WO2014179929A1 - 染色机染液颜色检测装置 - Google Patents

染色机染液颜色检测装置 Download PDF

Info

Publication number
WO2014179929A1
WO2014179929A1 PCT/CN2013/075224 CN2013075224W WO2014179929A1 WO 2014179929 A1 WO2014179929 A1 WO 2014179929A1 CN 2013075224 W CN2013075224 W CN 2013075224W WO 2014179929 A1 WO2014179929 A1 WO 2014179929A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring chamber
dyeing machine
filter
valve
dyeing
Prior art date
Application number
PCT/CN2013/075224
Other languages
English (en)
French (fr)
Inventor
徐达明
Original Assignee
立信染整机械(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立信染整机械(深圳)有限公司 filed Critical 立信染整机械(深圳)有限公司
Priority to PCT/CN2013/075224 priority Critical patent/WO2014179929A1/zh
Priority to EP13883958.4A priority patent/EP2995931A4/en
Publication of WO2014179929A1 publication Critical patent/WO2014179929A1/zh
Priority to IN1867DEN2015 priority patent/IN2015DN01867A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration, distillation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/24Means for regulating the amount of treating material picked up by the textile material during its treatment
    • D06B23/28Means for regulating the amount of treating material picked up by the textile material during its treatment in response to a test conducted on the treating material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0267Sample holders for colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8571Investigating moving fluids or granular solids using filtering of sample fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0317High pressure cuvettes

Definitions

  • the invention relates to a solution color detecting device, in particular to a dyeing machine color detecting device. Background technique
  • the dyeing process of fabrics generally involves the basic steps of temperature rise, pressure, dye injection and discharge.
  • the color condition of the dye liquor in the dyeing machine directly affects the dyeing effect of the fabric. Therefore, real-time detection of the condition of the dye liquor during the fabric processing plays a key role in dye quality control. Timely and effective treatment of the dye liquor can shorten the time of dyeing and save raw materials.
  • dilute the dye solution with water or other detergent When cleaning the fabric, dilute the dye solution with water or other detergent.
  • the detection of the concentration of residual dye in the cleaning liquid during the cleaning process is also very important. Since the content of salt in the dye liquor is directly related to the concentration of the dye liquor, the salt detection technology is also relatively simple.
  • the method of detecting the salt content in the dye liquor has been used in the industry to determine the concentration of the dye liquor, thereby estimating the fabric.
  • the degree of cleanliness is not objective and accurate.
  • the dyeing and finishing industry urgently needs a detection device suitable for the dyeing concentration of the dyeing and finishing machine working environment. Summary of the invention
  • the present invention provides a device suitable for the special working environment of the dyeing machine and capable of detecting the color of the dyeing liquid in time and accurately.
  • the invention provides a dyeing machine color detecting device for a dyeing machine, comprising a measuring chamber (2), a beam emitting device (7), a beam receiving device (8), a measuring chamber (2) having a measuring chamber inlet (3), Measuring chamber outlet (4), two ends of the measuring chamber (2) are respectively provided with lenses (5A, 5B), and the light emitted by the beam emitting device (7) passes through the lens (5A) and then passes through the dyeing liquid in the measuring chamber, and then It is received by the beam receiving device (8) through the lens (5B).
  • the invention provides a dyeing machine color detecting device of the dyeing machine, wherein the horizontal position of the measuring chamber outlet (4) is higher than the measuring chamber inlet (3).
  • the invention provides a dyeing machine color detecting device of the dyeing machine, wherein the measuring chamber inlet (3) and the measuring chamber outlet (4) are respectively equipped with a measuring chamber inlet valve (27) and a measuring chamber outlet valve (29).
  • the invention provides a dyeing machine color detecting device for a dyeing machine, wherein the lens (5) can withstand high temperature and high pressure and can penetrate light.
  • the invention provides a dyeing machine color detecting device for dyeing machine, wherein the measuring chamber (2) is provided with a cleaning pipe (6), one end of the cleaning pipe (6) passes through the outer casing of the measuring chamber top, and the cleaning liquid is connected outward. The other end of the cleaning pipe (6) is divided into two turns, respectively pointing to the lens (5A, 5B).
  • the dyeing machine color detecting device provided by the present invention provides the cleaning pipe (6) connected with the cleaning pipe. Valve (28).
  • the invention provides a dyeing machine color detecting device for dyeing machine, wherein the lens (5A, 5B) is provided with an inner flange (9) and an outer flange (10) on both sides, and the inner flange (9) and the outer portion The flange (10) is connected, and a leakproof seal (11), an outer flange (10) and a beam emitting device (7) are provided between the inner flange (9) and the outer flange (10) and the lens (5). And a silicon ring (12) is provided between the beam receiving device (8).
  • the invention provides a dyeing machine color detecting device for dyeing machine, characterized in that a filter (16) is arranged in front of the measuring chamber inlet (3), and the filter (16) comprises a cylinder (17) and a filtering sieve. (18), filter fine particles (19), filter inlet (20), filter outlet (21), backwash inlet (22), and backwash outlet (23).
  • the invention provides a dyeing machine color detecting device for a dyeing machine, further comprising a controller (15), the controller (15) is connected to the beam receiving device (8), and is connected and controlled to include a measuring chamber inlet valve (27), measuring The chamber outlet valve (29), the valve that cleans the line valve (28).
  • the dyeing liquid color detecting device provided by the invention can be widely applied to the special working environment of high temperature and high pressure in the dyeing and finishing industry, and can timely and accurately detect the color of the dyeing liquid, thereby greatly improving the working efficiency of dyeing and cleaning. , saving a lot of energy and raw materials, filling the gap in dyeing color detection equipment.
  • Figure 1 is a cross-sectional view of the present invention.
  • Figure 2 is a perspective view of the present invention.
  • Figure 3 is a schematic view of the flow direction of the cleaning liquid.
  • Figure 4 is a schematic illustration of the application of the invention to a dyeing machine.
  • Figure 5 is a schematic illustration of a filter.
  • Figure 6 is a schematic view of the flow direction of the filtered dye solution.
  • Figure 7 is a schematic illustration of the flow direction of the backwash.
  • FIG 8 is a schematic illustration of filter fines blocking shavings.
  • Figure 9 is a schematic illustration of the passage of shavings through the filter screen during backwashing.
  • Figure 10 is a schematic illustration of the controller connecting the valves. In the figure:
  • FIG. 1 is a cross-sectional view showing an embodiment of the present invention. As shown in Fig. 1, this embodiment is a dyeing liquid color detecting device of a dyeing machine.
  • the chamber wall of the measuring chamber 2 has a measuring chamber inlet 3, and the measuring chamber 2 has a top end connected to the measuring chamber outlet 4.
  • the measuring chamber 2 is provided with an inner flange at each end, and the outer flange 10 and the inner flange 9 which are matched in size are connected by screws.
  • Lenses 5A, 5B are mounted between the inner and outer flanges at both ends of the measuring chamber, and a leakproof gasket (11) is provided between the inner flange (9) and the outer flange (10) and the lens (5), the outer flange (10)
  • a silicon ring (12) is provided between the beam emitting device (7) and the beam receiving device (8) respectively (the outer flange and the inner flange on the left side in Fig. 1 are an external view, and the outer method on the right side)
  • the blue and inner flanges are section views).
  • the outer ends of the outer flange have a beam emitting device 7 and a beam receiving device 8, respectively.
  • a cleaning duct 6 is placed above the wall of the measuring chamber.
  • Both the measurement chamber inlet and the measurement chamber outlet are connected to the dye liquor cycle within the dyeing machine to provide the channels of the present invention as part of the main dye liquor cycle and independently form a secondary cycle.
  • the measuring chamber inlet and the measuring chamber outlet are respectively located beside and at the top of the measuring chamber.
  • Both the outer flange and the inner flange are hollow annular designs for the purpose of allowing light to pass through the lens on one side of the outer flange into the measurement chamber and exit from the other side flange. As shown in Figure 1, the arrow of Figure 1. The mouth marks the direction of the light.
  • the inlet of the measuring chamber 3 is connected to the dyeing circulation system, and the dyeing liquid enters the measuring chamber through the inlet 3 of the measuring chamber, and serves as a sample for the colorimetric test of the dye by the detector. After the dye solution passes through the measuring chamber, it flows out through the measuring chamber outlet 4.
  • the horizontal position of the outlet of the measuring chamber is higher than the inlet of the measuring chamber in order to avoid the generation of air bubbles in the measuring chamber.
  • the light beam emitted from the beam emitting device 7 at one end of the measuring chamber passes through the small hole in the middle of the outer flange, the lens, and the middle of the inner flange.
  • the small hole, the dye sample in the measuring chamber, the small hole in the middle of the outer flange at the other end, the lens, the small hole in the middle of the inner flange reaches the beam receiving device 8.
  • the information collected by the beam receiving device is analyzed by the control center 15 for the color of the dye liquor.
  • the measuring chamber inlet valve 27 and the measuring chamber are respectively installed at the inlet and the outlet.
  • the outlet valve 29 is closed by controlling the two valves after the dye solution is sufficiently flowed into the measuring chamber, so that the liquid flow in the measuring chamber is at rest, and the bubble is naturally blasted after a certain time, and the beam receiving device can obtain accurate dyeing liquid. Color information.
  • the valve at the entrance and exit will be opened again, so that the dye solution can flow out from the outlet of the measuring chamber and be filled with the dye solution flowing into the measuring chamber from the other end.
  • the valve is continuously turned on and off during the entire inspection process. This method of intercepting the sampling measurement is continuously repeated to detect the dye solution in real time.
  • Figure 2 is a perspective view of the present invention
  • Figure 3 shows the flow direction of the cleaning liquid.
  • the embodiment is provided with a leakage preventing gasket 1 1 and a silicon ring 12 to prevent leakage of the dye solution.
  • the dye solution may remain on the lens 5 to affect the operation of the beam receiving device, which may cause errors, especially when dyeing different colors.
  • the embodiment includes an automatic lens cleaning device: an inverted Y-shaped cleaning pipe 6 passes through the outer casing of the measuring chamber, and the end of the opening pipe points to the two lenses 5, as shown in the figure.
  • 2 is a perspective view of the present invention.
  • the cleaning pipe is connected to a supply source of the cleaning liquid at one end of the measuring chamber.
  • the cleaning solution is usually a solvent or pure water used to clean the surface of the material.
  • the cleaning liquid is sprayed onto the lenses on both sides through the branching throat, so that the residual dye on the lens is washed away, and the direction of the cleaning liquid is indicated by the arrow in FIG.
  • the cleaning fluid is not introduced into the measuring chamber to avoid interfering with the chemical composition of the dyeing solution.
  • the cleaning pipe valve 2 is disposed on the pipe connecting the cleaning liquid source to the outside of the cleaning pipe - and is controlled by the controller 15.
  • the controller 15 can identify the conditions during the dyeing process by signals fed back by various sensors on the dyeing machine and adjust the switches of the various valves on the dyeing system. By means of the program on the controller, it can be recognized that the purge line valve 28 is opened at the end of the color detection process.
  • Fig. 4 is a view showing the operation of the dyeing machine in which the embodiment is installed.
  • This embodiment is applied to a dyeing system by the following settings and used to detect the color of the dye liquor, and the feedback signal is fed to the control system in the dyeing system.
  • the arrangement includes a dyeing machine cylinder 13, a circulation throat 14, a color detector 1, a controller 15, and the like.
  • the dyeing machine cylinder 13 serves as a container for treating the fabric, and the fabric is placed in the cylinder to contact the dye liquor to produce a dyeing effect.
  • Dyeing fluids containing shavings are not conducive to color detection because the presence of shavings affects the efficiency of the detector's daylighting.
  • Dyeing systems typically have a dye liquor circulation throat that allows the dye liquor to run continuously within the system to reduce the chance of chemical deposits and to separate the fabric's detached shavings through the filter on the circulating throat.
  • the color detection point of the dye solution can be set on the throat of the dye liquor leaving the cylinder and placed before the processing, such as injection, lifting temperature, to measure the actual data of the dye liquor in the cylinder.
  • the flow rate of the circulation throat is huge, and may be contaminated with bubbles, which is not conducive to color detection. As described earlier, it is easier to detect when the dye solution is stationary.
  • a small flow split is provided on the circulation throat, and the dye liquor is allowed to pause at a certain position on the split flow without affecting the normal operation of the circulation system.
  • only one pump can supply the dyeing power of the above two circulating systems at the same time, for example, the detecting device is placed below the cylinder, and falls into the detector through the gravity of the dyeing liquid itself. .
  • a dyeing system arrangement incorporating the present invention allows the present invention to be placed on a secondary circuit throat parallel to the main circulation throat.
  • This embodiment also provides a filter for use with the detector.
  • the filter is specifically designed for use on throats where flow is small.
  • the filter has two outlets that discharge the filtered dye and residue separately.
  • the filtration method is to partially shield the outlet of the filter dye solution by using a precipitating particle, so that the residue is separated from the sediment layer, and the dye solution can penetrate the sediment layer through the gap between the particles to reach the dye outlet. Side by side, to achieve the effect of filtering.
  • the filter 16 is mounted in the direction of the dye solution leading to the detector 1 in front of the detector, as shown in FIG.
  • the detector is configured to detect an instrument that discharges the color of the dye liquor, and the detector is connected to a location that is separated from the main circulation throat and flows through the detector.
  • the dye solution will be drained directly without prior filtering.
  • the entry of unfiltered dye into the detector affects its sensitivity because impurities such as dander can block the refraction of light within the measurement chamber 2. Therefore, the detector is arranged on the diversion of the balance with the drain throat, and a filter independent of the circulation throat is required, and the flow rate of the design is relatively small.
  • FIG. 5 shows a partial cross-sectional structure of the filter 16.
  • the filter includes a barrel 17, a filter screen 18, filter fine particles 19, a filter inlet 20, a filter outlet 21, a backwash inlet 22, and a backwash outlet 23.
  • the filter inlet is located on the side wall of the barrel from which the dye liquor enters the barrel.
  • the barrel is a sealed canister filled with dye liquor and filter particles.
  • the top and bottom of the cylinder each have an outlet, and the outlets at both ends are covered by a filter screen.
  • a certain amount of filter fine particles are contained in the cylinder, and the fine particles are precipitated in the cylinder.
  • the selected filter screen can separate the particles and leave the particles in the barrel.
  • the particles deposited in the cylinder cover the outlet at the bottom of the cylinder, so that the substances trapped in the dye liquor entering the cylinder stay on the surface of the particle layer, and the dye liquor can follow the characteristics of the fluid and go down between the particles.
  • the filter uses a backwash design to remove impurities from the barrel.
  • the filter of this embodiment also includes an automatic cleaning mode. By injecting the cleaning liquid from the opposite direction to excite the particles and residues in the filter together, the residue discharge port is opened at the other end to be drained.
  • the discharge port also has a filter screen to block the particles, allowing them to stay in the filter and re-precipitating after the cleaning process is completed.
  • the effect of automatic cleaning is achieved by connecting the throat of the dye outlet at the bottom of the barrel to a throat and defining it as a backwash inlet.
  • the backwashing liquid may be any liquid such as tap water, which is injected into the cylinder from the filter screen at the bottom of the cylinder in the opposite direction to the discharge of the dyeing liquid.
  • the backwash will cause the precipitated filter particles to ignite together with the impurities, and the filter inlet is now closed to prevent impurities from flowing back into the dye liquor circulation system.
  • Only the outlet 23 at the top of the barrel is open, allowing the backwash with impurities to exit the outside of the barrel via the outlet at the top of the barrel, the flow of which is shown by the arrows in Figure 7.
  • the outlet at the top of the barrel is also covered by the filter screen, so that the excited particles can only be retained in the barrel, and impurities can be eliminated.
  • the same filter screen is used at both ends of the cylinder.
  • the filter screen can allow passage of debris-like impurities, and instead intercepts smaller particles.
  • the key is to filter the shape of the screen. Since most of the impurities in the dyeing liquid belong to the dander, the shape is long, and the volume is large but the cross section is small. Particles are Spherical, its cross section is large, so it cannot pass through the mesh. Under normal filtration conditions, the bottom outlet of the barrel has been covered with particles of a thickness to form a layer of fine particles, which are difficult to pass through the layer of particles to be discharged from the bottom, avoiding the possibility of debris being discharged from the filter outlet 21. As a result, the chips entering the barrel can only be discharged from the top of the barrel during the backwashing process.
  • Figure 8 further shows the implementation of the above features.
  • the dye solution enters the barrel from the filter inlet 20 as indicated by the arrows in the figure.
  • the filter screen 18 in the barrel is indicated by a dashed line, and the line gap represents the screen opening on the screen.
  • the volume of the filter fine particles 19 in the figure is enlarged to a sphere piled around the periphery of the filter screen.
  • the ratio is not the same as the actual size, here only to show that the particles are larger than the sieve holes.
  • the dander in the dye solution is separated from the filter screen at the bottom of the cylinder due to the shape of the deposited particles.
  • FIG. 9 is a schematic diagram of the dyeing activity in the cylinder during the backwashing process.
  • the filter inlet 20 is closed, and the backwash liquid is ejected through the filter screen at the bottom of the cylinder to excite the precipitated particles, and the accumulated debris accumulated in the cylinder is simultaneously excited.
  • the filter screen at the top of the barrel and the backwash outlet connected to it are opened, allowing the backwash to accompany the dander through the top of the barrel, as indicated by the arrow in the figure.
  • the particles affected by the backwash liquid flow float in the cylinder with the liquid flow and cannot cover the filter screen at the top of the cylinder.
  • the smaller cross-section of the dust can pass through the sieve.
  • the filtering and backwashing actions should be separate, and the embodiment is to control the direction of fluid in and out of the filter by connecting valves to the inlet and outlet of the barrel.
  • the filter is used to filter the dye solution to the detector, and the flow rate of the dye solution used is relatively small compared to the entire circulation system, which is used to control the small flow rate of each valve.
  • the backwash inlet and the backwash outlet for controlling the backwashing action are controlled by a solenoid valve.
  • Any fluid inlet and outlet on the detector and filter included in this embodiment is fitted with a valve to control its flow, however the types of these valves are different. The same is true for all valve switching signals issued by controller 15. Depending on the procedure, the controller will send out different combinations of signals to open or close the specified valve.
  • Fig. 10 shows the main valve of the embodiment of the invention and its associated filter connected to the control system, the dashed line represents the control line, and the solid line represents the throat line. The basic actions of each valve under different conditions are further explained below.
  • the operation of the filter is divided into two procedures of normal filtration and backwashing.
  • the filter inlet valve 24 and the measurement chamber inlet valve 27 are open, and are discharged from the cylinder block 13.
  • a portion of the dye solution enters the detector 1 through the filter 16, and the backwash inlet valve 25 and the backwash outlet valve 26 are closed.
  • the filter inlet valve and the measuring chamber inlet valve are closed to stop dyeing and continue to inject into the filter.
  • the backwash inlet valve and the backwash outlet valve are opened to introduce a backwash and provide a backwash drain to remove residuals from the filter.
  • valves that are both opened and closed by the filtering and backwashing actions are reversed - the switching between the two sets of valves is performed by the controller 15 to implement the filtering mode of the present invention.
  • This embodiment can monitor the change of the color of the dye liquor in real time. By reading the collected data, the controller adjusts the actuators that affect the color on the dyeing machine in real time to form a loop control to achieve the default color target.
  • the actuator includes a number of primary valves that control the injection and discharge of liquid.
  • Another embodiment of the present invention can be applied to a procedure for dye dilution, which is shown in Fig. 10, and includes an injection valve 30 and a discharge valve 31, and is connected to the controller 15, and the cylinder 13 is changed by controlling the switch of the above valve.
  • the composition and content of the dye solution In the control setting of the general dyeing dilution, the two valves are simultaneously opened, and the dyeing liquid of the same flow rate is discharged while continuously injecting the diluent at a certain flow rate, and the amount of water in the system is maintained while the dyeing liquid is continuously diluted.
  • the operation is simultaneously performed in this program to detect the change in the color of the dye liquor in real time.
  • the controller can default to a target dilution and read the data that the detector is constantly updating.
  • the controller calculates the valve's action by calculating the relationship between the data and the injection and discharge flow to achieve and complete the desired dilution.

Abstract

本发明是一种染色机染液颜色检测装置,包括有测量腔(2)、光束发射装置(7)、光束接收装置(8),测量腔(2)设有测量腔入口(3)、测量腔出口(4),测量腔(2)两端分别设置有透镜(5A、5B),光束发射装置(7)发射出的光线通过透镜(5A)后穿过测量腔中的染液,再通过透镜(5B),由光束接收装置(8)接收,测量腔入口(3)前设置有过滤器(16),控制器(15)连接光束接收装置(8),并连接和控制包括测量腔入口阀(27)、测量腔出口阀(29)、清洗管道阀(28)的阀。本发明能及时准确地检测染液颜色,可以广泛适用于染整行业高温高压的特殊工作环境。

Description

染色机染液颜色检测装置
技术领域
本发明涉及一种溶液颜色检测装置, 特别是一种染色机染液颜色检测 装置。 背景技术
织物处染的过程, 一般包含升降温、 加压、 注入染料和排放等基本工 序, 染色机内的染液颜色状况直接影响织物处染的效果。 因此在织物处理 过程中实时检测染液的状况对染色质量控制起着关键的作用。 对染液作出 及时有效的处理, 可以缩短处染的时间和节省原料。 在清洗织物的时候, 需注入清水或其他清洁剂稀释染液。 在清洗过程中对清洗液体中残留染液 浓度的检测, 也非常重要。 由于染液内盐的含量与染液浓度有直接关系, 盐的检测技术也较简单, 所以目前行业内已有采用检测染液中的含盐量的 方法来判定染液的浓度, 从而估算织物的清洁程度。 然而这样需依靠工作 人员的经验和历史数据去判定, 这样的检测评定并不客观准确, 染整行业 迫切需求一种适用于染整机械工作环境的染液浓度的检测装置。 发明内容
为了解决现有的染色机染液颜色检测工艺的上述不足, 本发明提供一 种适用于染整机的特殊工作环境并能及时准确地检测染液颜色的装置。
本发明提供的一种染色机染液颜色检测装置, 包括有测量腔 (2)、 光 束发射装置 (7)、 光束接收装置 (8 ), 测量腔 (2) 设有测量腔入口 (3 )、 测量腔出口 (4), 测量腔 (2) 两端分别设置有透镜 (5A、 5B ), 光束发射 装置(7 )发射出的光线通过透镜(5A)后穿过测量腔中的染液, 再通过透 镜 (5B ), 由光束接收装置 (8) 接收。
本发明提供的一种染色机染液颜色检测装置, 所述的测量腔出口 (4) 的水平位置高于测量腔入口 (3 )。 本发明提供的一种染色机染液颜色检测装置, 所述的测量腔入口 (3) 和测量腔出口 (4)分别安装有测量腔入口阀 (27)和测量腔出口阀 (29)。
本发明提供的一种染色机染液颜色检测装置, 所述的透镜(5)可承受 高温高压并可穿透光线。
本发明提供的一种染色机染液颜色检测装置, 所述的测量腔(2)设置 有清洗管道(6), 清洗管道 (6) 的一端穿过测量腔顶部的外壳, 向外连接 清洗液源, 清洗管道 (6) 的另一端分为两岔, 分别指向透镜 (5A、 5B)o 本发明提供的一种染色机染液颜色检测装置, 所述的清洗管道(6)连 接有清洗管道阀 (28)。
本发明提供的一种染色机染液颜色检测装置, 所述的透镜 (5A、 5B) 两侧均设置有内法兰 (9) 与外法兰 (10), 内法兰 (9) 与外法兰 (10) 相连接, 内法兰(9)及外法兰(10)与透镜(5)之间设有防漏密封垫(11), 外法兰(10)与光束发射装置(7)及光束接收装置(8)之间设有硅圈(12)。
本发明提供的一种染色机染液颜色检测装置, 其特征在于所述的测量 腔入口 (3) 前设置有过滤器 (16), 过滤器 (16) 包括有筒体 (17)、 过滤 筛 (18)、 过滤性微粒 (19)、 过滤器入口 (20)、 过滤器出口 (21)、 反洗 液入口 (22) 及反洗液出口 (23)。
本发明提供的一种染色机染液颜色检测装置, 还包括有控制器 (15), 控制器( 15 )连接光束接收装置( 8 ),并连接和控制包括测量腔入口阀( 27 )、 测量腔出口阀 (29)、 清洗管道阀 (28) 的阀门。
本发明提供的这一种染色机染液颜色检测装置, 能广泛适用于染整行 业高温高压的特殊工作环境, 并能及时准确地检测染液颜色, 极大的提高 了染色和清洗的工作效率, 节约了大量的能源和原材料, 填补了染液颜色 检测设备的空白。 附图说明
图 1是本发明的剖面视图。
图 2是本发明的立体视图。
图 3是清洗液流动方向示意图。
图 4是本发明应用于染色机上的示意图。 图 5是过滤器的示意图。
图 6是被过滤的染液流向示意图。
图 7是反洗液的流向示意图。
图 8是过滤性微粒阻隔毛屑的示意图。 图 9是反洗时毛屑穿越过滤筛的示意图。 图 10是控制器连接各阀门的示意图。 附图中:
1 染液颜色检测装置
测量腔
3 测量腔入口
测量腔出口
(包括 5A、 5B ) 透镜
清洗管道
光束发射装置
8 光束接收装置
内法兰
10 外法兰
11 防漏密封垫
12硅圈
13 染色机缸体
14循环喉路
15 控制器
16 过滤器
17 筒体
18 过滤筛
19 过滤性微粒
20 过滤器入口
21 过滤器出口
22 反洗液入口
23 反洗液出口 24 过滤器入口阀
25 反洗液入口阀
26 反洗液出口阀
27 测量腔入口阀
28 清洗管道阀
29 测量腔出口阀
30 注入阀
31 排放阀 具体实施方式
下面通过附图和实施例, 对本发明作进一步阐述。
本发明实现了将颜色检测技术应用于染色机, 并结合染色机自动控制 系统将检测器提供的数据应用于染液的控制, 以颜色检测数据作为染液调 节的指标, 可以执行染色机的任何指定动作, 其中包括染色系统的注入和 排水。 图 1是本发明实施例的剖面视图。 如图 1所示, 本实施例为一个染 色机染液颜色检测装置。 测量腔 2的腔壁有测量腔入口 3,测量腔 2顶端 连接测量腔出口 4。测量腔 2两端各安装一个内法兰 9, 大小相配合的外法 兰 10与内法兰 9用螺丝相连。测量腔两端的内外法兰之间分别安装有透镜 5A、 5B, 内法兰(9)及外法兰(10)与透镜(5 )之间设有防漏密封垫(11 ), 外法兰 (10 ) 分别与光束发射装置 (7 ) 及光束接收装置 (8 ) 之间设有硅 圈 (12 ) (图 1中左侧的外法兰和内法兰是外观视图, 右侧的外法兰和内法 兰是剖面视图)。外法兰外两端分别有光束发射装置 7以及光束接收装置 8。 测量腔壁的上方置有清洗管道 6。
测量腔入口及测量腔出口均连接染色机内的染液循环, 使本发明的通 道成为染液主循环的一部分并独立地形成一副循环。 测量腔入口及测量腔 出口分别位于测量腔旁边及顶部, 当测量腔注入染液时, 光束发射装置 7 发射出光线通过透镜穿越染液, 并通过另一透镜后由光束接收装置 8接受 禾口感应。
外法兰和内法兰都是中空的环形设计, 目的是让光线可在外法兰一侧 穿过所述透镜进入测量腔, 再由另一侧法兰离开。 如图 1所示, 图 1的箭 嘴标示出光线的走向。
测量腔入口 3连接染液循环系统, 染液经测量腔入口 3进入测量腔, 作为检测器对染液色度验测的试样。 染液经过测量腔之后经测量腔出口 4 流出。 测量腔出口的水平位置高于测量腔入口, 目的是为避免测量腔中产 生气泡。
如图 1 的箭嘴所示, 在测量腔中有染液的情况下, 位于测量腔一端的 光束发射装置 7发出的光束会依次通过外法兰中间的小孔, 透镜, 内法兰 中间的小孔, 测量腔内的染液试样, 另一端的外法兰中间的小孔, 透镜, 内法兰中间的小孔, 到达光束接收装置 8。 光束接收装置收集到的信息经 由控制中心 15分析染液的颜色。
由于在染色的过程中, 染液混合不同种类的化学物, 加上行进中撞击 喉管, 必定会产生泡沬, 因此本实施例在入口和出口处分别安装有测量腔 入口阀 27和测量腔出口阀 29, 通过控制上述两个阀门于染液充分流入测 量腔后关闭, 使测量腔内的液流处于静止, 泡沬在一定时间后自然地爆破, 光束接收装置便可得到准确的染液颜色的信息。 其后出入口的阀门会再度 开启, 使染液可以从测量腔出口流出, 由另一端流入测量腔的染液补充。 阀门在整个检测过程中不断地重复开启关闭, 这个截流采样测量的方法会 不断地重复以对染液进行实时检测。
图 2是本发明的立体视图, 图 3显示了清洗液体流动方向。 本实施例 设置有防漏密封垫 1 1及硅圈 12, 以防止染液渗漏发生。 当颜色检测程序 完成后,染液会残留在透镜 5上从而影响光束接收装置的工作而出现误差, 尤其是处染不同颜色时。 为了维持检测器的精确运作, 本实施例包括有一 个自动化透镜清洗装置:一呈倒 Y形的清洗管道 6穿过测量腔顶部的外壳, 其开岔的管道末端指向两块透镜 5, 如图 2本发明的立体图所示。 所述清 洗管道于测量腔外的一端连接清洗液的供应源。 清洗液通常是一种用作清 洗物料表面的溶剂或纯水。 清洗液会通过分岔的喉路, 喷射到两边的透镜 上, 从而将透镜上的残留染液冲去, 所述清洗液的啧洒方向如图 3的箭头 所示。 在颜色检测的过程中清洗液不会被导入测量腔以免干扰染液的化学 成分。 为控制清洗液进入测量腔的时机及流量, 本实施例在清洗管道往外 连接清洗液源的管道上设置有清洗管道阀 2——并由控制器 15控制。 所述控制器 15可以通过染色机上各种传感器回馈的信号,识别染色过 程中的状况, 并调节染色系统上各个阀门的开关。 通过控制器上的程序, 可以识别在颜色检测过程完结时开启清洗管道阀 28。
图 4显示了安装有本实施例的染色机工作示意图。 本实施例通过如下 的设置应用于一染色系统上并用作检测染液的颜色, 回馈信号予染色系统 中的控制系统。 所述设置包括有染色机缸体 13、 循环喉路 14、 颜色检测器 1及控制器 15等。 染色机缸体 13作为处理织物的容器, 织物被置于缸体 内与染液接触并产生染色作用。
在颜色检测系统中, 直接从染液循环中取样检验。 然而于染色过程中 毛屑会从织物上脱落并夹杂于染液内, 于染色机的管道中行走。 含有毛屑 的染液不利于进行颜色检测, 因为毛屑的存在影响到检测器采光的效率。 染色系统通常具有一染液循环喉路让染液于系统内不断运行, 以减少化学 物沉积的机会, 及通过循环喉路上的过滤器将织物脱落的毛屑隔除。 染液 颜色的检测点可设于染液离开缸体的喉路, 置于接受加工例如注料、 升降 温之前, 以量度缸体内染液的真实数据。 然而所述循环喉路的流量是巨大 的, 而且可能夹杂着泡沬, 不利于颜色检测。 如之前所述, 于染液静止的 方式下较易进行检测。本实施例是在循环喉路上另辟一条流量较小的分流, 并容许染液在此分流上的某一位置短暂停滞, 而不影响循环系统的正常操 作。 在喉路的配置上, 只需一个泵亦可做到同时供应上述两个循环系统的 染液动力, 比如将检测装置置于缸体以下的位置, 通过染液自身的重力落 入检测器中。 故此, 一种带有本发明的染色系统设置, 可将本发明置于与 主循环喉路并排的副循环喉路上。
本实施例还同时提供一种供所述检测器使用的过滤器。 所述过滤器特 别设计应用于流量较小的喉路上。 过滤器有两个出口, 分别将过滤后的染 液和残余物排出。 其过滤方式是, 使用一种沉淀性微粒将过滤染液的出口 局部遮蔽, 令残余物被隔除于沉淀层之上, 而染液则可通过微粒之间的空 隙渗透沉淀层到达染液出口并排走, 实现过滤的效果。
本实施例中,过滤器 16被安装于染液通往检测器 1的方向位于检测器 之前的位置, 如图 4所示。 在一些情况下, 检测器被设置成检测排放染液 颜色的仪器, 而检测器连接的位置则与主循环喉路分隔开, 流经检测器的 染液会一并被直接排走, 而不会预先进行过滤。 未经过滤的染液进入所述 检测器会影响其敏感度, 因为诸如毛屑的杂质会阻隔光线于测量腔 2 内的 折射。 故此在与排水喉路平衡的分流上设置检测器, 需要一个独立于循环 喉路的过滤器, 而设计上其流量规模相对是较少的。
图 5显示了所述过滤器 16的局部剖面结构。 所述过滤器包括筒体 17、 过滤筛 18、 过滤性微粒 19、 过滤器入口 20、 过滤器出口 21、 反洗液入口 22和反洗液出口 23。过滤器入口位于筒体的侧壁上, 染液从所述过滤器入 口进入筒体。 筒体是一个密封的罐, 装载染液及过滤性微粒。 筒体的顶部 和底部各有一出口, 两端出口皆以过滤筛遮盖。 筒体内盛载着一定份量的 过滤性微粒, 所述微粒会于筒体内沉淀。 然而所选择的过滤筛能隔除所述 微粒, 使微粒留在筒体内。 沉淀于筒体内的微粒覆盖着筒体底部的出口, 以致进入筒体的染液中所夹杂的物质停留于微粒层的表面, 而染液则可依 循其流体的特性, 于微粒之间往下渗透, 再穿过底部的过滤筛, 从过滤器 出口离开筒体, 其流向如图 6的箭头所示。
经过一段时间的过滤, 筒体内会积聚一定份量的杂质。 所述过滤器使 用反洗的设计将杂质从筒体中排走, 本实施例的过滤器亦包括一种自动清 洗方式。 通过从反方向注入清洗液以一并激起过滤器内的微粒和残余物, 于另一端开启残余物排放口将其排净。所述排放口亦有过滤筛将微粒隔住, 使其停留于过滤器之内, 于清洗过程完结后重新沉淀。
实现自动清洗的效果的方式是, 将筒体底部染液出口的喉路连接一条 支喉并定义为反洗液入口。 反洗液可以是任何一种液体例如自来水, 以染 液排出筒体相反的方向, 从筒体底部的过滤筛注入筒体。 反洗液会将已沉 淀的过滤性微粒与杂质一并激起, 而过滤器入口此时是关闭的, 以防杂质 回流至染液循环系统中。只有筒体顶部的出口 23是开放的, 使附带着杂质 的反洗液可经由所述筒体顶部的出口排出筒体外, 其流向如图 7的箭头所 示。 如前所述, 筒体顶部的出口亦被过滤筛所覆盖, 故此被激起的微粒只 能留于筒体内, 而杂质则能被消除。
筒体两端使用的是相同的过滤筛。 所述过滤筛能容许毛屑状的杂质通 过, 反而将体积较小的微粒截住。 关键是过滤筛网的形状, 由于染液中大 多数的杂质属于毛屑之类, 形状乃长条形, 体积虽大但截面较小。 微粒是 球状的, 其截面较大, 故此不能通过筛孔。 于正常的过滤情况下, 筒体底 部出口已被沉淀的微粒覆盖成一厚度的微粒层, 毛屑难以穿过微粒层以从 底部排出, 避免了毛屑从过滤器出口 21排出的可能。 如此一来, 进入筒体 的毛屑只能于反洗的过程中从筒体的顶部排出。
图 8进一步显示了上述特征的实施方法。 染液如图中箭头所示从过滤 器入口 20进入筒体 17, 筒体中的过滤筛 18以虚线表示, 在线的空隙代表 过滤筛上的筛孔。图中过滤性微粒 19的体积被放大成堆于过滤筛周边的球 体。 然而比例上与实际尺寸不相同, 此处只为显示所述微粒比筛孔较大。 染液中的毛屑因其体形关系被沉积的微粒隔绝于筒体底部的过滤筛以外。
图 9是反洗程序进行中筒体内的染液活动示意图。 在反洗的情况下, 过滤器入口 20是关闭的,反洗液经筒体底部的过滤筛涌出而激起已沉淀的 微粒, 已积存于筒体内的毛屑同时被激起。 筒体顶部的过滤筛与其连接的 反洗液出口被开启, 使反洗液伴随毛屑经筒体顶部离开, 流向如图中箭头 所示。 被反洗液液流影响的微粒于筒体内随液流浮动而无法将位于筒体顶 部的过滤筛覆盖, 截面较小的毛屑便可穿过筛孔。
过滤与反洗的动作应该是分开的, 其实施方式通过于筒体各出入口上 连接阀门, 以控制流体进出过滤器的方向。 如前所述, 过滤器用作过滤通 往检测器的染液, 而所使用的染液流量相对整个循环系统是相当小的, 固 此连接过滤器的各个阀门选择中, 以专门控制小流量的种类为佳, 在本实 施例的过滤器中, 用以操控反洗动作的反洗液入口及反洗液出口皆以电磁 阀控制其流量。
本实施例中包括检测器和过滤器上的任何流体进出口都安装有阀门控 制其流量, 然而这些阀门的种类是不同的。 相同的是所有阀门的开关信号 由控制器 15发出, 因应不同的程序, 控制器会发出不同组合的信号, 令指 定的阀门开启或关上。
图 10显示本发明实施例及其所属过滤器连接于控制系统上的各主要阀 门, 虚线代表控制线路, 实线代表喉路。 以下进一步说明各阀门于不同情 况下的基本动作。
如上所述, 过滤器的操作分为正常过滤及反洗两个程序。 在正常过滤 的情况下, 过滤器入口阀 24及测量腔入口阀 27是开启的, 从缸体 13排出 的染液一部分经过滤器 16进入检测器 1, 反洗液入口阀 25和反洗液出口 阀 26关闭。
于反洗的过程中, 过滤器入口阀及测量腔入口阀关闭以停止染液继续 注入过滤器。 反洗液入口阀和反洗液出口阀开启以引入反洗液及提供反洗 液排放的渠道, 清除过滤器内积存的残余物。
可以见到过滤及反洗两个动作各自开启和关闭的阀门是相反的一一通 过控制器 15执行两组阀门之间的开关切换以实现本发明的过滤方式。
本实施例可实时监测染液颜色的变化。 控制器通过读取收集的数据, 按实时情况调节染色机上各个影响颜色的促动器, 形成循环控制, 以达到 默认的颜色目标。所述的促动器包括一些控制注入和排出液体的主要阀门。
本发明的其它一种实施方式可应用于染液稀释的程序上, 其设置于图 10中显示, 包含注入阀 30和排放阀 31, 连接控制器 15, 通过控制上述阀 门的开关改变缸体 13 内的染液成分和含量。 在一般染液稀释的控制设定 上, 两个阀门同时打开, 以某一流量不断注入稀释液的同时排走同一流量 的染液, 维持系统内的水量同时不断稀释染液。 本实施例于此程序中同时 进行操作, 实时检测染液颜色的变化。 控制器可默认某目标稀释度, 并读 取检测器不停更新的数据。 控制器藉计算所述数据与注入和排出流量的数 式关系, 调节阀门的动作, 达到并完成预想的稀释度。

Claims

权 利 要 求 书
1、 一种染色机染液颜色检测装置, 其特征在于包括有测量腔 (2)、 光束发射装置(7)、光束接收装置(8),测量腔(2)设有测量腔入口(3)、 测量腔出口 (4), 测量腔 (2) 两端分别设置有透镜 (5A、 5B), 光束发 射装置(7)发射出的光线通过透镜(5A)后穿过测量腔中的染液, 再通 过透镜 (5B), 由光束接收装置 (8) 接收。
2、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的测量腔出口 (4) 的水平位置高于测量腔入口 (3)。
3、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的测量腔入口(3)和测量腔出口(4)前分别安装有测量腔入口阀(27) 和测量腔出口阀 (29)。
4、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的透镜 (5) 可承受高温高压并可穿透光线。
5、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的测量腔 (2) 设置有清洗管道 (6), 清洗管道 (6) 的一端穿过测量 腔顶部的外壳, 向外连接清洗液源, 清洗管道 (6) 的另一端分为两岔, 分别指向两块透镜 (5A、 5B)o
6、 根据权利要求 1或 5所述的染色机染液颜色检测装置, 其特征在 于的所述清洗管道 (6) 连接有清洗管道阀 (28)。
7、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的透镜 (5 A、 5B) 两侧均设置有内法兰 (9) 与外法兰 (10), 内法 兰(9)与外法兰 (10)相连接, 内法兰(9)及外法兰 (10)与透镜(5) 之间设有防漏密封垫 (11), 外法兰 (10) 分别与光束发射装置 (7) 及 光束接收装置 (8) 之间设有硅圈 (12)。
8、 根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于所 述的测量腔入口 (3) 前设置有过滤器 (16), 过滤器 (16) 包括有筒体
(17)、 过滤筛 (18)、 过滤性微粒 (19)、 过滤器入口 (20)、 过滤器出 口 (21)、 反洗液入口 (22) 及反洗液出口 (23)。
9、根据权利要求 1所述的染色机染液颜色检测装置, 其特征在于还包 括有控制器 (15), 控制器 (15)连接光束接收装置 (8), 并连接和控制包 括测量腔入口阀 (27)、 测量腔出口阀 (29)、 清洗管道阀 (28) 的阀门。
PCT/CN2013/075224 2013-05-06 2013-05-06 染色机染液颜色检测装置 WO2014179929A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/075224 WO2014179929A1 (zh) 2013-05-06 2013-05-06 染色机染液颜色检测装置
EP13883958.4A EP2995931A4 (en) 2013-05-06 2013-05-06 Dye liquor color detection apparatus for dyeing machine
IN1867DEN2015 IN2015DN01867A (zh) 2013-05-06 2015-03-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075224 WO2014179929A1 (zh) 2013-05-06 2013-05-06 染色机染液颜色检测装置

Publications (1)

Publication Number Publication Date
WO2014179929A1 true WO2014179929A1 (zh) 2014-11-13

Family

ID=51866599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075224 WO2014179929A1 (zh) 2013-05-06 2013-05-06 染色机染液颜色检测装置

Country Status (3)

Country Link
EP (1) EP2995931A4 (zh)
IN (1) IN2015DN01867A (zh)
WO (1) WO2014179929A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137327A (zh) * 2018-10-26 2019-01-04 浙江俏尔婷婷服饰有限公司 具有在线pH值检测装置的成衣滚筒染色机及其检测方法
CN113567347A (zh) * 2021-07-27 2021-10-29 塔里木大学 一种农产品无损检测装置
CN115323661A (zh) * 2022-08-31 2022-11-11 安徽弋尚纺织科技有限公司 一种纺织生产用均匀染色装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603667A (zh) * 2016-03-18 2016-05-25 广州番禺高勋染整设备制造有限公司 一种新型染色机除毛过滤系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890510A (en) * 1972-12-13 1975-06-17 Original Hanau Quarzlampen Apparatus for controlling the absorption of dye components in a fluid
FR2861099A1 (fr) * 2003-10-21 2005-04-22 Georges Marc Cornuejols Procede et dispositif de controle de machine de teinture
US7437897B2 (en) * 2002-05-31 2008-10-21 Dyecontrol By Loris Bellini E. Zaitex S.R.L. Dyeing machine with automatic in-line dip depletion control
CN202903669U (zh) * 2012-10-18 2013-04-24 中国计量学院 一种连缸印染过程中的染料浓度在线检测装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE631668A (zh) * 1962-05-03
DE2515499C3 (de) * 1975-04-09 1978-11-02 Original Hanau Quarzlampen Gmbh, 6450 Hanau Vorrichtung zur Steuerung des Aufziehens von mindestens einer in einer Färbeflotte enthaltenen Farbkqmponenten auf Textilgut o.dgl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890510A (en) * 1972-12-13 1975-06-17 Original Hanau Quarzlampen Apparatus for controlling the absorption of dye components in a fluid
US7437897B2 (en) * 2002-05-31 2008-10-21 Dyecontrol By Loris Bellini E. Zaitex S.R.L. Dyeing machine with automatic in-line dip depletion control
FR2861099A1 (fr) * 2003-10-21 2005-04-22 Georges Marc Cornuejols Procede et dispositif de controle de machine de teinture
CN202903669U (zh) * 2012-10-18 2013-04-24 中国计量学院 一种连缸印染过程中的染料浓度在线检测装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137327A (zh) * 2018-10-26 2019-01-04 浙江俏尔婷婷服饰有限公司 具有在线pH值检测装置的成衣滚筒染色机及其检测方法
CN109137327B (zh) * 2018-10-26 2023-10-13 浙江俏尔婷婷服饰有限公司 具有在线pH值检测装置的成衣滚筒染色机及其检测方法
CN113567347A (zh) * 2021-07-27 2021-10-29 塔里木大学 一种农产品无损检测装置
CN113567347B (zh) * 2021-07-27 2023-10-20 塔里木大学 一种农产品无损检测装置
CN115323661A (zh) * 2022-08-31 2022-11-11 安徽弋尚纺织科技有限公司 一种纺织生产用均匀染色装置

Also Published As

Publication number Publication date
EP2995931A1 (en) 2016-03-16
EP2995931A4 (en) 2017-03-22
IN2015DN01867A (zh) 2015-07-31

Similar Documents

Publication Publication Date Title
WO2014179929A1 (zh) 染色机染液颜色检测装置
KR100964219B1 (ko) 수질오염 모니터링을 위한 수질오염 자동측정장치의 자동 세정장치
TWI555898B (zh) Detection and Control of Washing Procedure for Dyeing Machine
CN106283534A (zh) 一种絮凝洗衣机及其控制方法
TWI551849B (zh) Dyeing machine dyeing liquid color detection device
WO2014179930A1 (zh) 染色机水洗程序的检测和控制方法
CN106932260A (zh) 海水水样自动过滤及反冲洗装置
CN105865845B (zh) 一种水处理在线取样分析系统
CN208334182U (zh) 一种工业废水自动化检测系统
CN107300525A (zh) 一种水质分析仪
WO2006043900A1 (en) A water quality testing system
CN105905962A (zh) 一种cod稳定达标排放装置
KR20130127831A (ko) 유량 변화에 따라 자동역세척이 가능한 2-bed type 여과필터
CN203270293U (zh) 染色机染液颜色检测装置
KR101164600B1 (ko) 표면장력 저감을 이용한 막의 완결성 시험방법
KR20130127830A (ko) 압력 변화에 따라 자동역세척이 가능한 2-bed type 여과필터
KR101519799B1 (ko) 경수로 원자력발전소 증기발생기 세관 누설 온라인 감시를 위한 자외선-가시광선 분광광도측정장치와 이온크로마토그래피를 이용하는 붕소이온의 검출방법 및 검출시스템
CN209280528U (zh) 一种粒子分析仪及其液路系统
JP5905302B2 (ja) 表面付着物測定装置
CA2907911C (en) Device and method for sampling, preparing and analysing a sample
CN205773454U (zh) 一种cod稳定达标排放装置
CN207300848U (zh) 一种水质分析仪
KR101490765B1 (ko) 탁수 유입 급속 차단 밸브
KR20130127832A (ko) 시간 변화에 따라 자동역세척이 가능한 2-bed type 여과필터
CN208145550U (zh) 一种具备自动清洗功能的过滤装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013883958

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE