JP2010127508A - Combined heat exchanger - Google Patents

Combined heat exchanger Download PDF

Info

Publication number
JP2010127508A
JP2010127508A JP2008301312A JP2008301312A JP2010127508A JP 2010127508 A JP2010127508 A JP 2010127508A JP 2008301312 A JP2008301312 A JP 2008301312A JP 2008301312 A JP2008301312 A JP 2008301312A JP 2010127508 A JP2010127508 A JP 2010127508A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
cooled heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008301312A
Other languages
Japanese (ja)
Inventor
Mitsuru Iwasaki
充 岩崎
Yuichi Kaitani
雄一 回谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008301312A priority Critical patent/JP2010127508A/en
Priority to US13/131,187 priority patent/US20110232868A1/en
Priority to EP09829056A priority patent/EP2360444A1/en
Priority to PCT/JP2009/069779 priority patent/WO2010061808A1/en
Priority to CN2009801472933A priority patent/CN102224391A/en
Publication of JP2010127508A publication Critical patent/JP2010127508A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined heat exchanger compact in size capable of preventing the accumulation of oil mixed in a refrigerant and having high heat exchanging efficiency. <P>SOLUTION: In the combined heat exchanger 1 including a first air-cooled heat exchanger 5 for cooling water for a heating element 3 excluding an engine of an automobile, and a second air-cooled heat exchanger 7 for cooling a refrigerant for air-conditioning a cabin, the first air-cooled heat exchanger 5 has an inflow-side tank 11 into which the cooling water flows, and an outflow-side tank 13 from which the cooling water flows out, flow channel members 15 making the tanks 11, 13 communicated with each other, radiation fins 17 stacked alternately with the flow channel members 15, and a water-cooled heat exchanger 19 for cooling the refrigerant for air-conditioning the cabin. The water-cooled heat exchanger 19 is disposed in of the outflow-side tank 13, and the refrigerant flows in from an upper part of the water-cooled heat exchanger 19, then flows out from a lower part, and flows down to the second air-cooled heat exchanger 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用の冷却システムにおいて複数の冷媒(例えば、ラジエータの冷却水と空調用の冷媒)を扱う複合熱交換器に関する。   The present invention relates to a composite heat exchanger that handles a plurality of refrigerants (for example, cooling water for a radiator and a refrigerant for air conditioning) in a cooling system for an automobile.

特許文献1に「熱交換器及び車両用空気調和装置」が記載されている。   Patent Document 1 describes “a heat exchanger and a vehicle air conditioner”.

この熱交換器は車両用空気調和装置に用いられており、エンジン冷却水用の空冷熱交換器のタンク(ヘッダ)に空調冷媒用の熱交換器を組み入れて、空冷された冷却水によって空調用冷媒を冷却するものであり、この冷媒用熱交換器では、冷媒を下方から流入させ上方から流出させている。
特開2006−162176号公報
This heat exchanger is used in a vehicle air conditioner, and incorporates a heat exchanger for air conditioning refrigerant into the tank (header) of the air cooling heat exchanger for engine cooling water, and is used for air conditioning with air cooled cooling water. The refrigerant is cooled, and in this refrigerant heat exchanger, the refrigerant flows in from below and flows out from above.
JP 2006-162176 A

空調用冷媒は圧縮機のオイルが混入した状態でシステム内を循環しており、混入したオイルは一部が冷媒と分離した状態で存在している。   The refrigerant for air conditioning circulates in the system in a state where the oil of the compressor is mixed, and the mixed oil exists in a state where a part of the mixed oil is separated from the refrigerant.

上記のように特許文献1の熱交換器では、冷媒を下方から上方に移動させているから、熱交換器の下部にオイルが滞留することがあり、オイルが滞留すると熱交換効率が低下する上に、圧縮機の潤滑不足によって冷却システムの性能と信頼性が低下する恐れがある。   As described above, in the heat exchanger of Patent Document 1, since the refrigerant is moved from below to above, oil may stay in the lower part of the heat exchanger. In addition, the lack of lubrication of the compressor can reduce the performance and reliability of the cooling system.

また、昨今の車両には、内燃エンジン、過給機用のインタークーラ、空気調和装置、ハイブリッド電気自動車の電動モータのような発熱体があり、これらの発熱体を冷却する(発熱体からの熱を排熱)するためのコンパクトで効率的な熱交換器(複合熱交換器)が求められている。   Further, in recent vehicles, there are heating elements such as an internal combustion engine, an intercooler for a supercharger, an air conditioner, and an electric motor of a hybrid electric vehicle, and these heating elements are cooled (heat from the heating element). There is a need for a compact and efficient heat exchanger (composite heat exchanger).

そこで、この発明は、冷媒に混入したオイルの滞留を防止すると共に、熱交換効率に優れたコンパクトな複合熱交換器の提供を目的としている。   Accordingly, an object of the present invention is to provide a compact composite heat exchanger that prevents the stagnation of oil mixed in the refrigerant and is excellent in heat exchange efficiency.

請求項1の複合熱交換器は、自動車のエンジン以外の発熱体用の冷却水を冷却する第1空冷熱交換器と、車室空調用の冷媒を冷却する第2空冷熱交換器とを備えた冷却システムに用いられる複合熱交換器であって、前記第1空冷熱交換器は、冷却水が流入する流入側タンク及び流出する流出側タンクと、前記両タンクを連通させる流路部材と、前記流路部材と交互に積層された放熱フィンと、車室空調用の冷媒を冷却する水冷熱交換器とを有し、前記水冷熱交換器は、前記タンクの内部に配置され、前記第2空冷熱交換器は、第1空冷熱交換器の下方に配置され、冷媒は、前記水冷熱交換器の上方から流入し下方から流出した後、前記第2空冷熱交換器に流入することを特徴とする。   The composite heat exchanger according to claim 1 includes a first air-cooling heat exchanger that cools cooling water for a heating element other than an automobile engine, and a second air-cooling heat exchanger that cools a refrigerant for air conditioning in the passenger compartment. A composite heat exchanger used in the cooling system, wherein the first air-cooling heat exchanger includes an inflow side tank into which cooling water flows and an outflow side tank from which the cooling water flows, and a flow path member that connects the two tanks; And a heat-radiating fin alternately stacked with the flow path member, and a water-cooled heat exchanger that cools a refrigerant for air-conditioning of the passenger compartment, the water-cooled heat exchanger being disposed inside the tank, The air-cooled heat exchanger is disposed below the first air-cooled heat exchanger, and the refrigerant flows from above the water-cooled heat exchanger, flows out from below, and then flows into the second air-cooled heat exchanger. And

請求項2の発明は、請求項1に記載された複合熱交換器であって、前記第1空冷熱交換器と第2空冷熱交換器は、これらを冷却する冷却風の流れと直交する同一面上に配置されており、第2空冷熱交換器は、第1空冷熱交換器に隣接して配置されていることを特徴とする。   A second aspect of the present invention is the composite heat exchanger according to the first aspect, wherein the first air-cooled heat exchanger and the second air-cooled heat exchanger are the same orthogonal to the flow of cooling air that cools them. It is arrange | positioned on the surface and the 2nd air cooling heat exchanger is arrange | positioned adjacent to a 1st air cooling heat exchanger, It is characterized by the above-mentioned.

請求項3の発明は、請求項1または請求項2に記載された複合熱交換器であって、前記水冷熱交換器は、冷媒の流路となる複数箇の冷媒流路部材を、冷却水が通過するための隙間を互いの間に設けながら積層して構成されており、前記冷媒流路部材は、冷媒の流れがほぼ鉛直方向になるように配置されていることを特徴とする。   A third aspect of the present invention is the composite heat exchanger according to the first or second aspect, wherein the water-cooled heat exchanger includes a plurality of refrigerant flow path members serving as refrigerant flow paths, and cooling water. The refrigerant flow path member is arranged so that the flow of the refrigerant is in a substantially vertical direction.

請求項4の発明は、請求項3に記載された複合熱交換器であって、前記冷媒流路部材の少なくとも下部は、ほぼ円弧状に形成されていることを特徴とする。   A fourth aspect of the present invention is the composite heat exchanger according to the third aspect, wherein at least a lower portion of the refrigerant flow path member is formed in a substantially arc shape.

請求項5の発明は、請求項3または請求項4に記載された複合熱交換器であって、前記冷媒流路部材は、互いに固定されて内部に冷媒流路を形成すると共に、冷媒の流れ方向両端部付近に設けられた冷媒の流入口及び流出口とを備えた一対のシェルチューブと、両シェルチューブの内側に固定され、前記冷媒の流入口及び流出口にそれぞれ対応する冷媒の流入口及び流出口と、冷媒の流れに沿って形成された多数の溝とを備えたインナーフィンとを有し、前記インナーフィンには、自身の前記流入口及び流出口と連通し、流れの幅方向に冷媒を拡散し、収束させて熱交換効率を向上させる切り欠きが設けられていることを特徴とする。   A fifth aspect of the present invention is the composite heat exchanger according to the third or fourth aspect, wherein the refrigerant flow path members are fixed to each other to form a refrigerant flow path therein, and the flow of the refrigerant A pair of shell tubes provided with refrigerant inlets and outlets provided in the vicinity of both ends in the direction, and refrigerant inlets fixed to the inside of both shell tubes and respectively corresponding to the refrigerant inlets and outlets And an inner fin having an outlet and a plurality of grooves formed along the flow of the refrigerant. The inner fin communicates with the inlet and the outlet of the inner fin, and the width direction of the flow. A notch for diffusing and converging the refrigerant to improve heat exchange efficiency is provided.

請求項6の発明は、請求項3または請求項4に記載された複合熱交換器であって、前記冷媒流路部材は、互いに固定されて内部に冷媒流路を形成すると共に、冷媒の流れ方向両端部付近に設けられた冷媒の流入口及び流出口とを備えた一対のシェルチューブと、両シェルチューブの内側に固定され、前記冷媒の流入口及び流出口にそれぞれ対応する冷媒の流入口及び流出口と、冷媒の流れに沿って形成された多数の溝とを備えたインナーフィンとを有し、前記インナーフィンには、前記シェルチューブの流入口側及び流出口側の固定部に沿って設けられ、流れの幅方向に冷媒を拡散し、収束させて熱交換効率を向上させる切り欠きが設けられていることを特徴とする。   A sixth aspect of the present invention is the composite heat exchanger according to the third or fourth aspect, wherein the refrigerant flow path members are fixed to each other to form a refrigerant flow path therein, and the flow of the refrigerant A pair of shell tubes provided with refrigerant inlets and outlets provided in the vicinity of both ends in the direction, and refrigerant inlets fixed to the inside of both shell tubes and respectively corresponding to the refrigerant inlets and outlets And an inner fin provided with an outlet and a plurality of grooves formed along the flow of the refrigerant, and the inner fin includes an inlet side and an outlet side fixing portion of the shell tube. It is provided with a notch that diffuses and converges the refrigerant in the width direction of the flow to improve heat exchange efficiency.

請求項1の複合熱交換器は、水冷熱交換器の上方から冷媒を流入させ下方から流出するように構成したので、従来例と異なって、オイルが下部に滞留することが抑制されて熱交換効率が向上すると共に、オイルの滞留による圧縮機の潤滑不足と冷却システムの性能及び信頼性の低下が防止される。また、水冷熱交換器を、冷却された後の流出側タンクに配置すれば、それだけ高い熱交換効率が得られる。   The composite heat exchanger according to claim 1 is configured such that the refrigerant flows in from the upper side of the water-cooled heat exchanger and flows out from the lower side. Therefore, unlike the conventional example, the oil is suppressed from staying in the lower portion and heat exchange is performed. The efficiency is improved and insufficient lubrication of the compressor due to oil stagnation and deterioration of the performance and reliability of the cooling system are prevented. Moreover, if a water-cooled heat exchanger is arrange | positioned in the outflow side tank after being cooled, the heat exchange efficiency so much is obtained.

また、水冷熱交換器から流出した冷媒が、第1空冷熱交換器の下方に配置されている第2空冷熱交換器へ無理なく流下するから、水冷熱交換器と第2空冷熱交換器とにわたって、オイルの滞留抑制機能が大きく向上する。   In addition, since the refrigerant that has flowed out of the water-cooled heat exchanger flows down to the second air-cooled heat exchanger disposed below the first air-cooled heat exchanger, the water-cooled heat exchanger, the second air-cooled heat exchanger, The oil retention control function is greatly improved.

特に、コンデンサや上記の水冷熱交換器のように、冷媒が凝縮し体積が減少することによって流速が低下する機器では、オイルの滞留を抑制したことによる上記の効果は顕著である。   In particular, in an apparatus such as a condenser or the above-described water-cooled heat exchanger in which the refrigerant is condensed and the volume is reduced, the flow rate is decreased, and the above-described effect due to the suppression of oil retention is remarkable.

請求項2の複合熱交換器は、請求項1の構成と同等の効果が得られる。   The composite heat exchanger of claim 2 can obtain the same effect as that of the structure of claim 1.

また、第1空冷熱交換器と第2空冷熱交換器を冷却風の流れと直交する同一面上に配置すると共に、第1空冷熱交換器と第2空冷熱交換器とを互いに隣接配置したことによって、複合熱交換器は極めてコンパクトに構成されており、優れた車載性が得られるから、車両の冷却システムに用いられて、エンジン、過給機用のインタークーラ、空気調和装置、ハイブリッド電気自動車の電動モータなどの発熱体を効果的に冷却することができる。   The first air cooling heat exchanger and the second air cooling heat exchanger are arranged on the same plane orthogonal to the flow of the cooling air, and the first air cooling heat exchanger and the second air cooling heat exchanger are arranged adjacent to each other. As a result, the composite heat exchanger is extremely compact and has excellent on-vehicle properties. Therefore, it is used for vehicle cooling systems, and is used in engines, intercoolers for turbochargers, air conditioners, hybrid electric A heating element such as an electric motor of an automobile can be effectively cooled.

請求項3の複合熱交換器は、請求項1または請求項2の構成と同等の効果が得られる。   The composite heat exchanger of claim 3 can obtain the same effect as that of the structure of claim 1 or claim 2.

また、水冷熱交換器を縦置きにし、流路部材中を冷媒がほぼ鉛直に流れる(流下する)ようにしたので、高いオイル滞留抑制効果が得られる。   In addition, since the water-cooled heat exchanger is installed vertically so that the refrigerant flows substantially vertically (flows down) in the flow path member, a high oil retention effect is obtained.

請求項4の複合熱交換器は、請求項3の構成と同等の効果が得られる。   The composite heat exchanger of claim 4 can achieve the same effect as that of the structure of claim 3.

また、冷媒流路部材の少なくとも下部をほぼ円弧状に形成したことによってオイルの流れが円滑になり、部分的な滞留が抑制されてオイルの滞留抑制効果がさらに向上する。   In addition, since at least the lower part of the refrigerant flow path member is formed in a substantially circular arc shape, the oil flow becomes smooth, partial retention is suppressed, and the oil retention effect is further improved.

また、冷媒流路部材の上部をほぼ円弧状に形成すれば、冷媒が流れに沿って各インナーフィンの幅方向に拡散されるから、冷却水との熱交換効率がさらに向上する。   Further, if the upper part of the refrigerant flow path member is formed in a substantially arc shape, the refrigerant is diffused in the width direction of each inner fin along the flow, so that the efficiency of heat exchange with the cooling water is further improved.

請求項5の複合熱交換器は、請求項3または請求項4の構成と同等の効果が得られる。   The composite heat exchanger according to claim 5 can achieve the same effect as the structure of claim 3 or claim 4.

また、自身の流入口と流出口と連通する切り欠きをインナーフィンに設けたことによって流れと直交する方向に冷媒が拡散され、また、収束するから、熱交換効率とオイルの滞留抑制効果とが向上する。   In addition, by providing the inner fin with a notch communicating with its own inlet and outlet, the refrigerant is diffused and converged in a direction perpendicular to the flow, so that the heat exchange efficiency and the oil retention suppression effect are improved. improves.

また、インナーフィンを内側に固定したことによってシェルチューブの耐圧強度が高く維持される。   In addition, the pressure resistance of the shell tube is maintained high by fixing the inner fin on the inside.

請求項6の複合熱交換器は、請求項3または請求項4の構成と同等の効果が得られる。   The composite heat exchanger according to claim 6 can achieve the same effects as the structure according to claim 3 or claim 4.

また、シェルチューブの流入口及び流出口側の固定部に沿った切り欠きをインナーフィンに設けたことによって流れと直交する方向に冷媒が拡散され、また、収束するから、熱交換効率とオイルの滞留抑制効果とが向上する。   In addition, since the inner fins are provided with notches along the fixed portions on the inlet and outlet sides of the shell tube, the refrigerant is diffused and converged in a direction orthogonal to the flow. The retention suppressing effect is improved.

また、インナーフィンを内側に固定したことによってシェルチューブの耐圧強度が高く維持される。   In addition, the pressure resistance of the shell tube is maintained high by fixing the inner fin on the inside.

<第1実施例>
図1〜図7を参照しながら複合熱交換器1(本発明の第1実施例)を説明する。複合熱交換器1はエンジン(内燃機関)と電動モータ3とを駆動力源とするハイブリッド電気自動車の冷却システム9に用いられており、図1は冷却システム9の一部を示す概略図、図2は複合熱交換器1と電動モータ3などの冷却水用サブラジエータ5とエンジンの冷却水用ラジエータ27とを組み合わせた状態を示す斜視図、図3はサブラジエータ5の斜視図、図4はサブラジエータ5の流出側タンク13に組み込まれた水冷熱交換器19を示す断面図、図5は水冷熱交換器19の側面図、図6は水冷熱交換器19の斜視図、図7は水冷熱交換器19の分解斜視図である。
<First embodiment>
The composite heat exchanger 1 (first embodiment of the present invention) will be described with reference to FIGS. The composite heat exchanger 1 is used in a cooling system 9 of a hybrid electric vehicle using an engine (internal combustion engine) and an electric motor 3 as driving power sources. FIG. 1 is a schematic diagram showing a part of the cooling system 9. 2 is a perspective view showing a state in which the composite heat exchanger 1, the cooling water sub-radiator 5 such as the electric motor 3 and the engine cooling water radiator 27 are combined, FIG. 3 is a perspective view of the sub-radiator 5, and FIG. FIG. 5 is a side view of the water-cooled heat exchanger 19, FIG. 6 is a perspective view of the water-cooled heat exchanger 19, and FIG. 7 is a water-cooled heat exchanger 19 incorporated in the outflow side tank 13 of the sub-radiator 5. FIG. 3 is an exploded perspective view of the cold heat exchanger 19.

複合熱交換器1は、駆動モータ3及びインバータやコンバータのような制御機器(エンジン以外の発熱体)用の冷却水を冷却するサブラジエータ5(第1空冷熱交換器)と、車室空調用の冷媒を冷却するコンデンサ7(第2空冷熱交換器)とを備えた冷却システム9に用いられており、サブラジエータ5は、冷却水が流入する流入側タンク11及び流出する流出側タンク13と、タンク11,13を連通させる扁平チューブ15(流路部材)と、扁平チューブ15と交互に積層された放熱フィン17と、車室空調用の冷媒を冷却する水冷熱交換器19とを有し、図4と図5のように、水冷熱交換器19は流出側タンク13の内部に配置され、図2のように、コンデンサ7はサブラジエータ5の下方に配置され、図5のように、冷媒は水冷熱交換器19の上方から流入し、下方から流出した後、コンデンサ7に流下する。   The composite heat exchanger 1 includes a sub-radiator 5 (first air-cooling heat exchanger) that cools cooling water for a drive device 3 and a control device (a heating element other than the engine) such as an inverter and a converter, and a vehicle compartment air conditioner. The sub-radiator 5 includes an inflow side tank 11 into which cooling water flows in and an outflow side tank 13 into which cooling water flows out, and is used in a cooling system 9 having a condenser 7 (second air cooling heat exchanger) for cooling the refrigerant. The flat tubes 15 (flow path members) for communicating the tanks 11 and 13, the heat radiation fins 17 alternately stacked with the flat tubes 15, and the water-cooled heat exchanger 19 for cooling the refrigerant for air conditioning in the passenger compartment. 4 and 5, the water-cooled heat exchanger 19 is disposed inside the outflow side tank 13, and as shown in FIG. 2, the condenser 7 is disposed below the sub-radiator 5, and as shown in FIG. Refrigerant is water-cooled heat exchanger It flows from above the vessel 19, after flowing out from the lower, flows down to the capacitor 7.

また、図2のように、サブラジエータ5とコンデンサ7はこれらを冷却する冷却風(車両の走行中にフロントグリルから流入する外気)の流れとほぼ直交する同一面上に配置され、コンデンサ7とサブラジエータ5は互いに隣接して配置されている。   Further, as shown in FIG. 2, the sub-radiator 5 and the condenser 7 are arranged on the same plane substantially orthogonal to the flow of cooling air (outside air flowing in from the front grill during traveling of the vehicle) for cooling them. The sub radiators 5 are arranged adjacent to each other.

また、図5のように、水冷熱交換器19は、冷媒の流路となる複数箇のシェルチューブ21,23(冷媒流路部材)を冷却水が通過するための隙間25を互いの間に設けながら積層して構成されていると共に、シェルチューブ21,23は冷媒の流れがほぼ鉛直方向(重力方向)になるように縦置きにされている。   Further, as shown in FIG. 5, the water-cooled heat exchanger 19 has gaps 25 between the plurality of shell tubes 21 and 23 (refrigerant flow path members) serving as refrigerant flow paths. The shell tubes 21 and 23 are vertically arranged so that the flow of the refrigerant is substantially vertical (the direction of gravity).

また、シェルチューブ21,23の上部と下部(少なくとも下部)はほぼ円弧状に形成されている。   Moreover, the upper part and the lower part (at least lower part) of the shell tubes 21 and 23 are formed in the substantially circular arc shape.

サブラジエータ5は、積層された扁平チューブ15の上部と下部にそれぞれレインフォース26(補強部材)を取り付けて積層方向に適度な荷重を加えた状態で、扁平チューブ15の両端をタンク11,13に挿入して形成されている。   The sub-radiator 5 is attached with a reinforcement 26 (reinforcing member) on the upper and lower portions of the laminated flat tubes 15 and applies an appropriate load in the laminating direction to both ends of the flat tubes 15 to the tanks 11 and 13. It is formed by inserting.

また、図2のように、サブラジエータ5とコンデンサ7はこの順で上下に縦置きされており、冷却風の下流にはエンジン用のラジエータ27が配置され、冷却風によってエンジン冷却水を冷却する。   Further, as shown in FIG. 2, the sub-radiator 5 and the condenser 7 are vertically arranged in this order, and an engine radiator 27 is disposed downstream of the cooling air to cool the engine cooling water by the cooling air. .

水冷熱交換器19は、図5と図7のように、シェルチューブ21,23とインナーフィン29(冷媒流路部材)とリング状のパッチ31とプレート状の封止用エンドパッチ33とから構成されている。また、シェルチューブ21,23は、図4と図6のように、一方が他方に嵌入して印籠を形成する縁部35,37と、互いに直交して対向するビード39,41(突起)と、上方と下方(冷媒の流れ方向の両端部付近)に設けられ、一方が他方に嵌入して印籠を形成する流入口43,45及び流出口47,49とを有し、インナーフィン29は、流入口43,45と流出口47,49にそれぞれ対応する流入口51及び流出口53と、全体を波形に加工して形成され冷媒の流れに沿った多数の溝55とを有している。   As shown in FIGS. 5 and 7, the water-cooled heat exchanger 19 includes shell tubes 21 and 23, inner fins 29 (refrigerant flow path members), a ring-shaped patch 31, and a plate-shaped sealing end patch 33. Has been. Further, as shown in FIGS. 4 and 6, the shell tubes 21 and 23 have edge portions 35 and 37, one of which is fitted into the other to form a seal, and beads 39 and 41 (protrusions) that are orthogonally opposed to each other. , Provided at the upper and lower sides (near both ends in the refrigerant flow direction), one of which is inserted into the other and has an inflow port 43, 45 and an outflow port 47, 49, and the inner fin 29 is It has inflow ports 51 and 53 corresponding to the inflow ports 43 and 45 and the outflow ports 47 and 49, respectively, and a large number of grooves 55 formed by processing the whole into a corrugated shape and along the flow of the refrigerant.

シェルチューブ21,23はインナーフィン29を間に挟み込み、縁部35,37を互いに嵌入させ印籠を形成してシェルチューブASSYにされており、各シェルチューブASSYは流入口43,45と流出口47,49を互いに嵌入させて印籠を形成すると共に、パッチ31を間に挟み、ビード39,41を接触させて積層し、積層方向に一定の適正な荷重を加え、また、最外側のシェルチューブ23の流入口45と流出口49をエンドパッチ33で封止し、パッチ31とビード39,41によって各シェルチューブASSYの隙間25を適正に保ちながら一体に鑞付けして水冷熱交換器19を形成する。この際、シェルチューブ21、23とインナーフィン29の波形頂部も鑞付け接合されている。さらに、図2と図5と図6のように、最内側シェルチューブ21の流入口43はアダプタ57を介してコンプレッサ側に連結され、流出口47はアダプタ59を介してコンデンサ7側に連結されている。   The shell tubes 21 and 23 sandwich the inner fins 29, and the edge portions 35 and 37 are inserted into each other to form a seal tube. The shell tubes ASSY are formed into the inlet ports 43 and 45 and the outlet ports 47. , 49 are inserted into each other to form an indicium, the patch 31 is sandwiched therebetween, the beads 39, 41 are brought into contact with each other and laminated, a certain appropriate load is applied in the laminating direction, and the outermost shell tube 23 Inlet 45 and outlet 49 are sealed with end patch 33, and water-cooled heat exchanger 19 is formed by brazing together with patch 31 and beads 39, 41 while keeping gap 25 of each shell tube ASSY properly. To do. At this time, the corrugated top portions of the shell tubes 21 and 23 and the inner fin 29 are also brazed and joined. 2, 5, and 6, the inlet 43 of the innermost shell tube 21 is connected to the compressor side via an adapter 57, and the outlet 47 is connected to the condenser 7 side via an adapter 59. ing.

冷却システム9において、駆動モータ3などの冷却系では、ポンプ61で循環する冷却水は、図2と図3のように、サブラジエータ5のタンク11に流入し、各扁平チューブ15を流れる間に放熱フィン17を介し冷却風によって冷却されてタンク13に流入し、駆動モータ3などを冷却する。   In the cooling system 9, in the cooling system such as the drive motor 3, the cooling water circulated by the pump 61 flows into the tank 11 of the sub-radiator 5 and flows through each flat tube 15 as shown in FIGS. 2 and 3. It is cooled by cooling air through the radiation fins 17 and flows into the tank 13 to cool the drive motor 3 and the like.

また、コンプレッサで圧縮され高温高圧のガス状態になった空調用冷媒は、図5のように、流入口43,45から水冷熱交換器19の各シェルチューブASSYに流入し、インナーフィン29の溝55を流下する間に、サブラジエータ5のタンク13を流れる冷却水によって冷却され、過熱度が低下した状態、あるいは、一部が飽和した状態で流出口47,49から外部に流出し、さらに流下しコンデンサ7に流入して凝縮され、膨張弁で減圧され、エバポレータで熱交換し、コンプレッサで圧縮されてこのサイクルを繰り返す。   Further, the air-conditioning refrigerant compressed by the compressor into a high-temperature and high-pressure gas state flows into the shell tubes ASSY of the water-cooled heat exchanger 19 from the inlets 43 and 45 as shown in FIG. While flowing down 55, it is cooled by the cooling water flowing through the tank 13 of the sub-radiator 5 and flows out from the outlets 47 and 49 in a state where the degree of superheat is reduced or partially saturated, and further flows down Then, the refrigerant flows into the condenser 7 to be condensed, decompressed by the expansion valve, heat exchanged by the evaporator, compressed by the compressor, and this cycle is repeated.

次に、複合熱交換器1の効果を説明する。   Next, the effect of the composite heat exchanger 1 will be described.

水冷熱交換器19中を冷媒が上方から下方に移動(流下)するように構成したので、冷媒に混入したコンプレッサの潤滑オイルが下方に停滞することが抑制され、さらに、シェルチューブ21,23の下部をほぼ円弧状に形成したことによってオイルの停滞抑制効果が向上し、オイルの滞留による熱交換効率の低下と、コンプレッサの潤滑不足による冷却システム9の性能及び信頼性の低下が防止される。   Since the refrigerant moves in the water-cooled heat exchanger 19 from the upper side to the lower side (flows down), it is suppressed that the lubricating oil of the compressor mixed in the refrigerant stagnates downward, and the shell tubes 21 and 23 The effect of suppressing oil stagnation is improved by forming the lower part in a substantially circular arc shape, and the reduction of heat exchange efficiency due to oil stagnation and the performance and reliability of the cooling system 9 due to insufficient lubrication of the compressor are prevented.

また、水冷熱交換器19を、冷却風で冷却水が冷却された後の流出側タンク13に配置したことによってそれだけ高い熱交換効率が得られている。   Further, the heat-cooling heat exchanger 19 is arranged in the outflow side tank 13 after the cooling water is cooled by the cooling air, so that a higher heat exchange efficiency is obtained.

また、水冷熱交換器19を縦置きにし、冷媒がほぼ鉛直方向に流下するようにしたので、オイルの滞留抑制効果がさらに向上する。   In addition, since the water-cooled heat exchanger 19 is placed vertically and the refrigerant flows down substantially in the vertical direction, the oil retention effect is further improved.

また、シェルチューブ21,23の上部もほぼ円弧状に形成したことによって、図4の矢印63のように、流れに沿って冷媒が各インナーフィン29の幅方向に拡散されるので、冷却水との熱交換効率がさらに向上する。   Further, since the upper portions of the shell tubes 21 and 23 are also formed in a substantially arc shape, the refrigerant is diffused in the width direction of each inner fin 29 along the flow as indicated by an arrow 63 in FIG. The heat exchange efficiency is further improved.

また、冷媒が凝縮し体積が減少することによって流速が低下する水冷熱交換器19やコンデンサ7では、オイルの滞留を抑制したことによる上記の効果は顕著である。   Further, in the water-cooled heat exchanger 19 and the condenser 7 in which the flow rate is lowered due to the condensation of the refrigerant and the volume being reduced, the above-described effect due to the suppression of oil retention is remarkable.

また、サブラジエータ5とコンデンサ7を冷却風の流れと直交する同一面上に配置し、コンデンサ7をサブラジエータ5の下方に隣接配置したことにより、複合熱交換器1は極めてコンパクトに構成され、優れた車載性を得ているから、車両の冷却システム9に用いられて、エンジン、空気調和装置、電動モータ3などの発熱体を効果的に冷却することができる。   Further, the sub-radiator 5 and the condenser 7 are arranged on the same plane orthogonal to the flow of the cooling air, and the condenser 7 is arranged adjacent to the lower side of the sub-radiator 5, so that the composite heat exchanger 1 is configured extremely compactly. Since it has excellent in-vehicle properties, it can be used in a vehicle cooling system 9 to effectively cool a heating element such as an engine, an air conditioner, and an electric motor 3.

<第2実施例>
図8(a)、(b)を参照しながら本発明の第2実施例を説明する。
<Second embodiment>
A second embodiment of the present invention will be described with reference to FIGS. 8 (a) and 8 (b).

第2実施例の複合熱交換器では、シェルチューブ21,23の内側に固定されるインナーフィン101(冷媒流路部材)は、シェルチューブ21、23の流れ方向両端円弧部にいたるまで延在しさらに、流入口51と流出口53とそれぞれ連通する切り欠き103,105が幅方向の両側に設けられている。そして、インナーフィン101の波形の頂部と、流れ方向両端と、はシェルチューブと鑞付け接合されている。このため流れ方向端部までチューブ耐圧強度が確保される。   In the composite heat exchanger of the second embodiment, the inner fins 101 (refrigerant flow path members) fixed inside the shell tubes 21 and 23 extend to the arc portions at both ends in the flow direction of the shell tubes 21 and 23. Further, notches 103 and 105 communicating with the inflow port 51 and the outflow port 53, respectively, are provided on both sides in the width direction. The corrugated top of the inner fin 101 and both ends in the flow direction are brazed to the shell tube. For this reason, the tube pressure strength is secured up to the end in the flow direction.

これらの切り欠き103,105は溝55の全幅にわたって設けられており、冷媒をその流れとほぼ直交する方向(幅方向)に拡散させ、また、収束させ、シェルチューブ21、23の全幅に冷媒が流れるように構成されているため冷却水との接触面積を拡大し、熱交換効率を向上させている。また、切り欠き105が流出口53の連通側が低くなるよう傾斜している為、傾斜した切り欠き部によりオイルがより確実に流出口へ導かれる。   These notches 103 and 105 are provided over the entire width of the groove 55, and the refrigerant is diffused and converged in a direction (width direction) substantially perpendicular to the flow, and the refrigerant is spread over the entire width of the shell tubes 21 and 23. Since it is configured to flow, the contact area with the cooling water is enlarged, and the heat exchange efficiency is improved. Further, since the notch 105 is inclined so that the communication side of the outlet 53 is lowered, the oil is more reliably guided to the outlet by the inclined notch.

また、リング状パッチ31の外径rは、シェルチューブ21,23の流入口43,45及び流出口47,49側固定部157,159(図4)の外径Rより小さく、切り欠き103,105はリング状パッチ31の外周より外側にまで延びている。リング状パッチ31を隣り合うチューブ間で流入流出口外周に設けることでインナーフィン切り欠き103、105による強度を補強しさらに耐久性を向上させている。   The outer diameter r of the ring-shaped patch 31 is smaller than the outer diameter R of the inlets 43 and 45 and the outlets 47 and 49 side fixing portions 157 and 159 (FIG. 4) of the shell tubes 21 and 23. 105 extends from the outer periphery of the ring-shaped patch 31 to the outside. By providing the ring-shaped patch 31 between the adjacent tubes on the outer periphery of the inflow / outflow, the strength by the inner fin notches 103 and 105 is reinforced, and the durability is further improved.

また、流入口51と流出口53はいずれもインナーフィン101の幅方向の中心に設けられているが、流入口51と流出口53を幅方向にオフセットさせ、これに応じて切り欠き103,105の幅方向長さを不等長にすれば、流入口51側と流出口53側とにわたって冷媒の流路長が長くなり、熱交換効率をそれだけ向上させることができる。   Further, both the inlet 51 and the outlet 53 are provided in the center of the inner fin 101 in the width direction, but the inlet 51 and the outlet 53 are offset in the width direction, and the notches 103 and 105 are correspondingly offset. If the lengths in the width direction are made unequal, the flow path length of the refrigerant is increased over the inflow port 51 side and the outflow port 53 side, and the heat exchange efficiency can be improved accordingly.

<第3実施例>
図9(a)、(b)を参照しながら本発明の第3実施例を説明する。
<Third embodiment>
A third embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b).

第3実施例の複合熱交換器では、インナーフィン151(冷媒流路部材)に切り欠き153,155が設けられており、これらの切り欠き153,155はシェルチューブ21,23の流入口43,45及び流出口47,49側の固定部157,159(図4)に沿って幅方向の両側に設けられている。   In the composite heat exchanger of the third embodiment, notches 153 and 155 are provided in the inner fin 151 (refrigerant flow path member), and these notches 153 and 155 are the inlets 43, 45 and fixing portions 157 and 159 (FIG. 4) on the side of the outlets 47 and 49 are provided on both sides in the width direction.

切り欠き105,155は溝55の全幅にわたって設けられており、冷媒をその流れとほぼ直交する方向(幅方向)に拡散させ、また、収束させ、溝55の全幅を有効に利用することによって冷却水との接触面積を拡大し、熱交換効率を向上させている。   The notches 105 and 155 are provided over the entire width of the groove 55, and the coolant is cooled by diffusing and converging the refrigerant in a direction substantially perpendicular to the flow (width direction) and effectively using the entire width of the groove 55. The contact area with water is expanded to improve heat exchange efficiency.

また、インナーフィン151においても、流入口51と流出口53を幅方向にオフセットさせ、これに応じて切り欠き153,155の幅方向長さを不等長にすれば、流入口51側と流出口53側とにわたって冷媒の流路長が長くなり、熱交換効率をそれだけ向上させることができる。   Also, in the inner fin 151, if the inflow port 51 and the outflow port 53 are offset in the width direction, and the lengths in the width direction of the notches 153 and 155 are made unequal in length, the flow rate is different from that of the inflow port 51 side. The flow path length of the refrigerant is increased over the outlet 53 side, and the heat exchange efficiency can be improved accordingly.

[本発明の範囲に含まれる他の態様]
なお、本発明は上述した実施形態のみに限定解釈されるものではなく、本発明の技術的な範囲内で様々な変更が可能である。
[Other Embodiments Included within the Scope of the Present Invention]
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope of the present invention.

冷却システム9の一部を示す概略図である。2 is a schematic view showing a part of a cooling system 9. FIG. 複合熱交換器1と電動モータ3などの冷却水用サブラジエータ5とエンジンの冷却水用ラジエータ27とを組み合わせた状態を示す斜視図である。It is a perspective view which shows the state which combined the sub-radiator 5 for cooling water, such as the composite heat exchanger 1, the electric motor 3, and the radiator 27 for engine cooling water. サブラジエータ5の斜視図である。2 is a perspective view of a sub radiator 5. FIG. サブラジエータ5の流出側タンク13に組み込まれた水冷熱交換器19を示す断面図である。4 is a cross-sectional view showing a water-cooled heat exchanger 19 incorporated in the outflow side tank 13 of the sub radiator 5. FIG. 水冷熱交換器19の側面図である。It is a side view of the water cooling heat exchanger 19. FIG. 水冷熱交換器19の斜視図である。2 is a perspective view of a water-cooled heat exchanger 19. FIG. 水冷熱交換器19の分解斜視図である。2 is an exploded perspective view of a water-cooled heat exchanger 19. FIG. (a)は第2実施例に用いられたインナーフィン101の平面図、(b)は図8(a)のA−A断面図である。(A) is a top view of the inner fin 101 used for 2nd Example, (b) is AA sectional drawing of Fig.8 (a). (a)は第3実施例に用いられたインナーフィン151の平面図、(b)は図9(a)のB−B断面図である。(A) is a top view of the inner fin 151 used for 3rd Example, (b) is BB sectional drawing of Fig.9 (a).

符号の説明Explanation of symbols

1 複合熱交換器
3 電動モータ及びインバータやコンバータのような制御機器(エンジン以外の発熱体)
5 サブラジエータ(第1空冷熱交換器)
7 コンデンサ(第2空冷熱交換器)
9 冷却システム
11 流入側タンク
13 流出側タンク
15 扁平チューブ(流路部材)
17 放熱フィン
19 水冷熱交換器
21,23 シェルチューブ(冷媒流路部材)
29 インナーフィン(冷媒流路部材)
43,45 シェルチューブ21,23の流入口
47,49 シェルチューブ21,23の流出口
51 インナーフィン29の流入口
53 インナーフィン29の流出口
55 インナーフィン29の溝
101 インナーフィン(冷媒流路部材)
103,105 インナーフィン101の切り欠き
151 インナーフィン(冷媒流路部材)
153,155 インナーフィン151の切り欠き
157,159 シェルチューブ21,23の流入口43,45及び流出口47,49側の固定部
1 Compound heat exchanger 3 Electric motors and control devices such as inverters and converters (heating elements other than engines)
5 Sub-radiator (first air-cooled heat exchanger)
7 Condenser (second air-cooled heat exchanger)
9 Cooling system 11 Inflow side tank 13 Outflow side tank 15 Flat tube (flow path member)
17 Radiation fins 19 Water-cooled heat exchangers 21, 23 Shell tubes (refrigerant flow path members)
29 Inner fin (refrigerant channel member)
43, 45 Inlet of shell tubes 21, 23 47, 49 Outlet of shell tubes 21, 23 51 Inlet of inner fin 29 53 Outlet of inner fin 29 55 Groove 101 of inner fin 29 Inner fin (refrigerant channel member) )
103, 105 Notch 151 of Inner Fin 101 Inner Fin (Refrigerant Channel Member)
153, 155 Notches 157, 159 of inner fin 151 Inlet ports 43, 45 and fixing portions on the side of outlet ports 47, 49 of shell tubes 21, 23

Claims (6)

自動車のエンジン以外の発熱体(3)用の冷却水を冷却する第1空冷熱交換器(5)と、車室空調用の冷媒を冷却する第2空冷熱交換器(7)とを備えた冷却システム(9)に用いられる複合熱交換器(1)であって、
前記第1空冷熱交換器(5)は、冷却水が流入する流入側タンク(11)及び流出する流出側タンク(13)と、前記両タンク(11,13)を連通させる流路部材(15)と、前記流路部材(15)と交互に積層された放熱フィン(17)と、車室空調用の冷媒を冷却する水冷熱交換器(19)とを有し、
前記水冷熱交換器(19)は、前記タンク(11,13)の内部に配置され、
前記第2空冷熱交換器(7)は、第1空冷熱交換器(5)の下方に配置され、
冷媒は、前記水冷熱交換器(19)の上方から流入し下方から流出した後、前記第2空冷熱交換器(7)に流入することを特徴とする複合熱交換器(1)。
A first air-cooled heat exchanger (5) that cools cooling water for a heating element (3) other than an automobile engine, and a second air-cooled heat exchanger (7) that cools a refrigerant for vehicle compartment air conditioning are provided. A combined heat exchanger (1) used in a cooling system (9),
The first air-cooling heat exchanger (5) includes an inflow side tank (11) into which cooling water flows in and an outflow side tank (13) from which outflow flows, and a flow path member (15) that connects the tanks (11, 13). ), Radiating fins (17) alternately stacked with the flow path members (15), and a water-cooled heat exchanger (19) for cooling the refrigerant for vehicle compartment air conditioning,
The water-cooled heat exchanger (19) is disposed inside the tank (11, 13),
The second air-cooled heat exchanger (7) is disposed below the first air-cooled heat exchanger (5),
The refrigerant flows from above the water-cooled heat exchanger (19) and flows out from below, and then flows into the second air-cooled heat exchanger (7).
請求項1に記載された複合熱交換器(1)であって、
前記第1空冷熱交換器(5)と第2空冷熱交換器(7)は、これらを冷却する冷却風の流れと直交する同一面上に配置されており、第2空冷熱交換器(7)は、第1空冷熱交換器(5)に隣接して配置されていることを特徴とする複合熱交換器(1)。
A composite heat exchanger (1) according to claim 1, comprising:
The first air-cooled heat exchanger (5) and the second air-cooled heat exchanger (7) are arranged on the same plane orthogonal to the flow of cooling air for cooling them, and the second air-cooled heat exchanger (7 ) Is arranged adjacent to the first air-cooled heat exchanger (5), the composite heat exchanger (1).
請求項1または請求項2に記載された複合熱交換器(1)であって、
前記水冷熱交換器(19)は、冷媒の流路となる複数箇の冷媒流路部材(21,23)を、冷却水が通過するための隙間(25)を互いの間に設けながら積層して構成されており、前記冷媒流路部材(21,23)は、冷媒の流れがほぼ鉛直方向になるように配置されていることを特徴とする複合熱交換器(1)。
A composite heat exchanger (1) according to claim 1 or claim 2,
The water-cooled heat exchanger (19) is formed by laminating a plurality of refrigerant flow path members (21, 23) serving as refrigerant flow paths while providing gaps (25) for the passage of cooling water therebetween. The composite heat exchanger (1), wherein the refrigerant flow path members (21, 23) are arranged so that the flow of the refrigerant is substantially vertical.
請求項3に記載された複合熱交換器(1)であって、
前記冷媒流路部材(21,23)の少なくとも下部は、ほぼ円弧状に形成されていることを特徴とする複合熱交換器(1)。
A composite heat exchanger (1) according to claim 3, comprising:
The composite heat exchanger (1), wherein at least a lower part of the refrigerant flow path member (21, 23) is formed in a substantially arc shape.
請求項3または請求項4に記載された複合熱交換器(1)であって、
前記冷媒流路部材は、互いに固定されて内部に冷媒流路を形成すると共に、冷媒の流れ方向両端部付近に設けられた冷媒の流入口(43,45)及び流出口(47,49)とを備えた一対のシェルチューブ(21,23)と、両シェルチューブ(21,23)の内側に固定され、前記冷媒の流入口(43,45)及び流出口(47,49)にそれぞれ対応する冷媒の流入口(51)及び流出口(53)と、冷媒の流れに沿って形成された多数の溝(55)とを備えたインナーフィン(101)とを有し、
前記インナーフィン(101)には、自身の前記流入口(51)及び流出口(53)と連通し、流れの幅方向に冷媒を拡散し、収束させて熱交換効率を向上させる切り欠き(103,105)が設けられていることを特徴とする複合熱交換器(1)。
A composite heat exchanger (1) according to claim 3 or claim 4, wherein
The refrigerant flow path members are fixed to each other to form a refrigerant flow path therein, and refrigerant inlets (43, 45) and outlets (47, 49) provided near both ends of the refrigerant flow direction, A pair of shell tubes (21, 23) provided with both of them, fixed inside the shell tubes (21, 23), and corresponding to the refrigerant inlet (43, 45) and outlet (47, 49), respectively. An inner fin (101) having an inlet (51) and an outlet (53) for the refrigerant, and a plurality of grooves (55) formed along the refrigerant flow;
The inner fin (101) communicates with its own inlet (51) and outlet (53), and diffuses and converges the refrigerant in the width direction of the flow to improve heat exchange efficiency (103). , 105). A composite heat exchanger (1).
請求項3または請求項4に記載された複合熱交換器(1)であって、
前記冷媒流路部材は、互いに固定されて内部に冷媒流路を形成すると共に、冷媒の流れ方向両端部付近に設けられた冷媒の流入口(43,45)及び流出口(47,49)とを備えた一対のシェルチューブ(21,23)と、両シェルチューブ(21,23)の内側に固定され、前記冷媒の流入口(43,45)及び流出口(47,49)にそれぞれ対応する冷媒の流入口(51)及び流出口(53)と、冷媒の流れに沿って形成された多数の溝(55)とを備えたインナーフィン(151)とを有し、
前記インナーフィン(151)には、前記シェルチューブ(21,23)の流入口(43,45)側及び流出口(47,49)側の固定部(157,159)に沿って設けられ、流れの幅方向に冷媒を拡散し、収束させて熱交換効率を向上させる切り欠き(153,155)が設けられていることを特徴とする複合熱交換器(1)。
A composite heat exchanger (1) according to claim 3 or claim 4, wherein
The refrigerant flow path members are fixed to each other to form a refrigerant flow path therein, and refrigerant inlets (43, 45) and outlets (47, 49) provided near both ends of the refrigerant flow direction, A pair of shell tubes (21, 23) provided with both of them, fixed inside the shell tubes (21, 23), and corresponding to the refrigerant inlet (43, 45) and outlet (47, 49), respectively. An inner fin (151) having a refrigerant inlet (51) and outlet (53) and a plurality of grooves (55) formed along the refrigerant flow;
The inner fin (151) is provided along the fixing portions (157, 159) on the inlet (43, 45) side and the outlet (47, 49) side of the shell tube (21, 23). The composite heat exchanger (1) is provided with notches (153, 155) for diffusing and converging the refrigerant in the width direction to improve heat exchange efficiency.
JP2008301312A 2008-11-26 2008-11-26 Combined heat exchanger Withdrawn JP2010127508A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008301312A JP2010127508A (en) 2008-11-26 2008-11-26 Combined heat exchanger
US13/131,187 US20110232868A1 (en) 2008-11-26 2009-11-24 Combined heat exchanger
EP09829056A EP2360444A1 (en) 2008-11-26 2009-11-24 Compound heat exchange unit
PCT/JP2009/069779 WO2010061808A1 (en) 2008-11-26 2009-11-24 Compound heat exchange unit
CN2009801472933A CN102224391A (en) 2008-11-26 2009-11-24 Compound heat exchange unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301312A JP2010127508A (en) 2008-11-26 2008-11-26 Combined heat exchanger

Publications (1)

Publication Number Publication Date
JP2010127508A true JP2010127508A (en) 2010-06-10

Family

ID=42225683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301312A Withdrawn JP2010127508A (en) 2008-11-26 2008-11-26 Combined heat exchanger

Country Status (5)

Country Link
US (1) US20110232868A1 (en)
EP (1) EP2360444A1 (en)
JP (1) JP2010127508A (en)
CN (1) CN102224391A (en)
WO (1) WO2010061808A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083014A (en) * 2010-10-08 2012-04-26 Calsonic Kansei Corp Complex heat exchanger
EP2530271A2 (en) 2011-05-27 2012-12-05 Calsonic Kansei Corporation Combined heat exchanger system
JP2012245866A (en) * 2011-05-27 2012-12-13 Calsonic Kansei Corp Combined heat exchanger system
WO2012169504A1 (en) 2011-06-10 2012-12-13 カルソニックカンセイ株式会社 Water-cooled condenser
WO2013146071A1 (en) 2012-03-30 2013-10-03 カルソニックカンセイ株式会社 Integrated cooling system
JP2013210152A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013210151A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013209022A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2014009848A (en) * 2012-06-28 2014-01-20 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014009847A (en) * 2012-06-28 2014-01-20 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014013131A (en) * 2012-07-05 2014-01-23 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014118141A (en) * 2012-12-13 2014-06-30 Hyundai Motor Company Co Ltd Cooling module for vehicle
WO2014103639A1 (en) * 2012-12-28 2014-07-03 カルソニックカンセイ株式会社 Compound heat exchanger
WO2014136498A1 (en) * 2013-03-06 2014-09-12 カルソニックカンセイ株式会社 Compound heat exchanger
JP2014238214A (en) * 2013-06-07 2014-12-18 カルソニックカンセイ株式会社 Combined heat exchanger
JP2014238233A (en) * 2013-06-10 2014-12-18 カルソニックカンセイ株式会社 Combined heat exchanger
KR20160096235A (en) * 2015-02-04 2016-08-16 한온시스템 주식회사 Air conditioner system for vehicle
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
WO2020246337A1 (en) * 2019-06-06 2020-12-10 株式会社デンソー Heat exchanger, and refrigeration cycle device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013381A1 (en) * 2010-03-30 2011-10-06 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Front end for a motor vehicle
CN102518501A (en) * 2011-11-30 2012-06-27 深圳市五洲龙汽车有限公司 Engine cooling system for hybrid electric vehicle
JP5747879B2 (en) * 2012-08-01 2015-07-15 カルソニックカンセイ株式会社 Heat exchanger
KR101416369B1 (en) 2012-11-08 2014-07-08 현대자동차 주식회사 Air conditioner system for vehicle
KR101490906B1 (en) * 2012-12-13 2015-02-06 현대자동차 주식회사 Cooling module for vehicle
CN103292624B (en) * 2013-05-08 2015-01-07 宁波汇富机电制造有限公司 Efficient heat exchanger with air cooling and water cooling structure
KR101405234B1 (en) * 2013-06-05 2014-06-10 현대자동차 주식회사 Radiator for vehicle
KR20140143650A (en) * 2013-06-07 2014-12-17 현대자동차주식회사 Cooling module for vehicle
DE102013114872B4 (en) * 2013-06-07 2023-09-21 Halla Visteon Climate Control Corp. Radiator for vehicle
KR101448790B1 (en) * 2013-09-27 2014-10-08 현대자동차 주식회사 Heat pump system for vehicle
US20150101778A1 (en) * 2013-10-14 2015-04-16 Hyundai Motor Company Cooling module for vehicle
KR101542978B1 (en) * 2013-12-12 2015-08-07 현대자동차 주식회사 Cooling module for vehicle
US9308800B2 (en) * 2013-12-18 2016-04-12 Hyundai Motor Company Control method of air conditioner system for vehicle
WO2016010238A1 (en) * 2014-07-16 2016-01-21 한온시스템 주식회사 Integrated heat exchanger
DE112015000465B4 (en) * 2014-07-24 2022-09-08 Hanon Systems Air conditioning system for a vehicle
KR102255799B1 (en) * 2015-06-15 2021-05-26 한온시스템 주식회사 Refrigerant cycle of air conditioner for vehicles
KR102518597B1 (en) * 2018-10-30 2023-04-05 현대자동차 주식회사 Cooling module for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162176A (en) * 2004-12-08 2006-06-22 Mitsubishi Heavy Ind Ltd Heat exchanger and vehicular air conditioner
JP2008039212A (en) * 2006-08-02 2008-02-21 Calsonic Kansei Corp Heat exchanger
JP2008170140A (en) * 2006-12-14 2008-07-24 Calsonic Kansei Corp Heat exchanger for vehicle
WO2008072730A1 (en) * 2006-12-14 2008-06-19 Calsonic Kansei Corporation Compound heat exchanger and heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083014A (en) * 2010-10-08 2012-04-26 Calsonic Kansei Corp Complex heat exchanger
EP2530271A2 (en) 2011-05-27 2012-12-05 Calsonic Kansei Corporation Combined heat exchanger system
JP2012245866A (en) * 2011-05-27 2012-12-13 Calsonic Kansei Corp Combined heat exchanger system
WO2012169504A1 (en) 2011-06-10 2012-12-13 カルソニックカンセイ株式会社 Water-cooled condenser
WO2013146071A1 (en) 2012-03-30 2013-10-03 カルソニックカンセイ株式会社 Integrated cooling system
JP2013210152A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013210151A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013209022A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2014009848A (en) * 2012-06-28 2014-01-20 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014009847A (en) * 2012-06-28 2014-01-20 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014013131A (en) * 2012-07-05 2014-01-23 Calsonic Kansei Corp Heat exchanging device for vehicle
JP2014118141A (en) * 2012-12-13 2014-06-30 Hyundai Motor Company Co Ltd Cooling module for vehicle
WO2014103639A1 (en) * 2012-12-28 2014-07-03 カルソニックカンセイ株式会社 Compound heat exchanger
JP2014129907A (en) * 2012-12-28 2014-07-10 Calsonic Kansei Corp Compound heat exchanger
CN104903675A (en) * 2012-12-28 2015-09-09 康奈可关精株式会社 Compound heat exchanger
CN104903675B (en) * 2012-12-28 2017-03-15 康奈可关精株式会社 Compound heat-exchanger
WO2014136498A1 (en) * 2013-03-06 2014-09-12 カルソニックカンセイ株式会社 Compound heat exchanger
JP2014238214A (en) * 2013-06-07 2014-12-18 カルソニックカンセイ株式会社 Combined heat exchanger
JP2014238233A (en) * 2013-06-10 2014-12-18 カルソニックカンセイ株式会社 Combined heat exchanger
KR20160096235A (en) * 2015-02-04 2016-08-16 한온시스템 주식회사 Air conditioner system for vehicle
KR102170459B1 (en) 2015-02-04 2020-10-29 한온시스템 주식회사 Air conditioner system for vehicle
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
WO2020246337A1 (en) * 2019-06-06 2020-12-10 株式会社デンソー Heat exchanger, and refrigeration cycle device

Also Published As

Publication number Publication date
EP2360444A1 (en) 2011-08-24
WO2010061808A1 (en) 2010-06-03
CN102224391A (en) 2011-10-19
US20110232868A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP2010127508A (en) Combined heat exchanger
JP5184314B2 (en) Cooling system
JP4970022B2 (en) Combined heat exchanger and combined heat exchanger system
US9669681B2 (en) Vehicle heat exchanger
JP2008180486A (en) Heat exchanger
WO2008072730A1 (en) Compound heat exchanger and heat exchanger
CN110100083B (en) Intercooler
WO2014136498A1 (en) Compound heat exchanger
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP2008170140A (en) Heat exchanger for vehicle
JP6296439B2 (en) Vehicle radiator
WO2020170651A1 (en) Compound heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
JP5640875B2 (en) Combined heat exchanger
JP2012144222A (en) Vehicular air-conditioning device
JP2010175167A (en) Cold storage heat exchanger
JP2014126315A (en) Compound heat exchanger
KR20100023600A (en) Curtain air bag for vehicle
JP2010018151A (en) Vehicular heat exchanger
JP2009074739A (en) Heat exchanging device for vehicle
JP2004338644A (en) Heat exchange device for vehicle
KR20230136254A (en) Cooling module
JP2012245865A (en) Composite heat exchanger
JP6191493B2 (en) Heat exchange system
JP5831390B2 (en) Heat exchanger fixing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121031