WO2014181632A1 - 電解質濃度測定装置およびそれを用いた測定方法 - Google Patents

電解質濃度測定装置およびそれを用いた測定方法 Download PDF

Info

Publication number
WO2014181632A1
WO2014181632A1 PCT/JP2014/060417 JP2014060417W WO2014181632A1 WO 2014181632 A1 WO2014181632 A1 WO 2014181632A1 JP 2014060417 W JP2014060417 W JP 2014060417W WO 2014181632 A1 WO2014181632 A1 WO 2014181632A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
measuring
electrode
ion
electrolyte concentration
Prior art date
Application number
PCT/JP2014/060417
Other languages
English (en)
French (fr)
Inventor
悠 石毛
釜堀 政男
淳史 岸岡
哲義 小野
雅文 三宅
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US14/888,271 priority Critical patent/US10018585B2/en
Priority to DE112014002342.6T priority patent/DE112014002342T5/de
Priority to CN201480024768.0A priority patent/CN105164526B/zh
Publication of WO2014181632A1 publication Critical patent/WO2014181632A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/413Concentration cells using liquid electrolytes measuring currents or voltages in voltaic cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/021Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance before and after chemical transformation of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/4035Combination of a single ion-sensing electrode and a single reference electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/27Association of two or more measuring systems or cells, each measuring a different parameter, where the measurement results may be either used independently, the systems or cells being physically associated, or combined to produce a value for a further parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • the present invention relates to an electrolyte concentration measuring apparatus for measuring an electrolyte concentration in a solution and a measuring method using the same.
  • the ion selective electrode (ISE: Ion Selective Electrode) is used for quantifying the measurement target ions in the sample.
  • ISE Ion Selective Electrode
  • the ion selective electrode is immersed in a sample solution containing an electrolyte together with the reference electrode. In this state, the potential difference between the electrodes is measured to quantify the measurement target ions in the sample. Because of this simplicity, ion selective electrodes are widely used in the analytical field. Ion-selective electrodes are used for clinical examinations in the medical field, and are mounted as an electrolyte concentration measurement unit in biochemical automatic analyzers and emergency sample analyzers as well as dedicated devices for electrolyte concentration measurement.
  • Patent Literature 1 and Patent Literature 2 disclose a method of measuring the resistance value of the ion selective electrode.
  • Patent Document 1 When measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring device, it has been found that the conventional methods of Patent Document 1 and Patent Document 2 cannot provide sufficient accuracy.
  • Patent Document 2 describes that resistance measurement can be performed by either direct current or alternating current, but alternating current is preferable. This is presumably because a platinum electrode is used for resistance measurement. Although platinum electrodes are common for measuring AC resistance, they are not optimal for measuring DC resistance. In order to measure DC resistance with high accuracy, the interface potential generated between the platinum electrode and the solution in contact with the platinum electrode needs to be stable. However, this interface potential is indefinite and easily fluctuates, and this fluctuation can be an error in DC resistance measurement. Further, when the surface of the platinum electrode is contaminated with proteins in the sample, the degree of error increases. In the AC resistance measurement, this interface is represented by an electric double layer capacitor, so this problem is not easily realized.
  • the present invention provides an apparatus for measuring the DC resistance value of an ion selective electrode with high accuracy and a measurement method using the apparatus.
  • the present application includes a plurality of means for solving the above-described problems.
  • a sample solution is introduced into a plurality of ion selection electrodes and one reference electrode, and the plurality of ion selection electrodes and the reference electrode.
  • Electrolyte concentration measurement comprising: a sample introduction unit; a potential measurement unit that measures voltages between the plurality of ion selection electrodes and the reference electrode; and a resistance measurement unit that measures DC resistance of the plurality of ion selection electrodes.
  • a method for measuring the DC resistance of the plurality of ion selective electrodes in an electrolyte concentration measuring device including a plurality of ion selective electrodes and one reference electrode.
  • the method includes a first step of measuring an electromotive force between at least one of the plurality of ion selective electrodes and the reference electrode, a voltage between two of the plurality of ion selective electrodes and the reference electrode, and A second step of measuring a current; and a third step of obtaining the DC resistance from the electromotive force, the voltage, and the current.
  • the present invention by measuring the DC resistance of the ion selective electrode, it is possible to suppress the influence of the parasitic capacitance that has caused the resistance to be underestimated in the measurement of the AC resistance.
  • the DC resistance between two of the electrodes including the reference electrode and the ion selective electrode By measuring the DC resistance between two of the electrodes including the reference electrode and the ion selective electrode, the potential at the interface between the solution and the reference electrode or the ion selective electrode is stable, so the DC resistance is measured stably. can do.
  • FIG. 1A It is the schematic which shows an example of an ion selection electrode, and is the figure which showed the surface perpendicular
  • FIG. 1A is a schematic diagram showing an example of an ion selective electrode, and shows a plane perpendicular to the flow path.
  • FIG. 1B is a diagram showing a plane parallel to the flow path.
  • 1C is a cross-sectional view taken along the chain line in FIG. 1A.
  • the channel 102 passes through the cartridge 101 of the ion selective electrode.
  • a sensitive film 105 is in contact with the flow path 102.
  • An internal liquid 104 is filled on the opposite side of the flow channel 102 across the sensitive film 105.
  • a silver-silver chloride electrode 103 is in contact with the internal liquid 104.
  • the silver-silver chloride electrode 103 also serves as a terminal.
  • the sensitive membrane 105 described in Non-Patent Document 1 can be used.
  • anion selective electrodes such as chlorine, carbonic acid, blood oxygenate, nitric acid, hydroxyl acid, phosphoric acid, sulfuric acid, iodine, etc.
  • the sensitive film 105 is silver chloride.
  • Silver halides such as silver bromide and ion exchange membranes (Patent Document 3) can be used.
  • the sensitive film 105 can be made of porous glass, ceramic, or the like.
  • FIG. 2 is a schematic diagram showing an example of an electrolyte concentration measuring apparatus using the ion selective electrode of FIG.
  • the electrolyte concentration measurement apparatus includes a measurement unit 201, a control unit 202, a calculation recording unit 203, and an output unit 204.
  • the measurement unit 201 is connected to a control unit 202, a calculation recording unit 203, and an output unit 204.
  • the control unit 202 controls each component of the measurement unit 201 described below.
  • the operation recording unit 203 calculates the ion concentration of the measurement target from the potential measured by the measurement unit 201 or the like.
  • the output unit 204 is a display or a printer.
  • the control unit 202 and the operation recording unit 203 may be realized using a general-purpose computer, or may be realized as a function of a program executed on the computer. That is, the processes of the control unit 202 and the operation recording unit 203 described below are realized by storing a program code in a storage unit such as a memory and executing a program code by a processor such as a CPU (Central Processing Unit). May be.
  • the control unit 202 and the operation recording unit 203 may be configured by hardware such as a dedicated circuit board.
  • the measurement unit 201 includes a dilution tank 211, a sample dispensing nozzle 212, a diluent dispensing nozzle 213, an internal standard solution dispensing nozzle 214, a sample solution suction nozzle 215, a pipe 216, and a sodium ion selection electrode 217.
  • a sample solution suction nozzle 215, a pipe 216, a pipe 221 and a pump 222 are used as a sample introduction part for introducing a sample liquid containing an electrolyte.
  • the sample solution is introduced into the flow paths of the ion selective electrodes 217 to 219 and the reference electrode 220 using the sample introduction unit. Then, the potential difference between the electrodes is measured with the sample solution introduced.
  • a detailed configuration will be described below.
  • the specimen dispensing nozzle 212 dispenses and discharges specimens such as blood and urine into the dilution tank 211, and the diluent dispensing nozzle 213 dispenses and discharges the diluent into the dilution tank 211.
  • the internal standard solution dispensing nozzle 214 dispenses and discharges the internal standard solution to the dilution tank 211.
  • the sample liquid suction nozzle 215 can move up and down, and sucks the solution in the dilution tank 211 by the driving force of the pump 222.
  • the sucked solution is introduced into the flow paths of the electrodes 217 to 220 through the pipe 216, and further drained through the pipe 221.
  • the terminals of each ion selection electrode 217, 218, 219 and reference electrode 220 are connected to the potential measurement unit 223.
  • FIG. 3 is a circuit diagram illustrating an example of the potential measurement unit 223.
  • a terminal 304 to which the reference electrode 220 is connected is connected to the ground.
  • the other terminals 301, 302, and 303 to which the ion selection electrodes 217, 218, and 219 are connected are connected to amplifiers 305, 306, and 307 having an input impedance of about 1 G ⁇ .
  • Outputs of the amplifiers 305, 306, and 307 are input to an analog-digital converter (AD converter) 308, and a digital value is output from the AD converter 308.
  • AD converter analog-digital converter
  • FIG. 4 is an example of a flowchart of electrolyte concentration measurement using the electrolyte concentration measurement apparatus of FIG.
  • the processing in FIG. 4 is mainly controlled by the control unit 202.
  • the internal standard solution is discharged into the dilution tank 211 using the internal standard solution dispensing nozzle 214 (S401).
  • the internal standard solution in the dilution tank 211 is sucked using the sample solution suction nozzle 215 and the pump 222 (S402).
  • the channels of the electrodes 217 to 220 are filled with the internal standard solution.
  • the potential of the ion selection electrodes 217 to 219 with respect to the reference electrode 220 is measured using the potential measurement unit 223 (S403).
  • the potentials of the electrodes 217 to 219 are E 1 and n (n is each ion species).
  • the specimen is discharged into the dilution tank 211 using the specimen dispensing nozzle 212 (S404).
  • the diluent is discharged into the dilution tank 211 using the diluent dispensing nozzle 213 (S405).
  • the sample is diluted by the ratio D between the sample amount and the diluted solution amount.
  • the sample liquid in the dilution tank 211 is sucked using the sample liquid suction nozzle 215 and the pump 222 (S406).
  • the channels of the electrodes 217 to 220 are filled with the sample solution.
  • the potentials of the electrodes 217 to 219 with respect to the reference electrode 220 are measured using the potential measuring unit 223 (S407).
  • the potentials of the electrodes 217 to 219 are E 2 and n .
  • the measurement target ion concentration in the sample is calculated using the operation recording unit 203 (S408). Specifically, the measurement target in the sample using the following formula based on the Nernst equation from E 1, n , E 2, n , D and the measurement target ion concentration c IS, n in the internal standard solution to calculate the ionic concentration c n.
  • the output unit 204 outputs the density calculated in S408 by a method such as screen output or printing (S409).
  • the diluent does not contain ions to be measured, such as tris borate buffer, bistris borate buffer, etc. (for example, Patent Document 4).
  • ions to be measured such as tris borate buffer, bistris borate buffer, etc.
  • Patent Document 4 a measurement target ion having a blood concentration reference value or the like, for example, a solution of about 140 mM sodium, 4 mM potassium, and 100 mM chlorine can be used as a sample and diluted with a dilution ratio D with a diluent.
  • FIG. 5 is a schematic view showing another example of an electrolyte concentration measuring apparatus using the ion selective electrode of FIG.
  • the electrolyte concentration measurement apparatus includes a measurement unit 501, a control unit 502, an operation recording unit 503, and an output unit 504.
  • a control unit 502, an operation recording unit 503, and an output unit 504 are connected to the measurement unit 501.
  • the control unit 502 controls each component of the measurement unit 501 described below.
  • the operation recording unit 503 calculates the ion concentration of the measurement target from the potential measured by the measurement unit 501 or the like.
  • the output unit 504 is a display or a printer.
  • control unit 502 and the operation recording unit 503 may be realized using a general-purpose computer, or may be realized as a function of a program executed on the computer. That is, the processing of the control unit 502 and the operation recording unit 503 described below may be realized by storing a program code in a storage unit such as a memory and executing a program code by a processor such as a CPU.
  • the control unit 502 and the operation recording unit 503 may be configured by hardware such as a dedicated circuit board.
  • the measurement unit 501 includes a dilution tank 511, a sample dispensing nozzle 512, a diluent dispensing nozzle 513, an internal standard solution dispensing nozzle 514, a sample solution suction nozzle 515, a pipe 516, and a chloride ion selection electrode 517.
  • a potassium ion selection electrode 518, a sodium ion selection electrode 519, a pipe 520, a valve 521, a junction 522, a pipe 523, a reference electrode 524, a valve 525, a pipe 526, a reference liquid 527, A pipe 528, a pump 529, and a potential measurement unit 530 are included.
  • a sample solution suction nozzle 515, a pipe 516, a pipe 520, a valve 521, a junction 522, a pipe 523, a valve 525, and a pipe are used as sample introduction units for introducing the sample liquid and the reference liquid.
  • 526, piping 528, and pump 529 are used.
  • the sample solution is introduced into the channel of the ion selective electrodes 517 to 519 and the reference solution 527 is introduced into the channel of the reference electrode 524 using this sample introduction unit. In this state, the potential difference between the electrodes is measured.
  • a detailed configuration will be described below.
  • the specimen dispensing nozzle 512 dispenses and discharges specimens such as blood and urine to the dilution tank 511, and the diluent dispensing nozzle 513 dispenses and discharges the diluent to the dilution tank 511.
  • the internal standard solution dispensing nozzle 514 dispenses and discharges the internal standard solution to the dilution tank 511.
  • the sample liquid suction nozzle 515 can move up and down, and sucks the solution in the dilution tank 511 by the driving force of the pump 529.
  • the valve 521 is open and the valve 525 is closed, the solution sucked by the sample solution suction nozzle 515 is introduced into the flow path of the ion selection electrodes 517 to 519 through the pipe 516, and further, the pipe 520 and the junction 522.
  • the waste liquid is discharged through the pipe 528.
  • the pump 529 when the pump 529 is driven when the valve 521 is closed and the valve 525 is open, the reference liquid 527 is sucked through the pipe 526 and introduced into the flow path of the reference electrode 524. Further, the sucked reference liquid 527 is drained through the pipe 523, the junction 522, and the pipe 528.
  • the terminals of the ion selection electrodes 517 to 519 and the reference electrode 524 are connected to the potential measurement unit 530.
  • the potential measurement unit 530 the same one as in FIG. 3 can be used.
  • an ion selective electrode may be used, and the electrolyte in the reference liquid 527 corresponding to the ion selective electrode.
  • the concentration may be constant.
  • FIG. 6 is an example of a flowchart of electrolyte concentration measurement using the electrolyte concentration measurement apparatus of FIG.
  • the processing in FIG. 6 is mainly controlled by the control unit 502.
  • valve 521 is closed, the valve 525 is opened (S601), and the reference liquid 527 is sucked using the pump 529 and the pipe 526 (S602). Thereby, the flow path of the reference electrode 524, the pipe 523, and the junction 522 are filled with the reference liquid 527.
  • the internal standard solution is discharged into the dilution tank 511 using the internal standard solution dispensing nozzle 514 (S603).
  • the valve 521 is opened, the valve 525 is closed (S604), and the internal standard solution in the dilution tank 511 is sucked using the sample solution suction nozzle 515 and the pump 529 (S605).
  • the flow paths of the electrodes 517 to 519, the pipe 520, and the junction 522 are filled with the internal standard solution.
  • the ion measurement is performed using the potential measuring unit 530 and the ions based on the reference electrode 524.
  • the potentials E 1 and n of the selection electrodes 517 to 519 are measured (S606).
  • the valve 521 is closed, the valve 525 is opened (S607), and the reference liquid 527 is sucked using the pump 529 and the pipe 526 (S608).
  • the specimen is discharged into the dilution tank 511 using the specimen dispensing nozzle 512 (S609).
  • the diluent is discharged into the dilution tank 511 using the diluent dispensing nozzle 513 (S610).
  • the sample is diluted by the ratio D between the sample amount and the diluted solution amount.
  • valve 521 is opened, the valve 525 is closed (S611), and the sample liquid in the dilution tank 511 is sucked using the sample liquid suction nozzle 515 and the pump 529 (S612).
  • the flow paths, the pipes 520, and the junctions 522 of the ion selection electrodes 517 to 519 are filled with the sample solution.
  • the potentials E 2 and n of the ion selection electrodes 517 to 519 with respect to the reference electrode 524 are measured using the potential measurement unit 530 (S613).
  • the measurement target ion concentration in the sample is calculated using the operation recording unit 503 (S614). Specifically, the measurement target in the sample using the following formula based on the Nernst equation from E 1, n , E 2, n , D and the measurement target ion concentration c IS, n in the internal standard solution to calculate the ionic concentration c n.
  • the density calculated in S614 is output by the output unit 504 by a method such as screen output or printing (S615).
  • FIG. 7 is a schematic view showing an example of a configuration for measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring apparatus of FIG.
  • a resistance measurement unit 701 is added to the configuration of FIG.
  • the resistance measuring unit 701 is electrically connected to the terminals of the electrodes 217 to 220.
  • FIG. 8 is an example of a flowchart for measuring the resistance value of the ion selective electrode using the electrolyte concentration measuring apparatus of FIG.
  • the processing in FIG. 8 is mainly controlled by the control unit 202.
  • the DC resistance is measured by measuring an electromotive force between at least one of the plurality of ion selection electrodes 217 to 219 (hereinafter referred to as a measurement target electrode) and the reference electrode 220, and the measurement target electrode and the reference electrode 220. Measuring a voltage and a current between and a step of obtaining a DC resistance from the electromotive force, the voltage and the current. Details will be described below.
  • the internal standard solution is discharged into the dilution tank 211 using the internal standard solution dispensing nozzle 214 (S801).
  • the internal standard solution in the dilution tank 211 is sucked using the sample solution suction nozzle 215 and the pump 222 (S802).
  • the channels of the electrodes 217 to 220 are filled with the internal standard solution.
  • the potentials of the electrodes 217 to 219 with respect to the reference electrode 220 are measured using the potential measuring unit 223 (S803).
  • the potentials of the ion selection electrodes 217 to 219 are E 1 and n (n is each ion species).
  • the resistance measurement unit 701 is used to measure the resistance value between the terminal of the reference electrode 220 and each of the electrodes 217 to 219 (S804).
  • FIG. 9 is a diagram showing an example of an equivalent circuit for measuring the resistance value of the ion selective electrode.
  • a resistance measurement unit 701 that measures DC resistance is connected to ion selection electrodes 217 to 219 and a reference electrode 220 used for electrolyte concentration measurement. The DC resistance is measured between any two of the electrodes 217 to 220 including the reference electrode 220. In this example, these two electrodes are a reference electrode 220 and ion selection electrodes 217 to 219 to be measured.
  • the calculated resistance value is output by a method such as screen output or printing in the output unit 204 (S806).
  • the operation recording unit 203 may determine whether to replace the electrode according to the calculated resistance value, and may output a display prompting the replacement of the electrode to the output unit 204 as necessary. This can prompt the user to replace the electrode.
  • the operation recording unit 203 can output an appropriate response by the output unit 204 by determining the state of the ion selective electrode in addition to the resistance value, together with the potential response to the electrolyte (so-called slope sensitivity). .
  • the present embodiment by measuring the DC resistance of the ion selective electrodes 217 to 219, it is possible to suppress the influence of the parasitic capacitance that caused the resistance to be underestimated in the measurement of the AC resistance.
  • the direct current resistance between the reference electrode 220 and one of the ion selective electrodes 217 to 219 By measuring the direct current resistance between the reference electrode 220 and one of the ion selective electrodes 217 to 219, the potential at the interface between the solution and the reference electrode 220 or the ion selective electrodes 217 to 219 is stable, so Resistance can be measured stably.
  • the electrolyte concentration measurement of the sample solution and the ion selective electrode are checked.
  • the resistance measurement can be performed sequentially.
  • FIG. 10 is a schematic diagram showing an example of a configuration for measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring apparatus of FIG.
  • a resistance measurement unit 1001 is added to the configuration of FIG.
  • the resistance measurement unit 1001 is electrically connected to the terminals of the ion selection electrodes 517 to 519 and the reference electrode 524.
  • FIG. 11 is an example of a flowchart for measuring the resistance value of the ion selective electrode using the electrolyte concentration measuring apparatus of FIG.
  • the process in FIG. 11 is mainly controlled by the control unit 502.
  • valve 521 is closed, the valve 525 is opened (S1101), and the reference liquid 527 is sucked using the pump 529 and the pipe 526 (S1102). Thereby, the flow path, the pipe 523, and the junction 522 of the reference electrode 524 are filled with the reference liquid.
  • the internal standard solution is discharged into the dilution tank 511 using the internal standard solution dispensing nozzle 514 (S1103).
  • the valve 521 is opened, the valve 525 is closed (S1104), and the internal standard solution in the dilution tank 511 is sucked using the sample solution suction nozzle 515 and the pump 529 (S1105).
  • the flow paths of the electrodes 517 to 519, the pipe 520, and the junction 522 are filled with the internal standard solution.
  • the ion selection electrodes 517 to 519 and the reference electrode 524 are connected to the pipes 520 and 523 filled with the solution and the junction 522, the ion selection electrode based on the reference electrode 524 using the potential measurement unit 530 is used.
  • the potentials E 1 and n of 517 to 519 are measured (S1106).
  • the resistance value between the terminal of the reference electrode 524 and each of the ion selection electrodes 517 to 519 is measured using the resistance measurement unit 1101 (S1107).
  • the voltage and current between the reference electrode 524 and the ion selection electrodes 517 to 519 to be measured are measured. If the measurement result is voltage V r and current I r , the equivalent circuit is as shown in FIG.
  • the resistance r ′ of the ion selective electrode, the electromotive force E 1 ′, the resistance r ′′ of the reference electrode, the electromotive force E 1 ′′, and the solution resistance r sol in the pipe the following equation is obtained.
  • the resistance r ′′ of the reference electrode and the solution resistance r sol are sufficiently smaller than the resistance r ′ of the ion selective electrode to be measured, and there is no problem even if r′ ⁇ r ′ + r ′′ + r sol .
  • the solution resistance r sol cannot be ignored due to the piping 520 and the piping 523 in the configuration of FIG.
  • the solution resistance was 2 M ⁇ with respect to the resistance value of 8 M ⁇ of the ion selective electrode.
  • r ′′ may be a value that cannot be ignored with respect to r ′.
  • correction is performed by calculation of the above formula (S1108). Such a correction process may be performed by the resistance measurement unit 1001 or the calculation recording unit 503.
  • the calculated resistance value is output by a method such as screen output or printing in the output unit 504 (S1109).
  • the operation recording unit 503 may determine whether to replace the electrode according to the calculated resistance value, and may output a display prompting the replacement of the electrode to the output unit 504 as necessary. This can prompt the user to replace the electrode.
  • the pipe 520 and the pipe 523 are not necessarily optimal for resistance measurement, they are effective in improving the accuracy of measuring the electrolyte concentration. This is because, in normal operation, the reference electrode 524 is not in contact with the solution containing the specimen, and the reference solution 527 is exchanged for each measurement, so that the potential of the reference electrode 524 is easily stabilized.
  • the solution in the dilution tank 511 is introduced into the channel of the ion selective electrodes 517 to 519, and the reference solution 527 is introduced into the channel of the reference electrode 524.
  • FIG. 13 is a schematic diagram showing another example of a configuration for measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring apparatus of FIG.
  • the present embodiment is an example of a configuration that has been improved to suppress the influence of the solution resistance.
  • a resistance measurement unit 1001 is added to the configuration of FIG.
  • the resistance measuring unit 1001 is electrically connected to the terminals of the electrodes 517 to 519.
  • an ion selective electrode having a relatively small resistance is used without using the reference electrode 524 that is affected by the solution resistance during resistance measurement.
  • the chlorine ion selection electrode 517 corresponds to this.
  • the resistance value of the chloride ion selection electrode 517 based on the ion exchange membrane is 10 K ⁇ , whereas the potassium ion selection electrode 518 and the sodium ion selection electrode 519, which are mainly composed of vinyl chloride and a plasticizer, have a resistance of about 8 M ⁇ . And it was an order of magnitude smaller.
  • the chlorine ion selection electrode 517 is used as a reference electrode for resistance measurement, but another ion selection electrode may be used.
  • an ion selection electrode having a resistance lower than the solution resistance of the pipe 520 and the pipe 523 may be used as an electrode serving as a reference in resistance measurement.
  • an ion selective electrode based on the ion exchange membrane tends to have a relatively small resistance as described above, an ion selective electrode based on the ion exchange membrane is used as a reference electrode in resistance measurement. It may be used.
  • the DC resistance is measured by measuring the electromotive force between the plurality of ion selection electrodes 517 to 519 and the reference electrode 524, and the voltage and current between two of the plurality of ion selection electrodes 517 to 519. And a step of obtaining a sum of resistance values of two ion selective electrodes from the electromotive force, the voltage and the current. Details will be described below.
  • FIG. 14 is a diagram showing an example of an equivalent circuit for measuring the resistance value of the ion selective electrode in the present embodiment.
  • resistance measurement between the chlorine ion selection electrode 517 and the potassium ion selection electrode 518 will be described.
  • the resistance of the potassium ion selection electrode 518 is r K
  • the electromotive force is E 1, K ′
  • the resistance of the chlorine ion selection electrode 517 is r CL
  • the electromotive force is E 1, CL ′
  • the solution resistance is r SOL
  • the voltage and current between the ion selection electrodes 517 and 518 are measured, and are set as a voltage V r and a current I r , respectively.
  • V r and I r are set as a voltage V r and I r , respectively.
  • the solution resistance is as small as about 0.2 M ⁇ , and as a result, the measured resistance value is equal to the resistance value of the potassium ion selection electrode 518. Almost equal.
  • resistance measurement is performed using an ion selective electrode known to have a low resistance instead of the reference electrode 524.
  • the resistance value which suppressed the influence of solution resistance is calculated
  • the resistance value of the chlorine ion selection electrode 517 is sufficiently smaller than that of the potassium ion selection electrode 518, even if the resistance of the chlorine ion selection electrode 517 varies, the influence on the resistance measurement is small.
  • an ion selection electrode using an ion exchange membrane as a sensitive membrane DC resistance is measured between (chlorine ion selective electrode) and an electrode to be measured (for example, sodium ion selective electrode, potassium ion selective electrode, magnesium ion selective electrode, calcium ion selective electrode, etc.). Since the resistance value of the ion selective electrode is measured based on one of the ion selective electrodes without using the reference electrode, the influence of the solution resistance between the ion selective electrode and the reference electrode can be suppressed. Therefore, the resistance value of the ion selective electrode can be measured with higher accuracy.
  • FIG. 15 is a schematic view showing another example of a configuration for measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring apparatus of FIG.
  • the potential measurement unit 223 is replaced with a potential measurement unit / resistance measurement unit 1501. That is, the potential measuring unit / resistance measuring unit 1501 serves both as a potential measurement and a resistance measurement.
  • the potential measuring / cumulative measuring unit 1501 is electrically connected to the terminals of the electrodes 217 to 220.
  • FIG. 16 is a circuit diagram showing an example of the potential measuring unit / resistance measuring unit 1501.
  • a terminal 1604 to which the reference electrode 220 is connected is connected to the ground, and terminals 1601 to 1603 to which the other electrodes 217, 218 and 219 are connected are connected to amplifiers 1605 to 1607 having an input impedance of about 1 G ⁇ . .
  • the outputs from the amplifiers 1605 to 1607 are input to an analog-digital converter (AD converter) 1608, and a digital value is output from the AD converter 1608.
  • Resistors 1609 to 1611 and switches (switching units) 1612 to 1614 are connected between the terminal 1604 and the terminals 1601 to 1603.
  • the DC resistance is measured by measuring a first electromotive force (E1 , n, OPEN described below) between at least one of the plurality of ion selection electrodes 217 to 219 and the reference electrode 220. And at least one of the ion selection electrodes 217 to 219 and the reference electrode 220 with the resistances 1609 to 1611 having known resistances connected between the at least one of the ion selection electrodes 217 to 219 and the reference electrode 220.
  • DC resistance is obtained from the step of measuring the second electromotive force (E1 , n, CLOSE described below), the first electromotive force, the second electromotive force, and the resistance values of the resistors 1609 to 1611 Steps. Details will be described below.
  • FIG. 17 is a diagram for explaining the operation principle of the circuit diagram of FIG. 16 with an equivalent circuit.
  • Voltages E1 , n, and OPEN (n is each ion species) measured with the switches 1612 to 1614 open are as follows.
  • the voltages E1 , Na, and CLOSE measured with the switch 1612 closed are as follows.
  • the resistance value of the ion selective electrode can be obtained by comparing the voltage with the switch opened and the voltage measured with the switch closed.
  • FIG. 18 is an example of a flowchart for measuring the resistance value of the ion selective electrode using the electrolyte concentration measuring apparatus of FIG.
  • the processing in FIG. 18 is mainly controlled by the control unit 502.
  • the switches 1612 to 1614 are opened (S1801).
  • the internal standard solution is discharged into the dilution tank 211 using the internal standard solution dispensing nozzle 214 (S1802).
  • the internal standard solution in the dilution tank 211 is sucked using the sample solution suction nozzle 215 and the pump 222 (S1803).
  • the channels of the electrodes 217 to 220 are filled with the internal standard solution.
  • the potentials of the ion selection electrodes 217 to 219 with respect to the reference electrode 220 are measured using the potential measuring unit / resistance measuring unit 1501 (S1804).
  • the potentials of the electrodes 217 to 219 in a state where the switches 1612 to 1614 are opened are E 1, n, and OPEN (n is each ion species).
  • the switches 1612 to 1614 are closed (S1805).
  • the potentials of the electrodes 217 to 219 with respect to the reference electrode 220 are measured using the potential measuring unit / resistance measuring unit 1501 (S1806).
  • the potentials of the electrodes 217 to 219 when the switches 1612 to 1614 are closed are E1 , n, and CLOSE .
  • the resistance values of the ion selection electrodes 217, 218, and 219 are calculated from the resistance values of E1 , n, OPEN , E1 , n, CLOSE, and the resistances 1609 to 1611 (S1807). Such a calculation process may be performed by the potential measurement unit / resistance measurement unit 1501 or the calculation recording unit 203.
  • the calculated resistance value is output by a method such as screen output or printing in the output unit 204 (S1808).
  • the operation recording unit 203 may determine whether to replace the electrode according to the calculated resistance value, and may output a display prompting the replacement of the electrode to the output unit 204 as necessary. This can prompt the user to replace the electrode.
  • the potential measurement when the switches 1612 to 1614 are closed is preferably performed by closing the switches one by one and measuring the potential one by one from the viewpoint of an equivalent circuit.
  • the resistance of the solution and the resistance of the reference electrode 220 are smaller than the resistances of the ion selection electrodes 217, 218, and 219 and the resistances of the resistances 1609 to 1611, even if the switches 1612 to 1614 are closed at the same time, the effect Is small.
  • FIG. 19 is a circuit diagram showing another example of the potential measuring unit / resistance measuring unit 1501. As shown in FIG. 19, DC power supplies 1615, 1616, and 1617 may be added in series with resistors 1609, 1610, and 1611 and switches 1612, 1613, and 1614 as necessary.
  • the electromotive force is measured when the ion selection electrode to be measured for resistance is connected with a resistance having a known resistance value and when the resistance is disconnected, and the resistance value of the ion selection electrode is determined from the electromotive force.
  • the voltmeter used for the electrolyte concentration measurement and the voltmeter used for the resistance measurement can be shared, and one unit (potential measurement section / resistance measurement section) that combines both potential measurement and resistance measurement. 1501).
  • FIG. 20 is a schematic view showing another example of a configuration for measuring the resistance value of the ion selective electrode in the electrolyte concentration measuring apparatus of FIG.
  • the potential measurement unit 530 is replaced with a potential measurement unit / resistance measurement unit 2001. That is, the potential measuring unit / resistance measuring unit 2001 serves both as a potential measurement and a resistance measurement.
  • the potential measuring unit / resistance measuring unit 2001 is electrically connected to the terminals of the ion selection electrodes 517 to 519 and the terminal of the reference electrode 524.
  • the potential measuring unit / resistance measuring unit 2001 may be the one shown in the circuit diagram of FIG. 16 or 19, or the one shown in the circuit diagram of FIG. 21.
  • FIG. 21 is a circuit diagram showing an example of the potential measuring unit / resistance measuring unit 2001.
  • the terminal 2104 to which the reference electrode 524 is connected is connected to the ground, and the terminals 2101 to 2103 to which the other electrodes 517, 518 and 519 are connected are connected to amplifiers 2105 to 2107 having an input impedance of about 1 G ⁇ . .
  • Outputs of the amplifiers 2105 to 2107 are input to an analog-digital converter (AD converter) 2108, and a digital value is output from the AD converter 2108.
  • Resistors 2109 and 2110 and switches (switching units) 2111 and 2112 are connected between the terminal 2101 and the terminals 2102 and 2103, respectively.
  • the direct current resistance is measured by using a first electromotive force (E1 , n, OPEN described below) between the first ion selection electrode of the plurality of ion selection electrodes 517 to 519 and the reference electrode 524. ) And a second electromotive force (E 1, n, OPEN described below) between the second ion selection electrode of the plurality of ion selection electrodes 517 to 519 and the reference electrode 524.
  • E 1, n, OPEN described below between the second ion selection electrode of the plurality of ion selection electrodes 517 to 519 and the reference electrode 524.
  • FIG. 22 is a diagram for explaining the operation principle of the circuit diagram of FIG. 21 with an equivalent circuit.
  • the solution resistance r sol ′ is larger than the other solution resistances r sol due to the influence of the pipe 520 and the pipe 523.
  • Voltages E1 , n, and OPEN (n is each ion species) measured with the switches 2111 to 2112 open are as follows.
  • the current i flowing through the resistor is as follows.
  • the voltages E1 , Cl, CLOSE and E1 , K, CLOSE measured with the switch 2111 closed are as follows.
  • each ion selection electrode 517, 518, 519 can be calculated
  • the resistance can be measured without being affected by the large solution resistance r sol ′.
  • the resistance values of the two ion selection electrodes connected to the switch by resistance can be calculated separately, one of the two ion selection electrodes does not need to have a low resistance.
  • the anion selection electrode and the cation selection electrode have opposite responses to changes in ion concentration, so that the potential difference between the ion selection electrodes (the above-mentioned E1 , Cl, CLOSE- E1 , K, CLOSE ) This is because the resistance can easily be increased and the resistance can be measured with higher accuracy.
  • FIG. 23 is an example of a flowchart for measuring the resistance value of the ion selective electrode using the electrolyte concentration measuring apparatus of FIG.
  • the processing in FIG. 23 is mainly controlled by the control unit 502.
  • the switches 2111 and 2112 are opened (S2301).
  • the valve 521 is closed and the valve 525 is opened (S2302).
  • the reference liquid 527 is sucked using the pump 529 (S2303). Thereby, the flow path, the pipe 523, and the junction 522 of the reference electrode 524 are filled with the reference liquid.
  • the internal standard solution is discharged into the dilution tank 511 using the internal standard solution dispensing nozzle 514 (S2304).
  • the valve 521 is opened, the valve 525 is closed (S2305), and the internal standard solution in the dilution tank 511 is sucked using the sample solution suction nozzle 515 and the pump 529 (S2306).
  • the channels of the ion selection electrodes 517 to 519, the pipe 520, and the junction 522 are filled with the internal standard solution.
  • the reference electrode 524 is used as a reference by using the potential measuring unit / resistance measuring unit 2001.
  • the potentials of the ion selective electrodes 517 to 519 are measured (S2307).
  • the potentials of the ion selection electrodes 517 to 519 in a state where the switches 2111 and 2112 are open are E1 , n, and OPEN (n is each ion species).
  • the switches 2111 and 2112 are closed (S2308).
  • the potentials of the ion selection electrodes 517 to 519 with respect to the reference electrode 524 are measured using the potential measuring / cumulative measuring unit 2001 (S2309).
  • the potentials of the ion selection electrodes 517 to 519 in a state in which the switches 2111 and 2112 are closed are E1 , n, and CLOSE .
  • the resistance values of the ion selection electrodes 517, 518, and 519 are calculated from E1 , n, OPEN , E1 , n, CLOSE, and the resistance values of the resistors 2109 and 2110 (S2310).
  • Such a calculation process may be performed by the potential measuring unit / resistance measuring unit 2001 or may be performed by the calculation recording unit 503.
  • the calculated resistance value is output at the output unit 504 by a method such as screen output or printing (S2311).
  • the operation recording unit 503 may determine whether to replace the electrode according to the calculated resistance value, and may output a display prompting the replacement of the electrode to the output unit 504 as necessary. This can prompt the user to replace the electrode.
  • FIG. 24 is a circuit diagram illustrating another example of the potential measuring unit / resistance measuring unit 2001. As shown in FIG. 24, DC power supplies 2113 and 2114 may be added in series with resistors 2109 and 2110 and switches 211 and 2112, as necessary.
  • the solution in the dilution tank 511 is introduced into the flow path of the ion selection electrodes 517 to 519, and the reference liquid 527 is introduced into the flow path of the reference electrode 524.
  • the electromotive force is measured when the selection electrode is connected with a resistance having a known resistance value and when the selection electrode is disconnected, and the resistance value of the ion selection electrode is obtained from the electromotive force.
  • the voltmeter used for the electrolyte concentration measurement and the voltmeter used for the resistance measurement can be shared, and one unit (potential measurement section / resistance measurement section) that combines both potential measurement and resistance measurement. 2001).
  • the resistance value of the ion selective electrode can be measured with higher accuracy without being affected by the solution resistance between the ion selective electrodes 517 to 519 and the reference electrode 524.
  • FIG. 25A is a diagram illustrating an example of a system using an electrolyte concentration measurement device.
  • the system of this example is a biochemical automatic analyzer 2501.
  • the biochemical automatic analyzer 2501 includes the above-described electrolyte concentration measuring device 2502, a biochemical measuring device 2503 that performs optical measurement, and an operation unit 2504 that operates the electrolyte concentration measuring device 2502 and the biochemical measuring device 2503.
  • the operation unit 2504 includes an input unit such as a keyboard and a pointing device, and an output unit such as a display.
  • the biochemical automatic analyzer 2501 can be controlled by an operation from the operation unit 2504.
  • FIG. 25B is a diagram showing another example of a system using an electrolyte concentration measuring device.
  • each apparatus is in an independent form as will be described below.
  • the system of this example includes a sample transport device 2510, the above-described electrolyte concentration measurement device 2511, a biochemical measurement device 2512 that performs optical measurement, an immunoassay device 2513 that measures a chemical component in a sample by an immune reaction, Part 2514.
  • Each device 2511, 2512, 2513 exchanges samples with the sample transport device 2510.
  • the operation unit 2514 includes an input unit such as a keyboard and a pointing device and an output unit such as a display.
  • Each device 2510, 2511, 2512, 2513 in the system of this example can be controlled by an operation from the operation unit 2514.
  • this invention is not limited to embodiment mentioned above, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment may be replaced with the configuration of another embodiment, and the configuration of another embodiment may be added to the configuration of an embodiment.
  • the measurement and calculation of DC resistance may all be performed by the resistance measurement units 701 and 1001 and the potential measurement unit / resistance measurement units 1501 and 2001, or a part of the calculation may be shared by the operation recording units 203 and 503. Also good.
  • control units 202 and 502 and the operation recording units 203 and 503 may be implemented by software program codes that implement the functions of the embodiment.
  • a storage medium in which the program code is recorded is provided to the information processing apparatus, and the information processing apparatus (or CPU) reads the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiment, and the program code itself and the storage medium storing the program code constitute the present invention.
  • a storage medium for supplying such program code for example, a flexible disk, CD-ROM, DVD-ROM, hard disk, optical disk, magneto-optical disk, CD-R, magnetic tape, nonvolatile memory card, ROM Etc. are used.
  • the control units 202 and 502 and the operation recording units 203 and 503 may be realized by hardware by designing a part or all of them, for example, by an integrated circuit.
  • control lines and information lines in the drawings indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. All the components may be connected to each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 電解質濃度測定装置は、複数のイオン選択電極および1つの参照電極と、複数のイオン選択電極と参照電極に試料液を導入する試料導入部と、複数のイオン選択電極と参照電極との間の電圧を測定する電位計測部と、複数のイオン選択電極の直流抵抗を測定する抵抗測定部と、を備える。

Description

電解質濃度測定装置およびそれを用いた測定方法
 本発明は、溶液中の電解質濃度を測定する電解質濃度測定装置およびそれを用いた測定方法に関する。
 イオン選択電極(ISE:Ion Selective Electrode)は、試料中の測定対象イオンを定量するために用いられる。例えば、イオン選択電極は、参照電極と共に電解質を含む試料液に浸される。この状態で電極間の電位差を計測して、試料中の測定対象イオンを定量する。この簡便さゆえ、イオン選択電極は分析分野で広く利用されている。イオン選択電極は、医療分野では臨床検査に用いられており、電解質濃度測定の専用機だけでなく生化学自動分析装置や緊急検体検査装置に電解質濃度測定ユニットとして搭載されている。
 特に医療分野においては測定に高い精度が要求されており、これを向上させるため様々な工夫がされてきた。一般的に、イオン選択電極は定期交換部品であり、一定回数や一定期間使用した場合は交換することが推奨されている。イオン選択電極の不良や劣化を判定する方法として、特許文献1及び特許文献2には、イオン選択電極の抵抗値を測定する方法が開示されている。
特開2009-092854号公報 特開2003-207481号公報 特開2003-207476号公報 特開平5-209857号公報
Pure Appl. Chem.,Vol. 72,No. 10,pp. 1851-2082,2000 Pure Appl. Chem.,Vol. 74,No. 6,pp. 923-994,2002
 電解質濃度測定装置においてイオン選択電極の抵抗値を測定する場合、特許文献1及び特許文献2の従来の方法では十分な精度が得られないことが分かった。
 特許文献1にも記載されているように、交流測定では寄生容量の影響を受け、抵抗を過少に見積もりがちであった。そのため、劣化により増大する抵抗を測定する目的には、寄生容量の影響が小さい直流抵抗を測定することが適している。しかしながら、特許文献1では交流抵抗の測定と同時に電解質濃度測定に直流電圧の測定を行っていたため、直流抵抗の測定は行えなかった。
 一方、特許文献2では、抵抗測定に関して直流及び交流のいずれによっても行えるが、交流が好ましいと記載されている。これは、抵抗の測定に白金電極を用いているためと考えられる。白金電極は交流抵抗の測定には一般的であるものの、直流抵抗の測定には最適とは言えない。高精度な直流抵抗測定には白金電極と白金電極に接する溶液との間で発生する界面電位が安定している必要がある。しかしながら、この界面電位は不定であり、変動し易く、この変動分が直流抵抗測定の誤差と成り得る。さらに、白金電極の表面が試料中のタンパク質などで汚染されると誤差の程度は益々大きくなる。交流抵抗測定ではこの界面が電気二重層キャパシタで表されるため、この課題は顕在化しにくい。
 本発明は、イオン選択電極の直流抵抗値を高い精度で測定する装置と、それを用いた測定方法を提供する。
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、複数のイオン選択電極および1つの参照電極と、前記複数のイオン選択電極と前記参照電極に試料液を導入する試料導入部と、前記複数のイオン選択電極と前記参照電極との間の電圧を測定する電位計測部と、前記複数のイオン選択電極の直流抵抗を測定する抵抗測定部と、を備える電解質濃度測定装置が提供される。
 また、別の例では、複数のイオン選択電極と1つの参照電極を備える電解質濃度測定装置において前記複数のイオン選択電極の直流抵抗を測定する方法が提供される。当該方法は、前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の起電力を測定する第1ステップと、前記複数のイオン選択電極と前記参照電極のうち2つの間の電圧および電流を測定する第2ステップと、前記起電力と前記電圧と前記電流から前記直流抵抗を求める第3ステップと、を含む。
 本発明によれば、イオン選択電極の直流抵抗を測定することにより、交流抵抗の測定で抵抗を過少に見積もる原因となっていた寄生容量の影響を抑制することができる。参照電極およびイオン選択電極を含む電極の中の2つの間で直流抵抗を測定することで、溶液と参照電極もしくはイオン選択電極の界面の電位が安定しているため、直流抵抗を安定して測定することができる。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成および効果は、以下の実施例の説明により明らかにされる。
イオン選択電極の一例を示す概略図であり、流路に対して垂直な面を示した図である。 イオン選択電極の一例を示す概略図であり、流路に対して平行な面を示した図である。 図1Aの鎖線での断面図である。 電解質濃度測定装置の一例を示す概略図である。 電位計測部の一例を示す概略図である。 電解質濃度測定のフローチャートの一例である。 電解質濃度測定装置の別の例を示す概略図である。 電解質濃度測定のフローチャートの一例である。 イオン選択電極の抵抗値を測定する構成の第1実施例を示す概略図である。 イオン選択電極の抵抗値測定のフローチャートの一例である。 第1実施例におけるイオン選択電極の抵抗値測定の等価回路の一例である。 イオン選択電極の抵抗値を測定する構成の第2実施例を示す概略図である。 イオン選択電極の抵抗値測定のフローチャートの一例である。 第2実施例におけるイオン選択電極の抵抗値測定の等価回路の一例である。 イオン選択電極の抵抗値を測定する構成の第3実施例を示す概略図である。 第3実施例におけるイオン選択電極の抵抗値測定の等価回路の一例である。 イオン選択電極の抵抗値を測定する構成の第4実施例を示す概略図である。 電位計測部兼抵抗測定部の一例を示す概略図である。 図16の回路図の動作原理を等価回路で説明する図である。 イオン選択電極の抵抗値測定のフローチャートの一例である。 電位計測部兼抵抗測定部の一例を示す概略図である。 イオン選択電極の抵抗値を測定する構成の第5実施例を示す概略図である。 電位計測部兼抵抗測定部の一例を示す概略図である。 図21の回路図の動作原理を等価回路で説明する図である。 イオン選択電極の抵抗値測定のフローチャートの一例である。 電位計測部兼抵抗測定部の一例を示す概略図である。 電解質濃度測定装置を用いたシステムの一例を示す図である。 電解質濃度測定装置を用いたシステムの一例を示す図である。
 以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
 図1Aは、イオン選択電極の一例を示す概略図であり、流路に対して垂直な面を示した図である。図1Bは、流路に対して平行な面を示した図である。また、図1Cは、図1Aの鎖線での断面図である。
 イオン選択電極のカートリッジ101には流路102が通っている。流路102には感応膜105が接している。流路102に対して感応膜105を挟んで反対側には、内部液104が充填されている。内部液104には銀塩化銀電極103が接触している。なお、銀塩化銀電極103は端子も兼ねている。
 ナトリウム、カリウム、カルシウム、マグネシウムなどの陽イオン選択電極の場合は、感応膜105には非特許文献1に記載されているものを用いることができる。また、塩素、炭酸、血オシアン、硝酸、水酸、リン酸、硫酸、ヨウ素などの陰イオン選択電極の場合は、感応膜105には非特許文献2に記載されているものの他に、塩化銀、臭化銀などのハロゲン化銀や、イオン交換膜(特許文献3)を用いることができる。また、参照電極の場合は、感応膜105には多孔質ガラス、セラミックなどを用いることができる。
 図2は、図1のイオン選択電極を用いた電解質濃度測定装置の一例を示す概略図である。電解質濃度測定装置は、測定ユニット201と、制御部202と、演算記録部203と、出力部204とを備える。測定ユニット201には、制御部202と、演算記録部203と、出力部204とが接続されている。
 制御部202は、以下で説明する測定ユニット201の各構成要素を制御するものである。演算記録部203は、測定ユニット201において測定された電位などから測定対象のイオン濃度を算出するものである。出力部204は、ディスプレイあるいはプリンタなどである。
 制御部202及び演算記録部203は、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。すなわち、以下で説明する制御部202及び演算記録部203の処理は、プログラムコードとしてメモリなどの記憶部に格納し、CPU(Central Processing Unit)などのプロセッサが各プログラムコードを実行することによって実現されてもよい。なお、制御部202及び演算記録部203は、専用の回路基板などのハードウェアによって構成されてもよい。
 測定ユニット201は、希釈槽211と、検体分注ノズル212と、希釈液分注ノズル213と、内部標準液分注ノズル214と、試料液吸引ノズル215と、配管216と、ナトリウムイオン選択電極217と、カリウムイオン選択電極218と、塩素イオン選択電極219と、参照電極220と、配管221と、ポンプ222と、電位計測部223とを有する。測定ユニット201では、電解質を含む試料液を導入する試料導入部として、試料液吸引ノズル215と、配管216と、配管221と、ポンプ222とが用いられる。
 測定ユニット201では、この試料導入部を用いて、イオン選択電極217~219および参照電極220の流路に試料液が導入される。そして、試料液が導入された状態で電極間の電位差が計測される。以下で詳しい構成を説明する。
 検体分注ノズル212は、血液や尿などの検体を希釈槽211に分注吐出し、希釈液分注ノズル213は、希釈液を希釈槽211に分注吐出する。また、内部標準液分注ノズル214は、内部標準液を希釈槽211に分注吐出する。試料液吸引ノズル215は、上下動でき、希釈槽211内の溶液をポンプ222の駆動力により吸引する。吸引された溶液は、配管216を通じて電極217~220の流路に導入され、さらに、配管221を通じて廃液される。各イオン選択電極217,218,219及び参照電極220の端子は電位計測部223に接続されている。
 図3は、電位計測部223の一例を示す回路図である。参照電極220が接続される端子304は、アースに接続されている。それ以外のイオン選択電極217,218,219が接続される端子301,302,303は、入力インピーダンスが1GΩ程度のアンプ305,306,307に接続されている。各アンプ305,306,307の出力は、アナログデジタル変換器(AD変換器)308に入力され、AD変換器308からデジタル値が出力される。
 図4は、図2の電解質濃度測定装置を用いた電解質濃度測定のフローチャートの一例である。図4の処理は、主に制御部202によって制御される。
 まず、内部標準液分注ノズル214を用いて内部標準液を希釈槽211に吐出する(S401)。次に、試料液吸引ノズル215とポンプ222を用いて希釈槽211内の内部標準液を吸引する(S402)。これにより、電極217~220の流路は内部標準液で満たされる。
 次に、電位計測部223を用いて参照電極220を基準としたイオン選択電極217~219の電位を計測する(S403)。ここで、電極217~219の電位をE1、n(nは各イオン種)とする。次に、検体分注ノズル212を用いて検体を希釈槽211に吐出する(S404)。
 次に、希釈液分注ノズル213を用いて希釈液を希釈槽211に吐出する(S405)。これにより、検体量と希釈液量の比Dで検体が希釈される。次に、試料液吸引ノズル215とポンプ222を用いて希釈槽211内の試料液を吸引する(S406)。これにより、電極217~220の流路は試料液で満たされる。
 次に、電位計測部223を用いて参照電極220を基準とした電極217~219の電位を計測する(S407)。ここで、電極217~219の電位をE2、nとする。次に、演算記録部203を用いて検体中の測定対象イオン濃度を算出する(S408)。具体的には、E1、n、E2、n、Dおよび内部標準液中の測定対象イオン濃度cIS、nから、ネルンストの式を基にした下記の式を用いて検体中の測定対象イオン濃度cを算出する。
Figure JPOXMLDOC01-appb-M000001
(z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度)
 最後に、S408において算出された濃度を出力部204において、画面出力、印字などの方法で出力する(S409)。
 希釈液には測定対象イオンを含まないもの、例えば、トリスほう酸バッファー、ビストリスほう酸バッファー等を用いる(例えば、特許文献4)。内部標準液は、血中濃度基準値程度の測定対象イオン、例えば、ナトリウム140mM、カリウム4mM、塩素100mM程度の溶液を検体に見立て、希釈液によって希釈倍率Dで希釈したものを用いることができる。
 図5は、図1のイオン選択電極を用いた電解質濃度測定装置の別の例を示す概略図である。電解質濃度測定装置は、測定ユニット501と、制御部502と、演算記録部503と、出力部504とを備える。測定ユニット501には、制御部502と、演算記録部503と、出力部504とが接続されている。
 制御部502は、以下で説明する測定ユニット501の各構成要素を制御するものである。演算記録部503は、測定ユニット501において測定された電位などから測定対象のイオン濃度を算出するものである。出力部504は、ディスプレイあるいはプリンタなどである。
 図2の例と同様に、制御部502及び演算記録部503は、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。すなわち、以下で説明する制御部502及び演算記録部503の処理は、プログラムコードとしてメモリなどの記憶部に格納し、CPUなどのプロセッサが各プログラムコードを実行することによって実現されてもよい。また、制御部502及び演算記録部503は、専用の回路基板などのハードウェアによって構成されてもよい。
 測定ユニット501は、希釈槽511と、検体分注ノズル512と、希釈液分注ノズル513と、内部標準液分注ノズル514と、試料液吸引ノズル515と、配管516と、塩素イオン選択電極517と、カリウムイオン選択電極518と、ナトリウムイオン選択電極519と、配管520と、弁521と、ジャンクション522と、配管523と、参照電極524と、弁525と、配管526と、参照液527と、配管528と、ポンプ529と、電位計測部530とを有する。
 測定ユニット501では、試料液および参照液を導入する試料導入部として、試料液吸引ノズル515と、配管516と、配管520と、弁521と、ジャンクション522と、配管523と、弁525と、配管526と、配管528と、ポンプ529とが用いられる。測定ユニット501では、この試料導入部を用いて、イオン選択電極517~519の流路に試料液が導入されるとともに、参照電極524の流路に参照液527が導入される。そして、この状態で電極間の電位差が計測される。以下で詳しい構成を説明する。
 検体分注ノズル512は、血液や尿などの検体を希釈槽511に分注吐出し、希釈液分注ノズル513は、希釈液を希釈槽511に分注吐出する。また、内部標準液分注ノズル514は、内部標準液を希釈槽511に分注吐出する。
 試料液吸引ノズル515は、上下動でき、希釈槽511内の溶液をポンプ529の駆動力により吸引する。弁521が開いていて、弁525が閉じている場合、試料液吸引ノズル515によって吸引された溶液は、配管516を通じてイオン選択電極517~519の流路に導入され、さらに、配管520、ジャンクション522、配管528を通じて廃液される。
 また、弁521が閉じていて、弁525が開いているときにポンプ529を駆動させると、参照液527が配管526を通じて吸引され、参照電極524の流路に導入される。さらに、吸引された参照液527は、配管523、ジャンクション522、配管528を通じて廃液される。
 イオン選択電極517~519および参照電極524の端子は、電位計測部530に接続されている。電位計測部530は、図3と同様のものを用いることができる。参照電極524として、図2を用いて説明した多孔質ガラスやセラミックを用いた参照電極を用いる以外にも、イオン選択電極を用いてもよく、そのイオン選択電極に対応する参照液527中の電解質濃度を一定としてもよい。
 図6は、図5の電解質濃度測定装置を用いた電解質濃度測定のフローチャートの一例である。図6の処理は、主に制御部502によって制御される。
 まず、弁521を閉じ、弁525を開け(S601)、ポンプ529と配管526を用いて参照液527を吸引する(S602)。これにより、参照電極524の流路、配管523、およびジャンクション522は、参照液527で満たされる。
 次に、内部標準液分注ノズル514を用いて内部標準液を希釈槽511に吐出する(S603)。次に、弁521を開け、弁525を閉じ(S604)、試料液吸引ノズル515とポンプ529を用いて希釈槽511内の内部標準液を吸引する(S605)。これにより、電極517~519の流路、配管520、およびジャンクション522は、内部標準液で満たされる。このとき、イオン選択電極517~519と参照電極524は、溶液で満たされた配管520、523、およびジャンクション522で接続されているため、電位計測部530を用いて参照電極524を基準としたイオン選択電極517~519の電位E1、nを計測する(S606)。
 同様にして、弁521を閉じ、弁525を開け(S607)、ポンプ529と配管526を用いて参照液527を吸引する(S608)。次に、検体分注ノズル512を用いて検体を希釈槽511に吐出する(S609)。その後、希釈液分注ノズル513を用いて希釈液を希釈槽511に吐出する(S610)。これにより、検体量と希釈液量の比Dで検体が希釈される。
 次に、弁521を開け、弁525を閉じ(S611)、試料液吸引ノズル515とポンプ529を用いて希釈槽511内の試料液を吸引する(S612)。これにより、イオン選択電極517~519の流路、配管520、およびジャンクション522は、試料液で満たされる。このとき、電位計測部530を用いて参照電極524を基準としたイオン選択電極517~519の電位E2、nを計測する(S613)。
 次に、演算記録部503を用いて検体中の測定対象イオン濃度を算出する(S614)。具体的には、E1、n、E2、n、Dおよび内部標準液中の測定対象イオン濃度cIS、nから、ネルンストの式を基にした下記の式を用いて検体中の測定対象イオン濃度cを算出する。
Figure JPOXMLDOC01-appb-M000002
(z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度)
 最後に、S614において算出された濃度を出力部504において、画面出力、印字などの方法で出力する(S615)。
[第1実施例]
 図7は、図2の電解質濃度測定装置においてイオン選択電極の抵抗値を測定する構成の一例を示す概略図である。図2の構成に対して、抵抗測定部701が追加されている。抵抗測定部701は、電極217~220の端子と電気的に接続されている。
 図8は、図7の電解質濃度測定装置を用いたイオン選択電極の抵抗値測定のフローチャートの一例である。図8の処理は、主に制御部202によって制御される。直流抵抗の測定は、複数のイオン選択電極217~219のうち少なくとも1つ(以下、測定対象電極という)と参照電極220との間の起電力を測定するステップと、測定対象電極と参照電極220との間の電圧および電流を測定するステップと、上記起電力と上記電圧と上記電流から直流抵抗を求めるステップと、を含む。以下に詳細を説明する。
 まず、内部標準液分注ノズル214を用いて内部標準液を希釈槽211に吐出する(S801)。次に、試料液吸引ノズル215とポンプ222を用いて希釈槽211内の内部標準液を吸引する(S802)。これにより、電極217~220の流路は内部標準液で満たされる。
 次に、電位計測部223を用いて参照電極220を基準とした電極217~219の電位を計測する(S803)。ここで、イオン選択電極217~219の電位をE1、n(nは各イオン種)とする。次に、抵抗測定部701を用いて、参照電極220の端子と電極217~219のそれぞれの端子の間の抵抗値を測定する(S804)。
 図9は、イオン選択電極の抵抗値測定の等価回路の一例を示す図である。直流抵抗を測定する抵抗測定部701は、電解質濃度測定に用いるイオン選択電極217~219および参照電極220に接続されている。直流抵抗の測定は、参照電極220を含む電極217~220のうちいずれか2つの間で行う。この2つの電極は、この例では、参照電極220と、測定したいイオン選択電極217~219とする。
 直流抵抗の測定には、一定電圧を印加した状態で電流を測定する方法と、一定電流を流した状態で電圧を測定する方法がある。いずれにしても、参照電極220と、測定したいイオン選択電極217~219との間の電圧および電流を測定する。電圧V、電流Iとすると、直流抵抗Rは、R=I/V で表される。しかし、実際には図9に示したようにイオン選択電極は抵抗rの他にイオン選択電極自身の発生する電圧E1、nを有している。従って、Rとrは必ずしも等しくなく、r=(V-E1、n)/Iとなる。したがって、このような補正を加えて正確な抵抗値を求める(S805)。このような補正処理は、抵抗測定部701で行ってもよいし、演算記録部203で行ってもよい。
 最後に、算出された抵抗値を出力部204において、画面出力、印字などの方法で出力する(S806)。このとき、演算記録部203は、算出された抵抗値に応じて電極の交換を判定し、必要に応じて電極の交換を促す表示を出力部204に出力してもよい。これにより、ユーザに電極の交換を促すことが可能になる。
 また、演算記録部203は、抵抗値に加えて、電解質に対する電位応答(いわゆるスロープ感度)も併せてイオン選択電極の状態を判定することにより、出力部204により適切な対応を出力することができる。
 このように、イオン選択電極の直流抵抗値を正しく測定するにはイオン選択電極自身で発生する電圧を測定する必要がある。臨床検査用のイオン選択電極では、通常、イオン濃度が既知の試料液を有しているため、この工程は容易に行うことができる。
 本実施例によれば、イオン選択電極217~219の直流抵抗を測定することにより、交流抵抗の測定で抵抗を過少に見積もる原因となっていた寄生容量の影響を抑制することができる。参照電極220とイオン選択電極217~219のうちの1つとの間で直流抵抗を測定することにより、溶液と参照電極220もしくはイオン選択電極217~219の界面の電位が安定しているため、直流抵抗を安定して測定することができる。
 また、試料液吸引ノズル215とポンプ222を用いて電極217~220の流路を希釈槽211内の溶液で満たす構成となっているため、試料液の電解質濃度測定とイオン選択電極をチェックするための抵抗測定を順次行うことができる。
[第2実施例]
 図10は、図5の電解質濃度測定装置においてイオン選択電極の抵抗値を測定する構成の一例を示す概略図である。図5の構成に対して、抵抗測定部1001が追加されている。抵抗測定部1001は、イオン選択電極517~519と参照電極524の端子と電気的に接続されている。
 図11は、図10の電解質濃度測定装置を用いたイオン選択電極の抵抗値測定のフローチャートの一例である。図11の処理は、主に制御部502によって制御される。
 まず、弁521を閉じ、弁525を開け(S1101)、ポンプ529と配管526を用いて参照液527を吸引する(S1102)。これにより、参照電極524の流路、配管523、およびジャンクション522は、参照液で満たされる。
 次に、内部標準液分注ノズル514を用いて内部標準液を希釈槽511に吐出する(S1103)。次に、弁521を開け、弁525を閉じ(S1104)、試料液吸引ノズル515とポンプ529を用いて希釈槽511内の内部標準液を吸引する(S1105)。これにより、電極517~519の流路、配管520、およびジャンクション522は、内部標準液で満たされる。このとき、イオン選択電極517~519と参照電極524は溶液で満たされた配管520、523とジャンクション522で接続されているため、電位計測部530を用いて参照電極524を基準としたイオン選択電極517~519の電位E1、nを計測する(S1106)。
 次に、抵抗測定部1101を用いて、参照電極524の端子とイオン選択電極517~519のそれぞれの端子の間の抵抗値を測定する(S1107)。参照電極524と、測定したいイオン選択電極517~519との間の電圧および電流を測定する。測定の結果を電圧V、電流Iとすると、等価回路では図12のようになる。ここで、イオン選択電極の抵抗r'、起電力E'、参照電極の抵抗r''、起電力E''、配管中の溶液抵抗rsolとすると、以下の式となる。
Figure JPOXMLDOC01-appb-M000003
 通常、参照電極の抵抗r''と溶液抵抗rsolは、測定したいイオン選択電極の抵抗r'に比べて十分小さく、r'≒r'+r''+rsolとしても問題はない。しかし、図10の構成では配管520と配管523のために溶液抵抗rsolが無視できない。実際に測定したところ、イオン選択電極の抵抗値8MΩに対し、溶液抵抗が2MΩであった。また、参照電極524にイオン選択電極を用いた場合、r''もr'に対して無視できない値となることがある。いずれにしても、抵抗値の測定の後に、上記の式の計算により補正を行う(S1108)。このような補正処理は、抵抗測定部1001で行ってもよいし、演算記録部503で行ってもよい。
 最後に、算出された抵抗値を出力部504において、画面出力、印字などの方法で出力する(S1109)。このとき、演算記録部503は、算出された抵抗値に応じて電極の交換を判定し、必要に応じて電極の交換を促す表示を出力部504に出力してもよい。これにより、ユーザに電極の交換を促すことが可能になる。
 配管520と配管523は抵抗測定には必ずしも最適ではないものの、電解質濃度の測定の精度向上には有効である。なぜならば、通常の動作においては参照電極524には検体を含む溶液が接触せず、かつ、測定毎に参照液527が交換されるため、参照電極524の電位が安定しやすいためである。
 本実施例によれば、希釈槽511内の溶液をイオン選択電極517~519の流路に導入し、参照液527を参照電極524の流路に導入する構成において、イオン選択電極517~519の直流抵抗を測定することにより、交流抵抗の測定で抵抗を過少に見積もる原因となっていた寄生容量の影響を抑制することができる。
 また、希釈槽511内の溶液をイオン選択電極517~519の流路に導入し、参照液527を参照電極524の流路に導入する手段を備えているため、試料液の電解質濃度測定とイオン選択電極をチェックするための抵抗測定を順次行うことができる。
[第3実施例]
 図13は、図5の電解質濃度測定装置においてイオン選択電極の抵抗値を測定する構成の別の例を示す概略図である。本実施例は、溶液抵抗の影響を抑制するための改良を行った構成の一例である。図5の構成に対して、抵抗測定部1001が追加されている。抵抗測定部1001は、電極517~519の端子と電気的に接続されている。
 本実施例の特徴として、抵抗測定の際に溶液抵抗の影響を受ける参照電極524を用いずに、比較的抵抗の小さなイオン選択電極を用いる。この例では、塩素イオン選択電極517がそれに相当する。塩化ビニルと可塑剤が主成分であるカリウムイオン選択電極518やナトリウムイオン選択電極519が通常8MΩ程度の抵抗であるのに対し、イオン交換膜を基にした塩素イオン選択電極517の抵抗値は10KΩと桁違いに小さかった。
 この例では、抵抗測定の際の基準となる電極として塩素イオン選択電極517を用いているが、他のイオン選択電極でもよい。例えば、抵抗測定の際の基準となる電極として、配管520と配管523の溶液抵抗よりも低い抵抗のイオン選択電極を用いてもよい。また、上述したようにイオン交換膜を基にしたイオン選択電極は、比較的抵抗が小さい傾向があるため、抵抗測定の際の基準となる電極として、イオン交換膜を基にしたイオン選択電極を用いてもよい。
 本例における直流抵抗の測定は、複数のイオン選択電極517~519と参照電極524との間の起電力を測定するステップと、複数のイオン選択電極517~519のうち2つの間の電圧および電流を測定するステップと、上記起電力と上記電圧と上記電流から、2つのイオン選択電極の抵抗値の和を求めるステップとを含む。以下に詳細を説明する。
 図14は、本実施例におけるイオン選択電極の抵抗値測定の等価回路の一例を示す図である。この例では、塩素イオン選択電極517とカリウムイオン選択電極518との間の抵抗測定について説明する。カリウムイオン選択電極518の抵抗をr、起電力をE1、K'、塩素イオン選択電極517の抵抗をrCL、起電力をE1、CL'、溶液抵抗をrSOLとすると、それぞれのイオン選択電極の電位計測部530により測定された起電力E1、K、E1、CLとの間には、E1、K-E1、CL = E1、K'-E1、CL'の関係が成り立つ。また、イオン選択電極517、518間の電圧および電流を測定し、それぞれ、電圧V、電流Iとする。抵抗測定については、以下の関係式が成り立ち、各抵抗値の合計を求めることができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、塩素イオン選択電極517とカリウムイオン選択電極518は隣接しているため、溶液抵抗は0.2MΩ程度と小さく、結果として、測定された抵抗値は、カリウムイオン選択電極518の抵抗値とほぼ等しくなる。このように、抵抗が小さいことが分かっているイオン選択電極を参照電極524の代わりに用いて抵抗測定を行う。そして、それぞれのイオン選択電極で測定された電位E1、nを用いて補正することで、溶液抵抗の影響を抑制した抵抗値が求められる。この場合、塩素イオン選択電極517の抵抗値は、カリウムイオン選択電極518よりも十分小さいため、塩素イオン選択電極517の抵抗が変動しても抵抗測定に与える影響は小さい。
 以上のように、本実施例では、参照電極がそれ以外のイオン選択電極と離れた位置に配管あるいは流路で接続されている構成において、たとえば、イオン交換膜を感応膜に用いたイオン選択電極(塩素イオン選択電極)と、測定したい電極(例えば、ナトリウムイオン選択電極、カリウムイオン選択電極、マグネシウムイオン選択電極、カルシウムイオン選択電極など)との間で直流抵抗を測定する。参照電極を用いずにイオン選択電極のうちの1つを基準としてイオン選択電極の抵抗値を測定するため、イオン選択電極と参照電極との間の溶液抵抗の影響を抑制することができる。したがって、より高い精度でイオン選択電極の抵抗値を測定できる。
[第4実施例]
 図15は、図2の電解質濃度測定装置においてイオン選択電極の抵抗値を測定する構成の別の例を示す概略図である。本実施例では、電位計測部223が、電位計測部兼抵抗測定部1501に置き換えられている。すなわち、電位計測部兼抵抗測定部1501が、電位の計測と抵抗の測定の両方を兼ねている。電位計測部兼抵抗測定部1501は、電極217~220の端子と電気的に接続されている。
 図16は、電位計測部兼抵抗測定部1501の一例を示す回路図である。参照電極220が接続される端子1604は、アースに接続され、それ以外の電極217、218、219が接続される端子1601~1603は、入力インピーダンスが1GΩ程度のアンプ1605~1607に接続されている。
 各アンプ1605~1607からの出力は、アナログデジタル変換器(AD変換器)1608に入力され、AD変換器1608からデジタル値が出力される。端子1604と端子1601~1603との間には、抵抗1609~1611とスイッチ(切替部)1612~1614とが接続されている。
 本例における直流抵抗の測定は、複数のイオン選択電極217~219のうち少なくとも1つと参照電極220との間の第1の起電力(以下で説明するE1、n、OPEN)を測定するステップと、少なくとも1つのイオン選択電極217~219と参照電極220との間を抵抗値が既知の抵抗1609~1611で接続した状態で、少なくとも1つのイオン選択電極217~219と参照電極220との間の第2の起電力(以下で説明するE1、n、CLOSE)を測定するステップと、上記第1の起電力と上記第2の起電力と抵抗1609~1611の抵抗値から直流抵抗を求めるステップと、を含む。以下に詳細を説明する。
 図17は、図16の回路図の動作原理を等価回路で説明する図である。スイッチ1612~1614が開いている状態で測定される電圧E1、n、OPEN(nは各イオン種)は、以下の通りである。
Figure JPOXMLDOC01-appb-M000005
 一方、例えばスイッチ1612が閉じている状態で測定される電圧E1、Na、CLOSEは、以下の通りである。
Figure JPOXMLDOC01-appb-M000006
 これを解くと、以下のようになる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
であることから、スイッチが開いた状態の電圧とスイッチが閉じた状態で測定される電圧とを比較することで、イオン選択電極の抵抗値を求めることができる。
 図18は、図15の電解質濃度測定装置を用いたイオン選択電極の抵抗値測定のフローチャートの一例である。図18の処理は、主に制御部502によって制御される。
 まず、スイッチ1612~1614を開ける(S1801)。次に、内部標準液分注ノズル214を用いて内部標準液を希釈槽211に吐出する(S1802)。
 次に、試料液吸引ノズル215とポンプ222を用いて希釈槽211内の内部標準液を吸引する(S1803)。これにより、電極217~220の流路は内部標準液で満たされる。次に、電位計測部兼抵抗測定部1501を用いて参照電極220を基準としたイオン選択電極217~219の電位を計測する(S1804)。ここで、スイッチ1612~1614が開いた状態における電極217~219の電位をE1、n、OPEN(nは各イオン種)とする。
 次に、スイッチ1612~1614を閉じる(S1805)。次に、電位計測部兼抵抗測定部1501を用いて参照電極220を基準とした電極217~219の電位を計測する(S1806)。ここで、スイッチ1612~1614が閉じた状態における電極217~219の電位をE1、n、CLOSEとする。
 次に、E1、n、OPENとE1、n、CLOSEと抵抗1609~1611の抵抗値から、イオン選択電極217、218、219の抵抗値を算出する(S1807)。このような算出処理は、電位計測部兼抵抗測定部1501で行ってもよいし、演算記録部203で行ってもよい。
 最後に、算出された抵抗値を、出力部204において、画面出力、印字などの方法で出力する(S1808)。このとき、演算記録部203は、算出された抵抗値に応じて電極の交換を判定し、必要に応じて電極の交換を促す表示を出力部204に出力してもよい。これにより、ユーザに電極の交換を促すことが可能になる。
 なお、スイッチ1612~1614を閉じたときの電位測定は、等価回路の観点からは一つずつスイッチを閉じて一つずつ電位を計測するのが良い。しかし、実際には、溶液抵抗と参照電極220の抵抗が、イオン選択電極217、218、219の抵抗や抵抗1609~1611の抵抗値に比べて小さいため、スイッチ1612~1614を同時に閉じても影響は小さい。
 また、抵抗値を正確に測定するには、スイッチ1612~1614を開いた状態での電位E1、n、OPENが0V程度ではないことが望ましい。抵抗測定に用いる内部標準液の各イオン濃度はこの点を考慮して調整されるのが望ましい。図19は、電位計測部兼抵抗測定部1501の別の例を示す回路図である。図19に示すように、必要に応じて、抵抗1609、1610、1611およびスイッチ1612、1613、1614と直列に、直流電源1615、1616、1617を追加しても良い。
 本実施例によれば、抵抗を測定する対象のイオン選択電極を抵抗値が既知の抵抗で接続した場合と切断した場合の起電力を測定し、それらの起電力からイオン選択電極の抵抗値を求める。このような構成により、電解質濃度測定に用いる電圧計と抵抗測定に用いる電圧計を共有することができ、電位の計測と抵抗の測定の両方を兼ね備えた1つのユニット(電位計測部兼抵抗測定部1501)として構成できる。
 また、コストやスペースの削減になるばかりでなく、本来の目的である電解質測定へ与える副作用を最小限に抑えることができる。また、電圧計を共用することにより、電解質測定の精度の高さを受け継いだ抵抗測定を実現することができる。
[第5実施例]
 図20は、図5の電解質濃度測定装置においてイオン選択電極の抵抗値を測定する構成の別の例を示す概略図である。本実施例では、電位計測部530が、電位計測部兼抵抗測定部2001に置き換えられている。すなわち、電位計測部兼抵抗測定部2001が、電位の計測と抵抗の測定の両方を兼ねている。電位計測部兼抵抗測定部2001は、イオン選択電極517~519の端子と参照電極524の端子と電気的に接続されている。
 電位計測部兼抵抗測定部2001には図16や図19の回路図のものを用いてもよいし、図21の回路図のものを用いてもよい。図21は、電位計測部兼抵抗測定部2001の一例を示す回路図である。
 参照電極524が接続される端子2104は、アースに接続され、それ以外の電極517、518、519が接続される端子2101~2103は、入力インピーダンスが1GΩ程度のアンプ2105~2107に接続されている。各アンプ2105~2107の出力は、アナログデジタル変換器(AD変換器)2108に入力され、AD変換器2108からデジタル値が出力される。端子2101と端子2102、2103との間には、それぞれ、抵抗2109、2110とスイッチ(切替部)2111、2112とが接続されている。
 本例における直流抵抗の測定は、複数のイオン選択電極517~519のうちの第1のイオン選択電極と参照電極524との間の第1の起電力(以下で説明するE1、n、OPEN)を測定するステップと、複数のイオン選択電極517~519のうちの第2のイオン選択電極と参照電極524との間の第2の起電力(以下で説明するE1、n、OPEN)を測定するステップと、抵抗値が既知の抵抗2109、2110で第1のイオン選択電極と第2のイオン選択電極を接続した状態で、第1のイオン選択電極と参照電極524との間の第3の起電力(以下で説明するE1、n、CLOSE)と、第2のイオン選択電極と参照電極524との間の第4の起電力(以下で説明するE1、n、CLOSE)とを測定するステップと、上記第1ないし第4の起電力と抵抗2109、2110の抵抗値から、第1のイオン選択電極の抵抗値と第2のイオン選択電極の抵抗値を求めるステップと、を含む。以下では、第1のイオン選択電極として塩素イオン選択電極517、第2のイオン選択電極としてカリウムイオン選択電極518の例で説明する。
 図22は、図21の回路図の動作原理を等価回路で説明する図である。溶液抵抗rsol'は、配管520および配管523の影響で、他の溶液抵抗rsolよりも大きい。スイッチ2111~2112が開いている状態で測定される電圧E1、n、OPEN(nは各イオン種)は、以下の通りである。
Figure JPOXMLDOC01-appb-M000009
 また、スイッチ2111が閉じることで、抵抗に流れる電流iは、次の通りである。
Figure JPOXMLDOC01-appb-M000010
 従って、スイッチ2111を閉じた状態で測定される電圧E1、Cl、CLOSE、とE1、K、CLOSEは、次の通りである。
Figure JPOXMLDOC01-appb-M000011
 これを解くと、以下のようになる。
Figure JPOXMLDOC01-appb-M000012
従って、以下のようになる。
Figure JPOXMLDOC01-appb-M000013
 これにより、各イオン選択電極517、518、519の抵抗値を求めることができる。上記の式から明らかなように、大きな溶液抵抗rsol'の影響を受けることなく、抵抗の測定が可能である。
 また、スイッチと抵抗で接続する2つのイオン選択電極の抵抗値を別々に算出できるため、2つのイオン選択電極の一方が低抵抗である必要は無い。実際には、例のように塩素イオン選択電極517のような陰イオン選択電極とカリウムイオン選択電極518のような陽イオン選択電極とを選んで、スイッチと抵抗で接続するのが良い。なぜならば、陰イオン選択電極と陽イオン選択電極ではイオン濃度の変化に対して逆の応答をするため、イオン選択電極間の電位差(上記E1、Cl、CLOSE-E1、K、CLOSE)が大きくなりやすく、より精度良く抵抗を測定できるためである。
 図23は、図20の電解質濃度測定装置を用いたイオン選択電極の抵抗値測定のフローチャートの一例である。図23の処理は、主に制御部502によって制御される。
 まず、スイッチ2111、2112を開ける(S2301)。次に、弁521を閉じ、弁525を開ける(S2302)。次に、ポンプ529を用いて参照液527を吸引する(S2303)。これにより、参照電極524の流路、配管523、およびジャンクション522は、参照液で満たされる。
 次に、内部標準液分注ノズル514を用いて内部標準液を希釈槽511に吐出する(S2304)。次に、弁521を開け、弁525を閉じ(S2305)、試料液吸引ノズル515とポンプ529を用いて希釈槽511内の内部標準液を吸引する(S2306)。これにより、イオン選択電極517~519の流路、配管520、およびジャンクション522は、内部標準液で満たされる。このとき、イオン選択電極517~519と参照電極524は、溶液で満たされた配管520、523およびジャンクション522で接続されているため、電位計測部兼抵抗測定部2001を用いて参照電極524を基準としたイオン選択電極517~519の電位を計測する(S2307)。ここで、スイッチ2111、2112が開いた状態におけるイオン選択電極517~519の電位をE1、n、OPEN(nは各イオン種)とする。
 次に、スイッチ2111、2112を閉じる(S2308)。次に、電位計測部兼抵抗測定部2001を用いて参照電極524を基準としたイオン選択電極517~519の電位を計測する(S2309)。ここで、スイッチ2111、2112が閉じた状態におけるイオン選択電極517~519の電位をE1、n、CLOSEとする。
 次に、E1、n、OPENとE1、n、CLOSEと抵抗2109、2110の抵抗値とから、イオン選択電極517、518、519の抵抗値を算出する(S2310)。このような算出処理は、電位計測部兼抵抗測定部2001で行ってもよいし、演算記録部503で行ってもよい。
 最後に、算出された抵抗値を出力部504において、画面出力、印字などの方法で出力する(S2311)。このとき、演算記録部503は、算出された抵抗値に応じて電極の交換を判定し、必要に応じて電極の交換を促す表示を出力部504に出力してもよい。これにより、ユーザに電極の交換を促すことが可能になる。
 スイッチ2111、2112を閉じたときの電位測定は、等価回路の観点からは一つずつスイッチを閉じて一つずつ電位を計測するのが良い。しかし、実際には、溶液抵抗がイオン選択電極の抵抗や抵抗2109、2110の抵抗値に比べて小さいため、スイッチ2111、2112を同時に閉じても影響は小さい。
 抵抗値を正確に測定するには、スイッチ2111、2112を開いた状態での電位E1、n、OPENが0V程度ではないことが望ましい。また、抵抗測定に用いる内部標準液の各イオン濃度はこの点を考慮して調製されるのが望ましい。図24は、電位計測部兼抵抗測定部2001の別の例を示す回路図である。図24に示すように、必要に応じて、抵抗2109、2110およびスイッチ2111、2112と直列に、直流電源2113、2114を追加しても良い。
 本実施例によれば、希釈槽511内の溶液をイオン選択電極517~519の流路に導入し、参照液527を参照電極524の流路に導入する構成において、抵抗を測定する対象のイオン選択電極を抵抗値が既知の抵抗で接続した場合と切断した場合の起電力を測定し、それらの起電力からイオン選択電極の抵抗値を求める。このような構成により、電解質濃度測定に用いる電圧計と抵抗測定に用いる電圧計を共有することができ、電位の計測と抵抗の測定の両方を兼ね備えた1つのユニット(電位計測部兼抵抗測定部2001)として構成できる。また、イオン選択電極517~519と参照電極524との間の溶液抵抗の影響を受けることなく、より高い精度でイオン選択電極の抵抗値を測定できる。
[第6実施例]
 図25Aは、電解質濃度測定装置を用いたシステムの一例を示す図である。本例のシステムは、生化学自動分析装置2501である。生化学自動分析装置2501は、上述した電解質濃度測定装置2502と、光学計測を行う生化学測定装置2503と、電解質濃度測定装置2502および生化学測定装置2503の操作を行うための操作部2504とを備える。操作部2504は、キーボードやポインティングデバイスなどの入力部と、ディスプレイなどの出力部とを含むものである。生化学自動分析装置2501は、操作部2504からの操作によって制御することができる。
 図25Bは、電解質濃度測定装置を用いたシステムの別の例を示す図である。本例のシステムは、以下で説明するように各装置が独立した形態である。本例のシステムは、検体搬送装置2510と、上述した電解質濃度測定装置2511と、光学計測を行う生化学測定装置2512と、試料中の化学成分を免疫反応によって測定する免疫測定装置2513と、操作部2514とを備える。各装置2511、2512、2513は、検体搬送装置2510との間で検体のやり取りが行われる。操作部2514は、キーボードやポインティングデバイスなどの入力部と、ディスプレイなどの出力部とを含むものである。本例のシステムの各装置2510、2511、2512、2513は、操作部2514からの操作によって制御することができる。
 なお、本発明は上述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることがあり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、直流抵抗の測定および計算は、抵抗測定部701、1001や電位計測部兼抵抗測定部1501、2001で全て行ってもよいし、計算の一部を演算記録部203、503に分担させてもよい。
 また、上述したように、制御部202、502および演算記録部203、503は、実施形態の機能を実現するソフトウェアのプログラムコードで実現してもよい。この場合、プログラムコードを記録した記憶媒体を情報処理装置に提供し、その情報処理装置(またはCPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、およびそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。また、制御部202、502および演算記録部203、503は、それらの一部や全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。
 また、図面における制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。
101 イオン選択電極のカートリッジ
102 流路
103 銀塩化銀電極
104 内部液
105 感応膜
201、501 測定ユニット
202、502 制御部
203、503 演算記録部
204、504 出力部
211、511 希釈槽
212、512 検体分注ノズル
213、513 希釈液分注ノズル
214、514 内部標準液分注ノズル
215、515 試料液吸引ノズル
216、221、516、520、523、526、528 配管
217、519 ナトリウムイオン選択電極
218、518 カリウムイオン選択電極
219、517 塩素イオン選択電極
220、524 参照電極
222、529 ポンプ
223、530 電位計測部
301~304、1601~1604、2101~2104 端子
305~306、1605~1607、2105~2107 アンプ
308、1608、2108 アナログデジタル変換器
521、525 弁
522 ジャンクション
527 参照液
701、1001 抵抗測定部
1501、2001 電位計測部兼抵抗測定部
1609~1611、2109、2110 抵抗
1612~1614、2111、2112 スイッチ
2501 生化学自動分析装置

Claims (15)

  1.  複数のイオン選択電極および1つの参照電極と、
     前記複数のイオン選択電極と前記参照電極に試料液を導入する試料導入部と、
     前記複数のイオン選択電極と前記参照電極との間の電圧を測定する電位計測部と、
     前記複数のイオン選択電極の直流抵抗を測定する抵抗測定部と、
    を備えることを特徴とする電解質濃度測定装置。
  2.  請求項1の電解質濃度測定装置において、
     前記抵抗測定部は、前記複数のイオン選択電極のうち1つと前記参照電極とを用いて前記直流抵抗を測定することを特徴とする電解質濃度測定装置。
  3.  請求項1の電解質濃度測定装置において、
     前記抵抗測定部は、前記複数のイオン選択電極のうち2つを用いて前記直流抵抗を測定することを特徴とする電解質濃度測定装置。
  4.  請求項3の電解質濃度測定装置において、
     前記2つのイオン選択電極のうち一方は、前記イオン選択電極と前記参照電極との間の溶液抵抗よりも低い抵抗を有するイオン選択電極、あるいは、イオン交換膜を基にしたイオン選択電極のいずれかであることを特徴とする電解質濃度測定装置。
  5.  請求項1の電解質濃度測定装置において、
     前記抵抗測定部は、前記複数のイオン選択電極のうち2つと前記参照電極とを用いて前記直流抵抗を測定することを特徴とする電解質濃度測定装置。
  6.  請求項1の電解質濃度測定装置において、
     前記電位計測部の前記電圧の測定と前記抵抗測定部の前記直流抵抗の測定の両方を兼ねる測定部を更に備えることを特徴とする電解質濃度測定装置。
  7.  請求項6の電解質濃度測定装置において、
     前記抵抗測定部は、
     前記複数のイオン選択電極のうち1つと前記参照電極との間に接続された抵抗と、
     前記抵抗を接続あるいは切断するための切替部と、
     を備えることを特徴とする電解質濃度測定装置。
  8.  請求項6の電解質濃度測定装置において、
     前記抵抗測定部は、
     前記複数のイオン選択電極のうち2つの間に接続された抵抗と、
     前記抵抗を接続あるいは切断するための切替部と、
     を備えることを特徴とする電解質濃度測定装置。
  9.  請求項1の電解質濃度測定装置において、
     前記抵抗測定部は、前記イオン選択電極自身の起電力を用いて前記直流抵抗を補正することを特徴とする電解質濃度測定装置。
  10.  請求項1の電解質濃度測定装置において、
     前記電位計測部は、前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の起電力を測定し、
     前記抵抗測定部は、前記少なくとも1つのイオン選択電極と前記参照電極との間の電圧および電流を測定し、前記起電力と前記電圧と前記電流から前記直流抵抗を求めることを特徴とする電解質濃度測定装置。
  11.  請求項1の電解質濃度測定装置において、
     前記電位計測部は、前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の起電力を測定し、
     前記抵抗測定部は、前記複数のイオン選択電極のうち2つの間の電圧および電流を測定し、前記起電力と前記電圧と前記電流から前記2つのイオン選択電極の抵抗値の和を前記直流抵抗として求めることを特徴とする電解質濃度測定装置。
  12.  請求項7の電解質濃度測定装置において、
     前記電位計測部は、前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の第1の起電力を測定し、
     前記電位計測部は、前記少なくとも1つのイオン選択電極と前記参照電極との間を前記抵抗で接続した状態で、前記少なくとも1つのイオン選択電極と前記参照電極との間の第2の起電力を測定し、
     前記抵抗測定部は、前記第1の起電力と前記第2の起電力と前記抵抗の抵抗値から前記直流抵抗を求めることを特徴とする電解質濃度測定装置。
  13.  請求項8の電解質濃度測定装置において、
     前記電位計測部は、前記複数のイオン選択電極のうちの第1のイオン選択電極と前記参照電極との間の第1の起電力と、前記複数のイオン選択電極のうちの第2のイオン選択電極と前記参照電極との間の第2の起電力とを測定し、
     前記電位計測部は、前記抵抗で前記第1のイオン選択電極と前記第2のイオン選択電極を接続した状態で、前記第1のイオン選択電極と前記参照電極との間の第3の起電力と、前記第2のイオン選択電極と前記参照電極との間の第4の起電力とを測定し、
     前記抵抗測定部は、前記第1の起電力と前記第2の起電力と前記第3の起電力と前記第4の起電力と前記抵抗の抵抗値から、前記第1のイオン選択電極の抵抗値と前記第2のイオン選択電極の抵抗値を求めることを特徴とする電解質濃度測定装置。
  14.  複数のイオン選択電極と1つの参照電極を備える電解質濃度測定装置において前記複数のイオン選択電極の直流抵抗を測定する方法であって、
     前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の起電力を測定するステップと、
     前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の電圧および電流を測定するステップと、
     前記起電力と前記電圧と前記電流から前記直流抵抗を求めるステップと、
    を含むことを特徴とする方法。
  15.  複数のイオン選択電極と1つの参照電極を備える電解質濃度測定装置において前記複数のイオン選択電極の直流抵抗を測定する方法であって、
     前記複数のイオン選択電極のうち少なくとも1つと前記参照電極との間の起電力を測定するステップと、
     前記複数のイオン選択電極のうち2つの間の電圧および電流を測定するステップと、
     前記起電力と前記電圧と前記電流から前記2つのイオン選択電極の抵抗値の和を前記直流抵抗として求めるステップと、
    を含むことを特徴とする方法。
PCT/JP2014/060417 2013-05-07 2014-04-10 電解質濃度測定装置およびそれを用いた測定方法 WO2014181632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/888,271 US10018585B2 (en) 2013-05-07 2014-04-10 Electrolyte concentration measuring apparatus and measuring method using same
DE112014002342.6T DE112014002342T5 (de) 2013-05-07 2014-04-10 Elektrolytkonzentrations-Messvorrichtung und Messverfahren unter Verwendung derselben
CN201480024768.0A CN105164526B (zh) 2013-05-07 2014-04-10 电解质浓度测量装置以及使用该装置的测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-097658 2013-05-07
JP2013097658A JP6475405B2 (ja) 2013-05-07 2013-05-07 電解質濃度測定装置およびそれを用いた測定方法

Publications (1)

Publication Number Publication Date
WO2014181632A1 true WO2014181632A1 (ja) 2014-11-13

Family

ID=51867114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060417 WO2014181632A1 (ja) 2013-05-07 2014-04-10 電解質濃度測定装置およびそれを用いた測定方法

Country Status (5)

Country Link
US (1) US10018585B2 (ja)
JP (1) JP6475405B2 (ja)
CN (1) CN105164526B (ja)
DE (1) DE112014002342T5 (ja)
WO (1) WO2014181632A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029893A1 (ja) * 2015-08-20 2017-02-23 株式会社日立ハイテクノロジーズ イオン濃度測定装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084894A1 (ja) * 2014-11-26 2016-06-02 東京都 液体分析計、液体分析システム
JP6556547B2 (ja) * 2015-07-31 2019-08-07 株式会社日立ハイテクノロジーズ フロー型電解質濃度測定装置及びそれを用いた電解質濃度測定方法
US10317359B2 (en) * 2016-01-05 2019-06-11 Ravi Kumar Meruva Differential carbon dioxide sensor
KR101878564B1 (ko) * 2016-10-18 2018-07-13 한국에너지기술연구원 절연체 코팅 전도선의 qc 장치 및 이의 방법
WO2019099855A1 (en) * 2017-11-17 2019-05-23 Siemens Healthcare Diagnostics Inc. Sensor assembly and method of using same
JP6896684B2 (ja) * 2018-09-13 2021-06-30 株式会社日立ハイテク 電解質濃度測定装置
JP6890569B2 (ja) 2018-09-28 2021-06-18 株式会社日立ハイテク 電解質測定装置
CN113287022B (zh) * 2018-12-27 2023-12-12 株式会社日立高新技术 自动分析装置、自动分析系统及样品的自动分析方法
JP6606625B1 (ja) * 2019-09-12 2019-11-13 株式会社ちとせ研究所 酸化還元電位を用いた測定対象系の動態推測用システム
EP4053554A1 (en) * 2021-03-02 2022-09-07 EXIAS Medical GmbH Arrangement for analyzing a liquid sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239313A (ja) * 1994-02-28 1995-09-12 Shimadzu Corp 導電率測定方法
JPH10246720A (ja) * 1997-02-28 1998-09-14 Ngk Spark Plug Co Ltd 全領域空燃比センサの異常検出方法
JP2001174430A (ja) * 1999-12-21 2001-06-29 Matsushita Electric Ind Co Ltd 次亜塩素酸濃度及びpH測定用複合センサー
JP2001235443A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd pHセンサー及びそれを備えたイオン水生成器
JP2002039989A (ja) * 2000-05-17 2002-02-06 Ngk Spark Plug Co Ltd ガス濃度測定装置
JP2003207481A (ja) * 2002-01-11 2003-07-25 Jeol Ltd 電解質測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032980A (zh) 1987-11-03 1989-05-17 城市服务石油及瓦斯公司 测量腐蚀速度的腐蚀探头和方法
JP3090505B2 (ja) 1990-07-30 2000-09-25 株式会社日立製作所 イオン測定用試料希釈液およびイオン測定方法
JP2964021B2 (ja) 1993-03-06 1999-10-18 株式会社堀場製作所 電解質分析装置
JP3625448B2 (ja) 2002-01-11 2005-03-02 株式会社日立ハイテクノロジーズ イオンセンサ及びそれを用いた生化学自動分析装置
AT411627B (de) 2002-08-23 2004-03-25 Hoffmann La Roche Vorrichtung zur überprüfung der positionierung und der blasenfreiheit einer medizinischen mikroprobe in einer durchflussmesszelle
JP4331181B2 (ja) 2006-03-30 2009-09-16 株式会社日立製作所 測定装置及び分析用素子
JP2009002808A (ja) * 2007-06-21 2009-01-08 Hitachi Ltd Dna計測システム及びdna計測方法
JP5075562B2 (ja) 2007-10-05 2012-11-21 株式会社フジクラ 多心光コネクタおよびその組み立て方法
JP5139538B2 (ja) 2008-11-04 2013-02-06 株式会社日立製作所 電位差式センサチップ、電位差測定方法、及び測定キット
CN102313770B (zh) 2010-07-09 2014-07-30 中国科学院烟台海岸带研究所 一种检测低浓度重金属离子的方法及其装置
DE102010041523A1 (de) * 2010-09-28 2012-03-29 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zum Betreiben eines Messgeräts mit mindestens einer Sonde, welche mindestens eine ionenselektive Elektrode aufweist

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239313A (ja) * 1994-02-28 1995-09-12 Shimadzu Corp 導電率測定方法
JPH10246720A (ja) * 1997-02-28 1998-09-14 Ngk Spark Plug Co Ltd 全領域空燃比センサの異常検出方法
JP2001174430A (ja) * 1999-12-21 2001-06-29 Matsushita Electric Ind Co Ltd 次亜塩素酸濃度及びpH測定用複合センサー
JP2001235443A (ja) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd pHセンサー及びそれを備えたイオン水生成器
JP2002039989A (ja) * 2000-05-17 2002-02-06 Ngk Spark Plug Co Ltd ガス濃度測定装置
JP2003207481A (ja) * 2002-01-11 2003-07-25 Jeol Ltd 電解質測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029893A1 (ja) * 2015-08-20 2017-02-23 株式会社日立ハイテクノロジーズ イオン濃度測定装置
JPWO2017029893A1 (ja) * 2015-08-20 2018-07-12 株式会社日立ハイテクノロジーズ イオン濃度測定装置

Also Published As

Publication number Publication date
DE112014002342T5 (de) 2016-01-28
CN105164526A (zh) 2015-12-16
JP6475405B2 (ja) 2019-02-27
US10018585B2 (en) 2018-07-10
CN105164526B (zh) 2018-12-28
US20160054257A1 (en) 2016-02-25
JP2014219246A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6475405B2 (ja) 電解質濃度測定装置およびそれを用いた測定方法
JP5022033B2 (ja) 電気化学的特性のアッセイのための方法および装置
JP4710914B2 (ja) ポテンショスタット回路、バイオセンサ回路及びセンシング装置
CN101294927B (zh) 离子浓度测定装置及离子浓度测定元件
JPH01502360A (ja) 溶液に含まれる濃度測定方法及び装置
CN109477811B (zh) 氯、氧化还原电位(orp)和ph测量探针
CN103257174B (zh) 记录被测介质中的被分析物浓度的测量组件及方法
Kubáň et al. Fundamentals of electrochemical detection techniques for CE and MCE
JP2021105564A (ja) イオンセンサ装置
CN105353000B (zh) 半导体器件及其检测方法
TW201732283A (zh) 使用四極阻抗量測之體外感測器
JP2019500610A (ja) 電極電圧検知接続部を有する電気化学式分析試験ストリップ及び同ストリップと共に使用するための手持ち式検査計
CN111788479B (zh) 自动分析装置、自动分析方法
WO2020066472A1 (ja) 電解質測定装置
WO2006026120A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
CN118525201A (zh) 电解质浓度测定装置及选择系数获取方法
JPS63277962A (ja) リチウム・ナトリウムイオン濃度比の測定方法及び測定装置
Ermolenko et al. Laser-scanned silicon transducer (LSST) as a multisensor system
US20240125727A1 (en) Electrochemical measurement with additional reference measurement
US11927562B2 (en) Hydrogen potential sensor
Ipatov et al. Autocalibration technique based on SIA and integrated multisensor chip
JPH01244356A (ja) イオン活量の測定方法および装置
JP3367234B2 (ja) 流動電位測定法
Mokhtarifar ITO as the extended-gate of a ChemFET: a low-cost nethod for differential pH-sensing in aqueous solutions
JP2023509773A (ja) 固体イオン選択電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024768.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888271

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140023426

Country of ref document: DE

Ref document number: 112014002342

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795261

Country of ref document: EP

Kind code of ref document: A1