WO2011136047A1 - Vehicle interior heat exchanger - Google Patents

Vehicle interior heat exchanger Download PDF

Info

Publication number
WO2011136047A1
WO2011136047A1 PCT/JP2011/059399 JP2011059399W WO2011136047A1 WO 2011136047 A1 WO2011136047 A1 WO 2011136047A1 JP 2011059399 W JP2011059399 W JP 2011059399W WO 2011136047 A1 WO2011136047 A1 WO 2011136047A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigerant flow
header tank
tube
outlet
Prior art date
Application number
PCT/JP2011/059399
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 松元
祐介 飯野
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US13/695,612 priority Critical patent/US20130048260A1/en
Priority to EP11774831.9A priority patent/EP2565571A4/en
Priority to CN2011800213286A priority patent/CN102869942A/en
Publication of WO2011136047A1 publication Critical patent/WO2011136047A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a vehicle interior heat exchanger in a vehicle heat pump device.
  • Patent Document 1 In a heat pump device (air conditioner) for an engine-equipped vehicle, in Patent Document 1, a refrigerant in a gas-liquid mixed state is circulated in one direction intersecting the blowing direction from the inlet side of the evaporator, and then inverted and circulated in the opposite direction. As a counterflow type in which the refrigerant flows out from the outlet side on the same side as the inlet side, the temperature distribution unevenness of the cooling air blown into the vehicle interior is suppressed.
  • the temperature difference between the refrigerant inlet side into which high-temperature and high-pressure gaseous refrigerant flows in and the refrigerant outlet side through which it condenses and flows out low-temperature liquid refrigerant is about 30 ° C. (10% for an evaporator). (Degrees C).
  • the present invention has been made paying attention to such a conventional problem, and while uniformizing the temperature distribution of the heating air from the vehicle interior heat exchanger operated as a condenser, the heat exchanger inlet side and outlet side The purpose is to maintain good thermal efficiency by suppressing heat exchange.
  • the present invention has the first to third inventions, A heat exchanger of a vehicle heat pump device that is disposed in an air passage in a vehicle compartment and functions as at least a condenser, and includes the following configuration common to the first to third aspects of the invention.
  • a pair of tube groups in which a plurality of refrigerant flow tubes are stacked are arranged side by side in the air blowing direction of the air passage so as to face each other.
  • An outlet-side header tank connected with the refrigerant flow tube in communication is disposed.
  • One intermediate header tank is provided on the other axial end side of the refrigerant flow tube, and the refrigerant flow tubes of the pair of tube groups are connected in communication.
  • the inlet-side header tank and the outlet-side header tank are disposed separately and spaced apart from each other.
  • the inlet-side header tank and the outlet-side header tank of the inlet / outlet header tank are integrally formed via a heat insulating layer.
  • the inlet-side header tank and the outlet-side header tank of the inlet / outlet header tank are integrally formed, and the refrigerant inlet and the refrigerant outlet are connected to the refrigerant flow of each tank. It formed in each edge part of the opposite side of a tube lamination direction.
  • the refrigerant introduced from the refrigerant inlet into the inlet side header tank passes through the refrigerant distribution tube of the inlet side tube group into the intermediate header tank, and passes from the intermediate header tank through the refrigerant distribution tube of the outlet side tube group.
  • a counter-flow type refrigerant flow path that reaches the outlet header tank and flows out of the refrigerant outlet is formed.
  • the average temperature of the inlet side tube group and the outlet side tube group in the entire area of the air passage cross section of the heat exchanger is made uniform, so that after passing through the heat exchanger The temperature distribution of the heating air is made uniform.
  • the inlet side header tank and the outlet side header tank are formed separately, and are arrange
  • the heat exchange with the low-temperature refrigerant around the outlet-side header tank is suppressed, and the thermal efficiency can be maintained well.
  • the heat exchange between the high-temperature refrigerant around the inlet-side header tank and the low-temperature refrigerant around the outlet-side header tank can be suppressed by the interposition of the heat insulating layer, and the heat efficiency can be favorably maintained, and By forming both tanks integrally, the strength is improved and the assembly of the heat exchanger is improved.
  • the refrigerant inlet having the highest temperature and the refrigerant outlet having the lowest temperature are formed at the farthest positions between the two tanks, heat exchange between the regions where the temperature difference is large is suppressed.
  • the thermal efficiency can be maintained satisfactorily, and the strength is improved and the assemblability of the heat exchanger is improved by forming both tanks integrally.
  • FIG. 1 shows an outline of a refrigerant circuit in a vehicle heat pump apparatus (air conditioner) provided with a vehicle interior heat exchanger according to the present invention.
  • the air conditioner is connected in parallel to the vehicle interior heat exchanger 1 disposed in the air duct 51 in the vehicle interior, the vehicle exterior heat exchanger 2 disposed outside the vehicle interior, the four-way switching valve 3, and the compressor 4.
  • the expansion valves 5 ⁇ / b> A and 5 ⁇ / b> B and the check valves 6 ⁇ / b> A and 6 ⁇ / b> B are connected by circulation through a refrigerant pipe 7.
  • a fan 52 is provided in the vehicle interior air passage 51, and air in the vehicle interior is blown by the fan 51 and is circulated through the vehicle interior heat exchanger 1 for cooling or heating.
  • the four-way valve 3 is switched to the solid line state shown in the figure, and the refrigerant pressurized by the compressor 4 flows into the vehicle interior heat exchanger 1 through the four-way valve 3 and exchanges heat with the vehicle interior air (heat radiation). ) To be condensed and liquefied.
  • the vehicle interior air is heated by this heat exchange.
  • the heated vehicle interior air is blown into the vehicle interior by the fan 51 to heat the vehicle interior.
  • the liquid refrigerant passes through the check valve 6A and reaches the expansion valve 5B, is decompressed and forms a mist, flows into the vehicle exterior heat exchanger 2, and exchanges heat with the outside air (heat absorption) to vaporize (gasify). After that, the cycle of returning to the suction port of the compressor 4 and pressurizing again is repeated.
  • the refrigerant pressurized by driving the compressor 4 flows into the vehicle exterior heat exchanger 2 via the four-way valve 3 in the illustrated dotted line state, and exchanges heat (radiates heat) with the outside air to form a gas refrigerant. Is condensed and liquefied.
  • the liquid refrigerant passes through the check valve 6B, reaches the expansion valve 5A, is reduced in pressure and forms a mist, and flows into the vehicle interior heat exchanger 1.
  • the cooled passenger compartment air is blown into the passenger compartment by the fan 51 to cool the passenger compartment.
  • the cycle in which the gaseous refrigerant is returned to the suction port of the compressor 4 and pressurized again is repeated.
  • the vehicle interior heat exchanger 1 that operates as a condenser during heating is configured as follows.
  • the heat exchanger 1 operates as a condenser during heating and when it operates as an evaporator during cooling, the refrigerant flow direction is reversed.
  • the refrigerant flow direction when operating as a condenser will be described. .
  • a pair of tube groups 13A and 13B are formed by laminating a plurality of refrigerant flow tubes 11 having a flat passage cross section through corrugated fins 12 in the vertical direction, and the pair of tube groups 13A and 13B are opposed to each other. Two rows are arranged at intervals in the air blowing direction of the air blowing path 1. Each refrigerant circulation tube 11 and corrugated fin 12 are fixed by brazing or the like.
  • Header tanks extending in the stacking direction of the refrigerant flow tubes 11 are disposed on both sides in the tube axial direction of the two rows of tube groups 13A and 13B.
  • the header tank disposed on one side (left side in the figure) of the tube in the axial direction is formed as a separate body with the inlet side header tank 14A and the outlet side header tank 14B, and is disposed with a space therebetween.
  • the inlet-side header tank 14A and the outlet-side header tank 14B have, for example, a plurality of circular pipe members whose upper and lower end surfaces are closed with a lid member and for inserting an end portion of each refrigerant flow tube 11 as described later. It has a shape with holes.
  • each refrigerant flow tube 11 of the tube group 13A on the downstream side in the blowing direction is inserted into a corresponding hole, communicated with the inside of the tank, and fixed by brazing or the like.
  • One end of each refrigerant flow tube 11 of the tube group 13B on the upstream side in the blowing direction is inserted into the corresponding hole in the outlet header tank 14B and communicated with the inside of the tank, and is fixed by brazing or the like.
  • a refrigerant outlet pipe 14b connected to the external downstream refrigerant pipe 7 is connected to the inside of the tank by brazing at the lower end of the outlet header tank 14B.
  • the refrigerant inlet pipe 14a and the refrigerant outlet pipe 14b each have a distal end that hermetically penetrates the passage wall of the air passage 50 in the vehicle interior, and is connected to the external upstream refrigerant pipe 7 and the downstream refrigerant pipe 7 outside the vehicle interior. It is formed as follows.
  • the intermediate header tank 15 disposed on the other axial side of the tube is formed of one tank, and the end portions of all the refrigerant flow tubes 11 of both the tube groups 13A and 13B are connected to each other. They are inserted into correspondingly formed holes, communicated, and fixed by brazing or the like.
  • the flow of the refrigerant when operating as a condenser during heating will be described with reference to FIG.
  • the high-pressure and high-temperature gaseous refrigerant that has flowed into the inlet-side header tank 14A through the refrigerant inlet pipe 14a from the upstream-side refrigerant pipe 7 diffuses in the inlet-side header tank 14A and flows through each refrigerant in the tube group 13A. It passes through the tube 11 into the intermediate header tank 15 on the opposite side.
  • the refrigerant merged in the intermediate header tank 15 turns in the reverse direction, passes through the refrigerant flow tubes 11 of the tube group 13B on the upstream side in the blowing direction, reaches the outlet tank 14B, and flows downstream from the refrigerant outlet pipe 14b. It flows out to the pipe 7.
  • the refrigerant passes through the refrigerant circulation tubes 11 of the two tube groups 13A and 13B as described above, the refrigerant exchanges heat with the blown air that is in contact with the outer surface of each of the tubes 11, and is dissipated. Similarly, heat is exchanged with the corrugated fins 12 that are cooled by the blown air contacting the outer surface, and the heat is dissipated to efficiently cool and condense.
  • the counter flow type refrigerant flow path is condensed in the tube group 13A on the downstream side in the blowing direction in the region near the refrigerant inlet where the high-temperature gaseous refrigerant circulates at a high density and in the tube group 13B on the upstream side in the blowing direction.
  • the temperature difference between the vicinity of the refrigerant inlet and the vicinity of the refrigerant outlet is particularly large.
  • the temperature difference between the entrance and exit due to heat exchange with air is about 10 ° C. (sensible heat change)
  • the vehicle interior heat exchanger 1 is When used as an evaporator, the temperature difference between the entrance and exit is about 10 ° C. (latent heat change).
  • the refrigerant flows in a high-temperature complete gas state on the inlet side, flows out in a low-temperature liquid state that is radiated and condensed on the outlet side, and the inlet / outlet temperature.
  • the difference is about 30 ° C. (latent heat change).
  • the inlet / outlet header tank is formed as a separate body by the inlet side header tank 14A and the outlet side header tank 14B, and is arranged with a gap therebetween.
  • the refrigerant inlet pipe 14a and the refrigerant outlet pipe 14b are connected to the refrigerant pipe 7 outside the passenger compartment, the refrigerant leaks into the passenger compartment even when the connection is loosened or disconnected. Can be avoided.
  • the refrigerant outlet pipe 14b is disposed at the lower end of the outlet tank 14B, the liquid refrigerant and the oil contained in the refrigerant smoothly flow out of the refrigerant outlet pipe 14b and stay in the lower part of the outlet tank 14B. Can be prevented and good thermal efficiency can be maintained.
  • FIGS. 4 and 5 show a second embodiment in which the refrigerant inlet / outlet header tank 21 is integrated.
  • an inlet-side header tank member 21A and an outlet-side header tank member 21B formed of a circular pipe member (also possible by extrusion) are paired with a pair of plates 21C circumscribing these circular sections.
  • 21D is integrated, and the entire outer cross section at the upper and lower ends is integrated as a shape closed with a lid member.
  • Other configurations are the same as those of the first embodiment, and the refrigerant inlet pipe 21a and the refrigerant outlet pipe 21b are connected to corresponding positions of the integrated inlet / outlet header tank 21.
  • the space surrounded by the adjacent wall portions of the inlet side header tank member 21A and the outlet side header tank member 21B, the pair of plates 21C and 21D, and the upper and lower end lid members is an air heat insulating layer. 22 is interposed. Therefore, even in the integrated tank, the heat between the high-temperature gaseous refrigerant in the inlet-side header tank member 21A and the low-temperature liquid refrigerant in the outlet-side header tank member 21B is owing to the air insulation layer 22 interposed. Exchange can be suppressed as much as possible, and thermal efficiency can be maintained well.
  • the strength of the tank is improved, and both the tube groups 13A and 13B are integrated on both sides in the tube axial direction.
  • the strength of the entire heat exchanger 1 is improved.
  • the refrigerant flow tubes 11 of both the tube groups 13A and 13B can be assembled to the inlet header tank member 21A and the outlet header tank member 21B at the same time. Will improve.
  • the inlet / outlet header tank 31 is integrally formed in a box shape having the same outer shape as that of the intermediate header tank 15, and the tank inner space is connected to the inlet side tube group 13 ⁇ / b> A through the partition wall 32.
  • the side header tank 31A and the outlet side header tank 31B to which the outlet side tube group 13B is connected in communication are defined.
  • the refrigerant inlet pipe 31a is connected to the upper end of the inlet side header tank 31A, and the refrigerant outlet pipe 31b is connected to the lower end of the outlet side header tank 31B.
  • the area around the refrigerant inlet pipe 31a is the part immediately after the high-temperature gaseous refrigerant is flown in, so that the area around the refrigerant outlet pipe 31b is the highest.
  • the area around the refrigerant outlet pipe 31b is the refrigerant circulation tube of the tube group 13B.
  • the strength of the tank is improved by integrating it as the inlet / outlet header tank 31, and the heat exchangers are obtained by connecting and supporting the tube groups 13A and 13B to the integrated tanks on both sides in the tube axial direction. 1 that the overall strength is improved, and that the refrigerant flow tubes 11 of both the tube groups 13A and 13B can be simultaneously assembled in the integrated tank, and the manufacturing efficiency of the heat exchanger is improved. This is the same as in the second embodiment.
  • the inlet / outlet header tank 31A and the intermediate header tank 31B are generalized using members having the same outer shape, and the partition wall 32 is formed by connecting separate partition plates, thereby reducing the cost. Reduction can be achieved.
  • the vehicle interior heat exchanger 1 is configured to be switched between the operation of the condenser and the evaporator.
  • the condenser and the evaporator are separately provided in the vehicle interior air passage, and are switched according to the cooling and heating.
  • the configuration according to the present invention can also be applied to the capacitor of the system.
  • corrugated fins instead of the corrugated fins, a configuration in which a plurality of flat fins that penetrate each refrigerant circulation tube are arranged in the vertical direction may be employed.
  • SYMBOLS 1 Vehicle interior heat exchanger, 2 ... Vehicle exterior heat exchanger, 7 ... Refrigerant piping, 11 ... Refrigerant distribution tube, 13A, 13B ... Tube group, 14A ... Inlet side header tank, 14B ... Outlet side header tank, 14a ... Refrigerant inlet pipe, 14b ... refrigerant outlet pipe, 15 ... intermediate header tank, 21A ... inlet side header tank member, 21B ... outlet side header tank member, 21C, 21D ... plate, 21a ... refrigerant inlet pipe, 21b ... refrigerant outlet pipe, 31 ... Inlet / outlet header tank, 31A ... Inlet / outlet header tank, 31a ... Refrigerant inlet pipe, 31b ... Refrigerant outlet pipe, 32 ... Partition wall, 51 ... Air supply path, 52 ... Fan

Abstract

In order to improve the heat efficiency of a heat exchanger which is disposed in a vehicle interior draft passage and operates as a condenser, disclosed is a vehicle interior heat exchanger (1) which functions as a condenser, wherein a pair of tube groups (13A, 13B) each configured by staking a plurality of refrigerant flow tubes (11) are disposed in a draft direction so as to face each other, on one end side in the axial direction of the refrigerant flow tubes (11), an inlet-side header tank (14A) which has a refrigerant inlet pipe (14a) and by which the refrigerant flow tubes (11) of the tube group (13A) communicate and connect with each other and an outlet-side header tank (14B) which has a refrigerant outlet pipe (14b) and by which the refrigerant flow tubes (11) of the tube group (13B) communicate and connect with each other are disposed separately at an interval therebetween, and on the other end side in the axial direction of the refrigerant flow tubes (11), one intermediate header tank (15) by which the refrigerant flow tubes (11) of the pair of tube groups (13A, 13B) communicate and connect with each other is disposed.

Description

車室内熱交換器Car interior heat exchanger
 本発明は、車両用ヒートポンプ装置における車室内熱交換器に関する。 The present invention relates to a vehicle interior heat exchanger in a vehicle heat pump device.
 エンジン搭載車両のヒートポンプ装置(空調装置)において、特許文献1では、気液混合状態の冷媒をエバポレータの入口側から送風方向と交差する一方向に流通させた後、反転させて逆方向に流通させ、入口側と同一側にある出口側からガス状冷媒として流出させるカウンターフロー式として、車室内に送風される冷房空気の温度分布ムラを抑制している。 In a heat pump device (air conditioner) for an engine-equipped vehicle, in Patent Document 1, a refrigerant in a gas-liquid mixed state is circulated in one direction intersecting the blowing direction from the inlet side of the evaporator, and then inverted and circulated in the opposite direction. As a counterflow type in which the refrigerant flows out from the outlet side on the same side as the inlet side, the temperature distribution unevenness of the cooling air blown into the vehicle interior is suppressed.
日本国特許公報;特許第3214318号Japanese Patent Gazette; Japanese Patent No. 3214318
 一方、電気自動車あるいは小型エンジン搭載のハイブリッド車においては、エンジンの排熱を利用したヒータコアによる暖房が困難であるため、ヒートポンプサイクルの車室内熱交換器をコンデンサとして作動させて暖房を行うことが考えられている。 On the other hand, in an electric vehicle or a hybrid vehicle equipped with a small engine, it is difficult to heat with a heater core that uses exhaust heat of the engine, so it is considered to heat by operating the heat exchanger in the heat pump cycle as a condenser. It has been.
 このように車室内熱交換器をコンデンサとして使用する場合も、上記エバポレータで採用されているカウンターフロー式の冷媒流路を採用することは、暖房空気の温度分布ムラを抑制する上で効果的である。 As described above, even when the vehicle interior heat exchanger is used as a condenser, it is effective to use the counter flow type refrigerant flow path adopted in the evaporator to suppress uneven temperature distribution of the heating air. is there.
 しかし、コンデンサとして作動する熱交換器では、高温高圧のガス状冷媒を流入する冷媒入口側と、凝縮して低温な液冷媒を流出する冷媒出口側との温度差が30℃程度(エバポレータでは10℃程度)にも増大する。 However, in a heat exchanger that operates as a condenser, the temperature difference between the refrigerant inlet side into which high-temperature and high-pressure gaseous refrigerant flows in and the refrigerant outlet side through which it condenses and flows out low-temperature liquid refrigerant is about 30 ° C. (10% for an evaporator). (Degrees C).
 このため、かかる高温な冷媒入口側と低温な冷媒出口側との間での熱交換により、熱交換器の効率、ひいてはヒートポンプサイクルの熱効率が低下することが懸念される。
 本発明は、このような従来の課題に着目してなされたもので、コンデンサとして作動される車室内熱交換器からの暖房空気の温度分布を均一化しつつ、熱交換器入口側と出口側との熱交換を抑制して良好な熱効率を維持することを目的とする。
For this reason, there is a concern that the heat exchange between the high temperature refrigerant inlet side and the low temperature refrigerant outlet side may reduce the efficiency of the heat exchanger and thus the heat pump cycle.
The present invention has been made paying attention to such a conventional problem, and while uniformizing the temperature distribution of the heating air from the vehicle interior heat exchanger operated as a condenser, the heat exchanger inlet side and outlet side The purpose is to maintain good thermal efficiency by suppressing heat exchange.
 本発明は、第1~第3の発明を有し、
 車室内の送風路に配設され、少なくともコンデンサとして機能する車両用ヒートポンプ装置の熱交換器であって、第1~第3の発明に共通な以下の構成を備える。
The present invention has the first to third inventions,
A heat exchanger of a vehicle heat pump device that is disposed in an air passage in a vehicle compartment and functions as at least a condenser, and includes the following configuration common to the first to third aspects of the invention.
 複数の冷媒流通チューブを積層した1対のチューブ群を、相互に対向させて前記送風路の送風方向に並べて配設する。
 前記冷媒流通チューブの軸方向一端側に、冷媒入口を有すると共に一方の前記チューブ群の各冷媒流通チューブを連通して接続した入口側ヘッダタンクと、冷媒出口を有すると共に他方の前記チューブ群の各冷媒流通チューブを連通して接続した出口側ヘッダタンクと、が配設される。
A pair of tube groups in which a plurality of refrigerant flow tubes are stacked are arranged side by side in the air blowing direction of the air passage so as to face each other.
An inlet-side header tank having a refrigerant inlet and connected in communication with each refrigerant circulation tube of one of the tube groups on one end side in the axial direction of the refrigerant circulation tube, and each of the other tube group having a refrigerant outlet An outlet-side header tank connected with the refrigerant flow tube in communication is disposed.
 前記冷媒流通チューブの軸方向他端側に、前記一対のチューブ群の各冷媒流通チューブを連通して接続した1個の中間ヘッダタンクが配設される。
 そして、第1の発明では、入口側ヘッダタンクと、出口側ヘッダタンクと、を別体に、かつ、相互に間隔をあけて配設した。
One intermediate header tank is provided on the other axial end side of the refrigerant flow tube, and the refrigerant flow tubes of the pair of tube groups are connected in communication.
In the first invention, the inlet-side header tank and the outlet-side header tank are disposed separately and spaced apart from each other.
 また、第2の発明では、入出側ヘッダタンクの、入口側ヘッダタンクと、出口側ヘッダタンクと、を、断熱層を介して一体に形成した。
 また、第3の発明では、入出側ヘッダタンクの、入口側ヘッダタンクと、出口側ヘッダタンクと、を一体に形成し、かつ、前記冷媒入口と前記冷媒出口とを、前記各タンクの冷媒流通チューブ積層方向の相反する側の各端部に形成した。
In the second invention, the inlet-side header tank and the outlet-side header tank of the inlet / outlet header tank are integrally formed via a heat insulating layer.
In the third invention, the inlet-side header tank and the outlet-side header tank of the inlet / outlet header tank are integrally formed, and the refrigerant inlet and the refrigerant outlet are connected to the refrigerant flow of each tank. It formed in each edge part of the opposite side of a tube lamination direction.
 第1~第3の発明に共通の構成において、
 冷媒入口から入口側ヘッダタンク内に導入した冷媒が、入口側のチューブ群の冷媒流通チューブを通って中間ヘッダタンク内に至り、該中間ヘッダタンクから出口側のチューブ群の冷媒流通チューブを通って出口側ヘッダタンク内に至り、前記冷媒出口から流出するカウンターフロー式の冷媒流路が形成される。
In the configuration common to the first to third inventions,
The refrigerant introduced from the refrigerant inlet into the inlet side header tank passes through the refrigerant distribution tube of the inlet side tube group into the intermediate header tank, and passes from the intermediate header tank through the refrigerant distribution tube of the outlet side tube group. A counter-flow type refrigerant flow path that reaches the outlet header tank and flows out of the refrigerant outlet is formed.
 かかる冷媒流路形態により、熱交換器の送風路断面全領域において入口側チューブ群の温度と出口側チューブ群の温度とを平均した温度が、均一化されるので、熱交換器を通過後の暖房空気の温度分布が均一化される。 With this refrigerant flow path configuration, the average temperature of the inlet side tube group and the outlet side tube group in the entire area of the air passage cross section of the heat exchanger is made uniform, so that after passing through the heat exchanger The temperature distribution of the heating air is made uniform.
 そして、第1の発明では、入口側ヘッダタンクと、出口側ヘッダタンクとが別体で形成され、かつ、相互に間隔をあけて配設されるため、入口側ヘッダタンク周辺の高温な冷媒と、出口側ヘッダタンク周辺の低温な冷媒との熱交換が抑制されて熱効率を良好に維持できる。 And in 1st invention, since the inlet side header tank and the outlet side header tank are formed separately, and are arrange | positioned mutually spaced apart, the high-temperature refrigerant | coolant around the inlet side header tank The heat exchange with the low-temperature refrigerant around the outlet-side header tank is suppressed, and the thermal efficiency can be maintained well.
 また、第2の発明では、断熱層の介在によって入口側ヘッダタンク周辺の高温な冷媒と、出口側ヘッダタンク周辺の低温な冷媒との熱交換が抑制されて熱効率を良好に維持でき、かつ、両タンクを一体に形成することにより強度が向上すると共に、熱交換器の組立性が向上する。 In the second invention, the heat exchange between the high-temperature refrigerant around the inlet-side header tank and the low-temperature refrigerant around the outlet-side header tank can be suppressed by the interposition of the heat insulating layer, and the heat efficiency can be favorably maintained, and By forming both tanks integrally, the strength is improved and the assembly of the heat exchanger is improved.
 また、第3の発明では、最も高温となる冷媒入口と最も低温となる冷媒出口とが両タンク間の最も離れた位置に形成されるため、これら温度差が大きい領域間での熱交換を抑制されて熱効率を良好に維持でき、かつ、両タンクを一体に形成することにより強度が向上すると共に、熱交換器の組立性が向上する。 In the third aspect of the invention, since the refrigerant inlet having the highest temperature and the refrigerant outlet having the lowest temperature are formed at the farthest positions between the two tanks, heat exchange between the regions where the temperature difference is large is suppressed. As a result, the thermal efficiency can be maintained satisfactorily, and the strength is improved and the assemblability of the heat exchanger is improved by forming both tanks integrally.
本発明に係る車室内熱交換器を備えた車両用空調装置における冷媒回路の概要を示す図。The figure which shows the outline | summary of the refrigerant circuit in the vehicle air conditioner provided with the vehicle interior heat exchanger which concerns on this invention. 第1の実施形態にかかる車室内熱交換器の斜視図。The perspective view of the vehicle interior heat exchanger concerning 1st Embodiment. 第1実施形態にかかる車室内熱交換器の要部横断面図。The principal part cross-sectional view of the vehicle interior heat exchanger concerning 1st Embodiment. 第2の実施形態にかかる車室内熱交換器の斜視図。The perspective view of the vehicle interior heat exchanger concerning 2nd Embodiment. 第2実施形態にかかる車室内熱交換器の要部横断面図。The principal part cross-sectional view of the vehicle interior heat exchanger concerning 2nd Embodiment. 第3の実施形態にかかる車室内熱交換器の斜視図。The perspective view of the vehicle interior heat exchanger concerning 3rd Embodiment. 第3実施形態にかかる車室内熱交換器の要部横断面図。The principal part cross-sectional view of the vehicle interior heat exchanger concerning 3rd Embodiment.
 以下に本発明の実施の形態を説明する。
 図1は、本発明に係る車室内熱交換器を備えた車両用ヒートポンプ装置(空調装置)における冷媒回路の概要を示す。
Embodiments of the present invention will be described below.
FIG. 1 shows an outline of a refrigerant circuit in a vehicle heat pump apparatus (air conditioner) provided with a vehicle interior heat exchanger according to the present invention.
 該空調装置は、車室内の送風路51に配設された車室内熱交換器1、車室外に配設された車室外熱交換器2、4方切換弁3、コンプレッサ4、並列接続された膨張弁5A,5B及び逆止弁6A,6Bを、冷媒配管7を介して循環接続して構成される。 The air conditioner is connected in parallel to the vehicle interior heat exchanger 1 disposed in the air duct 51 in the vehicle interior, the vehicle exterior heat exchanger 2 disposed outside the vehicle interior, the four-way switching valve 3, and the compressor 4. The expansion valves 5 </ b> A and 5 </ b> B and the check valves 6 </ b> A and 6 </ b> B are connected by circulation through a refrigerant pipe 7.
 車室内送風路51にはファン52が配設され、車室内空気をファン51によって送風し、車室内熱交換器1を経由して循環させて冷房または暖房を行うようになっている。
 暖房時には、4方弁3が図示実線状態に切換えられ、コンプレッサ4で加圧された冷媒は、4方弁3を介して車室内熱交換器1に流入し、車室内空気と熱交換(放熱)して凝縮液化される。この熱交換によって、車室内空気は加熱される。加熱された車室内空気は、ファン51によって車室内に送風され、車室内を暖房する。
A fan 52 is provided in the vehicle interior air passage 51, and air in the vehicle interior is blown by the fan 51 and is circulated through the vehicle interior heat exchanger 1 for cooling or heating.
During heating, the four-way valve 3 is switched to the solid line state shown in the figure, and the refrigerant pressurized by the compressor 4 flows into the vehicle interior heat exchanger 1 through the four-way valve 3 and exchanges heat with the vehicle interior air (heat radiation). ) To be condensed and liquefied. The vehicle interior air is heated by this heat exchange. The heated vehicle interior air is blown into the vehicle interior by the fan 51 to heat the vehicle interior.
 そして、液冷媒は、逆止弁6Aを通って膨張弁5Bに至り、減圧され霧状となって車室外熱交換器2に流入し、外気と熱交換(吸熱)して気化(ガス化)された後、コンプレッサ4の吸入口に戻されて再度加圧されるサイクルが繰り返される。 Then, the liquid refrigerant passes through the check valve 6A and reaches the expansion valve 5B, is decompressed and forms a mist, flows into the vehicle exterior heat exchanger 2, and exchanges heat with the outside air (heat absorption) to vaporize (gasify). After that, the cycle of returning to the suction port of the compressor 4 and pressurizing again is repeated.
 また、冷房時には、コンプレッサ4の駆動により加圧された冷媒は、図示点線状態にある4方弁3を介して車室外熱交換器2に流入し、外気と熱交換(放熱)してガス冷媒が凝縮液化される。この液冷媒は、逆止弁6Bを通って膨張弁5Aに至り、減圧され霧状となって車室内熱交換器1に流入する。 Further, at the time of cooling, the refrigerant pressurized by driving the compressor 4 flows into the vehicle exterior heat exchanger 2 via the four-way valve 3 in the illustrated dotted line state, and exchanges heat (radiates heat) with the outside air to form a gas refrigerant. Is condensed and liquefied. The liquid refrigerant passes through the check valve 6B, reaches the expansion valve 5A, is reduced in pressure and forms a mist, and flows into the vehicle interior heat exchanger 1.
 霧状の冷媒は車室内空気と熱交換(吸熱)して蒸発してガス状となり、車室内空気を冷却する。冷却された車室内空気は、ファン51によって車室内に送風され、車室内を冷房する。ガス状の冷媒は、コンプレッサ4の吸入口に戻されて再度加圧されるサイクルが繰り返される。 Mist refrigerant exchanges heat (absorbs heat) with the passenger compartment air, evaporates into a gaseous state, and cools the passenger compartment air. The cooled passenger compartment air is blown into the passenger compartment by the fan 51 to cool the passenger compartment. The cycle in which the gaseous refrigerant is returned to the suction port of the compressor 4 and pressurized again is repeated.
 上記のように、暖房時にコンデンサとして作動する車室内熱交換器1が、以下のように構成されている。なお、熱交換器1は、暖房時にコンデンサとして作動するときと、冷房時にエバポレータとして作動するときとで、冷媒流通方向が逆となるが、以下ではコンデンサとして作動するときの冷媒流通方向で説明する。 As described above, the vehicle interior heat exchanger 1 that operates as a condenser during heating is configured as follows. In addition, although the heat exchanger 1 operates as a condenser during heating and when it operates as an evaporator during cooling, the refrigerant flow direction is reversed. Hereinafter, the refrigerant flow direction when operating as a condenser will be described. .
 図2~図4は、車室内熱交換器1の第1の実施形態を示す。
 扁平な通路断面を有する複数の冷媒流通チューブ11を、上下方向にコルゲートフィン12を介して積層した1対のチューブ群13A,13Bが形成され、これら1対のチューブ群13A,13Bを相互に対向させて、送風路1の送風方向に間隔を開けて2列配設されている。各冷媒流通チューブ11とコルゲートフィン12とは、ろう付け等により固定されている。
2 to 4 show a first embodiment of the vehicle interior heat exchanger 1.
A pair of tube groups 13A and 13B are formed by laminating a plurality of refrigerant flow tubes 11 having a flat passage cross section through corrugated fins 12 in the vertical direction, and the pair of tube groups 13A and 13B are opposed to each other. Two rows are arranged at intervals in the air blowing direction of the air blowing path 1. Each refrigerant circulation tube 11 and corrugated fin 12 are fixed by brazing or the like.
 前記2列のチューブ群13A,13Bのチューブ軸方向両側に、冷媒流通チューブ11の積層方向に延びるヘッダタンクが、それぞれ配設されている。
 前記チューブの軸方向一方の側(図示左側)に配設されるヘッダタンクは、入口側ヘッダタンク14Aと出口側ヘッダタンク14Bとで別体に形成され、かつ、相互に間隔をあけて配設されている。入口側ヘッダタンク14A及び出口側ヘッダタンク14Bは、例えば、円形パイプ部材の上下端面を蓋部材で閉塞し、かつ、後述するように、各冷媒流通チューブ11の端部を挿入するための複数の孔を開口した形状を有する。
Header tanks extending in the stacking direction of the refrigerant flow tubes 11 are disposed on both sides in the tube axial direction of the two rows of tube groups 13A and 13B.
The header tank disposed on one side (left side in the figure) of the tube in the axial direction is formed as a separate body with the inlet side header tank 14A and the outlet side header tank 14B, and is disposed with a space therebetween. Has been. The inlet-side header tank 14A and the outlet-side header tank 14B have, for example, a plurality of circular pipe members whose upper and lower end surfaces are closed with a lid member and for inserting an end portion of each refrigerant flow tube 11 as described later. It has a shape with holes.
 入口側ヘッダタンク14Aには、送風方向下流側のチューブ群13Aの各冷媒流通チューブ11の一端部が対応する孔に挿入されてタンク内部と連通され、ろう付け等によって固定されている。 In the inlet side header tank 14A, one end of each refrigerant flow tube 11 of the tube group 13A on the downstream side in the blowing direction is inserted into a corresponding hole, communicated with the inside of the tank, and fixed by brazing or the like.
 入口側ヘッダタンク14Aの上部には、外部の上流側冷媒配管7と接続される冷媒入口管14aがタンク内部と連通してろう付けにより連結されている。
 出口側ヘッダタンク14Bには、送風方向上流側のチューブ群13Bの各冷媒流通チューブ11の一端部が対応する孔に挿入されてタンク内部と連通され、ろう付け等によって固定されている。
A refrigerant inlet pipe 14a connected to the external upstream refrigerant pipe 7 communicates with the inside of the tank and is connected to the upper part of the inlet side header tank 14A by brazing.
One end of each refrigerant flow tube 11 of the tube group 13B on the upstream side in the blowing direction is inserted into the corresponding hole in the outlet header tank 14B and communicated with the inside of the tank, and is fixed by brazing or the like.
 出口側ヘッダタンク14Bの下端部には、外部の下流側冷媒配管7と接続される冷媒出口管14bがタンク内部と連通してろう付けにより連結されている。
 冷媒入口管14a及び冷媒出口管14bは、それぞれ先端部が車室内送風路50の通路壁を気密に貫通し、車室外にて外部の上流側冷媒配管7及び下流側冷媒配管7と接続されるように形成されている。
A refrigerant outlet pipe 14b connected to the external downstream refrigerant pipe 7 is connected to the inside of the tank by brazing at the lower end of the outlet header tank 14B.
The refrigerant inlet pipe 14a and the refrigerant outlet pipe 14b each have a distal end that hermetically penetrates the passage wall of the air passage 50 in the vehicle interior, and is connected to the external upstream refrigerant pipe 7 and the downstream refrigerant pipe 7 outside the vehicle interior. It is formed as follows.
 また、チューブの軸方向他方の側(図示右側)に配設される中間ヘッダタンク15は、1個のタンクで形成され、両チューブ群13A,13Bの全ての冷媒流通チューブ11の端部を、対応して形成された孔内に挿入し、連通させてろう付け等により固定している。 Further, the intermediate header tank 15 disposed on the other axial side of the tube (the right side in the drawing) is formed of one tank, and the end portions of all the refrigerant flow tubes 11 of both the tube groups 13A and 13B are connected to each other. They are inserted into correspondingly formed holes, communicated, and fixed by brazing or the like.
 このように構成された車室内熱交換器1において、暖房時にコンデンサとして作動するときの冷媒の流れを、図3を参照して説明する。
 上流側の冷媒配管7から冷媒入口管14aを介して入口側ヘッダタンク14A内に流入した高圧・高温のガス状冷媒は、該入口側ヘッダタンク14A内を拡散しつつチューブ群13Aの各冷媒流通チューブ11を通って反対側の中間ヘッダタンク15内に至る。
In the vehicle interior heat exchanger 1 configured as described above, the flow of the refrigerant when operating as a condenser during heating will be described with reference to FIG.
The high-pressure and high-temperature gaseous refrigerant that has flowed into the inlet-side header tank 14A through the refrigerant inlet pipe 14a from the upstream-side refrigerant pipe 7 diffuses in the inlet-side header tank 14A and flows through each refrigerant in the tube group 13A. It passes through the tube 11 into the intermediate header tank 15 on the opposite side.
 中間ヘッダタンク15内で合流した冷媒は、逆方向にターンし、送風方向上流側のチューブ群13Bの各冷媒流通チューブ11を通って出口タンク14B内に至り、冷媒出口管14bから下流側の冷媒配管7へ流出する。 The refrigerant merged in the intermediate header tank 15 turns in the reverse direction, passes through the refrigerant flow tubes 11 of the tube group 13B on the upstream side in the blowing direction, reaches the outlet tank 14B, and flows downstream from the refrigerant outlet pipe 14b. It flows out to the pipe 7.
 冷媒は、上記のように2つのチューブ群13A,13Bの各冷媒流通チューブ11を通る間に、これら各チューブ11の外表面に接触しつつ流通する送風空気と熱交換して放熱されると共に、同じく外表面に接触する送風空気によって冷却されるコルゲートフィン12と熱交換して放熱されることにより、効率よく冷却されて凝縮液化される。 While the refrigerant passes through the refrigerant circulation tubes 11 of the two tube groups 13A and 13B as described above, the refrigerant exchanges heat with the blown air that is in contact with the outer surface of each of the tubes 11, and is dissipated. Similarly, heat is exchanged with the corrugated fins 12 that are cooled by the blown air contacting the outer surface, and the heat is dissipated to efficiently cool and condense.
 そして、かかるカウンターフロー式の冷媒流路により、送風方向下流側のチューブ群13Aにおいて高温なガス状冷媒が高密度で流通する冷媒入口に近い領域と、送風方向上流側のチューブ群13Bにおいて凝縮された低温な液冷媒が流通する冷媒出口に近い領域とが、送風方向に重なり合う。 The counter flow type refrigerant flow path is condensed in the tube group 13A on the downstream side in the blowing direction in the region near the refrigerant inlet where the high-temperature gaseous refrigerant circulates at a high density and in the tube group 13B on the upstream side in the blowing direction. A region close to the refrigerant outlet through which the low-temperature liquid refrigerant flows overlaps in the blowing direction.
 一方、反対側の中間ヘッダタンク15に近づくほど送風方向下流側及び上流側の各チューブ群13A,13Bを流通する冷媒温度(又は気液割合)の差が縮小する。
 即ち、送風路断面の全領域において、送風方向下流側チューブ群13Aの冷媒温度(気液割合)と上流側チューブ群13Bの冷媒温度(気液割合)との平均値(平均温度又は平均気液割合)が均一化される。これにより、車室内熱交換器1を通過して熱交換しつつ車室内へ送風される暖房空気の温度が均一化され、快適な暖房を行うことができる。
On the other hand, the closer to the opposite intermediate header tank 15, the smaller the difference in refrigerant temperature (or gas-liquid ratio) flowing through the tube groups 13A, 13B on the downstream side and upstream side in the blowing direction.
That is, in the entire area of the air passage cross section, the average value (average temperature or average gas-liquid) of the refrigerant temperature (gas-liquid ratio) of the downstream tube group 13A in the blowing direction and the refrigerant temperature (gas-liquid ratio) of the upstream tube group 13B. Ratio) is made uniform. Thereby, the temperature of the heating air blown into the passenger compartment while exchanging heat through the passenger compartment heat exchanger 1 is made uniform, and comfortable heating can be performed.
 ところで、コンデンサとして作動する車室内熱交換器1では、既述したように冷媒入口周辺と、冷媒出口周辺との温度差が特に大きい。
 例えば、エンジン冷却水を用いたヒータコアによる車室内暖房の場合、空気との熱交換による出入口温度差は10℃程度(顕熱変化)であり、また、車室内熱交換器1を冷房時にエバポレータ(エバポレータ)として使用する場合も、出入口温度差は10℃程度(潜熱変化)である。
By the way, in the vehicle interior heat exchanger 1 operating as a condenser, as described above, the temperature difference between the vicinity of the refrigerant inlet and the vicinity of the refrigerant outlet is particularly large.
For example, in the case of vehicle interior heating with a heater core using engine coolant, the temperature difference between the entrance and exit due to heat exchange with air is about 10 ° C. (sensible heat change), and the vehicle interior heat exchanger 1 is When used as an evaporator, the temperature difference between the entrance and exit is about 10 ° C. (latent heat change).
 これに対し、車室内熱交換器1をコンデンサとして作動させる場合、冷媒は、入口側では高温な完全ガス状態で流入し、出口側では放熱されて凝縮した低温な液状態で流出し、出入口温度差は30℃程度(潜熱変化)にもなってしまう。 On the other hand, when the vehicle interior heat exchanger 1 is operated as a condenser, the refrigerant flows in a high-temperature complete gas state on the inlet side, flows out in a low-temperature liquid state that is radiated and condensed on the outlet side, and the inlet / outlet temperature. The difference is about 30 ° C. (latent heat change).
 このように温度差が大きい入口側と出口側とで熱交換が行われると、出口側の液化した低温な冷媒が入口側の高温なガス状冷媒によって再加熱され、熱交換効率が低下してしまう。 When heat exchange is performed between the inlet side and the outlet side having a large temperature difference in this way, the liquefied low-temperature refrigerant on the outlet side is reheated by the high-temperature gaseous refrigerant on the inlet side, and the heat exchange efficiency decreases. End up.
 そこで、本第1の実施形態では、入出側ヘッダタンクを、入口側ヘッダタンク14Aと出口側ヘッダタンク14Bとで別体に形成し、間隔を開けて配設した。
 これにより、入口側ヘッダタンク14A内の高温なガス状冷媒と、出口側ヘッダタンク14B内の冷却された低温な液冷媒との間での熱交換を効果的に抑制でき、熱効率の低下を十分に抑制できる。
Therefore, in the first embodiment, the inlet / outlet header tank is formed as a separate body by the inlet side header tank 14A and the outlet side header tank 14B, and is arranged with a gap therebetween.
As a result, heat exchange between the high-temperature gaseous refrigerant in the inlet-side header tank 14A and the cooled low-temperature liquid refrigerant in the outlet-side header tank 14B can be effectively suppressed, and a sufficient reduction in thermal efficiency can be achieved. Can be suppressed.
 また、冷媒入口管14a及び冷媒出口管14bを、車室外で冷媒配管7と接続する構成としたため、該接続の緩み、外れ等の事態を生じた場合でも、冷媒が車室内に漏出して乗員に影響を及ぼすことを回避できる。 In addition, since the refrigerant inlet pipe 14a and the refrigerant outlet pipe 14b are connected to the refrigerant pipe 7 outside the passenger compartment, the refrigerant leaks into the passenger compartment even when the connection is loosened or disconnected. Can be avoided.
 また、冷媒出口管14bを出口タンク14Bの下端部に配設したため、液冷媒及び冷媒中に含有させたオイルが、スムーズに冷媒出口管14bから流出し、出口タンク14Bの下部に滞留することを防止でき、良好な熱効率を維持できる。 Further, since the refrigerant outlet pipe 14b is disposed at the lower end of the outlet tank 14B, the liquid refrigerant and the oil contained in the refrigerant smoothly flow out of the refrigerant outlet pipe 14b and stay in the lower part of the outlet tank 14B. Can be prevented and good thermal efficiency can be maintained.
 図4及び図5は、第2の実施形態を示し、冷媒の入出側ヘッダタンク21を一体化したものである。
 第1の実施形態同様、円形パイプ部材(押し出しによる成形でも可能)で形成された入口側ヘッダタンク部材21Aと出口側ヘッダタンク部材21Bを、これらの円形断面相互に外接する1対のプレート21C、21Dで連結し、上下端の外形断面全体を蓋部材で閉塞した形状として一体化する。その他の構成は、第1の実施形態と同様であり、冷媒入口管21a及び冷媒出口管21bは、一体化された入出側ヘッダタンク21の対応する位置に接続される。
4 and 5 show a second embodiment in which the refrigerant inlet / outlet header tank 21 is integrated.
As in the first embodiment, an inlet-side header tank member 21A and an outlet-side header tank member 21B formed of a circular pipe member (also possible by extrusion) are paired with a pair of plates 21C circumscribing these circular sections. 21D is integrated, and the entire outer cross section at the upper and lower ends is integrated as a shape closed with a lid member. Other configurations are the same as those of the first embodiment, and the refrigerant inlet pipe 21a and the refrigerant outlet pipe 21b are connected to corresponding positions of the integrated inlet / outlet header tank 21.
 このように一体化すると、入口側ヘッダタンク部材21A及び出口側ヘッダタンク部材21Bの隣接する壁部と、1対のプレート21C、21Dと、上下端の蓋部材とで囲まれる空間が空気断熱層22として介在する。したがって、一体化したタンクにおいても、この空気断熱層22の介在によって、入口側ヘッダタンク部材21A内の高温なガス状冷媒と出口側ヘッダタンク部材21B内の低温な液冷媒との間での熱交換を極力抑制することができ、熱効率を良好に維持できる。 When integrated in this way, the space surrounded by the adjacent wall portions of the inlet side header tank member 21A and the outlet side header tank member 21B, the pair of plates 21C and 21D, and the upper and lower end lid members is an air heat insulating layer. 22 is interposed. Therefore, even in the integrated tank, the heat between the high-temperature gaseous refrigerant in the inlet-side header tank member 21A and the low-temperature liquid refrigerant in the outlet-side header tank member 21B is owing to the air insulation layer 22 interposed. Exchange can be suppressed as much as possible, and thermal efficiency can be maintained well.
 また、入口側ヘッダタンクと出口側ヘッダタンクを、入出側ヘッダタンク21として一体化することによりタンクの強度が向上すると共に、両チューブ群13A、13Bがチューブ軸方向の両側でそれぞれ一体化されたタンクに連結支持されることにより、熱交換器1全体の強度が向上する。 Further, by integrating the inlet side header tank and the outlet side header tank as the inlet / outlet header tank 21, the strength of the tank is improved, and both the tube groups 13A and 13B are integrated on both sides in the tube axial direction. By connecting and supporting the tank, the strength of the entire heat exchanger 1 is improved.
 また、タンクを一体化したことにより、両チューブ群13A,13Bの冷媒流通チューブ11を入口側ヘッダタンク部材21A及び出口側ヘッダタンク部材21Bに同時に組み付けることが可能となって熱交換器の製造効率が向上する。 Further, by integrating the tanks, the refrigerant flow tubes 11 of both the tube groups 13A and 13B can be assembled to the inlet header tank member 21A and the outlet header tank member 21B at the same time. Will improve.
 図6及び図7は、第3の実施形態を示し、冷媒の入出口側ヘッダタンクを一体化した別の形態でを示す。
 入出口側ヘッダタンク31は、中間ヘッダタンク15と同様の外形を有する箱型に一体化して形成され、タンク内部空間が仕切壁32により、入口側のチューブ群13Aが連通して接続される入口側ヘッダタンク31Aと、出口側のチューブ群13Bが連通して接続される出口側ヘッダタンク31Bとに画成されている。
6 and 7 show the third embodiment, and show another embodiment in which the refrigerant inlet / outlet header tank is integrated.
The inlet / outlet header tank 31 is integrally formed in a box shape having the same outer shape as that of the intermediate header tank 15, and the tank inner space is connected to the inlet side tube group 13 </ b> A through the partition wall 32. The side header tank 31A and the outlet side header tank 31B to which the outlet side tube group 13B is connected in communication are defined.
 ここで、入口側ヘッダタンク31Aの上端部に冷媒入口管31aが連結されると共に、出口側ヘッダタンク31Bの下端部に冷媒出口管31bが連結される。
 ここで、冷媒入口管31a周辺の領域は、高温なガス状冷媒が流入される直後の部分であるから最も高温となり、一方、冷媒出口管31b周辺の領域は、チューブ群13Bの各冷媒流通チューブ11から冷却された液冷媒が流出して合流することにより最も低温となる。
Here, the refrigerant inlet pipe 31a is connected to the upper end of the inlet side header tank 31A, and the refrigerant outlet pipe 31b is connected to the lower end of the outlet side header tank 31B.
Here, the area around the refrigerant inlet pipe 31a is the part immediately after the high-temperature gaseous refrigerant is flown in, so that the area around the refrigerant outlet pipe 31b is the highest. On the other hand, the area around the refrigerant outlet pipe 31b is the refrigerant circulation tube of the tube group 13B. When the liquid refrigerant cooled from 11 flows out and joins, it becomes the lowest temperature.
 そして、冷媒入口管31aと冷媒出口管31bを、入出側ヘッダタンク31の最も離れた対角位置に配置したことにより、上記のように熱交換器の中で最も高温となる領域と最も低温となる領域とを、可能な限り遠ざけることができる。したがって、これら高温領域と低温領域間での熱交換が抑制され、良好な熱効率を維持できる。 And by arrange | positioning the refrigerant | coolant inlet pipe 31a and the refrigerant | coolant outlet pipe | tube 31b in the farthest diagonal position of the inlet / outlet side header tank 31, as mentioned above, the area | region which becomes the highest temperature in a heat exchanger, and the lowest temperature. Can be as far away as possible. Therefore, heat exchange between the high temperature region and the low temperature region is suppressed, and good thermal efficiency can be maintained.
 また、入出側ヘッダタンク31として一体化することによりタンクの強度が向上すること、両チューブ群13A、13Bがチューブ軸方向の両側でそれぞれ一体化されたタンクに連結支持されることにより熱交換器1全体の強度が向上すること、及び、両チューブ群13A,13Bの冷媒流通チューブ11をそれぞれ一体化されたタンクに同時に組み付けることが可能となって熱交換器の製造効率が向上することは、第2の実施形態と同様である。 Moreover, the strength of the tank is improved by integrating it as the inlet / outlet header tank 31, and the heat exchangers are obtained by connecting and supporting the tube groups 13A and 13B to the integrated tanks on both sides in the tube axial direction. 1 that the overall strength is improved, and that the refrigerant flow tubes 11 of both the tube groups 13A and 13B can be simultaneously assembled in the integrated tank, and the manufacturing efficiency of the heat exchanger is improved. This is the same as in the second embodiment.
 さらに、例えば、入出口側ヘッダタンク31Aと中間ヘッダタンク31Bとを、同様の外形を有した部材を用いて汎用化し、別体の仕切り板を連結して仕切壁32を形成することにより、コスト低減を図れる。 In addition, for example, the inlet / outlet header tank 31A and the intermediate header tank 31B are generalized using members having the same outer shape, and the partition wall 32 is formed by connecting separate partition plates, thereby reducing the cost. Reduction can be achieved.
 以上示した実施形態では、車室内熱交換器1をコンデンサとエバポレータとに作動を切換えられる構成としたが、コンデンサとエバポレータとを車室内送風路に別個に備え、冷暖房に応じて切換える構成としたシステムのコンデンサに本発明にかかる構成を適用することもできる。 In the embodiment described above, the vehicle interior heat exchanger 1 is configured to be switched between the operation of the condenser and the evaporator. However, the condenser and the evaporator are separately provided in the vehicle interior air passage, and are switched according to the cooling and heating. The configuration according to the present invention can also be applied to the capacitor of the system.
 また、コルゲートフィンの代わりに、各冷媒流通チューブを貫通させる平板状フィンを上下方向に多数列配設した構成であってもよい。 Further, instead of the corrugated fins, a configuration in which a plurality of flat fins that penetrate each refrigerant circulation tube are arranged in the vertical direction may be employed.
 1…車室内熱交換器、2…車室外熱交換器、7…冷媒配管、11…冷媒流通チューブ、13A,13B…チューブ群、14A…入口側ヘッダタンク、14B…出口側ヘッダタンク、14a…冷媒入口管、14b…冷媒出口管、15…中間ヘッダタンク、21A…入口側ヘッダタンク部材、21B…出口側ヘッダタンク部材、21C,21D…プレート、21a…冷媒入口管、21b…冷媒出口管、31…入出口側ヘッダタンク、31A…入出口側ヘッダタンク、31a…冷媒入口管、31b…冷媒出口管、32…仕切壁、51…送風路、52…ファン
 
DESCRIPTION OF SYMBOLS 1 ... Vehicle interior heat exchanger, 2 ... Vehicle exterior heat exchanger, 7 ... Refrigerant piping, 11 ... Refrigerant distribution tube, 13A, 13B ... Tube group, 14A ... Inlet side header tank, 14B ... Outlet side header tank, 14a ... Refrigerant inlet pipe, 14b ... refrigerant outlet pipe, 15 ... intermediate header tank, 21A ... inlet side header tank member, 21B ... outlet side header tank member, 21C, 21D ... plate, 21a ... refrigerant inlet pipe, 21b ... refrigerant outlet pipe, 31 ... Inlet / outlet header tank, 31A ... Inlet / outlet header tank, 31a ... Refrigerant inlet pipe, 31b ... Refrigerant outlet pipe, 32 ... Partition wall, 51 ... Air supply path, 52 ... Fan

Claims (5)

  1.  車室内の送風路に配設され、少なくともコンデンサとして機能する車両用ヒートポンプ装置の熱交換器であって、
     複数の冷媒流通チューブを積層した1対のチューブ群を、相互に対向させて前記送風路の送風方向に並べて配設し、
     前記冷媒流通チューブの軸方向一端側に、
     冷媒入口を有すると共に一方の前記チューブ群の各冷媒流通チューブを連通して接続した入口側ヘッダタンクと、
     冷媒出口を有すると共に他方の前記チューブ群の各冷媒流通チューブを連通して接続した出口側ヘッダタンクと、
    を別体に、かつ、相互に間隔をあけて配設し、
     前記冷媒流通チューブの軸方向他端側に、前記一対のチューブ群の各冷媒流通チューブを連通して接続した1個の中間ヘッダタンクを配設したこと
    を特徴とする車室内熱交換器。
    It is a heat exchanger of a vehicle heat pump device that is disposed in an air passage in a vehicle compartment and functions as at least a condenser,
    A pair of tube groups in which a plurality of refrigerant flow tubes are stacked are arranged side by side in the air blowing direction of the air passage, facing each other,
    On one end side in the axial direction of the refrigerant flow tube,
    An inlet-side header tank having a refrigerant inlet and connected in communication with each refrigerant flow tube of one of the tube groups;
    An outlet-side header tank having a refrigerant outlet and communicating and connecting each refrigerant flow tube of the other tube group;
    Are arranged separately and spaced apart from each other,
    A vehicle interior heat exchanger characterized in that one intermediate header tank in which the refrigerant flow tubes of the pair of tube groups are connected in communication is disposed on the other axial end of the refrigerant flow tube.
  2.  車室内の送風路に配設され、少なくともコンデンサとして機能する車両用ヒートポンプ装置の熱交換器であって、
     複数の冷媒流通チューブを積層した1対のチューブ群を、相互に対向させて前記送風路の送風方向に並べて配設し、
     前記冷媒流通チューブの軸方向一端側に、
     冷媒入口を有すると共に一方の前記チューブ群の各冷媒流通チューブを連通して接続した入口側ヘッダタンクと、
     冷媒出口を有すると共に他方の前記チューブ群の各冷媒流通チューブを連通して接続した出口側ヘッダタンクと、
    を、断熱層を介して一体に配設し、
     前記冷媒流通チューブの軸方向他端側に、前記一対のチューブ群の各冷媒流通チューブを連通して接続した1個の中間ヘッダタンクを配設したこと
    を特徴とする車室内熱交換器。
    It is a heat exchanger of a vehicle heat pump device that is disposed in an air passage in a vehicle compartment and functions as at least a condenser,
    A pair of tube groups in which a plurality of refrigerant flow tubes are stacked are arranged side by side in the air blowing direction of the air passage, facing each other,
    On one end side in the axial direction of the refrigerant flow tube,
    An inlet-side header tank having a refrigerant inlet and connected in communication with each refrigerant flow tube of one of the tube groups;
    An outlet-side header tank having a refrigerant outlet and communicating and connecting each refrigerant flow tube of the other tube group;
    Are integrally disposed through a heat insulating layer,
    A vehicle interior heat exchanger characterized in that one intermediate header tank in which the refrigerant flow tubes of the pair of tube groups are connected in communication is disposed on the other axial end of the refrigerant flow tube.
  3.  車室内の送風路に配設され、少なくともコンデンサとして機能する車両用ヒートポンプ装置の熱交換器であって、
     複数の冷媒流通チューブを積層した1対のチューブ群を、相互に対向させて前記送風路の送風方向に並べて配設し、
     前記冷媒流通チューブの軸方向一端側に、
     冷媒入口を有すると共に一方の前記チューブ群の各冷媒流通チューブを連通して接続した入口側ヘッダタンクと、
     冷媒出口を有すると共に他方の前記チューブ群の各冷媒流通チューブを連通して接続した出口側ヘッダタンクと、
    を、一体に配設し、
     かつ、前記冷媒入口と前記冷媒出口とを、前記各タンクの前記冷媒流通チューブ積層方向の相反する側の各端部に形成し、
     前記冷媒流通チューブの軸方向他端側に、前記一対のチューブ群の各冷媒流通チューブを連通して接続した1個の中間ヘッダタンクを配設したこと
    を特徴とする車室内熱交換器。
    It is a heat exchanger of a vehicle heat pump device that is disposed in an air passage in a vehicle compartment and functions as at least a condenser,
    A pair of tube groups in which a plurality of refrigerant flow tubes are stacked are arranged side by side in the air blowing direction of the air passage, facing each other,
    On one end side in the axial direction of the refrigerant flow tube,
    An inlet-side header tank having a refrigerant inlet and connected in communication with each refrigerant flow tube of one of the tube groups;
    An outlet-side header tank having a refrigerant outlet and communicating and connecting each refrigerant flow tube of the other tube group;
    Are integrally arranged,
    And, the refrigerant inlet and the refrigerant outlet are formed at each end portion of each tank on the opposite side in the refrigerant flow tube stacking direction,
    A vehicle interior heat exchanger characterized in that one intermediate header tank in which the refrigerant flow tubes of the pair of tube groups are connected in communication is disposed on the other axial end of the refrigerant flow tube.
  4.  前記複数の冷媒流通チューブは上下方向に配設され、前記冷媒出口は、前記出口側ヘッダタンクの下端部に配設された請求項1~請求項3のいずれか1つに記載の車室内熱交換器。 The vehicle interior heat according to any one of claims 1 to 3, wherein the plurality of refrigerant flow tubes are arranged in a vertical direction, and the refrigerant outlet is arranged at a lower end portion of the outlet header tank. Exchanger.
  5.  前記冷媒入口及び前記冷媒出口は、外部の冷媒配管と車室外で接続される請求項1~請求項3のいずれか1つに記載の車室内熱交換器。 The vehicle interior heat exchanger according to any one of claims 1 to 3, wherein the refrigerant inlet and the refrigerant outlet are connected to an external refrigerant pipe outside the vehicle compartment.
PCT/JP2011/059399 2010-04-28 2011-04-15 Vehicle interior heat exchanger WO2011136047A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/695,612 US20130048260A1 (en) 2010-04-28 2011-04-15 Vehicle Interior Heat Exchanger
EP11774831.9A EP2565571A4 (en) 2010-04-28 2011-04-15 Vehicle interior heat exchanger
CN2011800213286A CN102869942A (en) 2010-04-28 2011-04-15 Vehicle interior heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010102876A JP2011230655A (en) 2010-04-28 2010-04-28 Vehicle interior heat exchanger
JP2010-102876 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136047A1 true WO2011136047A1 (en) 2011-11-03

Family

ID=44861355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059399 WO2011136047A1 (en) 2010-04-28 2011-04-15 Vehicle interior heat exchanger

Country Status (5)

Country Link
US (1) US20130048260A1 (en)
EP (1) EP2565571A4 (en)
JP (1) JP2011230655A (en)
CN (1) CN102869942A (en)
WO (1) WO2011136047A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069571A1 (en) * 2011-11-07 2013-05-16 サンデン株式会社 In-chamber condenser
CN104303001A (en) * 2012-05-18 2015-01-21 摩丁制造公司 Heat exchanger, and method for transferring heat
WO2020129496A1 (en) * 2018-12-21 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 Condenser and air conditioning device for vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055735A (en) * 2012-09-13 2014-03-27 Denso Corp Refrigerant radiator
JP2015055409A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger and air conditioner
GB2521113B (en) * 2013-10-11 2017-05-24 Reaction Engines Ltd Heat exchangers
US11162424B2 (en) 2013-10-11 2021-11-02 Reaction Engines Ltd Heat exchangers
DE102017114993A1 (en) 2016-07-27 2018-02-01 Hanon Systems Heat transfer device and method of operating the device
EP3514812B1 (en) * 2016-09-13 2022-09-21 Mitsubishi Electric Corporation Transformer for vehicle
JP6711317B2 (en) 2017-06-13 2020-06-17 株式会社デンソー Heat exchanger
JP2020152158A (en) * 2019-03-18 2020-09-24 サンデンホールディングス株式会社 Temperature regulator
CN112880432A (en) * 2021-02-02 2021-06-01 格力电器(武汉)有限公司 Heat exchange tube assembly, micro-channel heat exchanger, air conditioning system and heat exchanger design method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126592A (en) * 1995-10-31 1997-05-16 Denso Corp Outdoor heat exchanger for heat pump type refrigerating cycle
JPH10288476A (en) * 1997-04-10 1998-10-27 Sanden Corp Heat-exchanger
WO2003040640A1 (en) * 2001-11-08 2003-05-15 Zexel Valeo Climate Control Corporation Heat exchanger and tube for heat exchanger
JP2004190955A (en) * 2002-12-11 2004-07-08 Calsonic Kansei Corp Condenser
JP2005077010A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Mount structure of heat exchanger on car body
JP2008304109A (en) * 2007-06-06 2008-12-18 Calsonic Kansei Corp Heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257767A1 (en) * 2002-12-10 2004-06-24 Behr Gmbh & Co. Kg Heat exchanger for condenser or gas cooler for air conditioning installations has two rows of channels for coolant with manifolds at ends and has ribs over which air can flow
JP4089567B2 (en) * 2003-09-16 2008-05-28 株式会社デンソー Heat exchanger module for cooling
WO2006073136A1 (en) * 2005-01-07 2006-07-13 Valeo Thermal Systems Japan Corporation Heat exchanger
JP4667134B2 (en) * 2005-06-22 2011-04-06 サンデン株式会社 Air conditioner for vehicles
FR2890730B1 (en) * 2005-09-13 2007-10-19 Valeo Systemes Thermiques FLAT TUBE CIRCUIT ELEMENT, AND HEAT EXCHANGER WITH SUCH ELEMENTS
US8701750B2 (en) * 2007-11-09 2014-04-22 Halla Visteon Climate Control Corporation Heat exchanger
WO2010027533A1 (en) * 2008-09-08 2010-03-11 Carrier Corporation Microchannel heat exchanger module design to reduce water entrapment
US8997503B2 (en) * 2010-01-15 2015-04-07 Mitsubishi Heavy Industries, Ltd. Vehicle air-conditioning system and operation control method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126592A (en) * 1995-10-31 1997-05-16 Denso Corp Outdoor heat exchanger for heat pump type refrigerating cycle
JP3214318B2 (en) 1995-10-31 2001-10-02 株式会社デンソー Outdoor heat exchanger for heat pump refrigeration cycle
JPH10288476A (en) * 1997-04-10 1998-10-27 Sanden Corp Heat-exchanger
WO2003040640A1 (en) * 2001-11-08 2003-05-15 Zexel Valeo Climate Control Corporation Heat exchanger and tube for heat exchanger
JP2004190955A (en) * 2002-12-11 2004-07-08 Calsonic Kansei Corp Condenser
JP2005077010A (en) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd Mount structure of heat exchanger on car body
JP2008304109A (en) * 2007-06-06 2008-12-18 Calsonic Kansei Corp Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565571A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069571A1 (en) * 2011-11-07 2013-05-16 サンデン株式会社 In-chamber condenser
JP2013100924A (en) * 2011-11-07 2013-05-23 Sanden Corp In-chamber condenser
US20140305158A1 (en) * 2011-11-07 2014-10-16 Sanden Corporation In-Chamber Condenser
CN104303001A (en) * 2012-05-18 2015-01-21 摩丁制造公司 Heat exchanger, and method for transferring heat
US9671176B2 (en) 2012-05-18 2017-06-06 Modine Manufacturing Company Heat exchanger, and method for transferring heat
WO2020129496A1 (en) * 2018-12-21 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 Condenser and air conditioning device for vehicle

Also Published As

Publication number Publication date
EP2565571A4 (en) 2014-09-24
CN102869942A (en) 2013-01-09
EP2565571A1 (en) 2013-03-06
US20130048260A1 (en) 2013-02-28
JP2011230655A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2011136047A1 (en) Vehicle interior heat exchanger
JP6100257B2 (en) Heat exchanger
JP2000346568A (en) Heat exchanger
US20100186934A1 (en) Heat Exchanger For Two Fluids, In Particular A Storage Evaporator For An Air Conditioning Device
JP2007017133A (en) Heat exchanger
JP5875918B2 (en) Car interior heat exchanger and inter-header connection member of car interior heat exchanger
JP2006329511A (en) Heat exchanger
WO2013168526A1 (en) Heat exchanger and vehicle air conditioning device
WO2008072730A1 (en) Compound heat exchanger and heat exchanger
JP4254015B2 (en) Heat exchanger
KR20130096819A (en) Cold reserving heat exchanger
US20160109168A1 (en) Refrigerant evaporator
US11268769B2 (en) Heat exchanger
JP2008170140A (en) Heat exchanger for vehicle
KR20120067406A (en) Cold reserving heat exchanger
JP2006097911A (en) Heat exchanger
JP2004108644A (en) Heat exchanger
JP2014118140A (en) Cooling module for vehicle
JP2008298311A (en) Gas cooler for hot water supply system
KR20170112659A (en) Cooling module for hybrid vehicle
KR20100030844A (en) Multi heat exchanger for vehicle
JP2004028393A (en) Heat exchanger
WO2012043380A1 (en) Heat exchanger
WO2017213164A1 (en) Vehicular heat exchanger
CN211233460U (en) Heat exchanger, air conditioning system and vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021328.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774831

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13695612

Country of ref document: US