WO2014180174A1 - 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法 - Google Patents

一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法 Download PDF

Info

Publication number
WO2014180174A1
WO2014180174A1 PCT/CN2014/070857 CN2014070857W WO2014180174A1 WO 2014180174 A1 WO2014180174 A1 WO 2014180174A1 CN 2014070857 W CN2014070857 W CN 2014070857W WO 2014180174 A1 WO2014180174 A1 WO 2014180174A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
filling
curing
transparent film
cavity
Prior art date
Application number
PCT/CN2014/070857
Other languages
English (en)
French (fr)
Inventor
丁玉成
邵金友
李祥明
田洪淼
李鑫
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2014180174A1 publication Critical patent/WO2014180174A1/zh
Priority to US14/631,824 priority Critical patent/US9620264B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • H01B13/322Filling or coating with impervious material the material being a liquid, jelly-like or viscous substance
    • H01B13/323Filling or coating with impervious material the material being a liquid, jelly-like or viscous substance using a filling or coating head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0139Blade or squeegee, e.g. for screen printing or filling of holes

Definitions

  • the invention belongs to the field of micro-fabrication technology, and in particular relates to a method for manufacturing a transparent conductive film damascene circuit which is driven by an external electric field.
  • Filling a liquid or high rheological material into a micron or nanometer-sized cavity is generally accomplished by vacuum filling or blade coating at normal temperature and pressure. Vacuum operation will increase the complexity of the process and reduce the production efficiency. When the coating is applied under normal pressure, the depth of the liquid material filled in the cavity will be uneven due to the distribution of the cavity, the viscosity of the material, the direction of the coating, and the like. defect. In order to reduce such defects, it is often necessary to reduce the speed of the coating, but the reduction in the speed of the coating reduces the production efficiency of the large-area manufacturing.
  • the manufacture of touch screens requires the use of a large number of transparent conductive films, ie, transparent films containing circuits.
  • the conventional transparent conductive film circuit manufacturing method is to fabricate a conductive foil circuit on the surface of a transparent film substrate, for example, an indium tin oxide ITO circuit by using a plating film and an etching process.
  • the circuit is prone to cracking or peeling off from the surface of the film substrate, especially in flexible display devices.
  • Another type of technology is to use a knife coating method to fill a conductive paste (a liquid phase or a high rheologically complexed composite containing various low-dimensional conductive materials) into a pre-formed cavity of a transparent film by a scraping method.
  • the circuit embedded in the transparent film is not easy to be oxidized, cracked or dropped, and has the advantages of high conductivity, good transparency, and the like, and is particularly suitable for a flexible touch display screen.
  • the method of blade coating and the formed circuit have the characteristics of low cost, simple process and environmental friendliness.
  • large noodles In the case of scraping and coating, in order to reduce defects caused by uneven filling depth, bubble entrapment, etc., the moving speed of the coating is often lowered, thereby reducing the production efficiency, and it is difficult to ensure the quality of the damascene circuit on the surface of the large-area substrate.
  • the present invention proposes a method for fabricating a damascene circuit on a transparent film by using an external electric field driving filling mechanism, which can be driven by an electric field force and a squeegee by using an electrokinetic fluid mechanics principle.
  • a conductive paste of a liquid phase (for example, a liquid phase or a high rheologically complexed mixture of various low-dimensional nanomaterials) is rapidly and uniformly filled into a micrometer-scale or nanometer-scale transparent film preform cavity; wherein, micron Or the fabrication of nano-scale pre-formed cavities can be achieved by various commercial imprinting techniques; the filling effect of the conductive paste is not affected by the opening shape, the orientation, the depth and the moving direction of the squeegee of the cavity, which can be large To a certain extent, the production efficiency of the transparent conductive film, the quality and consistency of a large area range are improved.
  • the technical solution adopted by the present invention is:
  • a method for manufacturing a transparent thin film damascene circuit using an external electric field to drive filling comprising the following steps:
  • the conductive scraper 1 is designed with a injection port and a discharge slit, and the conductive scraper 1 serves as a passage for the conductive paste 2 and is used as an electrode.
  • the transparent film 3 having the preset cavity is placed on the conductive moving table 4, and the conductive moving table 4 is horizontally moved relative to the conductive blade 1 at a moving speed of O.lmm/mii! ⁇ lm/min, the conductive paste 2 will flow out from the conductive squeegee gap of the conductive squeegee 1 during the movement.
  • the invention can be adapted to a wide range of liquid phase or high rheologically conductive pastes, including aqueous suspensions or organic slurries synthesized from various low dimensional nanomaterials such as nano metal particles and nanowires, carbon nanotubes, graphene, and the like. material.
  • aqueous suspensions or organic slurries synthesized from various low dimensional nanomaterials such as nano metal particles and nanowires, carbon nanotubes, graphene, and the like. material.
  • electrokinetic fluid mechanics such functional liquid phase material is filled into the pre-formed cavity of the transparent film, which not only has the advantages of high filling efficiency, but also avoids defects such as bubble entrapment and uneven filling, thereby improving the circuit. Quality and yield.
  • Fig. 1 is a schematic diagram of a filling force driven by an electric field force, wherein reference numeral 1 is a conductive blade, 2 is a conductive paste, 3 is a transparent film having a pre-cavity groove, and 4 is a conductive moving stage.
  • Figure 2 is a schematic diagram of a filling device driven by an electric field force.
  • Figure 3 is a comparison of the electric field force-driven filling efficiency.
  • Figure 4 is a comparison of the electric field force driven filling to achieve isotropic uniform filling.
  • a method for manufacturing a transparent conductive film driven by an external electric field comprising the following steps: 1) manufacturing the conductive squeegee 1, referring to FIG. 1 and FIG. 2, the conductive squeegee 1 is designed with a injection port and a discharge slit, and the conductive squeegee serves as a passage for the conductive paste 2 and is used as an electrode.
  • Electrodynamic filling referring to Figure 2, an appropriate voltage is applied between the conductive moving table 4 and the conductive blade 1 so that the average electric field strength between the conductive blade and the conductive moving table is between 50 V/mm and 5 KV/mm.
  • the voltage is DC or low frequency AC, depending on the electrical characteristics of the conductive paste used. If the low frequency AC voltage is used, the frequency is within IK Hz, and the electric power generated by the voltage will drive the conduction from the conductive blade 1.
  • the slurry 2 is rapidly moved into the cavity of the transparent film 3 to achieve rapid filling.
  • the present embodiment uses an ultraviolet curing conductive material, and the ultraviolet curing conductive material is filled into the cavity of the transparent film, and then irradiated with ultraviolet light. After curing, it is peeled off from the groove after curing, and the superiority of the external electric field driven filling is evaluated by observing the microstructure integrity of the peeling.
  • Figure 3 is a comparison of the external electric field to improve the filling efficiency.
  • Figure 3a is the filling result obtained by the conventional blade coating method (that is, when the voltage is not applied), and
  • Figure 3b is the applied voltage of 200V. The results obtained in the case. 5 ⁇ /min ⁇ Both of the speed of the coating is 0. 5mm / min. As can be seen, when a voltage is applied, the liquid material is more easily filled into the mold cavity.
  • the filling results in differently oriented cavities tend to be different when filled by conventional blade coating methods.
  • Fig. 4a with the conventional blade coating method, when the cavities are perpendicular to each other, the cavities parallel to the direction of the coating are more easily filled, and bubbles are trapped in the cavities perpendicular to the direction of the coating.
  • Figure 4b with the external electric field driven by the present invention, the mutually perpendicular cavities can be completely filled.
  • the conventional blade coating process in order to avoid bubble trapping, the conventional blade coating process often needs to reduce the blade speed of the blade, which will greatly affect the production efficiency.
  • the present invention introduces an electrokinetic effect generated by an external electric field, which can largely avoid the trap of bubble trapping, and allows the scraper to be moved at a higher scraping speed, thereby improving production efficiency.

Abstract

一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法。采用导电刮板(1),导电刮板(1)上设计有注料口和出料缝隙,导电刮板(1)既作为导电浆料(2)的通道,又作为电极使用,然后将具有预设腔槽的透明薄膜(3)放置在导电移动台(4)上,导电移动台(4)相对导电刮板(1)做水平移动,导电浆料(2)会从导电刮板(1)的出料缝隙中流出,再进行电动力学填充,在导电移动台(4)和导电刮板(1)之间施加电压,电动力会驱动从导电刮板(1)中流出的导电浆料(2)迅速向透明薄膜(3)的腔槽内,实现快速填充,最后固化填充在透明薄膜腔槽内的浆料,固化后即可获得透明导电薄膜,该方法不仅具有填充效率高的优势,而且可以避免气泡裹入、填充不均匀等缺陷,从而提高了电路的质量和成品率。

Description

一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法 技术领域
本发明属于微制造技术领域,具体涉及一种利用外电场驱动填充 的透明导电薄膜镶嵌电路制造方法。
背景技术
向微米乃至纳米尺寸的腔体中填充液相或高流变性材料,一般用 真空填充或常温常压下刮涂的方法实现。真空操作会增加工艺的复杂 性, 降低生产效率; 常压下刮涂时会因腔体分布、 材料粘度、 刮涂方 向等因素导致液体材料在腔体内填充的深度不均匀、有气泡裹入等缺 陷。为了减小这种缺陷往往需要降低刮涂速度, 但刮涂速度的降低减 小了大面积制造的生产效率。
近年来兴起了一种触摸显示屏技术。触摸屏的制造需要用到大量 的透明导电薄膜, 即含有电路的透明薄膜。传统的透明导电薄膜电路 制造方法是在透明薄膜基材表面制作导电箔式电路,例如利用镀膜和 刻蚀工艺制作氧化铟锡 ITO电路等。但电路易于产生裂紋或从薄膜基 材表面剥落, 尤其是在柔性显示器件中更为严重。另外一类技术则是 利用刮涂的方法, 将导电浆料 (含各种低维导电材料的液相或高流变 性复合物)以刮挤方式填充到透明薄膜的预制腔槽内, 再进行后续的 固化、 烧结和抛光等, 最终在透明薄膜基材上形成镶嵌的电路。 这种 镶嵌在透明薄膜中的电路不易氧化、 开裂或掉落, 且具有导电率高、 透明度好等优点, 尤其适用于柔性触摸显示屏。这种刮涂填充的方法 和形成的电路具有成本低、 工艺简单、 环境友好等特点。 然而, 大面 积刮涂填充时, 为了减少填充深度不均匀、 气泡裹入等引起的缺陷, 往往要降低刮涂的移动速度, 因而降低了生产效率, 且难于保证大面 积基材表面上镶嵌电路的质量。 发明内容
为了克服现有技术的缺点,本发明提出了一种利用外电场驱动填 充机理在透明薄膜上制作镶嵌电路的方法, 利用电动流体力学原理, 在电场力和刮板的驱动下, 可将各种液相的导电浆料(例如由各种低 维纳米材料混合而成的液相或高流变性复合物)快速、均匀地填充到 微米尺度乃至纳米尺度的透明薄膜预制腔槽中; 其中, 微米或纳米尺 度预制腔槽的制作可以采用各种商业化的压印技术来实现;导电浆料 的填充效果不受腔槽的开口形状、走向、深度和刮板移动方向的影响, 可在很大程度上提高透明导电薄膜的生产效率、大面积范围的质量和 一致性。 为了达到上述目的, 本发明采取的技术方案为:
一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法,包括以 下步骤:
1 ) 采用导电刮板 1, 导电刮板 1上设计有注料口和出料缝隙, 导电刮板 1即作为导电浆料 2的通道, 又作为电极使用,
2) 连续供料, 将具有预设腔槽的透明薄膜 3放置在导电移动台 4 上, 导电移动台 4 相对导电刮板 1 做水平移动, 移动速度在 O.lmm/mii!〜 lm/min, 移动过程中导电浆料 2会从导电刮板 1 的导电 刮板出料缝隙中流出,
3 )电动力学填充, 在导电移动台 4和导电刮板 1之间施加电压, 使得导电刮板 1 和导电移动台 4 之间的平均电场强度在 50V/mm〜5KV/mm之间, 电压为直流或低频交流,如果采用低频交流 电压,则其频率为 ΙΚ Ηζ以内, 电压所产生的电动力会驱动从导电刮 板 1中流出的导电浆料 2迅速向透明薄膜 3的腔槽内,实现快速填充,
4) 固化填充在透明薄膜腔槽内的浆料, 根据所使用浆料的材料 性质不同, 采用不同的固化方式, 固化方式包括加热固化、 紫外光照 固化和挥发固化, 固化后即可获得透明导电薄膜, 如果必要, 还要进 行后续的烧结处理和泡光处理工艺。
本发明可适应广泛的液相或高流变性导电浆料,包括由各种低维 纳米材料 (例如纳米金属颗粒和纳米线或、 碳纳米管、 石墨烯等)合成 的水质悬浮液或有机浆料。利用电动流体力学原理, 将这类功能性的 液相材料填充到透明薄膜的预制腔槽内, 不仅具有填充效率高的优 势, 而且可以避免气泡裹入、 填充不均匀等缺陷, 从而提高了电路的 质量和成品率。
附图说明
图 1是电场力驱动的填充原理图, 图中的标号 1为导电刮板, 2 为导电浆料、 3为具有预制腔槽的透明薄膜、 4为导电移动台。
图 2 是电场力驱动的填充装置示意图。
图 3 是电场力驱动填充提高效率的对比图。
图 4是电场力驱动填充实现各向同性均匀填充的对比图。
具体实施方式
下面结合附图对本发明做进一步详细说明。
一种利用外电场驱动填充的透明导电薄膜制造方法,包括以下步 骤: 1 )制作导电刮板 1, 参照图 1和图 2, 导电刮板 1内设计有注料 口和出料缝隙,导电刮板即作为导电浆料 2的通道,又作为电极使用,
2) 连续供料, 参照附图 2, 将具有预设腔槽的透明薄膜 3放置 在导电移动台 4上, 导电移动台 4相对导电刮板 1做水平移动, 移动 速度在 O.lmm/mii!〜 lm/min, 移动过程中导电浆料 2会从导电刮板 1 的供料槽的长条形出料缝隙中流出,
3 ) 电动力学填充, 参照附图 2, 在导电移动台 4和导电刮板 1 之间施加适当电压,使得导电刮板和导电移动台面间的平均电场强度 在 50V/mm〜5KV/mm之间, 电压为直流或低频交流, 取决于所使用 的导电浆料电气特性, 如果采用低频交流电压, 则其频率为 IK Hz 以内, 电压所产生的电动力会驱动从导电刮板 1中流出的导电浆料 2 迅速向透明薄膜 3的腔槽内, 实现快速填充,
4) 固化填充在透明薄膜腔槽内的浆料, 根据所使用浆料的材料 性质不同, 采用不同的固化方式, 固化方式包括加热固化、 紫外光照 固化和挥发固化等, 固化后即可获得透明导电薄膜, 如果必要, 还要 进行后续的烧结处理和泡光处理工艺。
下面结合实施例对本发明做详细描述。
实施例一
为了展示电场力刮涂方法在填充效率和填充效果上的优越性, 本 实施例使用了紫外光固化导电材料,将紫外光固化的导电材料填充到 透明薄膜的腔槽内, 然后利用紫外光照进行固化, 固化后将其从凹槽 内剥离出来, 通过观察剥离出的微结构完整性, 来评价外电场驱动填 充的优越性。 图 3是外电场提高填充效率的对比图。 图 3a是传统刮 涂方法(即不适加电压时)获得的填充结果, 图 3b是在施加电压 200V 的情况下得到的结果。 两者的刮涂速度均为 0. 5mm/min。 对比可知, 施加电压时, 液体材料更容易填充到模具腔体中去。
实施例二
由于实际透明薄膜腔槽的走向多变, 利用传统刮涂方法填充时, 不同走向的腔槽内填充结果往往会有不同。 如图 4a所示, 利用传统 刮涂填充方法, 当腔槽相互垂直时, 与刮涂方向平行的腔槽更容易被 填充, 而与刮涂方向垂直的腔槽内往往会有气泡陷入。如图 4b所示, 利用本发明的外电场驱动填充, 相互垂直的腔槽均可被完全填充。在 实际的工业实施中, 为了避免气泡陷入, 传统的刮涂工艺往往需要降 低刮板的刮涂速度, 这将大大影响生产效率。本发明引入了外电场产 生的电动力学效应, 可以在很大程度上避免气泡陷入的缺陷, 允许以 更高的刮涂速度移动刮板, 从而提高生产效率。

Claims

权利要求书
1、 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法, 其 特征在于:
1)采用导电刮板(1), 导电刮板(1)上设计有注料口和出料缝 隙, 导电刮板 (1) 即作为导电浆料 (2) 的通道, 又作为电极使用,
2)连续供料, 将具有预设腔槽的透明薄膜(3)放置在导电移动 台 (4) 上, 导电移动台 (4) 相对导电刮板 (1) 做水平移动, 移动 速度在 0.1mm/mii!〜 lm/min, 移动过程中导电浆料(2)会从导电刮板
(1) 的导电刮板出料缝隙中流出,
3) 电动力学填充, 在导电移动台 (4) 和导电刮板 (1) 之间施 加电压, 使得导电刮板(1)和导电移动台 (4)之间的平均电场强度 在 50V/mm〜5KV/mm之间, 电压为直流或低频交流, 如果采用低频 交流电压,则其频率为 ΙΚΗζ以内, 电压所产生的电动力会驱动从导 电刮板(1) 中流出的导电浆料(2)迅速向透明薄膜(3) 的腔槽内, 实现快速填充,
4) 固化填充在透明薄膜腔槽内的浆料, 根据所使用浆料的材料 性质不同, 采用不同的固化方式, 固化方式包括加热固化、 紫外光照 固化和挥发固化, 固化后即可获得透明导电薄膜, 如果必要, 还要进 行后续的烧结处理和泡光处理工艺。
PCT/CN2014/070857 2013-05-07 2014-01-18 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法 WO2014180174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/631,824 US9620264B2 (en) 2013-05-07 2015-02-25 Method for manufacturing transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310165411.1A CN103337300B (zh) 2013-05-07 2013-05-07 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法
CN201310165411.1 2013-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/631,824 Continuation-In-Part US9620264B2 (en) 2013-05-07 2015-02-25 Method for manufacturing transparent conductive film

Publications (1)

Publication Number Publication Date
WO2014180174A1 true WO2014180174A1 (zh) 2014-11-13

Family

ID=49245439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070857 WO2014180174A1 (zh) 2013-05-07 2014-01-18 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法

Country Status (3)

Country Link
US (1) US9620264B2 (zh)
CN (1) CN103337300B (zh)
WO (1) WO2014180174A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337300B (zh) * 2013-05-07 2014-12-24 西安交通大学 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法
CN104851523B (zh) * 2015-05-21 2017-01-25 苏州大学 一种柔性透明导电膜制作方法及柔性透明导电膜
CN105152124A (zh) * 2015-08-04 2015-12-16 上海交通大学 利用深硅刻蚀技术存储CNTs的方法
US10777458B2 (en) * 2016-12-27 2020-09-15 Semes Co., Ltd. Method of filling a via hole and apparatus for performing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165137A (ja) * 2005-12-14 2007-06-28 Shinko Electric Ind Co Ltd 絶縁隔壁の形成方法
CN103337300A (zh) * 2013-05-07 2013-10-02 西安交通大学 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063951B (zh) * 2010-11-05 2013-07-03 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
CN102222538B (zh) * 2011-03-11 2012-12-05 苏州纳格光电科技有限公司 图形化的柔性透明导电薄膜及其制法
CN102320132B (zh) * 2011-07-11 2013-10-16 西安交通大学 一种电场诱导液溶胶微复型的工艺
CN102390802B (zh) * 2011-07-11 2014-07-02 西安交通大学 一种电毛细力驱动填充与反电场辅助脱模的压印成形方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165137A (ja) * 2005-12-14 2007-06-28 Shinko Electric Ind Co Ltd 絶縁隔壁の形成方法
CN103337300A (zh) * 2013-05-07 2013-10-02 西安交通大学 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法

Also Published As

Publication number Publication date
US9620264B2 (en) 2017-04-11
CN103337300A (zh) 2013-10-02
US20150170802A1 (en) 2015-06-18
CN103337300B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6585152B2 (ja) 導電性膜を形成する方法
WO2014180174A1 (zh) 一种利用外电场驱动填充的透明薄膜镶嵌电路制造方法
CA3027132C (en) Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials
JP6877347B2 (ja) スパッタリング用フッ素系高分子複合ターゲット
CN104135830B (zh) 一种将金属浆料填入生瓷通孔的填充方法及装置
CN103408992B (zh) 导电油墨、透明导电体及其制备方法
TW201728972A (zh) 可控制透光圖案變化的光學複合膜結構之製造方法
Mohammadi et al. In-situ study of electrophoretic deposition of zinc oxide nanosheets and nanorods
Qi et al. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device
CN107910128B (zh) 一种氧化石墨烯自组装复合银纳米线改善柔性器件机械性能的方法
CN102390802B (zh) 一种电毛细力驱动填充与反电场辅助脱模的压印成形方法
CN208375523U (zh) 用于膏状物体的3d打印刮平装置及其设备
CN105666848B (zh) 一种压印电极微栅薄膜的模具辊制作方法
CN204051913U (zh) 一种静电集尘、微粒捕集用复合材料
CN102279519B (zh) 一种三维微/纳结构的流体介电泳力扫描压印成形方法
CN107164795A (zh) 一种双通aao模板及其制备方法和应用
CN104851523B (zh) 一种柔性透明导电膜制作方法及柔性透明导电膜
Ge et al. Silver lines electrode patterned by transfer printing
CN108770237B (zh) 一种pcb板银浆贯孔用印刷机
CN207070454U (zh) 一种印制电路板导电胶的粘接装置
CN201632439U (zh) 挤压辊除胶液装置
KR20240007367A (ko) 니켈이 도금된 구리 메시 구조물 기반 고내구성 유연 투명 히터 및 그 제조 방법
JP2008126197A (ja) 導体回路形成装置、導体回路の形成方法およびこれらにより作製された太陽電池
KR101696300B1 (ko) 전극 및 그의 제조방법
CN109461726A (zh) 一种平坦的led倒装高压芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794567

Country of ref document: EP

Kind code of ref document: A1