WO2014177028A1 - 软磁复合薄膜和制造方法及其在电子设备中的应用 - Google Patents

软磁复合薄膜和制造方法及其在电子设备中的应用 Download PDF

Info

Publication number
WO2014177028A1
WO2014177028A1 PCT/CN2014/076315 CN2014076315W WO2014177028A1 WO 2014177028 A1 WO2014177028 A1 WO 2014177028A1 CN 2014076315 W CN2014076315 W CN 2014076315W WO 2014177028 A1 WO2014177028 A1 WO 2014177028A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
iron
composite film
nickel
magnetic composite
Prior art date
Application number
PCT/CN2014/076315
Other languages
English (en)
French (fr)
Inventor
杨立章
Original Assignee
Yang Lizhang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Lizhang filed Critical Yang Lizhang
Publication of WO2014177028A1 publication Critical patent/WO2014177028A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Definitions

  • the present invention relates to a sheet-like soft magnetic alloy composite material, and more particularly to a sheet-like iron-nickel soft magnetic alloy composite film and a method for producing the soft magnetic composite film, and the film absorbing electromagnetic noise in an electronic device application.
  • US 2,872,225 discloses that heat treatment can increase the magnetic permeability of a sheet soft magnetic alloy.
  • US 5,827,445, T0KIN discloses a composite material composed of a sheet-like soft magnetic alloy powder and an organic resin composite. Wherein, the thickness of the sheet-like soft magnetic alloy powder should be smaller than the corresponding microwave skin depth.
  • US6850182 Sumitomo Electronics Industry Co., Ltd., discloses a magnetic wave absorbing sheet. Wherein, the surface of the sheet-like soft magnetic alloy is coated with a mixture of octadecanoic acid or octadecanoic acid and titanate.
  • the crosstalk of electromagnetic waves in a limited space is mostly a near-field electromagnetic wave problem.
  • Far-field electromagnetic wave absorption needs to consider that the wavelength of the electromagnetic wave in the absorbing film matches the thickness of the absorbing film to cause interference to absorb electromagnetic waves (quarter-wave law).
  • the far-field electromagnetic wave must match the wave impedance of the soft magnetic composite film to obtain good absorbing performance.
  • the permeability of the absorbing film must match the dielectric constant of the absorbing film so that the wave impedance of the absorbing film approaches the 377 ohm wave impedance of the free-space electromagnetic wave. It is not required that the absorbing film has a high magnetic permeability and a dielectric constant.
  • Near-field electromagnetic waves are more focused on the binding and loss of electromagnetic waves in the absorbing film. There is no need to consider the impedance matching between the absorbing film and the free-space electromagnetic wave, and there is no need to consider the quarter-wave absorption law. This means that for near-field absorbing films, generally the magnetic permeability, magnetic loss, and dielectric constant, the higher the dielectric loss, the better. For composite films, high aspect ratio magnetic fillers are generally required as well as high fill rates.
  • TDK has studied Fe_Si, Fe-Si-Al, Fe-Cr, Fe 15 Si 1 Mo 4 Ni 80 , Fe ls Mo 2 Ni s in the patents US6225876, US7323214.
  • Soft magnetic material Daido studied the soft magnetic properties of Fe-Si, Fe-Co, Fe-Al, Fe-Cr, Fe_Si_Cr, Fe-Al_Cr in the patents JP2001339193 and JP11087117.
  • Texas Instruments Inc. studied the properties of CoZrNb, CoFeBSi, Fe 5 Co 95 , FeTb in US Pat. No.
  • NEC-TOKIN in US Pat. No. 5,827,445, discusses microwave characteristics when the thickness of the Fe-Si-Al alloy flake powder and the permalloy flake powder is less than the skin depth of the microwave therein.
  • the above materials do not solve the l-3GHz electromagnetic compatibility problem well.
  • the magnetic permeability of Fe-Si-Al products EFF, EFX, EFA, FK3 and EFR at 1 GHz is 10 at 1 GHz. It dropped to around 2 at 2 GHz and dropped to around 1 at 2. 4 GHz.
  • NEC-TOKIN has recently developed an EFG film.
  • the EFG film is a material in which a sheet-like Fe-Si-Cr alloy is compounded with a resin, and its magnetic permeability is about 6 at 2 GHz, and is reduced to about 5 at 2.4 GHz and about 1. 2 at 3 GHz.
  • the present invention provides a soft magnetic composite film and a manufacturing method thereof, and an application for absorbing a near-field electromagnetic noise in an electronic device, which can solve the problem that the composite film existing in the prior art has a magnetic permeability of not more than 1 GHz, especially greater than 2. 4 GHz.
  • the result is that the near-field electromagnetic noise absorption effect of the composite film is not good, and the problem of low signal transmission quality of the electronic device is caused.
  • the present invention is different from the far field electromagnetic wave absorbing material.
  • the technical solution of the present invention is:
  • An iron-nickel soft magnetic composite film comprising: a flaky iron-nickel soft magnetic alloy powder, which is preferably contained in an amount of 45% to 60% iron and 40% to 55% nickel; more preferably 5 1% to 57% iron and 43% - 49 %nickel;
  • the sheet-like iron-nickel soft magnetic alloy powder is mixed with the organic bonding material, and is formed into an iron-nickel soft magnetic composite film, preferably, the sheet-shaped iron-nickel soft magnetic alloy powder accounts for a total volume of iron-nickel soft
  • the magnetic composite film material has a volume of 31% to 73%; more preferably, the volume fraction of the sheet-like iron-nickel soft magnetic alloy powder accounts for 41% to 68% of the total volume of the iron-nickel soft magnetic composite film material;
  • the iron-nickel soft magnetic composite film has a thickness ranging from 20 ⁇ m to 0.49 mm, and the thickness of the one or both sides is 3 - 50 ⁇ m. The thickness of the film is less than or equal to 0.50 mm.
  • the sheet-shaped iron-nickel soft magnetic alloy powder has an average diameter of 1 ⁇ m to 300 ⁇ m, an average thickness of 50 nm to 5 ⁇ m, and an average aspect ratio of the sheet-shaped iron-nickel soft magnetic alloy powder of more than 16 and less than 2,000.
  • the average aspect ratio is from 4 1 to 600, and more preferably the average aspect ratio is from 60 to 300.
  • the thermal stability of the high-frequency iron-nickel soft magnetic composite film is required to be greater than 70
  • the organic bonding material mainly comprises a polymer resin, including but not limited to silicone rubber, butylene rubber, isoprene rubber, polyurethane, fluororubber, nitrile rubber (NBR), ethylene/vinyl acetate. At least one of an ester copolymer (EVA), EPDM, PVA, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyolefin, epoxy resin, polyester, PVB, or a copolymer thereof.
  • a polymer resin including but not limited to silicone rubber, butylene rubber, isoprene rubber, polyurethane, fluororubber, nitrile rubber (NBR), ethylene/vinyl acetate.
  • EVA ester copolymer
  • EPDM polyethylene
  • PVA polyethylene
  • polypropylene polypropylene
  • polyvinyl chloride polyamide
  • polyolefin epoxy resin
  • polyester polyester
  • PVB or a copolymer thereof.
  • the iron-nickel soft magnetic composite film is coated on one side of an organic film substrate, which is a film of PET, PE, PP, PC, PVDF, P I, a fluorine-containing plastic, or a release film thereof.
  • the other side of the organic substrate is a rubber surface.
  • the magnetic properties of the iron-nickel soft magnetic composite film are greater than 4 at 2 GHz and greater than 2. 5 at 2. 4 GHz. More preferably, the magnetic properties of the iron-nickel soft magnetic composite film are greater than 6.5 at 2 GHz and greater than 3.4 at 2. 4 GHz. The best product permeability is greater than 8 at 2 GHz and 2. 4 GHz.
  • the surface of the iron-nickel soft magnetic composite film is bonded to the adhesive layer to form an iron-nickel soft magnetic composite film tape, and the adhesive layer is an acrylic material, a pressure sensitive adhesive of a rubber material, and a thermocompression bonding. Agent, or silicone rubber, the adhesive layer has a thickness ranging from 3 to 50 microns.
  • a method for producing an iron-nickel soft magnetic composite film the method being carried out as follows:
  • Iron-nickel alloy sheeting After the iron-nickel is proportioned, it is mixed with the ball-milling liquid medium.
  • the weight ratio of the iron-nickel alloy powder to the ball-milling liquid medium is 1:1.5, the ball milling time is 10 - 14 hours, and the ball mill speed is 300-400 rpm.
  • the mixture of alloy powder and ball milled liquid medium is protected at 55-65 ° C, under nitrogen or other inert or non-oxidizing gases (such as helium, argon, hydrogen, etc.) or under vacuum protection. And then return to room temperature;
  • the flake-shaped iron-nickel alloy powder is mixed with a predetermined amount of the organic bonding material, and the mixture is ball-milled in a ball mill, and the ball milling time is 18-22 hours, thereby obtaining a flake iron and a nickel alloy powder slurry;
  • the flake-shaped iron-nickel alloy powder slurry is coated on one side of the organic substrate, dried after coating, and dried at a temperature of 60 ° C to 80 ° C and a drying time of 8 to 12 minutes to form an iron-nickel soft magnetic composite film.
  • the coated iron-nickel soft magnetic composite film is hot pressed on a hot roll press or a flat hot press to increase the uniformity of the film thickness and control the surface roughness and surface microstructure of the film.
  • the organic binder material can be crosslinked in 3 or 4 steps of heating to further increase the performance of the film.
  • the above 1-4 process conditions are not unique. In actual operation, the relevant parameters can be adjusted according to the specific equipment conditions, such as ball milling time, material mixing sequence, ball mill rotation speed, powder drying time, powder drying temperature, coating film drying time, coating film drying temperature, etc. The same or similar results.
  • a mixed alloy soft magnetic composite film comprising:
  • a a sheet-like iron-nickel soft magnetic alloy powder and a non-ferrous nickel flake soft magnetic alloy powder; wherein, in terms of mass fraction, in the flake iron-nickel soft magnetic alloy powder, the ratio of iron to nickel is 45% -60% iron and 40%-55% nickel;
  • the sheet-shaped iron-nickel soft magnetic alloy powder and the non-ferrous nickel flake soft magnetic alloy powder are mixed with the organic bonding material, and form a mixed alloy soft magnetic composite film;
  • the volume fraction of the flake-shaped iron-nickel soft magnetic alloy powder and the non-ferrous nickel flake soft magnetic alloy powder accounts for 31% to 73% of the total mixed alloy soft magnetic composite film material, and the sheet-like iron-nickel soft magnetic
  • the volume fraction of the alloy powder accounts for more than 5% by volume of the total mixed alloy soft magnetic composite film material, and the non-ferrous nickel flake soft magnetic alloy
  • the powder is one or more of flake iron silicon aluminum, flake iron silicon, flake iron nickel molybdenum, flake iron silicon chromium, or flaky carbonyl iron;
  • the flake-shaped iron-nickel soft magnetic alloy powder and the non-ferrous nickel flake soft magnetic alloy powder have an average diameter of 1 micrometer to 300 micrometers, an average thickness of 50 nanometers to 5 micrometers, and a sheet-like iron-nickel soft magnetic alloy powder and
  • the average aspect ratio of the non-ferrous nickel flake soft magnetic alloy powder is greater than 15 and less than 2000;
  • the mixed alloy soft magnetic composite film has a thickness ranging from 20 ⁇ m to 0.99 mm; f.
  • the organic bonding material in the mixed alloy soft magnetic composite film mainly comprises the polymer resin, and the polymer resin is Silicone rubber, butylene rubber, isoprene rubber, polyurethane, fluororubber, nitrile rubber, ethylene/vinyl acetate copolymer, EPDM, PVA, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyolefin, At least one of epoxy resin, polyester, PVB, or a copolymer thereof.
  • a multi-layer soft magnetic composite film which is composed of at least one layer of iron-nickel soft magnetic composite film and at least one layer of non-ferrous nickel soft magnetic composite film,
  • the iron-nickel soft magnetic composite film is composed of an iron-nickel soft magnetic composite film of the above technical solution
  • the non-ferrous nickel soft magnetic composite film is a non-ferrous nickel soft magnetic alloy powder mixed with an organic bonding material, and is formed into a non-ferrous nickel soft magnetic composite film, the non-ferrous nickel soft magnetic alloy
  • the volume fraction of the powder accounts for 31% to 73% by volume of the total non-ferrous nickel soft magnetic composite film material, and the average diameter of the sheet-like non-ferrous nickel soft magnetic alloy powder ranges from 1 micrometer to 300 micrometers, and the average thickness ranges from 50 nanometers to 5 micrometers.
  • the average aspect ratio of the sheet-like non-ferrous nickel soft magnetic alloy powder is greater than 15 and less than 2000, and the non-ferrous nickel flake soft magnetic alloy powder is flake iron silicon aluminum, sheet iron silicon, sheet iron nickel molybdenum, sheet One of iron-iron chromium, or flaky carbonyl iron.
  • the organic bonding material comprises a polymer resin, including but not limited to silicone rubber, butylene rubber, isoprene rubber, polyurethane, fluororubber, nitrile rubber (NBR), ethylene/vinyl acetate. At least one of a copolymer (EVA), EPDM, PVA, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyolefin, epoxy resin, polyester, PVB, or a copolymer thereof.
  • a polymer resin including but not limited to silicone rubber, butylene rubber, isoprene rubber, polyurethane, fluororubber, nitrile rubber (NBR), ethylene/vinyl acetate.
  • EVA ethylene/vinyl acetate
  • EPDM polyethylene/vinyl chloride
  • PVA polyethylene/propylene
  • polyvinyl chloride polyamide
  • polyolefin epoxy resin
  • polyester polyester
  • PVB or a copolymer thereof.
  • the thickness of the film is from 20 microns to 0.5 mm.
  • the surface of the multilayer soft magnetic composite film is bonded to an adhesive layer which is an acrylic material, a pressure sensitive adhesive of a rubber material, a hot press adhesive, or a silicone rubber, and the adhesive
  • the layer thickness ranges from 3 to 50 microns.
  • a method for producing a multilayer soft magnetic composite film wherein the method is carried out as follows: 1. Iron-nickel alloy sheeting and iron-silicon-aluminum soft magnetic alloy sheeting
  • the iron-nickel After the iron-nickel is proportioned, it is mixed with the ball-milling liquid medium.
  • the weight ratio of the iron-nickel alloy powder to the ball-milling liquid medium is 1:1.5, the ball milling time is 10-14 hours, and the ball mill rotation speed is 300-400 rpm/min.
  • the mixture of the alloy powder and the ball mill liquid medium is dried at 55-65 ° C under nitrogen protection, and then returned to room temperature;
  • the iron-silicon-aluminum soft magnetic alloy is mixed with the ball-milling liquid medium, and the weight ratio of the iron-silicon-aluminum soft magnetic alloy to the ball-milling liquid medium is 1:1.5, the ball milling time is 10-14 hours, and the ball mill rotation speed is 300-400 rpm/min, ball milling After that, the mixture of the alloy powder and the ball mill liquid medium is dried at 55-65 ° C under nitrogen protection, and then returned to room temperature;
  • the flake-shaped iron-nickel alloy powder is mixed with a predetermined amount of the organic binder and the solvent, and the mixture is mixed in a ball mill for a mixing time of 18-22 hours to obtain a flake iron and a nickel alloy powder slurry;
  • the flake-shaped ferrosilicon alloy powder is mixed with a predetermined amount of the organic binder and the solvent, and the mixture is mixed in a ball mill for a mixing time of 18-22 hours, thereby obtaining a sheet-like ferrosilicon soft magnetic alloy powder.
  • the flake iron and nickel alloy powder slurry is coated on one side of the organic substrate, dried after coating, and the drying temperature is 60 ° C - 80 ° C, and the drying time is 8-12 minutes, thereby forming iron nickel soft magnetic The composite film;
  • the sheet-like iron-silicon-aluminum soft magnetic alloy powder slurry is coated on the surface of the iron-nickel soft magnetic composite film of the above-mentioned iron-nickel soft magnetic composite film, and dried after drying, the drying temperature is 60 ° C - 80 ° C, and the drying time is 8 -12 minutes to form a multilayer soft magnetic composite film;
  • a sheet of ferrosilicon soft magnetic alloy powder slurry is coated on an organic substrate to form a ferrosilicon soft magnetic composite film, and the iron-nickel soft magnetic composite film and the ferrosilicon soft magnetic composite film are pressed or adhered.
  • the connection method is such that a multilayer soft magnetic composite film is formed.
  • the coated multilayer soft magnetic composite film is hot pressed on a hot roll press or a flat hot press to improve the uniformity of the thickness of the multilayer soft magnetic composite film, control the surface roughness and surface microstructure of the film, and assist cross-linking.
  • the reaction is complete.
  • the above 1-4 process conditions are not unique. In actual operation, the relevant parameters can be adjusted according to the specific equipment conditions, such as ball milling time, ball mill speed, powder drying time, powder drying temperature, coating film drying time, coating film drying temperature, etc., to achieve the same or similar result.
  • the other layer may be iron silicon aluminum, or other soft magnetic alloys such as iron silicon chromium, iron silicon, iron nickel molybdenum, and carbonyl iron.
  • a soft magnetic composite film tape which is bonded to an adhesive layer by a surface of a soft magnetic composite film to form a soft magnetic composite film tape, wherein the adhesive layer is a pressure sensitive adhesive of acrylic material, rubber material, and heat a pressure-sensitive adhesive, or a silicone rubber, the adhesive layer has a thickness ranging from 3 to 50 ⁇ m, and the soft magnetic composite film is an iron-nickel soft magnetic composite film, a multilayer soft magnetic composite film, or a mixed alloy soft magnetic composite. film.
  • iron-nickel soft magnetic composite film the iron-nickel soft magnetic composite film and the iron-nickel soft magnetic composite film tape are used for fixing on or around parts of an electronic device for reducing near-field electromagnetic noise
  • Components of the electronic device include synchronous dynamic random access memory, ultra high frequency antenna, data line and connector thereof, metal cavity case, metal cover, metal component, speaker, camera and module thereof, flexible circuit, low voltage differential signal connection At least one of a line, a circuit board, a printed circuit board, and a chip.
  • components of the electronic device include synchronous dynamic random access memory, ultra-high frequency antenna, data line and its connector, metal cavity, metal cover, metal parts, speaker, camera and its module, A flexible circuit, a low voltage differential signal connection line, at least one of a circuit board, a printed circuit board, and a chip.
  • components of the electronic device include synchronous dynamic random access memory, ultra-high frequency antenna, data line and its connector, metal cavity, metal cover, metal parts, speaker, camera and its module, A flexible circuit, a low voltage differential signal connection line, at least one of a circuit board, a printed circuit board, and a chip.
  • the near-field electromagnetic wave in the present invention refers to an electromagnetic wave when the distance of the electromagnetic wave from the electromagnetic wave field source is smaller than one wavelength of the electromagnetic wave. For example, for a 1 GHz electromagnetic wave emitted by an electromagnetic wave field source, when the 1 GHz electromagnetic wave is less than 30 cm away from the electromagnetic wave field source, the 1 GHz electromagnetic wave is a near-field electromagnetic wave.
  • the far-field electromagnetic wave in the present invention refers to an electromagnetic wave when the distance of the electromagnetic wave from the electromagnetic wave field source is greater than two wavelengths of the electromagnetic wave. For example, for a 1 GHz electromagnetic wave emitted by an electromagnetic wave field source, when the 1 GHz electromagnetic wave is greater than 60 cm from the electromagnetic wave field source, the 1 GHz electromagnetic wave is a far-field electromagnetic wave.
  • Medium iron 45%-60% and nickel 55%_40% refer to the mass percentage of iron and nickel elements in the alloy.
  • the initial alloy powder has the opportunity to contact a variety of equipment and reagents during the process.
  • the choice of materials for different equipment such as the choice of lining and ball materials for ball mill equipment, including iron balls, stainless steel balls, zirconium balls, agate balls, etc., can introduce a large amount of various elements, affecting the final powder.
  • Composition and element ratio is the mass ratio of the iron and nickel elements in the final flaky alloy particles, including intentionally and unintentionally added.
  • This mass fraction does not include other non-metallic doping elements or metal doping elements such as: carbon, sulfur, nitrogen, silicon, boron, oxygen, phosphorus, molybdenum, copper, manganese, cobalt, aluminum, tungsten, zinc, and the like.
  • These non-metallic or metallic elements may be added intentionally or unintentionally during the milling process or packaging transport.
  • An example is that oxygen can be introduced during the milling process or during transportation due to oxidation of the metal.
  • These metal or non-metal dopings can fine tune the properties of the Fe-Ni alloy.
  • a metal or non-metal element having a mass fraction of less than or equal to 5% is doped. This Fe 45 - 6. Ni 55 — 4 .
  • the alloy may be an annealed alloy or an unannealed alloy, or a mixture thereof.
  • the surface of the alloy may be further oxidized, treated with silicon germanium, or other organic and inorganic materials to increase its insulation.
  • Aspect ratio The ratio of the longest side of the flake alloy powder to the thickness of the flake alloy powder.
  • Sheet-like soft magnetic alloy film refers to a film in which a sheet-like soft magnetic alloy and a resin are composited, and does not include a film and a release film.
  • Sendust is a ferrosilicon soft magnetic alloy containing 1% to 8% of aluminum by mass fraction, 6% to 14% of silicon, and the balance being iron.
  • the common Sendus t is a metal soft magnetic alloy produced from a powder containing an alloy of 5. 4% aluminum, 9.6% silicon, and the balance iron.
  • volume fraction The volume fraction described in the present invention is calculated from the volume of the resin, auxiliary aid and iron-nickel alloy remaining in the composite film.
  • the volume of each component is calculated from the mass of the component and their absolute density.
  • the total volume is the sum of the volumes of these components. Volatile solvents and other components that do not remain in the final film do not take into account their volume. To avoid ambiguity, the total volume of physical mixing of several components is defined as the sum of the volume of these components. Ignore the small nonlinear effects that may exist.
  • Iron-nickel alloy Fe 70 Ni 3 o , Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 6S Absolute density is taken separately: 8. 16 g / ml, 8.
  • the absolute density does not include the volume occupied by the unfilled space to distinguish the bulk density of the powder material.
  • High frequency means a frequency of 1 GHz or more.
  • Thermal stability of soft magnetic composite film means that the material maintains its physical shape stability for a long period of time at a certain temperature.
  • the highest thermal stability temperature is close to its melting point; for amorphous polymer materials without chemical crosslinking, the highest thermal stability temperature is usually close to its glass transition temperature (Tg); Molecular material, this temperature is related to its degree of crosslinking and the chemical stability of the material.
  • the magnetic permeability, the magnetic loss, the dielectric constant, and the dielectric loss test method In the present invention, the magnetic permeability, the magnetic loss, the dielectric constant, and the dielectric loss are placed in a coaxial air having an inner diameter of 7.04 mm. In the line, the network analyzer measures the S harass, S 21 signals of this microwave network.
  • the invention studies the microwave characteristics of the sheet-like powder composite film with different Fe-Ni alloy composition ratios. It has been found through experiments that the iron-nickel alloy flake powder composite film having a nickel content of 40% to 55% by mass has a high magnetic permeability at l -5 GHz. Therefore, the problem of low signal transmission quality of the electronic device above 1G can be solved.
  • the present invention is Fe 45 - 6 . Ni 55 — 4 .
  • the magnetic composite film and the composite film tape are fixed in the electronic device to suppress near-field electromagnetic noise generated by or around the electronic unit as follows: 1. Synchronous dynamic random access memory in the electronic device, 2. Ultra-high frequency antenna in the electronic device, 3. Connector in electronic equipment, 4. Metal cavity in electronic equipment, metal cover or metal parts, 5. Speakers in electronic equipment, 6. Flexible circuit boards in electronic equipment, 7. Printing in electronic equipment Circuit board, 8. Chip in electronic equipment. More special Another is that the Fe 45 - 6. Ni 55 — 4 .
  • the soft magnetic composite film has a thickness of from 20 micrometers to 1 millimeter. Its magnetic permeability is greater than 4 at 2 GHz and greater than 2.5 at 2.4 GHz.
  • the present invention has the following advantages and positive effects:
  • the present invention has high magnetic permeability in the range of l-3 GHz, especially 2-3 GHz, which makes near-field electromagnetic noise more easily absorbed by the magnetic composite film. Drop it. DRAWINGS
  • Figure 1 is a schematic view showing the combination of a soft magnetic composite film of the present invention and a plastic film layer;
  • FIG. 2 is a schematic view showing the combination of the soft magnetic composite film of the present invention with an adhesive layer and a release film layer;
  • FIG. 3 is a schematic view showing the combination of the soft magnetic composite film of the present invention and the plastic film layer, the adhesive layer and the release film layer;
  • FIG. 4 is the iron-nickel soft magnetic composite film and the iron-aluminum-silicon soft magnetic composite film and the adhesive layer of the present invention; And a schematic diagram of the release film layer;
  • Figure 5 is a volume fraction of Fe 51 Ni 49 flaky alloy powder of the present invention, which accounts for 6%, 19%, 31%, 41%, 68%, 73% soft magnetic composite film magnetic permeability of the total soft magnetic composite film material. Spectrum of frequency;
  • Figure 6 is a graph showing the mass fraction of the Fe 51 Ni 49 flake alloy powder of the present invention in the total soft magnetic composite film material volume 6%, 19%, 31%, 41%, 68%, 73% soft magnetic composite film magnetic loss and frequency Map
  • FIG. 7 is a graph showing the mass fraction of the Fe 51 Ni 49 flake alloy powder of the present invention in the total soft magnetic composite film material volume of 6%, 19%, 31%, 41%, 68%, 73% soft magnetic composite film
  • Figure 8 is a graph showing the mass fraction of the Fe 51 Ni 49 flake alloy powder of the present invention in the total soft magnetic composite film material volume of 6%, 19%, 31%, 41%, 68%, 73% soft magnetic composite film. and dielectric loss frequency spectra
  • FIG. 9 of the present invention is the volume fraction of 54% mixed soft magnetic alloy composite film (Fe 51 Ni 49 by volume of 5%, Fe S5 Si 9 6 Al 5 4 49% by volume. ), the volume fraction of 54% Fe S5 Si 9. 6 Al 5 . 4 soft magnetic composite film, Fe 54% volume fraction of the composite film pattern soft magnetic permeability and frequency 51 Ni 49.
  • Figure 10 is a Fe 7 of the present invention. Ni 3 . , Fe 6schreibNi 4 Fe Fe 45N155, Fe 32 Ni 6S magnetic composite film magnetic permeability and frequency map;
  • Figure 11 is a Fe 7 of the present invention. Ni 3 . , magnetic loss and frequency spectra of Fe 6penNi Fe 57 Ni 43 , Fe 5 iNi Fe 4 5Ni Fe 32 Ni soft magnetic composite film;
  • Figure 12 is a Fe 7 of the present invention. Ni 3 . , a map of the dielectric constant and frequency of Fe 6rowNi Fe 57 Ni 43 , Fe 5 iNi Fe 4 5Ni Fe 32 Ni soft magnetic composite film;
  • Figure 13 is a Fe 7 of the present invention. Ni 3 . , a graph of dielectric loss and frequency of Fe 6penNi Fe 57 Ni 43 , Fe 5 iNi Fe 4 5Ni Fe 32 Ni soft magnetic composite film;
  • Figure 14 is a Fe 7 of the present invention. Ni 3 . , Fe 6 exclusivelyNi Fe 57 Ni 43 , Fe 5 iNi Fe 4 5Ni Fe 32 Ni A map of electromagnetic wave loss and frequency of a soft magnetic composite film.
  • An iron-nickel soft magnetic composite film for absorbing near-field high-frequency electromagnetic noise comprising:
  • a sheet-like iron-nickel soft magnetic alloy powder which comprises 45%-60% iron and 40%-55% nickel by mass fraction; b. the sheet-shaped iron-nickel soft magnetic alloy powder and the organic bonding material phase Mix and make it form iron-nickel soft
  • the thickness of the iron-nickel soft magnetic composite film ranges from 20 microns to 0. 49 mm;
  • the sheet-shaped iron-nickel soft magnetic alloy powder has an average diameter of 1 micrometer to 300 micrometers, an average thickness of 50 nanometers to 5 micrometers, and an average aspect ratio of the sheet-shaped iron-nickel soft magnetic alloy powder of more than 16 less than 2000; e
  • the volume fraction of the flake-shaped iron-nickel soft magnetic alloy powder accounts for 31% to 1% 73% of the total volume of the iron-nickel soft magnetic composite film material; the volume fraction of the organic bonding material accounts for the total iron-nickel soft magnetic composite
  • the film material has a volume of from 1 to 5% to 69%.
  • the volume fraction of the flake-shaped iron-nickel soft magnetic alloy powder accounts for 41% to 68% of the total volume of the iron-nickel soft magnetic composite film material; the volume fraction of the organic bonding material accounts for the total volume of the iron-nickel soft magnetic composite film material. 26% to lj 59%.
  • the organic bonding material includes a large amount of a polymer resin, and an auxiliary agent which is used in a small amount or a small amount.
  • Common polymer resins include, but are not limited to, silicone rubber, butylene rubber, isoprene rubber, polyurethane, Fluororubber, nitrile rubber (NBR), ethylene/vinyl acetate copolymer (EVA), EPDM, PVA, polyethylene, polypropylene, polyvinyl chloride, polyamide, polyolefin, epoxy, polyester, PVB, Or their copolymers.
  • Auxiliary agents include, but are not limited to, one or a combination of the following chemicals, monomers, oligomers, thickeners, leveling agents, dispersants, antioxidants, heat stabilizers, crosslinkers, flexible aids Agent, flame retardant and other ingredients. They provide adhesion, help with stable production processes, adjust film mechanical properties, thermal stability properties, flame retardant properties, oxidation resistance and other properties.
  • the Fe-Ni alloy composite of the present invention has a magnetic permeability greater than that at 2 GHz, greater than 8, 2. 4 GHz.
  • the iron-nickel soft magnetic alloy composite film 1 is directly coated on the plastic film 2, which is usually a PET film.
  • the surface of the film may have a release coating to prevent the soft magnetic alloy composite film from being too firmly bonded to the plastic film, and the formed structure is as shown in FIG.
  • the plastic film 2 can then be peeled off.
  • the iron-nickel soft magnetic alloy composite film 1 is attached to the adhesive layer 3 and the release film 4 to form the structure shown in Fig. 2.
  • Another process is to directly apply the iron-nickel soft magnetic alloy composite film 1 to the plastic film 2, which is usually a PET film.
  • the surface of the film has no release coating, and even a coating for enhancing adhesion to form a structure in which the iron-nickel soft magnetic alloy composite film 1 is firmly bonded to the plastic film 2.
  • the iron-nickel composite soft magnetic film is coated with a sheet-like Fe-Ni alloy slurry on a polyethylene terephthalate film or a polyethylene terephthalate release film.
  • the dried sheet-like Fe-Ni alloy powder has an average particle diameter of about 20 ⁇ m and a thickness of less than 1 ⁇ m.
  • the binder, solvent and plasticizer are arranged in the following order:
  • Adhesive Polyvinyl butyral resin (PVB), density 1.07 g / ml (CAS number:
  • Soluble U Toluene (CAS No.: 108-88-3), Ethanol (CAS No.: 64-17-5) 1-2-1-3, the above mixture was placed in a ball mill and mixed, and the zirconium balls were 10 mm in diameter. The ball milling time is 20 hours.
  • ethylene I vinyl acetate copolymer may also be used as a bonding material for the composite film.
  • 1-2-2-1 600.3 g of dried sheet-like Fe 7 was taken .
  • Ni 3 . Powder 607.6 g of dried flakes of Fe 6 .
  • Ni 4 . Powder 609.8 g of dried flakes of Fe 57 Ni 43 powder, 614.3 g of dried flakes of Fe 51 Ni 49 powder, 618.9 g of dried flakes of Fe 45 Ni 55 powder and 629.0 g of dried flakes of Fe 32 Ni 6S powder and 60.8 g of an ethylene/vinyl acetate copolymer and 370.5 g of ethyl acetate.
  • Adhesive Ethylene / Vinyl Acetate Copolymer (EVA), density 0.97 g / ml (CAS No.: 24937-78-8)
  • the ethylene/vinyl acetate copolymer (EVA) was first dissolved in ethyl acetate; and the dried flake Fe-Ni alloy powder was added to the above solution and mixed in a ball mill.
  • the zirconium balls are 10 mm in diameter. The ball milling time is 20 hours.
  • Nitrile rubber can also be used as a bonding material for the composite film.
  • Adhesive Nitrile rubber (NBR), density 0.97 g / ml (CAS number: 9003-18-3)
  • Solvent Ethyl acetate (CAS number: 141-78-6)
  • the nitrile rubber (NBR) was first dissolved in ethyl acetate; and the dried flake-form Fe-Ni alloy powder was added to the above solution and mixed in a ball mill.
  • the zirconium balls are 10 mm in diameter. The ball milling time is 20 hours.
  • Fe 70 Ni 3 o, Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 6S alloy material are separately coated on silicon-containing polyethylene terephthalate release On the membrane, as shown in Figure 1.
  • the thickness of the composite film after drying was 400 ⁇ m thick.
  • the coating speed was 2 m/min and the drying temperature was 60 ° C to 80 ° C.
  • the drying time is 10 minutes.
  • the coated iron-nickel soft magnetic composite film is hot pressed on a hot roll press or a flat plate hot press to increase the uniformity of the film thickness and reduce the surface roughness of the film.
  • volume fractions of 6%, 9%, 31%, 41%, 68%, and 73% flake Fe 51 Ni 49 soft magnetic alloy powder were separately prepared. However, when the volume fraction reaches 73% or more, the cohesive force of the soft magnetic alloy composite film is weak, and the mechanical properties of the film are poor.
  • other sheet-like magnetic alloys such as flake iron silicon aluminum, flake iron silicon chromium, flake iron silicon, flake iron silicon may be mixed in the iron-nickel composite film. Molybdenum or the like is used to balance the microwave properties of the magnetic composite film at other frequencies.
  • the binder, solvent and plasticizer are arranged in the following order:
  • 3-1-1 were taken 5.4 toluene mixed powder 51 Ni 49 Fe powder sheet and dried to 51.6 g 472.1 g after drying the sheet-like Fe S5 Si 9. 6 Al and 287.4 g.
  • Adhesive Polyvinyl butyral resin (PVB), density 1.07 g / ml (CAS No.: 63148-65-2)
  • the above mixture was mixed in a ball mill, and the zirconium balls were 10 mm in diameter.
  • the ball milling time is 20 hours.
  • the coated mixed alloy soft magnetic composite film is hot pressed on a hot roll press or a flat plate hot press to increase the uniformity of the film thickness and reduce the surface roughness of the film.
  • the sheet-like Fe-Ni alloy slurry was first coated on a silicon-containing polyethylene terephthalate release film.
  • the thickness of the composite film after drying was 200 ⁇ m thick.
  • the coating speed was 2 m / min and the drying temperature was 60 ° C to 80 ° C. Drying time is 10 minutes.
  • a sheet-like iron-silicon alloy (Sendust) slurry was coated on the Fe-Ni surface of the above-mentioned sheet-shaped Fe-Ni alloy composite film.
  • the thickness of the composite film after drying was 400 ⁇ m thick.
  • the coating speed was 2 m / min and the drying temperature was 60 ° C to 80 ° C. Drying time is 10 minutes.
  • the sheet-like Sindust powder has the following properties:
  • the flaky iron-silver (Sendust) alloy powder (CAS No. 12604-21-6) contained 85% by weight of Fe, 9.6% by weight of Si and 5.4% by weight of A1.
  • the sheet-like iron-silicone (Sendust) alloy powder is ball-milled from a powder medium containing the above-mentioned weight percentage in a liquid medium.
  • the weight ratio of alloy powder to liquid medium is 1:2.
  • the ball milling time is 18 hours and the ball mill speed is 350 rpm.
  • the above ball milling process is also a sheet ball milling process.
  • the sheet-like Sindust alloy powder has an average particle diameter of 30 ⁇ m and a thickness of less than 1 ⁇ m.
  • the multi-layer soft magnetic alloy composite film can also be a single-layer film coated by the processes described in 1-1 to 1-4, and the iron-nickel composite film and the sheet-like iron-silicon-aluminum composite film can be pressed together, or can be 1-1. 1-4.
  • the single-layer film coated by the process, the iron-nickel composite film and the sheet-like iron-silicon-aluminum composite film are formed by adding an adhesive on the surface.
  • the magnetic permeability and dielectric constant of the soft magnetic composite film of the present invention were tested by the Agilent 85071E system.
  • the test sample was a ring having an inner diameter of 3 mm, an outer diameter of 7.04 mm, and a thickness of 1.5 mm. 1.5 mm is a repeated stack of film samples in the present invention.
  • Figure 5 is a graph showing the magnetic permeability and frequency of the Fe 51 Ni 4g flake alloy powder of the present invention having a volume fraction of 6%, 19%, 31%, 41%, 68%, and 73% soft magnetic composite film;
  • FIG. 5 is a graph showing the magnetic loss and frequency of the Fe 51 Ni 49 flaky alloy powder of the present invention having a volume fraction of 6%, 19%, 31%, 41%, 68%, and 73% soft magnetic composite film;
  • Figure ⁇ is a graph of the dielectric constant and frequency of the Fe 51 Ni 49 flaky alloy powder of the present invention having a volume fraction of 6%, 19%, 31%, 41%, 68%, 73% soft magnetic composite film;
  • Figure 8 is a graph showing the dielectric loss and frequency of the Fe 51 Ni 49 flake alloy powder of the present invention having a volume fraction of 6%, 19%, 31%, 41%, 68%, and 73% soft magnetic composite film;
  • Figure 9 is a soft magnetic alloy of the present invention is a mixed composite film (Fe 51 Ni 49 by volume of 5%, Fe S5 Si 9 6 AU * 49 volume%), 54% volume fraction of Fe S5 Si g 6 Al 5 ⁇ ..: Magnetic composite film, 54% volume fraction of Fe 51 Ni 49 soft magnetic composite film magnetic permeability and frequency spectrum.
  • the near-field absorbing film does not consider the impedance matching of electromagnetic waves.
  • Near-field electromagnetic wave absorption mainly comes from the binding and loss of materials to electromagnetic waves.
  • Figure 10 is a Fe 7 of the present invention. Ni 3 . , Fe 6 exclusivelyNi 4 Struktur, Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 6S soft magnetic composite film magnetic permeability and frequency spectrum.
  • the magnetic permeability of the Fe-Ni soft magnetic composite magnetic film increases first and then decreases as the Ni content increases from 30% to 68%. Among them, the maximum is reached when the Ni content is 43% to 49%, and is about 11 or so. When the Ni content is in the range of 40%-43% and 49%-55%, the magnetic permeability of the composite magnetic film is 8 about. When the Ni content continues to deviate from 40% to 55%, the magnetic permeability of the composite magnetic film decreases further. When the Ni content is 68%, the magnetic permeability is about 4, and when the Ni content is 30%, the magnetic permeability is about 3. Therefore, when the Ni content is 40% to 55%, the composite magnetic film has a high ability to bind magnetic fields. In particular, when the Ni content is 43% to 49%, the ability of the composite magnetic film to bind the magnetic field is maximized.
  • Figure 11 is a map of magnetic loss and frequency of a magnetic composite film of Fe 70 Ni 3 o , Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 68 of the present invention.
  • Figure 12 is a Fe 7 of the present invention. Ni 3 . , Fe 6 . Ni 4 . , Fe 57 Ni 43 , Fe 51 Ni Fe 45 Ni 55 , Fe 32 Ni 68 soft magnetic composite film dielectric constant and frequency map.
  • Figure 13 is a Fe 7 of the present invention. Ni 3 . , Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni magnetic composite magnetic film dielectric loss and frequency map.
  • f is the electromagnetic wave frequency
  • c is the speed of light
  • d is the film thickness (taken 0.3 mm)
  • ⁇ ' is the dielectric constant of the composite
  • ⁇ " is the dielectric loss of the composite
  • ⁇ ' is the permeability of the composite
  • the rate, ⁇ " is the magnetic loss of the composite.
  • This calculation formula only provides theoretical guidance for near-field electromagnetic wave absorption.
  • the specific situation is diverse.
  • the near-field electromagnetic waves also have different modes due to the different spatial structures of the electronic devices.
  • the invention is not limited to the scope of this formula.
  • Figure 14 is a Fe 7 of the present invention. Ni 3 . , Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 68 composite magnetic film electromagnetic wave loss and frequency spectrum.
  • the Fe-Ni soft magnetic composite film has the highest electromagnetic wave loss rate at 2 GHz to 10 GHz when the Ni content is 43% to 49%.
  • the electromagnetic wave loss rate can reach IJ 0.53 dB or more.
  • the electromagnetic wave loss rate of the 0.3 mm magnetic composite film can reach 0.2 dB.
  • the loss of electromagnetic waves of the magnetic composite film in which the Ni content deviates from 40% to 55% is less than 0.2 dB.
  • Fe 70 Ni 3 o, Fe 60 Ni 40 , Fe 57 Ni 43 , Fe 51 Ni 49 , Fe 45 Ni 55 , Fe 32 Ni 6S sheet alloy powder were annealed under 550 argon for 3 hours and then naturally cooled to room temperature. Since the Fe-Ni alloy powder will be degraded due to defects and stresses in the slab ball milling process during the annealing process. This will help to increase the magnetic permeability of the sheet-like Fe-Ni alloy powder itself, thereby enhancing the magnetic permeability of the composite magnetic film.
  • the annealed Fe-Ni powder is also suitable for use in the soft magnetic composite film described above. In the present invention, the Fe-Ni powder may be annealed, or unannealed, or a mixture thereof.
  • the flake-shaped ferrosilicon alloy powder was annealed at 600 ° C for 3 hours under argon atmosphere and naturally cooled to room temperature. Since the sheet-like ferrosilicon alloy powder is reduced in the annealing process due to defects and stresses in the sheet-like ball milling process. This will help to increase the magnetic permeability of the sheet-like flake silicon-aluminum alloy powder itself, thereby enhancing the magnetic permeability of the composite magnetic film.
  • the annealed sheet-like ferrosilicon aluminum alloy powder is also suitable for use in the above magnetic composite film.
  • the flake-shaped ferrosilicon alloy powder may be annealed or unannealed, or a mixture thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供了一种用于近场电磁波吸收的软磁复合薄膜及软磁复合薄膜胶带和制造方法及在电子设备中吸收近场电磁噪音的应用,它可以解决现有技术存在的复合薄膜在2-3GHz 磁导率不高,复合薄膜近场电磁噪音吸收效果不好,而不能有效解决电子设备信号传输质量低的问题。技术方案是,一种软磁复合薄膜,所述软磁复合薄膜包括:a、片状铁镍软磁合金粉末,按质量分数计,其中,含45%-60%铁和40%-55%镍;b、片状铁镍软磁合金粉末与有机粘接材料相混合,并使其形成软磁复合薄膜,片状铁镍软磁合金粉末体积分数占总的软磁复合薄膜材料体积31%到73%。本发明在 1-5GHz都具有高的磁导率,特别是2-3GHz区间,这使得高频近场电磁噪音更容易被磁性复合薄膜吸收。

Description

软磁复合薄膜和制造方法及其在电子设备中的应用
技术领域
本发明涉及一种片状软磁合金复合材料, 具体地说, 涉及一种含片状铁镍软磁合金复 合薄膜和制造软磁复合薄膜的方法, 及该薄膜在电子设备中吸收电磁噪音的应用。
背景技术
随着在电子设备中越来越高的电子器件集成密度和越来越高的工作频率, 更加复杂的 电磁波噪音和相应的电磁兼容问题越来越突出。在现有技术中, 解决这些问题行之有效的方 法之一就是在电子设备中应用噪音吸收片。
相应地,一些有关磁性噪音吸波片的专利文献也被公开。美国海军 US2951247讨论了 0. 3 微米到 2微米,长径比高达 70的不同组分薄片软磁合金与树脂材料混合的磁性噪音吸波片。
US2873225公开了热处理能提高薄片软磁合金的磁导率。 US5827445, T0KIN公司, 公开了一 种由片状软磁合金粉末和有机树脂复合的复合材料。其中, 其片状软磁合金粉末的厚度应小 于相应的微波趋肤深度。 US6850182, Sumitomo电子工业有限公司, 公开了一种磁性吸波片。 其中, 其片状软磁合金的表面涂有十八垸二酸或十八垸二酸与钛酸盐的混合物。
然而, 随着互联网的快速发展, 由于高的数据吞吐量, 越来越多的电子设备采用 wifi (无线网 2. 4 GHz) , LTE (长期演进技术 2. 575 GHz 到 2. 615 GHz)进行通信。 随着在云通信 系统中对更大数据吞吐量的要求, 通信频率高于 2. 615 GHz也正在测试中。 1GHz到 5GHz的 电磁兼容问题正在成为一个所要解决的突出问题。
而且由于电子设备的空间有限, 而电磁波在有限空间内的串扰多是近场电磁波问题。 远场电磁波吸收需要考虑电磁波在吸波薄膜中的波长与吸波薄膜厚度匹配而产生干涉 以吸收电磁波 (四分之一波长定律)。 且远场电磁波必须与软磁复合薄膜的波阻抗匹配, 才 能得到好的吸波性能。 这就意味着, 对于远场吸波材料而言, 吸波薄膜的磁导率须与吸波薄 膜的介电常数相匹配以使得吸波薄膜的波阻抗接近自由空间电磁波 377欧姆波阻抗,而不是 要求吸波薄膜具有高的磁导率与介电常数。 近场电磁波更侧重的是电磁波在吸波薄膜中的束缚与损耗。 无需考虑吸波薄膜与自由 空间电磁波波阻抗匹配, 也无需考虑四分之一波长吸收定律。 这就意味着, 对于近场吸波薄 膜而言通常磁导率, 磁损耗以及介电常数, 介电损耗越高越好。 对于复合薄膜, 通常需要高 长径比的磁性填料以及高的填充率。
为了解决这个问题, TDK, Daido, Texas Instruments Inc, NEC-TOKIN和 3M等公司分 别对不同的软磁粉末做了研究。 TDK在专利 US6225876, US7323214中研究了 Fe_Si, Fe-Si-Al, Fe-Cr, Fe15Si1Mo4Ni80, FelsMo2Nis。软磁材料。 Daido在专利 JP2001339193和 JP11087117中研 究了 Fe-Si, Fe-Co, Fe- Al, Fe-Cr, Fe_Si_Cr, Fe- Al_Cr的软磁特性。 Texas Instruments Inc在专利 US6063511研究了 CoZrNb, CoFeBSi, Fe5Co95, FeTb的特性。 NEC-TOKIN在 US5827445中讨论了当 Fe-Si-Al合金片状粉末与坡莫合金片状粉末厚度小于微波在其中的 趋肤深度时的微波特性。 然而上述材料并不能很好地解决 l-3GHz电磁兼容问题。
在电子市场上, 根据市场上产品高频性能领先公司 NEC-TOKIN公开的产品资料, 其 Fe-Si-Al产品 EFF, EFX, EFA, FK3和 EFR在 1GHz的磁导率在 1 GHz下为 10, 在 2 GHz下 下降到 2左右, 在 2. 4 GHz下降到了 1左右。 更进一步地, NEC-TOKIN最近开发了 EFG薄膜。 EFG薄膜是由片状 Fe-Si-Cr合金与树脂相复合的材料, 其磁导率在 2 GHz为 6左右, 在 2. 4 GHz下降到 5左右, 在 3GHz下降为 1. 2左右。 这个性能明显要好于 EFF, EFX, EFA, FK3和 EFR等材料, 但还是不能有效地解决问题。 这意味着, 在应用中为了将噪音减小到理想的程 度, 不得不采用大面积且较厚的薄膜。 在 l-3 GHz范围内, 则需要更高磁导率的电磁波吸收 材料。
发明内容
本发明提供了一种软磁复合薄膜和制造方法及在电子设备中吸收近场电磁噪音的应 用, 它可以解决现有技术存在的复合薄膜在大于 1GHz尤其是大于 2. 4GHz磁导率不够高, 导 致复合薄膜近场电磁噪音吸收效果不好, 而引发电子设备信号传输质量低的问题。且本发明 不同于远场电磁波吸收材料。
为了解决上述技术问题, 本发明的技术方案是:
一种铁镍软磁复合薄膜, 所述铁镍软磁复合薄膜包括: a、 片状铁镍软磁合金粉末, 按质量分数计, 其中, 优选含 45 %-60%铁和 40 % - 55%镍; 更优选含 5 1 % - 57%铁禾口 43 % - 49%镍;
b、 所述片状铁镍软磁合金粉末与有机粘接材料相混合, 并使其形成铁镍软 磁复合薄膜, 优选所述片状铁镍软磁合金粉末体积分数占总的铁镍软磁复合薄 膜材料体积 3 1 %到 73% ;更优选所述片状铁镍软磁合金粉末体积分数占总的铁镍 软磁复合薄膜材料体积 4 1 %到 68 % ;
c、 所述铁镍软磁复合薄膜厚度范围在 20微米到 0. 49毫米, 其一面或两面 复胶厚度为 3 -50微米。 总体薄膜加上胶层厚度小于等于 0. 50毫米。
d、 所述片状铁镍软磁合金粉末平均直径在 1微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状铁镍软磁合金粉末的平均长径比大于 16小于 2000。 优选平均长径比从 4 1到 600, 更优选平均长径比从 60到 300。
e、 由于电子部件放热, 需要所述高频铁镍软磁复合薄膜的热稳定性大于 70
V
所述有机粘接材料主要包括高分子树脂,所述高分子树脂包括但不限于硅橡 胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨酯、 氟橡胶、 丁腈橡胶(NBR)、 乙烯 /醋 酸乙烯酯共聚物(EVA)、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚酰胺、 聚 烯烃、 环氧树脂、 聚酯、 PVB, 或它们的共聚物中的至少一种。
所述铁镍软磁复合薄膜涂在有机薄膜衬底的一面上, 所述有机衬底为 PET、 PE、 PP、 PC、 PVDF、 P I、 含氟塑料的薄膜, 或它们的离型膜。 所述有机衬底另 一面为胶面。
所述铁镍软磁复合薄膜磁导率在 2GHz大于 4, 在 2. 4GHz大于 2. 5。 更优选 所述铁镍软磁复合薄膜磁导率在 2GHz大于 6. 5, 且在 2. 4GHz大于 3. 5。最好的 产品磁导率在 2GHz与 2. 4GHz均大于 8。
所述铁镍软磁复合薄膜表面与粘合剂层粘结,从而形成铁镍软磁复合薄膜胶 带, 所述粘合剂层为亚克力材料、 橡胶材料的压敏粘合剂、 热压粘合剂、 或硅 橡胶, 所述粘合剂层厚度范围为 3 -50微米。
一种铁镍软磁复合薄膜的制造方法, 所述方法按下述步骤进行:
1、 铁镍合金片状化 铁镍按规定配比后, 与球磨液体介质混合, 铁镍合金粉与球磨液体介质的重 量比为 1 : 1. 5, 球磨时间为 10 - 14小时, 球磨机转速为 300 -400转 /分钟, 球磨 后将合金粉末与球磨液体介质的混合料在 55-65 °C, 氮气或其他惰性的或非氧 化性的气体(如氦气, 氩气,氢气等)保护下, 或真空保护下烘干, 然后恢复到室 温;
2、 片状铁镍合金粉末浆料的制备
干燥后片状铁镍合金粉末与规定量的有机粘接材料混合,将上述混合料放在 球磨机中球磨, 球磨时间为 18-22小时, 从而得到片状铁、 镍合金粉末浆料;
3、 片状铁镍合金复合薄膜涂覆
片状铁镍合金粉末浆料涂在有机衬底的一面上, 涂后进行干燥, 干燥温度为 60 °C - 80 °C , 干燥时间为 8- 12分钟, 从而形成铁镍软磁复合薄膜。
4、 片状铁镍合金复合薄膜表面处理
将涂覆完后的铁镍软磁复合薄膜在热辊压机或平板热压机上热压以提高薄膜 厚度的均匀性, 控制薄膜表面粗糙度和表面微观结构。
如果需要, 有机粘结材料可以在 3或 4步加热中发生交联以进一步增加薄 膜的性能。
上述 1 -4工艺条件不是唯一。 在实际操作中, 可根据具体设备情况对相关 参数进行调整, 如球磨时间, 物料混合顺序, 球磨机转速, 粉末干燥时间, 粉 末干燥温度, 涂覆薄膜干燥时间, 涂覆薄膜干燥温度等, 以达到相同或类似的 结果。
一种混合合金软磁复合薄膜, 所述混合合金软磁复合薄膜包括:
a、 片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末; 其中, 按质量分数 计, 在片状铁镍软磁合金粉末中, 铁与镍的配比为, 含 45%-60%铁和 40%-55% 镍;
b、所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末与有机粘接材料 相混合, 并使其形成混合合金软磁复合薄膜;
c、所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末体积分数占总的 混合合金软磁复合薄膜材料体积 3 1 % 到 73%, 所述片状铁镍软磁合金粉末体积 分数占总的混合合金软磁复合薄膜材料体积 5%以上, 所述非铁镍片状软磁合金 粉末为片状铁硅铝、 片状铁硅、 片状铁镍钼、 片状铁硅铬、 或片状羰基铁中的 一种或几种;
d、 所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末平均直径在 1 微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状铁镍软磁合金粉末和 非铁镍片状软磁合金粉末的平均长径比大于 1 5小于 2000 ;
e、 所述混合合金软磁复合薄膜厚度范围在 20微米到 0. 99毫米; f、 所述混合合金软磁复合薄膜中有机粘接材料主要包括所述高分子树脂, 所述高分子树脂为硅橡胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨酯、 氟橡胶、 丁腈 橡胶、 乙烯 /醋酸乙烯酯共聚物、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚 酰胺、 聚烯烃、 环氧树脂、 聚酯、 PVB, 或它们的共聚物中的至少一种。
一种多层软磁复合薄膜, 所述多层软磁复合薄膜是由至少一层铁镍软磁复合 薄膜与至少一层非铁镍软磁复合薄膜所构成,
其中,所述铁镍软磁复合薄膜是由上述技术方案的一种铁镍软磁复合薄膜构 成;
其中,所述非铁镍软磁复合薄膜是由非铁镍片状软磁合金粉末与有机粘接材 料相混合, 并使其形成非铁镍软磁复合薄膜, 所述非铁镍软磁合金粉末体积分 数占总的非铁镍软磁复合薄膜材料体积 3 1 %到 73 %,所述片状非铁镍软磁合金粉 末平均直径在 1微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状非铁 镍软磁合金粉末的平均长径比大于 1 5 小于 2000, 非铁镍片状软磁合金粉末为 片状铁硅铝、 片状铁硅、 片状铁镍钼、 片状铁硅铬, 或片状羰基铁中的一种。
所述有机粘接材料包括高分子树脂, 所述高分子树脂包括但不限于硅橡胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨酯、 氟橡胶、 丁腈橡胶(NBR)、 乙烯 /醋酸乙烯 酯共聚物(EVA)、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚酰胺、 聚烯烃、 环氧树脂、 聚酯、 PVB, 或它们的共聚物中的至少一种。
在所述多层软磁复合薄膜中, 每层薄膜厚度范围在 20微米到 0. 5毫米。 所述多层软磁复合薄膜表面与粘合剂层粘结, 所述粘合剂层为亚克力材料、 橡胶材料的压敏粘合剂、热压粘合剂、或硅橡胶,所述粘合剂层厚度范围为 3-50 微米。
一种所述的多层软磁复合薄膜的制造方法, 所述方法按下述步骤进行: 1、 铁镍合金片状化和铁硅铝软磁合金片状化
1-1、 铁镍合金片状化
铁镍按规定配比后, 与球磨液体介质混合, 铁镍合金粉与球磨液体介质的重 量比为 1: 1.5, 球磨时间为 10-14小时, 球磨机转速为 300-400转 / '分钟, 球磨 后将合金粉末与球磨液体介质的混合料在 55-65°C, 氮气保护下烘干, 然后恢 复到室温;
1-2、 铁硅铝软磁合金片状化
铁硅铝软磁合金与球磨液体介质混合,铁硅铝软磁合金与球磨液体介质的重 量比为 1: 1.5, 球磨时间为 10-14小时, 球磨机转速为 300-400转 / '分钟, 球磨 后将合金粉末与球磨液体介质的混合料在 55-65°C, 氮气保护下烘干, 然后恢 复到室温;
2、 片状铁镍合金粉末浆料和片状铁硅铝软磁合金粉末浆料的制备
2-1、 片状铁镍合金粉末浆料的制备
干燥后片状铁镍合金粉末与规定量的有机粘接材料及溶剂混合,将上述混合 料放在球磨机中混合, 混合时间为 18-22小时, 从而得到片状铁、 镍合金粉末 浆料;
2-2、 铁硅铝软磁合金粉末浆料的制备
干燥后片状铁硅铝合金粉末与规定量的有机粘接材料及溶剂混合,将上述混 合料放在球磨机中混合, 混合时间为 18-22小时, 从而得到片状铁硅铝软磁合 金粉末浆料;
3、 多层软磁复合薄膜涂覆
先将片状铁、 镍合金粉末浆料涂在有机衬底的一面上, 涂后进行干燥, 干燥 温度为 60°C- 80°C, 干燥时间为 8-12分钟, 从而形成铁镍软磁复合薄膜; 再将片状铁硅铝软磁合金粉末浆料涂在上述铁镍软磁复合薄膜的铁镍表面, 涂后进行干燥, 干燥温度为 60°C- 80°C , 干燥时间为 8-12 分钟, 从而形成多 层软磁复合薄膜; 或者, 将片状铁硅铝软磁合金粉末浆料涂在有机衬底上, 形成铁硅铝软磁复 合薄膜, 将铁镍软磁复合薄膜和铁硅铝软磁复合薄膜通过压合或粘接方式使其 形成多层软磁复合薄膜。
4、 多层软磁复合薄膜表面处理
将涂覆完后的多层软磁复合薄膜在热辊压机或平板热压机上热压以提高多层 软磁复合薄膜厚度的均匀性, 控制薄膜表面粗糙度和表面微观结构, 辅助交联 反应完成。
上述 1 -4工艺条件不是唯一。在实际操作中, 可根据具体设备情况对相关参 数进行调整, 如球磨时间, 球磨机转速, 粉末干燥时间, 粉末干燥温度, 涂覆 薄膜干燥时间, 涂覆薄膜干燥温度等, 以达到相同或类似的结果。
在多层软磁复合薄膜中, 除铁镍复合薄膜层以外, 另一层可以是铁硅铝, 也可以是其他软磁合金, 如铁硅铬, 铁硅, 铁镍钼, 羰基铁。
一种软磁复合薄膜胶带, 由软磁复合薄膜表面与粘合剂层粘结, 从而形成软 磁复合薄膜胶带, 所述粘合剂层为亚克力材料、 橡胶材料的压敏粘合剂、 热压 粘合剂、 或硅橡胶, 所述粘合剂层厚度范围为 3-50微米, 所述软磁复合薄膜为 铁镍软磁复合薄膜、 多层软磁复合薄膜、 或混合合金软磁复合薄膜。
一种上述铁镍软磁复合薄膜的应用,所述铁镍软磁复合薄膜及铁镍软磁复合 薄膜胶带用于固定在电子设备的部件上或其周围, 用来减小近场电磁噪音, 所 述电子设备的部件包括同步动态随机存储器、超高频天线、数据线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及其模组、 柔性电路, 低电压 差分信号连接线, 线路板、 印刷电路板、 芯片中的至少一个。
一种上述混合合金软磁复合薄膜及混合合金软磁复合薄膜胶带的应用,所述 混合合金软磁复合薄膜及混合合金软磁复合薄膜胶带用于固定在电子设备的部 件上或其周围, 用来减小近场电磁噪音, 所述电子设备的部件包括同步动态随 机存储器、 超高频天线、 数据线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及其模组、 柔性电路, 低电压差分信号连接线, 线路板、 印刷 电路板、 芯片中的至少一个。
一种上述多层软磁复合薄膜及多层软磁复合薄膜胶带的应用,所述多层软磁 复合薄膜及多层软磁复合薄膜胶带用于固定在电子设备的部件上或其周围, 用 来减小近场电磁噪音, 所述电子设备的部件包括同步动态随机存储器、 超高频 天线、 数据线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及 其模组、 柔性电路, 低电压差分信号连接线, 线路板、 印刷电路板、 芯片中的 至少一个。
本发明中的定义:
近场电磁波: 本发明中近场电磁波指的是当电磁波离电磁波场源的距离小 于该电磁波一个波长时的电磁波。如:对于电磁波场源发射的 1 GHz 电磁波而言, 当该 1 GHz 电磁波距离电磁波场源小于 30厘米时,该 1 GHz 电磁波即为近场电磁 波。
远场电磁波:本发明中远场电磁波指的是当电磁波离电磁波场源的距离大于 该电磁波两个波长时的电磁波。 如: 对于电磁波场源发射的 1 GHz 电磁波而言, 当该 1 GHz 电磁波距离电磁波场源大于 60厘米时,该 1 GHz 电磁波即为远场电磁 波。
Fe45_6。Ni 55_4。中铁 45%-60%和镍 55%_40%指的是铁元素和镍元素在合金中的质 量百分数。 由于工艺过程中初始的合金粉末有机会接触多种设备和试剂。 这些 工艺过程中, 不同设备材料的选择, 如球磨设备的内衬和球体材料的选择, 包 括铁球, 不锈钢球, 锆球, 玛瑙球等, 都可以引入较大量的各种元素, 影响最 终粉末的组成和元素比例。 为防止歧义, 此质量分数为最终片状合金颗粒中, 包括有意和无意添加的, 铁和镍元素的质量比。 此质量分数并不包含其他的非 金属掺杂元素或金属掺杂元素, 如: 碳, 硫, 氮, 硅, 硼, 氧, 磷, 钼, 铜, 锰, 钴, 铝, 钨, 锌等。 这些非金属或金属元素可能有意或无意地在制粉过程 或包装运输过程中添加进去。一个例子就是氧元素可在制粉过程或运输过程中, 由于金属氧化而引入进去。 这些金属或非金属的掺杂可对 Fe -Ni合金的性能进 行微调。 为防止歧义, 在本发明中, 小于或等于 5%的质量分数的金属或非金属 元素均属于掺杂。 此 Fe45-6。Ni 554。合金可以是退火的合金也可以是不退火的合 金, 或是它们的混合物。
此 Fe45_6。Ni 55_4。合金表面可以进一步有氧化处理, 硅垸处理, 或其他有机及 无机材料包裹, 以增加其绝缘性。
长径比: 片状合金粉末最长边与该片状合金粉末厚度比。
软磁合金: 具有低矫顽力和高磁导率的合金材料。 片状软磁合金薄膜: 本发明中片状软磁合金薄膜指的是片状软磁合金与树 脂复合而成的薄膜, 不包括胶膜和离型膜。
Sendust : 是铁硅铝软磁合金,其中按质量分数计含铝 1%到 8%,硅 6%到 14%, 其余为铁。 常见的 Sendus t是用含铝 5. 4%、 硅 9. 6%、 其余为铁的合金制成的粉 末生产出来的一种金属软磁合金。
体积分数: 本发明中所述体积分数是由存留在复合薄膜中的树脂, 辅助助 剂和铁镍合金的体积计算而来。 每个组分的体积是该组分质量和它们的绝对密 度计算而来。 总体积为这些组分的体积之和。 挥发性的溶剂和其他不存留在最 终薄膜中的成份不考虑其体积。 为避免歧义, 几个组分物理混合的总体积定义 为这几个组分体积之和。 忽略可能存在的小的非线性效应。 铁镍合金 Fe70Ni3o , Fe60Ni40, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni 6S绝对密度分另 lj取: 8. 16克 / 毫升, 8. 26克 /毫升, 8. 29 克 /毫升, 8. 35克 /毫升, 8. 41 克 /毫升, 8. 55 克/ 毫升。 绝对密度不包括未填充空间占的体积, 以区分粉末材料的松装密度。
高频: 本发明中所述高频是指 1GHz及以上频率。
软磁复合薄膜热稳定性: 本发明中所述软磁复合薄膜热稳定性是指材料在 某温度下长期保持其物理形状稳定性。 对于结晶或半结晶高分子材料, 其最高 热稳定温度接近其熔点; 对于无化学交联的无定型高分子材料, 其最高热稳定 温度通常接近其玻璃化温度 (Tg ) ; 对于交联的高分子材料, 这个温度与其交联 度和材料的化学稳定性有关。
磁导率, 磁损耗, 介电常数, 介电损耗测试方法: 本发明中, 磁导率, 磁 损耗, 介电常数, 介电损耗是将样品放在内径为 7. 04毫米的同轴空气线中由网 络分析仪测量此微波网络的 S„, S21信号计算而来。
本发明研究了不同 Fe-Ni 合金成份比例片状粉末复合薄膜的微波特性。 通 过实验发现, 在镍含量为 40%-55%质量百分数的铁镍合金片状粉末复合薄膜在 l -5GHz 具有较高的磁导率。 从而可以解决电子设备在 1G 以上频率的信号传输 质量低的问题。
本发明是将 Fe45-6。Ni554。磁性复合薄膜及复合薄膜胶带固定在电子设备中抑 制如下电子单元产生的或在其周围的近场电磁噪音: 1. 电子设备中的同步动态 随机存储器, 2. 电子设备中的超高频天线, 3. 电子设备中的连接头, 4.电子 设备中的金属腔壳, 金属罩或金属部件, 5. 电子设备中的扬声器, 6. 电子设 备中的柔性线路板, 7. 电子设备中的印刷电路板, 8.电子设备中的芯片。 更特 别的是, 该 Fe45-6。Ni554。软磁复合薄膜的厚度在 20微米到 1毫米。其磁导率在 2 GHz下大于 4, 在 2.4 GHz下大于 2.5。
本发明与现有技术相比具有以下优点和积极效果: 本发明在 l-3GHz, 特别 是 2-3GHz区间, 具有高的磁导率, 这可以使得近场电磁噪音更容易被磁性复合 薄膜吸收掉。 附图说明
图 1是本发明软磁复合薄膜与塑料膜层结合的示意图;
图 2是本发明软磁复合薄膜与粘合剂层及离型膜层结合示意图;
图 3是本发明软磁复合薄膜与塑料膜层、粘合剂层及离型膜层结合示意图; 图 4是本发明铁镍软磁复合薄膜与铁铝硅软磁复合薄膜和粘合剂层及离型 膜层结合示意图;
图 5 是本发明的 Fe51Ni49片状合金粉末体积分数占总的软磁复合薄膜材料 体积 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜磁导率和频率的图谱;
图 6 是本发明的 Fe51Ni49片状合金粉末质量分数占总的软磁复合薄膜材料 体积 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜磁损耗和频率的图谱;
图 7 是本发明的 Fe51Ni49片状合金粉末质量分数占总的软磁复合薄膜材料 体积 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜介电常数和频率的图谱; 图 8 是本发明的 Fe51Ni49片状合金粉末质量分数占总的软磁复合薄膜材料 体积 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜介电损耗和频率的图谱; 图 9是本发明的体积分数为 54%的混合合金软磁复合薄膜 (Fe51Ni49体积占 5%, FeS5Si9.6Al5.4体积占 49%), 体积分数为 54%的 FeS5Si9.6Al5.4软磁复合薄膜, 54%体积分数 Fe51Ni49软磁复合薄膜磁导率和频率的图谱。
图 10是本发明的 Fe7。Ni3。, Fe6„Ni4 Fe Fe 45N155, Fe32Ni6S 磁复合薄膜磁导率和频率的图谱;
图 11 是本发明的 Fe7。Ni3。, Fe6„Ni Fe57Ni43, Fe5iNi Fe45Ni Fe32Ni 软磁复合薄膜磁损耗和频率的图谱;
图 12 是本发明的 Fe7。Ni3。, Fe6„Ni Fe57Ni43, Fe5iNi Fe45Ni Fe32Ni 软磁复合薄膜介电常数和频率的图谱;
图 13 是本发明的 Fe7。Ni3。, Fe6„Ni Fe57Ni43, Fe5iNi Fe45Ni Fe32Ni 软磁复合薄膜介电损耗和频率的图谱;
图 14 是本发明的 Fe7。Ni3。, Fe6„Ni Fe57Ni43, Fe5iNi Fe45Ni Fe32Ni 软磁复合薄膜电磁波损耗和频率的图谱。
具体实施方式
一种用于吸收近场高频电磁噪音的铁镍软磁复合薄膜, 所述铁镍软磁复合 薄膜包括:
a、 片状铁镍软磁合金粉末, 按质量分数计, 其中含 45%-60%铁和 40%-55% 镍; b、 所述片状铁镍软磁合金粉末与有机粘接材料相混合, 并使其形成铁 镍软
磁复合薄膜;
c、 所述铁镍软磁复合薄膜厚度范围在 20微米到 0. 49毫米;
d、 所述片状铁镍软磁合金粉末平均直径在 1微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状铁镍软磁合金粉末的平均长径比大于 16小于 2000 ; e、 优选所述片状铁镍软磁合金粉末体积分数占总的铁镍软磁复合薄膜材料 体积 3 1 %至1』 73%; 所述有机粘接材料体积分数占总的铁镍软磁复合薄膜材料体积 1 5%到 69%。 更优选所述片状铁镍软磁合金粉末体积分数占总的铁镍软磁复合薄膜材料体积 41 %到 68% ; 所述有机粘接材料体积分数占总的铁镍软磁复合薄膜材料体积 26% 至 lj 59%。
所述有机粘接材料包括用量大的高分子树脂,以及用量较少或很少的辅助用 剂, 常见的高分子树脂包括但不限于硅橡胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨 酯、 氟橡胶、 丁腈橡胶(NBR)、 乙烯 /醋酸乙烯酯共聚物(EVA)、 EPDM、 PVA、 聚 乙烯、 聚丙烯、 聚氯乙烯、 聚酰胺、 聚烯烃、 环氧树脂、 聚酯、 PVB, 或它们的 共聚物。
辅助用剂包括但不限于下列化学物质中的一种或几种组合, 单体, 寡聚物, 增稠剂, 流平剂, 分散剂, 抗氧化剂, 热稳定剂, 交联剂, 柔性助剂, 阻燃剂 等成分。 它们可以提供粘合性, 帮助生产工艺稳定, 调整薄膜机械性质, 热稳 定性质, 阻燃性质, 抗氧化性质等其它性能。
本发明的 Fe-Ni合金复合材料, 其磁导率在 2 GHz下大于 8, 2. 4GHz下大于
6 优于市场上的产品。 通常的工艺流程为: 直接将铁镍软磁合金复合薄膜 1 涂 在塑料薄膜 2上, 塑料薄膜 2通常为 PET薄膜。 该薄膜表面可以有离型涂料避 免软磁合金复合薄膜过于牢固的粘结在塑料薄膜上, 形成的结构如图 1所示。 然后可以把塑料薄膜 2剥离。 将铁镍软磁合金复合薄膜 1 附合在粘合剂层 3 和离型膜 4上, 形成图 2所示结构。 当然, 也可以先附合再剥离塑料薄膜 2。
另一种工艺流程为直接将铁镍软磁合金复合薄膜 1涂在塑料薄膜 2上, 塑 料薄膜 2通常为 PET薄膜。 该薄膜表面没有离型涂料, 甚至有增强粘接的涂料 以形成铁镍软磁合金复合薄膜 1牢固粘结在塑料薄膜 2上的结构。 再把粘合剂
3涂布在塑料薄膜 3背面, 再进一步复合离型膜 4, 如图 3所示。 当然, 也可以 压力附合粘合剂与离型膜 4。
实施例和实验及结果
1、 铁镍复合软磁薄膜
铁镍复合软磁薄膜由片状 Fe-Ni 合金浆料涂在聚乙烯对苯二酸酯薄膜或聚 乙烯对苯二酸酯离型膜上而来。
1-1、 Fe-Ni合金片状化
将 Fe7。Ni3。, Fe6。Ni4。, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni6S球状合金粉料, 其粒径约为 10微米, 与球磨液体介质混合。合金粉与球磨液体介质的重量比为 1: 1.5。 球磨时间为 12小时。 球磨机转速为 350转 /分钟。 球磨后将合金粉末与 球磨液体介质的混合料在 60°C, 氮气保护下烘干并回复到室温。 球磨液体介质 可以选用酒精。
干燥后片状 Fe-Ni合金粉末的平均粒径约为 20微米, 厚度小于 1微米。
1-2、 54%体积分数 Fe-Ni合金粉末浆料的制备
1-2-1、 聚乙烯醇缩丁醛树脂(PVB)基 Fe-Ni合金粉末浆料
为了制作聚乙烯醇缩丁醛树脂(PVB)基 Fe-Ni合金粉末浆料, 其粘接剂, 溶 剂和可塑剂按下列顺序配置:
1-2-1-1、 分别取 544.2克干燥后片状 Fe7。Ni3。粉末, 550.8克干燥后片状
Fe6。Ni4。粉末, 552.8 克干燥后片状 Fe57Ni43粉末, 556.9 克干燥后片状 Fe51Ni49 粉末, 561. 1 克干燥后片状 Fe45Ni55粉末和 570.2 克干燥后片状 Fe32Ni6S粉末与
287.4克甲苯混合。
1-2-1-2、 取 42.6克粘接剂, 18.2克柔性助剂和 83. 1克乙醇相混合均匀。 粘接剂: 聚乙烯醇缩丁醛树脂(PVB), 密度为 1.07 克 /毫升 ( CAS 号:
63148-65-2)
柔性助剂: 邻苯二甲酸二辛脂 (CAS号: 117-81-7)
溶齐 U: 甲苯 (CAS号: 108-88-3), 乙醇 ( CAS号: 64-17-5) 1-2-1-3、 将上述混合料放在球磨机中混合, 锆球直径为 10毫米。 球磨时间 为 20小时。
1-2-2、 也可用乙烯 I醋酸乙烯酯共聚物(EVA)作为复合薄膜的粘接材料。 1-2-2-1、 分别取 600.3克干燥后片状 Fe7。Ni3。粉末, 607.6克干燥后片状 Fe6。Ni4。粉末, 609.8 克干燥后片状 Fe57Ni43粉末, 614.3 克干燥后片状 Fe51Ni49 粉末, 618.9 克干燥后片状 Fe45Ni55粉末和 629.0 克干燥后片状 Fe32Ni6S粉末与 60.8克乙烯 /醋酸乙烯酯共聚物和 370.5克乙酸乙酯。
粘接剂: 乙烯 /醋酸乙烯酯共聚物(EVA), 密度为 0.97克 /毫升 (CAS号: 24937-78-8)
溶剂: 乙酸乙酯 (CAS号: 141-78-6)
1-2-2-2、 先将乙烯 /醋酸乙烯酯共聚物(EVA)溶于乙酸乙酯中; 再将干燥 后的片状 Fe-Ni 合金粉末加入上述溶液中并在球磨机中混合。 锆球直径为 10 毫米。 球磨时间为 20小时。
1-2-3、 也可用丁腈橡胶(NBR)作为复合薄膜的粘接材料。
1-2-3-1、 分别取 600.3 克干燥后片状 Fe7。Ni3。粉末, 607.6 克干燥后片状 Fe6。Ni4。粉末, 609.8 克干燥后片状 Fe57Ni43粉末, 614.3 克干燥后片状 Fe51Ni49 粉末, 618.9 克干燥后片状 Fe45Ni55粉末和 629.0 克干燥后片状 Fe32Ni6S粉末与 60.8克丁腈橡胶(NBR)和 370.5克乙酸乙酯。
粘接剂: 丁腈橡胶(NBR), 密度为 0.97克 /毫升 (CAS号: 9003-18-3) 溶剂: 乙酸乙酯 (CAS号: 141-78-6)
1-2-3-2、 先将丁腈橡胶(NBR)溶于乙酸乙酯中; 再将干燥后的片状 Fe-Ni合 金粉末加入上述溶液中并在球磨机中混合。 锆球直径为 10 毫米。 球磨时间为 20小时。
1-3、 片状 Fe-Ni合金复合薄膜涂覆
Fe70Ni3o, Fe60Ni40, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni6S合金 料被分另 lj 涂在含硅的聚乙烯对苯二酸酯离型膜上, 如图 1所示。 干燥后复合薄膜的厚度 为 400微米厚。 涂布速度为 2米 /分钟, 干燥温度为 60°C到 80°C。 干燥时间为 10分钟。
1-4、 片状铁、 镍合金复合薄膜表面处理
将涂覆完后的铁镍软磁复合薄膜在热辊压机或平板热压机上热压以提高薄膜 厚度的均匀性, 降低薄膜表面粗糙度。 2、 不同体积分数的片状 Fe51Ni49软磁合金复合薄膜
按照上述 1. 1-1.4的工艺, 分别制作体积分数为 6%, 9%, 31%, 41%, 68%, 73%片状 Fe51Ni49软磁合金粉末浆料。 但当体积分数达到 73%及以上时, 软磁合 金复合薄膜的内聚力较弱形成膜的机械性能较差。
3、 混合合金软磁复合薄膜
按上述 1-1到 1-4的工艺,可在所述铁镍复合薄膜中混入其他片状磁性合金, 如片状铁硅铝, 片状铁硅铬, 片状铁硅, 片状铁硅钼等以平衡磁性复合薄膜在 其它频率下的微波性能。
下面以 Fe51Ni49体积分数和 FeS5Si9.6AU*积分数分别为 5%和 49%混合合金 软磁复合薄膜为例
3-1、 聚乙烯醇缩丁醛树脂(PVB)基混合合金粉末浆料
为了制作聚乙烯醇缩丁醛树脂(PVB)混合合金粉末浆料, 其粘接剂, 溶剂和 可塑剂按下列顺序配置:
3-1-1、 分别取 51.6克干燥后片状 Fe51Ni49粉末和 472. 1克干燥后片状 FeS5Si9.6Al5.4粉末与 287.4克甲苯混合。
3-1-2、 取 42.6克粘接剂, 18.2克柔性助剂和 83. 1克乙醇相混合均匀。 粘接剂: 聚乙烯醇缩丁醛树脂(PVB), 密度为 1.07 克 /毫升 ( CAS 号: 63148-65-2)
柔性助剂: 邻苯二甲酸二辛脂 (CAS号: 117-81-7)
溶齐 U: 甲苯 (CAS号: 108-88-3), 乙醇 ( CAS号: 64-17-5)
3-1-3、 将上述混合料放在球磨机中混合, 锆球直径为 10毫米。 球磨时间 为 20小时。
3-1-4、 将上述 Fe51Ni49, FeS5Si9.6A15.4混合合金浆料涂在含硅的聚乙烯对苯 二酸酯离型膜上, 如图 1所示。 干燥后复合薄膜的厚度为 400微米厚。 涂布速 度为 2米 /分钟, 干燥温度为 60°C到 80°C。 干燥时间为 10分钟。
3-1-5 、 混合合金复合薄膜表面处理
将涂覆完后的混合合金软磁复合薄膜在热辊压机或平板热压机上热压以提 高薄膜厚度的均匀性, 降低薄膜表面粗糙度。
这些混合物原则上是利用了本发明中铁镍片状合金粉末带来的高频性质,因 而属于本发明范畴。 这些材料有较多组合方式, 而且基本原理类似, 本发明就 不——实验说明。 4、 片状铁镍软磁合金复合薄膜与片状铁硅铝合金 (Sendust) 多层复合薄膜 片状 Fe-Ni合金与片状铁硅铝合金 (Sendust) 多层复合薄膜结构如图 4所示。 铁镍软磁复合薄膜 1 是与铁铝硅软磁复合薄膜 5 经压合或粘接后, 再与粘合剂 层 3粘结, 粘合剂层 3上进一步复合离型膜 4。 其结构可由下述方式制备而成:
4-1、按照上述 1-1到 1-2的工艺, 分别制作 Fe-Ni合金浆料和片状铁硅铝 ( Sendust) 合金浆料。
先将片状 Fe-Ni合金浆料涂在含硅的聚乙烯对苯二酸酯离型膜上。干燥后复 合薄膜的厚度为 200微米厚。涂布速度为 2米 /分钟,干燥温度为 60°C到 80°C。 干燥时间为 10分钟。
再将片状铁硅铝合金 (Sendust) 浆料涂在上述片状 Fe-Ni合金复合薄膜的 Fe-Ni表面。 干燥后复合薄膜的厚度为 400微米厚。 涂布速度为 2米 /分钟, 干 燥温度为 60°C到 80°C。 干燥时间为 10分钟。
其中片状铁硅铝 (Sendust) 粉末具有如下性能:
片状铁硅铝 (Sendust) 合金粉末 (CAS号为 12604-21-6) 含有 85%重量百分 数的 Fe, 9.6%重量百分数的 Si和 5.4%重量百分数的 A1。片状铁硅铝( Sendust ) 合金粉末由含上述重量百分比的合金粉在液体介质中球磨而成。 合金粉与液体 介质的重量比为 1:2。 球磨时间为 18 小时, 球磨机转速为 350转 /分钟, 上述 球磨工艺也就是片状化球磨工艺。
片状铁硅铝 (Sendust) 合金粉末的平均粒径为 30微米, 厚度小于 1微米。 多层软磁合金复合薄膜还可由 1-1到 1-4所述工艺涂覆的单层薄膜,铁镍复 合薄膜与片状铁硅铝复合薄膜可以压合而成, 也可由 1-1到 1-4所述工艺涂覆 的单层薄膜, 铁镍复合薄膜与片状铁硅铝复合薄膜通过表面上增加粘合剂贴合 而成
本发明的软磁复合薄膜磁导率与介电常数由安捷伦公司 85071E系统测试。 测试样品形状为内径为 3毫米,外径为 7.04毫米,厚度为 1.5毫米的圆环。 1.5 毫米为本发明中薄膜样品重复叠加而成。
图 5是本发明的 Fe51Ni4g片状合金粉末体积分数为 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜磁导率和频率的图谱;
由图 5 可知, 当 Fe51Ni49片状合金粉末体积分数增加时, 软磁复合薄膜的 磁导率逐渐增加; 且峰值逐渐向低频移动。 这意味着复合薄膜对电磁波磁场分 量的束缚能力随着片状合金粉末体积分数的增加而增强。 图 6是本发明的 Fe51Ni49片状合金粉末体积分数为 6%, 19%, 31%, 41%, 68%, 73 %软磁复合薄膜磁损耗和频率的图谱;
由图 6 可知, 当 Fe51Ni49片状合金粉末体积分数增加时, 软磁复合薄膜的 磁损耗逐渐增加; 且峰值逐渐向低频移动。 这意味着复合薄膜对电磁波磁场分 量的吸收随着片状合金粉末体积分数的增加而增强。
图 Ί是本发明的 Fe51Ni49片状合金粉末体积分数为 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜介电常数和频率的图谱;
由图 7 可知, 当 Fe51Ni49片状合金粉末体积分数增加时, 软磁复合薄膜的 介电常数逐渐增加; 且峰值逐渐向低频移动。 这意味着复合薄膜对电磁波电场 分量的束缚能力随着片状合金粉末体积分数的增加而增强。
图 8是本发明的 Fe51Ni49片状合金粉末体积分数为 6%, 19%, 31%, 41%, 68%, 73%软磁复合薄膜介电损耗和频率的图谱;
由 8 可知, 当 Fe51Ni49片状合金粉末体积分数增加时, 软磁复合薄膜的介 电损耗逐渐增加; 且峰值逐渐向低频移动。 这意味着复合薄膜对电磁波电场分 量的吸收随着片状合金粉末体积分数的增加而增强。
图 9是本发明混合合金软磁复合薄膜 (Fe51Ni49体积占 5%, FeS5Si9.6AU* 积占 49%), 54%体积分数 FeS5Sig.6Al5.^:磁复合薄膜, 54%体积分数 Fe51Ni49软磁 复合薄膜磁导率和频率的图谱。
由图 9可知, 当 Fe51Ni49体积分数达到 5%, FeS5Si9.6Al5.4体积占 49%, 总混 合合金体积分数为 54%时, 在 2GHz 到 4GHz之间混合合金软磁复合薄膜的磁导 率高于纯 54%体积分数 FeS5Si9.6Al5.4软磁复合薄膜磁导率, 小于 54%体积分数 Fe51Ni4g软磁复合薄膜磁导率。 这说明当 Fe51Ni49体积分数达到 5%时, 其可以提 高混合合金软磁复合薄膜在高频下的磁导率。
不同于远场吸波材料, 近场吸波薄膜不考虑电磁波的阻抗匹配。特别是在近 场电磁波吸收中无四分之一波长选择条件。 近场电磁波吸收主要来源于材料对 电磁波的束缚与损耗。
图 10是本发明 Fe7。Ni3。, Fe6„Ni4„, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni6S软 磁复合薄膜磁导率和频率的图谱。
由图 10可知, Fe-Ni 软磁复合磁性薄膜磁导率随着 Ni含量从 30%到 68% 增加, 而先上升, 后下降。 其中, 在 Ni含量为 43%-49%时达到最大, 约为 11 左右。 当 Ni 含量在 40%-43%与 49%-55%范围时, 其复合磁性薄膜磁导率为 8 左右。 当 Ni 含量继续偏离 40%-55%时, 其复合磁性薄膜磁导率近一步下降。 当 Ni含量在 68%其磁导率在 4左右, 当 Ni含量在 30%时, 其磁导率为 3左右。 因此当 Ni 含量为 40%-55%时, 复合磁性薄膜具有高的束缚磁场能力。 特别是 当 Ni含量为 43%-49%时, 复合磁性薄膜束缚磁场的能力达到最大。
图 1 1 是本发明 Fe70Ni3o , Fe60Ni40, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni68 : 磁复合薄膜磁损耗和频率的图谱。
由图 1 1 可知, 当 Ni 含量为 40%-49%时, 软磁复合磁性薄膜自然共振峰为 4GHz; 当 Ni含量为 45%-40%区间与 49%_55%区间时, 软磁复合磁性薄膜共振峰 略有向低频移动, 在 2GHz-3GHz之间。 当 Ni 含量为 68%时, 虽然其共振峰在 2GHz-3GHz之间, 但其损耗值比较小, 在 3左右。 当 Ni含量为 30%时, 其共振 峰在 600MHz左右, 且损耗值为 3。 这表明, Fe60Ni 40, Fe57Ni 43, Fe51Ni 49, Fe45Ni55 复合磁性薄膜不但具有高的共振峰而且具有大的损耗值。 这表明当 Ni含量为 40%-55%时, 复合磁性薄膜具有高的损耗磁场的能力。 特别是当 Ni 含量为 43 % - 49 %时, 复合磁性薄膜损耗磁场的能力达到最大。
图 12是本发明 Fe7。Ni3。, Fe6。Ni4。, Fe57Ni43, Fe51Ni Fe45Ni55, Fe32Ni68软 磁复合薄膜介电常数和频率的图谱。
由图 12可知, Fe7。Ni3。, Fe6。Ni4。, Fe57Ni43, Fe51Ni49 Fe45Ni55, Fe32Ni68 ^:51 复合磁性薄膜随着 Ni含量增加, 从 30%到 68%, 其介电常数亦随着增加, 从 35 到 90。 这意味着, 随着 Ni含量的增加, 复合磁性薄膜束缚电场的能力增强。
图 13是本发明 Fe7。Ni3。, Fe60Ni40, Fe57Ni43, Fe51Ni 49, Fe45Ni55, Fe32Ni 磁 复合磁性薄膜介电损耗和频率的图谱。
由图 13可知, Fe7„Ni3o, Fe6„Ni4„, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni6S ^磁 复合磁性薄膜随着 Ni含量增加, 从 30%到 68%, 其介电损耗亦随着增加, 从 15 到 84。 这意味着, 在所研究的组分区间内, 随着 Ni 含量的增加, 复合磁性薄 膜损耗电场的能力增强。
最后, 对上述 Fe7。Ni3。, Fe60Ni4o , Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni 磁 复 合磁性薄膜对电磁波 (包括磁场分量和电场分量) 在其中的损耗进行分析。 根 据电磁波理论, 电磁波在介质中的近场损耗率可由式 ( 1 ) 表示。 结果由图 14 所示。 出射电磁波
1 ' π丄' 8.686 · d 分
入射电磁波
Figure imgf000018_0001
( 1 ) 其中, f 是电磁波频率, c是光速, d为薄膜厚度 (取 0. 3mm ) , ε ' 是复合 材料的介电常数, ε " 是复合材料的介电损耗, μ ' 是复合材料的磁导率, μ " 是复合材料的磁损耗。
此计算公式只是对于近场电磁波吸收提供理论指导。 具体情况多种多样。 如 在近场情况下, 由于电子设备具有不同的空间结构, 而导致近场电磁波亦具有 不同的模式。 本发明并不局限于这个公式的范畴。
图 14是本发明 Fe7。Ni3。, Fe60Ni40, Fe57Ni43, Fe51Ni 49, Fe45Ni55, Fe32Ni68 复合磁性薄膜电磁波损耗和频率的图谱。
由图 14可知, 当 Ni含量在 43%_49%时, Fe-Ni软磁复合薄膜在 2GHz_ 10GHz 拥有最高的电磁波损耗率。 以 0. 3mm软磁复合薄膜为例, 其电磁波损耗率可达 至 IJ 0. 35分贝以上。 当 Ni含量在 40%_43%区间与 49%_55%区间时, 0. 3mm磁性复 合薄膜电磁波损耗率可达到 0. 2分贝上。 而 Ni含量偏离 40%-55%区间的磁性复 合薄膜对电磁波的损耗在 0. 2分贝以下。
Fe70Ni3o, Fe60Ni40, Fe57Ni43, Fe51Ni49, Fe45Ni55, Fe32Ni6S片装合金粉末在 550 氩气保护下退火 3小时后,自然冷却到室温。由于在退火过程中,将减小 Fe-Ni 合金粉末由于在片状化球磨工艺中造成的缺陷和应力。 这将有助于提高片状 Fe-Ni 合金粉末自身的磁导率, 从而增强复合磁性薄膜的磁导率。 退火处理过 的 Fe-Ni 粉末也适用在上述的软磁复合薄膜中。 在本发明中, Fe-Ni 粉末可以 是经过退火处理过的, 或未经退火处理过的, 或其混合物。
片状铁硅铝合金粉末在 600 °C氩气保护下退火 3 小时, 自然冷却到室温。 由于在退火过程中, 将减小片状铁硅铝合金粉末由于在片状化球磨工艺中造成 的缺陷和应力。 这将有助于提高片状片状铁硅铝合金粉末自身的磁导率, 从而 增强复合磁性薄膜的磁导率。 退火处理过的片状铁硅铝合金粉末也适用在上述 的磁性复合薄膜中。 在本发明中, 片状铁硅铝合金粉末可以是经过退火处理过 的, 或未经退火处理过的, 或其混合物。

Claims

权 利 要 求 书
1、 一种用于吸收近场高频电磁噪音的铁镍软磁复合薄膜, 其特征在于, 所 述铁镍软磁复合薄膜包括:
a、 片状铁镍软磁合金粉末, 按质量分数计, 其中, 含 45%-60%铁和 40%-55% 镍; b、 所述片状铁镍软磁合金粉末与有机粘接材料相混合, 并使其形成铁镍软 磁复合薄膜;
c、 所述铁镍软磁复合薄膜厚度范围在 20微米到 0. 49毫米;
d、 所述片状铁镍软磁合金粉末平均直径在 1微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状铁镍软磁合金粉末的平均长径比大于 16小于 2000 ; e、 所述铁镍软磁复合薄膜中的片状铁镍软磁合金粉末体积分数占总的铁镍 软磁复合薄膜材料体积 3 1 % 到 73%。
2、 根据权利要求 1所述的一种铁镍软磁复合薄膜, 其特征在于, 所述有机 粘接材料主要包括高分子树脂, 所述高分子树脂为硅橡胶、 丁烯橡胶、 异戊二 烯橡胶、 聚氨酯、 氟橡胶、 丁腈橡胶、 乙烯 /醋酸乙烯酯共聚物、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚酰胺、 聚烯烃、 环氧树脂、 聚酯、 PVB, 或它们 的共聚物中的至少一种。
3、 根据权利要求 1所述的一种铁镍软磁复合薄膜, 其特征在于, 所述片状 铁镍软磁合金粉末平均长径比大于 41小于 600。
4、 根据权利要求 1或 2或 3所述的一种铁镍软磁复合薄膜, 其特征在于, 所述铁镍软磁复合薄膜中的软磁合金粉末含铁占 5 1 %-57%, 镍占 43%-49%。
5、 根据权利要求 1或 2或 3所述的一种铁镍软磁复合薄膜, 其特征在于, 所述铁镍软磁复合薄膜中片状铁镍软磁合金粉末体积分数占总的铁镍软磁复合 薄膜材料体积 41 % 到 68%。
6、 根据权利要求 4所述的一种铁镍软磁复合薄膜, 其特征在于, 所述铁镍 软磁复合薄膜中片状铁镍软磁合金粉末体积分数占总的铁镍软磁复合薄膜材 料体积 41 % 至 lj 68%。
7、 根据权利要求 6所述的一种铁镍软磁复合薄膜, 其特征在于, 所述铁镍 软磁复合薄膜磁导率在 2GHz大于 4, 在 2. 4GHz大于 2. 5。
8、 根据权利要求 1或 2或 3所述的一种铁镍软磁复合薄膜, 其特征在于,
所述铁镍软磁复合薄膜磁导率在 2GHz大于 6. 5, 且在 2. 4GHz大于 3. 5。
9、 根据权利要求 6所述的一种铁镍软磁复合薄膜, 其特征在于, 所述 软磁复合薄膜涂在有机薄膜衬底的一面上 , 所述有机衬底为 PET , PE、 PP、 PC、 PVDF、 P I、 含氟塑料的薄膜, 或它们的离型膜, 所述有机衬底另一面为胶面。
10、 一种权利要求 1至 9中任意一项权利要求所述的铁镍软磁复合薄膜的 制造方法, 其特征在于, 所述方法按下述步骤进行
①、 铁镍合金片状化
铁镍合金粉末按规定配比与球磨液体介质混合 , 球磨, 球磨后将合金粉末 与球磨液体介质的混合料在非氧化性气体或真空保护下烘干,然后恢复到室温;
②、 片状铁镍合金粉末浆料的制
干燥后片状铁镍合金粉末与规定 的有机粘接材料以球磨或搅拌或其它方 式混合, 从而得到片状铁镍合金粉末均匀分散的浆料;
③、 片状铁镍合金复合薄膜涂覆
片状铁镍合金粉末浆料涂在有机薄膜衬底的一面上, 涂后进行加热干燥, 从 而形成铁镍软磁复合薄膜;
片状铁镍合金复合薄膜表面处理
将涂覆完后的铁镍软磁复合薄膜在热辊压机或平板热压机或带表面纹路 的热热辊车昆机或平板热压机上热压。
1 1、 种混合合金软磁复合薄膜, 其特征在于, 所述混合合金软磁复合薄膜 包括:
&、 片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末; 其中, 按质量分数
, 在片状铁镍软磁合金粉末中, 铁与镍的配比为, 含 45%-60%铁禾口 40% - 55%
b、所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末与有机粘接材料 相混合, 并使其形成混合合金软磁复合薄膜;
C 所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末体积分数占总的 混 金软磁复合薄膜材料体积 3 1 % 到 73%, 所述片状铁镍软磁合金粉末体积 分数占总的混合合金软磁复合薄膜材料体积 5%以上, 所述非铁镍片状软磁合金 粉末为片状铁硅铝、 片状铁硅、 片状铁镍钼、 片状铁硅铬、 或片状羰基铁中的 一种或几种;
d、 所述片状铁镍软磁合金粉末和非铁镍片状软磁合金粉末平均直径在 1 微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状铁镍软磁合金粉末和 非铁镍片状软磁合金粉末的平均长径比大于 1 5小于 2000 ;
e、 所述混合合金软磁复合薄膜厚度范围在 20微米到 0. 99毫米; f、 所述混合合金软磁复合薄膜中有机粘接材料主要包括所述高分子树脂, 所述高分子树脂为硅橡胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨酯、 氟橡胶、 丁腈 橡胶、 乙烯 /醋酸乙烯酯共聚物、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚 酰胺、 聚烯烃、 环氧树脂、 聚酯、 PVB, 或它们的共聚物中的至少一种。
12、 一种多层软磁复合薄膜, 其特征在于, 所述多层软磁复合薄膜是由至少 一层铁镍软磁复合薄膜与至少一层非铁镍软磁复合薄膜所构成,
其中, 所述铁镍软磁复合薄膜是由权利要求 1至 10中任意一项权利要求所 述的一种铁镍软磁复合薄膜构成;
其中,所述非铁镍软磁复合薄膜是由非铁镍片状软磁合金粉末与有机粘接材 料相混合, 并使其形成非铁镍软磁复合薄膜, 所述非铁镍软磁合金粉末体积分 数占总的非铁镍软磁复合薄膜材料体积 3 1 % 到 73%, 所述片状非铁镍软磁合金 粉末平均直径在 1微米到 300微米, 平均厚度在 50纳米到 5微米,而且片状非 铁镍软磁合金粉末的平均长径比大于 15 小于 2000, 所述非铁镍片状软磁合金 粉末为片状铁硅铝、 片状铁硅、 片状铁镍钼、 片状铁硅铬, 或片状羰基铁中的 一种或它们的混合物;
其中, 所述有机粘接材料主要包括所述高分子树脂, 所述高分子树脂为硅橡 胶、 丁烯橡胶、 异戊二烯橡胶、 聚氨酯、 氟橡胶、 丁腈橡胶、 乙烯 /醋酸乙烯 酯共聚物、 EPDM、 PVA、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚酰胺、 聚烯烃、 环氧树 脂、 聚酯、 PVB, 或它们的共聚物中的至少一种。
13、 根据权利要求 12所述的一种多层软磁复合薄膜, 其特征在于, 在所述 多层软磁复合薄膜中, 每层薄膜厚度范围在 20微米到 0. 5毫米。
14、 一种软磁复合薄膜胶带, 其特征在于, 由权利要求 1至 13中任意一项 权利要求所述软磁复合薄膜表面与粘合剂层粘结,从而形成软磁复合薄膜胶带, 所述粘合剂层为亚克力材料、 橡胶材料的压敏粘合剂、 热压粘合剂、 或硅橡胶, 所述粘合剂层厚度范围为 3-50微米。
15、 一种权利要求 1 至 10 中任意一项权利要求所述的铁镍软磁复合薄膜的 应用, 其特征在于, 所述铁镍软磁复合薄膜用于固定在电子设备的部件上或其 周围, 用来减小近场电磁噪音, 所述电子设备的部件包括同步动态随机存储器、 超高频天线、 数据线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄 像头及其模组、 柔性电路, 低电压差分信号连接线, 线路板、 印刷电路板、 芯 片中的至少一个。
16、 一种权利要求 1 1 所述的混合合金软磁复合薄膜的应用, 其特征在于, 所述混合合金软磁复合薄膜用于固定在电子设备的部件上或其周围, 用来减小 近场电磁噪音, 所述电子设备的部件包括同步动态随机存储器、 超高频天线、 数据线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及其模组、 柔性电路, 低电压差分信号连接线, 线路板、 印刷电路板、 芯片中的至少一个。
17、 一种权利要求 1 2或 13所述的多层软磁复合薄膜的应用, 其特征在于, 所述多层软磁复合薄膜用于固定在电子设备的部件上或其周围, 用来减小近场 电磁噪音, 所述电子设备的部件包括同步动态随机存储器、 超高频天线、 数据 线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及其模组、 柔 性电路, 低电压差分信号连接线, 线路板、 印刷电路板、 芯片中的至少一个。
18、 一种权利要求 14 所述的一种软磁复合薄膜胶带的应用, 其特征在于, 所述软磁复合薄膜胶带用于固定在电子设备的部件上或其周围, 用来减小近场 电磁噪音, 所述电子设备的部件包括同步动态随机存储器、 超高频天线、 数据 线及其连接头、 金属腔壳, 金属罩、 金属部件、 扬声器、 摄像头及其模组、 柔 性电路, 低电压差分信号连接线, 线路板、 印刷电路板、 芯片中的至少一个。
PCT/CN2014/076315 2013-05-02 2014-04-28 软磁复合薄膜和制造方法及其在电子设备中的应用 WO2014177028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310158321.X 2013-05-02
CN201310158321.XA CN104134513A (zh) 2013-05-02 2013-05-02 软磁复合薄膜和制造方法及其在电子设备中的应用

Publications (1)

Publication Number Publication Date
WO2014177028A1 true WO2014177028A1 (zh) 2014-11-06

Family

ID=51807158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076315 WO2014177028A1 (zh) 2013-05-02 2014-04-28 软磁复合薄膜和制造方法及其在电子设备中的应用

Country Status (2)

Country Link
CN (1) CN104134513A (zh)
WO (1) WO2014177028A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716746A1 (de) * 2019-03-29 2020-09-30 Siemens Aktiengesellschaft Elektromagnetische schirmungsvorrichtung

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531391A (zh) * 2015-09-10 2017-03-22 介面光电股份有限公司 软磁性粉末组合物及磁性元件的制作方法
CN105295580B (zh) * 2015-12-03 2017-08-04 航天科工武汉磁电有限责任公司 环保型防电磁辐射涂料、改性铁硅铬微粉及其制备方法
CN105826069B (zh) * 2016-05-07 2019-04-09 江苏金羿先磁新材料科技有限公司 一种纳米级基元组装复合导磁薄膜材料的制备方法
CN106298139A (zh) * 2016-08-19 2017-01-04 上海光线新材料科技有限公司 一种新型纳米晶复合材料及其制备工艺
CN106633424A (zh) * 2016-10-28 2017-05-10 青岛卓英社科技股份有限公司 阻燃吸波材料的制备方法
CN108022714B (zh) * 2016-10-31 2021-06-08 北京北方华创微电子装备有限公司 一种软磁薄膜及其制备方法
CN108575079A (zh) * 2017-03-08 2018-09-25 上海量子绘景电子股份有限公司 电磁屏蔽用复合叠层磁性材料结构及其制备方法
CN107652495B (zh) * 2017-10-20 2020-01-10 南京大学 一种与高硅氧/酚醛防热材料匹配的吸波贴片及其制备方法
CN108962435A (zh) * 2018-06-22 2018-12-07 无锡众创未来科技应用有限公司 图案化透明电极制造方法
EP3817010A4 (en) * 2018-06-29 2021-09-01 Lg Chem, Ltd. COMPOSITE MATERIAL
CN110523976B (zh) * 2019-09-17 2022-01-18 东莞市站胜模具有限公司 一种用于金属3d打印的薄膜材料及其生产工艺
WO2023044329A1 (en) * 2021-09-17 2023-03-23 Saint-Gobain Performance Plastics Corporation Magnetic multilayer composite and a method of forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484487A (zh) * 2002-08-19 2004-03-24 住友电气工业株式会社 电磁波吸收剂
CN1525499A (zh) * 2003-02-24 2004-09-01 Tdk��ʽ���� 软磁性部件、电磁波控制板及软磁性部件的制造方法
CN1717968A (zh) * 2004-02-24 2006-01-04 信越聚合物有限公司 电磁波噪声抑制体、具有电磁波噪声抑制功能的结构体、以及其制造方法
CN101530018A (zh) * 2006-10-25 2009-09-09 Lg化学株式会社 具有近红外屏蔽功能和透明性的电磁波屏蔽膜、包括该电磁波屏蔽膜的滤光片和等离子显示面板
CN101604568A (zh) * 2009-04-30 2009-12-16 兰州大学 一种磁场取向片状软磁复合材料及其制备方法
CN101740142A (zh) * 2009-11-23 2010-06-16 安泰科技股份有限公司 电磁波吸收制品及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935927A (ja) * 1995-07-20 1997-02-07 Tokin Corp 複合磁性体及びそれを用いた電磁干渉抑制体
EP2117018A4 (en) * 2007-01-23 2011-09-14 Univ Tohoku Nat Univ Corp COMPOSITE MAGNETIC BODY, METHOD FOR MANUFACTURING SAME, CIRCUIT SUBSTRATE, AND ELECTRONIC DEVICE USING THE SAME
JP2009021403A (ja) * 2007-07-12 2009-01-29 Alps Electric Co Ltd 電磁波抑制シート
CN101902898B (zh) * 2009-12-02 2012-05-30 安泰科技股份有限公司 多层型电磁波吸收体及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484487A (zh) * 2002-08-19 2004-03-24 住友电气工业株式会社 电磁波吸收剂
CN1525499A (zh) * 2003-02-24 2004-09-01 Tdk��ʽ���� 软磁性部件、电磁波控制板及软磁性部件的制造方法
CN1717968A (zh) * 2004-02-24 2006-01-04 信越聚合物有限公司 电磁波噪声抑制体、具有电磁波噪声抑制功能的结构体、以及其制造方法
CN101530018A (zh) * 2006-10-25 2009-09-09 Lg化学株式会社 具有近红外屏蔽功能和透明性的电磁波屏蔽膜、包括该电磁波屏蔽膜的滤光片和等离子显示面板
CN101604568A (zh) * 2009-04-30 2009-12-16 兰州大学 一种磁场取向片状软磁复合材料及其制备方法
CN101740142A (zh) * 2009-11-23 2010-06-16 安泰科技股份有限公司 电磁波吸收制品及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716746A1 (de) * 2019-03-29 2020-09-30 Siemens Aktiengesellschaft Elektromagnetische schirmungsvorrichtung

Also Published As

Publication number Publication date
CN104134513A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2014177028A1 (zh) 软磁复合薄膜和制造方法及其在电子设备中的应用
CN108353520B (zh) 磁场屏蔽单元、包括其的无线电力传送模块及电子装置
US11108276B2 (en) High-performance shielding sheet and preparation method thereof and coil module comprising the same
TW201340527A (zh) 使用無線電力傳送之移動終端用受電模組、及具有該移動終端用受電模組之行動終端用充電電池
TW201018387A (en) Electromagnetic interference suppressing hybrid sheet
KR101560570B1 (ko) 전자파 간섭 노이즈 차폐와 흡수, 방열 및 전기 절연 복합 시트용 조성물 및 이를 포함하는 복합 시트
JP2006269892A (ja) 電磁波シールド成型品
CN110408255B (zh) 一种高拉伸强度吸波材料及其制造方法
WO2019235364A1 (ja) 電波吸収積層フィルム、その製造方法、及びそれを含む素子
TW200908871A (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP2004200534A (ja) 電磁波吸収性熱伝導性シート
JP2004273751A (ja) 磁性部材、電磁波吸収シート、磁性部材の製造方法、電子機器
KR20160054373A (ko) 무선충전 수신장치 모듈용 자기장 차폐성 방열부재, 이를 포함하는 복합부재, 이를 포함하는 무선충전 수신장치 모듈 및 무선충전 수신장치
KR101444552B1 (ko) 자성체 시트, 자성체 시트의 제조방법 및 자성체 시트를 포함하는 무접점 전력 충전 장치
JP6167560B2 (ja) 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに複合磁性体の製造方法
JP2001210924A (ja) 複合磁性成型物、電子部品、複合磁性組成物および製造方法
JP2013247351A (ja) 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに絶縁性の平板状磁性粉体の製造方法
JP2006131964A (ja) 電磁波吸収シートの製造方法
KR100712836B1 (ko) 전자기파 간섭 차폐용 다층 필름 및 이를 포함하는회로기판
KR20210061030A (ko) 무선충전 패드, 무선충전 장치, 및 이를 포함하는 전기 자동차
WO2019188972A1 (ja) 電磁波吸収放熱シートおよび電子機器
JP2003273568A (ja) カプセル型電磁波吸収材
JP6612676B2 (ja) 近傍界用ノイズ抑制シート
US20220410730A1 (en) Wireless charging device, and transportation means comprising same
CN215299513U (zh) 一种吸波屏蔽集成膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791992

Country of ref document: EP

Kind code of ref document: A1