WO2014178420A1 - 辛みがなく、催涙成分の生成がないタマネギ - Google Patents

辛みがなく、催涙成分の生成がないタマネギ Download PDF

Info

Publication number
WO2014178420A1
WO2014178420A1 PCT/JP2014/062059 JP2014062059W WO2014178420A1 WO 2014178420 A1 WO2014178420 A1 WO 2014178420A1 JP 2014062059 W JP2014062059 W JP 2014062059W WO 2014178420 A1 WO2014178420 A1 WO 2014178420A1
Authority
WO
WIPO (PCT)
Prior art keywords
onion
plant
alliinase
expression
onion plant
Prior art date
Application number
PCT/JP2014/062059
Other languages
English (en)
French (fr)
Inventor
雅博 加藤
仁慈 正野
典也 正村
今井 真介
庸宏 鎌田
Original Assignee
ハウス食品グループ本社株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハウス食品グループ本社株式会社 filed Critical ハウス食品グループ本社株式会社
Priority to ES14791132T priority Critical patent/ES2699989T3/es
Priority to CN201480024690.2A priority patent/CN105377022B/zh
Priority to US14/888,296 priority patent/US10271500B2/en
Priority to EP14791132.5A priority patent/EP2992756B1/en
Priority to NZ713186A priority patent/NZ713186A/en
Priority to DK14791132.5T priority patent/DK2992756T3/en
Priority to JP2014527376A priority patent/JP5671657B1/ja
Priority to PL14791132T priority patent/PL2992756T3/pl
Publication of WO2014178420A1 publication Critical patent/WO2014178420A1/ja
Priority to HK16110535.3A priority patent/HK1222296A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/04Stems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/04Amaryllidaceae, e.g. onion
    • A01H6/045Allium cepa [onion]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase

Definitions

  • the present invention relates to an onion that has very little or no pungency and tearing ability, and a method for producing the onion.
  • the substrate trans-1-propenyl cysteine sulfoxide undergoes degradation by alliinase and sulfenic acid (1-propenyl sulfenic acid) is converted from one molecule of PRENCSO. acid), pyruvic acid, and ammonia are generated one molecule each.
  • the produced sulfenic acid is converted into a tear factor (LF, propanethial-S-oxide), which is also a spicy component, by the action of tear factor synthase (LFS).
  • Patent Document 1 discloses a long-day onion with less hotness, and shows that the amount of pyruvic acid produced when the onion tissue is crushed is 3.0 to 5.5 ⁇ mol / g FW.
  • Patent Document 2 also discloses a long-day onion with less spiciness, and shows that the amount of pyruvic acid produced when the onion tissue is crushed is 2.5 to 5.5 ⁇ mol / g FW.
  • these onions are certainly less spicy but not completely free of spicy, and require fresh water when eaten raw.
  • An object of the present invention is to provide an onion that has very little or no feeling of hotness and tearing, and a method for producing the onion.
  • the inventors of the present invention can obtain an onion with extremely low or no feeling of hotness and tearing by suppressing the expression of the alliinase gene in onion cells. As a result, the present invention has been completed.
  • the present invention has the following features.
  • the onion plant according to [1] or [2], wherein the alliinase gene includes a base sequence encoding the following polypeptide (a)-(c), or a progeny thereof, or a part thereof: (a) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 5; (b) a polypeptide comprising an amino acid sequence having one or more amino acid deletions, substitutions, insertions and / or additions in the amino acid sequence represented by SEQ ID NO: 5 and having alliinase activity; (c) A polypeptide comprising an amino acid sequence having 90% or more identity with the amino acid sequence shown in SEQ ID NO: 5 and having alliinase activity.
  • step (iii) includes a step of selecting at least a plant of an onion exhibiting the trait b) or a part thereof.
  • step (iii) includes a step of selecting at least the onion plant or part thereof exhibiting the trait b).
  • the present invention it is possible to provide an onion that has very little or no feeling of hotness and tearing, and a method for producing the onion.
  • FIG. 1 is a schematic diagram showing a method for collecting an analytical sample from an onion sphere.
  • FIG. 2 shows the measurement result of the amount of pyruvate produced when the M4 onion sphere was disrupted.
  • FIG. 3 shows the measurement results of the remaining amount of PRENCSO after 3 hours of tissue disruption of M4 onion spheres.
  • FIG. 4 shows the measurement results of the amount of tear component (LF) produced when the M4 onion sphere was disrupted.
  • FIG. 5 shows the measurement results of the expression level of alliinase protein in M4 onion spheres.
  • FIG. 6 shows the measurement results of the expression level of alliinase gene in M4 onion spheres.
  • FIG. 1 is a schematic diagram showing a method for collecting an analytical sample from an onion sphere.
  • FIG. 2 shows the measurement result of the amount of pyruvate produced when the M4 onion sphere was disrupted.
  • FIG. 3 shows the measurement results of the remaining amount of PRENCSO after 3 hours of tissue disruption of
  • FIG. 7 shows the results of measurement of the amount of tear component (LF) produced when alliinase was added during tissue disruption of M4 onion spheres.
  • FIG. 8 is a photographic view showing a bud portion (emerged leaf portion including a disc stem) in the center portion taken out from the onion bulb.
  • FIG. 9 is a photograph showing a culture obtained by culturing callus in a regeneration medium. The arrow indicates the smooth structure observed in the culture.
  • FIG. 10 is a photograph showing a plant obtained by redifferentiation from callus.
  • FIG. 11 shows the expression analysis and annotation results of alliinase gene in # 6 strain onion sphere and control onion sphere.
  • FIG. 12 shows the amino acid sequence encoded by the alliinase gene whose expression was remarkably suppressed in the # 6 strain onion sphere.
  • the onion of the present invention is characterized in that the expression of the alliinase gene is suppressed.
  • the term “onion plant body” means an onion plant body and a part of the plant body unless otherwise specified.
  • plant part means onion seed, bulb, bulb, leaf, stem, bud, flower, bud, pollen, ovule, and cells and tissues derived from them, protoplasts, and callus To do.
  • Seeds of onion include seeds deposited internationally as NCIMB 42219, and callus of onion includes callus deposited internationally as FERM BP-22260.
  • the onion bulb or onion bulb may be simply referred to as “onion”, but these terms may be used interchangeably.
  • the “offspring” of the onion plant body means an onion having a history produced by using the onion plant body of the present invention or a part thereof using sexual reproduction and / or asexual reproduction. Which is an onion plant having a characteristic that the expression of the alliinase gene is suppressed as compared with the conventional variety.
  • the plant body of the onion of the present invention and its progeny can be cultivated according to the general cultivation method of the varieties used, and seed propagation is possible.
  • callus can be induced from a part of the tissue.
  • callus derived in this way can be easily re-differentiated by adjusting the culture medium composition and culture conditions, and can regenerate plants that have no difference in properties from those grown from seeds. ing.
  • This property is of course also applicable to onions, and the plant can be redifferentiated from callus made from sphere growth points, pollen, ovules, buds, buds, etc.
  • seeds obtained from the plant body have the same properties as the plant body grown from the seed and the seed obtained from the plant body.
  • onion cell means a cell contained in an onion plant body, preferably an onion bulb or an onion bulb.
  • allinase gene is a general term for a plurality of alliinase genes including one or a plurality of single nucleotide polymorphisms (SNPs) unless otherwise specified.
  • the “aliinase gene” is a specific alliinase gene that mainly contributes to the production of spiciness components and tearing components.
  • Such specific alliinase genes are reduced in the formation of spiciness and tear components using one or more evaluation and measurement methods consisting of sensory evaluation, pyruvate production amount, residual PRENCSO production amount and LF production production as described below.
  • the expression level of the specific alliinase gene can be, for example, 1:50 or more, preferably 1: 100 or more, more preferably 1: 1000 or more in the selected onion: onion onion.
  • Such a specific alliinase gene includes or consists of a base sequence encoding a polypeptide of (a)-(c) below: (a) a polypeptide comprising or consisting of the amino acid sequence represented by SEQ ID NO: 5; (b) a polypeptide comprising or consisting of an amino acid sequence having a deletion, substitution, insertion and / or addition of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 5 and having alliinase activity ; (c) 70% or more, 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity with the amino acid sequence represented by SEQ ID NO: 5 A polypeptide comprising or consisting of an amino acid sequence and having alliinase activity.
  • “plurality” means 10, 9, 8, 7, 6, 5, 4, 3, or 2.
  • comparison of amino acid sequences can be performed by a known method, for example, BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information (Basic Local Alignment Search Tool of the National Center for Biological Information))
  • BLAST Basic Local Alignment Search Tool at the National Center for Biological Information
  • allinase activity means the activity of decomposing PRENCSO to produce sulfenic acid, pyruvic acid, and ammonia.
  • the alliinase activity can be measured using the method described in detail in the following examples.
  • a substance produced by decomposing PRENCSO or a substance further produced from the substance (sulfenic acid is LF by the action of LFS). Can be detected and measured by HPLC.
  • SEQ ID NO: 5 has Accession numbers AAA32639.1, AAA92463.1, AAD26853 .1 and 99.8% (478a.a./479a.a.), 99.8% (478a.a./479a.a.) And 98.7% (473a.a./479a.a.), Respectively. Show.
  • the expression of the alliinase gene is suppressed compared to the conventional variety means that the expression level of the alliinase gene in the onion cells is significantly lower than the expression level of the alliinase gene in the conventional onion cells, For example, less than 1/50, less than 1/100, less than 1/200, less than 1/300, less than 1/400, less than 1/500, less than 1/600, less than 1/700, 800 ⁇ 1/1000, ⁇ 1/900, ⁇ 1000, ⁇ 2000, ⁇ 3000, ⁇ 4000, ⁇ 5000, ⁇ 6000, 7000 It means less than 1, less than 1/8000, less than 1/9000, less than 1 / 10,000, or less.
  • the expression of the gene may not be deleted or may be deleted.
  • “conventional varieties” include general onions that are spicy and tearing when onion cells are disrupted.
  • existing general spring-seeded onions for example, Super Kita maple and Kita maple 2000, North maple, Sapporo yellow, Polestar, Tsukihikari, Kitami yellow, Moonlight No. 22, Okhotsk, etc.
  • autumn sowing grown onions eg, Osaka Maru, Sennan Kotaka, Quanzhou Chuko Yellow, Satsuki, Maple, etc.
  • super north maple, north maple 2000, Sapporo yellow, etc. are mentioned.
  • Conventional varieties include the following mutagenesis methods, genetic recombination methods, and onions (parent strains) before being subjected to breeding mating, spring onions (for example, Super Kita-momiji, Kita-momiji 2000, Sapporo Huang) Onion having an expression level of the alliinase gene of 40 or more, 50 or more, 60 or more, 70 or more, 80 or more, 90 or more, or 100 or more when the expression level of the alliinase gene is 100.
  • “conventional varieties” are used in the same meaning in this specification.
  • the expression of the alliinase gene is suppressed as compared with the conventional varieties. Therefore, when the onion cell is disrupted, PRENCSO contained in the onion cell remains without being decomposed / converted by the action of the alliinase. As a result, the amount of pyruvic acid and sulfenic acid produced is lower than the amount produced when onion cells from conventional varieties are disrupted, and it is a pungent component and a tear component obtained by LFS acting on sulfenic acid. The amount of LF produced is lower than the amount produced when disrupting onion cells derived from conventional varieties.
  • the onion of the present invention preferably has a residual PRENCSO amount of 2.0 ⁇ mol / g FW or more, more preferably 3.0 ⁇ mol / g FW or more, more preferably 4.0 ⁇ mol / g FW or more, particularly preferably 5.0 ⁇ mol / g FW or more.
  • the onion of the present invention preferably has a pyruvic acid production amount of 2.0 ⁇ mol / g FW or less, more preferably 1.5 ⁇ mol / g FW or less, more preferably 1.0 ⁇ mol / g / FW or less, particularly preferably 0.5. It is below ⁇ mol / g / FW.
  • the onion of the present invention has an LF production amount of approximately 1.0 ⁇ 10 6 peak area / ⁇ l or less, more preferably 9.0 ⁇ 10 5 peak area / extract, after approximately 1 minute and 20 seconds from onion cell disruption.
  • ⁇ l or less 8.0x10 5 Peak area extract / ⁇ l or less, 7.0x10 5 Peak area / extract solution ⁇ l or less, or 6.0x10 5 Peak area / extract solution ⁇ l or less, more preferably 5.0x10 5 Peak area / extract solution ⁇ l or less 4.0 ⁇ 10 5 Peak area / ⁇ l or less, 3.0 ⁇ 10 5 Peak area / ⁇ l or less, 2.0 ⁇ 10 5 Peak area / ⁇ l or less, or 1.0 ⁇ 10 5 Peak area / ⁇ l or less.
  • the onion of the present invention has very little or no feeling of hotness when onion cells are disrupted compared to the onion of conventional varieties, so even on adults and children who are not good at hotness of onion, You can eat raw without having to. Moreover, since there is no need for water exposure when eating raw, onion nutrients such as quercetin, which is considered to be good for health, do not flow into the water, so that nutrients can be efficiently consumed. In addition, the fact that no water exposure is necessary indicates that a water exposure process is not necessary in a factory that manufactures sliced onions industrially, which leads to a reduction in production cost.
  • the onion of the present invention does not have tearing properties, cooking at home and the working environment in a large-scale peeled onion manufacturing plant can be greatly improved.
  • processed food ingredients that have not been used until now, such as unheated vegetable ingredients (cut vegetables), heated vegetable ingredients ( A sweet roasted onion can be prepared in a short time), and a seasoning (PRENCSO is an amino acid and can add richness to cooking) can be easily prepared.
  • the onion of the present invention has a significantly higher residual amount of PRENCSO at the time of onion cell disruption than the onion of the conventional variety.
  • PRENCSO has been confirmed to have health functionality (Japanese Patent Laid-Open No. 2007-210918), and is expected to be a functional material.
  • WHO Patent Laid-Open No. 2007-210918 Japanese Patent Laid-Open No. 2007-210918
  • PRENCSO is decomposed / converted in the course of cooking and processing, so it is not easy to consume PRENCSO even if you eat onions.
  • PRENCSO remains without being decomposed / converted by the action of alliinase, so that PRENCSO can be easily and efficiently ingested.
  • the onion of the present invention can be produced using a mutagenesis method or a gene recombination technique.
  • the onion seed is subjected to known mutagenesis treatment (for example, chemical treatment using ethyl methanesulfonate (EMS), ⁇ -ray, X-ray, heavy ion beam, etc.). It can be carried out by subjecting it to the physical treatment used.
  • the heavy ion beam to be used is not particularly limited as long as it can induce mutation, and for example, a nitrogen ion beam, a carbon ion beam, a neon ion beam, an argon ion beam, or the like can be used.
  • the dose of the heavy ion beam can be appropriately determined according to the type of ion beam used, the amount of seeds, and the like, and can be determined with reference to the germination rate and normal growth rate from the irradiated seeds. Specifically, it is preferable to select a dose at which the germination rate is about 80% or more and the normal growth individual rate in the germination individuals is 50% or more.
  • the dose of the heavy ion beam can be selected from the range of 5 to 50 Gray, preferably 10 to 40 mm Gray, and more preferably 20 to 30 mm Gray.
  • ⁇ Onion seeds are not limited to specific varieties, and conventional varieties can be used.
  • the seeds that have been subjected to the mutagenesis treatment are cultivated in accordance with the usual onion cultivation procedure, and are then headed.
  • the target onion sphere in which the expression of the alliinase gene is suppressed can be obtained by the evaluation selection method described below.
  • the seeds obtained by self-breeding are cultivated again for the onion bulbs selected in this way, and the onion bulbs obtained therefrom are evaluated and selected. By repeating this step one or more times, the desired onion line in which the expression of the alliinase gene is stably suppressed can be obtained.
  • tissue used for evaluation selection does not need to be a bulbed onion sphere, and tissues other than spheres, such as a growing leaf, can also be used.
  • a technique capable of suppressing (including deletion) the expression of the alliinase gene can be used.
  • examples of such techniques include disruption of the alliinase gene and / or disruption of the expression regulatory region of the alliinase gene.
  • the “allinase gene expression regulatory region” is a region that regulates the expression (transcription) of the alliinase gene, and the region includes a promoter region and / or an enhancer region.
  • the term “disruption” means that a mutation is introduced into the alliinase gene and / or the alliinase gene expression regulatory region, thereby eliminating or suppressing the alliinase gene expression.
  • the mutation introduced into the alliinase gene and / or the expression control region of the alliinase gene is not particularly limited as long as the alliinase gene expression can be deleted or suppressed, and one or more bases are replaced, deleted, inserted, And / or by adding.
  • it can be performed by deleting part or all of the alliinase gene and / or the expression control region of the alliinase gene.
  • Introduction of the mutation into the alliinase gene and / or the expression control region of the alliinase gene can be performed by a known technique using a homologous recombination technique. For example, double crossover by homologous recombination method and the like can be mentioned.
  • the alliinase gene derived from the host onion and / or the expression control region of the alliinase gene are cloned into a general vector known to those skilled in the art for gene transfer.
  • the upstream region containing the alliinase gene or the alliinase gene is designed and synthesized based on the base sequence information of the onion alliinase gene, and a cDNA library or genome derived from the onion serving as the host using the primer or probe. It can be obtained by screening the library.
  • the vector may be any vector generally known for plant transformation. For example, a binary vector or other vectors can be used.
  • the binary vector contains two approximately 25 bp border sequences of Agrobacterium T-DNA, right border (RB) and left border (LB), and the regulation of expression of the alliinase gene and / or alliinase gene between both border sequences.
  • An area is inserted.
  • a mutation is introduced into the base sequence of the cloned alliinase gene and / or the expression control region of the alliinase gene, and a DNA construct containing the alliinase gene having the mutation and / or the expression control region of the alliinase gene is prepared. Mutation can be introduced by, for example, a mutagenesis method based on the PCR method.
  • an alliinase gene having a mutation on the DNA construct and / or an expression control region of the alliinase gene, and an alliinase gene and / or an expression control region of the alliinase gene on the host chromosome Can cause homologous recombination and destroy the host alliinase gene and / or the expression control region of the alliinase gene.
  • transformation methods for introducing the vector constructed as described above into the host onion cells include methods using Agrobacterium.
  • gene guns, electroporation, and the like can also be introduced by viral vectors, floral dip method, leaf disk method and the like.
  • plant transformation technology and tissue culture technology for example, written by Shujunsha (2001), from Isao Shimamoto, supervised by Kiyotaka Okada, plant cell engineering series 15, experimental protocols for model plants, genetic methods to genome analysis Has been.
  • a plant cell, callus or plant tissue fragment is prepared, and this is infected with Agrobacterium, and the alliinase gene having the mutation and / or the expression control region of the alliinase gene Is introduced into plant cells.
  • a phenolic compound acetosyringone
  • the cells can be transformed efficiently.
  • an Agrobacterium solution is prepared, and the onion callus or tissue (eg, leaf pieces, roots, stem pieces, growth points, etc.) serving as a host is immersed in this solution for several minutes to remove moisture. After that, it is placed on a solid medium and co-cultured.
  • Callus is a plant cell mass, and can be induced from a plant tissue piece or a mature seed using a callus induction medium. The transformed callus or tissue piece is selected, and then the callus can be redifferentiated into a young plant body in a regeneration medium.
  • callus can be induced from the tissue piece and re-differentiated into a young plant body, or protoplasts can be prepared from the tissue piece and re-differentiated into a young plant body through callus culture.
  • the seedlings thus obtained are transferred to soil after rooting and regenerated into plants. From this plant, general cultivation methods (Tanikawa T, Takagi M, Ichii M (1996) Plan regeneration from suspension cultures of onion (Allium cepa L.). Plan Tissue Cult Lett 13: 259-264; Eady CC ( 2002) Genetic Transformation of Onions. In: Rabinowitch HD, Currah L (eds) Allium Crop Science: Recent Advances, CABI Publishing, New York, pp 119-144).
  • an Agrobacterium solution is prepared, and after immersing the onion flower buds, which are grown until immature flower buds are developed, into the bacterial solution, Grow as it is and harvest the seeds.
  • Plants of genetically modified onions can be obtained by selecting the individuals transformed by sowing the harvested seeds, transferring the selected individuals to the soil and growing them.
  • the onion plant thus obtained is cultivated in the usual onion cultivation procedure and then balled.
  • the target onion sphere in which the expression of the alliinase gene is suppressed can be obtained by the evaluation selection method described below.
  • the seeds obtained by self-breeding are cultivated again, and the onion bulbs obtained therefrom are evaluated and selected.
  • the alliinase gene A target onion line whose expression is stably suppressed can be obtained.
  • tissue used for evaluation selection does not need to be a bulbed onion sphere, and tissues other than spheres, such as a growing leaf, can also be used.
  • the target onion in which the expression of the alliinase gene is suppressed can be evaluated and selected by the following method.
  • the analysis sample is 1/3 to 1/2 from the top of the onion sphere, and is divided into two along a plane perpendicular to the vertical axis of the sphere (the axis passing through the base and tip of the onion sphere).
  • the sample is collected from the scales at the center of the cut surface of the obtained upper part (side including the tip) or lower part (side including the base) (see FIG. 1).
  • Scale leaves at the center of the cut surface means that the innermost scale leaves (scale leaves surrounding the buds in the axis) of the scale leaves appearing on the cut surface or the nearby scale leaves on the cut surface side refers to the surface layer.
  • the “surface layer portion” is, for example, a portion having a thickness of 2 mm to 10 mm from the cut surface.
  • the analysis sample is preferably derived from a portion other than the site including the plant growth point.
  • the bottom plate part of an onion bulb (bulb) contains a growth point. By leaving a part including this growth point, it is advantageous that a selected individual can be regenerated from the part.
  • the size of the analysis sample is not particularly limited, and may be an amount sufficient for the evaluation or measurement method.
  • Analytical samples can be crushed using a micro pestle or bead mill as necessary.
  • the crushing treatment conditions can be determined while observing the sample shape after crushing.
  • the expression level of the alliinase gene can be measured by a known method (eg, Northern blotting method, real-time PCR method, etc.) used for nucleic acid quantification.
  • a real-time PCR method is used.
  • Real-time PCR can be performed using cDNA synthesized from an analysis sample according to a conventional method.
  • the primer to be used is a pair capable of amplifying the alliinase gene, the amplification region and length are not limited.
  • the real-time PCR method to be used either the SYBR green method or the fluorescent probe method can be used.
  • the type of housekeeping gene used for correcting the gene expression level between samples is not particularly limited, and for example, a ubiquitin gene can be used.
  • the expression level of the alliinase gene when the expression level of the alliinase gene is small compared to the onion of the conventional variety, it can be evaluated and selected as the target onion in which the expression of the alliinase gene is deleted or suppressed.
  • the expression level of alliinase gene measured by the above method is less than 1/50, less than 1/100, less than 1/200, or less than 1/300 compared to the expression level of alliinase gene in conventional varieties , Less than 1/400, less than 1/500, less than 1/600, less than 1/700, less than 1/800, less than 1/900, less than 1/1000, less than 1/2000, 3000 Less than 1 / 4,000, less than 1/4000, less than 1/5000, less than 1/6000, less than 1/7000, less than 1/8000, less than 1/9000, less than 1/10000, or less The onion that is.
  • the expression level of alliinase protein can be measured by a known method (for example, Western blotting method, enzyme immunoassay (ELISA), etc.) used for protein quantification.
  • ELISA enzyme immunoassay
  • the anti-allylinase antibody used in the ELISA method may be a monoclonal antibody or a polyclonal antibody.
  • the polyclonal antibody unpurified antiserum may be used, or a polyclonal antibody purified from the antiserum may be used.
  • Sandwich ELISA can also be performed using two types of monoclonal antibodies. Examples of animals to be immunized include rabbits, rats, goats and chickens.
  • a secondary antibody bound with a detectable enzyme such as peroxidase or alkaline phosphatase
  • the sample used for the ELISA method is diluted to a concentration showing quantitativeness.
  • the analysis sample is crushed and extracted from the crushed analysis sample using an aqueous solvent to obtain a sample stock solution, which is diluted 1000-fold from the stock solution, preferably diluted 10-fold to 1000-fold, and analyzed.
  • the stock solution is diluted to 100 times, more preferably the stock solution is diluted to 50 times.
  • the analysis sample that has been crushed can be used immediately after crushing and after 3 hours (the elapsed time after crushing is not particularly limited).
  • the amount of alliinase protein when the amount of alliinase protein is small compared to the onion of the conventional variety, it can be evaluated and selected as the target onion in which the expression of the alliinase gene is deleted or suppressed.
  • the expression level of alliinase protein measured by the above method is not more than 1/30, preferably not more than 1/50, and more preferably compared to the amount of alliinase protein in onion of conventional varieties similarly measured. Select onions that are less than 1/100, less than 1/500, and less than 1/1000.
  • PRENCSO which is a substrate for the spicy component
  • sulfenic acid which is a precursor of the spicy component. Therefore, as described above, the onion evaluated and selected on the basis of the expression level of the alliinase gene or protein is significantly reduced in the hotness and tearing produced when the onion cells are crushed, compared to a general onion. Therefore, it is possible to evaluate the hotness and tearing ability of onions using the expression level of the alliinase gene or protein as an index.
  • the onion of the present invention in addition to the evaluation selection based on the expression level of the alliinase gene or protein, is based on the following ones based on the amount of spiciness and tearing components produced when part or all of the onion tissue is crushed. Or it can select using several evaluation and a measuring method.
  • the sensory evaluation evaluates the level of tearing felt when a part of the analysis sample is crushed or the degree of hotness felt when eating.
  • the sensory evaluation evaluates the level of tearing felt when a part of the analysis sample is crushed or the degree of hotness felt when eating.
  • an apparent decrease in hotness and / or tearing is felt in at least two panels compared to the onion of the conventional variety, it is evaluated as an onion with reduced hotness and / or tearing. Can be selected.
  • the degree of hotness of the onion from which the analytical sample is derived can be indirectly evaluated.
  • the amount of pyruvic acid produced can be determined by reacting with dinitrophenylhydrazine immediately after crushing the analysis sample and measuring the absorbance (515 nm) with a spectrophotometer.
  • the analytical sample one diluted to a concentration showing a quantitative property, preferably one diluted from a stock solution to 5 times is used.
  • the amount of pyruvic acid produced in the crushed analytical sample is small compared to the onion of the conventional variety, it can be evaluated and selected as an onion with reduced hotness.
  • the amount of pyruvic acid produced by the above method is 2.0 ⁇ mol / g FW or less, more preferably 1.5 ⁇ mol / g FW or less, more preferably 1.0 ⁇ mol / g / FW or less, particularly preferably 0.5 ⁇ mol / g FW or less.
  • PRENCSO residual PRENCSO amount
  • the activity of alliinase can be indirectly measured by measuring the amount of PRENCSO (residual PRENCSO amount) in the crushing liquid.
  • the amount of remaining PRENCSO can be measured using HPLC by crushing the analysis sample and using the sample after 0.5 minutes to 3 hours, preferably 3 hours.
  • the amount of PRENCSO remaining after crushing the analytical sample when the amount of PRENCSO remaining after crushing the analytical sample is large compared to the onion of the conventional variety, it can be evaluated and selected as an onion with reduced hotness and tearing.
  • the amount of residual PRENCSO measured by the above method is 2.0 ⁇ mol / g FW or more, more preferably 3.0 ⁇ mol / g FW or more, more preferably 4.0 ⁇ mol / g FW or more, particularly preferably 5.0 ⁇ mol / g FW or more.
  • LF generation amount By measuring LF, which is a hotness and tearing component generated when part or all of the onion tissue is crushed, the degree of hotness and tearing ability of the onion from which the analysis sample is derived can be evaluated.
  • the amount of LF produced can be measured using HPLC using a sample immediately after crushing the analysis sample to 3 minutes later, preferably about 1 minute 20 seconds later.
  • the amount of LF produced in the crushed analytical sample is small compared to the onion of the conventional variety, it can be evaluated and selected as an onion with reduced hotness and tearing ability.
  • the amount of LF measured by the above method is 1.0 ⁇ 10 6 Peak area / ⁇ l or less extract, more preferably 9.0 ⁇ 10 5 Peak area / ⁇ l extract or less, 8.0 ⁇ 10 5 Peak area / ⁇ l extract or less, 7.0 ⁇ 10 5 Peak area / ⁇ l extract or less, or 6.0x10 5 Peak area / ⁇ l extract or less, more preferably 5.0x10 5 Peak area / ⁇ l extract or less, 4.0x10 5 Peak area / ⁇ l extract or less, 3.0x10 5 Peak Onions that are less than area / ⁇ l extract, less than 2.0 ⁇ 10 5 Peak area / ⁇ l extract, or less than 1.0 ⁇ 10 5 Peak area / ⁇ l extract are selected.
  • the onion of the present invention produced, evaluated and selected by the above method can be cultivated according to the general cultivation method of the varieties used.
  • the onion of the present invention can be further produced by a technique using sexual reproduction or asexual reproduction.
  • a technique using sexual reproduction the onion plant of the present invention and the second onion plant are crossed to obtain seeds, and the obtained seeds are cultivated in the usual onion cultivation procedure.
  • the onion obtained as a result of the mating can be evaluated and selected for those in which the expression of the alliinase gene is suppressed by the above-described method.
  • “Mating” means self-breeding, sibling pollination, backcrossing, crossbreeding with the same or different inbred lines, or mass breeding, and “second onion” is suitable for the intended crossing.
  • the onion plant obtained as a result of the crossing one or more crosses may be similarly performed to obtain the onion of the present invention.
  • the bulb of the onion of the present invention is obtained and cultivated according to the normal onion cultivation procedure to obtain a plant body, or callus is obtained from the onion of the present invention, and this is used as a young child. It can be produced by redifferentiating into a plant body to obtain a plant body, and further by obtaining a part thereof from the obtained plant body.
  • the onion having the history produced using the onion of the present invention may be referred to as the “offspring” of the plant body of the onion of the present invention.
  • the “offspring” and the portion thereof are included in the present invention as long as the “offspring” can have a characteristic that the expression of the alliinase gene is suppressed as compared with the conventional variety.
  • Example 1 Production of spring-fired onion without spiciness and tearing (1-1) Production of M1 onion bulb Neon ion beam is applied to a plastic petri dish with a diameter of 10cm containing approximately 1500 seeds (6.08g) of super northern maple seeds with 20Gy The seeds were irradiated for irradiation (hereinafter referred to as M1). 60 grains were taken from the obtained M1 seeds, germination test was performed, and germination rate and normal incidence rate were estimated. Specifically, a golden peat van was placed in an attached plastic tray and filled with 700 mL of tap water. All the water 10-15 minutes after water injection was drained, and 60 seeds were sown in a golden peat bun swelled in a tray. After leaving it in the room overnight, it was copied and grown in a greenhouse (greenhouse set at 15 ° C). The germination rate one month after sowing was 86.7%, and the second leaf sheath appearance rate was 55.8%.
  • the scales cut out and folded in half were placed in a household plastic bag with zip (18 cm x 20 cm) (placed so that it was almost in the middle of the plastic bag with zip).
  • the zip was tightened so as not to leave as much air as possible in the plastic bag with zip. Place it on a metal plate as it is, and smash the onion scale from the top of the plastic bag with zip with a rubber hammer (about 15-20 seconds) until the scale does not remain. .
  • the sensory evaluation was performed on the openings.
  • the index of sensory evaluation was the following two points.
  • the zipped plastic bag was immediately closed and placed in a large plastic bag to prevent tearing and odor from diffusing and affect the subsequent sensory evaluation of the sample.
  • raw onion odor or weak tearing ability was judged as a positive sample, and the onion bulb of the positive sample was labeled and identified and stored refrigerated at 10 ° C.
  • the senor was evaluated for a minimum of 3 minutes before sensory evaluation to prevent a decrease in sensitivity.
  • HPLC analysis conditions The HPLC conditions used in a) to c) above are shown below. Since all three measurements were performed by HPLC analysis to the extent of LF generation, the HPLC conditions were all the same.
  • M2 Onion Spheres Selected M1 onions (9 balls, B0266, B0108, B0277, B0297, B0383, B0317, B0280, B0258, B0371) were each self-bred. As a result, about 350 seeds (71 grains from B0108, 80 grains from B0297, 200 grains from B0280, 1 grain from B0371) seeds (hereinafter referred to as M2 generation) were obtained. The obtained M2 seeds were cultivated in the same procedure as M1 cultivation to obtain M2 onion 197 balls (B0108 to 18 balls, B0297 to 73 balls, B0280 to 106 balls).
  • the analysis sample is 1/3 to 1/2 from the top of the onion sphere, and is divided into two along a plane perpendicular to the vertical axis of the sphere (the axis passing through the base and tip of the onion sphere).
  • the sample is collected from the scales at the center of the cut surface of the obtained upper part (side including the tip) or lower part (side including the base) (see FIG. 1).
  • the description of each part of the onion is as described above.
  • a 600 mg onion tissue collected from the M2 onion according to the method described in “(Preparation of analysis sample)” above was placed into an Eppendorf Safelock tube (2 ml) containing three 3 mm ⁇ zirconia balls. 0.6 mL of distilled water was added, and the mixture was crushed by a treatment of 30 Hz ⁇ 2 minutes ⁇ 3 times using a QIAGEN MM300 type bead mill. 10 ⁇ L of ground onion tissue sample was added to the wells of the ELISA plate. The ELISA plate to which the sample was added was allowed to stand for 1 hour in a thermostatic chamber adjusted to 37 ° C. After 1 hour, the ELISA plate was taken out of the thermostatic bath and proceeded to the following washing step.
  • a blocking solution (1% (w / v) BSA in coating buffer (50 mM sodium carbonate-bicarbonate buffer (pH 9.6)) is added to each well of the ELISA plate that has undergone the above washing steps ((i) to (iii)). 300 ⁇ l each was added, and the ELISA plate was left as it was for 1 hour in a thermostatic chamber adjusted to 37 ° C. After 1 hour, the above washing steps ((i) to (iii)) were repeated.
  • Each well of primary antibody (antialiinase rat antiserum diluted 1000-fold with dilution buffer (0.1% BSA in 140 mM NaCl, 10 mM Na 2 HPO 4 -NaH 2 PO 4 (pH 7.4))) on ELISA plate
  • a secondary antibody (POD conjugated anti-rat IgG whole molecule Sigma A0545 diluted 10000-fold with dilution buffer) was added to each well in an amount of 200 ⁇ l, and the ELISA plate containing the secondary antibody was conditioned at 37 ° C. After 1 hour, the above washing steps ((i) to (iii)) were repeated, and a colored reagent (TBA ELISA substrate solution (Bio-Rad 172- Immediately after the addition, the ELISA plate was shaken and stirred at 60 rpm in a constant temperature room at 25 ° C. After the addition of the coloring reagent, the microplate reader (10 to 60 minutes) was added. Absorbance at 650 nm was measured using Emax Molecular Dynamics Co., Ltd.
  • the amount of remaining PRENCSO when the above alliinase activity is 1/40 (3.26 ⁇ mol / g) is based on a model experiment using normal onions (Sapporo yellow) (6 balls) grown in the same field as M3 onion bulb cultivation. The amount of remaining PRENCSO when the alliinase activity was 1/40 was determined by measurement. Some of the selected onions were subjected to sensory evaluation of the scale leaves and examined for the presence of pungent taste.
  • these selected balls were subjected to sensory evaluation and alliinase activity measurement using leaves in the middle of cultivation aimed at self-breeding, and characteristics were advanced.
  • Example 2 Various measurements (2-1) Measurement of the amount of pyruvate produced during tissue disruption 600 mg of onion tissue sampled according to the method described in (1-4) “(Preparation of analysis sample)” above, and three zirconia balls with 3 mm ⁇ Eppendorf Safelock tube (2 mL) was added. 0.6 mL of distilled water was added, and the mixture was crushed by a treatment of 30 Hz ⁇ 2 minutes ⁇ 3 times using a QIAGEN MM300 type bead mill. After pulverization, the mixture was allowed to stand at room temperature for 10 minutes, and then centrifuged at 15000 rpm, 4 ° C. for 10 minutes to obtain a supernatant as a sample.
  • HPLC analysis conditions were as follows. Under the HPLC analysis conditions, the tear component (LF) was detected at a retention time of about 9.6 minutes.
  • the quantification of each gene was performed with 7900 HT Fast Real-Time PCR System (Applied Biosystems) using the primer set shown in the table below and THUNDERBIRD (registered trademark) SYBR (registered trademark) qPCR Mix (manufactured by TOYOBO). The results were corrected by the expression level of ubiquitin, one of the housekeeping genes.
  • Alliinase primer Forward primer 5'-AATGAGACCTCCATCCCCATC-3 '(SEQ ID NO: 1) Reverse primer 5'-TCGAAACCCTCTCCACTTTG-3 '(SEQ ID NO: 2) Ubiquitin primer: Forward primer 5'-ACGATTACACTAGAGGTGGAGAGCTC-3 '(SEQ ID NO: 3) Reverse primer 5'-CCTGCAAATATCAGCCTCTGCT-3 '(SEQ ID NO: 4)
  • Example 3 Results of various measurements and evaluations of M4 onion spheres (3-1) Sensory evaluation Two M4 onion spheres (# 6, # 10) 20 balls each, and Sapporo Yellow 5 balls as controls (1-4) Samples were collected by the method described in (Preparation of Analytical Sample), and a part of the sample was crushed by comparing the method described in “(Sensory Evaluation)”, that is, M4 onion sphere and control sphere. Sensory evaluation was performed on at least two panels to determine whether or not a clear decrease in hotness and / or tearing was felt with respect to the tearing property felt when eating or the degree of hotness felt when eating. As a result, # 6 and # 10 did not feel any pain in the whole ball (Table 1).
  • the inventors named the seed obtained from # 6 line as Allium cepa HFG-01, and on February 19, 2014, NCIMB Ltd. Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, United Kingdom Deposited internationally as NCIMB 42219.
  • the address described in this deposit certificate is the development research institute of the applicant of the present application, and the depositor is the same person as the applicant of the present application.
  • Example 5 Induction of callus from M4 onion bulbs
  • M4 onion bulbs (line # 6 above) are removed from the outer leaves, and buds at the center (emerged leaves including disc stems, Fig. 8) are removed and 1% hypochlorous acid is removed. Sterilized with aqueous sodium acid solution for 30 minutes. After the sterilized young buds were washed twice with sterilized water, the parts (outermost leaves and pedicle parts) that were damaged by sterilization were removed with a scalpel under aseptic conditions. Thereafter, the sprouting leaf part was cut into slices having a thickness of about 0.5 mm, and sections were prepared and placed on a callus induction medium.
  • the callus induction medium used at this time was 50 ⁇ M 4-dichlorophenoxyacetic acid (hereinafter referred to as “4-FPA”), 1 ⁇ M N6 (2-isopentenyl) adenine (hereinafter referred to as “2iP”),
  • 4-FPA 4-dichlorophenoxyacetic acid
  • 2iP 2-isopentenyl) adenine
  • MS Murashige Sukug
  • the culture was performed at 25 ° C. for 12 hours under illumination (40 ⁇ mol / m 2 / s).
  • One week after the start of culture the section became enlarged, and callus formation started.
  • callus subculture medium 50 ⁇ M 4-FPA, 1 ⁇ M 2iP, 0.1 M sucrose, 0.3% gellan gum was added every 4 to 6 weeks. And subcultured to obtain a callus.
  • the present inventors named the callus HFG-01C and, on December 25, 2013, the National Institute for Product Evaluation Technology Patent Biological Deposit Center (Kazusa Kamashi 2-ki Kisarazu City, Chiba Prefecture 292-0818, Japan) 5-8 Room 120) was deposited internationally under the accession number FERM BP-22260.
  • Example 6 Regeneration from callus and production of plant body (1) Redifferentiation Callus obtained in Example 5 was cultured in a regeneration medium (MS medium containing 1 ⁇ M 2iP, 0.1 M sucrose, 0.3% gellan gum). (25 ° C., 12 hours illumination (40 ⁇ mol / m 2 / s)). From about one month after the start of culture, a smooth structure was observed (FIG. 9). Cultures containing this structure were replanted in fresh regeneration medium every 4-6 weeks. From what was replanted twice in the regeneration medium. Shoots differentiated.
  • a regeneration medium MS medium containing 1 ⁇ M 2iP, 0.1 M sucrose, 0.3% gellan gum.
  • Rooting The differentiated shoots obtained in (1) above were cultured in MS medium containing 0.1M sucrose, 0.2% gellan gum, and 0.5% agar (25 ° C., 12 hours under illumination (40 ⁇ mol / m 2 / s)). One month after the start of culture, root differentiation was observed (FIG. 10), and a plant body could be obtained from callus.
  • callus can be induced from M4 onion spheres, the callus can be cultured and proliferated, and plant bodies can be obtained by redifferentiation of the obtained callus.
  • Example 7 Seeding by group mating from M4 onion bulb (M5 generation) 610 M5 seeds were obtained by mass crossing of 7 M4 onion bulbs (# 6 line). In addition, 421 M5 seeds were obtained from group crossing of 17 M4 onion bulbs (# 10 line).
  • Example 8 Analysis of alliinase gene of M4 onion sphere (# 6 line, # 10 line) In order to clarify the cause of suppression of alliinase gene expression in the above line # 6 and # 10, Differences in gene expression in typical onions (which do not suppress the expression of alliinase gene and have tingling and tearing properties) were comprehensively analyzed using a next-generation sequencer according to the following method.
  • Chastity is represented by the expression “I1 / (I1 + I2)”, where I1 is the maximum signal value from the four bases, and I2 is the next signal value. In the example, data was selected under the condition of “I1 / (I1 + I2)> 0.6”.
  • the sorted data was sorted for each sample according to each sample-specific index information.
  • BLASTX parameters are evalue 1E-5 / num_alignments 100 / outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen stitle qcovs qcovhsp" / Others used default conditions.
  • Allinase gene 1 (indicated by gene number 1 in FIG. 11) had the highest expression level among the 29 genes annotated as alliinase in the control onion sphere. From these results, it was shown that alliinase gene 1 is the alliinase gene that contributes most to the magnitude of alliinase activity of the cell among alliinase genes in onion cells.
  • alliinase gene 1 is the main alliinase gene in onion spheres, and it is possible to remarkably delete or suppress the overall alliinase gene expression in onion spheres simply by deleting or suppressing its expression. Yes, it became clear that the onion's spiciness and tearing ability can be suppressed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、辛みが極めて弱い、又は全く感じないタマネギ及びその作出方法を提供することを目的とする。 アリイナーゼ遺伝子の発現が抑制されていることを特徴とする、タマネギ。

Description

辛みがなく、催涙成分の生成がないタマネギ
 本発明は、辛み及び催涙性が極めて弱い、又は全く感じられないタマネギ及びその作出方法に関する。
 近年、子供にも食べやすい野菜を提供することや健康志向の消費者による生野菜摂取の風潮が拡まってきており、その要求に応えることが野菜の品種改良の一つの流れとなっている。しかしながら、ネギ属植物、特にタマネギは特有の辛みのために、生食が困難な野菜とされる。
 タマネギの辛み成分でありかつ催涙成分であるlachrymatory factor(LF)は、生タマネギ組織の切断や破砕に伴って進む下記の反応機構で生成されることが明らかにされている(非特許文献1)。
Figure JPOXMLDOC01-appb-C000001
 すなわち、調理や加工に伴って、タマネギの細胞破砕が引き起こされると、基質であるtrans-1-propenyl cysteine sulfoxide(PRENCSO)がアリイナーゼによる分解を受け、一分子のPRENCSOからスルフェン酸(1-propenyl sulfenic acid)、ピルビン酸、アンモニアがそれぞれ一分子ずつ生成される。次に、生成されたスルフェン酸が催涙因子合成酵素(LFS)の働きによって、辛み成分でもある催涙因子(LF、propanethial-S-oxide)となる。
 辛みの弱いタマネギとして、日本国内で「新タマネギ」と呼ばれている極早生品種がある。極早生品種のタマネギは、水分量が多く、乾物量が少ないことが特徴である。この特徴のためにPRENCSO濃度が低くなり、生成する辛み成分(催涙因子)量が少なくなる。しかしながら、極早生品種タマネギは、辛みは弱いものの、辛みが全くないという訳ではなく、生食する場合には水さらしを必要とする。そのため、水さらしという調理の手間がかかるだけでなく、水さらしにより栄養成分が流出してしまうことが問題となっている。またこの品種は貯蔵性が悪く、限られた時期にしか提供できないという問題もある。
 また、辛みの弱い品種を生み出す手法として、施肥を調整して辛みの元となる基質量を低くするという手法も実施されている。しかし、この手法を用いても基質が全くなくなる訳ではなく、一般的に生で食べて辛みが感じられなくなる程度まで辛みが弱くなることはない。
 さらに、これまでに辛みが少ないタマネギが開発・報告されている。特許文献1には、辛みが少ない長日性タマネギが開示され、当該タマネギ組織の破砕時におけるピルビン酸生成量は3.0~5.5μmol/g FWであることが示されている。また、特許文献2にも辛みが少ない長日性タマネギが開示され、当該タマネギ組織の破砕時におけるピルビン酸生成量は2.5~5.5μmol/g FWであることが示されている。しかしながら、これらのタマネギは確かに辛みは弱いが辛みが全くないという訳ではなく、生食する場合には水さらしを必要とする。
 したがって、当該分野においては依然として、辛み及び催涙性が極めて弱い、又は全く感じられないタマネギが求められていた。
特表2009-501528号公報 特表2011-510618号公報
Imai S et al.; An onion enzyme that makes the eyes water. Nature, 419, 685 (2002).
 本発明は、辛み及び催涙性が極めて弱い、又は全く感じられないタマネギ及びその作出方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究した結果、タマネギ細胞中のアリイナーゼ遺伝子の発現を抑制することによって、辛み及び催涙性が極めて弱い、又は全く感じられないタマネギが得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の特徴を有する。
[1] アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体、若しくはその子孫、又はその部分。
[2] タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている、[1]のタマネギの植物体、若しくはその子孫、又はその部分。
[3] アリイナーゼ遺伝子が以下(a)-(c)のポリペプチドをコードする塩基配列を含む、[1]又は[2]のタマネギの植物体、若しくはその子孫、又はその部分:
 (a) 配列番号5で示されるアミノ酸配列を含むポリペプチド;
 (b) 配列番号5で示されるアミノ酸配列において、一又は複数個のアミノ酸の欠失、置換、挿入及び/又は付加を有するアミノ酸配列を含み、かつアリイナーゼ活性を有するポリペプチド;
 (c) 配列番号5で示されるアミノ酸配列と、90%以上の同一性を有するアミノ酸配列を含み、かつアリイナーゼ活性を有するポリペプチド。
[4] 以下の工程:
(i) タマネギ種子に突然変異誘発処理を行う工程、
(ii) 突然変異誘発処理したタマネギ種子を栽培してタマネギの植物体又はその部分を得る工程、並びに
(iii)得られたタマネギの植物体又はその部分より以下の一又は複数の形質を示すタマネギの植物体又はその部分を選抜する工程:
 a) タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている;
 b) アリイナーゼ遺伝子又はタンパク質の発現が従来品種と比べて抑制されている;
 c) タマネギ細胞破砕時におけるピルビン酸の生成が従来品種と比べて低減されている;
 d) タマネギ細胞破砕した後の残存PRENCSO量が従来品種と比べて多い;及び
 e) タマネギ細胞破砕時における催涙因子(LF)の生成が従来品種と比べて低減されている、
を含む、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体又はその部分の製造方法。
[5] 工程(iii)が、少なくとも形質b)を示すタマネギの植物体又はその部分を選抜する工程を含む、[4]の方法。
[6] さらに、(iv) 選抜されたタマネギの植物体を自殖交配し、得られたタマネギの植物体又はその部分を工程(iii)に付す工程を一又は複数回繰り返し行う工程を含む、[4]の方法。
[7] タマネギの植物体の部分が、NCIMB 42219として国際寄託された種子である、[1]のタマネギの植物体、若しくはその子孫、又はその部分。
[8] タマネギの植物体の部分が、FERM BP-22260として国際寄託されたカルスである、[1]のタマネギの植物体、若しくはその子孫、又はその部分。
[9] 以下の工程:
(i) タマネギ種子に突然変異誘発処理を行う工程、
(ii) 突然変異誘発処理したタマネギ種子を栽培してタマネギの植物体又はその部分を得る工程、並びに
(iii)得られたタマネギの植物体又はその部分より以下の一又は複数の形質を示すタマネギの植物体又はその部分を選抜する工程:
 a) タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている;
 b)アリイナーゼ遺伝子又はタンパク質の発現が従来品種と比べて抑制されている;
 c) タマネギ細胞破砕時におけるピルビン酸の生成が従来品種と比べて低減されている;
 d) タマネギ細胞破砕した後の残存PRENCSO量が従来品種と比べて多い;及び
 e) タマネギ細胞破砕時における催涙因子(LF)の生成が従来品種と比べて低減されている、
を含む方法によって製造された、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体又はその部分。
[10] 工程(iii)が、少なくとも形質b)を示すタマネギの植物体又はその部分を選抜する工程を含む、[9]のタマネギの植物体又はその部分。
[11] 前記方法がさらに、(iv) 選抜されたタマネギを自殖交配し、得られたタマネギを工程(iii)に付す工程を一又は複数回繰り返し行う工程を含む、[9]のタマネギの植物体又はその部分。
[12] アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする第一のタマネギの植物体と、第二のタマネギの植物体とを交配することを含む、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体又はその部分の製造方法。
[13] アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする第一のタマネギの植物体と、第二のタマネギの植物体とを交配することを含む方法によって製造された、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体又はその部分。
[14] アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体の部分から得られる、タマネギの植物体、若しくはその子孫、又はその部分。
[15] アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体の種子又はカルスから得られる、[14]のタマネギの植物体、若しくはその子孫、又はその部分。
[16] 種子が、NCIMB 42219として国際寄託されたものである、[15]のタマネギの植物体、若しくはその子孫、又はその部分。
[17] カルスが、FERM BP-22260として国際寄託されたものである、[15]のタマネギの植物体、若しくはその子孫、又はその部分。
[18] タマネギの植物体又はその部分におけるアリイナーゼ遺伝子の発現量を測定し、該タマネギの植物体又はその部分の辛味を評価する方法。
[19] タマネギの植物体又はその部分におけるアリイナーゼ遺伝子の発現量を測定し、該遺伝子の発現が従来品種と比べて抑制されているタマネギの植物体又はその部分を選択することを含む、従来品種と比べて辛み成分及び催涙成分の生成が低減されているタマネギの植物体又はその部分の選択方法。
 本明細書は本願の優先権の基礎である日本国特許出願2013-096551号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、辛み及び催涙性が極めて弱い、又は全く感じられないタマネギ及びその作出方法を提供することができる。
図1はタマネギ球からの分析試料の採取方法を示す概略図である。 図2はM4タマネギ球の組織破砕時におけるピルビン酸生成量の測定結果を示す。 図3はM4タマネギ球の組織破砕3時間後のPRENCSO残存量の測定結果を示す。 図4はM4タマネギ球の組織破砕時における催涙成分(LF)生成量の測定結果を示す。 図5はM4タマネギ球のアリイナーゼタンパク質発現量の測定結果を示す。 図6はM4タマネギ球のアリイナーゼ遺伝子発現量の測定結果を示す。 図7はM4タマネギ球の組織破砕時に、アリイナーゼを添加した場合の催涙成分(LF)生成量の測定結果を示す。 図8は、タマネギ球より取り出された中心部の幼芽部分(盤茎を含む萌芽葉部分)を示す写真図である。 図9は、カルスを再分化培地にて培養して得られた培養物を示す写真図である。矢印は、培養物中に認められた滑面状の構造体を示す。 図10は、カルスより再分化して得られた植物体を示す写真図である。 図11は、#6系統のタマネギ球と対照のタマネギ球におけるアリイナーゼ遺伝子の発現解析及びアノテーション結果を示す。 図12は、#6系統のタマネギ球にて顕著に発現が抑制されたアリイナーゼ遺伝子がコードするアミノ酸配列を示す。
1.本発明のタマネギ
 本発明のタマネギは、アリイナーゼ遺伝子の発現が抑制されていることを特徴とする。
 本発明において「タマネギの植物体」とは、特記しない限り、タマネギの植物体、並びに当該植物体の部分を意味する。「植物体の部分」としては、特記しない限り、タマネギの種子、球、鱗茎、葉、茎、芽、花、葯、花粉、胚珠、並びにそれらに由来する細胞や組織、プロトプラスト、及びカルスを意味する。タマネギの種子には、NCIMB 42219として国際寄託された種子が含まれ、タマネギのカルスには、FERM BP-22260として国際寄託されたカルスが含まれる。なお、本明細書において、タマネギ球又はタマネギ鱗茎のことを、単に「タマネギ」と呼ぶ場合があるが、これらの用語は相互互換的に使用し得る。
 また、本発明において、タマネギの植物体の「子孫」とは、有性生殖及び/又は無性生殖を利用して本発明のタマネギの植物体又はその部分を用いて製造された経緯を有するタマネギの植物体であって、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されている特徴を有するタマネギの植物体を意味する。
 本発明のタマネギの植物体及びその子孫は、用いた品種の一般的な栽培方法に従って栽培を行うことができ、種子繁殖が可能である。なお、一般に植物においては、その組織の一部から、カルスが誘導できることが知られている。さらに、そのようにして誘導されたカルスは、培養培地組成や培養条件を調節することで、容易に再分化し、種子から生育した場合と性質に違いがない植物体を再生成できることも知られている。この性質は、もちろんタマネギにも当てはまり、球の生長点や花粉、胚珠、葯、幼芽などから作製したカルスから植物体の再分化を行うことができ、そのようにして再分化させた植物体やその植物体から得られる種子は、種子から生育した植物体やその植物体から得た種子と同一の性質を示す。
 本発明において「タマネギ細胞」とはタマネギの植物体、好ましくはタマネギ球又はタマネギ鱗茎に含まれる細胞を意味する。
 本発明において「アリイナーゼ遺伝子」とは特に特記しない限り、一又は複数の一塩基多型(SNP)を含む複数のアリイナーゼ遺伝子の総称である。
 好ましくは、本発明において「アリイナーゼ遺伝子」とは、辛み成分及び催涙成分の生成に主に寄与する特定のアリイナーゼ遺伝子である。このような特定のアリイナーゼ遺伝子は、下記する官能評価、ピルビン酸生成量、残存PRENCSO量及びLF生成量からなる一又は複数の評価及び測定方法を用いて、辛み成分及び催涙成分の生成が低減されているタマネギを選抜する(工程1);選抜したタマネギ、及び当該タマネギと品種が同じで且つ辛みを有するタマネギを対照として、下記実施例7で詳述する手法により、各々における発現遺伝子を次世代シーケンサーを用いて網羅的に解析し、両者間で発現量に差のある遺伝子配列を抽出する(工程2);抽出された遺伝子配列の中に、選抜したタマネギにて有意差水準で発現が抑制されており、対照のタマネギでは発現が認められるアリイナーゼ遺伝子が確認された場合、これを上記特定のアリイナーゼ遺伝子と同定する(工程3)。当該特定のアリイナーゼ遺伝子の発現量は、例えば、選抜したタマネギ: 対照のタマネギにて、1:50以上、好ましくは1:100以上、さらに好ましくは1:1000以上となり得る。
 このような特定のアリイナーゼ遺伝子としては、以下(a)-(c)のポリペプチドをコードする塩基配列を含むか、当該塩基配列よりなる:
 (a) 配列番号5で示されるアミノ酸配列を含むか、当該アミノ酸配列よりなるポリペプチド;
 (b) 配列番号5で示されるアミノ酸配列において、一又は複数個のアミノ酸の欠失、置換、挿入及び/又は付加を有するアミノ酸配列を含むか当該アミノ酸配列よりなり、かつアリイナーゼ活性を有するポリペプチド;
 (c) 配列番号5で示されるアミノ酸配列と、70%以上、80%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上の同一性を有するアミノ酸配列を含むか当該アミノ酸配列よりなり、かつアリイナーゼ活性を有するポリペプチド。
 ここで、「複数個」とは、10個、9個、8個、7個、6個、5個、4個、3個、または2個を意味する。また、アミノ酸配列の比較は、公知の手法によって行うことができ、例えば、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等を例えば、デフォルトの設定で用いて実施できる。さらに、「アリイナーゼ活性」とは、PRENCSOを分解し、スルフェン酸、ピルビン酸、及びアンモニアを生成する活性を意味する。アリイナーゼ活性は、下記実施例に詳述する手法を用いて測定することが可能であり、PRENCSOが分解され生成される物質、または当該物質よりさらに生成される物質(スルフェン酸がLFSの働きによってLFとなる)をHPLCにより検出・測定することにより行うことができる。
 なお、配列番号5で示されるアミノ酸配列をクエリー配列として、NCBIのProtein Blast(パラメーターはデフォルトを使用)を用いた検索した結果、配列番号5は、Accession番号がAAA32639.1、AAA92463.1、AAD26853.1とそれぞれ99.8%(478a.a./479a.a.)、99.8%(478a.a./479a.a.)、98.7%(473a.a./479a.a.)と高い相同性を示す。
 本発明において「アリイナーゼ遺伝子の発現が従来品種と比べて抑制されている」とは、タマネギ細胞におけるアリイナーゼ遺伝子の発現レベルが、従来品種のタマネギ細胞におけるアリイナーゼ遺伝子の発現レベルと比べて顕著に低い、例えば50分の1未満、100分の1未満、200分の1未満、300分の1未満、400分の1未満、500分の1未満、600分の1未満、700分の1未満、800分の1未満、900分の1未満、1000分の1未満、2000分の1未満、3000分の1未満、4000分の1未満、5000分の1未満、6000分の1未満、7000分の1未満、8000分の1未満、9000分の1未満、10000分の1未満、又はそれ以下であることを意味する。当該遺伝子の発現は欠失していなくてもよいし、欠失していてもよい。
 本明細書において「従来品種」とは、タマネギ細胞破砕時に辛み及び催涙性が感じられる一般的なタマネギが挙げられ、例えば、既存の一般的な春播き栽培タマネギ(例えば、スーパー北もみじ、北もみじ2000、北もみじ、札幌黄、ポールスター、ツキヒカリ、北見黄、月光22号、オホーツク等)、秋播き栽培タマネギ(例えば、大阪丸、泉南甲高、泉州中甲黄、さつき、もみじ等)が挙げられ、好ましくは、スーパー北もみじ、北もみじ2000、札幌黄等が挙げられる。従来品種としては、下記突然変異誘発法や遺伝子組換え手法、及び育種交配に付される前のタマネギ(親株)や、春蒔きのタマネギ(例えば、スーパー北もみじ、北もみじ2000、札幌黄等)のアリイナーゼ遺伝子の発現量を100とした場合に、40以上、50以上、60以上、70以上、80以上、90以上、又は100以上となるアリイナーゼ遺伝子の発現量を有するタマネギ等が挙げられる。以下、本明細書において「従来品種」とは、同じ意味で使用する。
 本発明のタマネギは、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることから、タマネギ細胞破砕時に、タマネギ細胞に含まれるPRENCSOがアリイナーゼの作用により分解/変換されることなく残存する。これによりピルビン酸、及びスルフェン酸の生成量は、従来品種由来のタマネギ細胞破砕時におけるそれらの生成量と比べて低下し、並びにスルフェン酸にLFSが作用して得られる辛み成分及び催涙成分であるLFの生成量が、従来品種由来のタマネギ細胞破砕時におけるその生成量と比べて低下する。これにより本発明のタマネギにおいては、従来品種のタマネギと比べてタマネギ細胞破砕時に感じられる辛み及び催涙性が極めて弱いか、又は全く感じられない。本発明のタマネギは、好ましくは残存PRENCSO量が2.0μmol/gFW以上、さらに好ましくは3.0μmol/gFW以上、より好ましくは4.0μmol/g FW以上、特に好ましくは5.0μmol/gFW以上、である。ならびに/あるいは、本発明のタマネギは、好ましくは、ピルビン酸生成量が2.0μmol/g FW以下、さらに好ましくは1.5μmol/g FW以下、より好ましくは1.0μmol/g/FW以下、特に好ましくは0.5μmol/g/FW以下である。ならびに/あるいは、本発明のタマネギは、タマネギ細胞破砕からおよそ1分20秒後のLF生成量が、好ましくは1.0x106Peak area/抽出液μl以下、より好ましくは9.0x105 Peak area/抽出液μl以下、8.0x105 Peak area抽出液/μl以下、7.0x105 Peak area/抽出液μl以下、又は6.0x105 Peak area/抽出液μl以下、さらに好ましくは5.0x105 Peak area/抽出液μl以下、4.0x105 Peak area/抽出液μl以下、3.0x105 Peak area/抽出液μl以下、2.0x105 Peak area/抽出液μl以下、又は1.0x105 Peak area/抽出液μl以下である。
 本発明のタマネギは、従来品種のタマネギと比べてタマネギ細胞破砕時に感じられる辛みが極めて弱いか、又は全く感じられないことから、タマネギの辛みが苦手な大人や子供であっても、水さらしをすることなく生で食することができる。また、生で食する際に、水さらしの必要がないので、タマネギの栄養素、例えば健康に良いとされるケルセチンが水中に流れでることがなく、栄養素を効率的に摂取することができる。また、水さらしが必要ないことは、工業的にスライスタマネギを製造する工場において、水さらし工程が必要ないことを示し、製造コストを低下させることにもつながる。
 さらに、本発明のタマネギは催涙性を有さないことから、家庭での調理や、大規模な剥きタマネギ製造工場での作業環境を大幅に改善することができる。
 さらにまた、本発明のタマネギは辛みが極めて弱いか、又は全く感じられないことから、これまでタマネギを用いることがなかった加工食品原料、例えば、非加熱野菜原料(カット野菜)、加熱野菜原料(甘味のある炒煎タマネギを短時間で調製できる)、調味料(PRENCSOはアミノ酸であり、料理にコクを付与できる)を容易に調製することができる。
 また、本発明のタマネギは、タマネギ細胞破砕時におけるPRENCSO残存量が従来品種のタマネギと比べて顕著に高い。PRENCSOは健康機能性を有することが確認されており(特開2007-210918号公報)、機能性素材として期待されている物質である。しかしながら、従来品種のタマネギにおいては調理・加工の過程で、PRENCSOは分解/変換されてしまうため、タマネギを食べても、PRENCSOを摂取することは容易ではなかった。一方、本発明のタマネギにおいてはPRENCSOがアリイナーゼの作用により分解/変換されることなく残存するために、PRENCSOを簡便に且つ効率的に摂取することができる。
2.本発明のタマネギの製造方法
 本発明のタマネギは、突然変異誘発法や遺伝子組換え手法を利用して製造することができる。
 突然変異誘発法を利用する方法においては、タマネギ種子を公知の突然変異誘発処理(例えば、メタンスルホン酸エチル(EMS)等を用いた化学的処理や、γ線、X線、重イオンビーム等を用いた物理的処理)に付すことにより行うことができる。用いる重イオンビームは、突然変異を誘発できるものであれば特に制限はなく、例えば、窒素イオンビーム、炭素イオンビーム、ネオンイオンビーム、アルゴンイオンビームなどを使用することができる。重イオンビームの線量は、用いるイオンビームの種類や種子の量などに応じて適宜決定することができ、照射された種子からの発芽率と正常生育率を目安として、決めることができる。具体的には、発芽率がおよそ80%以上であり、且つ、発芽個体中の正常生育個体率が50%以上となる線量を選択するのがよい。例えば、重イオンビームの線量はネオンイオンビームであれば、5~50Gray、好ましくは10~40 Gray、さらに好ましくは20~30 Grayの範囲より選択することができる。
 タマネギ種子は特定の品種に限定されることなく、従来品種の種子を利用することができる。
 変異誘発処理された種子は、通常のタマネギ栽培の手順で栽培を進め、結球させる。得られたタマネギ球に対して、以下に記載する評価選抜方法によってアリイナーゼ遺伝子の発現が抑制されている目的のタマネギ球を得ることができる。このようにして選抜したタマネギ球に対して、自殖交配を行って得た種子を再び栽培し、そこから得たタマネギ球に対して評価選抜を行う。この工程を一以上繰り返すことで、アリイナーゼ遺伝子の発現が安定して抑制されている目的のタマネギ系統を得ることができる。なお、評価選抜に供するタマネギ組織は結球したタマネギ球である必要はなく、生育途上の葉などの球以外の組織を用いることもできる。
 遺伝子組換え手法を利用する方法においては、アリイナーゼ遺伝子の発現を抑制(欠失を含む)することが可能な技術を利用することができる。このような技術としては例えば、アリイナーゼ遺伝子の破壊、及び/又は、アリイナーゼ遺伝子の発現調節領域の破壊が挙げられる。ここで「アリイナーゼ遺伝子の発現調節領域」とは、アリイナーゼ遺伝子の発現(転写)を調節する領域であり、当該領域にはプロモーター領域及び/又はエンハンサー領域が含まれる。また「破壊」とは、アリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域に変異を導入し、これにより、アリイナーゼ遺伝子の発現を欠失又は抑制することを意味する。アリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域に導入される変異は、アリイナーゼ遺伝子の発現を欠失又は抑制することができる限り特に限定されず、一又は複数の塩基を置換、欠失、挿入、及び/又は付加することにより行うことができる。例えば、アリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域の一部又は全体を欠失させることにより行うことができる。アリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域への変異の導入は相同組換え手法を利用する公知の手法により行うことができる。例えば、相同組換え法によるダブルクロスオーバー等が挙げられる。簡単に説明すると、宿主となるタマネギに由来するアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域を、遺伝子導入のために当業者に公知である一般的なベクターにクローニングする。アリイナーゼ遺伝子、又はアリイナーゼ遺伝子を含む上流領域は、タマネギのアリイナーゼ遺伝子の塩基配列情報に基づいてプライマー又はプローブを設計・合成し、当該プライマー又はプローブを用いて宿主となるタマネギに由来するcDNAライブラリ又はゲノムライブラリをスクリーニングすることにより得ることができる。ベクターとしては、植物形質転換用として一般的に公知であるベクターであれば良く、例えば、バイナリーベクターまたはその他のベクターを使用できる。バイナリーベクターは、アグロバクテリウムT-DNAのライトボーダー(RB)とレフトボーダー(LB)の2つの約25bpボーダー配列を含み、両ボーダー配列の間に、上記アリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域が挿入される。クローニングされたアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域の塩基配列に変異を導入し、変異を有するアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域を含むDNA構築物を調製する。変異の導入は例えば、PCR法に基づく変異導入法などを利用することができる。このDNA構築物を宿主となるタマネギに導入することにより、DNA構築物上の変異を有するアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域と当該宿主染色体上のアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域とが相同組換えを生じ、宿主のアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域を破壊することができる。
 上記のようにして構築したベクターを宿主となるタマネギの細胞に導入する形質転換法としては、アグロバクテリウムを用いた方法を例示することができるが、それ以外にも、遺伝子銃、エレクトロポレーション、ウイルスベクター、フローラルディップ法、リーフディスク法などによっても、導入することができる。植物の形質転換技術や組織培養技術に関しては、例えば島本功、岡田清孝監修、植物細胞工学シリーズ15、モデル植物の実験プロトコール、遺伝学的手法からゲノム解析まで、秀潤社(2001年)に記載されている。
 バイナリーベクター-アグロバクテリウム系を利用する方法では、植物細胞、カルス又は植物組織片を準備し、これにアグロバクテリウムを感染させて、上記変異を有するアリイナーゼ遺伝子及び/又はアリイナーゼ遺伝子の発現調節領域を植物細胞内に導入する。形質転換においては、培地にフェノール化合物(アセトシリンゴン)を添加してもよく、特に単子葉植物においては、該細胞は効率よく形質転換することができる。
 より具体的には、アグロバクテリウムの菌液を調製し、この菌液に宿主となるタマネギのカルス又は組織(例えば葉片、根、茎片、成長点等)を数分間浸漬し、水分を除いたのち、固体培地に置床して共存培養する。カルスは、植物細胞塊であり、植物組織片又は完熟種子などからカルス誘導培地を用いて誘導することができる。形質転換されたカルスまたは組織片を選択し、その後、カルスについては、再分化培地にて幼植物体に再分化させることができる。一方、組織片については、組織片からカルスを誘導して幼植物体に再分化させるか、あるいは組織片からプロトプラストを調製し、カルス培養を経て幼植物体に再分化させることができる。このようにして得られた幼植物体を発根後に土壌に移し植物体に再生する。この植物体からは、一般的な栽培方法(Tanikawa T, Takagi M, Ichii M (1996) Plant regeneration from suspension cultures of onion (Allium cepa L.). Plant Tissue Cult Lett 13: 259-264;Eady CC (2002) Genetic Transformation of Onions. In: Rabinowitch HD, Currah L (eds) Allium Crop Science: Recent Advances, CABI Publishing, New York, pp 119-144)により、種子を得ることも可能である。
 また、フローラルディップ法を使用する場合には、例えばアグロバクテリウムの菌液を調製し、この菌液に未熟な花芽が発達するまで生育させた宿主となるタマネギの花芽を浸漬した後、植物をそのまま生育させて種子を収穫する。収穫した種子を播種して形質転換された個体を選択し、選択した個体を土壌に移し生育させることにより、遺伝子組換えされたタマネギの植物体を得ることができる。このようにして得られたタマネギの植物体は通常のタマネギ栽培の手順で栽培を進め、結球させる。得られたタマネギ球に対して、以下に記載する評価選抜方法によってアリイナーゼ遺伝子の発現が抑制されている目的のタマネギ球を得ることができる。このようにして選抜したタマネギ球について、自殖交配を行って得た種子を再び栽培し、そこから得たタマネギ球に対して評価選抜を行う、この工程を一以上繰り返すことで、アリイナーゼ遺伝子の発現が安定して抑制されている目的のタマネギ系統を得ることができる。なお、評価選抜に供するタマネギ組織は結球したタマネギ球である必要はなく、生育途上の葉などの球以外の組織を用いることもできる。
3.タマネギの評価選抜方法
 上記手法により製造されたタマネギより、アリイナーゼ遺伝子の発現が抑制されている目的のタマネギを以下の手法により評価選抜することができる。
(分析試料の調製)
 分析試料として用いる部位により測定値や評価が相違することを回避すべく、分析試料は以下の特定の部位を使用する。分析試料はタマネギ球の上端から1/3~1/2の高さで、球の上下方向軸(タマネギ球の底盤部と先端部とを通る軸)に垂直な面に沿って2分割し、得られた上側部分(先端部を含む側)又は下側部分(底盤部を含む側)の切断面中心部の鱗葉から採取する(図1参照)。「切断面中心部の鱗葉」とは、切断面上に現れる鱗葉のうち最内層の鱗葉(軸心に存在する芽を囲む鱗葉)又はその近傍の鱗葉の、切断面側の表層部を指す。「表層部」とは例えば切断面から厚さ2mm~10mmの部分である。各種測定した結果に基づき植物個体を選抜する場合には、分析試料は植物の成長点を含む部位以外の部分に由来するものであることが好ましい。例えばタマネギ球(鱗茎)の底盤部には成長点が含まれるが、この成長点を含む部位を残しておくことにより、選抜された個体を、該部位から再生させることができ有利である。
 分析試料の大きさには特に制限はなく、評価又は測定方法に十分な量であればよい。
 分析試料は必要に応じて、マイクロ乳棒やビーズミルを用いて破砕することができる。破砕処理条件は、破砕後の試料形状を観察しながら決定することができる。
(アリイナーゼ遺伝子又はタンパク質の発現量)
 アリイナーゼ遺伝子の発現量は核酸定量に用いられる公知の手法(例えば、ノーザンブロッティング法、リアルタイムPCR法等)により測定することができる。好ましくは、リアルタイムPCR法を利用する。リアルタイムPCR法は、分析試料より定法に従い合成したcDNAを用いて行うことができる。使用するプライマーはアリイナーゼ遺伝子を増幅できるペアであれば、増幅領域や長さは問わない。用いるリアルタイムPCR法も、SYBRグリーン法、蛍光プローブ法のいずれも使用することが出来る。また各試料間の遺伝子発現量の補正に用いるハウスキーピング遺伝子の種類も特に限定されるものではないが、例えばユビキチン遺伝子を利用することができる。
 本発明においては、従来品種のタマネギと比較して、アリイナーゼ遺伝子の発現量が少ない場合に、アリイナーゼ遺伝子の発現が欠失又は抑制されている目的のタマネギとして評価・選抜することができる。好ましくは上記手法により測定されたアリイナーゼ遺伝子の発現レベルが、従来品種におけるアリイナーゼ遺伝子の発現レベルと比べて、50分の1未満、100分の1未満、200分の1未満、300分の1未満、400分の1未満、500分の1未満、600分の1未満、700分の1未満、800分の1未満、900分の1未満、1000分の1未満、2000分の1未満、3000分の1未満、4000分の1未満、5000分の1未満、6000分の1未満、7000分の1未満、8000分の1未満、9000分の1未満、10000分の1未満、又はそれ以下であるタマネギを選抜する。
 アリイナーゼタンパク質の発現量はタンパク質定量に用いられる公知の手法(例えば、ウェスタンブロッティング法、酵素免疫測定法(ELISA)等)により測定することができる。好ましくは、ELISA法を利用する。ELISA法にて使用する抗アリイナーゼ抗体はモノクローナル抗体であってもポリクローナル抗体であってもよい。ポリクローナル抗体としては未精製の抗血清を使用してもよいし、抗血清から精製したポリクローナル抗体を使用してもよい。2種類のモノクローナル抗体を用いてサンドイッチELISA法を行うこともできる。免疫する動物としてはウサギ、ラット、ヤギ、ニワトリ等が挙げられる。ELISA法における検出のための二次抗体としては、ペルオキシダーゼ、アルカリフォスファターゼ等の検出可能な酵素を結合した二次抗体が使用できる。ELISA法に供する試料は定量性を示す濃度まで希釈したものを用いる。分析試料を破砕して、破砕した分析試料より水系溶媒を用いて抽出し試料原液を得、これを原液から1000倍希釈、好ましくは10倍希釈から1000倍希釈して分析するのがよく、より好ましくは原液~100倍希釈がよく、さらに好ましくは、原液~50倍希釈がよい。なお、破砕した分析試料は、破砕した直後~3時間後(破砕後の経過時間は特に限定されない)のものを用いることができる。
 本発明においては、従来品種のタマネギと比較して、アリイナーゼタンパク質量が少ない場合に、アリイナーゼ遺伝子の発現が欠失又は抑制されている目的のタマネギとして評価・選抜することができる。好ましくは上記手法により測定されたアリイナーゼタンパク質の発現量が、同様に測定された従来品種のタマネギにおけるアリイナーゼタンパク質量と比較して、30分の1以下、好ましくは50分の1以下、さらに好ましくは100分の1以下、500分の1以下、1000分の1以下であるタマネギを選抜する。
 タマネギ組織の一部、又は全部を破砕した場合、辛み成分の基質であるPRENCSOは瞬時にアリイナーゼにより分解され、辛み成分の前駆物質であるスルフェン酸を生成する。したがって、上記のとおり、アリイナーゼ遺伝子又はタンパク質の発現量に基づいて評価・選抜されたタマネギは、一般的なタマネギと比較して、タマネギ細胞破砕時に生じる辛みや催涙性が優位に低減されている。故に、アリイナーゼ遺伝子又はタンパク質の発現量を指標にして、タマネギの辛みや催涙性を評価することが可能である。
 本発明のタマネギは、上記アリイナーゼ遺伝子又はタンパク質の発現量に基づく評価選抜に加えて、タマネギ組織の一部、又は全部を破砕した際に生成する辛み及び催涙成分の生成量に基づく、以下の一又は複数の評価及び測定方法を用いて選抜することができる。
(官能評価)
 官能評価は、分析試料の一部を破砕した際に感じる催涙性、又は食した際に感じる辛みの程度を評価する。本発明においては、従来品種のタマネギと比較して、辛み及び/又は催涙性の明らかな低下が少なくとも2名のパネルで感じられる場合に、辛み及び/又は催涙性が低減されたタマネギとして評価・選抜することができる。
(ピルビン酸生成量)
 タマネギ組織の一部、又は全部を破砕した際に生成するピルビン酸を測定することにより、分析試料が由来するタマネギの辛みの程度を間接的に評価することができる。ピルビン酸の生成量は、分析試料を破砕した直後~3時間後に、ジニトロフェニルヒドラジンと反応させ、分光光度計で吸光度(515nm)を測定することにより行うことができる。分析試料は定量性を示す濃度まで希釈したもの、好ましくは原液~5倍希釈したものを用いる。本発明においては、従来品種のタマネギと比較して、破砕した分析試料におけるピルビン酸生成量が少ない場合に、辛みが低減されたタマネギとして評価・選抜することができる。好ましくは上記手法により測定されたピルビン酸生成量が2.0μmol/g FW以下、さらに好ましくは1.5μmol/g FW以下、より好ましくは1.0μmol/g/FW以下、特に好ましくは0.5μmol/g FW以下であるタマネギを選抜する。
(残存PRENCSO量)
 タマネギ組織の一部、又は全部を破砕した場合、辛み成分の前駆物質であるPRENCSOは瞬時にアリイナーゼにより、スルフェン酸、ピルビン酸、及びアンモニアへと完全に分解される。従って、一般的に破砕されたタマネギ組織にはPRENCSOが残存していることはあり得ない。そのため、破砕した後、所定時間経過した後に、破砕液中のPRENCSO量(残存PRENCSO量)を測定することによって、アリイナーゼの活性を間接的に測定することができる。残存PRENCSO量は分析試料を破砕して0.5分~3時間、好ましくは3時間経過後の試料を用いて、HPLCを利用して測定することができる。本発明においては、従来品種のタマネギと比較して、分析試料を破砕した後の残存PRENCSO量が多い場合に、辛みや催涙性が低減されたタマネギとして評価・選抜することができる。好ましくは上記手法により測定された残存PRENCSO量が2.0μmol/g FW以上、さらに好ましくは3.0μmol/g FW以上、より好ましくは4.0μmol/g FW以上、特に好ましくは5.0μmol/g FW以上、であるタマネギを選抜する。
(LF生成量)
 タマネギ組織の一部、又は全部を破砕した際に生成する辛み及び催涙成分であるLFを測定することにより、分析試料が由来するタマネギの辛み及び催涙性の程度を評価することができる。LFの生成量は、分析試料を破砕した直後~3分後、好ましくはおよそ1分20秒後の試料を用いて、HPLCを利用して測定することができる。本発明においては、従来品種のタマネギと比較して、破砕した分析試料におけるLF生成量が少ない場合に、辛み及び催涙性が低減されたタマネギとして評価・選抜することができる。好ましくは上記手法により測定されたLF生成量が1.0x106Peak area/μl抽出液以下、より好ましくは9.0x105 Peak area/μl抽出液以下、8.0x105 Peak area/μl抽出液以下、7.0x105 Peak area/μl抽出液以下、又は6.0x105 Peak area/μl抽出液以下、さらに好ましくは5.0x105 Peak area/μl抽出液以下、4.0x105 Peak area/μl抽出液以下、3.0x105 Peak area/μl抽出液以下、2.0x105 Peak area/μl抽出液以下、又は1.0x105 Peak area/μl抽出液以下であるタマネギを選抜する。
 上記手法により製造、並びに評価・選抜された本発明のタマネギは、用いた品種の一般的な栽培方法に従って栽培を行うことができる。
 本発明のタマネギはさらに、有性生殖又は無性生殖を利用した手法により製造することができる。有性生殖を利用した手法としては、本発明のタマネギの植物体と第二のタマネギの植物体とを交配して種子を得ることによって、さらに得られた種子を通常のタマネギ栽培の手順で栽培して植物体を得ることによって、そしてさらに得られた植物体よりその部分を得ることによって、それぞれ製造することができる。必要に応じて、交配の結果得られたタマネギは、上記手法によりアリイナーゼ遺伝子の発現が抑制されているものを評価選抜することができる。「交配」とは、自家交配、同胞受粉、戻し交配、同一若しくは異なる近交系との交配、又は集団交配とすることができ、「第二のタマネギ」は目的とする交配に適したものを選択することができ、例えば、同一若しくは異なる近交系や従来品種より選択することができる。交配の結果得られたタマネギの植物体を用いて、同様に一以上の交配を行い本発明のタマネギを得てもよい。無性生殖を利用した手法としては、本発明のタマネギの鱗茎を得、通常のタマネギ栽培の手順で栽培して植物体を得ることによって、又は本発明のタマネギよりカルスを得て、これを幼植物体に再分化させ植物体を得ることによって、そしてさらに得られた植物体よりその部分を得ることによって、それぞれ製造することができる。本発明においては、このように本発明のタマネギを用いて製造された経緯を有するタマネギを、本発明のタマネギの植物体の「子孫」と呼ぶ場合がある。当該「子孫」及びその部分は、当該「子孫」がアリイナーゼ遺伝子の発現が従来品種と比べて抑制されている特徴を有し得る限り、本発明に含まれる。
(実施例)
 以下に実施例を示し、本発明をさらに詳しく説明する。しかしながら、本発明はこれら実施例に制限されるものではない。
[実施例1]
辛み及び催涙性のない春蒔きタマネギの作出
(1-1)M1タマネギ球の作製
 スーパー北もみじの種子約1500粒(6.08g)を入れた直径10cmのプラスチックシャーレに対して、ネオンイオンビームを20Gyで照射し、照射当代(以下M1と呼ぶ)種子を調製した。得られたM1種子から60粒をとり、発芽試験を行い、発芽率と正常発生率を見積もった。具体的には、ゴールデンピートバンを付属のプラスチックトレーに入れ、700mLの水道水で満たした。注水10~15分後の全ての水をすって、トレーいっぱいに膨らんだゴールデンピートバンに60粒を播種した。そのまま、室内に一晩置いた後、温室内(温室は15℃設定)に写し生育させた。播種1ヶ月後の発芽率は86.7%、第二葉鞘出現個体率は55.8%だった。
 発芽試験に供した残りのM1種子から1450粒をセルトレーに播種(3月)し、ビニルハウス内で育苗を続けた。そのうちの1000株を畑(路地)に定植した(5月)。その後の栽培は、通常の北海道でのタマネギ栽培のとおりだった。M1タマネギ457球を収穫した(9月)。
(1-2)M1タマネギの選抜
[一次選抜]
a) 破砕した組織の催涙性の強弱・生タマネギ臭の強弱による官能評価
(サンプル調製)
 球の上端を除いた全周囲に茶色の部分がなくなるまで、茶色の皮や鱗片を剥がした。皮を剥いたタマネギ球の最外層鱗片の一部(約5g~10g分)をメス替え刃を用いて、球の縦方向に切り出すようにして剥がした。この時、切り出した鱗片の厚さがおおよそ1mmよりも薄い場合には、その内側の鱗片を切り出して用いるようにした。切り出した鱗片の横方向に切り込みを入れて、鱗片の上端と下端を合わせるようにして、折り込んだ。切り出して二つ折りにした鱗片を家庭用のジップ付きポリ袋(18cm×20cm)に入れた(ジップ付きポリ袋のほぼ真ん中に位置するように置いた。)。ジップ付きポリ袋にできるだけ空気を残さないようにして、ジップを締めた。そのまま、金属板の上に置き、ジップ付きポリ袋の上から、二つ折りにした鱗片をゴムハンマーでたたいて(約15~20秒)、鱗片の形状が残らない程度までタマネギ鱗片を破砕した。
(官能評価)
 破砕したらただちに、ジップ付きポリ袋を顔(鼻+口)の近くまで持っていき、タイマー(count up 機能)のスタートボタンを押した直後にポリ袋のジップを開けて、鼻と口をポリ袋の開口部に付けて、官能評価を行った。官能評価の指標は次の2点とした。
 1.生タマネギ破砕時の匂いが感じられたかどうか。
 2.生タマネギ破砕時に感じられる催涙性を感じ始めるまでにどれだけの時間が必要だったか。
 官能評価を終えたジップ付きポリ袋はただちにジップを閉めた上で、大きめのポリ袋に入れて、催涙性や匂いが拡散して、その後のサンプルの官能評価に影響しないようにした。
 官能評価の結果、生タマネギ臭、又は催涙性が弱いものを、陽性試料と判定し、陽性試料のタマネギ球は、ラベルして識別できるようにして、10℃下で冷蔵保管した。
(留意点)
 催涙因子や匂い成分の拡散を防止することを考えて、サンプル調製と官能評価は、ベンチトップ型ドラフト上で行い、さらに、手に匂いが残らないようにゴム手袋を装着して進めた。
 一つのサンプルを官能評価してから、次のサンプルを官能評価するまでに3分以上あけるようにして、感度の低下を防ぐようにした。
(官能評価の感度チェック)
 サンプルタマネギを連続的に評価していく途中で、催涙性を感じる非照射タマネギや、催涙性を感じにくく、生タマネギ破砕臭も弱い市販品種を用いて、同様の官能評価を行い、感度のチェックを行った。また、それとは別に、一次選抜の実施に先立って、密閉した袋の中で鱗片を破砕した時に感じられる催涙性や生タマネギ臭による評価・選抜の信頼性を調べるために、フルーツタマネギ、サラダタマネギ、スーパー北もみじの鱗片をそれぞれ破砕した時に区別できるかどうかについて盲検で試験を行った。その結果、催涙性の弱いフルーツタマネギを選別することができたので、組織破砕時の官能評価を一次選抜に用いることに問題はないと判断した。
(一次選抜の結果)
 一次選抜の結果、生タマネギ臭、又は催涙性が弱い38球を選抜した。
[二次選抜]
a)鱗片破砕液中の催涙因子(LF)生成量の測定
 一次選抜で陽性となり、10℃保管していたタマネギ球から再び、一次選抜時と同じ手順で、最外層の鱗片の一部をサンプリングした。切り出した鱗片重量×1/2量の蒸留水を、タマネギ鱗片を入れたジップ付きポリ袋に入れて、できるだけ空気を残さないようにして、ジップを締めた。そのまま、ジップ付きポリ袋の上から、ゴムハンマーでたたいて、タマネギ鱗片を破砕した(破砕を開始した時に、タイマー(count up 機能)のスタートボタンを押して、破砕してからの時間を記録した。)。破砕後のジップ付きポリ袋を振り回して、袋の内容物をできるだけ一ヶ所に集めてから、ポリ袋の破砕物が集まっている場所の近くに針付きの1mLシリンジを刺して、タマネギ破砕液を抜き取った。シリンジの先を針から0.2μm或いは0.45μmフィルターに付け替えて、抜き取ったタマネギ破砕液をろ過した。ただちに、ろ過したタマネギ破砕液1μLをそのままマイクロシリンジで採って、HPLCに注入し、LF生成量を調べた(破砕開始からHPLC注入までに要した時間を記録した。)。残ったろ液は氷上に置いた。HPLC注入した後で、針付きシリンジをつかって、さらにタマネギ破砕液を回収し、得られた破砕液量を記録した。
b)鱗片破砕液のLFS活性の測定
 LF生成量を分析したろ液(10μL)に123μLの50mMリン酸緩衝液(pH6.5)を混合した。得られた希釈液から20μLを取って、40μLの50mMリン酸緩衝液(pH6.5)で希釈した。調製した希釈液10μLを用いて、HPLCによるLFS活性測定を下記のとおり行った。
<LFS活性測定の手順>
 1.新しいエッペンドルフチューブに40μLのニンニクアリイナーゼ(50ユニット/mL)を入れた。
 2.そこに10μLの1/20ジュース(上記調製した希釈液)を加えて、20回ピペッティングした。
 3.さらに、20μLのPRENCSO(20mg/ml)を加えて、5回ピペッティングしてすぐにフタを閉めた。
 4.3分にセットしたタイマーをスタートさせた。
 5.残り20秒になったところで、エッペンドルフチューブのフタを開けて、10μLマイクロシリンジを使って、ちょうど3分となった時に、1μLサンプリングして、そのままHPLCに注入した。
 6.HPLCの注入口とマイクロシリンジを蒸留水で洗浄した。
c)鱗片破砕液のアリイナーゼ 活性の測定
 LF生成量を測定したろ液(希釈前)をアリイナーゼ源としたLFS活性測定反応を行い、HPLC上に現れるLFピーク領域からアリイナーゼ活性の強さを調べた。
<アリイナーゼ 活性測定の手順>
 1.新しいエッペンドルフチューブに20μLのろ液を入れた。
 2.そこに5μLのrLFSを加えて、20回ピペッティングした。
 3.さらに、10μLのPRENCSO(20mg/ml)を加えて、5回ピペッティングしてすぐにフタを閉めた。
 4.3分にセットしたタイマーをスタートさせた。
 5.残り20秒になったところで、エッペンドルフチューブのフタを開けて、10μLマイクロシリンジを使って、ちょうど3分となった時に、1μLサンプリングして、そのままHPLC に注入した。
 6.HPLCの注入口とマイクロシリンジを蒸留水で洗浄した。
d)HPLC分析条件
 上記のa)~c)で用いたHPLC 条件を以下に示した。3つの測定は、どれもLF生成程度のHPLC 分析を行うことになるのでHPLC条件は全て同じだった。
<HPLC 分析条件>
カラム :ODS(SenshuPak ODS 4.6mm x 25cm)
移動相 :メタノール:0.005%トリフルオロ酢酸水 = 3:7
検出 :254nm
温度 :35℃
流速 :0.6ml/min
(二次選抜の結果)
 二次選抜の結果、9球(個体番号B0266、B0108、B0277、B0297、B0383、B0317、B0280、B0258)を選抜した。
(1-3)M2タマネギ球の作製
 選抜したM1タマネギ(9球、B0266、B0108、B0277、B0297、B0383、B0317、B0280、B0258、B0371)をそれぞれ自殖交配した。その結果、約350粒(B0108から71粒、B0297から約80粒、B0280から約200粒、B0371から1粒)の種子(以下、M2世代と呼ぶ)を得た。得られたM2種子をM1栽培と同じ手順で栽培し、M2タマネギ197球(B0108から18球、B0297から73球、B0280から106球)を得た。
(1-4)M2タマネギの選抜
(分析試料の調製)
 分析試料として用いる部位により測定値や評価が相違することを回避すべく、分析試料は以下の特定の部位を使用する。分析試料はタマネギ球の上端から1/3~1/2の高さで、球の上下方向軸(タマネギ球の底盤部と先端部とを通る軸)に垂直な面に沿って2分割し、得られた上側部分(先端部を含む側)又は下側部分(底盤部を含む側)の切断面中心部の鱗葉から採取する(図1参照)。タマネギの各部位の説明は上記したとおりである。
 上記M2タマネギより、上記「(分析試料の調製)」に記載した方法に従い採取した600mgのタマネギ組織を3mmφのジルコニアボールを3つ入れたエッペンドルフ社製セーフロックチューブ(2ml)入れた。0.6mLの蒸留水を加え、QIAGEN社製MM300型ビーズミルで30Hz×2分×3回の処理で破砕した。粉砕したタマネギ組織サンプル10μLをELISAプレートのウェルに添加した。試料を加えたELISAプレートを37℃に調温した恒温槽内に1時間静置した。1時間経過後、ELISAプレートを恒温槽から取り出し、以下の洗浄ステップに進めた。(i) 全てのウェルから溶液を除去した。(ii) 洗浄緩衝液(0.05% ポリオキシエチレン(20)ソルビタンモノラウレート(Tween-20同等品)in 140mM NaCl,10mM Na2HPO4-NaH2PO4(pH7.4))を各ウェルに300μlずつ加え、ただちに洗浄緩衝液を除去することを3回繰り返した。(iii) 3回目の洗浄緩衝液を除去した後で、ペーパータオルを敷いた実験台上にELISAプレートをたたきつけて、ウェル内から洗浄緩衝液を完全に取り除いた。以上の洗浄ステップ((i)~(iii))を経たELISAプレートの各ウェルにブロッキング溶液(1%(w/v) BSA in コーティング緩衝液 (50mM sodium carbonate-bicarbonate buffer (pH9.6))を300μlずつ添加した。そのままELISAプレートを37℃に調温した恒温槽内に1時間静置した。1時間経過後、上記の洗浄ステップ((i)~(iii))を繰り返した。洗浄後のELISA プレートに一次抗体(抗アリイナーゼラット抗血清を希釈緩衝液(0.1% BSA in 140mM NaCl,10mM Na2HPO4-NaH2PO4(pH7.4))で1000倍に希釈したもの)を各ウェルに100μlずつ添加した。そのままELISAプレートを37℃に調温した恒温槽内を用いる場合は3時間、4℃冷蔵庫を用いる場合は一晩(16時間~22時間)静置し、一次抗体を反応させた。一次抗体との反応後、ELISAプレートを上記の洗浄ステップ((i)~(iii))に供した。洗浄後のELISAプレートに二次抗体(POD conjugated anti-rat IgG whole molecule Sigma A0545を希釈緩衝液で10000倍希釈したもの)を各ウェルに200μlずつ添加した。二次抗体を添加したELISAプレートを37℃に調温した恒温槽内に1時間静置した。1時間経過後、上記の洗浄ステップ((i)~(iii))を繰り返した。洗浄後のELISAプレートに発色試薬(TBA ELISA基質溶液(Bio-Rad 172-1066)を100μlずつ添加した。添加後、ただちにELISAプレートを25℃恒温室内で、60rpmで振盪攪拌しながら発色反応を進めた。発色試薬添加後、10分~60分の間にマイクロプレートリーダー(Emax モレキュラーダイナミクス社)を用いて650nmの吸光度を測定した。抽出サンプルのかわりに精製アリイナーゼ(作製法は特開2009-254344号記載の方法)を用いて溶液の希釈系列を用いて、同様に測定した値から、検量線を作成し、抽出サンプルでの吸光度測定値をアリイナーゼ濃度に換算した。さらにブラッドフォード法を用いて測定した抽出液中の総タンパク質量を元にして、抽出タンパク質1ngあたりに換算した。
 抽出タンパク質あたりのELISA発色量が非照射対照タマネギの1/10以下を選抜基準とし、アリイナーゼタンパク質発現量が少ない個体、18球を選抜した。
(1-5)M2選抜球の自殖採種(M3世代の作出)
5月~10月
 採種数:3250粒(個体番号300番から280粒、438番から55粒、444番から56粒、455番から800粒、479番から86粒、482番から66粒、486番から960粒、487番から176粒、489番から265粒、511番から75粒、512番から61粒、515番から367粒)のM3種子を得た。
(1-6)M3種子からの球栽培
3月~9月
 上記3250粒のM3種子のうち1078粒(個体番号300番から100粒、438番から55粒、444番から56粒、455番から100粒、479番から86粒、482番から66粒、486番から100粒、487番から176粒、489番から100粒、511番から75粒、512番から61粒、515番から100粒)について、M1やM2栽培と同じ手順で栽培し、M3タマネギ球を466球(300番から81球、438番から28球、444番から22球、455番から74球、479番から29球、482番から15球487番から67球、489番から37球、511番から60球、512番から4球、515番から49球)を得た。
(1-7)M3タマネギ球からの選抜
11月~3月
 上記M3タマネギ球について、鱗葉破砕後のPRENCSO残存量を指標として、アリイナーゼ活性の弱い個体を選抜した。選抜基準は、残存PRENCSO量が3.26μmol/g FW以上とした。この選抜基準は、予備検討の中で、アリイナーゼ活性の強さと官能評価結果の比較を実施した際、アリイナーゼ活性が1/40になると、官能評価によって辛み低下が認知されたことから設定した。上記のアリイナーゼ活性が1/40となった時の残存PRENCSO量(3.26μmol/g)は、M3タマネギ球栽培と同じ畑で栽培した通常タマネギ(札幌黄)(6球)を用いたモデル実験から、アリイナーゼ活性が1/40になった場合の残存PRENCSO量を測定して求めた。選抜したタマネギのいくつかは、鱗葉を官能評価し、辛味の有無を調べた。
 また、これら選抜球については、自殖採種を目指した栽培途中の葉を用いて官能評価とアリイナーゼ活性測定を行い特性把握を進めた。
 結果、残存PRENCSO量が3.26μmol/g FW以上となる9球(#2,#6,#10,#11,#37,#230,#262,#263,#651)を選抜した。
(1-8)M3選抜球の自殖採種(M4世代の作出)
5月~10月
 1687粒(#6から328粒、#10から338粒、#230から13粒、#263から1008粒)のM4種子を得た。
 これ以外に、#2と#6を交配し、2粒を得た。
(1-9)M4種子からの球栽培
3月~9月
 上記1689粒のM4種子のうち、400粒(#6から200粒、#10から200粒)について、M1~M3栽培と同じ手順で栽培し、M4タマネギ球を226球(#6から158球、#10から68球)を得た。
[実施例2]
各種測定
(2-1)組織破砕時のピルビン酸生成量測定
 上記(1-4)「(分析試料の調製)」に記載した方法に従い採取した600mgのタマネギ組織を3mmφのジルコニアボールを3つ入れたエッペンドルフ社製セーフロックチューブ(2mL)入れた。0.6mLの蒸留水を加え、QIAGEN社製MM300型ビーズミルで30Hz×2分×3回の処理で破砕した。粉砕後、10分間、室温で静置した後、15000rpm、4℃、10分間遠心し上澄みをサンプルとした。サンプル20μLを96ウェルプレートに入れ、粉砕から30分後に水43μL、DNPH溶液66μlを添加し、37℃で10分間反応させた。10分後、1.5M NaOHを66μL添加し、反応を停止させ、ピペッティングで3回以上行い混合した。分光光度計で515nmの吸光度を測定した。抽出サンプルのかわりにピルビン酸Na溶液の希釈系列を用いて、同様に測定した値から、検量線を作成し、抽出サンプルでの吸光度測定値をピルビン酸量に換算した。
(2-2)破砕3時間後の残存PRENCSO量測定
 上記(1-4)「(分析試料の調製)」に記載した方法に従い採取した600mgのタマネギ組織を3mmφのジルコニアボールを3つ入れたエッペンドルフ社製セーフロックチューブ(2mL)入れた。0.6mLの蒸留水を加え、QIAGEN社製MM300型ビーズミルで30Hz×2分×3回の処理で破砕した。3時間、室温で静置した後、15000rpm、4℃、10分間遠心した上澄みを、0.45μmのメンブレンフィルターで濾過し、測定サンプルとした。PRENCSO量の測定は、公知の手法(特開2009-254344号公報)に記載の方法で実施した。
(2-3)破砕時の催涙成分(LF)生成量測定
 上記「(分析試料の調製)」に記載した方法に従い採取した400mgのタマネギ組織を1.5mLのエッペンドルフチューブに採取した。マイクロ乳棒で20秒間粉砕した後、直ちに15000rpm、10秒、4℃で遠心し、粉砕から1分20秒後に遠心上清1μL中の催涙成分(LF)量をHPLCで分析した。
 HPLCの分析条件は下記を用いた。このHPLC分析条件では、催涙成分(LF)はリテンションタイム、約9.6分に検出された。
[HPLC分析条件]
カラム;ODS(SenshuPak ODS 4.6mm x 25cm)
移動相:メタノール:0.005% トリフルオロ酢酸水 =3:7
検出:254nm
カラム温度35℃
流速 :0.6ml/min
(2-4)ELISAを用いたアリイナーゼタンパク発現量の測定
 ピルビン酸生成量測定の際と同様の方法で粉砕したタマネギ組織をサンプルとし、上記「(1-4)M2タマネギの選抜」に記載のELISA法と同様の手法を用いてサンプル中のアリイナーゼタンパク発現量を測定した。
(2-5)リアルタイムPCRを用いたアリイナーゼ遺伝子の発現量測定
 -80℃で凍結保存したタマネギ組織100mgから、Rneasy Plant Mini kit (Qiagen社製)を用いて、添付のマニュアルに従ってRNAを採取した。採取したRNAはNanoDrop 1000(NanoDropTechnologies社製)を用いて濃度測定を行った後、ReverTra Ace(登録商標)qPCR RT Master Mix with gDNA Remover(TOYOBO製)を用いて添付のマニュアルに従い逆転写反応を行いcDNAを合成した。各遺伝子の定量は、下表のプライマーセット、及びTHUNDERBIRD(登録商標)SYBR(登録商標)qPCR Mix(TOYOBO製)を用いて、7900 HT Fast Real-Time PCR System(Applied Biosystems)で行った。結果は、ハウスキーピング遺伝子の一つであるユビキチンの発現量で補正した。
アリイナーゼプライマー:
 フォワードプライマー 5'-AATGAGACCTCCATCCCCATC-3'(配列番号1)
 リバースプライマー 5'-TCGAAACCCTCTCCACTTTG-3'(配列番号2)
ユビキチンプライマー:
 フォワードプライマー 5'-ACGATTACACTAGAGGTGGAGAGCTC-3'(配列番号3)
 リバースプライマー 5'-CCTGCAAATATCAGCCTCTGCT-3'(配列番号4)
(2-6)データ表示と統計解析
 測定値は平均値±標準偏差で表し、統計解析は、Dunnett検定を用いた。有意水準は5%(*)及び1%(**)で表示した。
[実施例3]
M4タマネギ球の各種測定・評価の結果
(3-1)官能評価
 M4タマネギ球2系統(#6、#10)各20球、及び対照としての札幌黄5球を、前記(1-4)「(分析試料の調製)」に記載した方法により試料を採取し、前記「(官能評価)」に記載した方法、すなわち、M4タマネギ球と対照球とを比較して、試料の一部を破砕した際に感じる催涙性、又は食した際に感じる辛みの程度について、辛み及び/又は催涙性の明らかな低下が感じられるかを、少なくとも2名のパネルで官能評価した。結果、#6、#10は全球において全く辛みを感じることはなかった(表1)。
Figure JPOXMLDOC01-appb-T000002
(3-2)組織破砕時のピルビン酸生成量
 得られたM4タマネギ球2系統(#6、#10)各19球と対照として札幌黄5球を前記(2-1)「(組織破砕時のピルビン酸生成量測定)」に記載した方法に従い破砕時のピルビン酸生成量を測定した。
 結果を図2に示す。対照と比較して、#6、#10はピルビン酸生成量が有意に抑制されていた。本結果は、官能評価の結果とも一致した。
(3-3)破砕3時間後の残存PRENCSO量
 得られたM4タマネギ球2系統(#6、#10)各19球と、対照として札幌黄5球を前記(2-2)「(破砕3時間後の残存PRENCSO量測)」に記載した方法を用い試料採取、及び破砕3時間後の残存PRENCSO量を測定した。
 結果を図3に示す。対照と比較して、#6、#10はPRENCSOが残存していた。このようなタマネギは今まで発見されていなかった。また本結果は、官能評価、ピルビン酸生成量の分析結果とも一致した。
(3-4)破砕時の催涙成分(LF)生成量
 得られたM4タマネギ球2系統(#6、#10)各19球と、対照として札幌黄5球を前記(2-3) 「(破砕時の催涙成分(LF)生成量測定)」に記載した方法を用い試料採取、及び破砕時の催涙成分(LF)生成量を測定した。
 結果を図4に示す。対照と比較して、#6、#10は催涙成分(LF)生成量が有意に抑制されていた。
(3-5)アリイナーゼタンパク発現量
 得られたM4タマネギ球2系統(#6、#10)各19球と、対照として札幌黄5球を前記(2-4)「(ELISAを用いたアリイナーゼタンパク発現量の測定)」に記載の方法を用い試料採取し、ELISA法によりアリイナーゼタンパクの発現量を測定した。
 結果を図5に示す。対照と比較して、#6、#10はアリイナーゼタンパクの発現が有意に抑制されていることが確認された。
(3-6)アリイナーゼ遺伝子の発現量
 得られたM4タマネギ球2系統(#6、#10)各3球と、対照として札幌黄3球を前記(2-5)「(リアルタイムPCRを用いたアリイナーゼ遺伝子の発現量測定)」記載の方法を用いて、定量RT-PCRでアリイナーゼ遺伝子の発現量を測定した。
 結果をアリイナーゼ遺伝子/ユビキチン遺伝子の比にして図6に示す。対照と比較して、#6、#10はそれぞれアリイナーゼ遺伝子/ユビキチン遺伝子の値が187分の1、1000分の1であり、アリイナーゼ遺伝子の発現が有意に抑制されていることが確認された。
 この結果、及び上記ELISAによるアリイナーゼタンパク発現量の抑制の結果から、#6、#10の辛みがないのは、アリイナーゼの発現が抑制されているためであることが確認された。
[実施例4]
#6、#10のLFS活性の確認
 上記「(3-4)破砕時の催涙成分(LF)生成量」にて示されるとおり、#6、#10は破砕時のLF生成量が有意に抑制されていることが確認された。この原因としては、アリイナーゼだけでなくLFSの活性も抑制されている可能性が考えられた。そこで、公知の手法(特開2009-254344号公報)に記載の方法でニンニクより調製した精製アリイナーゼ12.5 Unitを、上記「(3-4)」と同様の方法で採取した#6、#10のタマネギ組織に加えて破砕した際に生成する催涙成分LFの量を前記と同様の方法で測定した。対照として札幌黄5球を前記方法を用い試料採取、及び破砕時の催涙成分(LF)生成量を測定した。
 結果を図7に示す。タマネギ組織の粉砕時にアリイナーゼを加えることで、#6、#10の催涙成分(LF)生成量は、対照と同程度となった。この結果から、#6、#10を粉砕した際に生成する催涙成分(LF)量が少ないのは、アリイナーゼが抑制されているためであり、LFS自体は問題なく働いていることが確認された。
 なお、本発明者らは#6系統より得られた種子をAllium cepa HFG-01と命名し、2014年2月19日にNCIMB Ltd. Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, United KingdomにNCIMB 42219として国際寄託した。尚、本受託証に記載された住所は、本願出願人の開発研究所であり、寄託者は本願出願人と同一人である。
[実施例5]
M4タマネギ球からのカルスの誘導
 M4タマネギ球(上記#6系統)を外葉から除いていき、中心部の幼芽(盤茎を含む萌芽葉部分、図8)をとりだし、1%次亜塩素酸ナトリウム水溶液で30分間殺菌した。殺菌した幼芽を滅菌水で2回洗浄した後、無菌条件下で、殺菌ダメージを受けた部分(最外葉と盤茎部分)をメスで取り外した。その後、萌芽葉部分を厚さ0.5mm程度の輪切りにして切片を作成し、カルス誘導培地上に置床した。このとき用いたカルス誘導培地は、50μM 4-ジクロロフェノキシ酢酸(以下、「4-FPA」と記載する。)、1μM N6 (2-イソペンテニル)アデニン(以下、「2iP」と記載する。)、0.1Mシュークロース、0.1%カゼイン加水分解物、0.2%ジェランガムを含むムラシゲスクーグ(以下、「MS」と記載する。)培地でpH は5.8に調整した。培養は25℃、12時間照明下(40μmol/m2/s)で行った。培養開始後1週間で切片の肥大化が起こり、カルス化が開始した。培養開始から2週間後、肥大化した切片を5mm角程度の大きさに切り分け、新しいカルス誘導培地上に植えつけた。継代培養から約2週間後には、良好なカルス増殖が認められ、この後、4週間~6週間おきにカルス継代培地(50μM 4-FPA、1μM 2iP、0.1Mシュークロース、0.3%ジェランガムを含むMS培地)に植え替えて継代培養を行い、カルスを得た。本発明者らは当該カルスをHFG-01Cと命名し、2013年12月25日に独立行政法人製品評価技術基盤機構特許生物寄託センター(〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-22260として国際寄託した。
[実施例6]
カルスからの再分化および植物体の作出
(1)再分化
 実施例5で得られたカルスを、再分化培地(1μM 2iP、0.1Mシュークロース、0.3%ジェランガムを含むMS培地)にて培養を行った(25℃、12時間照明下(40μmol/m2/s))。培養開始後一ヵ月頃から滑面状の構造体が認められた(図9)。この構造体を含む培養物を、新しい再分化培地に、4週間~6週間おきに植え替えた。再分化培地への植え替えを2回ほど行ったものから。シュートが分化した。
(2)発根
 上記(1)で得られた分化したシュートを0.1Mシュークロース、0.2%ジェランガム、0.5%寒天を含むMS 培地にて培養を行った(25℃、12時間照明下(40μmol/m2/s))。培養開始後一ヵ月で根の分化が認められ(図10)、カルスより植物体を得ることができた。
 以上の結果より、M4タマネギ球からカルスを誘導し、そのカルスを培養増殖できること、また得られたカルスの再分化により、植物体を得られることが示された。
[実施例7]
 M4タマネギ球からの集団交配による採種(M5世代の作出)
7球のM4タマネギ球(#6系統)の集団交配より610粒のM5種子を得た。また、17球のM4タマネギ球(#10系統)の集団交配より421粒のM5種子を得た。
[実施例8]
M4タマネギ球(#6系統、#10系統)のアリイナーゼ遺伝子の解析
 上記#6系統及び#10系統において、アリイナーゼ遺伝子の発現が抑制されている原因を明らかとするため、#6系統のタマネギ及び一般的なタマネギ(アリイナーゼ遺伝子の発現が抑制されておらず辛みや催涙性を有する)における発現遺伝子の違いを、下記手法により次世代シーケンサーを用いて網羅的に解析した。
 M4タマネギ球(上記#6系統)(3球)、及び対照球として#6系統と品種が同じで、且つ同じ回数の自殖を繰り返した辛みを有するタマネギ球(3球)を液体窒素で急速凍結した後、-80℃で凍結保存した。
 凍結した各タマネギ球の皮を剥ぎ、タマネギ組織100mgを測りとり、RNeasy Plant Mini kit (Qiagen社製)を用いて、添付のマニュアルに従ってtotal RNAを採取した。さらに採取したtotal RNAをRNeasy Mini Kit(Qiagen社製)、及びRNase-Free DNase Set(Qiagen社製)を用いて、DNase処理を行った。処理後のtotal RNAは、Nanodrop(NanodropTechnologies社製)、及び Agilent 2100 Bioanalyzer(Aglent Technologies社製)による濃度測定・品質の確認を行った。品質確認において、サンプルのA260/A280が1.8以上、且つRNA Integrity Numberが8.0以上であることを確認し、TruSeq RNA Sample Prep Kit(illumina社製)を用いて添付マニュアルに従い、シーケンスライブラリーを調製した。調製したシーケンスライブラリーは次世代シーケンサHiSeq(illumina社製)を用いて、下記の条件でシーケンス解析を行った。
(シーケンス条件)
解析方法:Paired End、検体数:6、レーン数:3、読み取り塩基長:100塩基/リード
(データ処理)
 得られたデータには、下記に挙げる情報処理を実施した。
・Chastityと呼ばれる計算式を用い、蛍光純度の低いデータを除去した。「Chastityと」は、4種類の塩基からのシグナル値の内、最大のものをI1、次のものをI2とした場合、「I1/(I1+I2)」で示す式で表され、本実施例では「I1/(I1+I2)>0.6」の条件でデータの選別を行った。
・選別したデータを、各検体固有Index情報により検体毎に振り分けた。
・アダプター配列を含むリードを除去し、さらにQuality Value20 以上の塩基を90%以上含むリードペアを抽出した。それら各検体のデータをすべて使用し、Trinity(URL: http://trinityrnaseq.sourceforge.net/index.html version 2013-02-25)を用いてDe novo アセンブルを行った。
・アセンブルデータ(推定Transcript配列)について、BLAST検索によるアノテーション付与を行った。アノテーションのプログラムにはBLASTXを、データベースには、NCBIのRefSeq-Fungi、RefSeq-Microbial、RefSeq-Plantのアミノ酸配列、及びNCBIの分類でAllieaeに登録されているアミノ酸配列と遺伝子配列をアミノ酸配列に変換した配列を統合したデータベースを用いた。
BLASTXのパラメーターは、evalue 1E-5 / num_alignments 100 / outfmt "6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen stitle qcovs qcovhsp"/ 
その他はデフォルト条件を使用した。
・推定Transcript配列に対し、発現解析のためTrinityを用いて各検体のデータをマッピンングした。
・マッピング結果から、edgeRを使用して2群間の発現比較検定を実施し、両群間で発現量に差のある遺伝子配列を抽出した。有意差はp-valueが0.05以下、且つFDR(False Discovery Rate)が0.01以下を基準とした。
 解析の結果、BLASTXでのアノテーションでタマネギのアリイナーゼ、アリイナーゼ様、アリイナーゼ前駆体といったアリイナーゼとアノテーションされた遺伝子は全部で29個あった(図11)。
 その中で前記した有意差水準で#6系統のタマネギ球(3個)で発現が抑制されており、反対に対照タマネギ球(3個)では発現が認められたアリイナーゼ遺伝子が一つだけ確認できた(以下、このアリイナーゼ遺伝子を便宜上、「アリイナーゼ遺伝子1」と記載する。)。このアリイナーゼ遺伝子1にコードされるアミノ酸配列を図12に示す。
 アリイナーゼ遺伝子1(図11中、遺伝子番号1にて示す)は、対照タマネギ球にて、アリイナーゼとアノテーションされた遺伝子29個の中で最も発現量が高かった。これらの結果から、アリイナーゼ遺伝子1はタマネギ細胞におけるアリイナーゼ遺伝子のうち、その細胞のアリイナーゼ活性の大きさに最も寄与するアリイナーゼ遺伝子であることが示された。
 今日までに、13種類のタマネギのアリイナーゼがGenBankに登録されている(Accession番号 AAA32639.1やAAA92463.1等)。これは、タマネギアリイナーゼ遺伝子がマルチコピー遺伝子であるとされていることや、タマネギ植物の根と球では性質の異なるアリイナーゼを利用しているとされていることに加え、タマネギでは種々の遺伝子の塩基配列が品種ごとに少しずつ異なることに起因すると考えられる(King et al.: A low-density genetic map of onion reveals a role for tanden duplication in the evolution of an extremely large diploid genome. Theoretical and Applied Genetics, 96, 52-62 (1998);Do et al.: Genomic organization of a novel root alliinase gene, ALL1, in onion. Gene, 325, 17-24 (2004);Masamura et al.: Chromosomal organization and sequence diversity of genes encoding lachrymatory factor synthase in Allium cepa L. Genes|Genomes|Genetics 2: 643-651 (2012))。アリイナーゼ遺伝子が複数個存在していることに加え、それぞれのアリイナーゼ遺伝子ごとのタマネギ細胞のアリイナーゼ活性の強さへの寄与程度がはっきりしていないために、アリイナーゼ遺伝子を抑制したタマネギを作出しようとした場合に、どのアリイナーゼ遺伝子を欠失又は抑制の対象とし、また何種類のアリイナーゼ遺伝子を欠失又は抑制した場合に、有効にアリイナーゼ遺伝子の発現を欠失又は抑制することができるのか判断することができず、標的アリイナーゼ遺伝子の絞り込みは困難な状況であった。
 一方、上記結果より、タマネギゲノム中に複数存在するアリイナーゼ遺伝子のうち、タマネギ細胞のアリイナーゼ活性の強さに最も寄与しているアリイナーゼ遺伝子が特定され、さらに、その遺伝子(アリイナーゼ遺伝子1)の発現が著しく低いタマネギでは辛みをほとんど感じられないことが明らかとなった。
すなわち、タマネギ球においてアリイナーゼ遺伝子1が主なアリイナーゼ遺伝子であり、そしてその発現を欠失又は抑制するだけで、タマネギ球における全体的なアリイナーゼ遺伝子の発現を顕著に欠失又は抑制することが可能であり、これによってタマネギの辛みや催涙性を抑制できることが明らかとなった。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (19)

  1.  アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体、若しくはその子孫、又はその部分。
  2.  タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている、請求項1に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  3.  アリイナーゼ遺伝子が以下(a)-(c)のポリペプチドをコードする塩基配列を含む、請求項1又は2に記載のタマネギの植物体、若しくはその子孫、又はその部分:
     (a) 配列番号5で示されるアミノ酸配列を含むポリペプチド;
     (b) 配列番号5で示されるアミノ酸配列において、一又は複数個のアミノ酸の欠失、置換、挿入及び/又は付加を有するアミノ酸配列を含み、かつアリイナーゼ活性を有するポリペプチド;
     (c) 配列番号5で示されるアミノ酸配列と、90%以上の同一性を有するアミノ酸配列を含み、かつアリイナーゼ活性を有するポリペプチド。
  4.  以下の工程:
    (i) タマネギ種子に突然変異誘発処理を行う工程、
    (ii) 突然変異誘発処理したタマネギ種子を栽培してタマネギの植物体又はその部分を得る工程、並びに
    (iii)得られたタマネギの植物体又はその部分より以下の一又は複数の形質を示すタマネギの植物体又はその部分を選抜する工程:
     a) タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている;
     b) アリイナーゼ遺伝子又はタンパク質の発現が従来品種と比べて抑制されている;
     c) タマネギ細胞破砕時におけるピルビン酸の生成が従来品種と比べて低減されている;
     d) タマネギ細胞破砕した後の残存PRENCSO量が従来品種と比べて多い;及び
     e) タマネギ細胞破砕時における催涙因子(LF)の生成が従来品種と比べて低減されている、
    を含む、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体又はその部分の製造方法。
  5.  工程(iii)が、少なくとも形質b)を示すタマネギの植物体又はその部分を選抜する工程を含む、請求項4に記載の方法。
  6.  さらに、(iv) 選抜されたタマネギの植物体を自殖交配し、得られたタマネギの植物体又はその部分を工程(iii)に付す工程を一又は複数回繰り返し行う工程を含む、請求項4に記載の方法。
  7.  タマネギの植物体の部分が、NCIMB 42219として国際寄託された種子である、請求項1に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  8.  タマネギの植物体の部分が、FERM BP-22260として国際寄託されたカルスである、請求項1に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  9.  以下の工程:
    (i) タマネギ種子に突然変異誘発処理を行う工程、
    (ii) 突然変異誘発処理したタマネギ種子を栽培してタマネギの植物体又はその部分を得る工程、並びに
    (iii)得られたタマネギの植物体又はその部分より以下の一又は複数の形質を示すタマネギの植物体又はその部分を選抜する工程:
     a) タマネギ細胞破砕時における辛み成分及び催涙成分の生成が従来品種と比べて低減されている;
     b)アリイナーゼ遺伝子又はタンパク質の発現が従来品種と比べて抑制されている;
     c) タマネギ細胞破砕時におけるピルビン酸の生成が従来品種と比べて低減されている;
     d) タマネギ細胞破砕した後の残存PRENCSO量が従来品種と比べて多い;及び
     e) タマネギ細胞破砕時における催涙因子(LF)の生成が従来品種と比べて低減されている、
    を含む方法によって製造された、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする、タマネギの植物体又はその部分。
  10.  工程(iii)が、少なくとも形質b)を示すタマネギの植物体又はその部分を選抜する工程を含む、請求項9に記載のタマネギの植物体又はその部分。
  11.  前記方法がさらに、(iv) 選抜されたタマネギを自殖交配し、得られたタマネギを工程(iii)に付す工程を一又は複数回繰り返し行う工程を含む、請求項9に記載のタマネギの植物体又はその部分。
  12.  アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする第一のタマネギの植物体と、第二のタマネギの植物体とを交配することを含む、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体又はその部分の製造方法。
  13.  アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とする第一のタマネギの植物体と、第二のタマネギの植物体とを交配することを含む方法によって製造された、アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体又はその部分。
  14.  アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体の部分から得られる、タマネギの植物体、若しくはその子孫、又はその部分。
  15.  アリイナーゼ遺伝子の発現が従来品種と比べて抑制されていることを特徴とするタマネギの植物体の種子又はカルスから得られる、請求項14に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  16.  種子が、NCIMB 42219として国際寄託されたものである、請求項15に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  17.  カルスが、FERM BP-22260として国際寄託されたものである、請求項15に記載のタマネギの植物体、若しくはその子孫、又はその部分。
  18.  タマネギの植物体又はその部分におけるアリイナーゼ遺伝子の発現量を測定し、該タマネギの植物体又はその部分の辛味を評価する方法。
  19.  タマネギの植物体又はその部分におけるアリイナーゼ遺伝子の発現量を測定し、該遺伝子の発現が従来品種と比べて抑制されているタマネギの植物体又はその部分を選択することを含む、従来品種と比べて辛み成分及び催涙成分の生成が低減されているタマネギの植物体又はその部分の選択方法。
PCT/JP2014/062059 2013-05-01 2014-05-01 辛みがなく、催涙成分の生成がないタマネギ WO2014178420A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES14791132T ES2699989T3 (es) 2013-05-01 2014-05-01 Cebolla con pungencia reducida que no genera componente lacrimógeno
CN201480024690.2A CN105377022B (zh) 2013-05-01 2014-05-01 没有辛辣味且没有催泪成分生成的洋葱
US14/888,296 US10271500B2 (en) 2013-05-01 2014-05-01 Onion with reduced pungency that does not generate lachrymatory component
EP14791132.5A EP2992756B1 (en) 2013-05-01 2014-05-01 Onion with reduced pungency that does not generate lachrymatory component
NZ713186A NZ713186A (en) 2013-05-01 2014-05-01 Onion with reduced pungency that does not generate lachrymatory component
DK14791132.5T DK2992756T3 (en) 2013-05-01 2014-05-01 Reduced onions that do not generate tear-inducing component
JP2014527376A JP5671657B1 (ja) 2013-05-01 2014-05-01 辛みがなく、催涙成分の生成がないタマネギ
PL14791132T PL2992756T3 (pl) 2013-05-01 2014-05-01 Cebula o zmniejszonej ostrości, która nie wytwarza składnika łzawiącego
HK16110535.3A HK1222296A1 (zh) 2013-05-01 2016-09-05 沒有辛辣味且沒有催淚成分生成的洋葱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013096551 2013-05-01
JP2013-096551 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178420A1 true WO2014178420A1 (ja) 2014-11-06

Family

ID=51843544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062059 WO2014178420A1 (ja) 2013-05-01 2014-05-01 辛みがなく、催涙成分の生成がないタマネギ

Country Status (12)

Country Link
US (1) US10271500B2 (ja)
EP (1) EP2992756B1 (ja)
JP (1) JP5671657B1 (ja)
CN (1) CN105377022B (ja)
DK (1) DK2992756T3 (ja)
ES (1) ES2699989T3 (ja)
HK (1) HK1222296A1 (ja)
NZ (1) NZ713186A (ja)
PL (1) PL2992756T3 (ja)
PT (1) PT2992756T (ja)
TR (1) TR201820127T4 (ja)
WO (1) WO2014178420A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131259A1 (ja) * 2020-12-14 2022-06-23 ハウス食品グループ本社株式会社 タマネギ加工品及びその製造方法
US11560599B2 (en) 2017-09-25 2023-01-24 House Foods Group Inc. Onion discrimination method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020391925A1 (en) 2019-11-26 2022-06-16 Nunhems B.V. Molecular markers for reduced pyruvate level trait in Allium cepa

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074706A1 (fr) * 2002-03-01 2003-09-12 House Foods Corporation Proteine ou polypeptide ayant une activite de synthase de type substance lacrymogene, adn codant la proteine ou le polypeptide, procede d'obtention de ladite proteine ou dudit polypeptide, et molecule d'acides nucleiques inhibant la translation de l'arn messager concernant la proteine ou le peptide
WO2007029854A1 (ja) * 2005-09-05 2007-03-15 House Foods Corporation 催涙成分生成酵素阻害剤
JP2007210918A (ja) 2006-02-08 2007-08-23 Tokai Univ テストステロン増加剤、ネギ属植物処理物、およびこれらを含有する食品添加物
JP2009501528A (ja) 2005-07-15 2009-01-22 セミニス・ベジタブル・シーズ・インコーポレイテツド 辛味の少ない長日タマネギ
JP2009254344A (ja) 2008-03-28 2009-11-05 House Foods Corp タマネギ中に含まれるlfs及びprencsoの分離方法
JP2011510618A (ja) 2008-01-25 2011-04-07 ヌンヘムス・ベー・ヴェー 高い貯蔵能、高い可溶性固形物含量および/または低い辛味を有するタマネギ
JP2013096551A (ja) 2011-11-04 2013-05-20 Azbil Corp 電動アクチュエータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1418500A (en) * 1998-11-30 2000-06-19 New Zealand Institute For Crop & Food Research Limited A sulfur metabolizing gene from the roots of onion
ATE505554T1 (de) * 1999-01-29 2011-04-15 Nz Inst Plant & Food Res Ltd Transformation und regeneration von pflanzen der familie allium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074706A1 (fr) * 2002-03-01 2003-09-12 House Foods Corporation Proteine ou polypeptide ayant une activite de synthase de type substance lacrymogene, adn codant la proteine ou le polypeptide, procede d'obtention de ladite proteine ou dudit polypeptide, et molecule d'acides nucleiques inhibant la translation de l'arn messager concernant la proteine ou le peptide
JP2009501528A (ja) 2005-07-15 2009-01-22 セミニス・ベジタブル・シーズ・インコーポレイテツド 辛味の少ない長日タマネギ
WO2007029854A1 (ja) * 2005-09-05 2007-03-15 House Foods Corporation 催涙成分生成酵素阻害剤
JP2007210918A (ja) 2006-02-08 2007-08-23 Tokai Univ テストステロン増加剤、ネギ属植物処理物、およびこれらを含有する食品添加物
JP2011510618A (ja) 2008-01-25 2011-04-07 ヌンヘムス・ベー・ヴェー 高い貯蔵能、高い可溶性固形物含量および/または低い辛味を有するタマネギ
JP2009254344A (ja) 2008-03-28 2009-11-05 House Foods Corp タマネギ中に含まれるlfs及びprencsoの分離方法
JP2013096551A (ja) 2011-11-04 2013-05-20 Azbil Corp 電動アクチュエータ

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"From genetic technique to genomic analysis", 2001, SHUJUNSHA, article "Plant cell technology Series 15, Experimental protocol for model animals"
DO ET AL.: "Genomic organization of a novel root alliinase gene, ALL1, in onion", GENE, vol. 325, 2004, pages 17 - 24
EADY CC: "Allium Crop Science: Recent Advances", 2002, CABI PUBLISHING, article "Genetic Transformation of Onions", pages: 119 - 144
EADY, C.C ET AL.: "Silencing Onion Lachrymatory Factor Synthase Causes a Significant Change in the Sulfur Secondary Metabolite Profile", PLANT PHYSIOL., vol. 147, 2008, pages 2096 - 2106, XP055291476 *
EADY, C.C ET AL.: "Transgenic onions with reduced alliinase activity: Biochemical and molecular assessment", ACTA HORTICULTURAE, vol. 688, 2005, pages 181 - 188 *
GEUM SOOK DO ET AL.: "Genomic organization of a novel root alliinase gene , ALL1", GENE, vol. 325, 2004, pages 17 - 24, XP004482491 *
GILPIN, B.J. ET AL.: "Nucleotide sequence of a nuclear clone of alliinase (Accession No. L48614) from onion (PGR95-125", PLANT PHYSIOL., vol. 110, 1996, pages 336, XP008181762 *
IMAI S ET AL.: "An onion enzyme that makes the eyes water", NATURE, vol. 419, 2002, pages 685
KING ET AL.: "A low-density genetic map of onion reveals a role for tanden duplication in the evolution of an extremely large diploid genome", THEORETICAL AND APPLIED GENETICS, vol. 96, 1998, pages 52 - 62
MASAMURA ET AL.: "Chromosomal organization and sequence diversity of genes encoding lachrymatory factor synthase in Allium cepa L", GENES/GENOMES/GENETICS, vol. 2, 2012, pages 643 - 651
See also references of EP2992756A4
SHINSUKE IMAI ET AL.: "Molecular Breeding of Tearless Onions", BIO INDUSTRY, vol. 28, no. 12, 12 November 2011 (2011-11-12), pages 34 - 40, XP008181453 *
TANIKAWA, T.; TAKAGI, M.; ICHII, M.: "Plant regeneration from suspension cultures of onion (Allium cepa L.", PLANT TISSUE CULT. LETT., vol. 13, 1996, pages 259 - 264

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560599B2 (en) 2017-09-25 2023-01-24 House Foods Group Inc. Onion discrimination method
WO2022131259A1 (ja) * 2020-12-14 2022-06-23 ハウス食品グループ本社株式会社 タマネギ加工品及びその製造方法

Also Published As

Publication number Publication date
JPWO2014178420A1 (ja) 2017-02-23
DK2992756T3 (en) 2019-01-07
US10271500B2 (en) 2019-04-30
EP2992756A1 (en) 2016-03-09
EP2992756A4 (en) 2017-02-08
NZ713186A (en) 2017-09-29
CN105377022B (zh) 2018-01-12
HK1222296A1 (zh) 2017-06-30
EP2992756B1 (en) 2018-09-26
JP5671657B1 (ja) 2015-02-18
US20160073607A1 (en) 2016-03-17
PT2992756T (pt) 2019-01-09
CN105377022A (zh) 2016-03-02
PL2992756T3 (pl) 2019-03-29
TR201820127T4 (tr) 2019-02-21
ES2699989T3 (es) 2019-02-13

Similar Documents

Publication Publication Date Title
JP2021118709A (ja) 低減された損傷誘発性表面変色を示す植物
JP5671657B1 (ja) 辛みがなく、催涙成分の生成がないタマネギ
US12052971B2 (en) Solanaceous plant capable of stenospermocarpic fruit formation
AU2013349743B2 (en) Solanum lycopersicum plants having non-transgenic alterations in the acs2 gene
US12054726B2 (en) Tomato plant producing fruit having improved ripening characteristics
AU2013322709B2 (en) Solanum lycopersicum plants having non-transgenic alterations in the ACS4 gene
US11795469B2 (en) Scaevola plants with radially symmetrical flowers
US20230112932A1 (en) Plant with reduced wound-induced surface discoloration phenotype
US10219486B2 (en) Pepper with altered flavor attributes and odor intensity
Odipio Accelerating Flowering in Cassava by Manipulation of Endogenous FLOWERING LOCUS T-like Genes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014527376

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014791132

Country of ref document: EP