WO2008072730A1 - Compound heat exchanger and heat exchanger - Google Patents

Compound heat exchanger and heat exchanger Download PDF

Info

Publication number
WO2008072730A1
WO2008072730A1 PCT/JP2007/074127 JP2007074127W WO2008072730A1 WO 2008072730 A1 WO2008072730 A1 WO 2008072730A1 JP 2007074127 W JP2007074127 W JP 2007074127W WO 2008072730 A1 WO2008072730 A1 WO 2008072730A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
refrigerant
tube
fluid
heat exchanger
Prior art date
Application number
PCT/JP2007/074127
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Yoshioka
Yuichi Meguriya
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007112150A external-priority patent/JP2008170140A/en
Priority claimed from JP2007277850A external-priority patent/JP2009103404A/en
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Publication of WO2008072730A1 publication Critical patent/WO2008072730A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Definitions

  • the present invention relates to a composite heat exchanger and a heat exchanger.
  • Japanese Patent Application Laid-Open No. 2006-162176 discloses a heat exchanger that dissipates heat of engine cooling water.
  • This heat exchanger is a cooling system in which a plurality of cooling water flat tubes for exchanging heat between engine cooling water and air and the opening end of one end in the longitudinal direction of the plurality of cooling water flat tubes are connected.
  • a water tank and a cooling water tank to which open ends at the other ends in the longitudinal direction of the plurality of cooling water flat tubes are connected in communication are configured.
  • the engine cooling water that has become hot due to heat drawn from the engine flows into the heat exchanger and flows in the order of the upstream cooling water tank, the cooling water flat tube, and the downstream cooling water tank. And go back.
  • a coolant cooling unit is disposed in a cooling water tank on the downstream side of the heat exchanger.
  • the refrigerant water cooling unit circulates the refrigerant discharged from the compressor of the refrigeration cycle and cools the refrigerant with the cooling water in the cooling water tank.
  • This refrigerant water cooling section is configured to include a refrigerant flat tube, a refrigerant tank into which refrigerant from the compressor flows in, and a refrigerant tank into which refrigerant flowing through the refrigerant flat tube flows.
  • the refrigerant tank of the refrigerant water cooling section since the high-temperature and high-pressure refrigerant flows into the refrigerant tank of the refrigerant water cooling section from the compressor side, it is necessary to ensure the strength of the refrigerant tank. If it is attempted to obtain sufficient strength of the refrigerant tank in the refrigerant water cooling section, the refrigerant tank may be increased in size. If the refrigerant tank becomes large in this way, there is a problem that the layout becomes difficult.
  • a first object of the present invention is to reduce the size of the refrigerant tank while ensuring the strength of the refrigerant tank in the refrigerant water cooling section.
  • a second object of the present invention is to reduce the size of the refrigerant water cooling unit while ensuring the strength of the refrigerant water cooling unit.
  • a third object of the present invention is to improve heat exchange efficiency by increasing the longitudinal size of a tube in a heat exchanger including a tube and a pair of tanks.
  • a core portion in which a plurality of cooling water flat tubes (5a) each having an internal passage for cooling water are stacked in multiple stages, and the cooling water that has passed through the core portion is provided.
  • a cooling water heat exchanger (5) having an inflowing cooling water tank (5c), and the cooling water tank (5c) of the cooling water heat exchanger (5), in which refrigerant is contained.
  • a combined heat exchanger (1) having a refrigerant water cooling section (8) for exchanging heat between the cooling medium and the cooling water in the cooling water tank (5c) by circulating the refrigerant;
  • the water cooling section (8) extends in the stacking direction of the core section in which a plurality of refrigerant flat tubes (10) each having an internal refrigerant path are stacked in multiple stages and the refrigerant flat tubes (10).
  • a tank internal passage (26) that is inserted into one end of the refrigerant flat tube (10) in the longitudinal direction.
  • the first refrigerant tank (20A) and the second refrigerant tank (20B) have a width (L1) of the tank passage (26) along the width direction of the refrigerant flat tube (10). Smaller than the width (L2) of the flat tube for cooling medium!
  • a second aspect of the present invention is a first heat exchanger (5) that dissipates the heat of the first heating element via the first fluid, in which the first fluid flows.
  • a first heat exchanger (5) having one fluid tank (5c), a second heat exchanger (7) for radiating the heat of the second heating element via the second fluid, and the second heat exchanger (5).
  • a part of the second fluid line that circulates the second fluid is connected to the heating element and the second heat exchanger (7), and is built in the first fluid tank (5c).
  • a second fluid cooling unit that performs heat exchange between the first fluid and the second fluid in the first fluid tank (5c).
  • the second fluid tank side (20B) is smaller than the tank passage width (L1) is earlier SL flat tubes (26) Width (L2)! /,.
  • a third aspect of the present invention provides a first heat exchange in which heat of the first heating element is radiated through the first fluid by circulating a first fluid between the first heating element and the first heating element. Circulating a second fluid between a first heat exchanger (5) having a first fluid tank (5c) through which the first fluid flows and a second heating element The second heat exchanger (7) for radiating the heat of the second heating element via the second fluid is connected to the second heating element and the second heat exchanger (7).
  • the second fluid line that circulates the second fluid constitutes a part of the second fluid line, and is attached to the first fluid tank (5c) and connected to the first fluid tank (5c).
  • a composite heat exchanger having a first fluid from a first fluid tank (5c) and a second fluid cooling section (70) for exchanging heat between the second fluid and the second fluid
  • the cooling unit (70) includes the first fluid
  • the first plate and the second plate are formed by alternately laminating the plate-shaped first plate and the second plate (76, 77) whose plate surface is perpendicular to the flow direction of the first fluid from the tank (5c). Are separated from each other and the peripheral edge thereof is liquid-tightly joined.
  • the first passage (78) through which the second fluid flows and the second passage through which the first fluid flows are arranged in the stacking direction of the plates. (79) and are alternately provided.
  • a core portion in which a plurality of cooling water flat tubes (5a) each having an internal passage for cooling water are stacked in a plurality of stages, and cooling water having passed through the core portion.
  • a cooling water heat exchanger (5) having an inflowing cooling water tank (5c), and the cooling water heat exchange Refrigerant water cooling unit (5) which is built in the cooling water tank (5c) of the cooler (5) and exchanges heat between the cooling medium and the cooling water in the cooling water tank (5c) by circulating the refrigerant therein.
  • the refrigerant water cooling section (8) has a plurality of refrigerant flat tubes (10) each having a refrigerant internal passage laminated in a plurality of stages.
  • the tank has a tank passage (26) extending in the stacking direction of the refrigerant flat tube (10), and one open end of the refrigerant flat tube (10) in the longitudinal direction is inserted.
  • a fifth aspect of the present invention includes a plurality of tubes (10) each having an in-tube flow passage (13) therein, and disposed on both ends in the longitudinal direction of the tubes (10).
  • a heat exchanger (8) comprising a pair of tanks (20A, 20B) having a tank internal passage (26) connected to the internal flow passage (13), the tank (20A, 20B)
  • the tank member constituting the outer tank member has an outer tank member (21) disposed on the outer side in the longitudinal direction of the tube (10) with respect to the longitudinal end surface (11a) of the plurality of tubes (10).
  • the inner surface of the tank (21) is the outer surface of the tank passage (26), and the tank passage (26) is formed on the inner side in the longitudinal direction of the tube (10) from the longitudinal end surface (1 la) of the tube (10). It has been done.
  • FIG. 1 is a block diagram conceptually showing a composite heat exchanger 1 for a vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the composite heat exchanger 1 for the vehicle.
  • FIG. 3 is a front view of the sub radiator 5 of the composite heat exchanger 1 for the vehicle.
  • FIG. 4 is a front view of the cooling water cooling unit 8 disposed in the tank 5c of the sub-rajator 5.
  • FIG. 5 is a side view of the refrigerant water cooling unit 8.
  • FIG. 6 is an exploded perspective view of the upper part of the refrigerant water cooling unit 8.
  • Fig. 7 is an exploded perspective view of the sub radiator 5.
  • FIG. 8 is a front view of the refrigerant water cooling unit 8 of the second embodiment.
  • FIG. 9 is a side view of the refrigerant water cooling unit 8.
  • FIG. 10 is a perspective view of the vehicle composite heat exchanger 1 of the third embodiment.
  • FIG. 11 is a front view of the sub radiator 5 and the coolant cooling unit 70 of the composite heat exchanger 1 for the vehicle.
  • FIG. 12 is a side view schematically showing shell plates 76 and 77 constituting the refrigerant water cooling unit 70, (a) showing the first shell plate 76, and (b) showing the second shell plate 76. Showing shell plate
  • FIG. 13 is a cross-sectional view of the coolant cooling unit 70 along the AA cross section of FIG.
  • FIG. 14 is a block diagram conceptually showing the combined vehicle heat exchanger 1 of the fourth embodiment.
  • FIG. 15 is a perspective view of the composite heat exchanger 1 for a vehicle.
  • FIG. 16 is a front view of the refrigerant water cooling section 8 installed in the tank section 5c of the sub radiator 5 of the composite heat exchanger 1 for the vehicle.
  • Fig. 17 is a side view of the refrigerant water cooling unit 8.
  • FIG. 18 is an exploded perspective view of the main part of the refrigerant water cooling unit 8.
  • FIG. 19 (a) is a cross-sectional view of the main part showing the arrangement of the inner fins in the tube of the cooling water cooling unit 8, and FIG. 19 (b) is a front view of the main part of the inner fin.
  • FIG. 20 shows a modification of the fourth embodiment.
  • FIG. 20 (a) is a cross-sectional view of the main part showing the arrangement of the inner fin in the tube
  • FIG. 20 (b) is a main part of the inner fin.
  • FIG. 21 is a front view of the refrigerant water cooling unit 8 of the fifth embodiment.
  • FIG. 22 is a side view of the refrigerant water cooling unit 8.
  • Fig. 23 is an exploded perspective view of the main part of the refrigerant water cooling unit 8.
  • FIG. 24 is a cross-sectional view taken along line AA in FIG.
  • FIG. 25 is a BB cross-sectional view in FIG.
  • the vehicle composite heat exchanger 1 according to the present embodiment is applied to a hybrid vehicle that can run on one or both of the driving force of an engine and the driving force of an electric motor. It is arranged in a cooling air duct that takes the traveling air (cooling air) into the gin room.
  • FIG. 1 is a block diagram conceptually showing a composite heat exchanger 1 for a vehicle according to this embodiment.
  • the vehicular combined heat exchanger 1 includes a main radiator 3 that cools the engine 2 of the vehicle, and an electric drive unit that assists the engine 2 (in this embodiment, the electric motor and its control).
  • Electric drive unit including electronic parts for the vehicle) 4
  • Sub radiator 5 (first heat exchanger) that cools the cooling medium that circulates the refrigeration cycle of the air conditioning system for cooling the passenger compartment (for example, CFC-12) Etc.) and a condenser 6 for cooling.
  • the capacitor 6 is cooled by the refrigerant water cooling unit 8 that primarily cools the high-temperature and high-pressure refrigerant discharged from the compressor of the refrigeration cycle, and the refrigerant water cooling unit 8 downstream of the refrigerant water cooling unit 8.
  • a refrigerant air cooling unit (second heat exchanger) 7 for secondary cooling of the generated refrigerant.
  • a sub radiator 5 and a refrigerant air cooling unit 7 for the condenser 6 are arranged facing the main radiator 3. .
  • the sub radiator 5 and the refrigerant air cooling part 7 of the condenser 6 are arranged vertically, the sub radiator 5 is arranged opposite to the upper half of the main radiator 3, and the air cooling part 7 of the condenser 6 faces the lower half of the main radiator 3.
  • the refrigerant water cooling unit 8 of the capacitor 6 is built in the sub-rajator 5.
  • the refrigerant water cooling unit 8 of the capacitor 6 can be rephrased as a water cooling type capacitor, and the refrigerant air cooling unit 7 of the capacitor 6 can be rephrased as an air cooling type capacitor.
  • the circulation pump P3 for circulating the cooling water C3 to the cooling water line, the engine 2, and the heat of the engine 2 to the atmosphere. Release Heated main radiator 3 is interposed.
  • the circulation pump P3 is driven, the cooling water (C3in) from the engine 2 is supplied to the main radiator 3 and heat exchange is performed between the main radiator 3 and air. Then, the cooling water (C3 out) from the main radiator 3 is supplied to the engine 2 again.
  • the cooling water line through which the cooling water C1 circulates dissipates heat from the circulation pump P1 for circulating the cooling water C1 through the cooling line, the electric drive unit 4, and the electric drive unit 4 to the atmosphere.
  • Subjector 5 is installed.
  • the circulation pump P1 is driven, the cooling water (Clin) from the electric drive unit 4 is supplied to the sub radiator 5 and heat exchange is performed between the sub radiator 5 and the air. Then, the cooling water (Clout) from the sub radiator 5 is supplied to the electric drive unit 4 again.
  • the air conditioning system for cooling the passenger compartment has an refrigeration cycle evaporator arranged in the passenger compartment to cool the air in the passenger compartment, and a condenser 6 in the refrigeration cycle is arranged outside the passenger compartment to absorb heat by the evaporator.
  • the refrigeration cycle includes a compressor that circulates refrigerant in the refrigeration cycle, a condenser 6, a liquid tank, expansion means, and an evaporator connected in this order.
  • the high-temperature and high-pressure gas refrigerant (C2in) compressed by the compressor is supplied to the refrigerant water cooling unit 8 of the capacitor 6 and then supplied to the refrigerant air cooling unit 7 of the capacitor.
  • Heat is exchanged between the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7, and the gas refrigerant becomes a high-pressure liquid refrigerant or a gas-liquid mixed refrigerant.
  • the refrigerant (C2out) from the refrigerant air cooling unit 7 is gas-liquid separated in the liquid tank, and then adiabatically expanded by an expansion means to form a low-temperature low-pressure liquid refrigerant or gas-liquid mixed refrigerant. After replacing it into a low-pressure gas refrigerant, it is returned to the compressor.
  • FIG. 3 is a front view schematically showing the structure of the sub radiator 5.
  • the sub radiator 5 is configured to include a core portion formed by alternately laminating heat radiation fins 5b and cooling water flat tubes 5a, and a pair of cooling water tanks 5c.
  • the radiating fin 5b is a thin plate-like member having substantially the same width as the width L4 of a cooling water flat tube 5a described later, and its front view shape is corrugated as shown in FIG. .
  • the cooling water flat tube 5a is a thin tube having a flat cross-sectional shape. It is a long plate-like member, and is formed from, for example, an aluminum alloy.
  • a plurality of passages penetrating the inside thereof are formed along the longitudinal direction, and the cooling water flows through the respective passages.
  • the core portion is configured by alternately stacking the cooling fins 5b and the cooling water flat tubes 5a by sandwiching the cooling water flat tubes 5a from both sides by a pair of heat dissipating fins 5b.
  • Reinforces 5d are installed on the outer sides of the outermost (upper and lower) radiating fins 5b, respectively, and a proper amount of load is applied to the core portion in the stacking direction by a pair of reinforcements 5d. Is sandwiched between.
  • Each of the flat tubes 5a for cooling water constituting the core portion has one opening end portion in the longitudinal direction inserted into the cooling water tank 5c on the upstream side, and the other opening end portion in the longitudinal direction on the downstream side. Inserted into tank 5c.
  • each cooling water tank 5c communicates with the internal passage of the cooling water flat tube 5a.
  • the upstream cooling water tank 5c is connected to the connector 54 that constitutes the cooling water inlet of the sub radiator 5.
  • the downstream cooling water tank 5c is connected to the connector that constitutes the cooling water outlet of the sub radiator 5. 53 is connected! /
  • the refrigerant air cooling unit 7 has the same basic configuration as that of the sub radiator 5, and is configured by alternately stacking radiating fins 7b and refrigerant flat tubes 7c. And a pair of refrigerant tanks 7c.
  • the main radiator 3 has basically the same configuration, and includes a core portion configured by alternately stacking heat radiation fins and flat tubes for cooling water, and a pair of cooling water tanks 3c.
  • FIG. 4 is a front view schematically showing the configuration of the refrigerant water cooling unit 8
  • FIG. 5 is a side view schematically showing the configuration of the refrigerant water cooling unit 8.
  • FIG. 6 is an exploded perspective view schematically showing the configuration of the upper side of the refrigerant water cooling unit 8.
  • the refrigerant water cooling section 8 (water cooling condenser) constitutes a part of the refrigerant line from the compressor to the refrigerant air cooling section 7 (air cooling condenser).
  • This refrigerant water cooling section 8 is built in the cooling water tank 5c on the downstream side of the scrambler 5, and performs heat exchange between the cooling water in the cooling water tank 5c and the refrigerant in the refrigeration cycle.
  • the refrigerant flows into the refrigerant air cooling section 7 of the condenser 6, the refrigerant is primarily cooled.
  • the refrigerant water cooling unit 8 includes an upper refrigerant tank 20A (first cooling unit) on the refrigerant inlet side. Medium tank), the lower refrigerant tank 20B (second refrigerant tank) on the refrigerant outlet side, and both refrigerant tanks 20A and 20B are connected to each other to exchange heat between the refrigerant and the cooling water. And a refrigerant flat tube 10 (core part) for performing!
  • the refrigerant tank 20A on the refrigerant inlet side of the refrigerant water cooling section 8 is joined inside the cooling water tank 5c in contact with the upper wall (one longitudinal end) of the cooling water tank 5c.
  • a connector 24 that penetrates the upper wall of 5c and protrudes into the cooling water tank 5c is connected in communication. This connector 24 constitutes the inlet of the refrigerant water cooling unit 8 and is connected to a refrigerant pipe from the compressor.
  • the refrigerant tank 20B on the refrigerant outlet side of the refrigerant water cooling section 8 is brazed while being in contact with the lower wall (the other end in the longitudinal direction) of the cooling water tank 5c inside the cooling water tank 5c.
  • a connector 25 that penetrates the lower wall of the cooling water tank 5c and protrudes into the cooling water tank 5c is connected in communication.
  • the connector 25 constitutes an outlet of the refrigerant water cooling unit 8 and is connected to a refrigerant pipe to the refrigerant air cooling unit 7 of the capacitor 6.
  • the refrigerant tank 20A on the refrigerant inlet side includes a pipe portion formed by combining the first tank plate 22 and the second tank plate 21, and a pair of closing plates that close the openings at both ends of the pipe portion. And 23.
  • the refrigerant tank 20A on the refrigerant inlet side distributes and supplies the refrigerant from the compressor to each refrigerant flat tube 10 (core part) via a tank passage 26 formed inside.
  • the first tank plate 22 is a flat plate having a substantially rectangular shape, and is disposed on the lower surface of the second tank plate 21.
  • the first tank plate 22 has a slit-like tube insertion hole 22c extending in the flow direction of the cooling water in the cooling water tank 5c.
  • a plurality of the tube insertion holes 22c are formed at a predetermined interval in a direction orthogonal to the flow direction of the cooling water.
  • the shape of each tube insertion hole 22c corresponds to the outer shape of the refrigerant flat tube 10 in the core portion described later, and the refrigerant flat tube 10 is fitted therein. That is, the number of tube insertion holes 22c formed in the first tank plate 22 corresponds to the number of the refrigerant flat tubes 10.
  • the width L3 of the core portion of the refrigerant water cooling portion is the width of the core portion in the sub radiator 5 (specifically, the cooling water flatness).
  • the number of the refrigerant flat tubes 10 is set so as to be equal to or less than the width L4 of the tube 5a.
  • the second tank plate 21 is a plate-like member having a substantially rectangular shape corresponding to the outer peripheral shape of the first tank plate 22.
  • the second tank plate 21 has a bent portion that is curved in a convex shape toward the outside in the longitudinal direction (connector 24 side) of the cooling medium flat tube 10 in the central region.
  • a space in which the outline of the cross-sectional shape has an arc shape is formed in the second tank plate 21.
  • This space extends in the stacking direction of the refrigerant flat tubes 10 and functions as an in-tank passage 26 for supplying the refrigerant to the core portion.
  • the width L1 of the tank passage 26 is larger than the width L2 of the refrigerant flat tube 10. It is set small.
  • an opening 21a is formed at a substantially central position at the top of the bent portion of the second tank plate 21, and the top is joined to the inner surface (upper inner surface) of the cooling water tank 5c.
  • the opening 21a and the connector 24 are fitted.
  • an L-shaped engagement claw 21b extending downward is provided at the edge of the second tank plate 21.
  • the engagement claw 21b is formed on the lower surface of the second tank plate 21. Hold the first tank plate 22 placed in close contact with the side.
  • the pair of closing plates 23 are arranged at both open ends of the cylindrical space (tank passage 26) between the first tank plate 22 and the second tank plate 21, and close the tank passage 26. To do.
  • the shape of the closing plate 23 is substantially in line with the shape of the inner surface of the bent portion of the second tank plate 21.
  • the refrigerant tank 20B on the outlet side includes a pipe portion formed by assembling the first tank plate 22 and the second tank plate 21, and a pair of closures that close both end openings of the pipe portion. And plate 23.
  • the refrigerant tank 20B on the outlet side supplies the refrigerant from the core side to the refrigerant air cooling unit 7 of the condenser via a tank passage 26 formed inside.
  • the outlet side refrigerant tank 20B has the same configuration as that of the inlet side refrigerant tank 20A, and is provided in the cooling water tank 5c with the inlet side refrigerant tank 20A turned upside down.
  • the refrigerant tank 20B on the outlet side contacts the lower wall of the cooling water tank 5c. Are joined together by brazing.
  • the core of the refrigerant water cooling unit 8 is composed of a plurality of refrigerant flat tubes 10.
  • Each of the refrigerant flat tubes 10 is formed so that the inside thereof is hollow along the longitudinal direction, whereby a refrigerant passage is formed inside, and openings of the refrigerant passage are formed at both ends in the longitudinal direction.
  • Each flat tube 10 is arranged such that its longitudinal direction is in the vertical direction.
  • An inner fin 14 is accommodated in the flat tube 10.
  • the total length of the inner fin 14 is shorter than the total length of the flat tube 10. For this reason, both ends of the inner fin 14 in the longitudinal direction are on the inner side in the longitudinal direction of the flat tube 10 than both ends of the flat tube 10 in the longitudinal direction.
  • the protruding length of both ends in the longitudinal direction of the flat tube 10 protruding from both ends in the longitudinal direction of the inner fin 14 is set to be equal to or less than the thickness of the second tank plate 21.
  • Each refrigerant flat tube 10 has one end in the longitudinal direction inserted into the tube insertion hole 22c of the first tank plate 22 in the refrigerant tank 2OA on the inlet side, and the second tank The plate 21 is joined by brazing while being in contact with the lower surface (tank inner surface) of the plate 21.
  • Each of the refrigerant flat tubes 10 has its other longitudinal end inserted into the tube insertion hole 22c of the first tank plate 22 in the refrigerant tank 20A on the inlet side. Joined by brazing while being in contact with the lower surface of the plate 21 (inner surface of the tank).
  • the individual refrigerant flat tubes 10 are laminated in a direction perpendicular to the flow direction of the cooling water in a state where the short side direction (the width direction thereof) is arranged in parallel with the flow direction of the cooling water. Yes.
  • Each refrigerant flat tube 10 is formed with beads 12a and 12b projecting outward on both flat surfaces, and the adjacent refrigerant flat tubes 10 are abutted against each other. Joined by brazing in the state. Further, a bead 30 is formed on the inner peripheral surface of the cooling water tank 5c so that the inner peripheral surface partially protrudes inward, and the beads 12a and 12b of the refrigerant flat tube 10 located on the outermost side, The bead 30 is joined to the cooling water tank 5c-side bead 30 by brazing. For this reason, at the time of brazing, if a load is applied from the outside of the cooling water tank 5c, the flat tube 10 and the inner fin 14 can be joined in a close contact state. FIG.
  • FIG. 7 is an exploded perspective view illustrating an assembled state of the sub radiator 5.
  • heat radiation fins 5b and flat tubes 5a for cooling water are alternately stacked, and a reinforcement 5d is installed outside the outermost fins, with an appropriate amount of load applied in the stacking direction.
  • the ends of the cooling water flat tube 5a and the reinforcement 5d are inserted into the upstream cooling water tank 5c and the downstream cooling water tank 5c, respectively.
  • the cooling water tank 5c on the downstream side is configured by assembling a substantially box-shaped tank body 51 having an opening on the side of the cooling water flat tube 5a and a closing portion 52 for closing the opening of the tank body 51.
  • the coolant cooling unit 8 can be incorporated into the tank body 51 with the closing part 52 open.
  • the connector 24 serving as the refrigerant inlet of the refrigerant water cooling unit 8 is fitted to the upper wall of the cooling water tank 5c, and the connector 25 serving as the refrigerant outlet of the refrigerant water cooling unit 8 is fitted to the lower wall.
  • a connector 53 serving as a cooling water outlet of the cooling water tank 5c is fitted to the side wall (52) opposite to the side wall (52) into which the cooling water flat tube 5a is inserted.
  • the sub radiator 5 in which the individual parts are assembled and the refrigerant water cooling unit 8 is built in is heated in a heating furnace, so that the brazing material provided in advance at the joint between these various parts is used.
  • the brazing is performed integrally.
  • the refrigerant water cooling section 8 has a larger heat capacity than other parts, and it may be difficult to perform integral brazing.
  • the refrigerant water cooling section 8 and a part of the upstream side cooling water tank 5c are assembled as separate bodies, and then brazed, and then assembled into the sub radiator body and brazed. Good.
  • the cooling water that has cooled the electric drive unit 4 in the vehicular composite heat exchanger 1 having such a configuration is provided in the cooling water tank 5c on the upstream side of the sub radiator 5. From the inlet-side connector 54, and then flows through each of the cooling water flat tubes 5a and into the downstream cooling water tank 5c. In the process of flowing through the cooling water flat tubes 5a, the cooling water is transferred from the cooling water flat tubes 5a to the radiating fins 5b and from the radiating fins 5b to the cooling air to perform heat exchange. Thereby, the cooling water is cooled.
  • the cooling water whose temperature has decreased flows between the individual refrigerant flat tubes 10 in the refrigerant water cooling section 8 in the cooling water tank 5 c on the downstream side, and then flows out from the connector 53.
  • the refrigerant circulating in the refrigeration cycle is a high-temperature and high-pressure gas discharged from the compressor.
  • the refrigerant flows into the coolant cooling unit 8 through the connector 24.
  • the refrigerant flowing into the refrigerant water cooling unit 8 first flows into the upper refrigerant tank 20A on the refrigerant inlet side, and is dispersed from the upper refrigerant tank 20A on the refrigerant inlet side to each refrigerant flat tube 10.
  • the heat of the refrigerant flowing in the refrigerant flat tube 10 is transferred to the cooling water from the refrigerant flat tube 10 and becomes the refrigerant outlet side when the degree of superheat is reduced or partially enters the saturated region.
  • the refrigerant Flows into the lower refrigerant tank 20B. Then, the refrigerant is discharged from the lower refrigerant tank 20B on the refrigerant outlet side to the outside of the refrigerant water cooling unit 8 via the connector 25, and then flows into the refrigerant tank upstream of the refrigerant air cooling unit 7 of the condenser 6. .
  • the refrigerant flowing into the refrigerant water cooling unit 8 has a high temperature of the refrigerant that is downstream of the compressor and upstream of the refrigerant air cooling unit 7. Further, the cooling water flowing into the refrigerant water cooling unit 8 radiates heat at the core of the sub radiator 5. Since this is the cooling water after the cooling, the temperature of the cooling water is lowered. Therefore, the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling unit 8 is increased, the heat exchange efficiency is improved, and the size of the refrigerant water cooling unit 8 can be suppressed.
  • a bent portion is formed in the central region of the second tank plate 21, and the curvature of the bent portion is reduced, whereby the width of the in-tank passage 26 is reduced.
  • L 1 is set to a value smaller than the width L 2 of the refrigerant flat tube 10.
  • the coolant water cooling section 8 can be reduced in weight, and the difference in heat capacity from the peripheral portion such as the cooling water tank 5c of the sub radiator 5 is reduced, thereby improving the brazing performance. That's the power S.
  • the refrigerant tank 20A on the inlet side and the outlet The vertical dimension of the refrigerant tank 20B on the mouth side can be reduced. In this way, when the vertical dimensions of the inlet side refrigerant tank 20A and the outlet side refrigerant tank 20B are reduced, the refrigerant flat tube 10 can be set longer, so that the efficiency of heat exchange can be improved.
  • the longitudinal end of the refrigerant flat tube 10 is inserted into the tube insertion hole 22c of the first tank plate 22, and then the second tank plate 21 Bonded to the bottom surface. Therefore, the strength of the connecting portion between the refrigerant flat tube 10 and the inlet side refrigerant tank 20A or the outlet side refrigerant tank 20B is further improved.
  • the inner fin 14 is set slightly shorter than the flat tube 10, so that the tip of the flat tube 10 abuts against the second tank plate 21. A refrigerant passage can be secured.
  • the inner fin 14 is shorter than the flat tube 10, and a portion where the inner fin 14 is not joined is generated at the longitudinal end portion of the flat tube 10.
  • the distance between the flat tubes 10 where the inner fins 14 are not provided is equal to or less than the thickness of the first tank plate 22. Therefore, it is reinforced by the first tank plate 22 and the strength reduction can be suppressed.
  • the upper wall of the cooling water tank 5c and the refrigerant tank 20A are separated from each other and the lower wall of the cooling water tank 5c and the refrigerant tank 20B are separated from each other
  • the upper wall of the cooling water tank 5c and Cooling water flows between the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B, toward the refrigerant flat tube 10 between the refrigerant tanks 20A and 20B.
  • the cooling water does not flow and heat exchange efficiency may decrease.
  • the refrigerant tank 20A on the inlet side of the refrigerant water cooling section 8 is brazed and joined to the upper wall of the cooling water tank 5c in the cooling water tank 5c of the sub radiator 5.
  • the refrigerant tank 20B on the outlet side is brazed to the lower wall of the water tank 5c. Therefore, it is possible to prevent the cooling water from flowing between the upper wall of the cooling water tank 5c and the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B.
  • the refrigerant can be circulated between a plurality of multi-stage refrigerant flat tubes 10 between the tank 20A and the refrigerant tank 20B. Thereby, heat exchange efficiency increases.
  • the cooling air flow in the outer wall of the cooling water tank on the downstream side of the sub radiator A method may be considered in which the refrigerant flows into and out of the refrigerant water cooling section 8 from the upper side surface.
  • the refrigerant line pipe jumps out to the windward side of the sub radiator 5 and becomes an obstacle in the layout.
  • the refrigerant in and out of the refrigerant water cooling unit 8 is entered from above the cooling water tank 5c and is taken out from below. Therefore, it is advantageous in terms of layout and can be finished in a smart appearance.
  • the refrigerant can be smoothly guided to the refrigerant air cooling unit 7 of the capacitor 6 located below the sub radiator 5.
  • the cooling water tank 5c on the downstream side of the sub radiator 5 and the refrigerant tank 7c on the upstream side of the refrigerant air cooling unit 7 of the condenser 6 are coupled by brazing. Therefore, the coupling between the sub radiator 5 and the refrigerant air cooling part 7 of the condenser 6 can be easily strengthened, and a coupling bracket or the like is not required, so that the configuration can be simplified. Furthermore, it is also possible to share a patch end that closes each tank between the cooling water tank 5c of the sub radiator 5 and the cooling tank on the upstream side of the refrigerant air cooling unit 7 of the condenser 6.
  • the width L3 along the stacking direction of the refrigerant flat tubes 10 in the core portion of the refrigerant water cooling portion 8 is equal to that of the flat tubes 5a for the cooling water in the sub radiator 5.
  • the composite heat exchanger of the present embodiment includes a core portion in which a plurality of cooling water flat tubes 5a are stacked in multiple stages, and a cooling water tank 5c into which cooling water that has passed through the core portion flows.
  • the cooling water heat exchanger 5 and the cooling water tank 5c of the cooling water heat exchanger 5 are installed in the cooling water tank 5c.
  • a refrigerant water cooling section 8 for exchanging heat with the cooling water.
  • the refrigerant water cooling section 8 has a core section in which a plurality of refrigerant flat tubes 10 are stacked in multiple stages, and a tank passage 26 extending in the stacking direction of the refrigerant flat tubes 10 and is used for the refrigerant.
  • the first refrigerant tank 20A communicated with one end, a tank internal passage 26 extending in the stacking direction of the flattened tube for refrigerant 10, and the longitudinal direction of the flattened tube for refrigerant 10 other And a second refrigerant tank 20B in which the open end of the other side is connected in communication.
  • the width L1 of the tank passage 26 is set to be the refrigerant flat tube along the width direction (short side direction) of the refrigerant flat tube 10. Less than 1 0 width L2.
  • the strength against the internal pressure is improved, and accordingly, the members constituting the refrigerant tanks 20A and 20B can be thinned.
  • the first and second refrigerant tanks 20A and 20B have a smaller heat capacity difference from the peripheral parts, so that the brazing performance can be improved.
  • the present embodiment it is possible to reduce the size while ensuring the strength of the refrigerant tanks 20A and 20B, improve the layout, and improve the manufacturability.
  • the longitudinal dimension of the refrigerant flat tube 10 between the refrigerant tanks 20A and 20B can be increased.
  • the heat exchange efficiency can be improved.
  • the outline of the cross-sectional shape of the tank passage 26 has an arc shape, so that the width L1 of the tank passage 26 is greater than the width L2 of the refrigerant flat tube. Is set too small.
  • the flat tube 10 has one end in the longitudinal direction abutted against the inner surface of the first refrigerant tank 20A, and the other end in the longitudinal direction is the second tube. It is abutted against the inner surface of the refrigerant tank 20B. Therefore, the connection strength between the flat tube 10 and the first and second refrigerant tanks 20A and 20B is further improved.
  • cooling water tank 5c the upper wall of the cooling water tank 5c
  • the cooling medium tank 20A the other longitudinal end of the cooling water tank 5c (the cooling water tank).
  • the longitudinal end of the cooling water tank 5c and the refrigerant tank 20A and the other longitudinal end of the cooling water tank 5c and the refrigerant tank 20B are separated. Cooling water will flow between them. In other words. There is a possibility that the cooling water does not flow toward the refrigerant flat tube 10 between the two refrigerant tanks 20A and 20B, and the heat exchange efficiency is lowered.
  • the first refrigerant tank 20A is placed in the cooling water tank 5c.
  • the second refrigerant tank 20B is in contact with one end in the longitudinal direction of the cooling water tank 5c (upper wall of the cooling water tank 5c), and the other end in the longitudinal direction of the cooling water tank 5c (cooling water) It is in contact with the lower wall of the tank 5c. Therefore, it is possible to prevent the cooling water from flowing between the upper wall of the cooling water tank 5c and the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B.
  • the refrigerant can be circulated toward the refrigerant flat tube 10 between the refrigerant tank 20A and the refrigerant tank 20B. As a result, the heat exchange efficiency is increased and the coolant water cooling unit 8 can be downsized.
  • the refrigerant discharged from the compressor of the refrigeration cycle flows into the refrigerant water cooling unit 8. Therefore, since the refrigerant flowing into the refrigerant water cooling unit 8 is a high-temperature and high-pressure refrigerant, the temperature difference from the cooling water flowing outside the refrigerant water cooling unit 8 can be increased.
  • the condenser 6 of the refrigeration cycle for circulating the refrigerant is further provided, and the condenser 6 includes the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7. Yes. Therefore, the refrigerant air cooling unit 7 and the refrigerant water cooling unit 8 complement each other, and the refrigerant air cooling unit 7 and the refrigerant water cooling unit 8 can be made compact.
  • the refrigerant flowing through the capacitor 6 flows in the order of the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7. Therefore, in the structure including the refrigerant air cooling unit 7, the refrigerant flowing into the refrigerant water cooling unit 8 is a high-temperature and high-pressure refrigerant downstream of the compressor and upstream of the refrigerant air cooling unit 7. Therefore, the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling unit 8 increases. Therefore, the cooling efficiency of the refrigerant water cooling unit 8 is improved, and the enlargement of the refrigerant water cooling unit 8 can be suppressed.
  • the cooling water flowing into the refrigerant water cooling unit 8 is the cooling water after the heat is radiated from the core of the sub radiator 5, so the temperature of the cooling water is low.
  • the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling section 8 increases. Therefore, the cooling efficiency of the refrigerant water cooling unit 8 is improved, and an increase in the size of the refrigerant water cooling unit 8 can be suppressed.
  • the cooling water tank 5c is connected to the refrigerant tank 7c of the refrigerant air cooling unit 7. It is joined. Therefore, the coupling between the cooling water heat exchanger 5 and the refrigerant air cooling unit 7 can be easily strengthened. Since a coupling bracket or the like is required, the configuration can be simplified.
  • the width L3 of the core portion of the coolant water cooling section 8 is equal to or less than the width L4 of the coolant flat tube 5a along the stacking direction of the coolant flat tubes 10. It is. Therefore, the cooling water tank 5c on the downstream side of the cooling water heat exchanger 5 can be suppressed from becoming larger than the cooling water tank 5c on the upstream side, and the layout can be improved.
  • the cooling water heat exchanger (5) cools the electric drive section (4).
  • FIG. 8 is a front view schematically showing the configuration of the refrigerant water cooling unit 8 in the second embodiment
  • FIG. 9 is a side view schematically showing the configuration of the refrigerant water cooling unit 8 according to the second embodiment.
  • the refrigerant water cooling unit 8 according to the first embodiment is different from that according to the first embodiment in the shapes of the refrigerant tank 20A on the inlet side and the refrigerant tank 20B on the outlet side.
  • a referential mark is quoted and the overlapping description is abbreviate
  • the inlet-side refrigerant tank 20A includes a pair of tank plates 21 and 22 and a pair of patch ends (not shown).
  • the second tank plate 21 is a flat plate having a substantially rectangular shape.
  • the second tank plate 21 has an opening substantially in the center thereof, and the upper surface side of the second tank plate 21 is joined to the inner surface of the upper wall of the cooling water tank 5c so that the opening and the connector 24 are connected.
  • An L-shaped engaging claw 21b extending downward is provided at the edge of the second tank plate 21.
  • the engaging claw 21b is provided on the lower surface side of the second tank plate 21. Hold the first tank plate 22 placed in close contact with the tank.
  • the first tank plate 22 is a plate-like member having a substantially rectangular shape corresponding to the outer shape of the second tank plate 21.
  • the first tank plate 22 has a bent portion that is curved in a convex shape toward the inner side in the longitudinal direction of the flat tube for cooling medium 10 (toward the side facing the connector 24). ing.
  • a space in which the outline of the cross-sectional shape has an arc shape is formed in the first tank plate 22.
  • This space extends in the stacking direction of the flat tubes 10.
  • This space cores the refrigerant It functions as an in-tank passage 26 for supplying to the section.
  • the width L1 of the tank passage 26 is set smaller than the width L2 of the refrigerant flat tube 10 as in the first embodiment.
  • the second tank plate 21 has a rectangular tube insertion hole, which corresponds to the outer peripheral shape of the refrigerant flat tube 10 and corresponds to the tube insertion hole. The longitudinal end of the refrigerant flat tube 10 is fitted.
  • the configuration of the outlet side refrigerant tank 20B is the same as that of the inlet side refrigerant tank 20A, and is provided in the cooling water tank 5c with the refrigerant tank 20A on the inlet side turned upside down. Yes.
  • the refrigerant tank 20B on the outlet side is joined to the lower wall of the cooling water tank 5c by brazing.
  • each of the refrigerant flat tubes 10 in the longitudinal direction is inserted into the opening (see reference numeral 27 in Fig. 23) of the first tank plate 22 in the refrigerant tank 20A on the inlet side, and the second tube 10 Joined by brazing while being in contact with the lower surface of the tank plate 21 (inner surface of the tank).
  • each of the refrigerant flat tubes 10 is inserted into the opening of the first tank plate 22 in the refrigerant tank 20B on the outlet side (see reference numeral 27 in FIG. 23) at the other end in the longitudinal direction.
  • the tank plate 21 is abutted against the upper surface (the tank inner surface) and joined by brazing.
  • the refrigerant flat tubes 10 adjacent to each other in the stacking direction are directly joined to each other by expanding both longitudinal ends of the refrigerant flat tubes 10 in the thickness direction of the tubes 10. Yes. Therefore, one opening (see reference numeral 27 in FIG. 23) is used to insert a set of refrigerant flat tubes 10 in which a plurality of first tank plates 22 are stacked in multiple stages. A square frame shape having a light source). As a result, it is possible to simplify the shape of the first tank plate 22 without having to machine tube insertion holes (see reference numeral 22c in FIG. 6) corresponding to the number of refrigerant flat tubes 10 in the first tank plate 22. .
  • the pressure loss when the tube enters and exits can be reduced by expanding the both ends in the longitudinal direction of the refrigerant flat tube 10.
  • the individual refrigerant flat tubes 10 are abutted against the flat plate-like second tank plate 21, thereby increasing the size of the refrigerant flat tubes 10 in the longitudinal direction. Power S can be. As a result, the heat radiation surface of the refrigerant flat tube 10 can be increased, so that the heat exchange region can be widened.
  • FIG. 10 is a perspective view schematically showing a composite heat exchanger for a vehicle according to a third embodiment of the present invention.
  • the vehicle combined heat exchanger of the third embodiment is different from that of the first or second embodiment in that a refrigerant water cooling unit 70 is used instead of the refrigerant water cooling unit 8.
  • a refrigerant water cooling unit 70 is used instead of the refrigerant water cooling unit 8.
  • the refrigerant water cooling unit 70 constitutes a part of the refrigerant line between the compressor and the refrigerant air cooling unit 7 of the capacitor 6 in the refrigeration cycle of the air conditioning system.
  • the refrigerant water cooling unit 70 is directly attached to the cooling water tank 5c on the downstream side of the sub radiator 5. Cooling water from the cooling water tank 5c flows into the refrigerant water cooling section 70, and refrigerant from the refrigeration cycle compressor flows. In the coolant cooling unit 70, heat exchange is performed between the coolant and the coolant, thereby cooling the coolant.
  • FIG. 12 is a side view schematically showing shell plates 76 and 77 constituting refrigerant water cooling unit 70
  • FIG. 13 is a cross sectional view of refrigerant water cooling unit 70 along the AA cross section in FIG. It is.
  • the refrigerant water cooling section 70 is configured by stacking a plurality of sets of first shell plates 76 and second shell plates 77 facing each other, and each shell plate 76 and 77 have a flat plate shape as a whole.
  • the first and second shell plates 76 and 77 are formed of a member having excellent thermal conductivity, for example, a metal plate such as an aluminum alloy.
  • the first shell plate 76 and the second shell plate 77 are laminated so that the plate surfaces are orthogonal to the longitudinal direction of the flat tube 10 of the sub radiator 5. Further, the first shell plate 76 and the second shell plate 77 are arranged so that their plate surfaces are orthogonal to the inflow direction of the cooling water from the cooling water tank 5c.
  • the peripheral portions of the first and second shell plates 76 and 77 are bent in a substantially L shape, and the peripheral portions are joined to each other by brazing.
  • the sets adjacent to each other are joined by brazing via the peripheral edge.
  • the cooling water tank 5c on the downstream side of the radiator 5 has an open side wall on the outer side in the longitudinal direction of the refrigerant flat tube 10 of the sub radiator 5.
  • the cooling water tank 5c side is located at the inner periphery of the opening.
  • the peripheral edge portion of the first shell plate 76E located at is joined by brazing. Thereby, the cooling water tank 5c and the coolant cooling unit 70 are integrated.
  • a space between a pair of shell plates 76 and 77 adjacent in the stacking direction is formed as a passage for cooling water or refrigerant.
  • a first passage 78 through which a coolant flows and a second passage 79 through which cooling water flows are alternately set in the stacking direction of the shell plates 76 and 77.
  • Each first passage 78 is provided with an inner fin 80! /.
  • the coolant cooling section 70 includes a cooling water inlet passage 81 that passes through the individual shell plates 76 and 77, and a cooling water outlet passage 82.
  • the force of the cooling water inlet passage 81 is also branched to the individual second passages 79.
  • the refrigerant that has flown through the individual second passages 79 joins the cooling water outlet passage 82 and flows out to the outside (electric drive unit 4 side) via the cooling water outlet passage 82 (Clout). ).
  • the first shell plate 76 and the second shell plate 77 have openings 76a and 77a corresponding to the cooling water inlet passage 81 and the cooling water outlet passage 82, respectively. Each is formed.
  • the peripheral portion of the opening 76a of the first shell plate 76 is formed with a concave portion that is recessed in a concave shape toward the outside (right side in FIG. 13).
  • the peripheral portion of the opening 76a of the first shell plate 76 configured in this manner is connected to the adjacent second shell plate.
  • 77 (the second shell plate 77 located on the right side in FIG. 13) is brought into contact with the peripheral edge of the opening 77a and joined by brazing, so that the cooling water inlet passage 81 and the cooling A water outlet passage 82 is formed as a continuous passage.
  • the refrigerant water cooling section 70 includes a refrigerant inlet passage 83 and a refrigerant outlet passage 84 that penetrate through the individual shell plates 76 and 77.
  • the refrigerant (C2in) from the compressor flows into the refrigerant inlet passage 83, it branches to the individual first passages 78 via the refrigerant inlet passage 83.
  • the refrigerant flowing through the individual first passages 78 joins the refrigerant outlet passages 84 and flows out to the outside (the refrigerant air cooling unit 7 side) via the refrigerant outlet passages 84 (C2out). .
  • the first shell plate 76 and the second shell plate 77 have openings 76b and 77b corresponding to the refrigerant inlet passage 83 and the refrigerant outlet passage 84, respectively.
  • a peripheral portion of the opening 77b of the second shell plate 77 is formed with a concave portion that is recessed in a concave shape toward the outside (right side in FIG. 13).
  • the peripheral edge of the opening 77b of the second shell plate 77 configured in this way is the peripheral edge of the opening 76b of the adjacent first shell plate 76 (the first shell plate 76 located on the right side in FIG. 13).
  • the refrigerant inlet passage 83 and the refrigerant outlet passage 84 are formed as a continuous passage by bringing the contact portions into contact with each other and joining the contact portions by brazing.
  • the leftmost first shell plate 76E) in FIG. 13 includes an opening 76b corresponding to the refrigerant inlet passage 83, an opening 76b corresponding to the refrigerant outlet passage 84, and the cooling in the normal first shell plate 76.
  • the opening 76a corresponding to the water outlet passage 82 is closed.
  • the outermost shell plate 77E on the opposite side to the cooling water tank 5c (the rightmost second shell plate 77E in FIG. 13) is the cooling water in the normal second shell plate 77.
  • the opening 77a corresponding to the inlet passage 81 is closed.
  • the cooling water inlet passage 81 is laid out below the refrigerant water cooling unit 70, and the cooling water outlet passage 82 is laid out above the refrigerant water cooling unit 70. Therefore, in the coolant cooling section 70, the cooling water flows through the second passage 79 from below to above.
  • the refrigerant inlet passage 83 is arranged above the refrigerant water cooling unit 70.
  • the refrigerant outlet passage 84 is laid out below the refrigerant water cooling section 70. Therefore, in the refrigerant water cooling unit 70, the refrigerant flows through the first passage 78 from the upper side to the lower side. Therefore, the refrigerant and the cooling water flow in directions opposite to each other in the refrigerant water cooling unit 70.
  • the cooling water inlet passage 81 and the cooling water outlet passage 82 are offset in the horizontal direction (left-right direction in FIG. 12) on a plane orthogonal to the passage extending direction.
  • both the refrigerant inlet passage 83 and the refrigerant outlet passage 84 are offset in the horizontal direction (left-right direction in FIG. 12) on a plane orthogonal to the passage extending direction. For this reason, the traveling direction of refrigerant and cooling water intersect each other (see Fig. 12).
  • the cooling water that has cooled the electric drive unit 4 flows into the cooling water tank 5c on the upstream side through the cooling water inlet 54 of the sub radiator 5, and then, each cooling water flat It flows through the tube 5a and flows into the cooling water tank 5c on the downstream side.
  • the heat of the cooling water is transmitted to the cooling water flat tube 5a and the heat radiation fin 5b and from the heat radiation fin 5b to the cooling air. Heat exchange.
  • the cooling water that has flowed to the cooling water tank 5c on the downstream side passes through the refrigerant water cooling unit 70 from there.
  • the cooling water from the cooling water tank 5c on the downstream side branches from the cooling water inlet passage 81 to the individual second passages 79, and flows through the second passages 79, respectively. They merge at the outlet passage 82 and are then supplied to the electric drive unit 4 side.
  • the refrigerant circulating in the refrigeration cycle of the air conditioning system flows into the refrigerant water cooling unit 70 in the state of high-temperature and high-pressure gas discharged from the compressor.
  • the refrigerant that has flowed into the refrigerant water cooling unit 70 branches from the refrigerant inlet passage 83 to the individual first passages 78 and flows through the first passages 78.
  • the refrigerant flowing in the first passage 78 is transferred to the cooling water by the heat power S inner fin 80 force, the first and second cheno replay rods 76, 77, the first and second cheno repre plate rods 76, 77, and so on.
  • Heat is dissipated and the degree of superheat is reduced, or it enters a state where it is partially saturated.
  • the refrigerant flowing through the individual first passages 78 merges in the refrigerant outlet passage 84 and then flows into the refrigerant air cooling unit 7.
  • the composite heat exchanger 1 of the present embodiment circulates the first fluid (cooling water) between the first heat generator 4 and the heat of the first heat generator via the first fluid.
  • a first heat exchanger 5 (a stabulator) that radiates heat and having a first fluid tank 5c through which the first fluid flows, and a second heating element (compressor)
  • a second heat exchanger 7 (refrigerant air cooling unit) that radiates heat of the second heating element through the second fluid by circulating a second fluid (refrigerant) therebetween, and the second heating element ( Compressor) and the second heat exchanger 7 to form a part of the second fluid line (refrigeration cycle) for circulating the second fluid, and attached to the first fluid tank 5c and A second fluid that exchanges heat between the first fluid from the first fluid tank 5c and the second fluid by being connected to the first fluid tank 5c.
  • has 70 (the refrigerant water-cooling unit), the.
  • the second fluid cooling unit 70 includes first plate 76 and second plate 77 having a plate shape in which the inflow direction of the first fluid from the first fluid tank 5c and the plate surface are orthogonal to each other.
  • the first plate and the second plate are separated from each other and the peripheral edge thereof is liquid-tightly joined. Between the plates 76 and 77 adjacent to each other, the second fluid is directed toward the plate stacking direction.
  • the first passage 78 through which the first fluid flows and the second passage 79 through which the first fluid flows are alternately provided.
  • the second fluid cooling section 70 has a laminated structure of shell plates 76, 77, the second fluid cooling section 70 can be downsized while ensuring the strength of the second fluid cooling section 70.
  • the second fluid cooling section 70 has a laminated structure of the shell plates 76 and 77, the refrigerant individual plates 76 and 77 can be easily assembled together. As a result, the brazing clearance management is reduced and the brazing performance is improved.
  • the first fluid tank 5c is formed in a box shape in which one side surface is formed as an opening, and the second fluid cooling unit is formed at the peripheral edge of the opening of the first fluid tank 5c.
  • the peripheral edge of 70 is joined to close the opening.
  • the first fluid tank 5c and the second fluid cooling section 70 can be integrated with a simple structure, thus saving space.
  • the first heat exchanger 5 is for the first fluid that exchanges heat between the first fluid and air by circulating the first fluid therein.
  • the second passage 79 of the refrigerant water cooling unit 70 is connected to the downstream side of the flat tube 5a via the first fluid tank 5c.
  • first passage 78 of the refrigerant water cooling unit 70 is upstream of the second heat exchanger 7 in the second fluid line (refrigeration cycle). Therefore, the temperature difference between the first fluid flowing through the second passage 79 and the second fluid flowing through the first passage 78 becomes large, and the heat exchange efficiency is improved.
  • the flow of the first fluid (cooling water) and the second fluid (refrigerant) are opposed in the second fluid cooling section. Therefore, the heat exchange efficiency can be improved.
  • the first fluid (cooling water) flows upward in the second fluid cooling section 70, so even when the flow rate of the first fluid (cooling water) is small, The deterioration of the flow distribution can be relatively suppressed.
  • the refrigerant circulating through the refrigeration cycle as the second fluid is caused to flow downward, so that the oil contained in the refrigerant is the second fluid. It is advantageous for the oil to easily return to the compressor that includes many sliding parts that stay in the fluid cooling unit 70.
  • the second fluid outlet (refrigerant outlet 84) in the second fluid cooling section 70 is laid out on the lower side, so that the second fluid cooling section 70 is positioned below the second fluid cooling section 70.
  • the distance to the second heat exchanger 7 is reduced, and both can be connected smoothly.
  • the inner fin 80 is installed in the first passage 78 of the second fluid cooling unit 70.
  • the heat exchange efficiency between the first fluid and the second fluid can be improved.
  • the inner fin 80 is arranged only on the first passage 78 side, but it may be arranged on the second passage 79 side.
  • the first and second shell plates 76, 77 may be provided with irregularities (beads) so as to ensure a heat radiation area and strength. In this case, the number of parts can be reduced and the assembly time can be reduced.
  • the first and second shell plates 76 and 77 are alternately arranged. In this case, it is possible to further reduce the number of types of parts.
  • the sub radiator 5 and the coolant cooling unit 70 are not necessarily integrated by brazing.
  • the structure is made by brazing the two parts separately and then crimping the periphery with the packing in between, it is possible to achieve more appropriate brazing conditions for each, and brazing Can be achieved.
  • the refrigerant water cooling unit 8 (or the refrigerant water cooling unit 70) of the first to third embodiments performs heat exchange between the cooling water that cools the electric drive unit 4 and the refrigerant of the refrigeration cycle.
  • the present invention is not limited to this, and heat exchange can be performed between the first fluid that cools the first heating element and the second fluid that cools the second heating element.
  • FIGS. Fig. 14 is a block diagram of the combined heat exchanger 1 for a vehicle
  • Fig. 15 is a schematic perspective view of the combined heat exchanger 1 for a vehicle
  • Fig. 16 is a refrigerant water cooling section (water cooling) installed in the tank 5c of the sub-rajator 5.
  • Fig. 17 is a side view of the refrigerant water cooling unit (water-cooled capacitor) installed in the sub radiator tank
  • Fig. 18 is an exploded view of the main part of the refrigerant water cooling unit (water-cooled capacitor).
  • FIG. 19 (a) is a perspective view of the main part showing the arrangement of the inner fins in the tube
  • FIG. 19 (b) is a front view of the main part of the inner fins.
  • the refrigerant water-cooling section (water-cooled condenser) 8 of the fourth embodiment is similar to the refrigerant water-cooling section 8 of the second embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals. The explanation is omitted.
  • a single notch that enters the longitudinal inner side of the tube 10 at both longitudinal ends of each tube 10 and at the center in the width direction of the tube 10 Part l ib is provided.
  • the notch l ib has a semicircular arc shape.
  • Beads 12a and 12b are projected at appropriate positions on the outer surfaces of the tubes 10 in the thickness direction (both flat surfaces).
  • the bead portions 12a and 12b located at the same position on the flat surface are the bead portions 12a,
  • the longitudinal direction of 12b is set in a different direction.
  • the adjacent tubes 10 in the stacking direction are arranged at equal intervals by adjoining the bead portions 12a and 12b. The cooling water passes between the tubes 10 using this interval.
  • the bead portions 12a and 12b of the tube 10 arranged on the outermost side are in contact with a bead portion 30 (shown in FIG. 17) protruding from the inner surface of the tank 5c. Thereby, the coolant cooling unit 8 is accommodated so as not to move in the left-right direction in the tank 5c.
  • an in-tube flow path 13 extending along the longitudinal direction of the tube is formed inside each tube 10.
  • the tube internal flow passage 13 is open to both longitudinal end surfaces 11 a of the tube 10.
  • Inner fins 14 are arranged in the tube internal flow passage 13.
  • the tank members constituting each of the tanks 20A and 20B are an outer tank member 21 disposed on the outer side in the longitudinal direction of the tube 10 with respect to the longitudinal end surface 1 la of each tube 10, and a tube from the outer tank member 21.
  • An inner tank member 22 disposed on the inner side in the longitudinal direction, and a pair of blocking plates 23 disposed at both end positions of the cylindrical space formed by the outer tank member 21 and the inner tank member 22. It is configured.
  • Each outer tank member 21 is a flat plate material.
  • the upper outer tank member 21 is in contact with the ceiling of the tank 5c, and the lower outer tank member 21 is in contact with the bottom surface of the tank 5c.
  • the coolant cooling unit 8 is accommodated so as not to move in the vertical direction in the tank 5c.
  • a connector insertion hole 21a (shown in FIG. 18) is formed in the center of each outer tank member 21! /.
  • An inlet-side connector 24 is attached to the connector insertion hole 21 a of one outer tank member 21, and an outlet-side connector 25 is attached to the connector insertion hole 21 a of the other outer tank member 21.
  • the connectors 24 and 25 are projected outside the tank 5c of the sub radiator 5! /.
  • the caulking claw portions 21b are projected from appropriate positions on the periphery of the outer tank member 21, respectively.
  • the outer tank member 21 and the inner tank member 22 are temporarily assembled by crimping the crimping claws 21b.
  • the inner tank member 22 has peripheral flat portions on both sides that are in close contact with the peripheral edge of the outer tank member 21.
  • a force is also integrally formed with 22a and a bent portion 22b which is located between the peripheral flat portions 22a on both sides and is bent inward in a semicircular arc shape following the notch 1 lb of the tube 10.
  • the inner tank member 22 is formed with a pair of closing plate insertion holes 22d at both side positions outside the plurality of tube insertion holes 22c.
  • Each closing plate 23 is inserted into a closing plate insertion hole 22d of the inner tank member 22, respectively.
  • the insertion tip surface of each closing plate 23 is in contact with the inner surface of the outer tank member 21.
  • tank internal passages 26 are located inside the outer tank member 21 and the inner tank member 22, and both sides thereof are closed by the pair of closing plates 23. Is formed. That is, the tank inner passage 26 is formed in a partial region inside the longitudinal end surface 11a of the tube 10 with the inner surface of the outer tank member 21 as the outer surface of the tank inner passage 26. The tank passage 26 communicates with the tube passage 13 at the notch l ib of each tube 10.
  • each tube 10 and each tank 20A, 20B specifically, between the longitudinal end surface 11a of the tube 10 and the inner surface of the outer tank member 21, and The tube 10 and the inner surface of the tube insertion hole 22c of the inner tank member 22 are brazed.
  • the inner fin 14 has a wave shape in the width direction.
  • the inner fin 14 is formed in a dimension that is disposed only at an inner position further than the innermost position of the notch portion ib at both ends in the longitudinal direction of the tube 10.
  • Both end surfaces of the inner fin 14 in the longitudinal direction are formed as straight cut surfaces 14a cut along the direction perpendicular to the longitudinal direction.
  • This straight force surface 14a is in contact with a pair of left and right projections 12c projecting into the tube internal flow passage 13 of the tube 10, so that the inner fin 14 cannot move within the tube internal flow passage 13. Is contained.
  • the pair of left and right projections 12c are elliptical in an oblique direction with respect to the straight force surface 14a of the inner fin 14. The flow of multiple channels and the entrance / exit of the shift are not blocked!
  • the tanks 20A, 20B have an outer tank member 21 disposed outside the longitudinal end surface 1 la of the tube 10, and the inner surface of the outer tank member 21 is the outer surface of the tank inner passage 26. As shown, an in-tank passage 26 is formed on the inner side in the longitudinal direction of the tube 10 from the longitudinal end surface 11a of the tube 10.
  • the longitudinal dimension L6 of the tube 10 approaches the dimension of the installation width L7 of the refrigerant water cooling unit 8.
  • the end region in the longitudinal direction of the tube 10 where the tank passage 26 is not formed becomes a heat exchange region.
  • the heat exchange efficiency can be improved without changing the overall size.
  • the outer tank member 21 is in contact with the longitudinal end surface 11a of the tube 10. Therefore, the dimension L6 in the longitudinal direction of the tube 10 can be made closer to the dimension of the installation width L7 of the refrigerant water cooling unit 8. Therefore, the heat exchange efficiency is further improved. Specifically, in a region where the tank passage 26 is not formed at the longitudinal end of the tube 10, the dimension L6 is slightly shorter than the installation width L7 of the refrigerant water cooling unit 8, as shown in FIG. Therefore, the effective heat exchange area of the tube 10 is greatly expanded compared to the conventional case.
  • the notches l ib that enter the inside from the longitudinal end surface 11a of the tube 10 are respectively located at the center in the width direction of the tube 10.
  • a tank passage 26 is formed using 1 lb of the notch!
  • the in-tank passage 26 can be easily formed using the notch l ib. Further, since the notch l ib is provided between both ends of the tube 10 in the width direction, the rigidity of the tube 10 does not extremely decrease.
  • each tube 10 since the notch l ib formed at the longitudinal end of each tube 10 is single, a single tank internal passage 26 can be formed. There may be a plurality of notches l ib.
  • the notch l ib has a substantially semicircular arc shape. Therefore, the notch l ib As a result, the outer surface of the tanks 20A and 20B on the tube 10 side is almost semicircular, so the cooling water flowing in the vicinity of the tanks 20A and 20B and outside the tubes 10 is indicated by the arrow a in FIG. It flows smoothly. Therefore, it contributes to improvement of heat exchange. Further, since the tank passage 26 is also semicircular, the tanks 20A and 20B have a shape excellent in the pressure resistance of the refrigerant flowing through the tank passage 26.
  • the tanks 20A and 20B are provided with a plurality of tube insertion holes at intervals.
  • each of the tanks 20A, 20B is arranged inside the outer tank member 21 in addition to the outer tank member 21, and a plurality of tube bottles into which the longitudinal ends of the tubes 10 enter.
  • An inner tank member 22 having an inlet hole 22c is provided, and an in-tank passage 26 is formed inside the outer tank member 21 and the inner tank member 22. Therefore, the tanks 20A and 20B can be formed by assembling the outer tank member 21 and the inner tank member 22.
  • the inner tank member 22 is located between the peripheral flat portions 22a on both sides that are in close contact with the outer tank member 21 and the peripheral flat portions 22a on both sides, and the notch portion l of the tube 10 is provided. and a bent portion 22b that bends inward following ib. Therefore, by using the tube 10 having the notch l ib at the longitudinal end, the liquid-tight tank passage 26 can be easily formed by the outer tank member 21, the inner tank member 22, and the pair of closing plates 23. . Therefore, the refrigerant water cooling unit 8 can be manufactured without increasing the number of parts compared to the conventional example.
  • the end portions of the tubes 10 in the longitudinal direction and the locations where the tanks 20A and 20B abut each other are brazed. Accordingly, the portions of the tubes 10 and the tanks 20A, 20B that are in contact with each other are firmly fixed in a liquid-tight manner. Further, since the longitudinal end of each tube 10 is brazed to both the inner tank member 22 and the outer tank member 21, the fixing strength between each tube 10 and the tank 20 is improved, and as a result, the coolant water cooling is performed. Strength of part 8 is improved To do.
  • Fig. 20 shows the structure of the inner fin itself and a modified example of its arrangement.
  • Fig. 20 (a) is a cross-sectional view of the main part showing the arrangement of the inner fin
  • Fig. 20 (b) is a front view of the main part of the inner fin. It is.
  • the inner fin 15 has a wave shape in the width direction as in the fourth embodiment.
  • the inner fin 15 is formed to have substantially the same length as the tube 10 unlike the fourth embodiment.
  • both end portions in the longitudinal direction of the inner fin 15 are formed on a V-shaped cut surface 15a that gradually cuts inwardly toward the center from both ends in the width direction.
  • the left and right ends of the V-shaped cut surface 15 a abut against the outer tank member 21, so that the inner fin 15 cannot move in the tube flow path 13.
  • the V-shaped cut surface 15a is located outside the tank passage 26.
  • the inner fin 15 is not arranged near the entrance entering the tube internal flow passage 13 from the tank internal passage 26 by the V-shaped cut surface 15a! /.
  • the refrigerant entering the tubes 10 from the tank passage 26 smoothly flows into the tubes 10 without being interfered by the inner fins 15 in the flow direction.
  • FIGS. 21 to 25 show a fifth embodiment of the present invention
  • FIG. 21 is a front view of a refrigerant water cooling unit installed in the tank part of the sub radiator
  • FIG. 22 is a refrigerant water cooling unit installed in the tank part of the sub radiator.
  • FIG. 23 is an exploded perspective view of the main part of the refrigerant water cooling unit
  • FIG. 24 is a cross-sectional view taken along line AA in FIG. 23
  • FIG. 25 is a cross-sectional view taken along line BB in FIG.
  • the tanks 20A and 20B are composed of an outer tank member 21, a tube converging member 22A, and a pair of closed plates 23. Similar to the inner tank member 22 of the fourth embodiment, the tube converging member 22A has the same contour shape including the peripheral flat portion 22a on both sides and the bent portion 22b at the center thereof. In contrast, a single tube converging hole 27 is formed in which the ends of all the tubes 10 enter. The ends of all the tubes 10 are inserted into the single tube converging hole 27. Thereby, the end portions of the plurality of tubes 10 are bundled by the tube bundling member 22A. Further, plate locking grooves 22e are formed at both ends of the bent portion 22b of the tube converging member 22A.
  • Each closing plate 23 has a locking projection 23a on an arcuate surface. Each closing plate 23 is disposed at both ends of the outer tank member 21 and the tube converging member 22A in a state where the locking projection 23a is locked in the plate locking groove 22e.
  • the tanks 20A and 20B have tanks surrounded by the outer tank member 21, the tube converging member 22A, and the plurality of tubes 10, and closed on both sides by the pair of closing plates 23.
  • a passage 26 is formed. That is, the tank inner passage 26 is formed in a partial region inside the longitudinal end surface 11a of the tube 10 with the inner surface of the outer tank member 21 being the outer surface of the tank inner passage 26.
  • the in-tank passage 26 communicates with the in-tube passage 13 at the notch portion ib of each tube 10.
  • the portions of the refrigerant water cooling unit 8 that are in contact with each other are fixed by brazing. Accordingly, between the tubes 10 and the tanks 20A, 20B, the portions of the tubes 10 and the inner surfaces of the tube converging holes 27 of the tube collecting member 22A that are in contact with each other are brazed. As described above, the widened portions 16 that are in contact with each other are brazed between the adjacent tubes 10. [0152] Since the other configuration is the same as that of the fourth embodiment, description thereof will be omitted to avoid redundant description. The same components in the drawings are denoted by the same reference numerals for clarification.
  • the tank internal passage 26 is formed inside the longitudinal end face 1 la of the tube 10, so that the longitudinal dimension L 6 of the tube 10 is reduced to the refrigerant.
  • Dimension of installation width of water cooling part 8 Can be made long so as to approach L7.
  • the end region of the tube 10 where the tank passage 26 is not formed becomes a heat exchange region.
  • the outer tank member 21 is in contact with the longitudinal end surface 11a of the tube 10. Therefore, since the length L6 of the tube 10 in the longitudinal direction can be made as long as possible as close as possible to the width L7 of the installation width of the refrigerant water cooling section 8, the heat exchange efficiency is further improved. Specifically, in the region of the tube 10 where the tank passage 26 is not formed, as shown in FIG. 21, the dimension L6 slightly shorter than the installation width dimension L7 of the refrigerant water cooling section 8 is the actual length of the tube 10. Since the length is L6, the effective heat exchange area of the tube 10 is greatly expanded compared to the conventional case.
  • the end portions on both sides in the longitudinal direction of the tube 10 are formed in the widened portion 16 that is wider than the other portions, and the widened portions 16 of both adjacent tubes 10 are liquid-tight.
  • the tanks 20A and 20B are formed by the outer tank member 21 and the widened portions 16 of the plurality of tubes 10. Therefore, since the plurality of tubes 10 can be arranged at equal intervals by arranging the plurality of tubes 10 in a state where the widened portions 16 thereof are in close contact with each other, the assembling property of the plurality of tubes 10 is excellent.
  • each of the tanks 20A and 20B has a single unit in addition to the outer tank member 21.
  • the tube converging member 22A having the tube converging hole 27 is formed, and the widened portions 16 of the plurality of tubes 10 that are liquid-tightly joined to the tube converging hole 27 of the tube converging member 22A are collectively inserted.
  • the end of multiple tubes 10 by the tube converging member 22A The parts are united. Therefore, the plurality of tubes 10 can be firmly fixed to the outer tank member 21 by the tube converging member 22A. Therefore, the fixing strength between the tubes 10 and the tanks 20A and 20B is improved, and the strength of the heat exchanger is improved.
  • the cutout portion ib has a substantially semicircular arc shape as in the fourth embodiment. Accordingly, the outer surface of the tanks 20A and 20B on the tube 10 side is almost semicircular due to the notch l ib, so the cooling water flowing outside the tanks 20A and 20B and outside the tube 10 is Flows smoothly as indicated by the arrow b in Fig. 21. Therefore, it contributes to the improvement of heat exchange. Further, since the tank passage 26 also has a semicircular arc shape, the tanks 20A and 20B have a shape excellent in pressure resistance of the refrigerant flowing through the tank passage 26.
  • each tube 10 and the pair of tanks 20A, 20B are in contact with each other, but also the widened portions 16 of the adjacent tubes 10 that are in contact with each other are brazed. ing. Therefore, it is possible to reliably fix the widened portions 16 of the tube 10 and secure the liquid tightness of the gaps by the brazing operation.
  • the configuration and arrangement of the inner fins 14 may adopt a modification of the fourth embodiment.
  • the heat exchanger of the present invention is applied to the refrigerant water cooling unit 8 is shown.
  • the refrigerant air cooling unit 7 air cooling type condenser
  • the internal cooling water flow It can also be applied to radiators and other heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A refrigerant cooling section (8) of a compound heat exchanger (1) has a core constructed by multiply stacking flat refrigerant tubes (10) and also has refrigerant tanks (20A, 20B) communicating with the flat refrigerant tubes (10) on both sides in the longitudinal direction of the flat refrigerant tubes (10). In the lateral direction of the flat refrigerant tubes (10) of the refrigerant tanks (20A, 20B), the width (L1) of in-tank passages (26) is less than the width (L2) of the flat refrigerant tubes.

Description

明 細 書  Specification
複合型熱交換器および熱交換器  Combined heat exchanger and heat exchanger
技術分野  Technical field
[0001] 本発明は、複合型熱交換器および熱交換器に関する。  [0001] The present invention relates to a composite heat exchanger and a heat exchanger.
背景技術  Background art
[0002] 例えば、特開 2006— 162176号公報には、エンジン冷却水の熱を放熱する熱交 換器が開示されている。この熱交換器は、エンジン冷却水と空気との間で熱交換を 行わせるための複数の冷却水用偏平チューブと、複数の冷却水用偏平チューブの 長手方向一端の開口端が接続される冷却水タンクと、複数の冷却水用偏平チューブ の長手方向他端の開口端が連通接続される冷却水タンクと、を備えて構成されてい る。エンジンから熱を奪って高温になったエンジン冷却水は、熱交換器に流れこみ、 上流側の冷却水タンク、冷却水用偏平チューブ、下流側の冷却水タンクの順に流れ 、再び、エンジンに向けて戻っていく。  For example, Japanese Patent Application Laid-Open No. 2006-162176 discloses a heat exchanger that dissipates heat of engine cooling water. This heat exchanger is a cooling system in which a plurality of cooling water flat tubes for exchanging heat between engine cooling water and air and the opening end of one end in the longitudinal direction of the plurality of cooling water flat tubes are connected. A water tank and a cooling water tank to which open ends at the other ends in the longitudinal direction of the plurality of cooling water flat tubes are connected in communication are configured. The engine cooling water that has become hot due to heat drawn from the engine flows into the heat exchanger and flows in the order of the upstream cooling water tank, the cooling water flat tube, and the downstream cooling water tank. And go back.
[0003] この熱交換器の下流側の冷却水タンク内には、冷媒水冷部が配置されている。この 冷媒水冷部は、冷凍サイクルのコンプレッサから吐出された冷媒を内部に流通させ て、この冷媒を、冷却水タンク内の冷却水で冷却するものである。  [0003] A coolant cooling unit is disposed in a cooling water tank on the downstream side of the heat exchanger. The refrigerant water cooling unit circulates the refrigerant discharged from the compressor of the refrigeration cycle and cools the refrigerant with the cooling water in the cooling water tank.
[0004] この冷媒水冷部は、冷媒用偏平チューブと、コンプレッサ側からの冷媒が流入する 冷媒タンクと、冷媒用偏平チューブを流れた冷媒が流入する冷媒タンクと、を備えて 構成されている。  [0004] This refrigerant water cooling section is configured to include a refrigerant flat tube, a refrigerant tank into which refrigerant from the compressor flows in, and a refrigerant tank into which refrigerant flowing through the refrigerant flat tube flows.
発明の開示  Disclosure of the invention
[0005] しかしながら、冷媒水冷部の冷媒タンクには、コンプレッサ側からは高温高圧の冷 媒が流入するため、冷媒タンクの強度を確保する必要がある。冷媒水冷部の冷媒タ ンクの十分な強度を得ようとした場合には、冷媒タンクの大型化を招く虞がある。この ように冷媒タンクが大型化するとレイアウトが困難になるという問題がある。  However, since the high-temperature and high-pressure refrigerant flows into the refrigerant tank of the refrigerant water cooling section from the compressor side, it is necessary to ensure the strength of the refrigerant tank. If it is attempted to obtain sufficient strength of the refrigerant tank in the refrigerant water cooling section, the refrigerant tank may be increased in size. If the refrigerant tank becomes large in this way, there is a problem that the layout becomes difficult.
[0006] また、チューブおよびチューブの長手方向両端の一対のタンクを備えて構成される 熱交換器において、タンクが大型化すると、チューブの長手方向サイズが小さくなり、 熱交換性能が低下してしまう。 [0007] 本発明の第 1の目的は、冷媒水冷部の冷媒タンクの強度を確保しつつ冷媒タンク の小型化を図ることである。 [0006] Further, in a heat exchanger configured to include a tube and a pair of tanks at both ends in the longitudinal direction of the tube, when the tank is enlarged, the longitudinal size of the tube is reduced and the heat exchange performance is degraded. . [0007] A first object of the present invention is to reduce the size of the refrigerant tank while ensuring the strength of the refrigerant tank in the refrigerant water cooling section.
[0008] 本発明の第 2の目的は、冷媒水冷部の強度を確保しつつ冷媒水冷部の小型化を 図ることである。 [0008] A second object of the present invention is to reduce the size of the refrigerant water cooling unit while ensuring the strength of the refrigerant water cooling unit.
[0009] 本発明の第 3の目的は、チューブと一対のタンクとを備える熱交換器においてチュ 一ブの長手方向サイズを長くして熱交換効率の向上を図ることである。  [0009] A third object of the present invention is to improve heat exchange efficiency by increasing the longitudinal size of a tube in a heat exchanger including a tube and a pair of tanks.
[0010] 本発明の第 1のアスペクトは、内部に冷却水用内部通路を有する冷却水用偏平チ ユーブ(5a)を、複数多段に積層したコア部と、前記コア部を通過した冷却水が流入 する冷却水タンク(5c)と、を備えた冷却水用熱交換器(5)と、前記冷却水用熱交換 器(5)の前記冷却水タンク(5c)に内蔵され、内部に冷媒を流通させることで当該冷 媒と前記冷却水タンク(5c)内の冷却水との間で熱交換させる冷媒水冷部(8)と、を 有する複合型熱交換器(1)であって、前記冷媒水冷部(8)は、内部に冷媒用内部通 路を有する冷媒用偏平チューブ(10)が、複数多段に積層したコア部と、前記冷媒用 偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を有し且つ前記 冷媒用偏平チューブ(10)の長手方向一方の開口端部が挿入されて前記冷媒用内 部通路と連通する第 1の冷媒タンク(20A)と、前記冷媒用偏平チューブ(10)の積層 方向に向けて延在するタンク内通路(26)を有し且つ前記冷媒用偏平チューブ(10) の長手方向他方の開口端部が挿入されて前記内部通路と連通する第 2の冷媒タンク (20B)と、を有し、  [0010] In the first aspect of the present invention, a core portion in which a plurality of cooling water flat tubes (5a) each having an internal passage for cooling water are stacked in multiple stages, and the cooling water that has passed through the core portion is provided. A cooling water heat exchanger (5) having an inflowing cooling water tank (5c), and the cooling water tank (5c) of the cooling water heat exchanger (5), in which refrigerant is contained. A combined heat exchanger (1) having a refrigerant water cooling section (8) for exchanging heat between the cooling medium and the cooling water in the cooling water tank (5c) by circulating the refrigerant; The water cooling section (8) extends in the stacking direction of the core section in which a plurality of refrigerant flat tubes (10) each having an internal refrigerant path are stacked in multiple stages and the refrigerant flat tubes (10). A tank internal passage (26) that is inserted into one end of the refrigerant flat tube (10) in the longitudinal direction. A first refrigerant tank (20A) communicating with the passage, and a tank passage (26) extending in the stacking direction of the refrigerant flat tube (10), and the refrigerant flat tube (10) A second refrigerant tank (20B) in which the other opening end in the longitudinal direction is inserted and communicated with the internal passage,
前記第 1の冷媒タンク(20A)および前記第 2の冷媒タンク(20B)は、前記冷媒用 偏平チューブ(10)の幅方向に沿って、前記タンク内通路(26)の幅(L1)が前記冷 媒用偏平チューブの幅 (L2)よりも小さ!/、。  The first refrigerant tank (20A) and the second refrigerant tank (20B) have a width (L1) of the tank passage (26) along the width direction of the refrigerant flat tube (10). Smaller than the width (L2) of the flat tube for cooling medium!
[0011] 本発明の第 2のアスペクトは、第 1の発熱体の熱を第 1流体を介して放熱する第 1の 熱交換器(5)であって、前記第 1の流体が流通する第 1流体タンク(5c)を有する第 1 の熱交換器(5)と、第 2の発熱体の熱を第 2流体を介して放熱する第 2の熱交換器(7 )と、前記第 2の発熱体と前記第 2の熱交換器(7)との接続して前記第 2流体を循環さ せる第 2流体ラインの一部を構成するとともに、前記第 1流体タンク(5c)に内蔵されて 、当該第 1流体タンク(5c)内の第 1流体と第 2流体との間で熱交換を行う第 2流体冷 却部(8)と、を有する複合型熱交換器(1)であって、前記第 2流体冷却部(8)は、第 2流体用内部通路を有する偏平チューブ(10)を複数多段に積層したコア部と、前記 偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を内部に有し、 前記偏平チューブ(10)の一方の開口端部が挿入されて前記第 2流体用内部通路と 連通しており、前記偏平チューブ(10)のそれぞれに供給する上流側の第 2流体タン ク(20A)と、前記偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26 )を内部に有し、前記偏平チューブ(10)の他方の開口端部が挿入されて前記第 2流 体用内部通路と連通しており、前記偏平チューブ(10)を流れた第 2流体が流れ込む 下流側の第 2流体タンク(20B)と、を有し、前記上流側の第 2流体タンク(20A)およ び前記下流側の第 2流体用タンク(20B)は、当該タンク内通路(26)の幅 (L1)が前 記偏平チューブの幅(L2)よりも小さ!/、。 [0011] A second aspect of the present invention is a first heat exchanger (5) that dissipates the heat of the first heating element via the first fluid, in which the first fluid flows. A first heat exchanger (5) having one fluid tank (5c), a second heat exchanger (7) for radiating the heat of the second heating element via the second fluid, and the second heat exchanger (5). A part of the second fluid line that circulates the second fluid is connected to the heating element and the second heat exchanger (7), and is built in the first fluid tank (5c). , A second fluid cooling unit that performs heat exchange between the first fluid and the second fluid in the first fluid tank (5c). A combined heat exchanger (1) having a rejection section (8), wherein the second fluid cooling section (8) includes a plurality of flat tubes (10) each having a second fluid internal passage. And a tank internal passage (26) extending in the laminating direction of the flat tube (10), and one open end of the flat tube (10) is inserted into the first passage. 2 Communicating with the fluid internal passage and extending in the stacking direction of the upstream second fluid tank (20A) to be supplied to each of the flat tubes (10) and the flat tubes (10) The tank has a passage (26) inside, the other open end of the flat tube (10) is inserted and communicates with the second fluid internal passage, and flows through the flat tube (10). A second fluid tank (20B) on the downstream side into which the second fluid flows, and the second fluid tank (20A) on the upstream side and the lower fluid tank (20A) The second fluid tank side (20B) is smaller than the tank passage width (L1) is earlier SL flat tubes (26) Width (L2)! /,.
[0012] 本発明の第 3のアスペクトは、第 1の発熱体との間に第 1流体を循環させることで第 1の発熱体の熱を第 1流体を介して放熱する第 1の熱交換器(5)であって、第 1流体 が流通する第 1流体タンク(5c)を有する第 1の熱交換器(5)と、第 2の発熱体との間 に第 2流体を循環させることで第 2の発熱体の熱を第 2流体を介して放熱する第 2の 熱交換器 (7)と、前記第 2の発熱体と前記第 2の熱交換器 (7)とを接続して第 2流体 を循環させる第 2流体ラインの一部を構成するとともに、前記第 1流体タンク(5c)に取 り付けられ且つ前記第 1流体タンク(5c)に連通接続されることで、当該第 1流体タン ク(5c)からの第 1流体と、第 2流体との間で熱交換を行う第 2流体冷却部(70)と、を 有する複合型熱交換器であって、前記第 2流体冷却部(70)は、前記第 1流体タンク (5c)からの第 1流体の流入方向とプレート面が直交する平板形状の第 1のプレートと 第 2のプレート(76, 77)が交互に積層されて第 1のプレートと第 2のプレートとが離間 してその周縁部が液密に接合された構成であり、プレートの積層方向に向けて、第 2 流体が流れる第 1の通路(78)と、第 1流体が流れる第 2の通路(79)と、が交互に設 けられている。 [0012] A third aspect of the present invention provides a first heat exchange in which heat of the first heating element is radiated through the first fluid by circulating a first fluid between the first heating element and the first heating element. Circulating a second fluid between a first heat exchanger (5) having a first fluid tank (5c) through which the first fluid flows and a second heating element The second heat exchanger (7) for radiating the heat of the second heating element via the second fluid is connected to the second heating element and the second heat exchanger (7). The second fluid line that circulates the second fluid constitutes a part of the second fluid line, and is attached to the first fluid tank (5c) and connected to the first fluid tank (5c). A composite heat exchanger having a first fluid from a first fluid tank (5c) and a second fluid cooling section (70) for exchanging heat between the second fluid and the second fluid The cooling unit (70) includes the first fluid The first plate and the second plate are formed by alternately laminating the plate-shaped first plate and the second plate (76, 77) whose plate surface is perpendicular to the flow direction of the first fluid from the tank (5c). Are separated from each other and the peripheral edge thereof is liquid-tightly joined. The first passage (78) through which the second fluid flows and the second passage through which the first fluid flows are arranged in the stacking direction of the plates. (79) and are alternately provided.
[0013] 本発明の第 4のアスペクトは、内部に冷却水用内部通路を有する冷却水用偏平チ ユーブ(5a)を、複数多段に積層したコア部と、前記コア部を通過した冷却水が流入 する冷却水タンク(5c)と、を備えた冷却水用熱交換器(5)と、前記冷却水用熱交換 器(5)の前記冷却水タンク(5c)に内蔵され、内部に冷媒を流通させることで当該冷 媒と前記冷却水タンク(5c)内の冷却水との間で熱交換させる冷媒水冷部(8)と、を 有する複合型熱交換器(1)であって、前記冷媒水冷部(8)は、内部に冷媒用内部通 路を有する冷媒用偏平チューブ(10)が、複数多段に積層したコア部と、前記冷媒用 偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を有し且つ前記 冷媒用偏平チューブ(10)の長手方向一方の開口端部が挿入されて前記冷媒用内 部通路と連通する第 1の冷媒タンク(20A)と、前記冷媒用偏平チューブ(10)の積層 方向に向けて延在するタンク内通路(26)を有し且つ前記冷媒用偏平チューブ(10) の長手方向他方の開口端部が挿入されて前記内部通路と連通する第 2の冷媒タンク (20B)と、を有し、前記冷媒タンク(20A, 20B)を構成するタンク部材は、複数の前 記冷媒用偏平チューブ(10)の長手方向端面(1 la)より前記チューブ(10)の長手 方向外側に配置された外側タンク部材(21)を有し、前記外側タンク部材(21 )の内 面を前記タンク内通路(26)の外面とし、前記チューブ(10)の長手方向端面(11a) より前記チューブ(10)の長手方向内側に前記タンク内通路(26)が形成されている。 [0013] In a fourth aspect of the present invention, there is provided a core portion in which a plurality of cooling water flat tubes (5a) each having an internal passage for cooling water are stacked in a plurality of stages, and cooling water having passed through the core portion. A cooling water heat exchanger (5) having an inflowing cooling water tank (5c), and the cooling water heat exchange Refrigerant water cooling unit (5) which is built in the cooling water tank (5c) of the cooler (5) and exchanges heat between the cooling medium and the cooling water in the cooling water tank (5c) by circulating the refrigerant therein. 8), wherein the refrigerant water cooling section (8) has a plurality of refrigerant flat tubes (10) each having a refrigerant internal passage laminated in a plurality of stages. The tank has a tank passage (26) extending in the stacking direction of the refrigerant flat tube (10), and one open end of the refrigerant flat tube (10) in the longitudinal direction is inserted. A first refrigerant tank (20A) communicating with the refrigerant internal passage and a tank internal passage (26) extending in the stacking direction of the refrigerant flat tube (10) and A second refrigerant tank (20B) in which the other opening end in the longitudinal direction of the flat tube (10) is inserted and communicated with the internal passage; And the tank member constituting the refrigerant tank (20A, 20B) is disposed on the outer side in the longitudinal direction of the tube (10) from the longitudinal end face (1 la) of the plurality of flat tubes for refrigerant (10). An outer tank member (21), the inner surface of the outer tank member (21) being the outer surface of the tank passage (26), and the tube (10) from the longitudinal end surface (11a) of the tube (10). ) Inside the tank in the longitudinal direction.
[0014] 本発明の第 5のアスペクトは、内部にチューブ内流通路(13)をそれぞれ有する複 数のチューブ(10)と、前記チューブ(10)の長手方向両端側に配置され、前記チュ 一ブ内流通路(13)と連通接続されるタンク内通路(26)を有する一対のタンク(20A , 20B)と、を備えた熱交換器(8)であって、前記タンク(20A, 20B)を構成するタン ク部材は、複数の前記チューブ(10)の長手方向端面(11a)より前記チューブ(10) の長手方向外側に配置された外側タンク部材(21)を有し、前記外側タンク部材(21 )の内面を前記タンク内通路(26)の外面とし、前記チューブ(10)の長手方向端面( 1 la)より前記チューブ(10)の長手方向内側に前記タンク内通路(26)が形成されて いる。 [0014] A fifth aspect of the present invention includes a plurality of tubes (10) each having an in-tube flow passage (13) therein, and disposed on both ends in the longitudinal direction of the tubes (10). A heat exchanger (8) comprising a pair of tanks (20A, 20B) having a tank internal passage (26) connected to the internal flow passage (13), the tank (20A, 20B) The tank member constituting the outer tank member has an outer tank member (21) disposed on the outer side in the longitudinal direction of the tube (10) with respect to the longitudinal end surface (11a) of the plurality of tubes (10). The inner surface of the tank (21) is the outer surface of the tank passage (26), and the tank passage (26) is formed on the inner side in the longitudinal direction of the tube (10) from the longitudinal end surface (1 la) of the tube (10). It has been done.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]図 1は本発明の第 1実施形態の車両用複合型熱交換器 1を概念的に示すプロ ック図。  FIG. 1 is a block diagram conceptually showing a composite heat exchanger 1 for a vehicle according to a first embodiment of the present invention.
[図 2]図 2は同車両用複合型熱交換器 1の斜視図。  FIG. 2 is a perspective view of the composite heat exchanger 1 for the vehicle.
[図 3]図 3は同車両用複合型熱交換器 1のサブラジェータ 5の正面図。 [図 4]図 4は同サブラジェータ 5のタンク 5c内に配置された冷却水冷部 8の正面図。 [Fig. 3] Fig. 3 is a front view of the sub radiator 5 of the composite heat exchanger 1 for the vehicle. [FIG. 4] FIG. 4 is a front view of the cooling water cooling unit 8 disposed in the tank 5c of the sub-rajator 5.
[図 5]図 5は同冷媒水冷部 8の側面図。  FIG. 5 is a side view of the refrigerant water cooling unit 8.
園 6]図 6は同冷媒水冷部 8の上側部分の分解斜視図。 6] FIG. 6 is an exploded perspective view of the upper part of the refrigerant water cooling unit 8.
園 7]図 7は同サブラジェータ 5の分解斜視図。 7] Fig. 7 is an exploded perspective view of the sub radiator 5.
園 8]図 8は第 2実施形態の冷媒水冷部 8の正面図。 8] FIG. 8 is a front view of the refrigerant water cooling unit 8 of the second embodiment.
[図 9]図 9は同冷媒水冷部 8の側面図。  FIG. 9 is a side view of the refrigerant water cooling unit 8.
園 10]図 10は第 3実施形態の車両用複合型熱交換器 1の斜視図。 FIG. 10] FIG. 10 is a perspective view of the vehicle composite heat exchanger 1 of the third embodiment.
[図 11]図 11は同車両用複合型熱交換器 1のサブラジェータ 5および冷媒水冷部 70 の正面図。  FIG. 11 is a front view of the sub radiator 5 and the coolant cooling unit 70 of the composite heat exchanger 1 for the vehicle.
[図 12]図 12は同冷媒水冷部 70を構成するシェルプレート 76、 77を模式的に示す側 面図であり、(a)は第 1のシェルプレート 76を示し、(b)は第 2のシェルプレートを示す [FIG. 12] FIG. 12 is a side view schematically showing shell plates 76 and 77 constituting the refrigerant water cooling unit 70, (a) showing the first shell plate 76, and (b) showing the second shell plate 76. Showing shell plate
Yes
[図 13]図 13は図 12の A— A断面に沿う冷媒水冷部 70の断面図。  FIG. 13 is a cross-sectional view of the coolant cooling unit 70 along the AA cross section of FIG.
園 14]図 14は第 4実施形態の車両用複合型熱交換器 1を概念的に示すブロック図。 14] FIG. 14 is a block diagram conceptually showing the combined vehicle heat exchanger 1 of the fourth embodiment.
[図 15]図 15は車両用複合型熱交換器 1の斜視図。  FIG. 15 is a perspective view of the composite heat exchanger 1 for a vehicle.
園 16]図 16は同車両用複合型熱交換器 1のサブラジェータ 5のタンク部 5c内に設置 された冷媒水冷部 8の正面図。 16] FIG. 16 is a front view of the refrigerant water cooling section 8 installed in the tank section 5c of the sub radiator 5 of the composite heat exchanger 1 for the vehicle.
園 17]図 17は同冷媒水冷部 8の側面図。 17] Fig. 17 is a side view of the refrigerant water cooling unit 8.
園 18]図 18は同冷媒水冷部 8の要部の分解斜視図。 18] FIG. 18 is an exploded perspective view of the main part of the refrigerant water cooling unit 8.
[図 19]図 19 (a)は同冷却水冷部 8のチューブ内のインナーフィンの配置状態を示す 要部断面図、図 19 (b)は同インナーフィンの要部正面図。  [FIG. 19] FIG. 19 (a) is a cross-sectional view of the main part showing the arrangement of the inner fins in the tube of the cooling water cooling unit 8, and FIG. 19 (b) is a front view of the main part of the inner fin.
[図 20]図 20は第 4実施形態の変形例であって、図 20 (a)はチューブ内のインナーフ インの配置状態を示す要部断面図、図 20 (b)は同インナーフィンの要部正面図であ 園 21]図 21は第 5実施形態の冷媒水冷部 8の正面図。  [FIG. 20] FIG. 20 shows a modification of the fourth embodiment. FIG. 20 (a) is a cross-sectional view of the main part showing the arrangement of the inner fin in the tube, and FIG. 20 (b) is a main part of the inner fin. FIG. 21 is a front view of the refrigerant water cooling unit 8 of the fifth embodiment.
園 22]図 22は同冷媒水冷部 8の側面図。 22] FIG. 22 is a side view of the refrigerant water cooling unit 8.
園 23]図 23は同冷媒水冷部 8の要部分解斜視図。 Fig. 23] Fig. 23 is an exploded perspective view of the main part of the refrigerant water cooling unit 8.
[図 24]図 24は図 22中の A— A断面図。 [図 25]図 25は図 22中の B— B断面図。 [FIG. 24] FIG. 24 is a cross-sectional view taken along line AA in FIG. [FIG. 25] FIG. 25 is a BB cross-sectional view in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] (第 1実施形態)  [0016] (First embodiment)
図 1〜図 9を参照しつつ第 1実施形態を説明する。本実施形態の車両用複合型熱 交換器 1は、エンジンの駆動力および電動モータの駆動力の何れか一方あるいは両 方で走行可能なハイブリッド自動車に適用されるもので、自動車前面グリルからェン ジンルーム内に走行風 (冷却風)を取り込む冷却風ダクト内に配置されている。  The first embodiment will be described with reference to FIGS. The vehicle composite heat exchanger 1 according to the present embodiment is applied to a hybrid vehicle that can run on one or both of the driving force of an engine and the driving force of an electric motor. It is arranged in a cooling air duct that takes the traveling air (cooling air) into the gin room.
[0017] 図 1は本実施形態の車両用複合型熱交換器 1を概念的に示すブロック図である。  FIG. 1 is a block diagram conceptually showing a composite heat exchanger 1 for a vehicle according to this embodiment.
図 1に示すように、車両用複合型熱交換器 1は、車両のエンジン 2を冷却するメインラ ジエータ 3と、エンジン 2を補助する電動駆動部 (本実施形態では、電動モータおよ びこの制御用の電子部品等を含む電動駆動部) 4を冷却するサブラジェータ 5 (第 1 の熱交換器)と、車室内を冷却するための空調システムの冷凍サイクルを循環する冷 媒 (例えば CFC— 12など)を冷却するコンデンサ 6と、を備えて構成されている。コン デンサ 6は、冷凍サイクルのコンプレッサから吐出された高温高圧の冷媒を一次的に 冷却する冷媒水冷部 8と、冷媒水冷部 8の下流側にお!/、て、冷媒水冷部 8で冷却さ れた冷媒を二次的に冷却する冷媒空冷部 (第 2の熱交換器) 7と、を備えて構成され ている。  As shown in FIG. 1, the vehicular combined heat exchanger 1 includes a main radiator 3 that cools the engine 2 of the vehicle, and an electric drive unit that assists the engine 2 (in this embodiment, the electric motor and its control). Electric drive unit including electronic parts for the vehicle) 4 Sub radiator 5 (first heat exchanger) that cools the cooling medium that circulates the refrigeration cycle of the air conditioning system for cooling the passenger compartment (for example, CFC-12) Etc.) and a condenser 6 for cooling. The capacitor 6 is cooled by the refrigerant water cooling unit 8 that primarily cools the high-temperature and high-pressure refrigerant discharged from the compressor of the refrigeration cycle, and the refrigerant water cooling unit 8 downstream of the refrigerant water cooling unit 8. And a refrigerant air cooling unit (second heat exchanger) 7 for secondary cooling of the generated refrigerant.
[0018] 図 2に示すように、エンジン冷却用のメインラジェータ 3の風上側には、当該メインラ ジエータ 3に対面してサブラジェータ 5と、コンデンサ 6の冷媒空冷部 7と、が配置され ている。サブラジェータ 5とコンデンサ 6の冷媒空冷部 7とは上下に配置され、サブラ ジエータ 5がメインラジェータ 3の上半部に対向配置され、コンデンサ 6の空冷部 7が メインラジェータ 3の下半部に対向配置されている。また、コンデンサ 6の冷媒水冷部 8は、サブラジェータ 5に内蔵されている。  [0018] As shown in FIG. 2, on the windward side of the main radiator 3 for cooling the engine, a sub radiator 5 and a refrigerant air cooling unit 7 for the condenser 6 are arranged facing the main radiator 3. . The sub radiator 5 and the refrigerant air cooling part 7 of the condenser 6 are arranged vertically, the sub radiator 5 is arranged opposite to the upper half of the main radiator 3, and the air cooling part 7 of the condenser 6 faces the lower half of the main radiator 3. Has been placed. The refrigerant water cooling unit 8 of the capacitor 6 is built in the sub-rajator 5.
[0019] なお、コンデンサ 6の冷媒水冷部 8は、水冷式のコンデンサと言い換えることができ 、また、コンデンサ 6の冷媒空冷部 7は、空冷式のコンデンサと言い換えることができ  [0019] The refrigerant water cooling unit 8 of the capacitor 6 can be rephrased as a water cooling type capacitor, and the refrigerant air cooling unit 7 of the capacitor 6 can be rephrased as an air cooling type capacitor.
[0020] 図 1を参照するに、冷却水 C3が循環する冷却水ラインには、冷却水ラインに冷却 水 C3を循環させるための循環ポンプ P3と、エンジン 2と、エンジン 2の熱を大気に放 熱するメインラジェータ 3と、が介装されている。循環ポンプ P3を駆動すると、ェンジ ン 2からの冷却水(C3in)は、メインラジェータ 3に供給され、このメインラジェータ 3に おいて空気との間で熱交換が行われる。そして、メインラジェータ 3からの冷却水(C3 out)は、再びエンジン 2に供給される。 [0020] Referring to FIG. 1, in the cooling water line through which the cooling water C3 circulates, the circulation pump P3 for circulating the cooling water C3 to the cooling water line, the engine 2, and the heat of the engine 2 to the atmosphere. Release Heated main radiator 3 is interposed. When the circulation pump P3 is driven, the cooling water (C3in) from the engine 2 is supplied to the main radiator 3 and heat exchange is performed between the main radiator 3 and air. Then, the cooling water (C3 out) from the main radiator 3 is supplied to the engine 2 again.
[0021] また、冷却水 C1が循環する冷却水ラインには、冷却ラインに冷却水 C1を循環させ るための循環ポンプ P1と、電動駆動部 4と、電動駆動部 4の熱を大気に放熱するサ ブラジェータ 5と、が介装されている。循環ポンプ P1を駆動すると、電動駆動部 4から の冷却水(Clin)は、サブラジェータ 5に供給され、このサブラジェータ 5において空 気との間で熱交換が行われる。そして、サブラジェータ 5からの冷却水(Clout)は、 再び電動駆動部 4に供給される。  [0021] In addition, the cooling water line through which the cooling water C1 circulates dissipates heat from the circulation pump P1 for circulating the cooling water C1 through the cooling line, the electric drive unit 4, and the electric drive unit 4 to the atmosphere. Subjector 5 is installed. When the circulation pump P1 is driven, the cooling water (Clin) from the electric drive unit 4 is supplied to the sub radiator 5 and heat exchange is performed between the sub radiator 5 and the air. Then, the cooling water (Clout) from the sub radiator 5 is supplied to the electric drive unit 4 again.
[0022] 車室内を冷却するための空調システムは、冷凍サイクルのエバポレータを車室内に 配置して車室内の空気を冷却するとともに、冷凍サイクルのコンデンサ 6を、車室外 に配置してエバポレータで吸熱して車室内の熱を車室外に放熱するものである。な お、冷凍サイクルは、冷凍サイクルに冷媒を循環させるコンプレッサと、コンデンサ 6と 、リキッドタンクと、膨張手段と、エバポレータと、が順に接続されて構成される。コンプ レッサにより圧縮された高温高圧のガス冷媒 (C2in)は、コンデンサ 6の冷媒水冷部 8 に供給され、その後、コンデンサの冷媒空冷部 7に供給される。冷媒水冷部 8および 冷媒空冷部 7にお!/、て熱交換が行われ、ガス冷媒は高圧の液冷媒又は気液混合冷 媒となる。冷媒空冷部 7からの冷媒 (C2out)は、リキッドタンクにおいて気液分離され 、その後、膨張手段で断熱膨張させて低温低圧の液冷媒又は気液混合冷媒とし、ェ バポレータで車室内の空気と熱交換させて低圧のガス冷媒とした後、コンプレッサに 戻される。  [0022] The air conditioning system for cooling the passenger compartment has an refrigeration cycle evaporator arranged in the passenger compartment to cool the air in the passenger compartment, and a condenser 6 in the refrigeration cycle is arranged outside the passenger compartment to absorb heat by the evaporator. Thus, the heat in the passenger compartment is dissipated outside the passenger compartment. The refrigeration cycle includes a compressor that circulates refrigerant in the refrigeration cycle, a condenser 6, a liquid tank, expansion means, and an evaporator connected in this order. The high-temperature and high-pressure gas refrigerant (C2in) compressed by the compressor is supplied to the refrigerant water cooling unit 8 of the capacitor 6 and then supplied to the refrigerant air cooling unit 7 of the capacitor. Heat is exchanged between the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7, and the gas refrigerant becomes a high-pressure liquid refrigerant or a gas-liquid mixed refrigerant. The refrigerant (C2out) from the refrigerant air cooling unit 7 is gas-liquid separated in the liquid tank, and then adiabatically expanded by an expansion means to form a low-temperature low-pressure liquid refrigerant or gas-liquid mixed refrigerant. After replacing it into a low-pressure gas refrigerant, it is returned to the compressor.
[0023] 図 3は、サブラジェータ 5の構造を示す模式的に示す正面図である。サブラジェ一 タ 5は、放熱フィン 5bおよび冷却水用偏平チューブ 5aを交互に積層して構成される コア部と、一対の冷却水タンク 5cと、を備えて構成されている。  FIG. 3 is a front view schematically showing the structure of the sub radiator 5. The sub radiator 5 is configured to include a core portion formed by alternately laminating heat radiation fins 5b and cooling water flat tubes 5a, and a pair of cooling water tanks 5c.
[0024] 放熱フィン 5bは、後述する冷却水用偏平チューブ 5aの幅 L4と略同じ幅を有する薄 板状の部材であり、図 3に示すように、その正面視形状が波形形成されている。また、 冷却水用偏平チューブ 5aは、その断面形状が偏平形状を有するように形成された細 長い板状の部材であり、例えば、アルミニウム合金から形成されている。冷却水用偏 平チューブ 5aには、その内部を貫通する複数本の通路が長手方向に沿って構成さ れており、個々の通路を冷却水が流れるようになつている。コア部は、冷却水用偏平 チューブ 5aを一対の放熱フィン 5bによって両側から挟持することにより、放熱フィン 5 bと冷却水用偏平チューブ 5aとが交互に積層されて構成されて!/、る。最も外側(上下 側)に位置する放熱フィン 5bの外側には、レインフォース 5dがそれぞれ設置されてお り、コア部は、一対のレインフォース 5dによって積層方向に適正量の荷重が加えられ た状態で挟持されている。コア部を構成する個々の冷却水用偏平チューブ 5aは、長 手方向一方の開口端部が上流側の冷却水タンク 5cに挿入されるとともに、長手方向 他方の開口端部が下流側の冷却水タンク 5cに挿入されている。これにより、個々の 冷却水タンク 5cの内部空間と、冷却水用偏平チューブ 5aの内部通路とが連通してい る。なお、上流側の冷却水タンク 5cには、サブラジェータ 5の冷却水入口を構成する コネクタ 54が接続され、下流側の冷却水タンク 5cには、サブラジェータ 5の冷却水出 口を構成するコネクタ 53が接続されて!/、る。 The radiating fin 5b is a thin plate-like member having substantially the same width as the width L4 of a cooling water flat tube 5a described later, and its front view shape is corrugated as shown in FIG. . In addition, the cooling water flat tube 5a is a thin tube having a flat cross-sectional shape. It is a long plate-like member, and is formed from, for example, an aluminum alloy. In the cooling water flat tube 5a, a plurality of passages penetrating the inside thereof are formed along the longitudinal direction, and the cooling water flows through the respective passages. The core portion is configured by alternately stacking the cooling fins 5b and the cooling water flat tubes 5a by sandwiching the cooling water flat tubes 5a from both sides by a pair of heat dissipating fins 5b. Reinforces 5d are installed on the outer sides of the outermost (upper and lower) radiating fins 5b, respectively, and a proper amount of load is applied to the core portion in the stacking direction by a pair of reinforcements 5d. Is sandwiched between. Each of the flat tubes 5a for cooling water constituting the core portion has one opening end portion in the longitudinal direction inserted into the cooling water tank 5c on the upstream side, and the other opening end portion in the longitudinal direction on the downstream side. Inserted into tank 5c. Thereby, the internal space of each cooling water tank 5c communicates with the internal passage of the cooling water flat tube 5a. The upstream cooling water tank 5c is connected to the connector 54 that constitutes the cooling water inlet of the sub radiator 5. The downstream cooling water tank 5c is connected to the connector that constitutes the cooling water outlet of the sub radiator 5. 53 is connected! /
[0025] なお、図 2に示すように、冷媒空冷部 7もその基本的な構成についてはサブラジェ ータ 5と同じであり、放熱フィン 7bおよび冷媒用偏平チューブ 7cを交互に積層して構 成されるコア部と、一対の冷媒タンク 7cと、で構成されている。また、メインラジェータ 3も基本的に同様の構成であり、放熱フィンおよび冷却水用偏平チューブを交互に 積層して構成されるコア部と、一対の冷却水タンク 3cと、で構成されている。  [0025] As shown in Fig. 2, the refrigerant air cooling unit 7 has the same basic configuration as that of the sub radiator 5, and is configured by alternately stacking radiating fins 7b and refrigerant flat tubes 7c. And a pair of refrigerant tanks 7c. The main radiator 3 has basically the same configuration, and includes a core portion configured by alternately stacking heat radiation fins and flat tubes for cooling water, and a pair of cooling water tanks 3c.
[0026] 図 4は、冷媒水冷部 8の構成を模式的に示す正面図であり、図 5は、冷媒水冷部 8 の構成を模式的に示す側面図である。また、図 6は、冷媒水冷部 8の上部側の構成 を模式的に示す分解斜視図である。  FIG. 4 is a front view schematically showing the configuration of the refrigerant water cooling unit 8, and FIG. 5 is a side view schematically showing the configuration of the refrigerant water cooling unit 8. FIG. 6 is an exploded perspective view schematically showing the configuration of the upper side of the refrigerant water cooling unit 8.
[0027] 冷媒水冷部 8 (水冷式コンデンサ)は、コンプレッサから冷媒空冷部 7 (空冷式コン デンサ)までの間における冷媒ラインの一部を構成している。この冷媒水冷部 8は、サ ブラジェータ 5における下流側の冷却水タンク 5cに内蔵されており、冷却水タンク 5c 内の冷却水と、冷凍サイクルの冷媒との間で熱交換を行い、これにより、コンデンサ 6 の冷媒空冷部 7に流入する前提として冷媒を一次的に冷却する。  [0027] The refrigerant water cooling section 8 (water cooling condenser) constitutes a part of the refrigerant line from the compressor to the refrigerant air cooling section 7 (air cooling condenser). This refrigerant water cooling section 8 is built in the cooling water tank 5c on the downstream side of the scrambler 5, and performs heat exchange between the cooling water in the cooling water tank 5c and the refrigerant in the refrigeration cycle. As a premise that the refrigerant flows into the refrigerant air cooling section 7 of the condenser 6, the refrigerant is primarily cooled.
[0028] 具体的には、冷媒水冷部 8は、冷媒入口側となる上側の冷媒タンク 20A (第 1の冷 媒タンク)と、冷媒出口側となる下側の冷媒タンク 20B (第 2の冷媒タンク)と、両冷媒 タンク 20A、 20Bの間において両者を連通接続して冷媒と冷却水との間で熱交換を 行う冷媒用偏平チューブ 10 (コア部)と、を備えて構成されて!/、る。 [0028] Specifically, the refrigerant water cooling unit 8 includes an upper refrigerant tank 20A (first cooling unit) on the refrigerant inlet side. Medium tank), the lower refrigerant tank 20B (second refrigerant tank) on the refrigerant outlet side, and both refrigerant tanks 20A and 20B are connected to each other to exchange heat between the refrigerant and the cooling water. And a refrigerant flat tube 10 (core part) for performing!
[0029] 冷媒水冷部 8の冷媒入口側の冷媒タンク 20Aは、冷却水タンク 5cの内部において 当該冷却水タンク 5cの上壁 (長手方向一端)に当接した状態で接合されて、冷却水 タンク 5cの上壁を貫通して冷却水タンク 5c内に突出したコネクタ 24が連通接続され ている。このコネクタ 24は、冷媒水冷部 8の入口を構成するもので、コンプレッサから の冷媒配管が接続される。  [0029] The refrigerant tank 20A on the refrigerant inlet side of the refrigerant water cooling section 8 is joined inside the cooling water tank 5c in contact with the upper wall (one longitudinal end) of the cooling water tank 5c. A connector 24 that penetrates the upper wall of 5c and protrudes into the cooling water tank 5c is connected in communication. This connector 24 constitutes the inlet of the refrigerant water cooling unit 8 and is connected to a refrigerant pipe from the compressor.
[0030] 一方、冷媒水冷部 8の冷媒出口側の冷媒タンク 20Bは、冷却水タンク 5cの内部に おいて当該冷却水タンク 5cの下壁 (長手方向他端)に当接した状態でろう付けによつ て接合されて、冷却水タンク 5cの下壁を貫通して冷却水タンク 5c内に突出したコネク タ 25が連通接続されている。このコネクタ 25は、冷媒水冷部 8の出口を構成するもの で、コンデンサ 6の冷媒空冷部 7への冷媒配管が接続される。  [0030] On the other hand, the refrigerant tank 20B on the refrigerant outlet side of the refrigerant water cooling section 8 is brazed while being in contact with the lower wall (the other end in the longitudinal direction) of the cooling water tank 5c inside the cooling water tank 5c. Thus, a connector 25 that penetrates the lower wall of the cooling water tank 5c and protrudes into the cooling water tank 5c is connected in communication. The connector 25 constitutes an outlet of the refrigerant water cooling unit 8 and is connected to a refrigerant pipe to the refrigerant air cooling unit 7 of the capacitor 6.
[0031] 冷媒入口側の冷媒タンク 20Aは、第 1のタンクプレート 22と第 2のタンクプレート 21 とを組み合わせて形成されるパイプ部と、このパイプ部の両端の開口を閉塞する一対 の閉塞プレート 23と、で構成されている。この冷媒入口側の冷媒タンク 20Aは、内部 に形成されたタンク内通路 26を介して、コンプレッサからの冷媒を各冷媒用偏平チュ ーブ 10 (コア部)に分配供給する。  [0031] The refrigerant tank 20A on the refrigerant inlet side includes a pipe portion formed by combining the first tank plate 22 and the second tank plate 21, and a pair of closing plates that close the openings at both ends of the pipe portion. And 23. The refrigerant tank 20A on the refrigerant inlet side distributes and supplies the refrigerant from the compressor to each refrigerant flat tube 10 (core part) via a tank passage 26 formed inside.
第 1のタンクプレート 22は、略矩形状を有する平板であり、第 2のタンクプレート 21 の下面に配置される。この第 1のタンクプレート 22は、冷却水タンク 5c内の冷却水の 流れ方向に延在するスリット状のチューブ揷入孔 22cが形成されている。このチュー ブ揷入孔 22cは、冷却水の流れ方向と直交する方向にかけて所定間隔を隔てて複 数形成されている。個々のチューブ揷入孔 22cの形状は、後述するコア部の冷媒用 偏平チューブ 10の外形形状と対応しており、冷媒用偏平チューブ 10が嵌入されて いる。つまり、第 1のタンクプレート 22に形成されるチューブ揷入孔 22cの数は、冷媒 用偏平チューブ 10の個数と対応している。  The first tank plate 22 is a flat plate having a substantially rectangular shape, and is disposed on the lower surface of the second tank plate 21. The first tank plate 22 has a slit-like tube insertion hole 22c extending in the flow direction of the cooling water in the cooling water tank 5c. A plurality of the tube insertion holes 22c are formed at a predetermined interval in a direction orthogonal to the flow direction of the cooling water. The shape of each tube insertion hole 22c corresponds to the outer shape of the refrigerant flat tube 10 in the core portion described later, and the refrigerant flat tube 10 is fitted therein. That is, the number of tube insertion holes 22c formed in the first tank plate 22 corresponds to the number of the refrigerant flat tubes 10.
[0032] 本実施形態では、冷媒用偏平チューブ 10の積層方向において、冷媒水冷部のコ ァ部の幅 L3は、サブラジェータ 5におけるコア部の幅(具体的には、冷却水用偏平 チューブ 5aの幅) L4以下となるように、冷媒用偏平チューブ 10の個数が設定されて いる。 In the present embodiment, in the stacking direction of the refrigerant flat tubes 10, the width L3 of the core portion of the refrigerant water cooling portion is the width of the core portion in the sub radiator 5 (specifically, the cooling water flatness). The number of the refrigerant flat tubes 10 is set so as to be equal to or less than the width L4 of the tube 5a.
[0033] 第 2のタンクプレート 21は、第 1のタンクプレート 22の外周形状と対応した、略矩形 状を有する板状の部材である。この第 2のタンクプレート 21は、その中央領域に、冷 媒用偏平チューブ 10の長手方向外側(コネクタ 24側)に向かって凸状に湾曲された 曲げ部が形成されている。この曲げ部により、第 2のタンクプレート 21には、断面形状 のアウトラインが円弧形状を有する空間が形成される。この空間は、冷媒用偏平チュ ーブ 10の積層方向に向けて延在し、冷媒をコア部に供給するためのタンク内通路 2 6として機能する。図 4に示すように、冷媒用偏平チューブ 10の短辺方向(言い換え ると冷却水 C1の流通方向)において、タンク内通路 26の幅 L1は、冷媒用偏平チュ ーブ 10の幅 L2よりも小さく設定されている。  The second tank plate 21 is a plate-like member having a substantially rectangular shape corresponding to the outer peripheral shape of the first tank plate 22. The second tank plate 21 has a bent portion that is curved in a convex shape toward the outside in the longitudinal direction (connector 24 side) of the cooling medium flat tube 10 in the central region. By this bent portion, a space in which the outline of the cross-sectional shape has an arc shape is formed in the second tank plate 21. This space extends in the stacking direction of the refrigerant flat tubes 10 and functions as an in-tank passage 26 for supplying the refrigerant to the core portion. As shown in FIG. 4, in the short side direction of the refrigerant flat tube 10 (in other words, the flow direction of the cooling water C1), the width L1 of the tank passage 26 is larger than the width L2 of the refrigerant flat tube 10. It is set small.
[0034] また、第 2のタンクプレート 21の曲げ部における頂上には、その略中央位置に開口 21aが形成されており、頂上部が冷却水タンク 5cの内面(上部の内面)に接合されて 、開口 21aとコネクタ 24とが嵌合する。さらに、第 2のタンクプレート 21の縁部には、 下方に向かって延出した L字形状の係合爪 21bが設けられており、この係合爪 21b は、第 2のタンクプレート 21の下面側に密着した状態で配置される第 1のタンクプレ ート 22を保持する。  [0034] Further, an opening 21a is formed at a substantially central position at the top of the bent portion of the second tank plate 21, and the top is joined to the inner surface (upper inner surface) of the cooling water tank 5c. The opening 21a and the connector 24 are fitted. Further, an L-shaped engagement claw 21b extending downward is provided at the edge of the second tank plate 21. The engagement claw 21b is formed on the lower surface of the second tank plate 21. Hold the first tank plate 22 placed in close contact with the side.
[0035] 一対の閉塞プレート 23は、第 1のタンクプレート 22と第 2のタンクプレート 21との間 の筒状空間(タンク内通路 26)の両開口端に配置され、タンク内通路 26を閉塞する。 閉塞プレート 23の形状は、第 2のタンクプレート 21の曲げ部の内面の形状にほぼ沿 つている。  [0035] The pair of closing plates 23 are arranged at both open ends of the cylindrical space (tank passage 26) between the first tank plate 22 and the second tank plate 21, and close the tank passage 26. To do. The shape of the closing plate 23 is substantially in line with the shape of the inner surface of the bent portion of the second tank plate 21.
[0036] 出口側の冷媒タンク 20Bは、第 1のタンクプレート 22と第 2のタンクプレート 21とを 組みあせて形成されるパイプ部と、このパイプ部の両端開口部を閉塞する一対の閉 塞プレート 23と、で構成されている。この出口側の冷媒タンク 20Bは、内部に形成さ れたタンク内通路 26を介して、コア部側からの冷媒をコンデンサの冷媒空冷部 7に供 給する。なお、出口側の冷媒タンク 20Bの構成は、入口側の冷媒タンク 20Aのそれと 同じであり、入口側の冷媒タンク 20Aの上下を逆さまにした状態で、冷却水タンク 5c に設けられている。この出口側の冷媒タンク 20Bは、冷却水タンク 5cの下壁に当接し た状態でろう付けによって接合されている。 [0036] The refrigerant tank 20B on the outlet side includes a pipe portion formed by assembling the first tank plate 22 and the second tank plate 21, and a pair of closures that close both end openings of the pipe portion. And plate 23. The refrigerant tank 20B on the outlet side supplies the refrigerant from the core side to the refrigerant air cooling unit 7 of the condenser via a tank passage 26 formed inside. The outlet side refrigerant tank 20B has the same configuration as that of the inlet side refrigerant tank 20A, and is provided in the cooling water tank 5c with the inlet side refrigerant tank 20A turned upside down. The refrigerant tank 20B on the outlet side contacts the lower wall of the cooling water tank 5c. Are joined together by brazing.
[0037] 冷媒水冷部 8のコア部は、複数の冷媒用偏平チューブ 10によって構成されている 。個々の冷媒用偏平チューブ 10は、長手方向に沿って内部が中空に形成されてお り、これにより、内部に冷媒通路が構成され、長手方向両端に冷媒通路の開口部形 成される。なお、各偏平チューブ 10は、その長手方向が上下方向にそうように配置さ れている。この偏平チューブ 10の内部にはインナーフィン 14が収容されている。イン ナーフィン 14の全長は、偏平チューブ 10の全長よりも短くなつている。このため、イン ナーフィン 14の長手方向両端は、偏平チューブ 10の長手方向両端よりも偏平チュ ーブ 10の長手方向内側にある。ここで、インナーフィン 14の長手方向両端から突出 する偏平チューブ 10の長手方向両端部の突出長さは、第 2のタンクプレート 21の板 厚以下に設定されている。  [0037] The core of the refrigerant water cooling unit 8 is composed of a plurality of refrigerant flat tubes 10. Each of the refrigerant flat tubes 10 is formed so that the inside thereof is hollow along the longitudinal direction, whereby a refrigerant passage is formed inside, and openings of the refrigerant passage are formed at both ends in the longitudinal direction. Each flat tube 10 is arranged such that its longitudinal direction is in the vertical direction. An inner fin 14 is accommodated in the flat tube 10. The total length of the inner fin 14 is shorter than the total length of the flat tube 10. For this reason, both ends of the inner fin 14 in the longitudinal direction are on the inner side in the longitudinal direction of the flat tube 10 than both ends of the flat tube 10 in the longitudinal direction. Here, the protruding length of both ends in the longitudinal direction of the flat tube 10 protruding from both ends in the longitudinal direction of the inner fin 14 is set to be equal to or less than the thickness of the second tank plate 21.
[0038] 個々の冷媒用偏平チューブ 10は、その長手方向一端部が、入口側の冷媒タンク 2 OAにおける第 1のタンクプレート 22のチューブ揷入孔 22cにそれぞれ揷入されおり、 第 2のタンクプレート 21の下面(タンク内面)に突き当てられた状態で、ろう付けによつ て接合されている。また、個々の冷媒用偏平チューブ 10は、その長手方向他端部が 、入口側の冷媒タンク 20Aにおける第 1のタンクプレート 22のチューブ揷入孔 22cに それぞれ揷入されており、第 2のタンクプレート 21の下面(タンク内面)に突き当てら れた状態でろう付けによって接合されている。これにより、個々の冷媒用偏平チュー ブ 10は、その短辺方向(その幅方向)が冷却水の流れ方向と平行に配置された状態 で、冷却水の流れ方向と直交する方向に積層されている。  [0038] Each refrigerant flat tube 10 has one end in the longitudinal direction inserted into the tube insertion hole 22c of the first tank plate 22 in the refrigerant tank 2OA on the inlet side, and the second tank The plate 21 is joined by brazing while being in contact with the lower surface (tank inner surface) of the plate 21. Each of the refrigerant flat tubes 10 has its other longitudinal end inserted into the tube insertion hole 22c of the first tank plate 22 in the refrigerant tank 20A on the inlet side. Joined by brazing while being in contact with the lower surface of the plate 21 (inner surface of the tank). As a result, the individual refrigerant flat tubes 10 are laminated in a direction perpendicular to the flow direction of the cooling water in a state where the short side direction (the width direction thereof) is arranged in parallel with the flow direction of the cooling water. Yes.
[0039] 個々の冷媒用偏平チューブ 10には、両偏平面に外側に突出させたビード 12a、 12 bが形成されており、隣り合う冷媒用偏平チューブ 10同士でこのビード 12a、 12bを 突き合わせた状態でろう付けによって接合されている。また、冷却水タンク 5cの内周 面には、内周面を部分的に内側に突出させたビード 30が形成されており、最も外側 に位置する冷媒用偏平チューブ 10のビード 12a、 12bと、冷却水タンク 5c側のビード 30と、を突き合わせた状態でろう付けによって接合されている。このため、ろう付け時 、冷却水タンク 5cの外側から荷重を加えれば、偏平チューブ 10とインナーフィン 14と を密着された状態で接合することが可能となる。 [0040] 図 7は、サブラジェータ 5の組み立て状態を説明する分解斜視図である。サブラジ エータ 5の組み立てでは、放熱フィン 5bと冷却水用偏平チューブ 5aとを交互に積層 し、最外側フィンの外側にレインフォース 5dを設置し、積層方向に適正量の荷重を加 えた状態で、冷却水用偏平チューブ 5aおよびレインフォース 5dの端部を上流側の冷 却水タンク 5cおよび下流側の冷却水タンク 5cへそれぞれ揷入する。なお、下流側の 冷却水タンク 5cは、冷却水用偏平チューブ 5a側が開口する略箱形状のタンク本体 5 1と、当該タンク本体 51の開口を閉塞する閉塞部 52と、を組みあせて構成されており 、閉塞部 52を開いた状態でタンク本体 51の内部に、冷媒水冷部 8を組み込むことが できる。 [0039] Each refrigerant flat tube 10 is formed with beads 12a and 12b projecting outward on both flat surfaces, and the adjacent refrigerant flat tubes 10 are abutted against each other. Joined by brazing in the state. Further, a bead 30 is formed on the inner peripheral surface of the cooling water tank 5c so that the inner peripheral surface partially protrudes inward, and the beads 12a and 12b of the refrigerant flat tube 10 located on the outermost side, The bead 30 is joined to the cooling water tank 5c-side bead 30 by brazing. For this reason, at the time of brazing, if a load is applied from the outside of the cooling water tank 5c, the flat tube 10 and the inner fin 14 can be joined in a close contact state. FIG. 7 is an exploded perspective view illustrating an assembled state of the sub radiator 5. When assembling the sub-radiator 5, heat radiation fins 5b and flat tubes 5a for cooling water are alternately stacked, and a reinforcement 5d is installed outside the outermost fins, with an appropriate amount of load applied in the stacking direction. The ends of the cooling water flat tube 5a and the reinforcement 5d are inserted into the upstream cooling water tank 5c and the downstream cooling water tank 5c, respectively. The cooling water tank 5c on the downstream side is configured by assembling a substantially box-shaped tank body 51 having an opening on the side of the cooling water flat tube 5a and a closing portion 52 for closing the opening of the tank body 51. Thus, the coolant cooling unit 8 can be incorporated into the tank body 51 with the closing part 52 open.
[0041] そして、冷却水タンク 5cの、上壁に、冷媒水冷部 8の冷媒入口となるコネクタ 24を 嵌合し、下壁に、冷媒水冷部 8の冷媒出口となるコネクタ 25を嵌合し、冷却水用偏平 チューブ 5aが差し込まれる側壁(52)とは逆側の側壁に、冷却水タンク 5cの冷却水 出口となるコネクタ 53を嵌合する。  [0041] Then, the connector 24 serving as the refrigerant inlet of the refrigerant water cooling unit 8 is fitted to the upper wall of the cooling water tank 5c, and the connector 25 serving as the refrigerant outlet of the refrigerant water cooling unit 8 is fitted to the lower wall. Then, a connector 53 serving as a cooling water outlet of the cooling water tank 5c is fitted to the side wall (52) opposite to the side wall (52) into which the cooling water flat tube 5a is inserted.
[0042] 個々の部品が組み付けられ、かつ、冷媒水冷部 8が内蔵されたサブラジェータ 5は 、加熱炉に入れて加熱することにより、これら各種部品間の接合部に予め設けられた ろう材を介して一体的にろう付けが行われる。なお、冷媒水冷部 8は熱容量が他部位 に比べ大きぐ一体ろう付けが困難となる可能性がある。この場合には、冷媒水冷部 8と上流側の冷却水タンク 5cの一部とを別体として組み付けた上でろう付けを行い、 その後から、サブラジェータ本体に組み付けて、ろう付けを行ってもよい。  [0042] The sub radiator 5 in which the individual parts are assembled and the refrigerant water cooling unit 8 is built in is heated in a heating furnace, so that the brazing material provided in advance at the joint between these various parts is used. The brazing is performed integrally. The refrigerant water cooling section 8 has a larger heat capacity than other parts, and it may be difficult to perform integral brazing. In this case, the refrigerant water cooling section 8 and a part of the upstream side cooling water tank 5c are assembled as separate bodies, and then brazed, and then assembled into the sub radiator body and brazed. Good.
[0043] このような構成を有する車両用複合型熱交換器 1にお!/、て、電動駆動部 4を冷却し た冷却水は、サブラジェータ 5の上流側の冷却水タンク 5cに設けられた入口側のコ ネクタ 54より流入し、その後、各冷却水用偏平チューブ 5aを流れ、下流側の冷却水 タンク 5cに流入する。冷却水は、個々の冷却水用偏平チューブ 5aを流れる過程に おいて、その熱が冷却水用偏平チューブ 5aから放熱フィン 5b、放熱フィン 5bから冷 却風に伝達されて熱交換が行われ、これにより、冷却水が冷却される。温度が低下し た冷却水は、下流側の冷却水タンク 5cにおいて、冷媒水冷部 8における個々の冷媒 用偏平チューブ 10の間を流れ、その後、コネクタ 53から流出する。  [0043] The cooling water that has cooled the electric drive unit 4 in the vehicular composite heat exchanger 1 having such a configuration is provided in the cooling water tank 5c on the upstream side of the sub radiator 5. From the inlet-side connector 54, and then flows through each of the cooling water flat tubes 5a and into the downstream cooling water tank 5c. In the process of flowing through the cooling water flat tubes 5a, the cooling water is transferred from the cooling water flat tubes 5a to the radiating fins 5b and from the radiating fins 5b to the cooling air to perform heat exchange. Thereby, the cooling water is cooled. The cooling water whose temperature has decreased flows between the individual refrigerant flat tubes 10 in the refrigerant water cooling section 8 in the cooling water tank 5 c on the downstream side, and then flows out from the connector 53.
[0044] また、冷凍サイクルを循環する冷媒は、コンプレッサから吐出された高温高圧のガス の状態でコネクタ 24を介して冷媒水冷部 8へ流入する。冷媒水冷部 8へ流入する冷 媒は、まず、冷媒入口側となる上側の冷媒タンク 20Aへ流入し、この冷媒入口側の 上部の冷媒タンク 20Aから各冷媒用偏平チューブ 10に分散する。冷媒用偏平チュ ーブ 10内を流れる冷媒の熱は冷媒用偏平チューブ 10から冷却水に伝わり、過熱度 が減少した状態、もしくは、一部飽和域に入った状態にて、冷媒出口側となる下側の 冷媒タンク 20Bへ流れこむ。そして、冷媒出口側となる下側の冷媒タンク 20Bから、コ ネクタ 25を介して、冷媒水冷部 8外に排出されて、その後、コンデンサ 6の冷媒空冷 部 7の上流側の冷媒タンクに流入する。 [0044] The refrigerant circulating in the refrigeration cycle is a high-temperature and high-pressure gas discharged from the compressor. In this state, the refrigerant flows into the coolant cooling unit 8 through the connector 24. The refrigerant flowing into the refrigerant water cooling unit 8 first flows into the upper refrigerant tank 20A on the refrigerant inlet side, and is dispersed from the upper refrigerant tank 20A on the refrigerant inlet side to each refrigerant flat tube 10. The heat of the refrigerant flowing in the refrigerant flat tube 10 is transferred to the cooling water from the refrigerant flat tube 10 and becomes the refrigerant outlet side when the degree of superheat is reduced or partially enters the saturated region. Flows into the lower refrigerant tank 20B. Then, the refrigerant is discharged from the lower refrigerant tank 20B on the refrigerant outlet side to the outside of the refrigerant water cooling unit 8 via the connector 25, and then flows into the refrigerant tank upstream of the refrigerant air cooling unit 7 of the condenser 6. .
[0045] 通常、空冷より水冷の方が熱の伝達効率は高ぐその分、小型化も可能である。し かし、冷却水にて冷媒を完全に凝縮させる場合、冷媒凝縮温度と冷却水との温度差 が小さい。そのため、冷媒の冷却の全てを水冷によってまかなうためには、サブラジ エータ 5のコア部、及び、冷媒水冷部 8が大型化する虞がある。し力もながら、本実施 形態では、冷媒水冷部 8に加えて、冷媒空冷部 7を併用することで、サブラジェータ 5 および冷媒水冷部 8の大型化を抑制できる。また、冷媒水冷部 8に流れ込む冷媒は コンプレッサの下流且つ冷媒空冷部 7の上流の冷媒である当該冷媒の温度が高ぐ また、冷媒水冷部 8に流れ込む冷却水はサブラジェータ 5のコア部で放熱された後 の冷却水であるため当該冷却水の温度が低くなる。そのため、冷媒水冷部 8内で互 いに熱交換される冷却水と冷媒との温度差が大きくなり、熱交換効率が良くなり、冷 媒水冷部 8の大型化を抑制できる。  [0045] Normally, water cooling has a higher heat transfer efficiency than air cooling, and the size can be reduced. However, when the refrigerant is completely condensed with cooling water, the temperature difference between the refrigerant condensing temperature and the cooling water is small. Therefore, in order to cover all the cooling of the refrigerant by water cooling, there is a possibility that the core part of the sub-radiator 5 and the refrigerant water cooling part 8 are increased in size. However, in the present embodiment, in addition to the refrigerant water cooling unit 8, the refrigerant air cooling unit 7 is used in combination, so that the sub radiator 5 and the refrigerant water cooling unit 8 can be prevented from being enlarged. In addition, the refrigerant flowing into the refrigerant water cooling unit 8 has a high temperature of the refrigerant that is downstream of the compressor and upstream of the refrigerant air cooling unit 7. Further, the cooling water flowing into the refrigerant water cooling unit 8 radiates heat at the core of the sub radiator 5. Since this is the cooling water after the cooling, the temperature of the cooling water is lowered. Therefore, the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling unit 8 is increased, the heat exchange efficiency is improved, and the size of the refrigerant water cooling unit 8 can be suppressed.
[0046] 本実施形態によれば、冷媒水冷部 8において、第 2のタンクプレート 21の中央領域 の曲げ部を形成して、当該曲げ部の曲率を小さくすることで、タンク内通路 26の幅 L 1を、冷媒用偏平チューブ 10の幅 L2より小さな値に設定している。これにより、入口 側の冷媒タンク 20Aおよび出口側の冷媒タンク 20Bにおいて、内部圧力に対する強 度が向上し、その分、タンクプレート 22, 21の薄肉化が可能となる。このようにタンク プレート 22, 21を薄肉化した場合、冷媒水冷部 8を軽量化できる上、サブラジェータ 5の冷却水タンク 5cといった周辺部との熱容量差が小さくなり、ろう付けの性能向上を 図ること力 Sでさる。  [0046] According to the present embodiment, in the coolant water cooling section 8, a bent portion is formed in the central region of the second tank plate 21, and the curvature of the bent portion is reduced, whereby the width of the in-tank passage 26 is reduced. L 1 is set to a value smaller than the width L 2 of the refrigerant flat tube 10. As a result, the strength against the internal pressure is improved in the refrigerant tank 20A on the inlet side and the refrigerant tank 20B on the outlet side, and the tank plates 22 and 21 can be made thinner accordingly. When the tank plates 22 and 21 are thinned as described above, the coolant water cooling section 8 can be reduced in weight, and the difference in heat capacity from the peripheral portion such as the cooling water tank 5c of the sub radiator 5 is reduced, thereby improving the brazing performance. That's the power S.
[0047] また、タンクプレート 22, 21を薄肉化することで、入口側の冷媒タンク 20Aおよび出 口側の冷媒タンク 20Bの上下寸法を小さくすることができる。このように入口側の冷媒 タンク 20Aおよび出口側の冷媒タンク 20Bの上下寸法を小さくした場合には、冷媒 用偏平チューブ 10を長く設定できるので、熱交換の効率を向上させることができる。 [0047] Also, by reducing the thickness of the tank plates 22 and 21, the refrigerant tank 20A on the inlet side and the outlet The vertical dimension of the refrigerant tank 20B on the mouth side can be reduced. In this way, when the vertical dimensions of the inlet side refrigerant tank 20A and the outlet side refrigerant tank 20B are reduced, the refrigerant flat tube 10 can be set longer, so that the efficiency of heat exchange can be improved.
[0048] さらに本実施形態によれば、冷媒用偏平チューブ 10の長手方向端部を、第 1のタ ンクプレート 22のチューブ揷入孔 22cに揷入した上で、第 2のタンクプレート 21の下 面に接合している。そのため、冷媒用偏平チューブ 10と、入口側の冷媒タンク 20Aま たは出口側の冷媒タンク 20Bとの接続箇所の強度がより一層向上する。  Further, according to the present embodiment, the longitudinal end of the refrigerant flat tube 10 is inserted into the tube insertion hole 22c of the first tank plate 22, and then the second tank plate 21 Bonded to the bottom surface. Therefore, the strength of the connecting portion between the refrigerant flat tube 10 and the inlet side refrigerant tank 20A or the outlet side refrigerant tank 20B is further improved.
[0049] また本実施形態によれば、インナーフィン 14は偏平チューブ 10に対し、少し短め に設定されているため、偏平チューブ 10の先端を第 2のタンクプレート 21に突き当て てレ、ても冷媒通路を確保することができる。  Further, according to the present embodiment, the inner fin 14 is set slightly shorter than the flat tube 10, so that the tip of the flat tube 10 abuts against the second tank plate 21. A refrigerant passage can be secured.
[0050] また本実施形態によれば、偏平チューブ 10に対してインナーフィン 14が短くなつて おり、偏平チューブ 10の長手方向端部にはインナーフィン 14が接合されない部位が 生じる。し力もながら、本実施形態では、偏平チューブ 10のうちインナーフィン 14が ない部分の距離は、第 1のタンクプレート 22の板厚以下となっている。そのため、第 1 のタンクプレート 22によって補強されることなり、強度低下を抑制できる。  Further, according to the present embodiment, the inner fin 14 is shorter than the flat tube 10, and a portion where the inner fin 14 is not joined is generated at the longitudinal end portion of the flat tube 10. However, in this embodiment, the distance between the flat tubes 10 where the inner fins 14 are not provided is equal to or less than the thickness of the first tank plate 22. Therefore, it is reinforced by the first tank plate 22 and the strength reduction can be suppressed.
[0051] ここで、例えば、冷却水タンク 5cの上壁と冷媒タンク 20Aとが離間し、冷却水タンク 5cの下壁と冷媒タンク 20Bとが離間した構造では、冷却水タンク 5cの上壁と冷媒タン ク 20Aとの間、および、冷却水タンク 5cの下壁と冷媒タンク 20Bとの間、を冷却水が 流れてて、両冷媒タンク 20A、 20Bと間の冷媒用偏平チューブ 10に向けて冷却水が 流れずに、熱交換効率が低下する虞がある。  [0051] Here, for example, in a structure in which the upper wall of the cooling water tank 5c and the refrigerant tank 20A are separated from each other and the lower wall of the cooling water tank 5c and the refrigerant tank 20B are separated from each other, the upper wall of the cooling water tank 5c and Cooling water flows between the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B, toward the refrigerant flat tube 10 between the refrigerant tanks 20A and 20B. The cooling water does not flow and heat exchange efficiency may decrease.
[0052] しかしながら、また本実施形態では、サブラジェータ 5の冷却水タンク 5c内において 当該冷却水タンク 5cの上壁に、冷媒水冷部 8の入口側の冷媒タンク 20Aがろう付け 接合され、当該冷却水タンク 5cの下壁に出口側の冷媒タンク 20Bがろう付け接合さ れている。そのため、冷却水タンク 5cの上壁と冷媒タンク 20Aとの間および、冷却水 タンク 5cの下壁と冷媒タンク 20Bとの間を冷却水が流れてしまうことを防止でき、全て の冷却水を冷媒タンク 20Aと冷媒タンク 20Bとの間の複数多段の冷媒用偏平チュー ブ 10の間に流通させることができる。これにより、熱交換効率が高まる。  [0052] However, in the present embodiment, the refrigerant tank 20A on the inlet side of the refrigerant water cooling section 8 is brazed and joined to the upper wall of the cooling water tank 5c in the cooling water tank 5c of the sub radiator 5. The refrigerant tank 20B on the outlet side is brazed to the lower wall of the water tank 5c. Therefore, it is possible to prevent the cooling water from flowing between the upper wall of the cooling water tank 5c and the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B. The refrigerant can be circulated between a plurality of multi-stage refrigerant flat tubes 10 between the tank 20A and the refrigerant tank 20B. Thereby, heat exchange efficiency increases.
[0053] また、例えば、サブラジェータの下流側の冷却水タンクの外壁のうち、冷却風の風 上側の側面から冷媒を冷媒水冷部 8に流入 ·流出させる手法も考えられる。しかしな がら、力、かる手法によれば、冷媒ライン用の配管が、サブラジェータ 5の風上側に飛 び出してしまい、レイアウト上の障害となってしまう。 [0053] Further, for example, the cooling air flow in the outer wall of the cooling water tank on the downstream side of the sub radiator A method may be considered in which the refrigerant flows into and out of the refrigerant water cooling section 8 from the upper side surface. However, according to the force and the method, the refrigerant line pipe jumps out to the windward side of the sub radiator 5 and becomes an obstacle in the layout.
[0054] これに対して本実施形態では、冷媒水冷部 8の冷媒の出入を、冷却水タンク 5cの 上から入れて下から出している。そのため、レイアウト上有利であるとともに、外観上も スマートな格好に仕上げることができる。また、サブラジェータ 5の下方に位置するコ ンデンサ 6の冷媒空冷部 7にスムーズに冷媒を導くことができる。  On the other hand, in the present embodiment, the refrigerant in and out of the refrigerant water cooling unit 8 is entered from above the cooling water tank 5c and is taken out from below. Therefore, it is advantageous in terms of layout and can be finished in a smart appearance. In addition, the refrigerant can be smoothly guided to the refrigerant air cooling unit 7 of the capacitor 6 located below the sub radiator 5.
[0055] また本実施形態では、サブラジェータ 5の下流側の冷却水タンク 5cと、コンデンサ 6 の冷媒空冷部 7の上流側の冷媒タンク 7cと、をろう付けによって結合してある。そのた め、サブラジェータ 5とコンデンサ 6の冷媒空冷部 7との結合を簡易に強化でき、かつ 、結合用のブラケット等を必要としないので、構成の簡素化を図ることができる。さらに 、サブラジェータ 5の冷却水タンク 5cと、コンデンサ 6の冷媒空冷部 7の上流側の冷 媒タンクとの間で、個々のタンクを閉塞するパッチエンドを共用することも可能となる。  In the present embodiment, the cooling water tank 5c on the downstream side of the sub radiator 5 and the refrigerant tank 7c on the upstream side of the refrigerant air cooling unit 7 of the condenser 6 are coupled by brazing. Therefore, the coupling between the sub radiator 5 and the refrigerant air cooling part 7 of the condenser 6 can be easily strengthened, and a coupling bracket or the like is not required, so that the configuration can be simplified. Furthermore, it is also possible to share a patch end that closes each tank between the cooling water tank 5c of the sub radiator 5 and the cooling tank on the upstream side of the refrigerant air cooling unit 7 of the condenser 6.
[0056] さらに本実施形態では、図 7に示すように冷媒水冷部 8のコア部の冷媒用偏平チュ ーブ 10の積層方向に沿う幅 L3が、サブラジェータ 5の冷却水用偏平チューブ 5aの 幅(偏平チューブの短辺方向の長さ) L4以下となっている。そのため、サブラジェ一 タ 5の下流側の冷却水タンク 5cの通風方向に沿うサイズ力 S、上流側の冷却水タンク 5 cより大きくなることを抑制でき、レイアウト性の向上を図ることができる。  Further, in the present embodiment, as shown in FIG. 7, the width L3 along the stacking direction of the refrigerant flat tubes 10 in the core portion of the refrigerant water cooling portion 8 is equal to that of the flat tubes 5a for the cooling water in the sub radiator 5. Width (length in the short side direction of the flat tube) L4 or less. Therefore, it is possible to suppress the size force S along the ventilation direction of the cooling water tank 5c on the downstream side of the sub radiator 5 and to be larger than the cooling water tank 5c on the upstream side, thereby improving the layout.
[0057] 次に本実施形態の特徴点を列挙する。  Next, the feature points of this embodiment will be listed.
[0058] (1)本実施形態の複合型熱交換器は、冷却水用偏平チューブ 5aを複数多段に積 層したコア部と、前記コア部を通過した冷却水が流入する冷却水タンク 5cと、を備え た冷却水用熱交換器 5と、前記冷却水用熱交換器 5の前記冷却水タンク 5cに内蔵さ れ、内部に冷媒を流通させることで当該冷媒と前記冷却水タンク 5c内の冷却水との 間で熱交換させる冷媒水冷部 8と、を有する。前記冷媒水冷部 8は、冷媒用偏平チュ ーブ 10を複数多段に積層したコァ部と、前記冷媒用偏平チューブ 10の積層方向に 向けて延在するタンク内通路 26を有し且つ前記冷媒用偏平チューブ 10の長手方向 一端部と連通する第 1の冷媒タンク 20Aと、前記冷媒用偏平チューブ 10の積層方向 に向けて延在するタンク内通路 26を有し且つ冷媒用偏平チューブ 10の長手方向他 方の開口端部が連通接続される第 2の冷媒タンク 20Bと、を有する。前記第 1の冷媒 タンク 20Aおよび前記第 2の冷媒タンク 20Bは、前記冷媒用偏平チューブ 10の幅方 向(短辺方向)に沿って、前記タンク内通路 26の幅 L1が前記冷媒用偏平チューブ 1 0の幅 L2よりも小さい。 [0058] (1) The composite heat exchanger of the present embodiment includes a core portion in which a plurality of cooling water flat tubes 5a are stacked in multiple stages, and a cooling water tank 5c into which cooling water that has passed through the core portion flows. The cooling water heat exchanger 5 and the cooling water tank 5c of the cooling water heat exchanger 5 are installed in the cooling water tank 5c. And a refrigerant water cooling section 8 for exchanging heat with the cooling water. The refrigerant water cooling section 8 has a core section in which a plurality of refrigerant flat tubes 10 are stacked in multiple stages, and a tank passage 26 extending in the stacking direction of the refrigerant flat tubes 10 and is used for the refrigerant. Longitudinal direction of the flattened tube 10 The first refrigerant tank 20A communicated with one end, a tank internal passage 26 extending in the stacking direction of the flattened tube for refrigerant 10, and the longitudinal direction of the flattened tube for refrigerant 10 other And a second refrigerant tank 20B in which the open end of the other side is connected in communication. In the first refrigerant tank 20A and the second refrigerant tank 20B, the width L1 of the tank passage 26 is set to be the refrigerant flat tube along the width direction (short side direction) of the refrigerant flat tube 10. Less than 1 0 width L2.
[0059] そのため、第 1および第 2の冷媒タンク 20A、 20Bにおいて、内部圧力に対する強 度が向上し、その分冷媒タンク 20A、 20Bを構成する部材を薄肉化できる。これにと もない、第 1および第 2の冷媒タンク 20A、 20Bは、周辺部品との熱容量差が小さくな り、ろう付けの性能向上が図られる。  [0059] Therefore, in the first and second refrigerant tanks 20A and 20B, the strength against the internal pressure is improved, and accordingly, the members constituting the refrigerant tanks 20A and 20B can be thinned. As a result, the first and second refrigerant tanks 20A and 20B have a smaller heat capacity difference from the peripheral parts, so that the brazing performance can be improved.
[0060] つまり、本実施形態によれば、冷媒タンク 20A、 20Bの強度を確保しつつ小型化を 図ることが可能となり、レイアウト性を向上させ、また、製作性を向上させることができ  That is, according to the present embodiment, it is possible to reduce the size while ensuring the strength of the refrigerant tanks 20A and 20B, improve the layout, and improve the manufacturability.
[0061] また、第 1および第 2の冷媒タンク 20A、 20Bを構成する部材の薄肉化にともなって 、冷媒タンク 20A、 20Bの間の冷媒用偏平チューブ 10の長手方向寸法を大きくする ことができ、熱交換効率を向上させることができる。 [0061] Further, as the members constituting the first and second refrigerant tanks 20A and 20B are made thinner, the longitudinal dimension of the refrigerant flat tube 10 between the refrigerant tanks 20A and 20B can be increased. The heat exchange efficiency can be improved.
[0062] (2)また本実施形態では、前記タンク内通路 26の断面形状のアウトラインが円弧形 状を有することで、前記タンク内通路 26の幅 L1が前記冷媒用偏平チューブの幅 L2 よりも小さく設定されている。  [0062] (2) In the present embodiment, the outline of the cross-sectional shape of the tank passage 26 has an arc shape, so that the width L1 of the tank passage 26 is greater than the width L2 of the refrigerant flat tube. Is set too small.
[0063] (3)また本実施形態では、偏平チューブ 10は、その長手方向一端部が前記第 1の 冷媒タンク 20Aの内面に突き当てられており、その長手方向他端部が前記第 2の冷 媒タンク 20Bの内面に突き当てられている。そのため、偏平チューブ 10と、第 1およ び第 2の冷媒タンク 20A、 20Bと、の接続強度がより一層向上する。  [0063] (3) In the present embodiment, the flat tube 10 has one end in the longitudinal direction abutted against the inner surface of the first refrigerant tank 20A, and the other end in the longitudinal direction is the second tube. It is abutted against the inner surface of the refrigerant tank 20B. Therefore, the connection strength between the flat tube 10 and the first and second refrigerant tanks 20A and 20B is further improved.
[0064] (4)ここで例えば、冷却水タンク 5cの長手方向一端 (冷却水タンク 5cの上壁)と冷 媒タンク 20Aとが離間し、冷却水タンク 5cの長手方向他端 (冷却水タンク 5cの下壁) と冷媒タンク 20Bとが離間した構造では、冷却水タンク 5cの長手方向一端と冷媒タン ク 20Aとの間、および、冷却水タンク 5cの長手方向他端と冷媒タンク 20Bとの間を冷 却水が流れてしまう。つまり。両冷媒タンク 20A、 20Bと間の冷媒用偏平チューブ 10 に向けて冷却水が流れずに、熱交換効率が低下する虞がある。  [0064] (4) Here, for example, one longitudinal end of the cooling water tank 5c (the upper wall of the cooling water tank 5c) and the cooling medium tank 20A are separated from each other, and the other longitudinal end of the cooling water tank 5c (the cooling water tank). In the structure in which the lower wall of 5c and the refrigerant tank 20B are separated from each other, the longitudinal end of the cooling water tank 5c and the refrigerant tank 20A and the other longitudinal end of the cooling water tank 5c and the refrigerant tank 20B are separated. Cooling water will flow between them. In other words. There is a possibility that the cooling water does not flow toward the refrigerant flat tube 10 between the two refrigerant tanks 20A and 20B, and the heat exchange efficiency is lowered.
[0065] しかしながら、本実施形態では、第 1の冷媒タンク 20Aは、冷却水タンク 5c内にお いて冷却水タンク 5cの長手方向一端 (冷却水タンク 5cの上壁)に当接し、第 2の冷媒 タンク 20Bは、冷却水タンク 5c内において前記冷却水タンク 5cの長手方向他端 (冷 却水タンク 5cの下壁)に当接している。そのため、冷却水タンク 5cの上壁と冷媒タン ク 20Aとの間および、冷却水タンク 5cの下壁と冷媒タンク 20Bとの間を冷却水が流れ てしまうことを防止でき、全ての冷却水を冷媒タンク 20Aと冷媒タンク 20Bとの間の冷 媒用偏平チューブ 10に向けて流通させることができる。これにより、熱交換効率が高 まり、冷媒水冷部 8を小型化できる。 However, in the present embodiment, the first refrigerant tank 20A is placed in the cooling water tank 5c. The second refrigerant tank 20B is in contact with one end in the longitudinal direction of the cooling water tank 5c (upper wall of the cooling water tank 5c), and the other end in the longitudinal direction of the cooling water tank 5c (cooling water) It is in contact with the lower wall of the tank 5c. Therefore, it is possible to prevent the cooling water from flowing between the upper wall of the cooling water tank 5c and the refrigerant tank 20A and between the lower wall of the cooling water tank 5c and the refrigerant tank 20B. The refrigerant can be circulated toward the refrigerant flat tube 10 between the refrigerant tank 20A and the refrigerant tank 20B. As a result, the heat exchange efficiency is increased and the coolant water cooling unit 8 can be downsized.
[0066] (5)また本実施形態では、冷媒水冷部 8には、冷凍サイクルのコンプレッサから吐 出された冷媒が流入する。そのため、冷媒水冷部 8内に流れ込む冷媒は、高温高圧 の冷媒であるため、冷媒水冷部 8の外部を流れる冷却水との温度差を大きくとること ができる。 (5) In the present embodiment, the refrigerant discharged from the compressor of the refrigeration cycle flows into the refrigerant water cooling unit 8. Therefore, since the refrigerant flowing into the refrigerant water cooling unit 8 is a high-temperature and high-pressure refrigerant, the temperature difference from the cooling water flowing outside the refrigerant water cooling unit 8 can be increased.
[0067] これにより、冷却効率が良くなり、冷媒水冷部 8の大型化を避けることができる。  [0067] Thereby, the cooling efficiency is improved, and the refrigerant water cooling unit 8 can be prevented from being enlarged.
[0068] (6)また本実施形態では、冷媒を循環させる冷凍サイクルのコンデンサ 6をさらに備 え、このコンデンサ 6は、前記冷媒水冷部 8と、冷媒空冷部 7と、を備えて構成されて いる。そのため、冷媒空冷部 7と冷媒水冷部 8とが相互に補完し合い、冷媒空冷部 7 および冷媒水冷部 8をコンパクト化できる。  [0068] (6) Further, in the present embodiment, the condenser 6 of the refrigeration cycle for circulating the refrigerant is further provided, and the condenser 6 includes the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7. Yes. Therefore, the refrigerant air cooling unit 7 and the refrigerant water cooling unit 8 complement each other, and the refrigerant air cooling unit 7 and the refrigerant water cooling unit 8 can be made compact.
[0069] (7)また本実施形態では、コンデンサ 6の内部を流通する冷媒は、冷媒水冷部 8、 冷媒空冷部 7の順に流れる。そのため、冷媒空冷部 7を備える構造において、冷媒 水冷部 8に流れ込む冷媒は、コンプレッサの下流で且つ冷媒空冷部 7の上流の高温 高圧の冷媒である。そのため、冷媒水冷部 8内で互いに熱交換される冷却水と冷媒 とは、その温度差が大きくなる。そのため、冷媒水冷部 8の冷却効率の良くなり、冷媒 水冷部 8の大型化を抑制できる。  (7) In the present embodiment, the refrigerant flowing through the capacitor 6 flows in the order of the refrigerant water cooling unit 8 and the refrigerant air cooling unit 7. Therefore, in the structure including the refrigerant air cooling unit 7, the refrigerant flowing into the refrigerant water cooling unit 8 is a high-temperature and high-pressure refrigerant downstream of the compressor and upstream of the refrigerant air cooling unit 7. Therefore, the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling unit 8 increases. Therefore, the cooling efficiency of the refrigerant water cooling unit 8 is improved, and the enlargement of the refrigerant water cooling unit 8 can be suppressed.
[0070] (8)また本実施形態では、冷媒水冷部 8に流れ込む冷却水は、サブラジェータ 5の コア部で放熱された後の冷却水であるため、当該冷却水の温度が低い。これにより、 冷媒水冷部 8内で互いに熱交換される冷却水と冷媒とは、その温度差が大きくなる。 そのため、冷媒水冷部 8の冷却効率の良くなり、冷媒水冷部 8の大型化を抑制できる [0070] (8) In the present embodiment, the cooling water flowing into the refrigerant water cooling unit 8 is the cooling water after the heat is radiated from the core of the sub radiator 5, so the temperature of the cooling water is low. As a result, the temperature difference between the cooling water and the refrigerant that exchange heat with each other in the refrigerant water cooling section 8 increases. Therefore, the cooling efficiency of the refrigerant water cooling unit 8 is improved, and an increase in the size of the refrigerant water cooling unit 8 can be suppressed.
Yes
[0071] (9)また本実施形態では、前記冷却水タンク 5cは冷媒空冷部 7の冷媒タンク 7cに 接合されている。そのため、冷却水用熱交換器 5と冷媒空冷部 7との結合を簡易に強 化できる。結合用のブラケット等が必要となるので、構成の簡素化を図られる。 (9) In the present embodiment, the cooling water tank 5c is connected to the refrigerant tank 7c of the refrigerant air cooling unit 7. It is joined. Therefore, the coupling between the cooling water heat exchanger 5 and the refrigerant air cooling unit 7 can be easily strengthened. Since a coupling bracket or the like is required, the configuration can be simplified.
[0072] (10)また本実施形態では、前記冷媒用偏平チューブ 10の積層方向に沿って、前 記冷媒水冷部 8のコア部の幅 L3が、前記冷却水用偏平チューブ 5aの幅 L4以下で ある。そのため、冷却水用熱交換器 5の下流側の冷却水タンク 5cが、上流側の冷却 水タンク 5cより大きくなることを抑制でき、レイアウト性の向上を図ることができる。  (10) In this embodiment, the width L3 of the core portion of the coolant water cooling section 8 is equal to or less than the width L4 of the coolant flat tube 5a along the stacking direction of the coolant flat tubes 10. It is. Therefore, the cooling water tank 5c on the downstream side of the cooling water heat exchanger 5 can be suppressed from becoming larger than the cooling water tank 5c on the upstream side, and the layout can be improved.
[0073] (10)また本実施形態では、前記冷却水用熱交換器(5)は電動駆動部 (4)を冷却 するものである。  (10) In the present embodiment, the cooling water heat exchanger (5) cools the electric drive section (4).
[0074] (第 2実施形態)  [0074] (Second Embodiment)
図 8は、第 2実施形態に冷媒水冷部 8の構成を模式的に示す正面図であり、図 9は 、第 2実施形態に係る冷媒水冷部 8の構成を模式的に示す側面図である。第 1実施 形態にかかる冷媒水冷部 8が、第 1実施形態にかかるそれと相違する点は、入口側 の冷媒タンク 20Aおよび出口側の冷媒タンク 20Bの形状である。なお、第 1実施形態 と同一の構成については、参照符号を引用し、重複する説明は省略する。  FIG. 8 is a front view schematically showing the configuration of the refrigerant water cooling unit 8 in the second embodiment, and FIG. 9 is a side view schematically showing the configuration of the refrigerant water cooling unit 8 according to the second embodiment. . The refrigerant water cooling unit 8 according to the first embodiment is different from that according to the first embodiment in the shapes of the refrigerant tank 20A on the inlet side and the refrigerant tank 20B on the outlet side. In addition, about the same structure as 1st Embodiment, a referential mark is quoted and the overlapping description is abbreviate | omitted.
[0075] 入口側の冷媒タンク 20Aは、一対のタンクプレート 21 , 22と、一対のパッチエンド( 図示せず)と、で構成されている。  [0075] The inlet-side refrigerant tank 20A includes a pair of tank plates 21 and 22 and a pair of patch ends (not shown).
[0076] 第 2のタンクプレート 21は、略矩形状を有する平板である。この第 2のタンクプレート 21には、その略中央に開口が形成されており、第 2のタンクプレート 21の上面側が 冷却水タンク 5cの上壁の内面に接合されて、開口とコネクタ 24とが嵌合する。第 2の タンクプレート 21の縁部には、下方に向かって延出した L字形状の係合爪 21bが設 けられており、この係合爪 21bは、第 2のタンクプレート 21の下面側に密着した状態 で配置される第 1のタンクプレート 22を保持する。  [0076] The second tank plate 21 is a flat plate having a substantially rectangular shape. The second tank plate 21 has an opening substantially in the center thereof, and the upper surface side of the second tank plate 21 is joined to the inner surface of the upper wall of the cooling water tank 5c so that the opening and the connector 24 are connected. Mating. An L-shaped engaging claw 21b extending downward is provided at the edge of the second tank plate 21. The engaging claw 21b is provided on the lower surface side of the second tank plate 21. Hold the first tank plate 22 placed in close contact with the tank.
[0077] 第 1のタンクプレート 22は、第 2のタンクプレート 21と外周形状と対応した、略矩形 状を有する板状の部材である。この第 1のタンクプレート 22は、その中央領域に、冷 媒用偏平チューブ 10の長手方向内側に向けて(コネクタ 24と対向する側に向かって )凸状に湾曲された曲げ部が、形成されている。この曲げ部により、第 1のタンクプレ ート 22には、断面形状のアウトラインが円弧形状を有する空間が形成されている。こ の空間は、偏平チューブ 10の積層方向に向けて延在する。この空間は、冷媒をコア 部に供給するためのタンク内通路 26として機能する。このタンク内通路 26の幅 L1は 、第 1実施形態と同様に冷媒用偏平チューブ 10の幅 L2よりも小さく設定されている。 また、第 2のタンクプレート 21には、矩形状のチューブ揷入孔が形成されており、この チューブ揷入孔は、冷媒用偏平チューブ 10の外周形状と対応し、当該チューブ揷 入孔に当該冷媒用偏平チューブ 10の長手方向端部が嵌合されている。 [0077] The first tank plate 22 is a plate-like member having a substantially rectangular shape corresponding to the outer shape of the second tank plate 21. The first tank plate 22 has a bent portion that is curved in a convex shape toward the inner side in the longitudinal direction of the flat tube for cooling medium 10 (toward the side facing the connector 24). ing. By this bent portion, a space in which the outline of the cross-sectional shape has an arc shape is formed in the first tank plate 22. This space extends in the stacking direction of the flat tubes 10. This space cores the refrigerant It functions as an in-tank passage 26 for supplying to the section. The width L1 of the tank passage 26 is set smaller than the width L2 of the refrigerant flat tube 10 as in the first embodiment. Further, the second tank plate 21 has a rectangular tube insertion hole, which corresponds to the outer peripheral shape of the refrigerant flat tube 10 and corresponds to the tube insertion hole. The longitudinal end of the refrigerant flat tube 10 is fitted.
[0078] なお、出口側の冷媒タンク 20Bの構成は、入口側の冷媒タンク 20Aのそれと同じで あり、入口側の冷媒タンク 20Aの上下を逆さまにした状態で、冷却水タンク 5cに設け られている。この出口側の冷媒タンク 20Bは、冷却水タンク 5cの下壁にろう付けによ つて接合されている。 [0078] The configuration of the outlet side refrigerant tank 20B is the same as that of the inlet side refrigerant tank 20A, and is provided in the cooling water tank 5c with the refrigerant tank 20A on the inlet side turned upside down. Yes. The refrigerant tank 20B on the outlet side is joined to the lower wall of the cooling water tank 5c by brazing.
[0079] 個々の冷媒用偏平チューブ 10の長手方向両端部は、その偏平チューブ 10の幅方 向中央部(=偏平チューブ 10の短辺方向中央部)が、タンク内通路 26と形状的に対 応して、略半円形状に切り取られた形状となっている。このような形状を有する個々の 冷媒用偏平チューブ 10の長手方向両端部は、偏平チューブ 10の厚み方向(=複数 の偏平チューブ 10の積層方向)に向けて拡管されており、積層方向に隣接する冷媒 用偏平チューブ 10同士が直接的に接合されている。  [0079] At both ends in the longitudinal direction of each flat tube 10 for refrigerant, the central portion in the width direction of the flat tube 10 (= the central portion in the short side direction of the flat tube 10) is paired in shape with the passage 26 in the tank. Correspondingly, the shape is cut into a substantially semicircular shape. Both ends in the longitudinal direction of each of the refrigerant flat tubes 10 having such a shape are expanded in the thickness direction of the flat tubes 10 (= the stacking direction of a plurality of flat tubes 10) and are adjacent to each other in the stacking direction. The refrigerant flat tubes 10 are directly joined to each other.
[0080] 冷媒用偏平チューブ 10は、その長手方向一端部が、入口側の冷媒タンク 20Aに おける第 1のタンクプレート 22の開口(図 23の符号 27参照)に揷入されて、第 2のタ ンクプレート 21の下面(タンク内面)に突き当てられた状態で、ろう付けによって接合 されている。また、個々の冷媒用偏平チューブ 10は、その長手方向他端部が、出口 側の冷媒タンク 20Bにおける第 1のタンクプレート 22の開口(図 23の符号 27参照)に 揷入されて、第 2のタンクプレート 21の上面(タンク内面)に突き当てられた状態でろう 付けによって接合されている。  [0080] One end of the refrigerant flat tube 10 in the longitudinal direction is inserted into the opening (see reference numeral 27 in Fig. 23) of the first tank plate 22 in the refrigerant tank 20A on the inlet side, and the second tube 10 Joined by brazing while being in contact with the lower surface of the tank plate 21 (inner surface of the tank). In addition, each of the refrigerant flat tubes 10 is inserted into the opening of the first tank plate 22 in the refrigerant tank 20B on the outlet side (see reference numeral 27 in FIG. 23) at the other end in the longitudinal direction. The tank plate 21 is abutted against the upper surface (the tank inner surface) and joined by brazing.
[0081] このように本実施形態によれば、第 1実施形態と同様の効果を奏するとともに、以下 のさらなる効果を奏する。  As described above, according to the present embodiment, the same effects as those of the first embodiment are obtained, and the following further effects are obtained.
[0082] 第 2実施形態では、冷媒用偏平チューブ 10の長手方向両端部を、当該チューブ 1 0の厚み方向に拡管することで、積層方向に隣接する冷媒用偏平チューブ 10同士を 直接接合している。そのため、第 1のタンクプレート 22を、複数多段に積層した冷媒 用偏平チューブ 10のセットをまとめて揷入するための 1つの開口(図 23の符号 27参 照)を有する四角い枠形状とすることができる。これにより、第 1のタンクプレート 22に 冷媒用偏平チューブ 10の個数に対応したチューブ揷入孔(図 6の符号 22c参照)を 加工する必要がなぐ第 1のタンクプレート 22の形状を簡素化できる。 In the second embodiment, the refrigerant flat tubes 10 adjacent to each other in the stacking direction are directly joined to each other by expanding both longitudinal ends of the refrigerant flat tubes 10 in the thickness direction of the tubes 10. Yes. Therefore, one opening (see reference numeral 27 in FIG. 23) is used to insert a set of refrigerant flat tubes 10 in which a plurality of first tank plates 22 are stacked in multiple stages. A square frame shape having a light source). As a result, it is possible to simplify the shape of the first tank plate 22 without having to machine tube insertion holes (see reference numeral 22c in FIG. 6) corresponding to the number of refrigerant flat tubes 10 in the first tank plate 22. .
[0083] また、第 2実施形態では、冷媒用偏平チューブ 10の長手方向両端部の拡管により 、チューブ出入り時の圧力損失を低減できる。  In the second embodiment, the pressure loss when the tube enters and exits can be reduced by expanding the both ends in the longitudinal direction of the refrigerant flat tube 10.
[0084] また、第 2実施形態では、個々の冷媒用偏平チューブ 10を、平板状の第 2のタンク プレート 21へと突き当てることにより、冷媒用偏平チューブ 10の長手方向サイズを大 きくとること力 Sできる。これにより冷媒用偏平チューブ 10の放熱面を増加させることが できるので、熱交換領域を広くできる。  [0084] Further, in the second embodiment, the individual refrigerant flat tubes 10 are abutted against the flat plate-like second tank plate 21, thereby increasing the size of the refrigerant flat tubes 10 in the longitudinal direction. Power S can be. As a result, the heat radiation surface of the refrigerant flat tube 10 can be increased, so that the heat exchange region can be widened.
[0085] (第 3実施形態)  [0085] (Third embodiment)
図 10は、本発明の第 3実施形態にかかる車両用複合型熱交換器を模式的に示す 斜視図である。第 3実施形態の車両用複合型熱交換器が、第 1または第 2実施形態 のそれと相違する点は、冷媒水冷部 8に換えて、冷媒水冷部 70が用いられているこ とである。なお、第 1または第 2実施形態と同一の構成については引用符号を参照す ることにより、その詳細な説明は省略することし、以下、相違点を中心に説明を行う。  FIG. 10 is a perspective view schematically showing a composite heat exchanger for a vehicle according to a third embodiment of the present invention. The vehicle combined heat exchanger of the third embodiment is different from that of the first or second embodiment in that a refrigerant water cooling unit 70 is used instead of the refrigerant water cooling unit 8. Note that the same configurations as those in the first or second embodiment are referred to with reference numerals, and detailed descriptions thereof are omitted, and the following description is focused on the differences.
[0086] 冷媒水冷部 70は、空調システムの冷凍サイクルにおいて、コンプレッサからコンデ ンサ 6の冷媒空冷部 7までの間における冷媒ラインの一部を構成している。この冷媒 水冷部 70は、サブラジェータ 5の下流側の冷却水タンク 5cに直接取り付けられてい る。冷媒水冷部 70には、冷却水タンク 5cからの冷却水が流れ込み、また、冷凍サイク ルのコンプレッサからの冷媒が流れ込む。冷媒水冷部 70内では、これら冷却水と冷 媒との間で熱交換を行い、これにより、冷媒を冷却する。  [0086] The refrigerant water cooling unit 70 constitutes a part of the refrigerant line between the compressor and the refrigerant air cooling unit 7 of the capacitor 6 in the refrigeration cycle of the air conditioning system. The refrigerant water cooling unit 70 is directly attached to the cooling water tank 5c on the downstream side of the sub radiator 5. Cooling water from the cooling water tank 5c flows into the refrigerant water cooling section 70, and refrigerant from the refrigeration cycle compressor flows. In the coolant cooling unit 70, heat exchange is performed between the coolant and the coolant, thereby cooling the coolant.
[0087] 図 12は、冷媒水冷部 70を構成するシェルプレート 76、 77を模式的に示す側面図 であり、図 13は、図 12中の A— A断面に沿う冷媒水冷部 70の断面図である。  FIG. 12 is a side view schematically showing shell plates 76 and 77 constituting refrigerant water cooling unit 70, and FIG. 13 is a cross sectional view of refrigerant water cooling unit 70 along the AA cross section in FIG. It is.
[0088] 冷媒水冷部 70は、図 13に示すように、互いに向き合う第 1のシェルプレート 76およ び第 2のシェルプレート 77のセットを複数積層して構成されており、個々のシェルプレ ート 76, 77は、全体的に平板形状を有している。第 1および第 2のシェルプレート 76 , 77は、熱伝導性に優れる部材、例えば、アルミニウム合金といった金属板より形成 されている。 [0089] 第 1のシェルプレート 76および第 2のシェルプレート 77は、サブラジェータ 5の偏平 チューブ 10の長手方向に向けて、プレート面が直交するよう積層されている。また、 第 1のシェルプレート 76および第 2のシェルプレート 77は、冷却水タンク 5cからの冷 却水の流入方向に対して、そのプレート面が直交するように配置されている。 [0088] As shown in FIG. 13, the refrigerant water cooling section 70 is configured by stacking a plurality of sets of first shell plates 76 and second shell plates 77 facing each other, and each shell plate 76 and 77 have a flat plate shape as a whole. The first and second shell plates 76 and 77 are formed of a member having excellent thermal conductivity, for example, a metal plate such as an aluminum alloy. [0089] The first shell plate 76 and the second shell plate 77 are laminated so that the plate surfaces are orthogonal to the longitudinal direction of the flat tube 10 of the sub radiator 5. Further, the first shell plate 76 and the second shell plate 77 are arranged so that their plate surfaces are orthogonal to the inflow direction of the cooling water from the cooling water tank 5c.
[0090] 第 1および第 2のシェルプレート 76, 77は、周縁部が略 L字形状にそれぞれ折り曲 げられており、その周縁部が互いにろう付けによって接合されている。また、互いに接 合された第 1のシェルプレート 76および第 2のシェルプレート 77のセットは、互いに隣 り合うセット同士が、その周縁部を介してろう付けによって接合されている。ここで、サ ブラジェータ 5の下流側の冷却水タンク 5cは、サブラジェータ 5の冷媒用偏平チュー ブ 10の長手方向外側の側壁が開口しており、この開口内周縁に、最も冷却水タンク 5c側に位置する第 1のシェルプレート 76Eの周縁部とがろう付けによって接合されて いる。これにより、冷却水タンク 5cと冷媒水冷部 70とが一体化している。  [0090] The peripheral portions of the first and second shell plates 76 and 77 are bent in a substantially L shape, and the peripheral portions are joined to each other by brazing. In the set of the first shell plate 76 and the second shell plate 77 joined to each other, the sets adjacent to each other are joined by brazing via the peripheral edge. Here, the cooling water tank 5c on the downstream side of the radiator 5 has an open side wall on the outer side in the longitudinal direction of the refrigerant flat tube 10 of the sub radiator 5. The cooling water tank 5c side is located at the inner periphery of the opening. The peripheral edge portion of the first shell plate 76E located at is joined by brazing. Thereby, the cooling water tank 5c and the coolant cooling unit 70 are integrated.
[0091] このような構成の冷媒水冷部 70は、積層方向に隣接する一対のシェルプレート 76 , 77間の空間が冷却水または冷媒の通路として形成されている。個々の通路は、シ エルプレート 76, 77の積層方向に向けて、冷媒が流れる第 1の通路 78と、冷却水が 流れる第 2の通路 79と、が交互に設定されている。個々の第 1の通路 78には、インナ 一フィン 80が設置されて!/、る。  In the refrigerant water cooling section 70 having such a configuration, a space between a pair of shell plates 76 and 77 adjacent in the stacking direction is formed as a passage for cooling water or refrigerant. In each of the passages, a first passage 78 through which a coolant flows and a second passage 79 through which cooling water flows are alternately set in the stacking direction of the shell plates 76 and 77. Each first passage 78 is provided with an inner fin 80! /.
[0092] また、冷媒水冷部 70には、図 13に示すように、個々のシェルプレート 76, 77を貫 通する冷却水入口通路 81と、冷却水出口通路 82と、が構成されている。冷却水タン ク 5cからの冷却水は、冷却水入口通路 81へと流入すると、この冷却水入口通路 81 力も個々の第 2の通路 79に対して分岐する。個々の第 2の通路 79を流れた冷媒は、 冷却水出口通路 82におレ、て合流し、この冷却水出口通路 82を経由して外部(電動 駆動部 4側)へと流出する(Clout)。  Further, as shown in FIG. 13, the coolant cooling section 70 includes a cooling water inlet passage 81 that passes through the individual shell plates 76 and 77, and a cooling water outlet passage 82. When the cooling water from the cooling water tank 5c flows into the cooling water inlet passage 81, the force of the cooling water inlet passage 81 is also branched to the individual second passages 79. The refrigerant that has flown through the individual second passages 79 joins the cooling water outlet passage 82 and flows out to the outside (electric drive unit 4 side) via the cooling water outlet passage 82 (Clout). ).
[0093] ここで、図 12に示すように、第 1のシェルプレート 76および第 2のシェルプレート 77 には、冷却水入口通路 81および冷却水出口通路 82に対応する開口 76a, 77aがそ れぞれ形成されている。第 1のシェルプレート 76の開口 76aの周縁部は、外側(図 13 中において右側)に向けて凹状に窪まされた凹部が形成されている。このように構成 された第 1のシェルプレート 76の開口 76aの周縁部を、隣接する第 2のシェルプレー ト 77 (図 13中において右側に位置する第 2のシェルプレート 77)の開口 77aの周縁 部へと接触させて、当該接触箇所をろう付けにより接合することにより、冷却水入口通 路 81および冷却水出口通路 82がー連の通路として形成される。 Here, as shown in FIG. 12, the first shell plate 76 and the second shell plate 77 have openings 76a and 77a corresponding to the cooling water inlet passage 81 and the cooling water outlet passage 82, respectively. Each is formed. The peripheral portion of the opening 76a of the first shell plate 76 is formed with a concave portion that is recessed in a concave shape toward the outside (right side in FIG. 13). The peripheral portion of the opening 76a of the first shell plate 76 configured in this manner is connected to the adjacent second shell plate. 77 (the second shell plate 77 located on the right side in FIG. 13) is brought into contact with the peripheral edge of the opening 77a and joined by brazing, so that the cooling water inlet passage 81 and the cooling A water outlet passage 82 is formed as a continuous passage.
[0094] 同様に、冷媒水冷部 70には、図 13に示すように、個々のシェルプレート 76, 77を 貫通する冷媒入口通路 83および冷媒出口通路 84が構成されて!/、る。コンプレッサ からの冷媒 (C2in)は、冷媒入口通路 83へと流入すると、この冷媒入口通路 83を介 して個々の第 1の通路 78に対して分岐する。個々の第 1の通路 78を流れた冷媒は、 冷媒出口通路 84にお!/、て合流し、この冷媒出口通路 84を経由して外部(冷媒空冷 部 7側)へと流出する(C2out)。  Similarly, as shown in FIG. 13, the refrigerant water cooling section 70 includes a refrigerant inlet passage 83 and a refrigerant outlet passage 84 that penetrate through the individual shell plates 76 and 77. When the refrigerant (C2in) from the compressor flows into the refrigerant inlet passage 83, it branches to the individual first passages 78 via the refrigerant inlet passage 83. The refrigerant flowing through the individual first passages 78 joins the refrigerant outlet passages 84 and flows out to the outside (the refrigerant air cooling unit 7 side) via the refrigerant outlet passages 84 (C2out). .
[0095] ここで、図 12に示すように、第 1のシェルプレート 76および第 2のシェルプレート 77 には、冷媒入口通路 83および冷媒出口通路 84に対応する開口 76b, 77bがそれぞ れ形成されている。第 2のシェルプレート 77の開口 77bの周縁部は、外側(図 13中に おいて右側)に向けて凹状に窪まされた凹部が形成されている。このように構成され た第 2のシェルプレート 77の開口 77bの周縁部を、隣接する第 1のシェルプレート 76 (図 13中において右側に位置する第 1のシェルプレート 76)の開口 76bの周縁部に 接触させて、当該接触箇所をろう付けにより接合することにより、冷媒入口通路 83お よび冷媒出口通路 84がー連の通路として形成される。  Here, as shown in FIG. 12, the first shell plate 76 and the second shell plate 77 have openings 76b and 77b corresponding to the refrigerant inlet passage 83 and the refrigerant outlet passage 84, respectively. Has been. A peripheral portion of the opening 77b of the second shell plate 77 is formed with a concave portion that is recessed in a concave shape toward the outside (right side in FIG. 13). The peripheral edge of the opening 77b of the second shell plate 77 configured in this way is the peripheral edge of the opening 76b of the adjacent first shell plate 76 (the first shell plate 76 located on the right side in FIG. 13). The refrigerant inlet passage 83 and the refrigerant outlet passage 84 are formed as a continuous passage by bringing the contact portions into contact with each other and joining the contact portions by brazing.
[0096] なお、本実施形態おいて、冷却水タンク 5c側の最も外側のシェルプレート 76E (図  [0096] In the present embodiment, the outermost shell plate 76E on the cooling water tank 5c side (Fig.
13中の最も左側の第 1のシェルプレート 76E)は、通常の第 1のシェルプレート 76に おいて、冷媒入口通路 83に対応する開口 76b、冷媒出口通路 84に対応する開口 7 6b、および冷却水出口通路 82に対応する開口 76aを閉塞した構造となっている。  The leftmost first shell plate 76E) in FIG. 13 includes an opening 76b corresponding to the refrigerant inlet passage 83, an opening 76b corresponding to the refrigerant outlet passage 84, and the cooling in the normal first shell plate 76. The opening 76a corresponding to the water outlet passage 82 is closed.
[0097] また、冷却水タンク 5cとは逆側の最も外側のシェルプレート 77E (図 13中の最も右 側の第 2のシェルプレート 77E)は、通常の第 2のシェルプレート 77において、冷却水 入口通路 81に対応する開口 77aを閉塞した構造となって!/、る。  [0097] The outermost shell plate 77E on the opposite side to the cooling water tank 5c (the rightmost second shell plate 77E in FIG. 13) is the cooling water in the normal second shell plate 77. The opening 77a corresponding to the inlet passage 81 is closed.
[0098] 本実施形態において、冷却水入口通路 81は、冷媒水冷部 70の下方にレイアウトさ れており、また、冷却水出口通路 82は、冷媒水冷部 70の上方にレイアウトされている 。そのため、冷媒水冷部 70において、冷却水は、第 2の通路 79を下方から上方に向 力、つて流れる。これに対して、冷媒入口通路 83は、冷媒水冷部 70の上方にレイァゥ トされており、また、冷媒出口通路 84は、冷媒水冷部 70の下方にレイアウトされてい る。そのため、冷媒水冷部 70において、冷媒は、第 1の通路 78を上方から下方に向 力、つて流れる。したがって、冷媒水冷部 70内において、冷媒と冷却水とが互いに対 向する方向に流れる。 In the present embodiment, the cooling water inlet passage 81 is laid out below the refrigerant water cooling unit 70, and the cooling water outlet passage 82 is laid out above the refrigerant water cooling unit 70. Therefore, in the coolant cooling section 70, the cooling water flows through the second passage 79 from below to above. On the other hand, the refrigerant inlet passage 83 is arranged above the refrigerant water cooling unit 70. The refrigerant outlet passage 84 is laid out below the refrigerant water cooling section 70. Therefore, in the refrigerant water cooling unit 70, the refrigerant flows through the first passage 78 from the upper side to the lower side. Therefore, the refrigerant and the cooling water flow in directions opposite to each other in the refrigerant water cooling unit 70.
[0099] 図 12に示すように、冷却水入口通路 81と冷却水出口通路 82とは、その通路延在 方向と直交する平面において、水平方向(図 12中の左右方向)にオフセットしている 。また、冷媒入口通路 83と冷媒出口通路 84とも、その通路延在方向と直交する平面 において、水平方向(図 12中の左右方向)にオフセットしている。このため、冷媒と冷 却水とは、互いの進行方向が交差する(図 12参照)。  [0099] As shown in FIG. 12, the cooling water inlet passage 81 and the cooling water outlet passage 82 are offset in the horizontal direction (left-right direction in FIG. 12) on a plane orthogonal to the passage extending direction. . Further, both the refrigerant inlet passage 83 and the refrigerant outlet passage 84 are offset in the horizontal direction (left-right direction in FIG. 12) on a plane orthogonal to the passage extending direction. For this reason, the traveling direction of refrigerant and cooling water intersect each other (see Fig. 12).
[0100] このような構成により、電動駆動部 4を冷却した冷却水は、サブラジェータ 5の冷却 水入口部 54を通じて、上流側の冷却水タンク 5c内部に流入し、その後、各冷却水用 偏平チューブ 5aを流れ、下流側の冷却水タンク 5cに流入する。冷却水が冷却水用 偏平チューブ 5aを流れる過程にお!/、ては、冷却水の熱が冷却水用偏平チューブ 5a 力、ら放熱フィン 5bに伝達され、放熱フィン 5bから冷却風に伝達されて熱交換が行わ れる。これにより、冷却水が冷却される。下流側の冷却水タンク 5cへと流れた冷却水 は、そこから冷媒水冷部 70を通過する。具体的には、下流側の冷却水タンク 5cから の冷却水は、冷却水入口通路 81から個々の第 2の通路 79へと分岐し、第 2の通路 7 9をそれぞれ流れた後に、冷却水出口通路 82において合流し、その後、電動駆動部 4側へと供給される。  [0100] With such a configuration, the cooling water that has cooled the electric drive unit 4 flows into the cooling water tank 5c on the upstream side through the cooling water inlet 54 of the sub radiator 5, and then, each cooling water flat It flows through the tube 5a and flows into the cooling water tank 5c on the downstream side. In the process where the cooling water flows through the cooling water flat tube 5a !, the heat of the cooling water is transmitted to the cooling water flat tube 5a and the heat radiation fin 5b and from the heat radiation fin 5b to the cooling air. Heat exchange. Thereby, the cooling water is cooled. The cooling water that has flowed to the cooling water tank 5c on the downstream side passes through the refrigerant water cooling unit 70 from there. Specifically, the cooling water from the cooling water tank 5c on the downstream side branches from the cooling water inlet passage 81 to the individual second passages 79, and flows through the second passages 79, respectively. They merge at the outlet passage 82 and are then supplied to the electric drive unit 4 side.
[0101] また、空調システムの冷凍サイクルを循環する冷媒は、コンプレッサから吐出された 高温高圧のガスの状態で冷媒水冷部 70へと流入する。具体的には、冷媒水冷部 70 に流入した冷媒は、冷媒入口通路 83から個々の第 1の通路 78へと分岐し、第 1の通 路 78をそれぞれ流れる。第 1の通路 78を流れる冷媒は、その熱力 Sインナーフィン 80 力、ら第 1および第 2のシェノレプレー卜 76, 77、第 1および第 2のシェノレプレー卜 76, 77 力、ら冷却水に伝わって放熱され、過熱度が減少した状態、もしくは、一部飽和域に入 つた状態となる。個々の第 1の通路 78を流れた冷媒は、冷媒出口通路 84において 合流し、その後、冷媒空冷部 7に流入する。  [0101] Further, the refrigerant circulating in the refrigeration cycle of the air conditioning system flows into the refrigerant water cooling unit 70 in the state of high-temperature and high-pressure gas discharged from the compressor. Specifically, the refrigerant that has flowed into the refrigerant water cooling unit 70 branches from the refrigerant inlet passage 83 to the individual first passages 78 and flows through the first passages 78. The refrigerant flowing in the first passage 78 is transferred to the cooling water by the heat power S inner fin 80 force, the first and second cheno replay rods 76, 77, the first and second cheno repre plate rods 76, 77, and so on. Heat is dissipated and the degree of superheat is reduced, or it enters a state where it is partially saturated. The refrigerant flowing through the individual first passages 78 merges in the refrigerant outlet passage 84 and then flows into the refrigerant air cooling unit 7.
[0102] 以下、本第 3実施形態の主な特徴点を列挙する。 [0103] 本実施形態の複合型熱交換器 1は、第 1の発熱体 4との間に第 1流体 (冷却水)を 循環させることで第 1の発熱体の熱を第 1流体を介して放熱する第 1の熱交換器 5 (サ ブラジェータ)であって、第 1流体が流通する第 1流体タンク 5cを有する第 1の熱交換 器 5と、第 2の発熱体 (コンプレッサ)との間に第 2流体 (冷媒)を循環させることで第 2 の発熱体の熱を第 2流体を介して放熱する第 2の熱交換器 7 (冷媒空冷部)と、前記 第 2の発熱体(コンプレッサ)と前記第 2の熱交換器 7とを接続して第 2流体を循環さ せる第 2流体ライン (冷凍サイクル)の一部を構成するとともに、前記第 1流体タンク 5c に取り付けられ且つ前記第 1流体タンク 5cに連通接続されることで、当該第 1流体タ ンク 5cからの第 1流体と、第 2流体との間で熱交換を行う第 2流体冷却部 70 (冷媒水 冷部)と、を有する。前記第 2流体冷却部 70は、前記第 1流体タンク 5cからの第 1流 体の流入方向とプレート面が直交する平板形状の第 1のプレート 76と第 2のプレート 77が交互に積層されて第 1のプレートと第 2のプレートとが離間してその周縁部が液 密に接合された構成であり、互いに隣接するプレート 76、 77の間に、プレートの積層 方向に向けて、第 2流体が流れる第 1の通路 78と、第 1流体が流れる第 2の通路 79と 、が交互に設けられている。 [0102] The main feature points of the third embodiment are listed below. [0103] The composite heat exchanger 1 of the present embodiment circulates the first fluid (cooling water) between the first heat generator 4 and the heat of the first heat generator via the first fluid. A first heat exchanger 5 (a stabulator) that radiates heat and having a first fluid tank 5c through which the first fluid flows, and a second heating element (compressor) A second heat exchanger 7 (refrigerant air cooling unit) that radiates heat of the second heating element through the second fluid by circulating a second fluid (refrigerant) therebetween, and the second heating element ( Compressor) and the second heat exchanger 7 to form a part of the second fluid line (refrigeration cycle) for circulating the second fluid, and attached to the first fluid tank 5c and A second fluid that exchanges heat between the first fluid from the first fluid tank 5c and the second fluid by being connected to the first fluid tank 5c.却部 has 70 (the refrigerant water-cooling unit), the. The second fluid cooling unit 70 includes first plate 76 and second plate 77 having a plate shape in which the inflow direction of the first fluid from the first fluid tank 5c and the plate surface are orthogonal to each other. The first plate and the second plate are separated from each other and the peripheral edge thereof is liquid-tightly joined. Between the plates 76 and 77 adjacent to each other, the second fluid is directed toward the plate stacking direction. The first passage 78 through which the first fluid flows and the second passage 79 through which the first fluid flows are alternately provided.
[0104] そのため、第 2流体が第 2の熱交換器 7に流れこむ前に、当該第 2流体を、第 2流体 冷却部 70にお!/、て第 1の熱交換器 5を流通する第 1の流体を利用して冷却できるた め、冷却効率が向上する。  [0104] Therefore, before the second fluid flows into the second heat exchanger 7, the second fluid passes through the first heat exchanger 5 to the second fluid cooling unit 70! Cooling efficiency is improved because the first fluid can be used for cooling.
[0105] また、第 2流体冷却部 70は、シェルプレート 76 , 77の積層構造であるため、第 2流 体冷却部 70の強度を確保しつつ小型化を図ることができる。また、第 2流体冷却部 7 0は、シェルプレート 76 , 77の積層構造であるため、冷媒個々のプレート 76 , 77同 士の組み付けが容易となる。そのため、ろう付け部のクリアランス管理がしゃすくなり、 ろう付け性能が良好となる。  [0105] Further, since the second fluid cooling section 70 has a laminated structure of shell plates 76, 77, the second fluid cooling section 70 can be downsized while ensuring the strength of the second fluid cooling section 70. In addition, since the second fluid cooling section 70 has a laminated structure of the shell plates 76 and 77, the refrigerant individual plates 76 and 77 can be easily assembled together. As a result, the brazing clearance management is reduced and the brazing performance is improved.
[0106] また、本実施形態によれば、第 1流体タンク 5cは、一側面が開口として形成された 箱形状に形成され、当該第 1流体タンク 5cの開口の周縁部に第 2流体冷却部 70の 周縁部とが接合されて開口を閉塞している。そのため、シンプルな構造で、第 1流体 タンク 5cと第 2流体冷却部 70とを一体化できるので、省スペース化を図ることができ [0107] また本実施形態によれば、前記第 1の熱交換器 5は、内部に前記第 1流体を流通さ せることで第 1流体と空気との間で熱交換を行う第 1流体用偏平チューブ 5aの下流 側に、前記第 1流体タンク 5cを介して、前記冷媒水冷部 70の前記第 2の通路 79が連 通接続されている。また、前記冷媒水冷部 70の前記第 1の通路 78は、第 2流体ライ ン (冷凍サイクル)において、前記第 2の熱交換器 7よりも上流側である。そのため、第 2の通路 79を流れる第 1流体と、第 1の通路 78を流れる第 2流体と、の温度差が大き くなり、熱交換効率が向上する。 [0106] Also, according to the present embodiment, the first fluid tank 5c is formed in a box shape in which one side surface is formed as an opening, and the second fluid cooling unit is formed at the peripheral edge of the opening of the first fluid tank 5c. The peripheral edge of 70 is joined to close the opening. For this reason, the first fluid tank 5c and the second fluid cooling section 70 can be integrated with a simple structure, thus saving space. [0107] Further, according to the present embodiment, the first heat exchanger 5 is for the first fluid that exchanges heat between the first fluid and air by circulating the first fluid therein. The second passage 79 of the refrigerant water cooling unit 70 is connected to the downstream side of the flat tube 5a via the first fluid tank 5c. Further, the first passage 78 of the refrigerant water cooling unit 70 is upstream of the second heat exchanger 7 in the second fluid line (refrigeration cycle). Therefore, the temperature difference between the first fluid flowing through the second passage 79 and the second fluid flowing through the first passage 78 becomes large, and the heat exchange efficiency is improved.
[0108] また、本実施形態によれば、第 2流体冷却部内において、第 1流体 (冷却水)と第 2 流体 (冷媒)との流れが対向している。そのため、熱の交換効率の向上を図ることがで きる。  Further, according to the present embodiment, the flow of the first fluid (cooling water) and the second fluid (refrigerant) are opposed in the second fluid cooling section. Therefore, the heat exchange efficiency can be improved.
[0109] また、本実施形態によれば、第 2流体冷却部 70内において、第 1流体 (冷却水)を 上向きに流しているため、第 1流体 (冷却水)の流量が少ない場合でも、流量分布の 悪化を比較的抑制することができる。  [0109] Also, according to the present embodiment, the first fluid (cooling water) flows upward in the second fluid cooling section 70, so even when the flow rate of the first fluid (cooling water) is small, The deterioration of the flow distribution can be relatively suppressed.
[0110] また、本実施形態によれば、第 2流体冷却部 70内において、第 2流体としての、冷 凍サイクルを循環する冷媒を下向きに流しているため、冷媒に含まれるオイルが第 2 流体冷却部 70内に留まりにくぐ摺動部品を多く含むコンプレッサにオイルが戻りや すく有利となる。  [0110] Also, according to the present embodiment, in the second fluid cooling section 70, the refrigerant circulating through the refrigeration cycle as the second fluid is caused to flow downward, so that the oil contained in the refrigerant is the second fluid. It is advantageous for the oil to easily return to the compressor that includes many sliding parts that stay in the fluid cooling unit 70.
[0111] また、本実施形態によれば、第 2流体冷却部 70における第 2流体の出口(冷媒出 口部 84)が下側にレイアウトされるため、第 2流体冷却部 70の下方に位置する第 2の 熱交換器 7との距離が近くなり、両者をスムーズに接続できる。  [0111] Also, according to the present embodiment, the second fluid outlet (refrigerant outlet 84) in the second fluid cooling section 70 is laid out on the lower side, so that the second fluid cooling section 70 is positioned below the second fluid cooling section 70. The distance to the second heat exchanger 7 is reduced, and both can be connected smoothly.
[0112] また本実施形態によれば、第 2流体冷却部 70の第 1の通路 78内にインナーフィン 8 0が設置されている。第 1流体と第 2流体との間の熱交換効率を向上できる。  Further, according to the present embodiment, the inner fin 80 is installed in the first passage 78 of the second fluid cooling unit 70. The heat exchange efficiency between the first fluid and the second fluid can be improved.
[0113] なお、本実施形態では、第 1の通路 78側のみにインナーフィン 80を配置した構成 であるが、第 2の通路 79側に配置してもよい。もっとも、このインナーフィン 80を使用 せずに、第 1および第 2のシェルプレート 76, 77に凹凸(ビード)を設けることで、放熱 面積や強度を確保してもよい。このケースでは、部品点数が削減でき、組付け時間の 短縮を図ること力 Sできる。  [0113] In the present embodiment, the inner fin 80 is arranged only on the first passage 78 side, but it may be arranged on the second passage 79 side. Of course, without using the inner fins 80, the first and second shell plates 76, 77 may be provided with irregularities (beads) so as to ensure a heat radiation area and strength. In this case, the number of parts can be reduced and the assembly time can be reduced.
[0114] また、本実施形態では、第 1および第 2のシェルプレート 76, 77のプレートを交互に 積層しているが、一種類のプレートを交互に 180度回転させ積層する構造としてもよ ぐこのケースでは、部品の種類をさらに削減することが可能となる。 [0114] In the present embodiment, the first and second shell plates 76 and 77 are alternately arranged. In this case, it is possible to further reduce the number of types of parts.
[0115] また、サブラジェータ 5と冷媒水冷部 70とは、必ずしもろう付けで一体化とする必要 はない。例えば、両者を別々にろう付けした後、パッキンを挟んで周縁部をかしめる 構造とすれば、各々に対してより適正なろう付け条件を実現することができ、ろう付け 1·生能の向上を図ることができる。  [0115] Further, the sub radiator 5 and the coolant cooling unit 70 are not necessarily integrated by brazing. For example, if the structure is made by brazing the two parts separately and then crimping the periphery with the packing in between, it is possible to achieve more appropriate brazing conditions for each, and brazing Can be achieved.
[0116] 以上、第 1〜3実施形態の冷媒水冷部 8 (または冷媒水冷部 70)は、電動駆動部 4 を冷却する冷却水と冷凍サイクルの冷媒との間で熱交換を行ってレ、る力 これに限 定されず、第 1の発熱体を冷却する第 1流体と、第 2の発熱体を冷却する第 2流体と の間で熱交換を行うことができる。  [0116] As described above, the refrigerant water cooling unit 8 (or the refrigerant water cooling unit 70) of the first to third embodiments performs heat exchange between the cooling water that cools the electric drive unit 4 and the refrigerant of the refrigeration cycle. However, the present invention is not limited to this, and heat exchange can be performed between the first fluid that cools the first heating element and the second fluid that cools the second heating element.
[0117] (第 4実施形態)  [0117] (Fourth embodiment)
次に、第 4実施形態について図 14〜図 19を参照しつつ説明する。図 14は車両用 複合型熱交換器 1の構成図、図 15は車両用複合型熱交換器 1の概略斜視図、図 16 はサブラジェータ 5のタンク 5c内に設置された冷媒水冷部(水冷式のコンデンサ)の 正面図、図 17はサブラジェータのタンク内に設置された冷媒水冷部(水冷式のコン デンサ)の側面図、図 18は冷媒水冷部(水冷式のコンデンサ)の要部分解斜視図、 図 19 (a)はチューブ内のインナーフィンの配置状態を示す要部断面図、図 19 (b)は インナーフィンの要部正面図である。  Next, a fourth embodiment will be described with reference to FIGS. Fig. 14 is a block diagram of the combined heat exchanger 1 for a vehicle, Fig. 15 is a schematic perspective view of the combined heat exchanger 1 for a vehicle, and Fig. 16 is a refrigerant water cooling section (water cooling) installed in the tank 5c of the sub-rajator 5. Fig. 17 is a side view of the refrigerant water cooling unit (water-cooled capacitor) installed in the sub radiator tank, and Fig. 18 is an exploded view of the main part of the refrigerant water cooling unit (water-cooled capacitor). FIG. 19 (a) is a perspective view of the main part showing the arrangement of the inner fins in the tube, and FIG. 19 (b) is a front view of the main part of the inner fins.
[0118] 第 4実施形態の冷媒水冷部 (水冷式のコンデンサ) 8は、前記第 2実施形態の冷媒 水冷部 8に類似するものであり、第 2実施形態と同一構成には同一符号を付してその 説明を省略する。  [0118] The refrigerant water-cooling section (water-cooled condenser) 8 of the fourth embodiment is similar to the refrigerant water-cooling section 8 of the second embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals. The explanation is omitted.
[0119] 以下主に、図 16〜図 19を参照しつつ冷媒水冷部(水冷式のコンデンサ) 8につい て詳しく説明する。  [0119] Hereinafter, the refrigerant water cooling section (water cooling condenser) 8 will be described in detail mainly with reference to FIGS.
[0120] 図 16〜図 18に示すように、各チューブ 10の長手方向両端部には、且つ、当該チ ユーブ 10の幅方向中央部に、当該チューブ 10の長手方向内側に入り込む単一の 切欠部 l ibが設けられている。切欠部 l ibは、半円弧状である。各チューブ 10の厚 み方向両側の外面(つり両偏平面)には、ビード部 12a, 12bが適所に突設されてい る。偏平面の互いに同一位置にあるビード部 12a, 12b同士は、当該ビード部 12a、 12bの長手方向が異なる方向に設定されている。そして、積層方向に隣り合うチュー ブ 10は、互いのビード部 12a, 12bが付き当てられることによって隣り合うもの同士が 等間隔に配置されている。この間隔を利用してチューブ 10間を冷却水が通過する。 最も外側に配置されたチューブ 10の各ビード部 12a, 12bは、タンク 5cの内面より突 出されたビード部 30 (図 17に示す)に当接されている。これによつて、冷媒水冷部 8 は、タンク 5c内で左右方向に移動しないように収容されている。 [0120] As shown in FIG. 16 to FIG. 18, a single notch that enters the longitudinal inner side of the tube 10 at both longitudinal ends of each tube 10 and at the center in the width direction of the tube 10 Part l ib is provided. The notch l ib has a semicircular arc shape. Beads 12a and 12b are projected at appropriate positions on the outer surfaces of the tubes 10 in the thickness direction (both flat surfaces). The bead portions 12a and 12b located at the same position on the flat surface are the bead portions 12a, The longitudinal direction of 12b is set in a different direction. The adjacent tubes 10 in the stacking direction are arranged at equal intervals by adjoining the bead portions 12a and 12b. The cooling water passes between the tubes 10 using this interval. The bead portions 12a and 12b of the tube 10 arranged on the outermost side are in contact with a bead portion 30 (shown in FIG. 17) protruding from the inner surface of the tank 5c. Thereby, the coolant cooling unit 8 is accommodated so as not to move in the left-right direction in the tank 5c.
[0121] 各チューブ 10の内部には、チューブの長手方向に沿って延びるチューブ内流通 路 13が形成されている。チューブ内流通路 13は、チューブ 10の長手方向両端面 11 aに開口している。チューブ内流通路 13には、インナーフィン 14が配置されている。  [0121] Inside each tube 10, an in-tube flow path 13 extending along the longitudinal direction of the tube is formed. The tube internal flow passage 13 is open to both longitudinal end surfaces 11 a of the tube 10. Inner fins 14 are arranged in the tube internal flow passage 13.
[0122] 各タンク 20A、 20Bを構成するタンク部材は、各チューブ 10の長手方向端面 1 laよ りもチューブ 10の長手方向外側に配置された外側タンク部材 21と、外側タンク部材 2 1よりチューブ 10の長手方向内側に配置された内側タンク部材 22と、外側タンク部材 21と内側タンク部材 22とにより形成される筒状空間部の両端位置に配置された一対 の閉塞プレート 23と、を備えて構成されている。  [0122] The tank members constituting each of the tanks 20A and 20B are an outer tank member 21 disposed on the outer side in the longitudinal direction of the tube 10 with respect to the longitudinal end surface 1 la of each tube 10, and a tube from the outer tank member 21. An inner tank member 22 disposed on the inner side in the longitudinal direction, and a pair of blocking plates 23 disposed at both end positions of the cylindrical space formed by the outer tank member 21 and the inner tank member 22. It is configured.
[0123] 各外側タンク部材 21は、フラットな板材である。上位置の外側タンク部材 21はタン ク 5cの天井に当接されており、下位置の外側タンク部材 21はタンク 5cの底面にそれ ぞれ当接されている。これによつて、冷媒水冷部 8は、タンク 5c内で上下方向に移動 しないように収容されている。各外側タンク部材 21の中央には、コネクタ揷入孔 21 a ( 図 18に示す)がそれぞれ形成されて!/、る。一方の外側タンク部材 21のコネクタ揷入 孔 21 aに入口側のコネクタ 24が、他方の外側タンク部材 21のコネクタ揷入孔 21aに 出口側のコネクタ 25が取り付けられている。コネクタ 24及び 25は、サブラジェータ 5 のタンク 5cの外部に突出されて!/、る。  [0123] Each outer tank member 21 is a flat plate material. The upper outer tank member 21 is in contact with the ceiling of the tank 5c, and the lower outer tank member 21 is in contact with the bottom surface of the tank 5c. Thereby, the coolant cooling unit 8 is accommodated so as not to move in the vertical direction in the tank 5c. A connector insertion hole 21a (shown in FIG. 18) is formed in the center of each outer tank member 21! /. An inlet-side connector 24 is attached to the connector insertion hole 21 a of one outer tank member 21, and an outlet-side connector 25 is attached to the connector insertion hole 21 a of the other outer tank member 21. The connectors 24 and 25 are projected outside the tank 5c of the sub radiator 5! /.
[0124] 外側タンク部材 21の周縁の適所には、加締め爪部 21bがそれぞれ突設されている 。タンク 20A、 20Bの組み付け時には、この加締め爪部 21bを加締めることによって 外側タンク部材 21と内側タンク部材 22間が仮組み付けされる。  [0124] The caulking claw portions 21b are projected from appropriate positions on the periphery of the outer tank member 21, respectively. When the tanks 20A and 20B are assembled, the outer tank member 21 and the inner tank member 22 are temporarily assembled by crimping the crimping claws 21b.
[0125] 内側タンク部材 22は、外側タンク部材 21の周縁に密着される両側の周縁フラット部  [0125] The inner tank member 22 has peripheral flat portions on both sides that are in close contact with the peripheral edge of the outer tank member 21.
22aと、両側の周縁フラット部 22aの間に位置し、チューブ 10の切欠部 1 lbに倣って 内側に半円弧状に曲げられた屈曲部 22bと、力も一体に構成されている。内側タンク 部材 22には、等間隔に複数のチューブ揷入孔 22cが形成されている。各チューブ揷 入孔 22cにチューブ 10の長手方向端部がそれぞれ揷入されている。チューブ揷入 孔 22cに揷入されたチューブ 10の長手方向両端面 11aは、外側タンク部材 21の内 面に当接されている。又、内側タンク部材 22には、複数のチューブ揷入孔 22cよりも 外側の両側位置に、一対の閉塞プレート揷入孔 22dが形成されている。 A force is also integrally formed with 22a and a bent portion 22b which is located between the peripheral flat portions 22a on both sides and is bent inward in a semicircular arc shape following the notch 1 lb of the tube 10. Inner tank In the member 22, a plurality of tube insertion holes 22c are formed at equal intervals. The end portions in the longitudinal direction of the tube 10 are inserted into the respective tube insertion holes 22c. Both end surfaces 11a in the longitudinal direction of the tube 10 inserted into the tube insertion hole 22c are in contact with the inner surface of the outer tank member 21. The inner tank member 22 is formed with a pair of closing plate insertion holes 22d at both side positions outside the plurality of tube insertion holes 22c.
[0126] 各閉塞プレート 23は、内側タンク部材 22の閉塞プレート揷入孔 22dにそれぞれ揷 入されている。各閉塞プレート 23の揷入先端面は、外側タンク部材 21の内面に当接 されている。 [0126] Each closing plate 23 is inserted into a closing plate insertion hole 22d of the inner tank member 22, respectively. The insertion tip surface of each closing plate 23 is in contact with the inner surface of the outer tank member 21.
[0127] 以上の構成によって、タンク 20A、 20B内には、外側タンク部材 21と内側タンク部 材 22の内側位置で、且つ、その両側が一対の閉塞プレート 23で閉塞されたタンク内 通路 26が形成されている。つまり、タンク内通路 26は、外側タンク部材 21の内面をタ ンク内通路 26の外面として、チューブ 10の長手方向端面 11aより内側の一部領域に 形成されている。タンク内通路 26は、各チューブ 10の切欠部 l ibの箇所でチューブ 内流通路 13にそれぞれ連通して!/、る。  [0127] With the above configuration, in the tanks 20A and 20B, tank internal passages 26 are located inside the outer tank member 21 and the inner tank member 22, and both sides thereof are closed by the pair of closing plates 23. Is formed. That is, the tank inner passage 26 is formed in a partial region inside the longitudinal end surface 11a of the tube 10 with the inner surface of the outer tank member 21 as the outer surface of the tank inner passage 26. The tank passage 26 communicates with the tube passage 13 at the notch l ib of each tube 10.
[0128] また、冷媒水冷部 8の各部品の互いに当接される箇所は、ろう付けによって固定さ れている。従って、各チューブ 10の長手方向の端部と各タンク 20A、 20Bの間につ いては、具体的には、チューブ 10の長手方向端面 11 aと外側タンク部材 21の内面と の間、及び、チューブ 10と内側タンク部材 22のチューブ揷入孔 22cの内面との間が ろう付けされている。  [0128] Further, the portions of the refrigerant water cooling section 8 that are in contact with each other are fixed by brazing. Accordingly, between the longitudinal end of each tube 10 and each tank 20A, 20B, specifically, between the longitudinal end surface 11a of the tube 10 and the inner surface of the outer tank member 21, and The tube 10 and the inner surface of the tube insertion hole 22c of the inner tank member 22 are brazed.
[0129] 次に、インナーフィン 14の配置構造等について説明する。図 19 (a)、 (b)等に示す ように、インナーフィン 14は幅方向に波形状である。インナーフィン 14は、チューブ 1 0の長手方向両端部の切欠部 l ibの最も内側位置よりも更に内側位置にのみ配置さ れる寸法に形成されている。インナーフィン 14の長手方向両端面は、長手方向の直 交方向に沿ってカットされたストレートカット面 14aに形成されている。このストレート力 ット面 14aは、チューブ 10のチューブ内流通路 13に突出する左右一対の突起部 12 cに当接され、これによつてインナーフィン 14はチューブ内流通路 13内で移動できな いように収容されている。左右一対の突起部 12cは、インナーフィン 14のストレート力 ット面 14aに対し斜め向きの楕円形状であり、これによりインナーフィン 14の波形によ る複数の流路のレ、ずれの出入口も塞がなレ、ようになって!/、る。 Next, the arrangement structure of the inner fins 14 will be described. As shown in FIGS. 19 (a) and 19 (b), the inner fin 14 has a wave shape in the width direction. The inner fin 14 is formed in a dimension that is disposed only at an inner position further than the innermost position of the notch portion ib at both ends in the longitudinal direction of the tube 10. Both end surfaces of the inner fin 14 in the longitudinal direction are formed as straight cut surfaces 14a cut along the direction perpendicular to the longitudinal direction. This straight force surface 14a is in contact with a pair of left and right projections 12c projecting into the tube internal flow passage 13 of the tube 10, so that the inner fin 14 cannot move within the tube internal flow passage 13. Is contained. The pair of left and right projections 12c are elliptical in an oblique direction with respect to the straight force surface 14a of the inner fin 14. The flow of multiple channels and the entrance / exit of the shift are not blocked!
[0130] 以下、第 4実施形態の熱交換器 (冷媒水冷部) 8の主な特徴点を列挙する。 [0130] The main features of the heat exchanger (refrigerant water cooling unit) 8 of the fourth embodiment are listed below.
[0131] 第 4実施形態では、タンク 20A、 20Bは、チューブ 10の長手方向端面 1 laより外側 に配置された外側タンク部材 21を有し、外側タンク部材 21の内面をタンク内通路 26 の外面としてチューブ 10の長手方向端面 11aよりチューブの 10長手方向内側にタン ク内通路 26が形成されている。 [0131] In the fourth embodiment, the tanks 20A, 20B have an outer tank member 21 disposed outside the longitudinal end surface 1 la of the tube 10, and the inner surface of the outer tank member 21 is the outer surface of the tank inner passage 26. As shown, an in-tank passage 26 is formed on the inner side in the longitudinal direction of the tube 10 from the longitudinal end surface 11a of the tube 10.
[0132] 従って、チューブ 10の長手方向端面 11aより内側にタンク内通路 26が形成される ため、チューブ 10の長手方向の寸法 L6を冷媒水冷部 8の設置幅 L7の寸法に近づく 。その上、タンク内通路 26が形成されないチューブ 10の長手方向端部領域が熱交 換領域となる。以上より、一対のタンク 20A、 20Bと複数のチューブ 10から構成され る冷媒水冷部 8にあって、全体サイズを変えることなく熱交換効率の向上を図ることが できる。 Accordingly, since the tank passage 26 is formed inside the longitudinal end surface 11a of the tube 10, the longitudinal dimension L6 of the tube 10 approaches the dimension of the installation width L7 of the refrigerant water cooling unit 8. In addition, the end region in the longitudinal direction of the tube 10 where the tank passage 26 is not formed becomes a heat exchange region. As described above, in the refrigerant water cooling section 8 including the pair of tanks 20A and 20B and the plurality of tubes 10, the heat exchange efficiency can be improved without changing the overall size.
[0133] この第 4実施形態では、外側タンク部材 21は、チューブ 10の長手方向端面 11aに 当接している。従って、チューブ 10の長手方向の寸法 L6を冷媒水冷部 8の設置幅 L 7の寸法にさらに近づくようにできる。そのため、熱交換効率の更なる向上になる。具 体的には、チューブ 10の長手方向端部においてタンク内通路 26が形成されない領 域では、図 16に示すように、冷媒水冷部 8の設置幅 L7より若干短い寸法 L6となる。 そのため、チューブ 10の有効な熱交換領域が従来と比べて格段に拡大する。  [0133] In the fourth embodiment, the outer tank member 21 is in contact with the longitudinal end surface 11a of the tube 10. Therefore, the dimension L6 in the longitudinal direction of the tube 10 can be made closer to the dimension of the installation width L7 of the refrigerant water cooling unit 8. Therefore, the heat exchange efficiency is further improved. Specifically, in a region where the tank passage 26 is not formed at the longitudinal end of the tube 10, the dimension L6 is slightly shorter than the installation width L7 of the refrigerant water cooling unit 8, as shown in FIG. Therefore, the effective heat exchange area of the tube 10 is greatly expanded compared to the conventional case.
[0134] この第 4実施形態では、チューブ 10の長手方向両端部には、チューブ 10の幅方向 の中央位置に、チューブ 10の長手方向端面 11aより内側に入り込む切欠部 l ibがそ れぞれ形成され、切欠部 1 lbを利用してタンク内通路 26が形成されて!/、る。  [0134] In the fourth embodiment, at both ends in the longitudinal direction of the tube 10, the notches l ib that enter the inside from the longitudinal end surface 11a of the tube 10 are respectively located at the center in the width direction of the tube 10. A tank passage 26 is formed using 1 lb of the notch!
[0135] 従って、チューブ 10の幅方向両端の間に切欠部 l ibを有するため、切欠部 l ibを 利用して容易にタンク内通路 26を形成できる。又、チューブ 10の幅方向両端の間に 切欠部 l ibを有するため、チューブ 10の剛性が極端に低下することがない。  Accordingly, since the notch l ib is provided between both ends of the tube 10 in the width direction, the in-tank passage 26 can be easily formed using the notch l ib. Further, since the notch l ib is provided between both ends of the tube 10 in the width direction, the rigidity of the tube 10 does not extremely decrease.
[0136] この第 4実施形態では、各チューブ 10の長手方向端部に形成される切欠部 l ibは 単一であるため、単一のタンク内通路 26を形成できる。尚、切欠部 l ibは複数であつ ても良い。  [0136] In the fourth embodiment, since the notch l ib formed at the longitudinal end of each tube 10 is single, a single tank internal passage 26 can be formed. There may be a plurality of notches l ib.
[0137] この第 4実施形態では、切欠部 l ibは、ほぼ半円弧状である。従って、切欠部 l ib によってタンク 20A、 20Bのチューブ 10側の外面は、ほぼ半円弧状となるため、タン ク 20A、 20Bの近傍で、且つ、チューブ 10の外側を流れる冷却水は、図 16の a矢印 で示すように、スムーズに流れる。従って、熱交換の向上に寄与する。又、タンク内通 路 26も半円弧状になるため、タンク 20A、 20Bはタンク内通路 26を流れる冷媒の耐 圧性に優れた形状となる。 [0137] In the fourth embodiment, the notch l ib has a substantially semicircular arc shape. Therefore, the notch l ib As a result, the outer surface of the tanks 20A and 20B on the tube 10 side is almost semicircular, so the cooling water flowing in the vicinity of the tanks 20A and 20B and outside the tubes 10 is indicated by the arrow a in FIG. It flows smoothly. Therefore, it contributes to improvement of heat exchange. Further, since the tank passage 26 is also semicircular, the tanks 20A and 20B have a shape excellent in the pressure resistance of the refrigerant flowing through the tank passage 26.
[0138] この第 4実施形態では、タンク 20A、 20Bは、間隔を置いて複数のチューブ揷入孔  [0138] In the fourth embodiment, the tanks 20A and 20B are provided with a plurality of tube insertion holes at intervals.
22cを有し、各チューブ揷入孔 22cに各チューブ 10の長手方向両端部がそれぞれ 揷入されている。従って、タンク 20A、 20Bのチューブ揷入孔 22cに各チューブ 10の 長手方向端部を揷入することによって、複数のチューブ 10を所定の間隔に配置でき るため、タンク 20A、 20Bと各チューブ 10の組み付け性が良い。  22c, and both end portions in the longitudinal direction of the respective tubes 10 are inserted into the respective tube insertion holes 22c. Therefore, by inserting the longitudinal ends of the tubes 10 into the tube insertion holes 22c of the tanks 20A and 20B, a plurality of tubes 10 can be arranged at a predetermined interval. Therefore, the tanks 20A and 20B and the tubes 10 Is easy to assemble.
[0139] この第 4実施形態では、各タンク 20A、 20Bは、外側タンク部材 21の他に、外側タ ンク部材 21より内側に配置され、各チューブ 10の長手方向端部が入り込む複数の チューブ揷入孔 22cを有する内側タンク部材 22を有し、外側タンク部材 21と内側タ ンク部材 22で囲まれる内部にタンク内通路 26が形成されている。従って、外側タンク 部材 21と内側タンク部材 22を組み付けることによってタンク 20A、 20Bを形成できる [0139] In the fourth embodiment, each of the tanks 20A, 20B is arranged inside the outer tank member 21 in addition to the outer tank member 21, and a plurality of tube bottles into which the longitudinal ends of the tubes 10 enter. An inner tank member 22 having an inlet hole 22c is provided, and an in-tank passage 26 is formed inside the outer tank member 21 and the inner tank member 22. Therefore, the tanks 20A and 20B can be formed by assembling the outer tank member 21 and the inner tank member 22.
Yes
[0140] この第 4実施形態では、内側タンク部材 22は、外側タンク部材 21に密着される両側 の周縁フラット部 22aと、両側の周縁フラット部 22aの間に位置し、チューブ 10の切欠 部 l ibに倣って内側に曲がる屈曲部 22bと、を備えて構成されている。従って、長手 方向端部に切欠部 l ibがあるチューブ 10を用いることにより、外側タンク部材 21と内 側タンク部材 22と一対の閉塞プレート 23とによって液密のタンク内通路 26を容易に 形成できる。従って、従来例に比べて部品点数を増加することなく冷媒水冷部 8を製 造できる。  [0140] In the fourth embodiment, the inner tank member 22 is located between the peripheral flat portions 22a on both sides that are in close contact with the outer tank member 21 and the peripheral flat portions 22a on both sides, and the notch portion l of the tube 10 is provided. and a bent portion 22b that bends inward following ib. Therefore, by using the tube 10 having the notch l ib at the longitudinal end, the liquid-tight tank passage 26 can be easily formed by the outer tank member 21, the inner tank member 22, and the pair of closing plates 23. . Therefore, the refrigerant water cooling unit 8 can be manufactured without increasing the number of parts compared to the conventional example.
[0141] この第 4実施形態では、各チューブ 10の長手方向端部と各タンク 20A、 20Bの互 いに当接する箇所は、ろう付けされている。従って、各チューブ 10と各タンク 20A、 2 0Bの互いに当接する箇所が液密に強固に固定される。又、各チューブ 10の長手方 向端部は、内側タンク部材 22と外側タンク部材 21の双方にろう付けされるため、各チ ユーブ 10とタンク 20間の固定強度が向上し、ひいては、冷媒水冷部 8の強度が向上 する。 [0141] In the fourth embodiment, the end portions of the tubes 10 in the longitudinal direction and the locations where the tanks 20A and 20B abut each other are brazed. Accordingly, the portions of the tubes 10 and the tanks 20A, 20B that are in contact with each other are firmly fixed in a liquid-tight manner. Further, since the longitudinal end of each tube 10 is brazed to both the inner tank member 22 and the outer tank member 21, the fixing strength between each tube 10 and the tank 20 is improved, and as a result, the coolant water cooling is performed. Strength of part 8 is improved To do.
[0142] (第 4実施形態の変形例)  [0142] (Modification of Fourth Embodiment)
図 20はインナーフィン自体の構造及びその配置構造の変形例を示し、図 20 (a)は インナーフィンの配置状態を示す要部断面図、図 20 (b)はインナーフィンの要部正 面図である。  Fig. 20 shows the structure of the inner fin itself and a modified example of its arrangement. Fig. 20 (a) is a cross-sectional view of the main part showing the arrangement of the inner fin, and Fig. 20 (b) is a front view of the main part of the inner fin. It is.
[0143] 図 20 (a)、 (b)に示すように、インナーフィン 15は、前記第 4実施形態のものと同様 に、幅方向に波形状である。しかし、インナーフィン 15は、前記第 4実施形態のものと 異なり、チューブ 10とほぼ同じ長さ寸法に形成されている。そして、インナーフィン 15 の長手方向両端部は、幅方向の両方の端より中央に向かうに従って徐々に内側に 切り込む V字カット面 15aに形成されている。 V字カット面 15aの左右端が外側タンク 部材 21に当接することによって、インナーフィン 15がチューブ内流通路 13内で移動 できないようになつている。これにより、 V字カット面 15aは、タンク内通路 26外に位置 している。つまり、 V字カット面 15aによってタンク内通路 26からチューブ内流通路 13 に入る入口付近にインナーフィン 15が配置されな!/、。  As shown in FIGS. 20 (a) and 20 (b), the inner fin 15 has a wave shape in the width direction as in the fourth embodiment. However, the inner fin 15 is formed to have substantially the same length as the tube 10 unlike the fourth embodiment. Then, both end portions in the longitudinal direction of the inner fin 15 are formed on a V-shaped cut surface 15a that gradually cuts inwardly toward the center from both ends in the width direction. The left and right ends of the V-shaped cut surface 15 a abut against the outer tank member 21, so that the inner fin 15 cannot move in the tube flow path 13. Thus, the V-shaped cut surface 15a is located outside the tank passage 26. In other words, the inner fin 15 is not arranged near the entrance entering the tube internal flow passage 13 from the tank internal passage 26 by the V-shaped cut surface 15a! /.
[0144] タンク内通路 26より各チューブ 10に入り込む冷媒は、図 20 (a)の矢印で示すように 、その流れ方向についてインナーフィン 15の干渉を受けることなくチューブ 10内にス ムーズに流れ込み、チューブ内流通路 13の幅方向に対し冷媒流の疎密が発生しな い。従って、この変形例では、前記第 4実施形態にように、チューブ 10にチューブ内 流通路 13に向かって突出する突起部を設けることなぐインナーフィン 15の位置決 めができると共に熱交換効率の向上を図ることができる。  [0144] As shown by the arrows in FIG. 20 (a), the refrigerant entering the tubes 10 from the tank passage 26 smoothly flows into the tubes 10 without being interfered by the inner fins 15 in the flow direction. There is no refrigerant flow density in the width direction of the tube internal flow passage 13. Therefore, in this modified example, as in the fourth embodiment, the inner fin 15 can be positioned without providing the tube 10 with the protruding portion protruding toward the tube internal flow passage 13, and the heat exchange efficiency can be improved. Can be achieved.
[0145] (第 5実施形態)  [0145] (Fifth embodiment)
図 21〜図 25は本発明の第 5実施形態を示し、図 21はサブラジェータのタンク部内 に設置された冷媒水冷部の正面図、図 22はサブラジェータのタンク部内に設置され た冷媒水冷部の側面図、図 23は冷媒水冷部の要部分解斜視図、図 24は図 23の A —A線断面図、図 25は図 23の B— B線断面図である。  FIGS. 21 to 25 show a fifth embodiment of the present invention, FIG. 21 is a front view of a refrigerant water cooling unit installed in the tank part of the sub radiator, and FIG. 22 is a refrigerant water cooling unit installed in the tank part of the sub radiator. FIG. 23 is an exploded perspective view of the main part of the refrigerant water cooling unit, FIG. 24 is a cross-sectional view taken along line AA in FIG. 23, and FIG. 25 is a cross-sectional view taken along line BB in FIG.
[0146] この第 5実施形態に係る熱交換器は、前記第 4実施形態と同様に冷媒水冷部 8に 適用され、第 4実施形態のものと同一構成箇所には同一符号を付してその説明を省 略し、異なる構成箇所のみを説明する。 [0147] 図 21〜図 230に示すように、各チューブ 10の長手方向両端部は、切欠部 l ibを含 む全ての端部が他の箇所よりも幅が広い拡幅部 16にそれぞれ形成されている。そし て、隣り合うチューブ 10の両端部の拡幅部 16同士は、互いに密着され、且つ、下記 するようにろう付けによって液密に接合されている。 [0146] The heat exchanger according to the fifth embodiment is applied to the refrigerant water cooling unit 8 as in the fourth embodiment, and the same components as those in the fourth embodiment are denoted by the same reference numerals and the same reference numerals are given to the same components. The explanation is omitted and only the different components are explained. [0147] As shown in Figs. 21 to 230, both end portions in the longitudinal direction of each tube 10 are formed in the widened portion 16 in which all end portions including the cutout portion l ib are wider than other portions, respectively. ing. The widened portions 16 at both ends of the adjacent tubes 10 are in close contact with each other and are joined in a liquid-tight manner by brazing as described below.
[0148] タンク 20A、 20Bは、外側タンク部材 21とチューブ収束部材 22Aと一対の閉塞プレ ート 23とから構成されている。チューブ収束部材 22Aには、前記第 4実施形態の内 側タンク部材 22と同様に、両側の周縁フラット部 22aとその中央の屈曲部 22bとから なる同一輪郭形状であるが、内側タンク部材 22と異なり、全てのチューブ 10の端部 が共に入り込む単一のチューブ収束孔 27が形成されている。そして、単一のチュー ブ収束孔 27に全てのチューブ 10の端部が挿入されている。これにより、チューブ収 束部材 22Aによって複数のチューブ 10の端部が結束されている。又、チューブ収束 部材 22Aの屈曲部 22bの両端には、プレート係止溝 22eがそれぞれ形成されている [0148] The tanks 20A and 20B are composed of an outer tank member 21, a tube converging member 22A, and a pair of closed plates 23. Similar to the inner tank member 22 of the fourth embodiment, the tube converging member 22A has the same contour shape including the peripheral flat portion 22a on both sides and the bent portion 22b at the center thereof. In contrast, a single tube converging hole 27 is formed in which the ends of all the tubes 10 enter. The ends of all the tubes 10 are inserted into the single tube converging hole 27. Thereby, the end portions of the plurality of tubes 10 are bundled by the tube bundling member 22A. Further, plate locking grooves 22e are formed at both ends of the bent portion 22b of the tube converging member 22A.
Yes
[0149] 各閉塞プレート 23は、円弧状の面に係止突起 23aを有している。各閉塞プレート 2 3は、係止突起 23aがプレート係止溝 22eに係止された状態で外側タンク部材 21と チューブ収束部材 22Aの両端に配置されている。  [0149] Each closing plate 23 has a locking projection 23a on an arcuate surface. Each closing plate 23 is disposed at both ends of the outer tank member 21 and the tube converging member 22A in a state where the locking projection 23a is locked in the plate locking groove 22e.
[0150] 以上の構成によって、タンク 20A、 20B内には、外側タンク部材 21とチューブ収束 部材 22A及び複数のチューブ 10とに囲まれ、且つ、両側が一対の閉塞プレート 23 で閉塞されたタンク内通路 26が形成されている。つまり、タンク内通路 26は、外側タ ンク部材 21の内面をタンク内通路 26の外面として、チューブ 10の長手方向端面 11a より内側の一部領域に形成されている。タンク内通路 26は、図 24及び図 25に示すよ うに、各チューブ 10の切欠部 l ibの箇所でチューブ内流通路 13にそれぞれ連通し ている。  [0150] With the above configuration, the tanks 20A and 20B have tanks surrounded by the outer tank member 21, the tube converging member 22A, and the plurality of tubes 10, and closed on both sides by the pair of closing plates 23. A passage 26 is formed. That is, the tank inner passage 26 is formed in a partial region inside the longitudinal end surface 11a of the tube 10 with the inner surface of the outer tank member 21 being the outer surface of the tank inner passage 26. As shown in FIGS. 24 and 25, the in-tank passage 26 communicates with the in-tube passage 13 at the notch portion ib of each tube 10.
[0151] また、冷媒水冷部 8の各部品の互いに当接される箇所は、ろう付けによって固定さ れている。従って、各チューブ 10とタンク 20A、 20B間は、チューブ 10とチューブ収 束部材 22Aのチューブ収束孔 27の内面の互いに当接する箇所がろう付けされてい る。隣り合うチューブ 10間は、上記したように、その互いに当接する拡幅部 16同士が ろう付けされている。 [0152] 他の構成は、前記第 4実施形態と同様であるため、重複説明を回避するべく説明を 省略する。図面上の同一構成箇所には同一符号を付して明確化を図る。 [0151] Further, the portions of the refrigerant water cooling unit 8 that are in contact with each other are fixed by brazing. Accordingly, between the tubes 10 and the tanks 20A, 20B, the portions of the tubes 10 and the inner surfaces of the tube converging holes 27 of the tube collecting member 22A that are in contact with each other are brazed. As described above, the widened portions 16 that are in contact with each other are brazed between the adjacent tubes 10. [0152] Since the other configuration is the same as that of the fourth embodiment, description thereof will be omitted to avoid redundant description. The same components in the drawings are denoted by the same reference numerals for clarification.
[0153] この第 5実施形態でも、前記第 5実施形態と同様に、チューブ 10の長手方向端面 1 laより内側にタンク内通路 26が形成されるため、チューブ 10の長手方向の寸法 L6 を冷媒水冷部 8の設置幅の寸法 L7に近づくような長い寸法にできる。その上、タンク 内通路 26が形成されないチューブ 10の端部領域が熱交換領域となる。以上より、一 対のタンク 20A、 20Bと複数のチューブ 10から構成される冷媒水冷部 8にあって、全 体サイズを変えることなく熱交換効率の向上を図ることができる。  In the fifth embodiment, as in the fifth embodiment, the tank internal passage 26 is formed inside the longitudinal end face 1 la of the tube 10, so that the longitudinal dimension L 6 of the tube 10 is reduced to the refrigerant. Dimension of installation width of water cooling part 8 Can be made long so as to approach L7. In addition, the end region of the tube 10 where the tank passage 26 is not formed becomes a heat exchange region. As described above, in the refrigerant water cooling section 8 including the pair of tanks 20A and 20B and the plurality of tubes 10, the heat exchange efficiency can be improved without changing the overall size.
[0154] この第 5実施形態でも、外側タンク部材 21は、チューブ 10の長手方向端面 11aに 当接している。従って、チューブ 10の長手方向の寸法 L6を冷媒水冷部 8の設置幅 の寸法 L7に極力近づくような長さ寸法にできるため、熱交換効率の更なる向上にな る。具体的には、タンク内通路 26が形成されないチューブ 10の領域では、図 21に示 すように、冷媒水冷部 8の設置幅の寸法 L7より若干短い寸法 L6がチューブ 10の実 質的な長さ寸法 L6となるため、チューブ 10の有効な熱交換領域が従来と比べて格 段に拡大する。  [0154] Also in the fifth embodiment, the outer tank member 21 is in contact with the longitudinal end surface 11a of the tube 10. Therefore, since the length L6 of the tube 10 in the longitudinal direction can be made as long as possible as close as possible to the width L7 of the installation width of the refrigerant water cooling section 8, the heat exchange efficiency is further improved. Specifically, in the region of the tube 10 where the tank passage 26 is not formed, as shown in FIG. 21, the dimension L6 slightly shorter than the installation width dimension L7 of the refrigerant water cooling section 8 is the actual length of the tube 10. Since the length is L6, the effective heat exchange area of the tube 10 is greatly expanded compared to the conventional case.
[0155] この第 5実施形態では、チューブ 10の長手方向の両側の端部は、他の箇所よりも 幅が広い拡幅部 16に形成され、隣り合うチューブ 10の双方の拡幅部 16が液密に接 合され、各タンク 20A、 20Bは、外側タンク部材 21と複数のチューブ 10の拡幅部 16 によって形成されている。従って、複数のチューブ 10をその互いの拡幅部 16を密着 させた状態に並べることによって、複数のチューブ 10を等間隔に配置できるため、複 数のチューブ 10の組み付け性が良レ、。  [0155] In the fifth embodiment, the end portions on both sides in the longitudinal direction of the tube 10 are formed in the widened portion 16 that is wider than the other portions, and the widened portions 16 of both adjacent tubes 10 are liquid-tight. The tanks 20A and 20B are formed by the outer tank member 21 and the widened portions 16 of the plurality of tubes 10. Therefore, since the plurality of tubes 10 can be arranged at equal intervals by arranging the plurality of tubes 10 in a state where the widened portions 16 thereof are in close contact with each other, the assembling property of the plurality of tubes 10 is excellent.
[0156] この第 5実施形態では、各チューブ 10の長手方向両側の端部は、チューブ 10の幅 方向の端より中央位置に、チューブ 10の長手方向端面 11aより内側に入り込む切欠 部 1 lbをそれぞれ有し、切欠部 1 lbを含む全ての端部が他の箇所よりも幅が広い拡 幅部 16にそれぞれ形成され、各タンク 20A、 20Bは、外側タンク部材 21の他に、単 一のチューブ収束孔 27が形成されたチューブ収束部材 22Aを有し、チューブ収束 部材 22Aのチューブ収束孔 27に、複数のチューブ 10の互いに液密に接合された拡 幅部 16を一括して揷入し、チューブ収束部材 22Aによって複数のチューブ 10の端 部が結束されている。従って、複数のチューブ 10をチューブ収束部材 22Aによって 外側タンク部材 21に強固に固定できる。従って、各チューブ 10とタンク 20A、 20B間 の固定強度の向上、ひいては、熱交換器の強度が向上する。 [0156] In the fifth embodiment, the end portions on both sides in the longitudinal direction of each tube 10 are provided with notches 1 lb that enter the inside from the longitudinal end surface 11a of the tube 10 at the center position from the end in the width direction of the tube 10. Each of the tanks 20A and 20B has a single unit in addition to the outer tank member 21. The tube converging member 22A having the tube converging hole 27 is formed, and the widened portions 16 of the plurality of tubes 10 that are liquid-tightly joined to the tube converging hole 27 of the tube converging member 22A are collectively inserted. The end of multiple tubes 10 by the tube converging member 22A The parts are united. Therefore, the plurality of tubes 10 can be firmly fixed to the outer tank member 21 by the tube converging member 22A. Therefore, the fixing strength between the tubes 10 and the tanks 20A and 20B is improved, and the strength of the heat exchanger is improved.
[0157] この第 5実施形態でも、前記第 4実施形態と同様に、切欠部 l ibは、ほぼ半円弧状 である。従って、切欠部 l ibによってタンク 20A、 20Bのチューブ 10側の外面は、ほ ぼ半円弧状となるため、タンク 20A、 20Bの外側で、且つ、チューブ 10の外側を流れ る冷却水は、図 21の b矢印で示すように、スムーズに流れる。従って、熱交換の向上 に寄与する。又、タンク内通路 26も半円弧状になるため、タンク 20A、 20Bはタンク 内通路 26を流れる冷媒の耐圧性に優れた形状となる。  [0157] Also in the fifth embodiment, the cutout portion ib has a substantially semicircular arc shape as in the fourth embodiment. Accordingly, the outer surface of the tanks 20A and 20B on the tube 10 side is almost semicircular due to the notch l ib, so the cooling water flowing outside the tanks 20A and 20B and outside the tube 10 is Flows smoothly as indicated by the arrow b in Fig. 21. Therefore, it contributes to the improvement of heat exchange. Further, since the tank passage 26 also has a semicircular arc shape, the tanks 20A and 20B have a shape excellent in pressure resistance of the refrigerant flowing through the tank passage 26.
[0158] この第 5実施形態では、各チューブ 10の端部と一対のタンク 20A、 20Bの互いに 当接される箇所のみならず、隣り合うチューブ 10の互いに当接する拡幅部 16同士も ろう付けされている。従って、チューブ 10の拡幅部 16同士の固定及びその隙間の液 密性の確保をろう付け作業で確実に行うことができる。  [0158] In the fifth embodiment, not only the end portions of each tube 10 and the pair of tanks 20A, 20B are in contact with each other, but also the widened portions 16 of the adjacent tubes 10 that are in contact with each other are brazed. ing. Therefore, it is possible to reliably fix the widened portions 16 of the tube 10 and secure the liquid tightness of the gaps by the brazing operation.
[0159] この第 5実施形態にあって、インナーフィン 14の構成及び配置を、第 4実施形態の 変形例を採用しても良い。  In this fifth embodiment, the configuration and arrangement of the inner fins 14 may adopt a modification of the fourth embodiment.
[0160] 第 4及び第 5実施形態では、本発明の熱交換器を冷媒水冷部 8に適用した場合を 示したが、冷媒空冷部 7 (空冷式のコンデンサ)や、内部の冷却水を流すラジェター や、その他の熱交換器ににも適用できる。  [0160] In the fourth and fifth embodiments, the case where the heat exchanger of the present invention is applied to the refrigerant water cooling unit 8 is shown. However, the refrigerant air cooling unit 7 (air cooling type condenser) and the internal cooling water flow. It can also be applied to radiators and other heat exchangers.

Claims

請求の範囲 The scope of the claims
[1] 内部に冷却水用内部通路を有する冷却水用偏平チューブ(5a)を、複数多段に積 層したコア部と、前記コア部を通過した冷却水が流入する冷却水タンク(5c)と、を備 えた冷却水用熱交換器(5)と、  [1] A core portion in which a plurality of cooling water flat tubes (5a) having an internal passage for cooling water are stacked in multiple stages, and a cooling water tank (5c) into which cooling water that has passed through the core portion flows. And a cooling water heat exchanger (5) equipped with
前記冷却水用熱交換器(5)の前記冷却水タンク(5c)に内蔵され、内部に冷媒を流 通させることで当該冷媒と前記冷却水タンク(5c)内の冷却水との間で熱交換させる 冷媒水冷部(8)と、を有する複合型熱交換器(1)であって、  Built in the cooling water tank (5c) of the cooling water heat exchanger (5), heat is passed between the refrigerant and the cooling water in the cooling water tank (5c) by allowing the refrigerant to flow inside. A composite heat exchanger (1) having a refrigerant water cooling section (8) to be exchanged,
前記冷媒水冷部(8)は、  The refrigerant water cooling section (8)
内部に冷媒用内部通路を有する冷媒用偏平チューブ(10)が、複数多段に積層し たコア部と、  A core portion in which a refrigerant flat tube (10) having an internal passage for refrigerant is laminated in a plurality of stages;
前記冷媒用偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を 有し且つ前記冷媒用偏平チューブ(10)の長手方向一方の開口端部が挿入されて 前記冷媒用内部通路と連通する第 1の冷媒タンク(20A)と、  The refrigerant flat tube (10) has an in-tank passage (26) extending in the stacking direction, and one open end of the refrigerant flat tube (10) in the longitudinal direction is inserted. A first refrigerant tank (20A) in communication with the internal passage;
前記冷媒用偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を 有し且つ前記冷媒用偏平チューブ(10)の長手方向他方の開口端部が挿入されて 前記内部通路と連通する第 2の冷媒タンク(20B)と、を有し、  A tank internal passage (26) extending in the stacking direction of the refrigerant flat tube (10), and the other open end of the refrigerant flat tube (10) in the longitudinal direction is inserted; A second refrigerant tank (20B) in communication with
前記第 1の冷媒タンク(20A)および前記第 2の冷媒タンク(20B)は、前記冷媒用 偏平チューブ(10)の幅方向に沿って、前記タンク内通路(26)の幅(L1)が前記冷 媒用偏平チューブの幅 (L2)よりも小さ!/、。  The first refrigerant tank (20A) and the second refrigerant tank (20B) have a width (L1) of the tank passage (26) along the width direction of the refrigerant flat tube (10). Smaller than the width (L2) of the flat tube for cooling medium!
[2] 請求項 1に記載の複合型熱交換器(1)であって、 [2] A composite heat exchanger (1) according to claim 1,
前記タンク内通路(26)の断面形状のアウトラインが円弧形状を有することで、前記 タンク内通路 (26)の幅 (L1)が前記冷媒用偏平チューブの幅 (L2)よりも小さく設定 されている。  Since the outline of the cross-sectional shape of the tank passage (26) has an arc shape, the width (L1) of the tank passage (26) is set smaller than the width (L2) of the refrigerant flat tube. .
[3] 請求項 1に記載の複合型熱交換器(1)であって、  [3] A composite heat exchanger (1) according to claim 1,
前記偏平チューブ(10)は、長手方向一端が、前記第 1の冷媒タンク(20A)の内面 に突き当てられており、長手方向他端が、前記第 2の冷媒タンク(20B)の内面に突き 当てられている。  One end of the flat tube (10) in the longitudinal direction is abutted against the inner surface of the first refrigerant tank (20A), and the other end in the longitudinal direction is abutted against the inner surface of the second refrigerant tank (20B). It has been applied.
[4] 請求項 1に記載の複合型熱交換器(1)であって、 前記第 1の冷媒タンク(20A)は、前記冷却水タンク(5c)内において前記冷却水タ ンク(5c)の長手方向一端に接合されており、 [4] The composite heat exchanger (1) according to claim 1, The first refrigerant tank (20A) is joined to one end in the longitudinal direction of the cooling water tank (5c) in the cooling water tank (5c),
前記第 2の冷媒タンク(20B)は、前記冷却水タンク(5c)内において前記冷却水タ ンク(5c)の長手方向他端に接合されて!/、る。  The second refrigerant tank (20B) is joined to the other longitudinal end of the cooling water tank (5c) in the cooling water tank (5c).
[5] 請求項 1に記載の複合型熱交換器(1)であって、 [5] The composite heat exchanger (1) according to claim 1,
前記冷媒水冷部(8)には、冷凍サイクルのコンプレッサから吐出された冷媒が流入 する。  The refrigerant discharged from the compressor of the refrigeration cycle flows into the refrigerant water cooling section (8).
[6] 請求項 1に記載の複合型熱交換器(1)であって、  [6] The composite heat exchanger (1) according to claim 1,
冷凍サイクルのコンデンサ(6)をさらに備え、  It further includes a condenser (6) for the refrigeration cycle,
前記コンデンサ(6)は、  The capacitor (6)
当該コンデンサ(6)の内部を流通する冷媒を、前記冷却水用熱交換器(5)の前記 冷却水タンク(5c)内の冷却水で冷却する前記冷媒水冷部(8)と、  The refrigerant water cooling section (8) for cooling the refrigerant flowing through the condenser (6) with the cooling water in the cooling water tank (5c) of the cooling water heat exchanger (5);
当該コンデンサ(6)の内部を流通する冷媒を、空気で冷却する冷媒空冷部(7)と、 を備えて構成されている。  A refrigerant air-cooling section (7) for cooling the refrigerant flowing through the condenser (6) with air.
[7] 請求項 6に記載の複合型熱交換器(1)であって、 [7] The composite heat exchanger (1) according to claim 6,
前記コンデンサ(6)の内部を流通する冷媒は、前記冷媒水冷部(8)、前記冷媒空 冷部(7)、の順に流れる。  The refrigerant flowing through the condenser (6) flows in the order of the refrigerant water cooling section (8) and the refrigerant air cooling section (7).
[8] 請求項 6に記載の複合型熱交換器(1)であって、 [8] The composite heat exchanger (1) according to claim 6,
前記冷却水タンク(5c)は、冷媒空冷部(7)の冷媒タンク(7c)に接合されて!/、る。  The cooling water tank (5c) is joined to the refrigerant tank (7c) of the refrigerant air cooling section (7).
[9] 前記冷媒用偏平チューブ(10)の積層方向に沿って、前記冷媒水冷部(8)のコア 部の幅 (L3) 、前記冷却水用偏平チューブ(5a)の幅 (L4)以下である。 [9] A width (L3) of the core portion of the coolant water cooling section (8) and a width (L4) of the cooling water flat tube (5a) along the stacking direction of the coolant flat tube (10) is there.
[10] 請求項 1に記載の複合型熱交換器であって、 [10] The composite heat exchanger according to claim 1,
前記冷却水用熱交換器(5)は、電動駆動部(4)を冷却するものである。  The cooling water heat exchanger (5) cools the electric drive section (4).
[11] 第 1の発熱体との間で第 1流体を循環させることで第 1の発熱体の熱を第 1流体を 介して放熱する第 1の熱交換器(5)であって、前記第 1の流体が流通する第 1流体タ ンク(5c)を有する第 1の熱交換器(5)と、 [11] A first heat exchanger (5) for dissipating heat of the first heating element through the first fluid by circulating the first fluid between the first heating element and the first heating element, A first heat exchanger (5) having a first fluid tank (5c) through which the first fluid flows;
第 2の発熱体との間で第 2流体を循環させることで第 2の発熱体の熱を第 2流体を 介して放熱する第 2の熱交換器 (7)と、 前記第 2の発熱体と前記第 2の熱交換器(7)との間に前記第 2流体を循環させる第 2流体ラインの一部を構成するとともに、前記第 1流体タンク(5c)に内蔵されて、当該 第 1流体タンク( 5c)内の第 1流体と第 2流体との間で熱交換を行う第 2流体冷却部(8 )と、 A second heat exchanger (7) for dissipating the heat of the second heating element through the second fluid by circulating the second fluid between the second heating element and the second heating element; Forms a part of a second fluid line for circulating the second fluid between the second heating element and the second heat exchanger (7), and is built in the first fluid tank (5c) A second fluid cooling section (8) for exchanging heat between the first fluid and the second fluid in the first fluid tank (5c),
を有する複合型熱交換器 ( 1 )であって、  A combined heat exchanger (1) comprising:
前記第 2流体冷却部(8)は、  The second fluid cooling section (8)
第 2流体用内部通路を有する偏平チューブ(10)を複数多段に積層したコア部と、 前記偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を内部に 有し、前記偏平チューブ(10)の一方の開口端部が挿入されて前記第 2流体用内部 通路と連通しており、前記偏平チューブ(10)のそれぞれに供給する上流側の第 2流 体タンク(20A)と、  A core portion in which a plurality of flat tubes (10) each having an internal passage for the second fluid are stacked in multiple stages, and a tank internal passage (26) extending in the stacking direction of the flat tubes (10), One open end of the flat tube (10) is inserted and communicated with the second fluid internal passage, and the upstream second fluid tank (20A) supplied to each of the flat tubes (10). )When,
前記偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を内部に 有し、前記偏平チューブ(10)の他方の開口端部が挿入されて前記第 2流体用内部 通路と連通しており、前記偏平チューブ(10)を流れた第 2流体が流れ込む下流側の 第 2流体タンク(20B)と、  A tank internal passage (26) extending in the laminating direction of the flat tube (10) is provided therein, and the other open end of the flat tube (10) is inserted into the second fluid internal passage. A second fluid tank (20B) on the downstream side into which the second fluid flowing through the flat tube (10) flows, and
を有し、  Have
前記上流側の第 2流体タンク(20A)および前記下流側の第 2流体用タンク(20B) は、当該タンク内通路 (26)の幅(L1)が前記偏平チューブの幅(L2)よりも小さ!/、。  In the second fluid tank (20A) on the upstream side and the second fluid tank (20B) on the downstream side, the width (L1) of the passage (26) in the tank is smaller than the width (L2) of the flat tube. ! /
[12] 請求項 11に記載の複合型熱交換器(1)であって、 [12] The composite heat exchanger (1) according to claim 11,
前記タンク内通路(26)の断面形状のアウトラインが円弧形状を有することで、前記 タンク内通路 (26)の幅(L1)が前記偏平チューブの幅(L2)よりも小さく設定されて!/、  Since the outline of the cross-sectional shape of the passage (26) in the tank has an arc shape, the width (L1) of the passage (26) in the tank is set smaller than the width (L2) of the flat tube! /,
[13] 請求項 11に記載の複合型熱交換器(1)であって、 [13] The composite heat exchanger (1) according to claim 11,
前記第 1の熱交換器(5)は、内部に前記第 1流体を流通させることで前記第 1流体 と空気との間で熱交換を行う第 1流体用偏平チューブ(5a)を備え、前記第 1流体用 偏平チューブ(5a)の下流側に前記第 1流体タンク(5c)が設けられ、  The first heat exchanger (5) includes a first fluid flat tube (5a) that exchanges heat between the first fluid and air by circulating the first fluid therein, The first fluid tank (5c) is provided downstream of the first fluid flat tube (5a);
前記第 2流体冷却部(8)は、前記第 2流体ラインにおいて前記第 2の熱交換器(7)よ り上流側である。 [14] 第 1の発熱体との間に第 1流体を循環させることで第 1の発熱体の熱を第 1流体を 介して放熱する第 1の熱交換器(5)であって、第 1流体が流通する第 1流体タンク(5c )を有する第 1の熱交換器(5)と、 The second fluid cooling section (8) is upstream of the second heat exchanger (7) in the second fluid line. [14] A first heat exchanger (5) for dissipating heat of the first heating element through the first fluid by circulating the first fluid between the first heating element and the first heating element. A first heat exchanger (5) having a first fluid tank (5c) through which one fluid flows;
第 2の発熱体との間に第 2流体を循環させることで第 2の発熱体の熱を第 2流体を 介して放熱する第 2の熱交換器 (7)と、  A second heat exchanger (7) for dissipating the heat of the second heating element through the second fluid by circulating the second fluid between the second heating element and the second heating element;
前記第 2の発熱体と前記第 2の熱交換器(7)とを接続して第 2流体を循環させる第 2流体ラインの一部を構成するとともに、前記第 1流体タンク(5c)に取り付けられ且つ 前記第 1流体タンク(5c)に連通接続されることで、当該第 1流体タンク(5c)からの第 1流体と、第 2流体との間で熱交換を行う第 2流体冷却部(70)と、を有する複合型熱 交換器であって、  The second heating element and the second heat exchanger (7) are connected to form a part of the second fluid line for circulating the second fluid and attached to the first fluid tank (5c). And a second fluid cooling section that exchanges heat between the first fluid from the first fluid tank (5c) and the second fluid by being connected to the first fluid tank (5c). 70), and a combined heat exchanger comprising:
前記第 2流体冷却部(70)は、前記第 1流体タンク(5c)からの第 1流体の流入方向 とプレート面が直交する平板形状の第 1のプレートと第 2のプレート(76, 77)が交互 に積層されて第 1のプレートと第 2のプレートとが離間してその周縁部が液密に接合 された構成であり、プレートの積層方向に向けて、第 2流体が流れる第 1の通路(78) と、第 1流体が流れる第 2の通路(79)と、が交互に設けられている。  The second fluid cooling section (70) includes a first plate and a second plate (76, 77) having a flat plate shape in which the inflow direction of the first fluid from the first fluid tank (5c) and the plate surface are orthogonal to each other. Are alternately stacked so that the first plate and the second plate are separated from each other and the peripheral edge thereof is liquid-tightly joined, and the first fluid flows in the plate stacking direction. The passages (78) and the second passages (79) through which the first fluid flows are alternately provided.
[15] 請求項 14に記載の複合型熱交換器( 1 )であって、 [15] The composite heat exchanger (1) according to claim 14,
前記第 1の熱交換器(5)は、内部に前記第 1流体を流通させることで第 1流体と空 気との間で熱交換を行う第 1流体用偏平チューブ( 5a)を備え、  The first heat exchanger (5) includes a first fluid flat tube (5a) that exchanges heat between the first fluid and air by circulating the first fluid therein.
当該第 1流体用偏平チューブ( 5a)の下流側に前記第 1流体タンク( 5c)を介して前 記第 2流体冷却部(70)の前記第 2の通路(79)が連通接続され、  The second passage (79) of the second fluid cooling section (70) is connected to the downstream side of the first fluid flat tube (5a) via the first fluid tank (5c).
前記第 2流体冷却部(70)の前記第 1の通路(78)は、第 2流体ラインにおいて、前 記第 2の熱交換器(7)よりも上流側である。  The first passage (78) of the second fluid cooling section (70) is upstream of the second heat exchanger (7) in the second fluid line.
[16] 請求項 14に記載の複合型熱交換器(1)であって、 [16] The composite heat exchanger (1) according to claim 14,
前記第 1流体タンク(5c)は、一側面が開口として形成された箱形状に形成され、当 該第 1流体タンク(5c)の開口の周縁部と前記第 2流体冷却部(70)の周縁部とが接 合されて前記開口部が閉塞されている。  The first fluid tank (5c) is formed in a box shape with one side surface formed as an opening, and the periphery of the opening of the first fluid tank (5c) and the periphery of the second fluid cooling part (70) And the opening is closed.
[17] 請求項 14に記載の複合型熱交換器(1)であって、 [17] The composite heat exchanger (1) according to claim 14,
前記第 2流体冷却部(70)は、前記第 1流体と前記第 2流体とが互いに対向する方 向に流れる。 The second fluid cooling part (70) is configured such that the first fluid and the second fluid face each other. It flows in the direction.
[18] 請求項 14に記載の複合型熱交換器(1)であって、  [18] The composite heat exchanger (1) according to claim 14,
前記第 2流体冷却部(70)は、前記第 1の通路(78)内にインナーフィン(80)が設 置されている。  The second fluid cooling section (70) has an inner fin (80) disposed in the first passage (78).
[19] 請求項 14に記載の複合型熱交換器(1)であって、  [19] The composite heat exchanger (1) according to claim 14,
前記第 1流体は、車両用電動モータの制御用の電子部品(4)を冷却する冷却水で あり、  The first fluid is cooling water for cooling the electronic component (4) for controlling the electric motor for the vehicle,
前記第 2流体は、空調システムの冷凍サイクルを循環する冷媒である。  The second fluid is a refrigerant circulating in the refrigeration cycle of the air conditioning system.
[20] 内部に冷却水用内部通路を有する冷却水用偏平チューブ(5a)を、複数多段に積 層したコア部と、前記コア部を通過した冷却水が流入する冷却水タンク(5c)と、を備 えた冷却水用熱交換器(5)と、 [20] A core portion in which a plurality of cooling water flat tubes (5a) having an internal passage for cooling water are stacked in multiple stages, and a cooling water tank (5c) into which the cooling water that has passed through the core portion flows. And a cooling water heat exchanger (5) equipped with
前記冷却水用熱交換器(5)の前記冷却水タンク(5c)に内蔵され、内部に冷媒を流 通させることで当該冷媒と前記冷却水タンク(5c)内の冷却水との間で熱交換させる 冷媒水冷部(8)と、を有する複合型熱交換器(1)であって、  Built in the cooling water tank (5c) of the cooling water heat exchanger (5), heat is passed between the refrigerant and the cooling water in the cooling water tank (5c) by allowing the refrigerant to flow inside. A composite heat exchanger (1) having a refrigerant water cooling section (8) to be exchanged,
前記冷媒水冷部(8)は、  The refrigerant water cooling section (8)
内部に冷媒用内部通路を有する冷媒用偏平チューブ(10)が、複数多段に積層し たコア部と、  A core portion in which a refrigerant flat tube (10) having an internal passage for refrigerant is laminated in a plurality of stages;
前記冷媒用偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を 有し且つ前記冷媒用偏平チューブ(10)の長手方向一方の開口端部が挿入されて 前記冷媒用内部通路と連通する第 1の冷媒タンク(20A)と、  The refrigerant flat tube (10) has an in-tank passage (26) extending in the stacking direction, and one open end of the refrigerant flat tube (10) in the longitudinal direction is inserted. A first refrigerant tank (20A) in communication with the internal passage;
前記冷媒用偏平チューブ(10)の積層方向に向けて延在するタンク内通路(26)を 有し且つ前記冷媒用偏平チューブ(10)の長手方向他方の開口端部が挿入されて 前記内部通路と連通する第 2の冷媒タンク(20B)と、  A tank internal passage (26) extending in the stacking direction of the refrigerant flat tube (10), and the other open end of the refrigerant flat tube (10) in the longitudinal direction is inserted; A second refrigerant tank (20B) communicating with the
を有し、  Have
前記冷媒タンク(20A, 20B)を構成するタンク部材は、複数の前記冷媒用偏平チ ユーブ(10)の長手方向端面(11a)より前記チューブ(10)の長手方向外側に配置さ れた外側タンク部材(21)を有し、  The tank members constituting the refrigerant tanks (20A, 20B) are outer tanks arranged on the outer side in the longitudinal direction of the tube (10) from the longitudinal end surfaces (11a) of the plurality of refrigerant flat tubes (10). Having a member (21),
前記外側タンク部材(21)の内面を前記タンク内通路(26)の外面とし、 前記チューブ(10)の長手方向端面(1 la)より前記チューブ(10)の長手方向内側 に前記タンク内通路(26)が形成されて!/、る。 The inner surface of the outer tank member (21) is the outer surface of the tank internal passage (26), The tank passage (26) is formed on the inner side in the longitudinal direction of the tube (10) from the longitudinal end face (1 la) of the tube (10).
[21] 熱交換器(8)であって、 [21] heat exchanger (8),
内部にチューブ内流通路(13)をそれぞれ有する複数のチューブ(10)と、 前記チューブ(10)の長手方向両端側に配置され、前記チューブ内流通路(13)と 連通接続されるタンク内通路(26)を有する一対のタンク(20A, 20B)と、を備え、 前記タンク(20A, 20B)を構成するタンク部材は、複数の前記チューブ(10)の長 手方向端面(1 l a)より前記チューブ(10)の長手方向外側に配置された外側タンク 部材(21 )を有し、  A plurality of tubes (10) each having a tube inflow passage (13) therein, and a tank passage disposed at both ends in the longitudinal direction of the tube (10) and connected to the tube inflow passage (13) (26) and a pair of tanks (20A, 20B), and tank members constituting the tanks (20A, 20B) are arranged in the longitudinal direction end faces (1 la) of the tubes (10). An outer tank member (21) disposed on the outside in the longitudinal direction of the tube (10);
前記外側タンク部材(21)の内面を前記タンク内通路(26)の外面とし、 前記チューブ(10)の長手方向端面(1 la)より前記チューブ(10)の長手方向内側 に前記タンク内通路(26)が形成されて!/、る。  The inner surface of the outer tank member (21) serves as the outer surface of the tank passage (26), and the tank passage (inside the longitudinal end surface (1 la) of the tube (10) in the longitudinal direction of the tube (10) ( 26) is formed!
[22] 請求項 21記載の熱交換器(8)であって、 [22] The heat exchanger (8) according to claim 21,
前記外側タンク部材(21 )に、前記チューブ( 10)の長手方向端面( 11 a)が当接し ている。  A longitudinal end surface (11a) of the tube (10) is in contact with the outer tank member (21).
[23] 請求項 21記載の熱交換器(8)であって、  [23] The heat exchanger (8) according to claim 21,
前記タンク内通路(26)は、前記チューブ(10)の幅方向両端の間に形成されてい  The tank internal passage (26) is formed between both ends of the tube (10) in the width direction.
[24] 請求項 23記載の熱交換器(8)であって、 [24] A heat exchanger (8) according to claim 23,
前記チューブ(10)の長手方向両端部には、前記チューブ(10)の幅方向中央部 に、前記チューブ(10)の長手方向端面(11a)より内側に入り込む切欠部(l ib)が 少なくとも 1つ形成され、前記切欠部(l ib)を利用して前記タンク内通路(26)が形 成されている。  At both ends in the longitudinal direction of the tube (10), at least one notch (l ib) entering the inner side from the longitudinal end surface (11a) of the tube (10) at the center in the width direction of the tube (10). The tank passage (26) is formed using the notch (l ib).
[25] 請求項 24記載の熱交換器(8)であって、 [25] A heat exchanger (8) according to claim 24,
前記切欠部(l ib)は、各チューブ(10)の長手方向端部に 1つだけ設けられている 請求項 4記載の熱交換器(8)であって、  The heat exchanger (8) according to claim 4, wherein only one notch (l ib) is provided at a longitudinal end of each tube (10).
前記切欠部(l ib)は、ほぼ半円弧状である。 [27] 請求項 21記載の熱交換器(8)であって、 The notch (l ib) has a substantially semicircular arc shape. [27] The heat exchanger (8) according to claim 21,
前記タンク(20A、 20B)は、前記チューブ(10)の長手方向端部が挿入されるチュ ーブ揷入孔(22c)を備える。  The tank (20A, 20B) includes a tube insertion hole (22c) into which the longitudinal end of the tube (10) is inserted.
[28] 請求項 21記載の熱交換器(8)であって、 [28] A heat exchanger (8) according to claim 21,
前記タンク(20A、 20B)は、前記外側タンク部材(21)の他に、前記外側タンク部材 (21)より前記チューブの長手方向内側に配置された内側タンク部材(22)であって 前記チューブ(10)の長手方向端部が入り込むチューブ揷入孔(22c)を有する内側 タンク部材(22)を有し、  The tanks (20A, 20B) include, in addition to the outer tank member (21), an inner tank member (22) disposed on the inner side in the longitudinal direction of the tube from the outer tank member (21). An inner tank member (22) having a tube insertion hole (22c) into which the longitudinal end of 10) enters;
前記外側タンク部材(21)と前記内側タンク部材(22)で囲まれる内側に前記タンク 内通路(26)が形成されて!/、る。  The tank internal passage (26) is formed on the inner side surrounded by the outer tank member (21) and the inner tank member (22).
[29] 請求項 28記載の熱交換器(8)であって、 [29] A heat exchanger (8) according to claim 28,
前記内側タンク部材(22)は、前記外側タンク部材(21)に密着される両側の周縁フ ラット部 (22a)と、両側の周縁フラット部(22a)の間に位置し前記チューブ(10)の前 記切欠部(1 lb)に倣って湾曲する屈曲部(22b)と、を備えて構成されて!/、る。  The inner tank member (22) is positioned between the peripheral flat portions (22a) on both sides that are in close contact with the outer tank member (21) and the peripheral flat portions (22a) on both sides. And a bent portion (22b) that bends along the notch (1 lb).
[30] 請求項 21に記載の熱交換器(8)であって、 [30] A heat exchanger (8) according to claim 21,
前記チューブ(10)の長手方向両端部は、前記チューブ(10)の長手方向中央側よ りも厚みが拡大された拡幅部(16)として構成され、積層方向に隣り合う前記チューブ (10)の前記拡幅部(16)同士が接合されている。  Both ends in the longitudinal direction of the tube (10) are configured as widened portions (16) whose thickness is larger than the central side in the longitudinal direction of the tube (10), and the tubes (10) adjacent to each other in the stacking direction are configured. The widened portions (16) are joined together.
[31] 請求項 21に記載の熱交換器(8)であって、 [31] A heat exchanger (8) according to claim 21,
前記チューブ(10)の長手方向両端部は、前記チューブ(10)の幅方向中央位置 に、前記チューブ(10)の長手方向端面(1 la)より前記チューブ(10)の長手方向内 側に入り込む切欠部(1 lb)を有し、  Both ends in the longitudinal direction of the tube (10) enter the inner side in the longitudinal direction of the tube (10) from the longitudinal end surface (1 la) of the tube (10) at the center in the width direction of the tube (10). Has a notch (1 lb)
前記チューブ( 10)の長手方向両端部は、前記チューブ( 10)の長手方向中央側 よりも厚みが拡大された拡幅部(16)として構成され、  Both end portions in the longitudinal direction of the tube (10) are configured as widened portions (16) whose thickness is larger than the longitudinal center side of the tube (10),
積層方向に隣り合う前記チューブ(10)の前記拡幅部(16)同士が接合され、 前記タンク(20A)を構成するタンク部材は、前記外側タンク部材(21)と、前記外側 タンク部材(21)よりも前記チューブ長手方向内側に配置され、且つ複数多段に積層 したチューブ(10)の長手方向端部を束ねるようにして受け入れる単一のチューブ収 束孔(27)を有するチューブ収束部材(22A)と、を備える。 The widened portions (16) of the tubes (10) adjacent to each other in the stacking direction are joined together, and the tank member constituting the tank (20A) includes the outer tank member (21) and the outer tank member (21). A single tube housing that is disposed inside the tube in the longitudinal direction of the tube and is received by bundling the longitudinal ends of the tubes (10) stacked in multiple stages. A tube converging member (22A) having a bundle hole (27).
[32] 請求項 11に記載の熱交換器(8)であって、 [32] A heat exchanger (8) according to claim 11,
前記チューブ(10)の長手方向端部と前記タンク(20A, 20B)の互いに当接する 箇所は、ろう付けされている。  A portion where the longitudinal end of the tube (10) and the tank (20A, 20B) contact each other is brazed.
[33] 請求項 30又は 31に記載の熱交換器(8)であって、 [33] A heat exchanger (8) according to claim 30 or 31,
積層方向に隣り合う前記チューブ(10)拡幅部(16)同士は、ろう付けされている。  The said tube (10) widening part (16) adjacent to the lamination direction is brazed.
[34] 請求項 21記載の熱交換器(8)であって、 [34] The heat exchanger (8) according to claim 21,
前記チューブ(10)の前記チューブ内流通路(13)内に配置されるインナーフィン( 14, 15)をさらに備える。  Inner fins (14, 15) disposed in the tube internal flow passage (13) of the tube (10) are further provided.
[35] 請求項 34記載の熱交換器(8)であって、 [35] A heat exchanger (8) according to claim 34,
前記インナーフィン(14)は、前記チューブ(10)の長手方向両端部に形成されるタ ンク内通路(26)よりも前記チューブ(10)の長手方向内側に配置されている。  The inner fin (14) is arranged on the inner side in the longitudinal direction of the tube (10) with respect to the passages (26) in the tank formed at both longitudinal ends of the tube (10).
[36] 請求項 34記載の熱交換器(8)であって、 [36] A heat exchanger (8) according to claim 34,
前記チューブ(10)は、前記チューブ内流通路(13)内に突出し、前記インナーフィ ン(14)の移動を規制する突起部(12c)を備える。  The tube (10) includes a protrusion (12c) that protrudes into the tube internal flow passage (13) and restricts movement of the inner fin (14).
[37] 請求項 34記載の熱交換器(8)であって、 [37] A heat exchanger (8) according to claim 34,
前記チューブ(10)の長手方向両端部は、前記チューブ(10)の幅方向中央部に、 前記チューブ(10)の長手方向端面(11a)よりチューブ(10)の長手方向内側に入り 込む切欠部(l ib)を備え、  The longitudinal ends of the tube (10) are notched into the central portion in the width direction of the tube (10) and enter the inside of the tube (10) in the longitudinal direction from the longitudinal end surface (11a) of the tube (10). (L ib)
前記インナーフィン(15)の長手方向両端部は、インナーフィン(15)の幅方向両端 力、ら幅方向中央側に向力、うに従って徐々にインナーフィン(15)の長手方向内側に 切り込む V字カット面(15a)を備え、  Both ends of the inner fin (15) in the longitudinal direction are gradually cut into the inner side in the longitudinal direction of the inner fin (15) according to the force in the widthwise direction of the inner fin (15), the direction force toward the center in the width direction. With cut surface (15a)
前記 V字カット面( 15)の幅方向端部が外側タンク部材(21 )に当接し、 前記 V字カット面(15)は前記タンク内通路(26)外に位置する。  An end in the width direction of the V-shaped cut surface (15) contacts the outer tank member (21), and the V-shaped cut surface (15) is located outside the tank internal passage (26).
PCT/JP2007/074127 2006-12-14 2007-12-14 Compound heat exchanger and heat exchanger WO2008072730A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006337124 2006-12-14
JP2006-337124 2006-12-14
JP2007-112150 2007-04-20
JP2007112150A JP2008170140A (en) 2006-12-14 2007-04-20 Heat exchanger for vehicle
JP2007-277850 2007-10-25
JP2007277850A JP2009103404A (en) 2007-10-25 2007-10-25 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2008072730A1 true WO2008072730A1 (en) 2008-06-19

Family

ID=39511743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074127 WO2008072730A1 (en) 2006-12-14 2007-12-14 Compound heat exchanger and heat exchanger

Country Status (1)

Country Link
WO (1) WO2008072730A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061808A1 (en) * 2008-11-26 2010-06-03 カルソニックカンセイ株式会社 Compound heat exchange unit
JP2010121604A (en) * 2008-11-21 2010-06-03 Calsonic Kansei Corp Cooling system
WO2011046650A3 (en) * 2009-10-16 2011-12-29 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
US20140102679A1 (en) * 2011-06-10 2014-04-17 Clasonic Kansei Corporation Water-cooled condenser
WO2014103639A1 (en) * 2012-12-28 2014-07-03 カルソニックカンセイ株式会社 Compound heat exchanger
EP2795230A2 (en) * 2011-12-19 2014-10-29 Behr GmbH & Co. KG Heat exchanger
US20150211810A1 (en) * 2012-08-01 2015-07-30 Calsonic Kansei Corporation Heat exchanger
US20150345877A1 (en) * 2012-12-17 2015-12-03 Calsonic Kansei Corporation Combined heat exchanger
CN107701290A (en) * 2016-08-08 2018-02-16 卡特彼勒公司 Work machine heat exchanger
FR3057495A1 (en) * 2016-10-13 2018-04-20 Hutchinson INSTALLATION OF THERMAL CONDITIONING OF A MOTOR VEHICLE
DE102017107134A1 (en) * 2017-04-03 2018-10-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Heat exchanger for high temperature application, in particular intercooler
US10281217B2 (en) 2017-05-12 2019-05-07 Denso International America, Inc. Multifluid heat exchanger
US20210039470A1 (en) * 2018-04-27 2021-02-11 Denso Corporation Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105098A (en) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd Manufacture of oil cooler built in radiator tank
JP2005221151A (en) * 2004-02-05 2005-08-18 Calsonic Kansei Corp Heat exchanger and header tank
JP2005343221A (en) * 2004-05-31 2005-12-15 Calsonic Kansei Corp Cooling device structure of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105098A (en) * 1998-09-29 2000-04-11 Toyo Radiator Co Ltd Manufacture of oil cooler built in radiator tank
JP2005221151A (en) * 2004-02-05 2005-08-18 Calsonic Kansei Corp Heat exchanger and header tank
JP2005343221A (en) * 2004-05-31 2005-12-15 Calsonic Kansei Corp Cooling device structure of vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121604A (en) * 2008-11-21 2010-06-03 Calsonic Kansei Corp Cooling system
WO2010061808A1 (en) * 2008-11-26 2010-06-03 カルソニックカンセイ株式会社 Compound heat exchange unit
WO2011046650A3 (en) * 2009-10-16 2011-12-29 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
US8439104B2 (en) 2009-10-16 2013-05-14 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
US20140102679A1 (en) * 2011-06-10 2014-04-17 Clasonic Kansei Corporation Water-cooled condenser
US10240826B2 (en) 2011-12-19 2019-03-26 Mahle International Gmbh Heat exchanger
EP2795230A2 (en) * 2011-12-19 2014-10-29 Behr GmbH & Co. KG Heat exchanger
US20150211810A1 (en) * 2012-08-01 2015-07-30 Calsonic Kansei Corporation Heat exchanger
US9846000B2 (en) * 2012-08-01 2017-12-19 Calsonic Kansei Corporation Heat exchanger
US20150345877A1 (en) * 2012-12-17 2015-12-03 Calsonic Kansei Corporation Combined heat exchanger
WO2014103639A1 (en) * 2012-12-28 2014-07-03 カルソニックカンセイ株式会社 Compound heat exchanger
CN104903675B (en) * 2012-12-28 2017-03-15 康奈可关精株式会社 Compound heat-exchanger
CN104903675A (en) * 2012-12-28 2015-09-09 康奈可关精株式会社 Compound heat exchanger
JP2014129907A (en) * 2012-12-28 2014-07-10 Calsonic Kansei Corp Compound heat exchanger
CN107701290A (en) * 2016-08-08 2018-02-16 卡特彼勒公司 Work machine heat exchanger
CN107701290B (en) * 2016-08-08 2021-07-06 卡特彼勒公司 Heat exchanger for working machine
FR3057495A1 (en) * 2016-10-13 2018-04-20 Hutchinson INSTALLATION OF THERMAL CONDITIONING OF A MOTOR VEHICLE
DE102017107134A1 (en) * 2017-04-03 2018-10-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Heat exchanger for high temperature application, in particular intercooler
US10281217B2 (en) 2017-05-12 2019-05-07 Denso International America, Inc. Multifluid heat exchanger
US20210039470A1 (en) * 2018-04-27 2021-02-11 Denso Corporation Heat exchanger

Similar Documents

Publication Publication Date Title
WO2008072730A1 (en) Compound heat exchanger and heat exchanger
JP5293077B2 (en) Heat exchanger
JP4078766B2 (en) Heat exchanger
CN110100083B (en) Intercooler
JP2010127508A (en) Combined heat exchanger
JP5184314B2 (en) Cooling system
JP2006284165A (en) Exhaust gas heat exchanger
JP2015534030A (en) Heat exchanger
KR101321064B1 (en) Automotive combination heat exchanger
JP2008180486A (en) Heat exchanger
WO2011136047A1 (en) Vehicle interior heat exchanger
JP2008170140A (en) Heat exchanger for vehicle
US11268769B2 (en) Heat exchanger
KR100687637B1 (en) Heat exchanger
JP2009103404A (en) Heat exchanger
WO2020170651A1 (en) Compound heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
CN114829862A (en) Heat exchanger
JP2004108644A (en) Heat exchanger
WO2018037838A1 (en) Combined type heat exchanger
KR20100023600A (en) Curtain air bag for vehicle
JP4352992B2 (en) Manufacturing method of integrated heat exchanger
JP2020073792A (en) Inter cooler
KR100988319B1 (en) Hat exchanger
KR101960786B1 (en) Plate type Oil Cooler for Motor Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-09-2009).

122 Ep: pct application non-entry in european phase

Ref document number: 07850631

Country of ref document: EP

Kind code of ref document: A1