JP3214318B2 - Outdoor heat exchanger for heat pump refrigeration cycle - Google Patents

Outdoor heat exchanger for heat pump refrigeration cycle

Info

Publication number
JP3214318B2
JP3214318B2 JP28377695A JP28377695A JP3214318B2 JP 3214318 B2 JP3214318 B2 JP 3214318B2 JP 28377695 A JP28377695 A JP 28377695A JP 28377695 A JP28377695 A JP 28377695A JP 3214318 B2 JP3214318 B2 JP 3214318B2
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
heat
external fluid
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28377695A
Other languages
Japanese (ja)
Other versions
JPH09126592A (en
Inventor
石川  浩
静男 土屋
晃 伊佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP28377695A priority Critical patent/JP3214318B2/en
Publication of JPH09126592A publication Critical patent/JPH09126592A/en
Application granted granted Critical
Publication of JP3214318B2 publication Critical patent/JP3214318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ヒートポンプ式冷凍サ
イクルに用いられる熱交換器に関するもので、電気自動
車に搭載されるヒートポンプ式冷凍サイクルの室外熱交
換機に用いて有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in a heat pump refrigeration cycle, and is effective for use in an outdoor heat exchanger of a heat pump refrigeration cycle mounted on an electric vehicle.

【0002】[0002]

【従来の技術】従来、電気自動車に搭載されるヒートポ
ンプ式冷凍サイクルに用いられる室外熱交換器は、車両
前方に組付けられているので、車室内暖房時等の外気温
度が低いときには、空気中の水分や雨滴の付着凍結によ
るいわゆる「着霜」が、室外熱交換器の熱交換(コア)
部に発生し易い。そのため着霜部分の通気性が悪化して
熱交換部の吸熱能力が低下し、その結果、暖房能力が急
激に低下するという問題があった。
2. Description of the Related Art Conventionally, an outdoor heat exchanger used in a heat pump refrigeration cycle mounted on an electric vehicle is mounted in front of a vehicle. So-called "frosting" due to the adhesion and freezing of water and raindrops in the outdoor heat exchanger heat exchange (core)
It is easy to occur in the part. Therefore, there is a problem that the air permeability of the frosted portion is deteriorated, and the heat absorbing capacity of the heat exchange section is reduced, and as a result, the heating capacity is rapidly reduced.

【0003】そこで、この問題を解決する手段として、
室外熱交換器の熱交換部を二分割し、一方を走行風が当
たる車両前方に配置し、他方を走行風の影響を直接受け
難い位置に配置して、後者の熱交換部によって最小暖房
能力を維持して、急激な暖房能力の低下を防止するとい
うものが知られている。
Therefore, as a means for solving this problem,
The heat exchange part of the outdoor heat exchanger is divided into two parts, one is placed in front of the vehicle hit by the traveling wind, and the other is placed in a position that is hardly affected by the traveling wind. It is known that a rapid decrease in the heating capacity is prevented by maintaining the temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ように熱交換部を二分割して、それらを別の場所にそれ
ぞれ配置するので、スペース効率の低下という新たな問
題が発生する。また、ヒートポンプ式冷凍サイクルの室
外熱交換器は、周知のように車室内暖房時には吸熱器
(蒸発器)として作動し、車室内冷房時には発熱器(凝
縮器)として作動するので、室外熱交換器内を流れる冷
媒の相変化状態は、車室内暖房時と車室内冷房時とでは
異なっている。
However, since the heat exchanging section is divided into two parts as described above and they are arranged at different places, a new problem of a reduction in space efficiency occurs. As is well known, the outdoor heat exchanger of the heat pump refrigeration cycle operates as a heat absorber (evaporator) when heating the vehicle interior, and operates as a heat generator (condenser) when cooling the vehicle interior. The phase change state of the refrigerant flowing through the inside is different between when heating the passenger compartment and when cooling the passenger compartment.

【0005】したがって、車室内暖房時の熱交換(蒸
発)効率を優先させれば、車室内冷房時の熱交換(凝
縮)効率が低下する。一方、車室内冷房時の熱交換(凝
縮)効率を優先させれば、車室内暖房時の熱交換(蒸
発)効率が低下する。本発明は、上記点に鑑み、ヒート
ポンプ式冷凍サイクルに用いられる室外熱交換器におい
て、吸熱作動および発熱作動の両作動状態においても効
率よく熱交換を行うことができ、かつ、スペース効率の
低下を防止しつつ、着霜による急激な暖房能力低下を防
止することを目的とする。
Therefore, if priority is given to the heat exchange (evaporation) efficiency during the heating of the vehicle interior, the heat exchange (condensation) efficiency during the cooling of the vehicle interior is reduced. On the other hand, if the heat exchange (condensation) efficiency at the time of vehicle interior cooling is prioritized, the heat exchange (evaporation) efficiency at the time of vehicle interior heating decreases. The present invention has been made in view of the above points, and in an outdoor heat exchanger used for a heat pump refrigeration cycle, heat can be efficiently exchanged even in both an endothermic operation and an exothermic operation state, and the space efficiency is reduced. It is an object of the present invention to prevent a sudden decrease in heating capacity due to frosting while preventing the heating.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1に
記載の発明では、複数個の熱交換部(16a、16b)
を、互いに冷媒通路(2a、2b)を連通させた状態
で、所定の隙間(C)を有して外部流体の流れ方向に沿
って直列に並べる。さらに、上流側に位置する熱交換部
(16a)の冷媒通路断面積を、下流側の熱交換部(1
6b)の冷媒通路断面積に比べて小さくする。
The present invention uses the following technical means to achieve the above object. According to the first aspect of the present invention, the plurality of heat exchange units (16a, 16b)
Are arranged in series along the flow direction of the external fluid with a predetermined gap (C) in a state where the refrigerant passages (2a, 2b) communicate with each other. Further, the cross-sectional area of the refrigerant passage of the heat exchange unit (16a) located on the upstream side is reduced by the heat exchange unit (1) on the downstream side.
6b) is smaller than the cross-sectional area of the refrigerant passage.

【0007】そして、それらの熱交換部(16a、16
b)を蒸発器として使用する場合には、上流側の熱交換
部(16a)から冷媒を流入させ、凝縮器として使用す
る場合には、下流側の熱交換部(16b)から冷媒を流
入させることを特徴とする。請求項2に記載の発明で
は、複数個の熱交換部(16a、16b)を、互いに冷
媒通路(2a、2b)を連通させた状態で、所定の隙間
(C)を有して外部流体の流れ方向に沿って直列に並べ
る。さらに、外部流体流れ上流側に位置する前記熱交換
部(16a)の前記補助空間(100a〜105a)の
うちいずれか1つに連通する前記チューブ(2a)の穴
断断面積の総和は、外部流体流れ下流側に位置する前記
熱交換部(16b)の前記補助空間(100b〜103
b)のうちいずれか1つに連通する前記チューブ(2
b)の穴断断面積の総和に比べて小さくする。
The heat exchanging sections (16a, 16a)
When b) is used as an evaporator, the refrigerant flows in from the upstream heat exchange section (16a), and when it is used as a condenser, the refrigerant flows in from the downstream heat exchange section (16b). It is characterized by the following. According to the second aspect of the present invention, a plurality of heat exchange portions (16a, 16b) are provided with a predetermined gap (C) in a state where the refrigerant passages (2a, 2b) are communicated with each other, and an external fluid is provided. Arrange in series along the flow direction. Furthermore, the sum total of the cross-sectional area of the hole of the tube (2a) communicating with any one of the auxiliary spaces (100a to 105a) of the heat exchange section (16a) located on the upstream side of the external fluid flow is equal to the external fluid. The auxiliary space (100b to 103) of the heat exchange section (16b) located downstream of the flow
b) communicating with any one of the tubes (2)
b) It is made smaller than the sum of the hole cross-sectional areas.

【0008】そして、それらの熱交換部(16a、16
b)を蒸発器として使用する場合には、上流側の熱交換
部(16a)から冷媒を流入させ、凝縮器として使用す
る場合には、下流側の熱交換部(16b)から冷媒を流
入させることを特徴とする。請求項3に記載の発明によ
れば、請求項2に記載の熱交換器において、補助空間
(100a〜105a)に連通するチューブ(2a)の
穴断断面積の総和の差異は、チューブ(2a、2b)の
本数差によって構成されていることを特徴とする。
Then, the heat exchange sections (16a, 16a)
When b) is used as an evaporator, the refrigerant flows in from the upstream heat exchange section (16a), and when it is used as a condenser, the refrigerant flows in from the downstream heat exchange section (16b). It is characterized by the following. According to the third aspect of the present invention, in the heat exchanger according to the second aspect, the difference in the sum of the cross-sectional areas of the holes of the tubes (2a) communicating with the auxiliary spaces (100a to 105a) is different from the tubes (2a, 2b).

【0009】次に作用効果を述べる。請求項1〜3に記
載の発明によれば、上流側の熱交換部(16a)と下流
側の熱交換部(16b)との間に所定の隙間(C)を有
しているので、上流側の熱交換部(16a)が目詰まり
した状態であっても、下流側の熱交換部(16b)は、
隙間(C)から流入する外部流体によって熱交換するこ
とができる。したがって、着霜によってが目詰まりした
状態であっても、急激な暖房能力低下を防止するこがで
きる。
Next, the function and effect will be described. According to the first to third aspects of the present invention, the predetermined gap (C) is provided between the upstream heat exchange section (16a) and the downstream heat exchange section (16b). Even if the heat exchange part (16a) on the side is clogged, the heat exchange part (16b) on the downstream side
Heat can be exchanged by the external fluid flowing from the gap (C). Therefore, even if clogging is caused by frost formation, it is possible to prevent a rapid decrease in heating capacity.

【0010】また、複数個の熱交換部(16a、16
b)は、所定の隙間(C)を有して空気流れ方向に沿っ
て直列に並んでいるので、複数個の熱交換部(16a、
16b)まとめて一か所に配置することができる。した
がって、複数個の熱交換部(16a、16b)をそれぞ
れ別の場所に配置する場合に比べて、スペース効率の向
上を図ることができる。
Further, a plurality of heat exchange sections (16a, 16a) are provided.
b) are arranged in series along the air flow direction with a predetermined gap (C), so that a plurality of heat exchange sections (16a,
16b) They can be placed together in one place. Therefore, the space efficiency can be improved as compared with the case where the plurality of heat exchange sections (16a, 16b) are arranged at different locations.

【0011】また、暖房運転時には、冷媒通路内を流れ
る冷媒の圧力損失のために、冷媒通路内の圧力降下とと
もに蒸発圧力も降下していくので、複数個の熱交換部
(16a、16b)内の冷媒温度も冷媒流れと共に降下
していく。つまり、冷媒温度は、外部流体流れ上流側か
ら下流側に進むにつれて降下する。また、複数個の熱交
換部(16a、16b)を通過する外部流体は、複数個
の熱交換部(16a、16b)で吸熱されるので、複数
個の熱交換部(16a、16b)を通過する外部流体の
温度は、上流側から下流側に進むつれて降下する。
In the heating operation, the evaporating pressure also drops together with the pressure drop in the refrigerant passage due to the pressure loss of the refrigerant flowing in the refrigerant passage, so that the plurality of heat exchange portions (16a, 16b) Of the refrigerant also decreases with the flow of the refrigerant. In other words, the refrigerant temperature decreases as it proceeds from the upstream side of the external fluid flow to the downstream side. Further, since the external fluid passing through the plurality of heat exchange sections (16a, 16b) is absorbed by the plurality of heat exchange sections (16a, 16b), the external fluid passes through the plurality of heat exchange sections (16a, 16b). The temperature of the external fluid drops as it proceeds from the upstream side to the downstream side.

【0012】したがって、複数個の熱交換部(16a、
16b)を通過する外部流体の温度および複数個の熱交
換部(16a、16b)内を流れる冷媒温度の両者と
も、外部流体流れ上流側から下流側に進むにつれて降下
するので、外部流体流れ上流側から下流側にわたって、
外部流体と冷媒との温度差の縮小を抑制することができ
る。延いては、熱交換器の熱交換(吸熱)効率の向上を
図ることができる。
Therefore, a plurality of heat exchange units (16a,
16b), the temperature of the external fluid passing through the plurality of heat exchangers (16a, 16b) and the temperature of the refrigerant flowing through the plurality of heat exchange sections (16a, 16b) decrease from the upstream side of the external fluid flow to the downstream side. From downstream to
The reduction in the temperature difference between the external fluid and the refrigerant can be suppressed. As a result, the heat exchange (heat absorption) efficiency of the heat exchanger can be improved.

【0013】また、暖房運転時には、外部流体流れ上流
側の熱交換部(16a)の冷媒流路から外部流体流れ下
流側の熱交換部(16b)の冷媒流路に進むにつれて冷
媒の蒸発が進むので、その体積を次第に膨張させる。し
かし、冷媒は冷媒流路断面積の小さい上流側冷媒流路か
ら冷媒流路断面積の大きい下流側冷媒流路に向かって流
れるているので、体積の膨張にともなう複数個の熱交換
部(16a、16b)内の(蒸発)圧力上昇を抑制する
ことができる。したがって、複数個の熱交換部(16
a、16b)内で冷媒が安定的に蒸発することができる
ので、熱交換器の熱交換(吸熱)効率のより一層向上を
図ることができる。
Further, during the heating operation, the evaporation of the refrigerant proceeds as the refrigerant proceeds from the refrigerant flow path of the heat exchange section (16a) on the upstream side of the external fluid flow to the refrigerant flow path of the heat exchange section (16b) on the downstream side of the external fluid flow. Therefore, the volume gradually expands. However, since the refrigerant flows from the upstream refrigerant flow path having a small cross-sectional area of the refrigerant flow path to the downstream refrigerant flow path having a large cross-sectional area of the refrigerant flow path, a plurality of heat exchange parts (16a , 16b) can be suppressed. Therefore, a plurality of heat exchange units (16
Since the refrigerant can evaporate stably in a and 16b), the heat exchange (heat absorption) efficiency of the heat exchanger can be further improved.

【0014】また、冷房運転時には、複数個の熱交換部
(16a、16b)は凝縮器として作動するので、冷媒
は凝縮、冷却されて冷媒流れと共にその温度を下げてい
く。そのため、上流側の熱交換部(16a)から下流側
の熱交換部(16b)に進につれて冷媒温度は上昇す
る。また一方、複数個の熱交換部(16a、16b)を
通過する外部流体の温度は、冷媒からの凝縮熱を受けて
上流側から下流側に進につれて上昇する。
Further, during the cooling operation, the plurality of heat exchange sections (16a, 16b) operate as condensers, so that the refrigerant is condensed and cooled, and its temperature is lowered together with the flow of the refrigerant. Therefore, the refrigerant temperature increases as the heat proceeds from the upstream heat exchange section (16a) to the downstream heat exchange section (16b). On the other hand, the temperature of the external fluid passing through the plurality of heat exchanging sections (16a, 16b) rises from the upstream side to the downstream side due to the heat of condensation from the refrigerant.

【0015】したがって、複数個の熱交換部(16a、
16b)を通過する外部流体温度および複数個の熱交換
部(16a、16b)内を流れる冷媒温度の両者とも、
外部流体流れ上流側から下流側に進につれて温度が上昇
するので、外部流体流れ上流側から下流側にわたって、
外部流体と冷媒との温度差の縮小を抑制することができ
る。延いては、熱交換器の熱交換(放熱)効率の向上を
図ることができる。
Therefore, a plurality of heat exchange sections (16a,
Both the temperature of the external fluid passing through 16b) and the temperature of the refrigerant flowing through the plurality of heat exchange sections (16a, 16b) are:
As the temperature increases from the upstream side of the external fluid flow to the downstream side, from the upstream side of the external fluid flow to the downstream side,
The reduction in the temperature difference between the external fluid and the refrigerant can be suppressed. As a result, the heat exchange (radiation) efficiency of the heat exchanger can be improved.

【0016】また、冷房運転時には、冷媒は外部流体流
れ下流側の冷媒流路から上流側冷媒流路に進むにつれて
凝縮が進むので、その体積を次第に縮小させる。しか
し、冷媒は冷媒流路断面積の大きい下流側冷媒流路から
冷媒流路断面積の小さい上流側冷媒流路に向かって流れ
るているので、体積の縮小にともなう複数個の熱交換部
(16a、16b)内の(凝縮)圧力降下を抑制するこ
とができる。したがって、複数個の熱交換部(16a、
16b)内で冷媒が安定的に凝縮することができるの
で、熱交換器の熱交換(放熱)効率のより一層向上を図
ることができる。
Further, during the cooling operation, the refrigerant gradually condenses as the refrigerant advances from the downstream refrigerant flow path to the upstream refrigerant flow path. However, since the refrigerant flows from the downstream refrigerant flow path having a large refrigerant flow path cross-sectional area toward the upstream refrigerant flow path having a small refrigerant flow path cross-sectional area, a plurality of heat exchange units (16a , 16b) can be suppressed. Therefore, a plurality of heat exchange parts (16a,
Since the refrigerant can be stably condensed in 16b), the heat exchange (radiation) efficiency of the heat exchanger can be further improved.

【0017】請求項3に記載の発明によれば、補助空間
(100a〜105a)に連通するチューブ(2a、2
b)の本数を変更することにより冷媒通路断面積を容易
に変更することができるので、簡単な構造で冷媒の相状
態に適した冷媒通路断面積とするこができる。したがっ
て、製造原価上昇を抑制しつつ熱交換器の熱交換効率の
向上を図ることができる。
According to the third aspect of the present invention, the tubes (2a, 2a, 2a, 2a,
Since the cross-sectional area of the refrigerant passage can be easily changed by changing the number of b), the cross-sectional area of the refrigerant passage suitable for the phase state of the refrigerant can be obtained with a simple structure. Therefore, it is possible to improve the heat exchange efficiency of the heat exchanger while suppressing an increase in manufacturing cost.

【0018】[0018]

【発明の実施の形態】以下、本発明を図に示す実施の形
態について説明する。 (実施形態)図1は、本実施形態に係る熱交換器を電気
自動車に搭載されるヒートポンプ式冷凍サイクル(以
下、単に冷凍サイクルと呼ぶ。)の室外熱交換器として
用いた場合の模式図を示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; (Embodiment) FIG. 1 is a schematic diagram when the heat exchanger according to the present embodiment is used as an outdoor heat exchanger of a heat pump refrigeration cycle (hereinafter simply referred to as a refrigeration cycle) mounted on an electric vehicle. Is shown.

【0019】15は冷媒を圧縮する圧縮機で、この圧縮
機15は、図示されていない駆動用の電動モータを内蔵
する密閉(容積)型圧縮機で、電動モータの回転速度に
応じて冷媒吐出量が変化する。なお、この電動モータの
回転速度は、インバータ22によって周波数制御されて
いる。16は本実施形態に係る室外熱交換器で、通常、
走行風を受けやすい電気自動車のエンジンルーム前方
(図7参照)に配置されている。この室外熱交換器16
は、走行風と冷媒との間で熱交換する熱交換(コア)部
を2つ有しており、一方の熱交換部16aを走行風流れ
の上流側に配置し、他方の熱交換部16bを下流側に配
置するようにして走行風流れに沿って直列に並んでい
る。なお、室外熱交換器16の詳細については後述す
る。
Reference numeral 15 denotes a compressor for compressing the refrigerant. The compressor 15 is a hermetic (volume) type compressor having a built-in electric motor for driving (not shown), and discharges the refrigerant in accordance with the rotation speed of the electric motor. The amount changes. The rotation speed of the electric motor is frequency-controlled by the inverter 22. 16 is an outdoor heat exchanger according to the present embodiment, which is usually
It is arranged in front of the engine room (see FIG. 7) of the electric vehicle which is apt to receive traveling wind. This outdoor heat exchanger 16
Has two heat exchange (core) sections for exchanging heat between the traveling wind and the refrigerant, and arranges one heat exchange section 16a on the upstream side of the traveling wind flow and the other heat exchange section 16b. Are arranged on the downstream side in series along the traveling wind flow. The details of the outdoor heat exchanger 16 will be described later.

【0020】因みに、23は室外熱交換器16の両熱交
換部15a、16bを通過する空気流れを促進するクー
リングファンである。2は送風機3によって送風される
空気を車室内まで導く空気の流路をなす空調ケーシング
で、この空調ケーシング2内には、空気冷却手段をなす
室内蒸発器17と空気加熱手段をなす室内凝縮器18と
が配置されている。室内蒸発器17は低温低圧の霧状冷
媒を蒸発(気化)させることによって、室内蒸発器17
を通過する空気を冷却し、室内凝縮器18は高温高圧の
気相冷媒を凝縮させることによって、室内凝縮器18を
通過する空気を加熱する。
Incidentally, reference numeral 23 denotes a cooling fan for promoting the flow of air passing through both heat exchange portions 15a and 16b of the outdoor heat exchanger 16. Reference numeral 2 denotes an air-conditioning casing forming an air flow path for guiding the air blown by the blower 3 into the vehicle interior. Inside the air-conditioning casing 2, an indoor evaporator 17 serving as air cooling means and an indoor condenser serving as air heating means are provided. 18 are arranged. The indoor evaporator 17 evaporates (vaporizes) the low-temperature and low-pressure mist refrigerant, thereby forming the indoor evaporator 17.
Is cooled, and the indoor condenser 18 heats the air passing through the indoor condenser 18 by condensing the high-temperature and high-pressure gas-phase refrigerant.

【0021】また、第1減圧装置19は、冷房運転時お
よび除湿(除霜)運転時に室内蒸発器17へ圧送される
冷媒を減圧させるもので、本実施形態では、固定絞りの
キャピラリチューブが使用されている。第2減圧装置2
0は、暖房運転時に室外熱交換器16へ圧送される冷媒
を減圧させるもので、本実施形態では、固定絞りのキャ
ピラリチューブが使用されている。
The first pressure reducing device 19 reduces the pressure of the refrigerant fed to the indoor evaporator 17 during the cooling operation and the dehumidifying (defrosting) operation. In this embodiment, a fixed-throttle capillary tube is used. Have been. Second decompression device 2
Numeral 0 depressurizes the refrigerant that is pressure-fed to the outdoor heat exchanger 16 during the heating operation. In the present embodiment, a fixed-throttle capillary tube is used.

【0022】21は冷凍サイクル内の過剰冷媒を一時的
に蓄えるアキュムレータで、このアキュムレータ21は
圧縮機15の吸入側に配置されて、圧縮機15に液相冷
媒が吸入されることを防止(圧縮機15の過圧縮を防
止)するものである。なお、本実施形態においてはこの
アキュムレータ21は2つ設けられている。因みに、3
7は最大暖房時に暖房能力を補助する電気ヒータで、こ
の電気ヒータ37に通電することにより空調ケーシング
2内を流れる空気を加熱する。
Reference numeral 21 denotes an accumulator for temporarily storing excess refrigerant in the refrigeration cycle. The accumulator 21 is disposed on the suction side of the compressor 15 to prevent liquid refrigerant from being sucked into the compressor 15 (compression). (Prevents overcompression of the machine 15). In this embodiment, two accumulators 21 are provided. By the way, 3
Reference numeral 7 denotes an electric heater for assisting the heating capacity at the time of the maximum heating, and energizes the electric heater 37 to heat the air flowing in the air conditioning casing 2.

【0023】また、上記冷凍サイクルは、冷凍サイクル
内を循環する冷媒の循環経路を切り替えることによっ
て、冷房運転、暖房運転または除湿(除霜)運転の切り
替えを行う。そして、この循環経路の切り替えを行う循
環経路切替手段は、圧縮機15の吐出側に配置された四
方弁31、運転状態に応じて冷媒流路(配管)の開閉を
行う電磁弁32、33および冷媒流れ方向を規制する逆
止弁34、35から構成されている。そして、循環経路
切替手段の各構成部品は、それぞれ冷媒配管によって接
続され、図1に示すように配置構成されている。
The refrigeration cycle switches between a cooling operation, a heating operation and a dehumidification (defrosting) operation by switching a circulation path of a refrigerant circulating in the refrigeration cycle. The circulation path switching means for switching the circulation path includes a four-way valve 31 disposed on the discharge side of the compressor 15, electromagnetic valves 32 and 33 for opening and closing the refrigerant flow path (piping) according to the operation state, and It comprises check valves 34 and 35 for regulating the flow direction of the refrigerant. Each component of the circulation path switching means is connected by a refrigerant pipe, and is arranged and configured as shown in FIG.

【0024】すなわち、冷房運転時の循環経路は、圧縮
機15から四方弁31、逆止弁34、電磁弁32、室外
熱交換器16、第1減圧装置19、室内蒸発器17、そ
してアキュームレータ21を経て再び圧縮機15に到る
ものである。暖房運転時の循環経路は、圧縮機15から
四方弁31、室内凝縮器18、逆止弁35、第2減圧装
置20、室外熱交換器16、電磁弁33、そしてアキュ
ームレータ21を経て再び圧縮機15に到るものであ
る。
That is, the circulation path during the cooling operation is from the compressor 15 to the four-way valve 31, the check valve 34, the solenoid valve 32, the outdoor heat exchanger 16, the first pressure reducing device 19, the indoor evaporator 17, and the accumulator 21. , And reaches the compressor 15 again. During the heating operation, the circulation path from the compressor 15 passes through the four-way valve 31, the indoor condenser 18, the check valve 35, the second pressure reducing device 20, the outdoor heat exchanger 16, the electromagnetic valve 33, and the accumulator 21 again. The number reaches 15.

【0025】除湿(除霜)運転時の循環経路は、圧縮機
15から四方弁31、室内凝縮器18、逆止弁35、第
2減圧装置20、電磁弁32、室外熱交換器16、第1
減圧装置19、室内蒸発器17、そしてアキュームレー
タ21を経て再び圧縮機15に到るものである。次に、
図2〜4を用いて室外熱交換器16について述べる。
The circulation path during the dehumidification (defrosting) operation is from the compressor 15 to the four-way valve 31, the indoor condenser 18, the check valve 35, the second pressure reducing device 20, the electromagnetic valve 32, the outdoor heat exchanger 16, 1
The refrigerant reaches the compressor 15 again through the decompression device 19, the indoor evaporator 17, and the accumulator 21. next,
The outdoor heat exchanger 16 will be described with reference to FIGS.

【0026】図2は空気流れ上流側から室外熱交換器1
6を見た正面図であり、図3は図2の右側面図である。
なお、空気流れ上流側の熱交換部16aと下流側の熱交
換部16bとは、後述するヘッダタンク内に設けられた
セパレータの配置位置が異なるのみで、外観構造ほぼ同
じである。そこで、外観構造については熱交換部16a
を例に述べる。また図中の添え字bは、熱交換部16a
に対応する熱交換部16bの部品を示す。
FIG. 2 shows the outdoor heat exchanger 1 from the air flow upstream side.
6, and FIG. 3 is a right side view of FIG.
The heat exchange section 16a on the upstream side of the air flow and the heat exchange section 16b on the downstream side have substantially the same external structure except for the position of a separator provided in a header tank described later. Therefore, regarding the external structure, the heat exchange section 16a
Is described as an example. The subscript “b” in FIG.
2 shows the parts of the heat exchange unit 16b corresponding to FIG.

【0027】図2中、2aはアルミニウム製の冷媒が流
れる偏平チューブで、押し出し加工等により一体成形さ
れている。図2に示すように、これら複数個の偏平チュ
ーブ2aは、互いに平行になるように配置されており、
隣合う偏平チューブ2a間には、コルゲート状のアルミ
ニウム製冷却フィン3aが偏平チューブ2aの偏平面に
ろう付けされている。なお、偏平チューブ2a、2bの
穴断面積および外形寸法は全て等しい。
In FIG. 2, reference numeral 2a denotes a flat tube through which an aluminum refrigerant flows, which is integrally formed by extrusion or the like. As shown in FIG. 2, the plurality of flat tubes 2a are arranged so as to be parallel to each other.
Between adjacent flat tubes 2a, corrugated aluminum cooling fins 3a are brazed to the flat surfaces of the flat tubes 2a. The flat tubes 2a and 2b have the same hole cross-sectional area and outer dimensions.

【0028】また、これら偏平チューブ2aの一端側に
は、複数個の偏平チューブ2aの穴に連通して冷媒を分
配集合するアルミニウム製の第1ヘッダタンク4aがろ
う付けされており、他端側には、複数個の偏平チューブ
2aの穴に連通して冷媒を分配集合する第2ヘッダタン
ク5aがろう付けされている。そして、第1ヘッダタン
ク4aには、室外熱交換器16に接続される外部配管を
接続するための配管ジョイント6aがろう付けされてい
る。また、空気上流側の熱交換部16aの第2ヘッダタ
ンク5aと、空気下流側の熱交換部16bの第2ヘッダ
タンク5bとは連結配管7によって連通している。
A first header tank 4a made of aluminum, which communicates with the holes of the plurality of flat tubes 2a and distributes and collects the refrigerant, is brazed to one end of the flat tubes 2a. Is brazed to a second header tank 5a which communicates with the holes of the plurality of flat tubes 2a to distribute and collect the refrigerant. A pipe joint 6a for connecting an external pipe connected to the outdoor heat exchanger 16 is brazed to the first header tank 4a. The second header tank 5a of the heat exchange section 16a on the upstream side of the air and the second header tank 5b of the heat exchange section 16b on the downstream side of the air communicate with each other through the connection pipe 7.

【0029】熱交換部16aは、上述のように偏平チュ
ーブ2aと、これらにろう付けされた冷却フィン3aと
から構成されており、この熱交換部16aの端部のうち
両ヘッダタンク4a、5aが設けられていない両端部に
は、熱交換部16aの補強部材をなすサイドプレート8
aが両ヘッダタンク4a、5aにろう付けされている。
そして、両熱交換部16a、16bは、両熱交換部1
6a、16b間に所定の隙間Cを有するように配置した
状態で、図3に示されるように、両サイドプレート8
a、8bをブラケット9を介してボルト10にて組付け
られている。なお、隙間Cは5mm以上で、本実施形態
では約5mmである。
The heat exchanging section 16a is composed of the flat tubes 2a and the cooling fins 3a brazed to them, as described above. Of the ends of the heat exchanging section 16a, the two header tanks 4a, 5a Are provided at both ends where no side plate 8 is provided as a reinforcing member for the heat exchange section 16a.
a is brazed to both header tanks 4a, 5a.
The heat exchange sections 16a and 16b are connected to both heat exchange sections 1
In a state where a predetermined gap C is provided between the side plates 6a and 16b, as shown in FIG.
a and 8b are assembled with bolts 10 via brackets 9. The gap C is 5 mm or more, and is about 5 mm in the present embodiment.

【0030】図4は、室外熱交換器16の模式図で、ヘ
ッダタンクについては、その断面を示している。両ヘッ
ダタンク4a、5a内空間は、図4に示すように、複数
個のセパレータ11aによって複数個に仕切られて複数
個の補助空間100a〜105aが形成されている。同
様に、空気下流側の熱交換部16bの第1、2ヘッダタ
ンク4b、5b内空間も複数個のセパレータ11bによ
って複数の補助空間100b〜103bが形成されてい
る。
FIG. 4 is a schematic view of the outdoor heat exchanger 16 and shows a cross section of the header tank. As shown in FIG. 4, the inner space of both header tanks 4a and 5a is divided into a plurality by a plurality of separators 11a to form a plurality of auxiliary spaces 100a to 105a. Similarly, in the first and second header tanks 4b and 5b of the heat exchange section 16b on the downstream side of the air, a plurality of auxiliary spaces 100b to 103b are formed by the plurality of separators 11b.

【0031】また、空気上流側熱交換部16aの補助空
間の個数は空気下流側熱交換部16bの補助空間の個数
に比べて多く、本実施形態では空気上流側の両ヘッダタ
ンク4a、5aにはそれぞれ3個、空気下流側の両ヘッ
ダタンク4b、5bにはそれぞれ2個である。したがっ
て、熱交換部16aの補助空間100a〜105aのう
ちいずれか1つに連通する偏平チューブ2aの個数は、
熱交換部16bの補助空間100b〜103bのうちい
ずれか1つに連通する偏平チューブ2bの個数に比べて
少なくなっている。すなわち、熱交換部16a内を流れ
る冷媒のうち同相状態の冷媒が流れる部位の偏平チュー
ブ2aの穴断面積の総和は、熱交換部16b内を流れる
冷媒のうち同相状態の冷媒が流れる部位の偏平チューブ
2bの穴断面積の総和に比べて小さくなっている。
Further, the number of auxiliary spaces of the air upstream heat exchange section 16a is larger than the number of auxiliary spaces of the air downstream heat exchange section 16b. Are three in each case and two in each of the header tanks 4b and 5b on the downstream side of the air. Therefore, the number of the flat tubes 2a communicating with any one of the auxiliary spaces 100a to 105a of the heat exchange unit 16a is as follows:
The number is smaller than the number of flat tubes 2b communicating with any one of the auxiliary spaces 100b to 103b of the heat exchange unit 16b. That is, the sum of the hole cross-sectional areas of the flat tubes 2a at the portion where the refrigerant in the in-phase state flows in the refrigerant flowing in the heat exchange section 16a is the flattening of the portion in the refrigerant flowing in the in-phase state in the refrigerant flowing in the heat exchange section 16b. It is smaller than the sum total of the hole cross-sectional areas of the tube 2b.

【0032】換言すれば、同相状態の冷媒が流れている
複数個の偏平チューブ2a、2bは、それぞれ同相状態
の冷媒が流れている冷媒通路を形成しており、空気流れ
上流側に位置する冷媒通路断面積は、下流側の冷媒通路
断面積に比べて小さくなっている。次に、本実施形態の
作動を述べる。
In other words, the plurality of flat tubes 2a and 2b in which the in-phase refrigerant flows form a refrigerant passage through which the in-phase refrigerant flows, and the refrigerant tubes located on the upstream side of the air flow. The cross-sectional area of the passage is smaller than the cross-sectional area of the refrigerant passage on the downstream side. Next, the operation of the present embodiment will be described.

【0033】先ず、図1に示す冷凍サイクルについて、
運転状態毎に述べる。 (1)冷房運転時 四方弁31は図1の実線で示す流路となるように切り替
えられる。そして、電磁弁32が開弁し、電磁弁33が
閉弁する。これにより、圧縮機15から吐出した冷媒
は、四方弁31、逆止弁43、電磁弁32を経て室外熱
交換器16の熱交換部16bから熱交換部16aを流れ
る。そして、室外熱交換器16を流れる間に冷媒は凝縮
(放熱)し、その後、第1減圧装置19にて低温低圧の
霧状冷媒になる。そして、室内蒸発器17にて蒸発(吸
熱)し、アキュムレータ21を経て再び圧縮機15に吸
引される。なお、冷房運転時の冷媒流れを図1の矢印C
で示す。
First, regarding the refrigeration cycle shown in FIG.
This will be described for each operating state. (1) At the time of cooling operation The four-way valve 31 is switched so as to have a flow path indicated by a solid line in FIG. Then, the solenoid valve 32 opens, and the solenoid valve 33 closes. Thus, the refrigerant discharged from the compressor 15 flows through the four-way valve 31, the check valve 43, and the solenoid valve 32, from the heat exchange part 16b of the outdoor heat exchanger 16 to the heat exchange part 16a. The refrigerant condenses (dissipates heat) while flowing through the outdoor heat exchanger 16, and then becomes a low-temperature and low-pressure mist-like refrigerant in the first pressure reducing device 19. Then, it is evaporated (heat absorbed) in the indoor evaporator 17, and is sucked again into the compressor 15 through the accumulator 21. The flow of the refrigerant during the cooling operation is indicated by arrow C in FIG.
Indicated by

【0034】また、この冷房運転時では、圧縮機15よ
り吐出した冷媒の一部が電磁弁32および室外熱交換器
16をバイパスして第2減圧装置20側へ流れるが、第
2減圧装置20の両端の圧力差が殆どなく、また第2減
圧装置20の入口側が気相冷媒であることから、実際に
第2減圧装置20を通過する冷媒量は非常に少ない。し
たがって、本来の冷房能力は殆ど損なわれない。 (2)暖房運転時 四方弁31は図1の破線で示す流路となるように切り替
えられる。そして、電磁弁32が閉弁し、電磁弁33が
開弁する。これにより、圧縮機15から吐出した冷媒
は、四方弁31経て室内凝縮器18にて凝縮(放熱)
し、逆止弁35を通過して第2減圧装置20にて低温低
圧の霧状冷媒になる。そして、室外熱交換器16の熱交
換部16aから熱交換部16bへと流れる間に蒸発(吸
熱)し、電磁弁33およびアキュムレータ21を経て再
び圧縮機15に吸引される。なお、暖房運転時の冷媒流
れを図1の矢印Hで示す。
In the cooling operation, a part of the refrigerant discharged from the compressor 15 flows to the second pressure reducing device 20 side, bypassing the solenoid valve 32 and the outdoor heat exchanger 16. , There is almost no pressure difference between the two ends, and since the inlet side of the second decompression device 20 is a gas-phase refrigerant, the amount of refrigerant actually passing through the second decompression device 20 is very small. Therefore, the original cooling capacity is hardly impaired. (2) At the time of heating operation The four-way valve 31 is switched so as to have a flow path indicated by a broken line in FIG. Then, the solenoid valve 32 closes, and the solenoid valve 33 opens. Thereby, the refrigerant discharged from the compressor 15 is condensed (radiated) in the indoor condenser 18 through the four-way valve 31.
Then, it passes through the check valve 35 and becomes a low-temperature and low-pressure atomized refrigerant in the second pressure reducing device 20. Then, it evaporates (heat-absorbs) while flowing from the heat exchange section 16a of the outdoor heat exchanger 16 to the heat exchange section 16b, and is sucked into the compressor 15 again via the solenoid valve 33 and the accumulator 21. The refrigerant flow during the heating operation is indicated by an arrow H in FIG.

【0035】また、この暖房運転では、第2減圧装置2
0で減圧された冷媒の一部が室外熱交換器16および電
磁弁33をバイパスして第1減圧装置19側へ流れる
が、第1減圧装置19の両端の圧力差が殆どなく、また
第1減圧装置19の入口側が気相冷媒であることから、
実際に第1減圧装置19を通過して室内蒸発器17へ流
れる冷媒量は非常に少ない。したがって、本来の暖房能
力は殆ど損なわれない。 (3)除湿(除霜)運転時 四方弁31は図1の破線で示す流路となるように切り替
えられる。そして、電磁弁32が開弁し、電磁弁33が
閉弁する。これにより、圧縮機15から吐出した冷媒
は、四方弁31経て室内凝縮器18にて凝縮(放熱)
し、逆止弁35および電磁弁32を通過して室外熱交換
器16の熱交換部16bから熱交換部16aへと流れる
間に凝縮(放熱)し、第1減圧装置19にて低温低圧の
霧状冷媒になる。そして、室内蒸発器17にて蒸発(吸
熱)し、アキュムレータ21を経て再び圧縮機15に吸
引される。なお、暖房運転時の冷媒流れを図1の矢印D
で示す。
In this heating operation, the second pressure reducing device 2
Although a part of the refrigerant decompressed at 0 bypasses the outdoor heat exchanger 16 and the electromagnetic valve 33 and flows to the first pressure reducing device 19 side, there is almost no pressure difference between both ends of the first pressure reducing device 19 and Since the inlet side of the pressure reducing device 19 is a gas-phase refrigerant,
The amount of refrigerant actually flowing to the indoor evaporator 17 after passing through the first pressure reducing device 19 is very small. Therefore, the original heating capacity is hardly impaired. (3) At the time of dehumidification (defrosting) operation The four-way valve 31 is switched so as to form a flow path indicated by a broken line in FIG. Then, the solenoid valve 32 opens, and the solenoid valve 33 closes. Thereby, the refrigerant discharged from the compressor 15 is condensed (radiated) in the indoor condenser 18 through the four-way valve 31.
Then, while passing through the check valve 35 and the solenoid valve 32 and flowing from the heat exchange part 16b of the outdoor heat exchanger 16 to the heat exchange part 16a, the heat is condensed (dissipated). It becomes a mist refrigerant. Then, it is evaporated (heat absorbed) in the indoor evaporator 17, and is sucked again into the compressor 15 through the accumulator 21. The flow of the refrigerant during the heating operation is indicated by an arrow D in FIG.
Indicated by

【0036】この除湿(除霜)運転では、室内凝縮器1
8より流出した冷媒の一部が電磁弁32および室外熱交
換器16をバイパスして第2減圧装置20側へ流れる
が、第2減圧装置20の両端の圧力差が殆どなく、実際
に第2減圧装置20を通過する冷媒量は非常に少ない。
したがって、本来の除湿能力は殆ど損なわれない。次
に、室外熱交換器16内の冷媒流れについて図4を用い
て述べる。
In this dehumidifying (defrosting) operation, the indoor condenser 1
A part of the refrigerant flowing out of the second decompression device 20 bypasses the electromagnetic valve 32 and the outdoor heat exchanger 16 and flows to the second decompression device 20 side. The amount of the refrigerant passing through the pressure reducing device 20 is very small.
Therefore, the original dehumidifying ability is hardly impaired. Next, the refrigerant flow in the outdoor heat exchanger 16 will be described with reference to FIG.

【0037】図4において、冷房あるいは除湿運転時
は、冷媒は、実線の矢印に示すように、空気流れ下流側
に位置する熱交換部16bの配管ジョイント6bから第
1ヘッダタンク3bの補助空間100bに流入する。そ
して、補助空間100bに連通している複数の偏平チュ
ーブ2bに流れて第2ヘッダタンク5bの補助空間10
1bに到る。その後、偏平チューブ2bを介して補助空
間102b、補助空間103bと流れ、連結配管7を経
て空気流れ上流側に位置する熱交換部16aの補助空間
100aに流入する。
In FIG. 4, during the cooling or dehumidifying operation, the refrigerant flows from the pipe joint 6b of the heat exchange section 16b located downstream of the air flow to the auxiliary space 100b of the first header tank 3b, as indicated by the solid arrow. Flows into. Then, the air flows into the plurality of flat tubes 2b communicating with the auxiliary space 100b, and flows into the auxiliary space 10 of the second header tank 5b.
1b. Thereafter, the air flows into the auxiliary space 102b and the auxiliary space 103b via the flat tube 2b, and flows into the auxiliary space 100a of the heat exchange section 16a located on the upstream side of the air flow via the connection pipe 7.

【0038】その後、冷媒は熱交換部16b内の冷媒流
れと同様に、偏平チューブ2aを介して補助空間102
a、補助空間103a、補助空間104a、補助空間1
05aと流れ配管ジョイント6aから流出して第1減圧
装置19に流れる。なお、暖房時は破線の矢印に示すよ
うに、冷房あるいは除湿運転時の逆方向流れとなる。
Thereafter, the refrigerant flows through the auxiliary tube 102a through the flat tube 2a similarly to the flow of the refrigerant in the heat exchange section 16b.
a, auxiliary space 103a, auxiliary space 104a, auxiliary space 1
05a flows out of the flow pipe joint 6a and flows to the first pressure reducing device 19. During heating, as indicated by the dashed arrow, the flow is in the reverse direction during cooling or dehumidifying operation.

【0039】次に本発明の特徴を述べる。暖房運転時等
の外気温度が低いときには、室外熱交換器16のうち空
気流れ上流側に位置する熱交換部16aには、空気中の
水分や雨滴の付着凍結による着霜が発生し、熱交換部1
6aの冷却フィン3aが目詰まりする。しかし、上述の
ように、上流側の熱交換部16aと下流側の熱交換部1
6bとの間に所定の隙間Cを有しているので、熱交換部
16aの冷却フィン3aが目詰まりした状態であって
も、熱交換部16bは、隙間Cから流入する空気によっ
て熱交換することができる。したがって、着霜によって
冷却フィン3aが目詰まりした状態であっても、急激な
暖房能力低下を防止するこができる。
Next, the features of the present invention will be described. When the outside air temperature is low during a heating operation or the like, frost formation occurs due to the adhesion and freezing of moisture and raindrops in the air in the heat exchange section 16a of the outdoor heat exchanger 16 located upstream of the air flow. Part 1
The cooling fin 3a of 6a is clogged. However, as described above, the upstream heat exchange section 16a and the downstream heat exchange section 1
6b, the heat exchange portion 16b exchanges heat with air flowing from the gap C even when the cooling fins 3a of the heat exchange portion 16a are clogged. be able to. Therefore, even if the cooling fins 3a are clogged due to frost formation, it is possible to prevent a sharp decrease in the heating capacity.

【0040】また、両熱交換部16a、16bは、所定
の隙間Cを有して空気流れ方向に沿って直列に並んでい
るので、両熱交換部16a、16bを車両前方部にまと
めて配置することができる。したがって、両熱交換部1
6a、16bをそれぞれ別の場所に配置する場合に比べ
て、スペース効率の向上を図ることができる。また、室
外熱交換器16は、両熱交換部16a、16bをブラケ
ット9にて一体に組付けた状態で車両に組付けられるの
で、組付け用部品等の部品点数を減らすことができると
ともに、組付け性の向上を図ることができる。
Further, since both heat exchange portions 16a and 16b are arranged in series along the direction of air flow with a predetermined gap C, both heat exchange portions 16a and 16b are collectively arranged at the front portion of the vehicle. can do. Therefore, both heat exchange units 1
Space efficiency can be improved as compared with the case where the 6a and 16b are arranged at different places. In addition, since the outdoor heat exchanger 16 is mounted on the vehicle in a state where the two heat exchange portions 16a and 16b are integrally mounted by the bracket 9, the number of components such as mounting components can be reduced. The assemblability can be improved.

【0041】また、暖房運転時には、冷媒通路内を流れ
る冷媒の圧力損失のために、冷媒通路(偏平チューブ)
内の圧力降下とともに蒸発圧力も降下していくので、両
熱交換部16a、16b内の冷媒温度も冷媒流れと共に
降下していく。つまり、冷媒温度は、空気流れ上流側か
ら下流側に進むにつれて降下する。また、両熱交換部1
6a、16bを通過する空気は、両熱交換部16a、1
6bで吸熱されるので、両熱交換部16a、16bを通
過する空気の温度は、上流側から下流側に進むつれて降
下する。
During the heating operation, the pressure loss of the refrigerant flowing in the refrigerant passage causes the refrigerant passage (flat tube)
Since the evaporating pressure also drops with the pressure drop in the inside, the refrigerant temperature in both heat exchange sections 16a and 16b also drops with the flow of the refrigerant. That is, the refrigerant temperature decreases as it proceeds from the upstream side to the downstream side of the air flow. In addition, both heat exchange units 1
The air passing through 6a, 16b passes through both heat exchange sections 16a, 1b.
Since the heat is absorbed at 6b, the temperature of the air passing through the heat exchange sections 16a and 16b falls as it goes from the upstream side to the downstream side.

【0042】したがって、両熱交換部16a、16bを
通過する空気の温度および両熱交換部16a、16b内
を流れる冷媒温度の両者とも、図5に示すように、空気
流れ上流側から下流側に進むにつれて降下するので、空
気流れ上流側から下流側にわたって、空気と冷媒との温
度差の縮小を抑制することができる。延いては、室外熱
交換器16の熱交換(吸熱)効率の向上を図ることがで
きる。
Therefore, as shown in FIG. 5, both the temperature of the air passing through the heat exchange sections 16a and 16b and the temperature of the refrigerant flowing through the heat exchange sections 16a and 16b are changed from the upstream side to the downstream side as shown in FIG. Since the temperature decreases as the air travels, the reduction in the temperature difference between the air and the refrigerant can be suppressed from the upstream side to the downstream side of the air flow. As a result, the heat exchange (heat absorption) efficiency of the outdoor heat exchanger 16 can be improved.

【0043】また、暖房運転時には、上流側冷媒流路か
ら下流側冷媒流路に進むにつれて冷媒の蒸発が進むの
で、その体積を次第に膨張させる。しかし、冷媒は冷媒
流路断面積の小さい上流側冷媒流路から冷媒流路断面積
の大きい下流側冷媒流路に向かって流れるているので、
体積の膨張にともなう両熱交換部16a、16b内の
(蒸発)圧力上昇を抑制することができる。したがっ
て、両熱交換部16a、16b内で冷媒が安定的に蒸発
することができるので、室外熱交換器16の熱交換(吸
熱)効率のより一層向上を図ることができる。
In the heating operation, as the refrigerant evaporates as it proceeds from the upstream refrigerant flow path to the downstream refrigerant flow path, its volume is gradually expanded. However, since the refrigerant flows from the upstream refrigerant flow path having a small cross-sectional area of the refrigerant flow path to the downstream refrigerant flow path having a large cross-sectional area of the refrigerant flow path,
It is possible to suppress an increase in (evaporation) pressure in the heat exchange sections 16a and 16b due to the expansion of the volume. Therefore, the refrigerant can stably evaporate in the heat exchange sections 16a and 16b, so that the heat exchange (heat absorption) efficiency of the outdoor heat exchanger 16 can be further improved.

【0044】また、冷房運転時には、両熱交換部16
a、16bは放熱器として作動するので、冷媒は凝縮、
冷却されて冷媒流れと共にその温度を下げていく。その
ため、上流側の熱交換部16aから下流側の熱交換部1
6bに進につれて冷媒温度は上昇する。また一方、両熱
交換部16a、16bを通過する空気の温度は、冷媒か
らの凝縮熱を受けて上流側から下流側に向かう程上昇す
る。
In the cooling operation, both heat exchange sections 16
Since a and 16b operate as radiators, the refrigerant condenses,
It is cooled and its temperature decreases with the flow of the refrigerant. Therefore, the heat exchange unit 16a on the upstream side is connected to the heat exchange unit 1 on the downstream side.
The refrigerant temperature rises as it goes to 6b. On the other hand, the temperature of the air passing through both heat exchange sections 16a and 16b increases from the upstream side to the downstream side due to the heat of condensation from the refrigerant.

【0045】したがって、両熱交換部16a、16bを
通過する空気温度および両熱交換部16a、16b内を
流れる冷媒温度の両者とも、図6に示すように、空気流
れ上流側から下流側に向かう程温度が上昇するので、空
気流れ上流側から下流側にわたって、空気と冷媒との温
度差の縮小を抑制することができる。延いては、室外熱
交換器16の熱交換(放熱)効率の向上を図ることがで
きる。
Therefore, as shown in FIG. 6, both the temperature of the air passing through the heat exchange sections 16a and 16b and the temperature of the refrigerant flowing through the heat exchange sections 16a and 16b go from the upstream side to the downstream side of the air flow. As the temperature rises, the reduction in the temperature difference between the air and the refrigerant from the upstream side to the downstream side of the air flow can be suppressed. As a result, the heat exchange (radiation) efficiency of the outdoor heat exchanger 16 can be improved.

【0046】また、冷房運転時には、冷媒は下流側冷媒
流路から上流側冷媒流路に進むにつれて凝縮が進むの
で、その体積を次第に縮小させる。しかし、冷媒は冷媒
流路断面積の大きい下流側冷媒流路から冷媒流路断面積
の小さい上流側冷媒流路に向かって流れるているので、
体積の縮小にともなう両熱交換部16a、16b内の
(凝縮)圧力降下を抑制することができる。したがっ
て、両熱交換部16a、16b内で冷媒が安定的に凝縮
することができるので、室外熱交換器16の熱交換(放
熱)効率のより一層向上を図ることができる。
In the cooling operation, the refrigerant gradually condenses as it proceeds from the downstream refrigerant flow path to the upstream refrigerant flow path. However, since the refrigerant flows from the downstream refrigerant flow path having a large refrigerant flow path cross-sectional area toward the upstream refrigerant flow path having a small refrigerant flow path cross-sectional area,
It is possible to suppress a (condensation) pressure drop in both heat exchange units 16a and 16b due to a reduction in volume. Therefore, since the refrigerant can be stably condensed in the heat exchange sections 16a and 16b, the heat exchange (radiation) efficiency of the outdoor heat exchanger 16 can be further improved.

【0047】また、セパレータ11a、11bの配置位
置ないし数のいずれかを変更することにより冷媒通路断
面積を変更することができるので、簡単な構造で冷媒の
相状態に適した冷媒通路断面積とするこができる。した
がって、製造原価上昇を抑制しつつ室外熱交換器16の
熱交換効率の向上を図ることができる。また、上流側お
よび下流側の熱交換部の構成部品を共用化できるので、
製造原価上昇をより抑制することができる。
Further, the sectional area of the refrigerant passage can be changed by changing either the arrangement position or the number of the separators 11a, 11b. Can do it. Therefore, it is possible to improve the heat exchange efficiency of the outdoor heat exchanger 16 while suppressing an increase in manufacturing cost. Also, since the components of the upstream and downstream heat exchange units can be shared,
An increase in manufacturing costs can be further suppressed.

【0048】ところで、本発明に係る室外熱交換器は電
気自動車用に限定されるものではなく、家庭用のルーム
エアコン等に用いてもよい。また、上記実施形態では、
同一の熱交換部内での冷媒通路断面積(具体的には、偏
平チューブ2a、2bの個数)を等しくしたが、冷媒通
路断面積を同一の熱交換部内で変えても本発明を実施す
ることができる。
Incidentally, the outdoor heat exchanger according to the present invention is not limited to an electric vehicle, but may be used for a room air conditioner for home use. In the above embodiment,
Although the refrigerant passage cross-sectional areas (specifically, the number of the flat tubes 2a and 2b) in the same heat exchange section are equalized, the present invention can be implemented even if the refrigerant passage cross-sectional area is changed in the same heat exchange section. Can be.

【0049】また、上記実施形態では、冷媒通路は熱交
換部内にて蛇行していたが、冷媒が平行に一方向に流れ
るいわゆる全パスタイプの熱交換器においても本発明を
実施することができる。さらに、冷媒通路は、上記実施
形態の如く平行な複数の偏平チューブによるものに限ら
れず、例えば、一本の偏平チューブを蛇行させて形成す
るいわゆるサーペンタイプの熱交換器においても本発明
を実施することができる。
In the above embodiment, the refrigerant passage meanders in the heat exchange section. However, the present invention can be applied to a so-called all-pass type heat exchanger in which the refrigerant flows in one direction in parallel. . Further, the refrigerant passage is not limited to a plurality of parallel flat tubes as in the above-described embodiment. For example, the present invention is also applied to a so-called serpent type heat exchanger formed by meandering one flat tube. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る熱交換器を用いたヒートポン
プ式冷凍サイクルの模式図でる。
FIG. 1 is a schematic diagram of a heat pump refrigeration cycle using a heat exchanger according to the present embodiment.

【図2】本実施形態に係る熱交換器の正面図である。FIG. 2 is a front view of the heat exchanger according to the embodiment.

【図3】図2の右側面図である。FIG. 3 is a right side view of FIG. 2;

【図4】本実施形態に係る熱交換器の模式図である。FIG. 4 is a schematic diagram of a heat exchanger according to the present embodiment.

【図5】暖房運転時の空気温度と冷媒温度との関係を示
す説明図である。
FIG. 5 is an explanatory diagram showing a relationship between an air temperature and a refrigerant temperature during a heating operation.

【図6】冷房運転時の空気温度と冷媒温度との関係を示
す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between an air temperature and a refrigerant temperature during a cooling operation.

【図7】本実施形態に係る熱交換器を車両に搭載した際
の模試図である。
FIG. 7 is a schematic test diagram when the heat exchanger according to the present embodiment is mounted on a vehicle.

【符号の説明】[Explanation of symbols]

2a、2b…偏平チューブ(チューブ)、3a、3b…
冷却フィン、4a、4b…第1ヘッダタンク、5a、5
b…第2ヘッダタンク、6a、6b…配管ジョイント、
7…連結配管、8a、8b…サイドプレート、9…ブラ
ケット、11a、11b…セパレータ、16a、16b
…熱交換部、16…室外熱交換器、100a〜105
a、100b〜103b…補助空間。
2a, 2b ... flat tube (tube), 3a, 3b ...
Cooling fins, 4a, 4b: first header tank, 5a, 5
b: second header tank, 6a, 6b: piping joint,
7 Connection pipe, 8a, 8b Side plate, 9 Bracket, 11a, 11b Separator, 16a, 16b
... heat exchange unit, 16 ... outdoor heat exchanger, 100a-105
a, 100b to 103b ... auxiliary space.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−84395(JP,A) 特開 平4−131665(JP,A) 実開 昭63−69957(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-84395 (JP, A) JP-A-4-131665 (JP, A) JP-A-63-69957 (JP, U) (58) Survey Field (Int. Cl. 7 , DB name) F25B 39/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒が流れる冷媒通路(2a、2b)を
有し、外部流体と冷媒との間で熱交換を行う熱交換部
(16a、16b)を複数個備え、 前記複数個の熱交換部(16a、16b)は、互いに前
記冷媒通路(2a、2b)を連通させた状態で、所定の
隙間(C)を有して外部流体の流れ方向に沿って直列に
並んでおり、 前記複数個の熱交換部(16a、16b)を蒸発器とし
て使用する場合には、外部流体流れ上流側の前記熱交換
部(16a)から冷媒を流入させ、前記複数個の熱交換
部(16a、16b)を凝縮器として使用する場合に
は、外部流体流れ下流側の前記熱交換部(16b)から
冷媒を流入させ、 さらに、外部流体流れ上流側に位置する前記熱交換部
(16a)の冷媒通路断面積は、外部流体流れ下流側に
位置する前記熱交換部(16b)の冷媒通路断面積に比
べて小さいことを特徴とするヒートポンプ式冷凍サイク
ル用室外熱交換器。
1. A plurality of heat exchange parts (16a, 16b) having a refrigerant passage (2a, 2b) through which a refrigerant flows, and exchanging heat between an external fluid and the refrigerant. The portions (16a, 16b) are arranged in series along the flow direction of the external fluid with a predetermined gap (C) in a state where the refrigerant passages (2a, 2b) communicate with each other. When the heat exchange sections (16a, 16b) are used as evaporators, a refrigerant flows from the heat exchange section (16a) on the upstream side of the external fluid flow, and the plurality of heat exchange sections (16a, 16b) are used. ) Is used as a condenser, a refrigerant flows in from the heat exchange section (16b) on the downstream side of the external fluid flow, and further, a refrigerant passage of the heat exchange section (16a) located on the upstream side of the external fluid flow The cross-sectional area is located on the downstream side of the external fluid flow. An outdoor heat exchanger for a heat pump refrigeration cycle, wherein the outdoor heat exchanger is smaller than a refrigerant passage cross-sectional area of the heat exchange section (16b).
【請求項2】 冷媒が流れ、互いに平行に配置された複
数個のチューブ(2a、2b)からなる冷媒通路を有
し、外部流体と冷媒との間で熱交換を行う複数個の熱交
換部(16a、16b)と、 前記複数個の熱交換部(16a、16b)の複数個のチ
ューブ(2a、2b)の端部に設けらたヘッダタンク
(4a、4b、5a、5b)と、 前記ヘッダタンク(4a、4b、5a、5b)内に配置
され、前記ヘッダタンク(4a、4b、5a、5b)内
空間を仕切って複数個の補助空間(100a〜105
a、100b〜103b)を形成するセパレータ(11
a、11b)とを備え、 前記複数個の熱交換部(16a、16b)は、互いに前
記冷媒通路(2a、2b)を連通させた状態で、所定の
隙間(C)を有して前記外部流体の流れ方向に沿って直
列に並んでおり、 前記補助空間(100a〜105a、100b〜103
b)は、前記複数個のチューブ(2a、2b)のうち所
定数の前記チューブに連通して冷媒を分配集合し、 前記複数個の熱交換部(16a、16b)を蒸発器とし
て使用する場合には、外部流体流れ上流側の前記熱交換
部(16a)から冷媒を流入させ、前記複数個の熱交換
部(16a、16b)を凝縮器として使用する場合に
は、外部流体流れ下流側の前記熱交換部(16b)から
冷媒を流入させ、 さらに、外部流体流れ上流側に位置する前記熱交換部
(16a)の前記補助空間(100a〜105a)のう
ちいずれか1つに連通する前記チューブ(2a)の穴断
面積の総和は、外部流体流れ下流側に位置する前記熱交
換部(16b)の前記補助空間(100b〜103b)
のうちいずれか1つに連通する前記チューブ(2b)の
穴断面積の総和に比べて小さいことを特徴とするヒート
ポンプ式冷凍サイクル用室外熱交換器。
2. A plurality of heat exchanging units, each having a refrigerant passage made up of a plurality of tubes (2a, 2b) arranged in parallel with each other and flowing heat between an external fluid and the refrigerant. (16a, 16b); a header tank (4a, 4b, 5a, 5b) provided at an end of a plurality of tubes (2a, 2b) of the plurality of heat exchange sections (16a, 16b); A plurality of auxiliary spaces (100a to 105) are arranged in the header tanks (4a, 4b, 5a, 5b) and partition the space inside the header tanks (4a, 4b, 5a, 5b).
a, 100b to 103b) (11)
a, 11b), the plurality of heat exchange portions (16a, 16b) having a predetermined gap (C) in a state where the refrigerant passages (2a, 2b) communicate with each other, and The auxiliary spaces (100a to 105a, 100b to 103) are arranged in series along the flow direction of the fluid.
b) a case in which a predetermined number of the tubes (2a, 2b) communicate with a predetermined number of the tubes to distribute and assemble the refrigerant, and the plurality of heat exchange units (16a, 16b) are used as evaporators. In the case where a refrigerant flows from the heat exchange section (16a) on the upstream side of the external fluid flow and the plurality of heat exchange sections (16a, 16b) are used as condensers, The tube that allows a refrigerant to flow from the heat exchange unit (16b) and further communicates with any one of the auxiliary spaces (100a to 105a) of the heat exchange unit (16a) located on the upstream side of the external fluid flow. The sum total of the hole cross-sectional areas of (2a) is the sum of the auxiliary spaces (100b to 103b) of the heat exchange unit (16b) located downstream of the external fluid flow.
The outdoor heat exchanger for a heat pump type refrigeration cycle, wherein the total sum of the hole cross-sectional areas of the tubes (2b) communicating with any one of the tubes is small.
【請求項3】 前記補助空間(100a〜105a)に
連通する前記チューブ(2a)の穴断面積の総和の差異
は、前記チューブ(2a、2b)の本数差によって構成
されていることを特徴とする請求項2に記載のヒートポ
ンプ式冷凍サイクル用室外熱交換器。
3. The difference in the sum of the hole cross-sectional areas of the tubes (2a) communicating with the auxiliary spaces (100a to 105a) is constituted by the difference in the number of tubes (2a, 2b). The outdoor heat exchanger for a heat pump refrigeration cycle according to claim 2.
JP28377695A 1995-10-31 1995-10-31 Outdoor heat exchanger for heat pump refrigeration cycle Expired - Fee Related JP3214318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28377695A JP3214318B2 (en) 1995-10-31 1995-10-31 Outdoor heat exchanger for heat pump refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28377695A JP3214318B2 (en) 1995-10-31 1995-10-31 Outdoor heat exchanger for heat pump refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH09126592A JPH09126592A (en) 1997-05-16
JP3214318B2 true JP3214318B2 (en) 2001-10-02

Family

ID=17669983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28377695A Expired - Fee Related JP3214318B2 (en) 1995-10-31 1995-10-31 Outdoor heat exchanger for heat pump refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3214318B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136047A1 (en) 2010-04-28 2011-11-03 サンデン株式会社 Vehicle interior heat exchanger
WO2011142208A1 (en) 2010-05-10 2011-11-17 日本車輌製造株式会社 Railroad vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180801B2 (en) * 2001-01-11 2008-11-12 三菱電機株式会社 Refrigeration and air conditioning cycle equipment
JP4761790B2 (en) * 2005-02-28 2011-08-31 カルソニックカンセイ株式会社 Evaporator
WO2014045983A1 (en) * 2012-09-18 2014-03-27 株式会社ヴァレオジャパン Refrigeration cycle for air conditioning vehicle, and heat exchanger
CN102914077A (en) * 2012-11-13 2013-02-06 无锡职业技术学院 Air-cooled heat pump circulating system and heating and refrigerating methods thereof
CN114593466B (en) * 2022-02-21 2023-09-12 青岛海信日立空调系统有限公司 air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369957U (en) * 1986-10-28 1988-05-11
JP3030036B2 (en) * 1989-08-23 2000-04-10 昭和アルミニウム株式会社 Double heat exchanger
JPH04131665A (en) * 1990-09-20 1992-05-06 Sharp Corp Heat exchanger for air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136047A1 (en) 2010-04-28 2011-11-03 サンデン株式会社 Vehicle interior heat exchanger
WO2011142208A1 (en) 2010-05-10 2011-11-17 日本車輌製造株式会社 Railroad vehicle

Also Published As

Publication number Publication date
JPH09126592A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
JP4803199B2 (en) Refrigeration cycle equipment
JP4569041B2 (en) Refrigeration cycle equipment for vehicles
JP5920175B2 (en) Heat exchanger
JP5983335B2 (en) Heat exchanger
JP3918421B2 (en) Air conditioner, operation method of air conditioner
JP2005308384A (en) Ejector cycle
JP5413313B2 (en) Heat exchanger
JP6870570B2 (en) Vehicle heat management system
EP3580516A1 (en) Condenser with tube support structure
JP5983387B2 (en) Heat exchanger
JP3214318B2 (en) Outdoor heat exchanger for heat pump refrigeration cycle
JP2004069228A (en) Heat exchanger
JP2997504B2 (en) Air conditioner
JP3214278B2 (en) Air conditioner
JP4221823B2 (en) Receiver integrated refrigerant condenser
JP2002228299A (en) Composite heat exchanger
JP2007057177A (en) Vapor compression type refrigerating cycle device
JP6891711B2 (en) Combined heat exchanger
JP3331791B2 (en) Air conditioner
JPH06213531A (en) Heat pump air conditioner for car
JP2008281338A (en) Ejector cycle
JP2021032428A (en) Outdoor heat exchanger for heat pump type refrigeration cycle
WO2020129496A1 (en) Condenser and air conditioning device for vehicle
JPH10281572A (en) Secondary refrigerant freezer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees