WO2014181687A1 - Cold storage heat exchanger - Google Patents

Cold storage heat exchanger Download PDF

Info

Publication number
WO2014181687A1
WO2014181687A1 PCT/JP2014/061440 JP2014061440W WO2014181687A1 WO 2014181687 A1 WO2014181687 A1 WO 2014181687A1 JP 2014061440 W JP2014061440 W JP 2014061440W WO 2014181687 A1 WO2014181687 A1 WO 2014181687A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cold storage
heat exchanger
regenerator
storage material
Prior art date
Application number
PCT/JP2014/061440
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 上村
理郎 松下
隆哉 有本
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2014181687A1 publication Critical patent/WO2014181687A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/042Details of condensers of pcm condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cold storage heat exchanger incorporated in an air conditioning unit that is mounted on a vehicle and supplies conditioned air into the vehicle.
  • regenerator heat exchanger In the regenerator heat exchanger described in Patent Document 1, a regenerator with a built-in regenerator material is arranged on the downstream side (downstream side) of the air flow, and the regenerator is stored with cold air formed by the operation of the refrigerant compressor by normal traveling. It cools in the cooler and cools the air that passes through this cooler when idling stops.
  • this invention can improve the mounting property to an air-conditioning unit, without increasing the thickness of the air flow direction of a cool storage heat exchanger, and can suppress the increase in a weight and manufacturing cost.
  • the object is to provide a possible cold storage heat exchanger.
  • the regenerative heat exchanger extends along a first direction that intersects the air flow direction, and intersects the air flow direction and the first direction.
  • a pair of refrigerant tanks that are spaced apart from each other in a second direction and that are supplied with refrigerant therein, and a plurality of rows are arranged in the first direction between the pair of refrigerant tanks, and the pair of refrigerant tanks
  • a refrigerant tube having a refrigerant passage through which a refrigerant supplied from the refrigerant tank passes; and a cold storage material supplied to the refrigerant tube and cooled by air passing between the pair of refrigerant tanks.
  • coolant tube is provided in the said clearance gap between the said refrigerant paths, and has a cool storage material storage part which stores the said cool storage material.
  • the cold storage material storage unit for storing the cold storage material is provided in the gaps between the refrigerant passages provided at a plurality of locations along the air flow direction provided in the refrigerant tube.
  • FIG. 1 is a perspective view of the entire regenerator heat exchanger according to the first embodiment of the present invention.
  • FIG. 2 is a side view of the entire regenerative heat exchanger according to the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a perspective view of the refrigerant tube according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of the refrigerant tube according to the first embodiment of the present invention.
  • FIG. 6 is a plan view of a refrigerant tube provided with a recess according to the second embodiment of the present invention.
  • FIG. 7 is a perspective view of a refrigerant tube provided with a recess according to the second embodiment of the present invention.
  • FIG. 8 is a plan view of a refrigerant tube provided with a recess according to the third embodiment of the present invention.
  • FIG. 1 to 5 show a cold storage heat exchanger 1 according to a first embodiment of the present invention.
  • 1 is a perspective view of the entire regenerator heat exchanger 1
  • FIG. 2 is a side view of the regenerator heat exchanger 1
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2
  • FIG. 5 is a plan view of the refrigerant tube 3.
  • the regenerator heat exchanger 1 is provided between a pair of refrigerant tanks 2, a refrigerant tube 3 disposed between the pair of refrigerant tanks 2, and an adjacent refrigerant tube 3. And fins 4 are provided.
  • the pair of refrigerant tanks 2 extend along a direction (first direction B) that intersects the air flow direction A, and a direction that intersects the air flow direction A and the first direction (second direction). In the direction C), they are spaced apart from each other and are supplied with refrigerant.
  • the refrigerant tubes 3 are arranged in a plurality of rows in a direction intersecting (orthogonal to) the air flow direction A (first direction B) between the pair of upper and lower refrigerant tanks 2, thereby forming a pair of upper and lower refrigerant tanks 2. Are connected. Inside the refrigerant tube 3, the refrigerant is supplied from the refrigerant tank 2, and heat exchange is performed between the supplied refrigerant and the air passing between the refrigerant tank 2. A regenerator material (not shown) is disposed inside the refrigerant tube 3.
  • the refrigerant tube 3 is provided with refrigerant passages 11 and 12 with an interval along the air flow direction A.
  • each refrigerant passage 11, 12 is formed by providing a plurality of passage portions 11 a, 12 a side by side. Both ends of the refrigerant passages 11 and 12 in the length direction (second direction C) are opened to form refrigerant passage openings 11b and 12b.
  • the refrigerant passage openings 11 b and 12 b at both ends in the length direction are inserted into the pair of upper and lower refrigerant tanks 2, whereby the refrigerant from the refrigerant tank 2 is supplied to the refrigerant passages 11 and 12.
  • cold storage material storage portions 13 and 14 in which the cold storage material is stored are provided.
  • the cold storage material reservoirs 13 and 14 are provided along the air flow direction A between the refrigerant passages 11 and 12 by being provided side by side.
  • the cold storage material reservoirs 13 and 14 are formed in the refrigerant tube 3 integrally with the refrigerant passages 11 and 12.
  • FIG. 3 shows the inside of the refrigerant tank 2, and the refrigerant tank 2 is formed by assembling the upper plate 15, the middle plate 16 and the lower plate 17.
  • a refrigerant supply passage 20 is provided between the upper plate 15 and the middle plate 16.
  • Between the middle plate 16 and the lower plate 17 is a cold storage material tank portion 19 in which the cold storage material is stored.
  • both end portions in the length direction of the regenerator storage parts 13 and 14 are opened to form regenerator storage part openings 13b and 14b.
  • the cold storage material in the cold storage material tank part 19 is supplied to the cold storage material storage parts 13 and 14, and stored.
  • the refrigerant supply passage 20 is provided outside the cold storage heat exchanger 1 inside the refrigerant tank 2, and the cold storage material tank portion 19 is inside the cold storage heat exchanger 1 inside the refrigerant tank 2.
  • the inside of the refrigerant tank 2 has a double structure.
  • the refrigerant passage openings 11 b and 12 b are located outside the refrigerant tank 2
  • the cool storage material reservoir openings 13 b and 14 b are located inside the refrigerant tank 2.
  • a plate-shaped partition member 18 is stretched between the upper plate 15 and the middle plate 16.
  • the partition member 18 separates the refrigerant supply passage 20 into a first refrigerant supply passage 21 and a second refrigerant supply passage 22 along the air flow direction A.
  • the refrigerant passage 11 communicates with the first refrigerant supply passage 21 by inserting the refrigerant passage openings 11 b at both ends in the length direction of the one refrigerant passage 11 into the first refrigerant supply passage 21.
  • the refrigerant passage 12 communicates with the second refrigerant supply passage 22 by inserting the refrigerant passage openings 12 b at both ends in the length direction of the other refrigerant passage 12 into the second refrigerant supply passage 22.
  • the fins 4 are formed in a continuous wave shape, and are provided between the adjacent refrigerant tubes 3 to transfer heat between the adjacent refrigerant tubes 3. Thereby, the fin 4 cools air when the air passes between the refrigerant tubes 3.
  • cold storage material storage parts 13 and 14 in which a cold storage material is stored are provided between a plurality of refrigerant passages 11 and 12 arranged along the air flow direction A. For this reason, at the time of idling stop, even if supply of a refrigerant
  • regenerator storage parts 13 and 14 are provided between the refrigerant passages 11 and 12 along the air flow direction A, the regenerator storage parts 13 and 14 are also provided along the air flow A. ing. For this reason, since the cool storage material storage parts 13 and 14 do not block the air flow, the resistance of the air passing through the cool storage heat exchanger 1 does not increase, and the conditioned air is efficiently supplied into the vehicle. Can do.
  • regenerator storage parts 13 and 14 and the refrigerant passages 11 and 12 are integrally formed in the refrigerant tube 3. For this reason, a number of parts can be reduced and an assembly can be performed easily.
  • regenerator heat exchanger 1 can be used as a normal evaporator of an air conditioning unit, and the vehicle does not have an idling stop function. It can also be used as it is.
  • FIGS. 6 and 7 show a cold storage heat exchanger 1A according to a second embodiment of the present invention.
  • a recess 31 is formed in the refrigerant tube 3A.
  • the recessed part 31 is formed in the up-down direction (2nd direction C) on both outer surfaces of each refrigerant
  • the recess 31 is formed in the refrigerant tube 3 ⁇ / b> A so as not to contact the fins 4 provided between the refrigerant tubes 3 ⁇ / b> A.
  • the recess 31 is formed between the cold storage material reservoirs 13 and 14 of the refrigerant tube 3A, and the condensed water generated on the outer surface of the refrigerant tube 3A due to cooling of the cold storage material reservoirs 13 and 14 is obtained. Functions to drain. This improves drainage.
  • FIG. 8 shows a cold storage heat exchanger 1B according to the third embodiment of the present invention.
  • a recess 31 is formed in the refrigerant tube 3B.
  • the recessed part 31 is formed in the up-down direction (2nd direction C) on both outer surfaces of each refrigerant
  • the recessed part 31 is formed in the refrigerant
  • the concave portion 31 is formed between the cold storage material storage portions 13 and 14 of the refrigerant tube 3B and between the refrigerant passages 11 and 12 adjacent to the cold storage material storage portions 13 and 14.
  • the number may be singular and may be three or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A cold storage heat exchanger (1, 1A, 1B) equipped with a pair of refrigerant tanks (2), refrigerant tubes (3), and a cold storage material. The cold storage material is cooled by air that is supplied to the refrigerant tubes (3) and passes between the pair of refrigerant tanks (2). The refrigerant tubes (3) have refrigerant passages (11, 12), which are provided at multiple locations along the direction of airflow, with prescribed spaces therebetween, and through which the refrigerant supplied from the refrigerant tanks (2) flows, and cold storage material storage parts (13, 14), which are provided in the spaces between the refrigerant passages (11, 12), and store the cold storage material.

Description

蓄冷熱交換器Cold storage heat exchanger
 本発明は、自動車に搭載されて車内に空調風を供給する空調ユニットに組み込まれる蓄冷熱交換器に関する。 The present invention relates to a cold storage heat exchanger incorporated in an air conditioning unit that is mounted on a vehicle and supplies conditioned air into the vehicle.
 車両の一時停止時にエンジンの駆動を停止するアイドリングストップ機能を搭載した車両がある。このアイドリングストップ機能を搭載した車両では、アイドリングストップ時に、エンジンからの駆動により作動している冷媒圧縮用の圧縮機も停止する。冷媒圧縮機が停止すると所望の空調風を車室内に送ることができない。特許文献1には、アイドリングストップ時でも冷風を供給するために蓄冷材を予め蒸発器の近傍に設けておき、蒸発器への冷媒の供給が停止しても蓄冷材と空気との熱交換によって冷風を供給することができるようにした構造の蓄冷熱交換器が記載されている。 There are vehicles equipped with an idling stop function that stops the engine drive when the vehicle is temporarily stopped. In a vehicle equipped with this idling stop function, the compressor for refrigerant compression that is operating by driving from the engine also stops when idling is stopped. When the refrigerant compressor stops, the desired conditioned air cannot be sent into the passenger compartment. In Patent Document 1, a cold storage material is provided in the vicinity of the evaporator in advance in order to supply cold air even when idling is stopped, and even if supply of the refrigerant to the evaporator is stopped, heat exchange between the cold storage material and air is performed. A cold storage heat exchanger having a structure capable of supplying cold air is described.
 特許文献1に記載された蓄冷熱交換器では、空気流れの後流側(下流側)に蓄冷材を内蔵した蓄冷器を配置し、通常走行による冷媒圧縮機の作動により形成された冷風で蓄冷器に蓄冷しておき、アイドリングストップ時にこの蓄冷器を通過する空気を冷却している。 In the regenerator heat exchanger described in Patent Document 1, a regenerator with a built-in regenerator material is arranged on the downstream side (downstream side) of the air flow, and the regenerator is stored with cold air formed by the operation of the refrigerant compressor by normal traveling. It cools in the cooler and cools the air that passes through this cooler when idling stops.
特表2009-525911号公報Special table 2009-525911
 ところで、特許文献1に記載された蒸発器の後流側に蓄冷器を配置した構造では、蓄冷熱交換器全体の厚みが増加してしまい、空調ユニット内でのスペースが増加するなど搭載性が悪い。また、蓄冷器を製造して組み込む分、部品点数が増加し、重量、製造コストが増加してしまう。 By the way, in the structure which arrange | positioned the cool storage in the downstream of the evaporator described in patent document 1, the thickness of the whole cool storage heat exchanger will increase, and mounting property, such as the space in an air-conditioning unit, will increase. bad. Moreover, since the regenerator is manufactured and incorporated, the number of parts increases, and the weight and manufacturing cost increase.
 本発明は、蓄冷機能を付加しても、蓄冷熱交換器の空気流れ方向の厚みを増やすことなく空調ユニットへの搭載性を向上することができ、重量、製造コストの増加を抑制することが可能な蓄冷熱交換器を提供することを目的とする。 Even if it adds a cool storage function, this invention can improve the mounting property to an air-conditioning unit, without increasing the thickness of the air flow direction of a cool storage heat exchanger, and can suppress the increase in a weight and manufacturing cost. The object is to provide a possible cold storage heat exchanger.
 本発明の実施形態に係る蓄冷熱交換器は、それぞれが空気の流れ方向に対して交差する第1の方向に沿って延設され、前記空気の流れ方向及び前記第1の方向に対して交差する第2の方向において離間して上下に配置され、内部に冷媒が供給される一対の冷媒タンクと、前記一対の冷媒タンク間に前記第1の方向に複数列配置され、前記一対の冷媒タンクから供給された冷媒と前記一対の冷媒タンク間を通過する空気との間で熱交換する冷媒チューブであって、前記空気流れ方向に沿って所定の隙間を空けて複数箇所設けられ、前記一対の冷媒タンクから供給された冷媒が通過する冷媒通路を有する冷媒チューブと、前記冷媒チューブに供給されて、前記一対の冷媒タンク間を通過する空気により冷却される蓄冷材とを備える。前記冷媒チューブは、前記冷媒通路間の前記隙間に設けられ、前記蓄冷材を貯留する蓄冷材貯留部を有する。 The regenerative heat exchanger according to the embodiment of the present invention extends along a first direction that intersects the air flow direction, and intersects the air flow direction and the first direction. A pair of refrigerant tanks that are spaced apart from each other in a second direction and that are supplied with refrigerant therein, and a plurality of rows are arranged in the first direction between the pair of refrigerant tanks, and the pair of refrigerant tanks A refrigerant tube for exchanging heat between the refrigerant supplied from the air and the air passing between the pair of refrigerant tanks, provided at a plurality of positions with a predetermined gap along the air flow direction. A refrigerant tube having a refrigerant passage through which a refrigerant supplied from the refrigerant tank passes; and a cold storage material supplied to the refrigerant tube and cooled by air passing between the pair of refrigerant tanks. The said refrigerant | coolant tube is provided in the said clearance gap between the said refrigerant paths, and has a cool storage material storage part which stores the said cool storage material.
 上記構成によれば、冷媒チューブに設けた空気流れ方向に沿って複数箇所設けられた冷媒通路間の隙間に蓄冷材が貯留される蓄冷材貯留部を設けている。これにより、別体の蓄冷器を蓄冷熱交換器の後流側に設けないので、その分、蓄冷熱交換器の空気流れ方向の厚みを増やすことなく空調ユニットへの搭載性を向上することができる。又、別体の蓄冷器を製造して組み込む必要がないので、部品点数が増加することがなく、重量、製造コストの増加を抑制することができる。 According to the above configuration, the cold storage material storage unit for storing the cold storage material is provided in the gaps between the refrigerant passages provided at a plurality of locations along the air flow direction provided in the refrigerant tube. Thereby, since a separate regenerator is not provided on the downstream side of the regenerator heat exchanger, it is possible to improve the mountability to the air conditioning unit without increasing the thickness of the regenerator heat exchanger in the air flow direction. it can. Further, since it is not necessary to manufacture and incorporate a separate regenerator, the number of parts does not increase, and an increase in weight and manufacturing cost can be suppressed.
図1は、本発明の第1実施形態に係る蓄冷熱交換器の全体の斜視図である。FIG. 1 is a perspective view of the entire regenerator heat exchanger according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る蓄冷熱交換器の全体の側面図である。FIG. 2 is a side view of the entire regenerative heat exchanger according to the first embodiment of the present invention. 図3は、図2のIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、本発明の第1実施形態に係る冷媒チューブの斜視図である。FIG. 4 is a perspective view of the refrigerant tube according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る冷媒チューブの平面図である。FIG. 5 is a plan view of the refrigerant tube according to the first embodiment of the present invention. 図6は、本発明の第2実施形態に係る凹部を設けた冷媒チューブの平面図である。FIG. 6 is a plan view of a refrigerant tube provided with a recess according to the second embodiment of the present invention. 図7は、本発明の第2実施形態に係る凹部を設けた冷媒チューブの斜視図である。FIG. 7 is a perspective view of a refrigerant tube provided with a recess according to the second embodiment of the present invention. 図8は、本発明の第3実施形態に係る凹部を設けた冷媒チューブの平面図である。FIG. 8 is a plan view of a refrigerant tube provided with a recess according to the third embodiment of the present invention.
 図1~図5は、本発明の第1実施形態に係る蓄冷熱交換器1を示す。図1は、蓄冷熱交換器1全体の斜視図、図2は、蓄冷熱交換器1の側面図、図3は、図2のIII-III線断面図、図4は、蓄冷熱交換器1の冷媒チューブ3の斜視図、図5は、冷媒チューブ3の平面図である。 1 to 5 show a cold storage heat exchanger 1 according to a first embodiment of the present invention. 1 is a perspective view of the entire regenerator heat exchanger 1, FIG. 2 is a side view of the regenerator heat exchanger 1, FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2, and FIG. FIG. 5 is a plan view of the refrigerant tube 3.
 図1及び図2に示すように、蓄冷熱交換器1は、一対の冷媒タンク2と、一対の冷媒タンク2の間に配置された冷媒チューブ3と、隣接する冷媒チューブ3の間に設けられたフィン4とを備えている。 As shown in FIGS. 1 and 2, the regenerator heat exchanger 1 is provided between a pair of refrigerant tanks 2, a refrigerant tube 3 disposed between the pair of refrigerant tanks 2, and an adjacent refrigerant tube 3. And fins 4 are provided.
 一対の冷媒タンク2は、空気の流れ方向Aに対して交差する方向(第1の方向B)に沿って延設され、空気の流れ方向A及び第1の方向に交差する方向(第2の方向C)において離間して上下に配置されており、内部に冷媒が供給される。 The pair of refrigerant tanks 2 extend along a direction (first direction B) that intersects the air flow direction A, and a direction that intersects the air flow direction A and the first direction (second direction). In the direction C), they are spaced apart from each other and are supplied with refrigerant.
 冷媒チューブ3は、上下一対の冷媒タンク2の間に空気流れ方向Aに対して交差する方向(直交する方向)(第1の方向B)に複数列配列されることにより上下一対の冷媒タンク2を連結している。冷媒チューブ3の内部には、冷媒タンク2から冷媒が供給され、供給された冷媒と冷媒タンク2の間を通過する空気との間で熱交換する。この冷媒チューブ3の内部には蓄冷材(図示省略)が配置される。 The refrigerant tubes 3 are arranged in a plurality of rows in a direction intersecting (orthogonal to) the air flow direction A (first direction B) between the pair of upper and lower refrigerant tanks 2, thereby forming a pair of upper and lower refrigerant tanks 2. Are connected. Inside the refrigerant tube 3, the refrigerant is supplied from the refrigerant tank 2, and heat exchange is performed between the supplied refrigerant and the air passing between the refrigerant tank 2. A regenerator material (not shown) is disposed inside the refrigerant tube 3.
 図3~図5に示すように、冷媒チューブ3は、空気の流れ方向Aに沿って冷媒通路11、12が間隔を有して設けられている。それぞれの冷媒通路11、12は、図4及び図5に示すように、複数の通路部11a、12aを横並び状に設けることにより形成されている。冷媒通路11、12の長さ方向(第2の方向C)の両端部は、開口されることにより冷媒通路開口部11b、12bとなっている。長さ方向の両端部の冷媒通路開口部11b、12bが、上下一対の冷媒タンク2に差し込まれることにより冷媒タンク2からの冷媒が冷媒通路11、12に供給される。 As shown in FIGS. 3 to 5, the refrigerant tube 3 is provided with refrigerant passages 11 and 12 with an interval along the air flow direction A. As shown in FIGS. 4 and 5, each refrigerant passage 11, 12 is formed by providing a plurality of passage portions 11 a, 12 a side by side. Both ends of the refrigerant passages 11 and 12 in the length direction (second direction C) are opened to form refrigerant passage openings 11b and 12b. The refrigerant passage openings 11 b and 12 b at both ends in the length direction are inserted into the pair of upper and lower refrigerant tanks 2, whereby the refrigerant from the refrigerant tank 2 is supplied to the refrigerant passages 11 and 12.
 冷媒通路11、12の間には、蓄冷材が貯留される蓄冷材貯留部13、14が設けられている。蓄冷材貯留部13、14は、横並び状に設けられることにより、冷媒通路11、12の間に空気の流れ方向Aに沿って設けられている。蓄冷材貯留部13、14は、冷媒通路11、12と一体となって冷媒チューブ3に形成されている。このように蓄冷材貯留部13、14が冷媒通路11、12の間に一体に設けられているので、別体の蓄冷器を設ける必要がない。 Between the refrigerant passages 11 and 12, cold storage material storage portions 13 and 14 in which the cold storage material is stored are provided. The cold storage material reservoirs 13 and 14 are provided along the air flow direction A between the refrigerant passages 11 and 12 by being provided side by side. The cold storage material reservoirs 13 and 14 are formed in the refrigerant tube 3 integrally with the refrigerant passages 11 and 12. Thus, since the cool storage material storage parts 13 and 14 are integrally provided between the refrigerant paths 11 and 12, it is not necessary to provide a separate cool storage.
 図3は、冷媒タンク2の内部を示し、冷媒タンク2は、アッパープレート15、ミドルプレート16及びロアプレート17が組み付けられることにより形成されている。アッパープレート15とミドルプレート16との間は、冷媒供給通路20となっている。ミドルプレート16とロアプレート17との間は、蓄冷材が貯留される蓄冷材タンク部19となっている。図3に示すように、蓄冷材貯留部13、14の長さ方向の両端部は、開口されることにより蓄冷材貯留部開口部13b、14bとなっている。蓄冷材貯留部開口部13b、14bが蓄冷材タンク部19に差し込まれることにより、蓄冷材タンク部19内の蓄冷材が蓄冷材貯留部13、14に供給されて貯留される。 FIG. 3 shows the inside of the refrigerant tank 2, and the refrigerant tank 2 is formed by assembling the upper plate 15, the middle plate 16 and the lower plate 17. A refrigerant supply passage 20 is provided between the upper plate 15 and the middle plate 16. Between the middle plate 16 and the lower plate 17 is a cold storage material tank portion 19 in which the cold storage material is stored. As shown in FIG. 3, both end portions in the length direction of the regenerator storage parts 13 and 14 are opened to form regenerator storage part openings 13b and 14b. By inserting the cold storage material storage part openings 13b and 14b into the cold storage material tank part 19, the cold storage material in the cold storage material tank part 19 is supplied to the cold storage material storage parts 13 and 14, and stored.
 ここで、図3に示すように、冷媒供給通路20は冷媒タンク2内部の蓄冷熱交換器1外寄りに設けられ、蓄冷材タンク部19は冷媒タンク2内部の蓄冷熱交換器1内寄りに設けられることにより、冷媒タンク2の内部が二重構造となっている。このような構造では、冷媒通路開口部11b、12bが冷媒タンク2内部の外寄りに位置し、蓄冷材貯留部開口部13b、14bが冷媒タンク2内部の内寄りに位置する。 Here, as shown in FIG. 3, the refrigerant supply passage 20 is provided outside the cold storage heat exchanger 1 inside the refrigerant tank 2, and the cold storage material tank portion 19 is inside the cold storage heat exchanger 1 inside the refrigerant tank 2. By being provided, the inside of the refrigerant tank 2 has a double structure. In such a structure, the refrigerant passage openings 11 b and 12 b are located outside the refrigerant tank 2, and the cool storage material reservoir openings 13 b and 14 b are located inside the refrigerant tank 2.
 アッパープレート15とミドルプレート16との間には、板状の仕切り部材18が掛け渡されている。仕切り部材18によって、冷媒供給通路20が、空気の流れ方向Aに沿って第1冷媒供給通路21と第2冷媒供給通路22とに分離されている。一方の冷媒通路11の長さ方向の両端部の冷媒通路開口部11bが第1冷媒供給通路21に差し込まれることにより、冷媒通路11が第1冷媒供給通路21と連通している。他方の冷媒通路12の長さ方向の両端部の冷媒通路開口部12bが第2冷媒供給通路22に差し込まれることにより、冷媒通路12が第2冷媒供給通路22と連通している。これにより、冷媒供給通路20(21、22)内の冷媒が冷媒通路11、12に供給されて上下一対の冷媒タンク2の間を冷媒が移動する。 A plate-shaped partition member 18 is stretched between the upper plate 15 and the middle plate 16. The partition member 18 separates the refrigerant supply passage 20 into a first refrigerant supply passage 21 and a second refrigerant supply passage 22 along the air flow direction A. The refrigerant passage 11 communicates with the first refrigerant supply passage 21 by inserting the refrigerant passage openings 11 b at both ends in the length direction of the one refrigerant passage 11 into the first refrigerant supply passage 21. The refrigerant passage 12 communicates with the second refrigerant supply passage 22 by inserting the refrigerant passage openings 12 b at both ends in the length direction of the other refrigerant passage 12 into the second refrigerant supply passage 22. Thereby, the refrigerant in the refrigerant supply passage 20 (21, 22) is supplied to the refrigerant passages 11, 12, and the refrigerant moves between the pair of upper and lower refrigerant tanks 2.
 図1及び図5に示すように、フィン4は、連続した波形状に形成されており、隣接する冷媒チューブ3の間に設けられて隣接する冷媒チューブ3の間での伝熱を行う。これにより、フィン4は、空気が冷媒チューブ3の間を通過する際に空気を冷却する。 As shown in FIGS. 1 and 5, the fins 4 are formed in a continuous wave shape, and are provided between the adjacent refrigerant tubes 3 to transfer heat between the adjacent refrigerant tubes 3. Thereby, the fin 4 cools air when the air passes between the refrigerant tubes 3.
 本実施形態では、空気の流れ方向Aに沿って複数配置された冷媒通路11、12の間に蓄冷材が貯留される蓄冷材貯留部13、14が設けられている。このため、アイドリングストップ時において、冷媒の供給が停止しても、蓄冷材貯留部13、14に貯留された蓄冷材によって空気を熱交換して冷風とすることができる。蓄冷材貯留部13、14が冷媒通路11、12の間に設けられているため、別体の蓄冷器を蓄冷熱交換器1の後流側に設ける必要がない。このため、蓄冷熱交換器1の空気流れ方向の厚みを増やすことなく、空調ユニットへの搭載性を向上させることができる。 In this embodiment, cold storage material storage parts 13 and 14 in which a cold storage material is stored are provided between a plurality of refrigerant passages 11 and 12 arranged along the air flow direction A. For this reason, at the time of idling stop, even if supply of a refrigerant | coolant stops, air can be heat-exchanged with the cool storage material stored in the cool storage material storage parts 13 and 14, and it can be set as cold wind. Since the regenerator storage parts 13 and 14 are provided between the refrigerant passages 11 and 12, it is not necessary to provide a separate regenerator on the downstream side of the regenerator heat exchanger 1. For this reason, the mounting property to an air conditioning unit can be improved, without increasing the thickness of the cool storage heat exchanger 1 in the air flow direction.
 又、別体の蓄冷器を設ける必要がないため、部品点数が増加することがなく、重量の増加を抑えることができると共に製造コストを低減させることができる。 Moreover, since it is not necessary to provide a separate regenerator, the number of parts does not increase, an increase in weight can be suppressed, and a manufacturing cost can be reduced.
 又、蓄冷材貯留部13、14が空気の流れ方向Aに沿った冷媒通路11、12の間に設けられていることにより、蓄冷材貯留部13、14も空気の流れAに沿って設けられている。このため、蓄冷材貯留部13、14が空気の流れを遮ることがないため、蓄冷熱交換器1を通過する空気の抵抗が増加することがなく、空調風を効率的に車内に供給することができる。 Further, since the regenerator storage parts 13 and 14 are provided between the refrigerant passages 11 and 12 along the air flow direction A, the regenerator storage parts 13 and 14 are also provided along the air flow A. ing. For this reason, since the cool storage material storage parts 13 and 14 do not block the air flow, the resistance of the air passing through the cool storage heat exchanger 1 does not increase, and the conditioned air is efficiently supplied into the vehicle. Can do.
 又、蓄冷材貯留部13、14と冷媒通路11、12とを冷媒チューブ3に一体に形成している。このため、部品点数を削減することができ、組み立てを容易に行うことができる。 Further, the regenerator storage parts 13 and 14 and the refrigerant passages 11 and 12 are integrally formed in the refrigerant tube 3. For this reason, a number of parts can be reduced and an assembly can be performed easily.
 又、蓄冷材貯留部13、14に蓄冷材を貯留しない場合には、蓄冷熱交換器1を空調ユニットの通常の蒸発器としても使用することができ、アイドリングストップ機能を有していない車両に対してもそのまま用いることができる。 In the case where no regenerator material is stored in the regenerator storage units 13 and 14, the regenerator heat exchanger 1 can be used as a normal evaporator of an air conditioning unit, and the vehicle does not have an idling stop function. It can also be used as it is.
 図6、7は、本発明の第2実施形態に係る蓄冷熱交換器1Aを示す。蓄冷熱交換器1Aにおいては、冷媒チューブ3Aに凹部31が形成されている。凹部31は、それぞれの冷媒チューブ3Aの両方の外面に上下方向(第2の方向C)に沿って形成されている。図6、7に示すように、凹部31は、冷媒チューブ3Aの間に設けられたフィン4とは非接触となるように冷媒チューブ3Aに形成されている。 6 and 7 show a cold storage heat exchanger 1A according to a second embodiment of the present invention. In the cold storage heat exchanger 1A, a recess 31 is formed in the refrigerant tube 3A. The recessed part 31 is formed in the up-down direction (2nd direction C) on both outer surfaces of each refrigerant | coolant tube 3A. As shown in FIGS. 6 and 7, the recess 31 is formed in the refrigerant tube 3 </ b> A so as not to contact the fins 4 provided between the refrigerant tubes 3 </ b> A.
 蓄冷熱交換器1Aにおいて、凹部31は、冷媒チューブ3Aの蓄冷材貯留部13、14の間に形成されており、蓄冷材貯留部13、14の冷却によって冷媒チューブ3A外面に発生した凝縮水を排水するように機能する。これにより排水性が向上する。 In the cold storage heat exchanger 1A, the recess 31 is formed between the cold storage material reservoirs 13 and 14 of the refrigerant tube 3A, and the condensed water generated on the outer surface of the refrigerant tube 3A due to cooling of the cold storage material reservoirs 13 and 14 is obtained. Functions to drain. This improves drainage.
 図8は、本発明の第3実施形態に係る蓄冷熱交換器1Bを示す。蓄冷熱交換器1Bにおいては、冷媒チューブ3Bに凹部31が形成されている。凹部31は、それぞれの冷媒チューブ3Bの両方の外面に上下方向(第2の方向C)に沿って形成されている。図7に示すように、凹部31は、冷媒チューブ3Bの間に設けられたフィン4とは非接触となるように冷媒チューブ3Bに形成されている。 FIG. 8 shows a cold storage heat exchanger 1B according to the third embodiment of the present invention. In the cold storage heat exchanger 1B, a recess 31 is formed in the refrigerant tube 3B. The recessed part 31 is formed in the up-down direction (2nd direction C) on both outer surfaces of each refrigerant | coolant tube 3B. As shown in FIG. 7, the recessed part 31 is formed in the refrigerant | coolant tube 3B so that it may become non-contact with the fin 4 provided between the refrigerant | coolant tubes 3B.
 蓄冷熱交換器1Bにおいて、凹部31は、冷媒チューブ3Bの蓄冷材貯留部13、14の間と、蓄冷材貯留部13、14と隣接する冷媒通路11、12の間に形成されている。これにより蓄冷材貯留部13、14の冷却によって発生した凝縮水及び冷媒通路11、12の冷却によって発生した凝縮水の双方を排水することができる。これにより排水性が向上する。 In the cold storage heat exchanger 1B, the concave portion 31 is formed between the cold storage material storage portions 13 and 14 of the refrigerant tube 3B and between the refrigerant passages 11 and 12 adjacent to the cold storage material storage portions 13 and 14. Thereby, both the condensed water generated by the cooling of the regenerator storage parts 13 and 14 and the condensed water generated by the cooling of the refrigerant passages 11 and 12 can be drained. This improves drainage.
 上述の実施形態では、蓄冷材貯留部13、14を2つ設けているが、その数は単数であっても良く、3以上であっても良い。 In the above-mentioned embodiment, although the two cool storage material storage parts 13 and 14 are provided, the number may be singular and may be three or more.
 このように、本発明は、ここでは記載していない様々な実施形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。 As described above, the present invention naturally includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 特願2013-099470号(出願日:2013年5月9日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2013-099470 (filing date: May 9, 2013) are incorporated herein by reference.

Claims (6)

  1.  それぞれが空気の流れ方向に対して交差する第1の方向に沿って延設され、前記空気の流れ方向及び前記第1の方向に対して交差する第2の方向において離間して上下に配置され、内部に冷媒が供給される一対の冷媒タンクと、
     前記一対の冷媒タンク間に前記第1の方向に複数列配置され、前記一対の冷媒タンクから供給された冷媒と前記一対の冷媒タンク間を通過する空気との間で熱交換する冷媒チューブであって、前記空気流れ方向に沿って所定の隙間を空けて複数箇所設けられ、前記一対の冷媒タンクから供給された冷媒が通過する冷媒通路を有する冷媒チューブと、
     前記冷媒チューブに供給されて、前記一対の冷媒タンク間を通過する空気により冷却される蓄冷材と、
    を備え、
      前記冷媒チューブは、前記冷媒通路間の前記隙間に設けられ、前記蓄冷材を貯留する蓄冷材貯留部を有する
    蓄冷熱交換器。
    Each extends along a first direction that intersects the air flow direction, and is vertically spaced apart in the second direction that intersects the air flow direction and the first direction. A pair of refrigerant tanks in which refrigerant is supplied, and
    A refrigerant tube arranged in a plurality of rows in the first direction between the pair of refrigerant tanks and exchanging heat between the refrigerant supplied from the pair of refrigerant tanks and the air passing between the pair of refrigerant tanks. A refrigerant tube having a refrigerant passage that is provided at a plurality of positions with a predetermined gap along the air flow direction and through which the refrigerant supplied from the pair of refrigerant tanks passes,
    A regenerator material supplied to the refrigerant tube and cooled by air passing between the pair of refrigerant tanks;
    With
    The said refrigerant | coolant tube is a cold storage heat exchanger which is provided in the said clearance gap between the said refrigerant paths, and has the cool storage material storage part which stores the said cool storage material.
  2.  前記冷媒通路と前記蓄冷材貯留部とは、一体に形成された
    請求項1記載の蓄冷熱交換器。
    The cold storage heat exchanger according to claim 1, wherein the refrigerant passage and the cold storage material storage portion are formed integrally.
  3.  前記一対の冷媒タンクのそれぞれは、冷媒供給通路と蓄冷材タンク部とで二重構造に形成され、
     前記冷媒供給通路は、前記冷媒タンク内部の前記蓄冷熱交換器の外寄りに設けられ、前記冷媒チューブの前記冷媒通路と連通し、供給された冷媒を前記冷媒通路内へ供給し、
     前記蓄冷材タンク部は、前記冷媒タンク内部の前記蓄冷熱交換器の内寄りに設けられ、前記蓄冷材貯留部と連通し、前記蓄冷材を貯留する
    請求項1又は請求項2に記載の蓄冷熱交換器。
    Each of the pair of refrigerant tanks is formed in a double structure with a refrigerant supply passage and a cold storage material tank part,
    The refrigerant supply passage is provided outside the cold storage heat exchanger inside the refrigerant tank, communicates with the refrigerant passage of the refrigerant tube, and supplies the supplied refrigerant into the refrigerant passage.
    3. The cold storage according to claim 1, wherein the cold storage material tank unit is provided inward of the cold storage heat exchanger inside the refrigerant tank, communicates with the cold storage material storage unit, and stores the cold storage material. Heat exchanger.
  4.  前記冷媒チューブを複数備え、
     前記第1の方向における前記複数の冷媒チューブのそれぞれの間に設けられたフィンをさらに備え、
      前記冷媒チューブは、前記蓄冷材貯留部の間又は前記蓄冷材貯留部と隣接する前記冷媒通路との間に、前記フィンと非接触状態となる凹部を有する
    請求項3に記載の蓄冷熱交換器。
    A plurality of the refrigerant tubes;
    A fin provided between each of the plurality of refrigerant tubes in the first direction;
    The regenerative heat exchanger according to claim 3, wherein the refrigerant tube has a concave portion that is in a non-contact state with the fins between the regenerator storage part or between the regenerator passage adjacent to the regenerator storage part. .
  5.  前記冷媒チューブは、
      前記冷媒タンク内部の前記蓄冷熱交換器の外寄りに位置し、前記冷媒供給通路と前記冷媒通路とを連通する冷媒通路開口部と、
      前記冷媒タンク内部の前記蓄冷熱交換器の内寄りに位置し、前記蓄冷材タンク部と前記蓄冷材貯留部とを連通する蓄冷材貯留部開口部と、
    を有する
    請求項3又は請求項4に記載の蓄冷熱交換器。
    The refrigerant tube is
    A refrigerant passage opening located outside the regenerator heat exchanger inside the refrigerant tank and communicating the refrigerant supply passage and the refrigerant passage;
    A regenerator storage part opening that is located inward of the regenerator heat exchanger inside the refrigerant tank and communicates the regenerator material tank part and the regenerator storage part,
    The regenerative heat exchanger according to claim 3 or claim 4 having
  6.  前記蓄冷材貯留部を前記空気流れ方向に複数備えた
    請求項1乃至請求項5のいずれか一項に記載の蓄冷熱交換器。
    The cold storage heat exchanger according to any one of claims 1 to 5, comprising a plurality of the cold storage material storage portions in the air flow direction.
PCT/JP2014/061440 2013-05-09 2014-04-23 Cold storage heat exchanger WO2014181687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013099470A JP2014218191A (en) 2013-05-09 2013-05-09 Cold storage heat exchanger
JP2013-099470 2013-05-09

Publications (1)

Publication Number Publication Date
WO2014181687A1 true WO2014181687A1 (en) 2014-11-13

Family

ID=51867169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061440 WO2014181687A1 (en) 2013-05-09 2014-04-23 Cold storage heat exchanger

Country Status (2)

Country Link
JP (1) JP2014218191A (en)
WO (1) WO2014181687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104507A1 (en) * 2016-12-09 2018-06-14 Valeo Systemes Thermiques Thermal device with a tubular heat exchange element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540190B2 (en) * 2015-04-21 2019-07-10 株式会社デンソー Cold storage heat exchanger
JP6428473B2 (en) * 2015-05-12 2018-11-28 株式会社デンソー Cold storage heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202084A (en) * 1985-03-01 1986-09-06 Showa Alum Corp Heat exchanger
JP2004184071A (en) * 2002-11-29 2004-07-02 Valeo Climatisation Thermal-inertia heat exchanger for automobile cooling liquid circuit
JP2008522133A (en) * 2004-11-30 2008-06-26 ヴァレオ システム テルミク Heat exchanger with heat storage function
JP2011133126A (en) * 2009-12-22 2011-07-07 Showa Denko Kk Evaporator with cold storage function
WO2012150768A1 (en) * 2011-05-04 2012-11-08 Halla Climate Control Corp. Cold-storage heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202084A (en) * 1985-03-01 1986-09-06 Showa Alum Corp Heat exchanger
JP2004184071A (en) * 2002-11-29 2004-07-02 Valeo Climatisation Thermal-inertia heat exchanger for automobile cooling liquid circuit
JP2008522133A (en) * 2004-11-30 2008-06-26 ヴァレオ システム テルミク Heat exchanger with heat storage function
JP2011133126A (en) * 2009-12-22 2011-07-07 Showa Denko Kk Evaporator with cold storage function
WO2012150768A1 (en) * 2011-05-04 2012-11-08 Halla Climate Control Corp. Cold-storage heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104507A1 (en) * 2016-12-09 2018-06-14 Valeo Systemes Thermiques Thermal device with a tubular heat exchange element
FR3060104A1 (en) * 2016-12-09 2018-06-15 Valeo Systemes Thermiques THERMAL DEVICE WITH TUBULAR THERMAL EXCHANGE ELEMENT

Also Published As

Publication number Publication date
JP2014218191A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5184314B2 (en) Cooling system
JP6183100B2 (en) Cold storage heat exchanger
US10443955B2 (en) Tube with a reservoir of phase-change material for a heat exchanger
WO2011136047A1 (en) Vehicle interior heat exchanger
US10352599B2 (en) Evaporator
JP2007232287A (en) Heat exchanger and integral type heat exchanger
KR20130096819A (en) Cold reserving heat exchanger
WO2014041771A1 (en) Heat exchanger
WO2014181687A1 (en) Cold storage heat exchanger
US9995513B2 (en) Refrigerant evaporator
JP2010139225A (en) Vehicle air conditioning heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
EP3480545B1 (en) Cold storage evaporator
JP2016176676A (en) Cold storage heat exchanger
KR20110100002A (en) With pcm(phase change material) dual evaporator
JP2017190896A (en) Heat exchanger
JP2014089035A (en) Cold storage heat exchanger
JP2016176678A (en) Cold storage heat exchanger
KR20080026738A (en) Evaporator
US20150040603A1 (en) Assembly Including A Heat Exchanger And A Mounting On Which Said Exchanger Is Mounted
KR101960786B1 (en) Plate type Oil Cooler for Motor Vehicle
JP2015014399A (en) Cold storage heat exchanger
JP6126361B2 (en) Air cooler with cool storage function
JP6327386B2 (en) Cold storage heat exchanger
JP2014148181A (en) Cold-storage heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794362

Country of ref document: EP

Kind code of ref document: A1