the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13). Good.
  • A, X, l, m and R have the same definition as above.
  • the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
  • A, Y 1 , X, 1, m1, and m2 have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the component (A) may have a photosensitive side chain represented by the following formula (18) or (19).
  • A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31). Good.
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in the formulas (25) to (26), the sum of all m is 2 or more, and the formulas (27) to (28 ), The sum of all m
  • ⁇ P13> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured by any of the above ⁇ P1> to ⁇ P12>.
  • ⁇ P14> A lateral electric field drive type liquid crystal display device having the substrate of ⁇ P13> above.
  • ⁇ P15> Step of preparing a substrate (first substrate) of ⁇ P13>above; [I ′] A polymer composition containing (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) an organic solvent is applied onto a second substrate.
  • Obtaining the second substrate comprises: [IV ′]
  • the method further comprises the step of cooling the coating film heated in [III ′] to a temperature lower than the glass transition temperature of the surface of the coating film and then reheating to a temperature equal to or higher than the glass transition temperature.
  • ⁇ P17> A lateral electric field drive type liquid crystal display device manufactured according to the above ⁇ P15> or ⁇ P16>.
  • a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics
  • a horizontal electric field drive type liquid crystal display element having the substrate can do. Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even when continuously driven for a long time.
  • the polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition
  • the coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity.
  • This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film.
  • the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization.
  • a highly efficient alignment process can be realized as the liquid crystal alignment film, and a liquid crystal alignment film having high alignment control ability can be obtained.
  • the present inventors further cooled and reheated the heated side-chain polymer film after irradiation with polarized light to obtain a coating film with orientation control ability. It was unexpectedly found that a liquid crystal alignment film having good liquid crystal alignment properties can be obtained in the irradiation margin region.
  • the present invention is also based on such knowledge.
  • the method for producing a substrate having the liquid crystal alignment film of the present invention is [I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a substrate containing a polymer composition containing an organic solvent, and a conductive film for driving a lateral electric field.
  • a step of coating on top to form a coating film [II] A step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; [III] a step of heating the coating film obtained in [II]; and [IV] After cooling the coating film heated in [III] to a temperature below the glass transition temperature of the surface of the coating film, A step of reheating to a temperature equal to or higher than the glass transition temperature.
  • a lateral electric field drive type liquid crystal display element can be obtained.
  • the second substrate instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
  • the manufacturing method of the horizontal electric field drive type liquid crystal display element is [V] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween; Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
  • step [I] a polymer composition containing a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and an organic solvent is applied onto a substrate having a conductive film for driving a lateral electric field. To form a coating film.
  • ⁇ Board> Although it does not specifically limit about a board
  • the substrate has a conductive film for driving a lateral electric field.
  • the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
  • examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
  • a method for forming a conductive film on a substrate a conventionally known method can be used.
  • a polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
  • the polymer composition used in the production method of the present invention contains (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; and (B) an organic solvent.
  • the component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
  • the (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
  • the (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
  • the (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
  • the side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement in response to light.
  • the structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
  • the structure of the polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group,
  • a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group
  • a structure having a photosensitive group that is bonded to the tip and that undergoes a cross-linking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded thereto, and the side chain also serves as a mesogenic component, And it can be set as the structure which has the phenylbenzoate group which carries out a photo-Fries rearrangement reaction
  • the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, It has a main chain composed of at least one selected from the group consisting of radically polymerizable groups such as vinyl, maleimide, norbornene and siloxane, and a side chain composed of at least one of the following formulas (1) to (6) A structure is preferred.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
  • the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m1 and R have the same definition as above.
  • the side chain may be a photosensitive side chain represented by the following formula (14) or (15).
  • A, Y 1 , l, m1 and m2 have the same definition as above.
  • the side chain may be a photosensitive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
  • A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
  • the side chain is preferably a photosensitive side chain represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • the (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
  • the photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
  • the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
  • photoreactive side chain monomer examples include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, etc.
  • a polymerizable side group composed of at least one selected from the group consisting of siloxane and a photosensitive side chain consisting of at least one of the above formulas (1) to (6), preferably, for example, the above formula (7 ) To (10), a photosensitive side chain comprising at least one of the above formulas (11) to (13), and a photosensitivity represented by the above formula (14) or (15).
  • a photosensitive side chain a photosensitive side chain represented by the above formula (16) or (17), a photosensitive side chain represented by the above formula (18) or (19), and a photosensitivity represented by the above formula (20).
  • Sex side chain It is preferable that it has a structure.
  • R represents a hydrogen atom or a methyl group
  • S represents an alkylene group having 2 to 10 carbon atoms
  • R 10 represents Br or CN
  • S represents an alkylene group having 2 to 10 carbon atoms
  • u represents Represents 0 or 1
  • Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.
  • V represents 1 or 2.
  • the liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
  • the side chain has a mesogenic group such as biphenyl or phenylbenzoate that has a mesogenic structure alone, or a group that has a mesogenic structure by hydrogen bonding between side chains, such as benzoic acid. Good.
  • the mesogenic group possessed by the side chain the following structure is preferable.
  • liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups
  • a structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
  • the side chain polymer can be obtained by the polymerization reaction of the above-described photoreactive side chain monomer that exhibits liquid crystallinity. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of other monomers include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, and tert-butyl.
  • (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
  • Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
  • Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • RAFT reversible addition-cleavage chain transfer
  • the radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthio xanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4-
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
  • the organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
  • organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C.
  • the reaction can be carried out at any soot concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
  • the content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
  • the polymer which has been deposited in a poor solvent and precipitated can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability during coating film formation, and uniformity of the coating film.
  • the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance.
  • Other polymers may be mixed within the range.
  • the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
  • Organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone
  • the polymer composition used in the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • the present invention is not limited to this.
  • solvent poor solvent which improves the uniformity of film thickness and surface smoothness.
  • solvents may be used alone or in combination.
  • it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the polymer composition. Specific phenoplast additives are shown below, but are not limited to this structure.
  • Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodip
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
  • photosensitizers aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-b
  • Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
  • a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
  • the method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the polymer composition After the polymer composition is applied on a substrate having a conductive film for driving a horizontal electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven.
  • the solvent can be evaporated at 150 ° C. to obtain a coating film.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is. In addition, it is also possible to provide the process of cooling the board
  • step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
  • the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk. The Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C lower than the lower limit of the temperature range of the liquid crystal expression temperature of the chain polymer used, and 10 ° C lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range made into an upper limit. If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
  • the liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
  • the thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason described in the step [I].
  • step [IV] the coating film heated in step [III] is cooled to a temperature lower than the glass transition temperature of the surface of the coating film, and then reheated to a temperature equal to or higher than the glass transition temperature. That is, the coating film obtained by heating in step [III] is once cooled to a temperature lower than the glass transition temperature of the coating film surface. In other words, the coating film obtained by heating in step [III] is cooled to a temperature lower than the lower limit of the liquid crystal expression temperature on the coating film surface, so that the liquid crystalline state on the coating film surface is solidified. Transition (glass transition).
  • the cooling temperature of the coating film is such that the liquid crystal expression temperature on the surface of the coating film tends to be lower than the liquid crystal expression temperature when the side chain polymer is observed in bulk.
  • the temperature is preferably at least 10 ° C. lower than the glass transition temperature (Tg) of the type polymer.
  • Tg glass transition temperature
  • a preferable example of such a cooling temperature is room temperature (for example, 25 ° C.).
  • the coating film obtained by heating in step [III] may be cooled to the target cooling temperature positively using a cooling chamber or coolant, but it must be taken out of the heating means and left to stand. May be gradually cooled.
  • the cooled coating film is heated to a re-temperature above the glass transition temperature of the coating film surface. Specifically, the cooled coating film is reheated to the liquid crystal expression temperature on the coating film surface.
  • the liquid crystal expression temperature on the surface of the coating film is a temperature that is equal to or higher than the glass transition temperature of the coating film surface and lower than the isotropic phase transition temperature of the coating film surface.
  • the heating temperature of the coating after irradiation with polarized ultraviolet rays (heating temperature in step [III]) and the heating temperature at the time of reheating after cooling may be different or the same. It is preferable that the heating temperature at that time is equal to or lower than the heating temperature of the coating film after irradiation with polarized ultraviolet rays,
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
  • the substrate (first substrate) obtained in [IV] and having a liquid crystal alignment film on the conductive film for driving a horizontal electric field is similarly used in the above [I ′] to [III ′] or
  • the substrate with the liquid crystal alignment film (second substrate) obtained in [I ′] to [IV ′], which does not have a conductive film, is placed opposite to each other with the liquid crystal alignment film facing each other through the liquid crystal.
  • a liquid crystal cell is manufactured by a known method to manufacture a lateral electric field drive type liquid crystal display element.
  • steps [I ′] to [III ′] or the steps [I ′] to [IV ′] are performed in the step [I] instead of the substrate having a conductive film for driving the transverse electric field.
  • the steps can be carried out in the same manner as in the steps [I] to [III] or the steps [I ′] to [IV ′] except that a substrate having no conductive film is used. Since the difference between the steps [I] to [IV] and the steps [I ′] to [IV ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [IV ′] is omitted. To do.
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
  • an embodiment using a side chain type polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, a structure having a photofleece rearrangement group or a group causing isomerization as a photoreactive group
  • An embodiment using the side chain type polymer will be referred to as a second embodiment.
  • FIG. 1 schematically shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
  • FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light
  • FIG. 1 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
  • 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 1% to 15% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • FIG. 2 is a schematic illustration of anisotropy introduction treatment in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
  • FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light.
  • FIG. 2 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the first aspect of the present invention.
  • 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 15% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • FIG. 3 shows a side chain polymer having a structure having a photo-isomerizable group as a photoreactive group or a photo-Fleece rearrangement group represented by the above formula (18) in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in the manufacturing method of the used liquid crystal aligning film.
  • FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation
  • FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation.
  • 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
  • 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 4 shows the production of a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19) as a photoreactive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a method.
  • FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light.
  • FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating.
  • 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the coating film 1 is formed on the substrate.
  • Fig.1 (a) in the coating film 1 formed on the board
  • the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the coating film 3 is formed on the substrate. As shown in FIG. 2A, the coating film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chains 4 of the coating film 3, the mesogenic components and the photosensitive groups of the side chains 4 are also randomly oriented, and the coating film 2 is isotropic.
  • a side chain type having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) in the treatment for introducing anisotropy into the coating film In the case of using a liquid crystal alignment film using a polymer, when the ultraviolet irradiation amount in the step [II] is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, first, The coating film 5 is formed. As shown in FIG. 3A, the coating film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the coating film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain type polymer film 5 is isotropic.
  • liquid crystal alignment using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (19) in the treatment for introducing anisotropy into the coating film In the case of using a film, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, first, the coating film 7 is formed on the substrate. . As shown in FIG. 4A, the coating film 7 formed on the substrate has a structure in which the side chains 8 are arranged at random. According to the random arrangement of the side chains 8 of the coating film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the coating film 7 is isotropic.
  • the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A
  • polarized ultraviolet rays are irradiated.
  • the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
  • Dimerization reaction or the like causes a photoreaction.
  • the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet light, and as a result, very small anisotropy is imparted to the coating film 1.
  • the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • polarized ultraviolet rays are irradiated.
  • the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
  • the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the coating film 3.
  • a liquid crystal film alignment film using a photoisomerizable group or a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (18) is used.
  • the ultraviolet ray irradiation amount in the step is in the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A
  • the isotropic coating film 5 is irradiated with polarized blue ultraviolet rays. Then, as shown in FIG.
  • the photosensitive group of the side chain 6a having the photosensitive group among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to photocathode fleece rearrangement or the like.
  • the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the coating film 5.
  • the amount of ultraviolet irradiation in the step [II] is obtained using a coating film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19). Is within the range of 1% to 70% of the amount of UV irradiation that maximizes ⁇ A, the isotropic coating film 7 is irradiated with polarized UV light. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, small anisotropy is imparted to the coating film 7.
  • the coating film 1 after the polarized light irradiation 1 Is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the coating film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer.
  • the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the very small anisotropy of the coating film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 1.
  • the coating film after polarized light irradiation 3 is heated to a liquid crystal state.
  • the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the small anisotropy of the coating film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 3.
  • a coating film using a side-chain polymer having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) is used.
  • the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the coating film 5 after polarized irradiation is heated to be in a liquid crystal state.
  • generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of irradiation ultraviolet rays, and a perpendicular
  • a coating film using a side chain type polymer having a structure having a photofleece rearrangement group represented by the above formula (19) is used.
  • the ultraviolet irradiation amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the coated film 7 after polarized irradiation is heated to a liquid crystal state.
  • the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. .
  • the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the side chain 8 containing the mesogenic component is reoriented.
  • the small anisotropy of the coating film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 7.
  • the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
  • the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is such that the photosensitive group undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction in the coating film.
  • the photo-crosslinking reaction, photoisomerization reaction, or photo-fleece rearrangement reaction has few photosensitive groups in the side chain, the amount of photoreaction will not be sufficient. . In that case, sufficient self-organization does not proceed even after heating.
  • the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
  • the coating film used in the present invention is irradiated with polarized ultraviolet rays to the structure having the light Fleece rearrangement group, if the photosensitive group of the side chain that undergoes the light Fleece rearrangement reaction becomes excessive, the liquid crystallinity of the coating film Will drop too much.
  • the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.
  • the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the side chain polymer film. It is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group possessed by.
  • the coating film used in the method of the present invention by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • the maximum value of ⁇ A ( ⁇ Amax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
  • the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ⁇ Amax. More preferably, it is within the range of 50%.
  • the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
  • a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
  • the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
  • the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
  • MA1 was synthesized by a synthesis method described in a patent document (WO2011-084546).
  • MA2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717).
  • the liquid crystal phase transition temperature of the polymer obtained in the example was measured using differential scanning calorimetry (DSC) DSC3100SR (manufactured by Mac Science).
  • methacrylate polymer powder The number average molecular weight of this polymer was 15000, and the weight average molecular weight was 40500.
  • the obtained methacrylate polymer had a liquid crystal phase transition temperature of 120 ° C. to 185 ° C.
  • NMP 54.0 g was added to the resulting methacrylate polymer powder (6.0 g), and dissolved by stirring at room temperature for 5 hours.
  • BC (40.0g) was added and stirred to this solution, and the liquid crystal aligning agent (A) was obtained.
  • Example 1 (Production of liquid crystal cell) Using the liquid crystal aligning agent (A) obtained in Synthesis Example 1, a liquid crystal cell was prepared according to the procedure shown below.
  • the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
  • the pixel electrode had a comb-like shape configured by arranging a plurality of dog-shaped electrode elements having a bent central portion. The width of each electrode element in the short direction was 10 ⁇ m, and the distance between the electrode elements was 20 ⁇ m.
  • each pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It had a shape that bends and resembles a bold-faced koji.
  • Each pixel was divided vertically with the central bent portion as a boundary, and had a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode were formed so as to form an angle of ⁇ 15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It was configured to be in the opposite direction.
  • the liquid crystal aligning agent (A) obtained in Synthesis Example 1 was spin-coated on the prepared substrate with electrodes.
  • the liquid crystal aligning film with a film thickness of 100 nm.
  • the surface of the coating film was irradiated with ultraviolet rays of 313 nm through a polarizing plate at 10 mJ / cm 2 and then heated on a hot plate at 150 ° C. for 10 minutes (primary firing), and the substrate which was gradually cooled (cooled) to room temperature was again 150 A substrate with a liquid crystal alignment film was obtained by heating (secondary firing) for 10 minutes on a hot plate at ° C.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate.
  • a liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element was prepared by injecting liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
  • IPS In-Plane Switching
  • Example 2 A liquid crystal cell was prepared in the same manner as in Example 1 except that the temperature of the secondary baking treatment was set to 130 ° C. The orientation was evaluated in the same manner as in Example 1 using the obtained liquid crystal cell. The results were as shown in Table 1.
  • FIG. 1 Side chain polymer membrane 2, 2a Side chain diagram 2 3 Side chain polymer membrane 4, 4a Side chain diagram 3 5 Side chain type polymer membrane 6, 6a Side chain diagram 4 7 Side chain polymer membrane 8, 8a Side chain

Abstract

La présente invention concerne un élément d'affichage à cristaux liquides à commutation dans le plan ayant des propriétés supérieures de feu intérieur et auquel une capacité de commande d'orientation a été communiquée avec une haute efficacité. La présente invention permet d'obtenir ce résultat au moyen d'un procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan auquel une capacité de commande d'orientation a été communiquée, et qui permet d'obtenir le film d'orientation de cristaux liquides conformément aux étapes suivantes : [I] une étape consistant à former un film de revêtement par application, à un substrat portant un film conducteur de commutation dans le plan, d'une composition polymère contenant (A) un polymère photosensible à chaîne latérale présentant des propriétés de cristaux liquides dans une plage de température prédéfinie et (B) un solvant organique ; [II] une étape consistant à exposer le film de revêtement obtenu à l'étape [I] à des rayons ultraviolets polarisés ; [III] une étape consistant à chauffer le film de revêtement obtenu à l'étape [II] ; et une étape [IV] consistant à refroidir le film de revêtement chauffé à l'étape [III] à une température inférieure à la température de transition vitreuse de la surface du film de revêtement puis à le chauffer de nouveau à une température qui est supérieure à la température de transition vitreuse.
PCT/JP2014/062719 2013-05-13 2014-05-13 Procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan WO2014185413A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480040018.2A CN105393167B (zh) 2013-05-13 2014-05-13 具有横向电场驱动型液晶表示元件用液晶取向膜的基板的制造方法
KR1020157035246A KR102254609B1 (ko) 2013-05-13 2014-05-13 횡전계 구동형 액정 표시 소자용 액정 배향막을 갖는 기판의 제조 방법
JP2015517089A JPWO2014185413A1 (ja) 2013-05-13 2014-05-13 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-101748 2013-05-13
JP2013101748 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185413A1 true WO2014185413A1 (fr) 2014-11-20

Family

ID=51898390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062719 WO2014185413A1 (fr) 2013-05-13 2014-05-13 Procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan

Country Status (5)

Country Link
JP (1) JPWO2014185413A1 (fr)
KR (1) KR102254609B1 (fr)
CN (1) CN105393167B (fr)
TW (1) TWI628209B (fr)
WO (1) WO2014185413A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069133A1 (fr) * 2015-10-20 2017-04-27 日産化学工業株式会社 Agent d'alignement de cristaux liquides, film d'alignement de cristaux liquides, et élément d'affichage à cristaux liquides

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956948B2 (ja) * 2016-10-14 2021-11-02 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (ja) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd 光配向材および光学素子、液晶配向膜の製造方法
JP2008276149A (ja) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd 高分子フィルム、分子配向素子の作製方法、および液晶配向膜
WO2012014915A1 (fr) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Polymère d'acide (méth)acrylique copolymérisable, film d'alignement optique et film de déphasage
WO2014017497A1 (fr) * 2012-07-24 2014-01-30 日産化学工業株式会社 L'invention a pour objectif de fournir un procédé pour juger simplement l'état de différenciation, bon ou mauvais, de cellules souches pluripotentes, sans nécessiter le jugement d'un expert qualifié. l'invention a également pour objectif de fournir un procédé permettant l'application d'une détermination automatique des cellules souches pluripotentes ayant débuté une différenciation. ainsi, selon le procédé de l'invention, la bonne ou la mauvaise qualité de cellules souches pluripotentes est évaluée sur la base d'une différence de motifs de coloration des cellules souches pluripotentes.
WO2014054785A2 (fr) * 2012-10-05 2014-04-10 日産化学工業株式会社 Procédé de fabrication pour un substrat ayant un film d'alignement de cristaux liquides pour un élément d'affichage à cristaux liquides de type à commutation dans le plan

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651870B2 (ja) * 1989-06-06 1997-09-10 株式会社リコー 液晶性高分子薄膜付基板及びその製造方法
JP3320513B2 (ja) * 1993-07-30 2002-09-03 オリンパス光学工業株式会社 プラスチック光学素子の射出成形方法
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
JP3502338B2 (ja) * 1999-10-25 2004-03-02 日立マクセル株式会社 液晶表示用材料、液晶表示方法及び液晶表示装置
JP4821118B2 (ja) * 2004-02-12 2011-11-24 Jnc株式会社 ジアミン、ポリマー、液晶配向膜および液晶表示素子
JP4554315B2 (ja) * 2004-09-22 2010-09-29 日東電工株式会社 液晶材料を配向させるための配向膜の製造方法、得られた配向膜、配向液晶膜、光学フィルムおよび画像表示装置
CN101790429A (zh) * 2007-08-31 2010-07-28 旭硝子株式会社 液晶聚合物层压体的制造方法
JP2009098619A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp 光配向膜用組成物、位相差膜用組成物、光配向膜、位相差膜、それを用いた液晶セル及び液晶表示装置、ならびに光配向膜又は位相差膜の製造方法
JP5019063B2 (ja) * 2008-03-26 2012-09-05 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2009275164A (ja) * 2008-05-16 2009-11-26 Nippon Oil Corp 液晶性高分子および液晶フィルム
WO2010049044A1 (fr) * 2008-10-29 2010-05-06 Merck Patent Gmbh Dispositif d'affichage à cristaux liquides
CN102224450B (zh) * 2008-11-27 2014-10-08 夏普株式会社 液晶显示装置及其制造方法
CN103026291B (zh) * 2010-06-10 2015-08-19 日产化学工业株式会社 液晶取向处理剂、液晶取向膜及液晶显示元件
WO2012008814A2 (fr) * 2010-07-16 2012-01-19 (주)Lg화학 Film à cristaux liquides
KR20120061427A (ko) * 2010-12-03 2012-06-13 재단법인대구경북과학기술원 액정 디스플레이용 광경화성 조성물 및 이를 이용한 액정 디스플레이
CN103827740B (zh) * 2011-06-28 2017-08-25 日产化学工业株式会社 液晶取向膜的制造方法、液晶取向膜及液晶显示元件
CN103748508B (zh) * 2011-08-26 2016-08-31 夏普株式会社 液晶显示面板和液晶显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (ja) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd 光配向材および光学素子、液晶配向膜の製造方法
JP2008276149A (ja) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd 高分子フィルム、分子配向素子の作製方法、および液晶配向膜
WO2012014915A1 (fr) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Polymère d'acide (méth)acrylique copolymérisable, film d'alignement optique et film de déphasage
WO2014017497A1 (fr) * 2012-07-24 2014-01-30 日産化学工業株式会社 L'invention a pour objectif de fournir un procédé pour juger simplement l'état de différenciation, bon ou mauvais, de cellules souches pluripotentes, sans nécessiter le jugement d'un expert qualifié. l'invention a également pour objectif de fournir un procédé permettant l'application d'une détermination automatique des cellules souches pluripotentes ayant débuté une différenciation. ainsi, selon le procédé de l'invention, la bonne ou la mauvaise qualité de cellules souches pluripotentes est évaluée sur la base d'une différence de motifs de coloration des cellules souches pluripotentes.
WO2014054785A2 (fr) * 2012-10-05 2014-04-10 日産化学工業株式会社 Procédé de fabrication pour un substrat ayant un film d'alignement de cristaux liquides pour un élément d'affichage à cristaux liquides de type à commutation dans le plan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069133A1 (fr) * 2015-10-20 2017-04-27 日産化学工業株式会社 Agent d'alignement de cristaux liquides, film d'alignement de cristaux liquides, et élément d'affichage à cristaux liquides
JPWO2017069133A1 (ja) * 2015-10-20 2018-08-09 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2021140186A (ja) * 2015-10-20 2021-09-16 日産化学株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Also Published As

Publication number Publication date
TW201512253A (zh) 2015-04-01
CN105393167A (zh) 2016-03-09
CN105393167B (zh) 2019-05-10
KR102254609B1 (ko) 2021-05-20
TWI628209B (zh) 2018-07-01
JPWO2014185413A1 (ja) 2017-02-23
KR20160007635A (ko) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6784593B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6502006B2 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2014148569A1 (fr) Procédé de fabrication d'élément d'affichage à cristaux liquides du type à commutation dans le plan
WO2017199986A1 (fr) Agent d'alignement de cristaux liquides, film d'alignement de cristaux liquides et élément d'affichage à cristaux liquides
WO2015012341A1 (fr) Polymère, composition polymère, et film d'alignement de cristaux liquides pour élément d'affichage à cristaux liquides du type à attaque à champ électrique horizontal
WO2014196590A1 (fr) Procédé de production d'un substrat comprenant un film d'alignement de cristaux liquides pour commutation en plan d'éléments d'affichage à cristaux liquides
WO2016113931A1 (fr) Agent d'alignement de cristaux liquides à l'aide de cristal liquide polymère de liaison d'hydrogène non photoréactif, et film d'alignement de cristaux liquides
WO2014185411A1 (fr) Procédé de production de substrat à membrane d'orientation de cristaux liquides destiné à être utilisé dans un élément d'affichage à cristaux liquides à commutation dans le plan
CN107636081B (zh) 使用了光反应性氢键性高分子液晶的液晶取向剂和液晶取向膜
JP6571524B2 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
JP6872315B2 (ja) 重合体組成物および横電界駆動型液晶表示素子用液晶配向膜
CN108603036B (zh) 液晶取向剂、液晶取向膜和液晶表示元件
WO2014196589A1 (fr) Procédé pour la production de substrat ayant un film d'alignement de cristaux liquides pour éléments d'affichage à cristaux liquides à commutation dans le plan
JP6794257B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
WO2014185413A1 (fr) Procédé de production d'un substrat comportant un film d'orientation de cristaux liquides pour un élément d'affichage à cristaux liquides à commutation dans le plan
CN105431770B (zh) 具有横向电场驱动型液晶表示元件用液晶取向膜的基板的制造方法
JP2018109788A (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040018.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157035246

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14798192

Country of ref document: EP

Kind code of ref document: A1