WO2014176935A1 - 随机接入信道资源配置方法和系统 - Google Patents

随机接入信道资源配置方法和系统 Download PDF

Info

Publication number
WO2014176935A1
WO2014176935A1 PCT/CN2014/000531 CN2014000531W WO2014176935A1 WO 2014176935 A1 WO2014176935 A1 WO 2014176935A1 CN 2014000531 W CN2014000531 W CN 2014000531W WO 2014176935 A1 WO2014176935 A1 WO 2014176935A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
resource
access channel
node
information
Prior art date
Application number
PCT/CN2014/000531
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
夏树强
方惠英
石靖
李新彩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14791890.8A priority Critical patent/EP3032910B1/en
Priority to US14/910,254 priority patent/US20160183295A1/en
Priority to JP2016532199A priority patent/JP6198950B2/ja
Publication of WO2014176935A1 publication Critical patent/WO2014176935A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for configuring a random access channel resource. Background technique
  • MTC User Terminal MTC User Equipment, MTC UE
  • M2M user communication equipment also known as Machine to Machine (M2M) user communication equipment
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • LTE-A LTE-based evolution
  • M2M multi-class data services based on LTE/LTE-A will also be more attractive. Only when the cost of the LTE-M2M device can be lower than the MTC terminal of the GSM system can the M2M service actually switch from GSM to LTE system.
  • the current main options for reducing the cost of MTC user terminals include: reducing the number of antennas received by the terminal, reducing the baseband processing bandwidth, reducing the peak rate supported by the terminal, using the half-duplex mode, and so on.
  • the cost reduction means that the performance is degraded, and the demand for the LTE/LTE-A system cell coverage cannot be reduced. Therefore, the MTC terminal configured with low cost needs to take some measures to meet the coverage performance requirement of the existing LTE terminal. .
  • the MTC terminal may be located in the underground room, corner, etc., and the scene is worse than the ordinary LTE UE. In order to compensate for the drop in coverage caused by the penetration loss, some MTC UEs need higher performance improvement.
  • the location information of the time-frequency resource occupied by the random access response message (RAR) in the LTE/LTE-A system is included in the downlink control information (Downlink)
  • the Control Information (referred to as DCI) is transmitted through the Physical Downlink Control Channel (PDCCH).
  • the DCI information further includes a 16-bit Cyclic Redundancy Check (CRC), and the CRC further uses a 16-bit random access radio network temporary identifier (Random Access Radio Network Temporary Identity).
  • RA-RNTI for the purpose of force 4, especially for the port 4:
  • the present invention provides a method and system for configuring a random access channel resource, which solves the problem of MTC UE access in an LTE/LTE-A system.
  • a method for configuring a random access channel resource includes:
  • the first node sends random access channel resource configuration information to the second node, and the random access channel resource configuration information is indicated by one or more random access channel configuration information.
  • the random access channel configuration information includes at least configuration information of the first resource, and the first resource is one of the following:
  • a starting resource allocated for the second node to send random access signaling is allocated.
  • the first resource occupies one or more first time domain metric units in the time domain, and occupies one or more first frequency domain metric units in the frequency domain.
  • the first time domain metric unit is one of the following: Frame, Subframe, Half Frame, Time Slot, OFDM Symbol, Physical Resource Block (PRB), Physical Resource Block Group.
  • PRB Physical Resource Block
  • the first frequency domain measurement unit is one of the following:
  • Subcarrier physical resource block (PRB), physical resource block group.
  • PRB physical resource block
  • the configuration information of the first resource includes at least one of the following:
  • the configuration index information of the first resource indicates any one or any of the following information: a time domain location occupied by the first resource in the predefined time domain period in a predefined time domain period Distribution information, the predefined time domain period is described by the first time domain metric unit, and configured by the system or sent by the first node;
  • the quantity information of the first resource is described by the first time domain metric unit, and configured by the system or sent by the first node.
  • the frequency hopping pattern information of the first resource is not limited to the frequency hopping pattern information of the first resource.
  • the system configuration refers to a standard configuration or a network configuration or a network high layer configuration.
  • the location information of the first resource in the frequency domain is determined by frequency domain offset information of the first resource.
  • the location information of the first resource in the frequency domain is at least one of the following:
  • the first resource starts information of a resource location in a frequency domain
  • the information of the initial resource location, the information of the ending resource location, and the information of the occupied resource location are measured by a first frequency domain metric.
  • the frequency domain location distribution information of the first resource is offset by a frequency domain of the first resource.
  • Information and configuration index information of the first resource are determined.
  • the first resource has multiple locations in the frequency domain.
  • the plurality of the first resources at the same time domain location are different in location in the frequency domain.
  • the random access channel configuration information further includes:
  • the frequency domain location distribution interval information of the first resource is the frequency domain location distribution interval information of the first resource.
  • the frequency domain location distribution information of the first resource is determined by frequency domain offset information of the first resource, frequency domain location distribution interval information of the first resource, and configuration index information of the first resource.
  • the configuration information of the first resource included in each random access channel configuration information is different.
  • the random access channel resource is divided into one or more sets of random access channel resources, and the random access channel resource subsets are time division multiplexed and/or frequency division multiplexed and/or Or multiplexing the random access channel resources in a code division multiplexing manner.
  • the random access channel resources are multiplexed in a time division multiplexing manner between the random access channel resource subsets:
  • the first resource in the first resource in which the time domain location is within a predefined time domain set is allocated to a random access channel resource subset;
  • the first resource in the first resource in a predefined time domain set and having the same frequency domain location is allocated to a random access channel resource subset;
  • the first resource in the first resource is in a predefined time domain set and the first resource in the predefined frequency domain location is allocated to a random access channel resource subset.
  • the predefined time domain set includes one or more time domain time points, and the time domain time point is measured by the first time domain measurement unit, and the one or more time domain time points Continuous or discrete distribution over the time domain.
  • the predefined frequency domain location needs to meet the following conditions:
  • the frequency domain locations of the first resources at two adjacent time domain time points are different; and/or, There are N different frequency domain locations in the predefined frequency domain location, and the predefined time domain set is divided into N subsets, and the frequency domain location of the first resource in each subset corresponds to the predefined One of the frequency domain positions, N is an integer greater than or equal to 1.
  • the random access channel resource is multiplexed between the random access channel resource subsets by frequency division multiplexing:
  • the first resource in the first resource with a frequency domain location in a predefined frequency domain set is allocated to a random access channel resource subset;
  • the first resource has a frequency domain location within a predefined set of frequency domains and the first resource at a predefined time domain location is allocated to a subset of random access channel resources.
  • the predefined frequency domain set includes one or more frequency domain points, and the frequency domain points are measured by the first frequency domain metric unit, and the one or more frequency domain points are in a frequency domain. Continuous or discrete distribution.
  • the predefined time domain location includes one or more time domain time points, and the time domain time point is measured by the first time domain measurement unit, and the one or more time domain time points are Continuous or discrete distribution over time.
  • the first resource allocation in a predefined set Go to a subset of random access channel resources.
  • the elements in the predefined set are one or more sorted first resources.
  • the ordering rule of the first resource is configured by a system.
  • the random access channel resources are multiplexed by the code division multiplexing between the random access channel resource subsets:
  • a subset of random access channel resources is constructed from at least one predefined set of random access sequences.
  • the predefined set of random access sequences includes one or more random access sequences.
  • the random access channel resource subset supports one type or multiple types of the second node to send a random access sequence.
  • the second node is classified according to one of the following principles:
  • the coverage enhancement level that the second node needs to support is the coverage enhancement level that the second node needs to support.
  • PBCH physical broadcast channel
  • the number of repetitions of the message When the second node successfully decodes the main information block ( ⁇ ) message, the number of repetitions of the message, the number of repetitions of the SIB message when the second node successfully decodes the system information block (SIB) message, and the MIB message when the second node successfully decodes the PBCH The number of repetitions.
  • the second node is one or more terminals, or one or more terminal groups.
  • the first node is at least one of the following:
  • Macrocell Microcell, Picocell, Femtocell, LPN, Relay, Small Cell.
  • the method further includes:
  • the second node determines, according to the random access channel configuration information, a corresponding random access channel resource, and uses the random access channel resource to send random access signaling to the first node.
  • the second node determines, according to the random access channel configuration information, a corresponding random access channel resource, and uses the random access channel resource to send random access signaling to the first node. , Also includes:
  • the first node sends random access response signaling to the second node in response to the random access signaling sent by the second node.
  • the random access response signaling carries random access response information of one or more of the second nodes.
  • the one or more second nodes are configured by the system or configured by the first node.
  • the one or more second nodes have any one or any of the following attributes: the one or more of the second nodes belong to the same type.
  • the one or more of the second nodes need to support the same coverage enhancement level, and the one or more second nodes need to support the random access sequence to send the same number of repetitions.
  • the one or more of the second nodes calculate the same RA-RNTI.
  • the type of the one or more of the second nodes is configured by a system
  • the coverage enhancement level that the one or more of the second nodes needs to support is configured by the system; the number of repetitions of the random access sequence transmission that the one or more of the second nodes need to support is configured by the system.
  • the number of times the random access response signaling is repeatedly sent is indicated by the first node.
  • the first node indicates the number of times the random access response signaling is repeatedly sent in a manner of at least one of the following:
  • the maximum number of repetitions supported by the MIB information sent by the first node is in a mapping relationship with the number of times the random access response signaling is repeatedly sent.
  • the maximum number of repetitions supported by the SIB information sent by the first node is in a mapping relationship with the number of times the random access response signaling is repeatedly sent.
  • the information about the number of repetitions supported by the MIB is in a mapping relationship with the number of times the random access response signaling is repeatedly sent;
  • the number information of the random access response signaling repeated transmission is indicated by the type of the second node or the coverage enhancement level or the number of repetitions of the supported random access sequence.
  • the present invention also provides a random access channel resource configuration system, including a first node and a second node;
  • the first node is configured to: send random access channel resource configuration information to the second node, where the random access channel resource configuration information includes one or more random access channel configuration information indications.
  • the second node is one or more terminals, or one or more terminal groups.
  • the first node is at least one of the following:
  • the second node is configured to: determine, according to the random access channel configuration information, a corresponding random access channel resource, and send the random access message to the first node by using the random access channel resource. Order
  • the first node is further configured to: send random access response signaling to the second node, to respond to the random access signaling sent by the second node.
  • An embodiment of the present invention provides a method and system for configuring a random access channel resource, where a first node sends random access channel resource configuration information to a second node, where the random access channel resource configuration information includes one or more random access channels.
  • the configuration information indicates that the second node sends the random access channel resource of the random access signaling, and implements the random access channel resource configuration for the MTC UE in the LTE/LTE-A system, and solves the LTE/LTE-A system.
  • FIG. 1 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a PRACH starting resource sequencing principle according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of PRACH resources occupied by each subset in Embodiment 2 of the present invention
  • FIG. 4 is a different type of Embodiment 3 of the present invention.
  • 5 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 5 of the present invention
  • FIG. 6 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 7 of the present invention.
  • FIG. 8 is a schematic diagram showing a distribution of initial resources of a PRACH in one frame according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 10 of the present invention.
  • FIG. 10 is a schematic diagram of PRACH initial resource allocation allocated in multiple frames in Embodiment 11 of the present invention.
  • FIG. 11 is a schematic diagram of random access channel resource configuration information in a random access channel resource configuration method according to Embodiment 12 of the present invention.
  • FIG. 12 is a schematic diagram of PRACH resource configuration in Frame 0 according to Embodiment 12 of the present invention
  • FIG. 13 is a schematic diagram of PRACH resource configuration in each Frame according to Embodiment 13 of the present invention
  • FIG. 14 is a thirteenth embodiment of the present invention. Schematic diagram of PRACH resource configuration in Frame 0.
  • An embodiment of the present invention provides a method for configuring a random access channel resource, where a first node sends random access channel resource configuration information to a second node, and the random access channel resource configuration information is configured by one or more random access channels. Information indication.
  • the random access channel configuration information includes at least configuration information of the first resource, where the first resource is one of the following:
  • a resource allocated to the second node for transmitting random access signaling A starting resource allocated for the second node to send random access signaling.
  • the first resource is a PRACH resource or a PRACH starting resource is taken as an example for description.
  • Embodiment 1 of the present invention is a diagrammatic representation of Embodiment 1 of the present invention.
  • An embodiment of the present invention provides a method for configuring a random access channel resource, including:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least a prach-Confi g Index.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. . In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 frame, and the second node obtains the time domain occupied subframe in which the PRACH starting resource is within one frame by decoding the prach-ConfigInfo information sent by the first node. 0, 2, 4, 6, 8, and a total of 5 PRACH starting resources, as shown in Figure 1;
  • the second node may be one or more terminals or one or more terminal groups; where prach-FreqOffset is used to indicate frequency domain offset information of the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • the PRACH starting resources allocated in multiple frames are sorted.
  • the PRACH starting resource index in Frame k is RA (0) ⁇ RA (4), and in Frame k+1.
  • the PRACH starting resource index is RA (5) ⁇ RA (9), and so on, and constitutes a PRACH starting resource set PRACHSet.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each subset may support one or more types of second nodes to send random access sequences
  • the second node may be classified according to one of the following principles:
  • the number of repetitions of the PBCH channel used when the second node successfully decodes the PBCH is allocated according to the number of repetitions of the random access sequence that the second node needs to support.
  • the second node is divided into two types (Type-1 and Type-2) according to different coverage enhancement levels that need to be supported, and the PRACHSet is divided into two sets of subsets (subset 1 and subset). 2), the PRACH starting resource index occupied by each set of subsets is configured by the system or sent by the first node.
  • Each set of subsets supports a class of said second node to transmit a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2 Access sequence.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the interval of the time domain location of the PRACH starting resource in the subset i; b s is the PRACH starting resource index offset in the subset i;
  • Subset _i is the PRACH starting resource index of the thousand set i.
  • the index of the occupied initial resource may be obtained as follows:
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the first type of second node (Type-1) PRACH starting resource index is RA (0), RA (2), RA (4), ..., and assumes that the random access is sent.
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity.
  • the different values of the prach-Configlndex have a mapping relationship with the location information of the PRACH starting resource within the predefined time domain length and the number of the PRACH starting resources within the predefined time domain length, as shown in Table 1.
  • "PreambleFormat” indicates the random access sequence format
  • System frame number indicates the system frame number (Even indicates an even frame, Any indicates all frames)
  • “Subframe number” indicates a subframe number.
  • prach-ConfigIndex 12
  • System frame number: "Any” indicates the start PRACH resources present in any frame
  • there are five PRACH starting resources in a frame as shown in FIG. 1 .
  • the second node may be one or more terminals or one or more terminal groups.
  • the prach-FreqOffset is used to indicate the frequency domain offset information of the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • the PRACH starting resources allocated in multiple frames are sorted.
  • the PRACH starting resource index in Frame k is RA (0) ⁇ RA (4), and in Frame k+1.
  • the PRACH starting resource index is RA (5) ⁇ RA (9), and so on, and constitutes a PRACH starting resource set PRACHSet.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each subset may support one or more types of second nodes to send random access sequences
  • the second node may be classified according to one of the following principles:
  • the second node sends the weight according to the random access sequence that needs to be supported.
  • the number of complex times is divided into two categories (Type-1 and Type-2), and the PRACHSet is divided into two sets of subsets (subset 1 and subset 2), and the PRACH starting resource index occupied by each set of subsets is configured by the system. Or sent by the first node.
  • Each set of subsets supports a class of said second node to transmit a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2 Access sequence.
  • the random access sequence sent by the second node of Type-1 occupies 2 subframes, and the random access sequence sent by the second node of Type-2 occupies 4 subframes;
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the PRACH starting resource index occupied by the subset 1 is RA (0) ⁇ RA (3), RA (10) ⁇ RA (13), RA (20) ⁇ RA (23), ...
  • the PRACH starting resource index occupied by the subset 2 is RA (4) ⁇ RA (9), RA (14) ⁇ RA (19), RA (24) - RA (29), ..., as shown in Fig. 3. Show.
  • the index of the occupied initial resource may be obtained as follows:
  • the second node of Type-1 sends the PRACH starting resource index occupied by the random access sequence on the subset 1 from RA (0) ⁇ RA (3), RA (10) ⁇ RA (13 ) , RA ( 20 ) ⁇ RA ( 23 ) , ... select; the second node of Type_2 sends random on subset 2
  • RA 14), RA (16), RA (18), RA (24), RA (26), RA (28), ... are selected.
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries a random connection of one or more of the second nodes.
  • Incoming response information the type of the second node that can carry the random access response information in the same random access response signaling is configured by the system or sent by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the type of the foregoing second node may be changed according to the environment in which the UE is located, and is not fixed after the setting.
  • the concept of the type in the embodiment of the present invention is a concept similar to the set, when the corresponding division is satisfied.
  • the second node belongs to the corresponding type.
  • the embodiment of the present invention provides a method for configuring a random access channel resource, and the process for completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. .
  • the predefined time domain length is 1 frame
  • the prach-Configlndex information is configured by default, for example, the time domain of the PRACH starting resource in one frame is occupied by subframe 0, 2 4, 6, 8, and a total of 5 PRACH starting resources, as shown in FIG. 1; further, the second node may be one or more terminals or one or more terminal groups.
  • the prach-FreqOffset is used to indicate the frequency domain offset information of the PRACH starting resource in the frequency domain described by the prach-Configlndex.
  • prach-FreqOffset 7, that is, the first PRB index that describes the PRACH starting resource occupied in the frequency domain of one frame is PRB Index7, as shown in FIG.
  • the PRACH starting resources allocated in multiple frames are sorted. As shown in FIG. 2, the PRACH starting resource index in Frame k is RA (0) ⁇ RA (4), and in Frame k+1. The PRACH starting resource index is RA ( 5 ) ⁇ RA ( 9 ), and so on.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the Two nodes can be classified according to one of the following principles:
  • the classification is performed according to different coverage enhancement levels that the second node needs to support; the allocation is performed according to the number of repetitions of the random access sequence that the second node needs to support; and the number of repetitions of the used PBCH channel is accumulated when the second node successfully decodes the PBCH.
  • the second node when the PBCH is successfully decoded by the second node, the number of repetitions of the accumulated PBCH channel is different, and the second node is divided into four types (Type-1, Type-2, Type-3, Type 4), and dividing the random access channel resource into 2 sets of subsets (subset 1 and subset 2), and the PRACH starting resource index occupied by each set of subsets is configured by the system or sent by the first node.
  • Each subset of the subset supports two types of the second node to send a random access sequence, for example, the second node of Type-1, Type-2 sends a random access sequence on the subset 1, and the second type of Type-3, Type-4 The node sends a random access sequence on subset 2.
  • the random access sequence sent by the second node of Type-1 occupies 2 subframes, and the random access sequence sent by the second node of Type-2 occupies 6 subframes; the second node of Type-3 sends The random access sequence occupies 4 subframes, and the random access sequence sent by the second node of Type-4 occupies 8 subframes.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the PRACH starting resource index occupied by the subset 1 is RA ( 0 ) ⁇ RA
  • the PRACH starting resource index occupied by subset 2 is RA (4) ⁇ RA (9), RA (14) ⁇ RA (19), RA (24) ⁇ RA (29), as shown in Figure 3.
  • the index of the occupied initial resource may be obtained as follows:
  • the second node of Type-1 selects the PRACH starting resource index occupied by the random access sequence on the subset 1 as RA (0), RA (10), RA (20), ...;
  • the second node of Type-2 sends the PRACH starting resource index occupied by the random access sequence on the subset 1 and can be selected from RA (1), RA (11), RA (21), ...; the second node of Type_3
  • RA 14
  • RA 24
  • ... the second node of Type_4 is selected in the transmission of the subset 2, as shown in Fig. 4.
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node;
  • the random access response signaling carries a random connection of one or more of the second nodes.
  • Incoming response information the type of the second node that can carry the random access response information in the same random access response signaling is configured by the system or sent by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. . In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 frame, and the second node obtains the time domain occupied subframe in which the PRACH starting resource is within one frame by decoding the prach-ConfigInfo information sent by the first node. 0, 2, 4, 6, 8, and a total of 5 PRACH starting resources, as shown in Figure 1.
  • the second node may be one or more terminals or one or more terminal groups.
  • the prach-FreqOffset is used to indicate the frequency domain offset information of the PRACH starting resource in the frequency domain described by the prach-Configlndex.
  • prach-Freq0ffset 7, that is, description
  • the first PRB index occupied by the PRACH starting resource in the frequency domain of one frame is PRB Index7, as shown in FIG.
  • the PRACH starting resources allocated in multiple frames are sorted. As shown in FIG. 2, the PRACH starting resource index in Frame k is RA (0) ⁇ RA (4), and in Frame k+1. The PRACH starting resource index is RA ( 5 ) ⁇ RA ( 9 ), and so on.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each set of subsets may support one or more types of second nodes to send a random access sequence
  • the second node may be classified according to one of the following principles:
  • the second node When the second node successfully decodes the message of the main information block (MIB), the number of repetitions of the MIB message is different;
  • SIB System Information Block
  • the second node classifies the number of repetitions of the MIB message according to the success of decoding the message of the main information block (MIB), for example, classifying into four types (Type-1, Type-2) , Type-3, Type-4), and dividing the random access channel resource into two sets of subsets (subset 1 and subset 2), and the PRACH starting resource index occupied by each set of subsets is configured by the system or by the first The node sends.
  • Each set of subsets supports two types of said second nodes to send random access sequences, for example, the second node of Type-1, Type-2 sends random access on subset 1.
  • the second node of the sequence, Type-3, Type-4 transmits a random access sequence on the subset 2.
  • the two types of second nodes allocating the same subset use different random access sequence indexes;
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low power nodes (LPNs), relays, and small cells.
  • LPNs low power nodes
  • Subset _ i ⁇ RAIdx
  • mod (RAIdx, Merval Suhset , ) b SuhsetJ , 0 ⁇ ubset ⁇ ⁇ Interval Subset i - ⁇ )
  • RAIdx is the PRACH starting resource index, and the values are RA ( 0 ) , RA ( 1 ) ,
  • Interval is the interval of the time domain location of the PRACH starting resource in the subset i;
  • Subset _i is the PRACH starting resource index of the subset i;
  • the index of the occupied initial resource may be obtained as follows:
  • RAIdx is the index after reordering the PRACH starting resource index of each subset, and the value is RA' ( 0 ) , RA' ( 1 ) , ...;
  • RACHI e pTim e / the number of PRACH starting resources included in the resources occupied by the random access signaling sent by the second node ( Typej ) of the jth class;
  • Type j _3 ⁇ 4 ⁇ city te is the starting resource index occupied when the random access sequence is sent by the second node ( Typej ) of the jth class.
  • the PRACH starting resource indexes of the Type-1 and Type-2 second nodes are RA (0), RA (2), RA (4), ..., and assume that the Type-1 transmission is random.
  • the access sequence time domain is 2 subframes.
  • the random resource access sequence index is RA' (0), RA' ( 2) , RA' (4), ie index RA (0) , RA
  • the PRACH starting resource indexes of the Type-3 and Type-4 second nodes are RA (1), RA(3), RA(5), ..., and assume that the Type-3 sends random
  • the access sequence has a time domain length of 2 subframes.
  • the index of the starting resource when entering the sequence is RA' (0), RA' (1), RA' (2), ie index RA (1), RA (3), RA (5), ...;
  • Type_4 sent random
  • the index of the starting resource when accessing the sequence is RA' (0), RA' (2), RA' (4), ..., ie index RA (1) , RA
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. . In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 frame, and the second node obtains the time domain occupied subframe in which the PRACH starting resource is within one frame by decoding the prach-ConfigInfo information sent by the first node. 2, 4, and a total of 4 PRACH starting resources, as shown in Figure 5.
  • the prach-FreqOffset is used to indicate the first PRB index occupied by the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • the second node may be one or more terminals or one or more terminal groups.
  • the starting resource of each PRACH is obtained by calculating the minimum PRB index ⁇ 7 TM in the frequency domain according to the following formula:
  • the schematic diagram of the initial resource distribution of PRACH in subframe2 and subframe4 is shown in FIG. 5.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each set of subsets may support one or more types of second nodes to send a random access sequence
  • the second node may be classified according to one of the following principles:
  • the second node When the second node successfully decodes the information information of the main information block (MIB), the number of repetitions of the MIB message is different;
  • SIB System Information Block
  • the number of repetitions of the MIB message is classified.
  • the second node classifies according to the number of repetitions of the SIB message when the system information block (SIB) message is successfully decoded. For example, it is divided into two categories (Type-1 and Type-2), and the random access channel resource is divided into two sets of subsets (subset 1 and subset 2), and the PRACH starting resource index occupied by each set of subsets is Configured by the system or sent by the first node.
  • Each set of subsets supports a class of said second node to transmit a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2 Access sequence.
  • the first node shown is one of the following
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the occupied initial resource may be obtained as follows:
  • the PRACH starting resource indexes assigned by each type of second node are reordered, and then determined according to the following formula:
  • RAIdx is the index after reordering the PRACH starting resource index in each subset, and the value is RA' (0) RA' ( 1 ) , ...;
  • Number - (i Type) resources of the random access signaling comprises occupancy of the initial PRACH resource class RACHKepTime ⁇ 1 second node;
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the second node sends random access signaling on the allocated random access resources; (5) after the first node receives the random access signaling sent by the second node, the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. . In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 frame, and the second node obtains the information of the prach-Configlndex sent by the first node, and learns that the PRACH starting resource is within one frame or occupied. Subframe 0, 2, 4, 6, 8, as shown in Figure 6; The prach-FreqOffset is used to indicate the first PRB index occupied by the PRACH starting resource described by the prach-Configlndex in the frequency domain;
  • the second node may be one or more terminals or one or more terminal groups.
  • the initial resource of each PRACH is calculated in the frequency domain by the minimum PRB index ⁇ 7 TM according to the following formula: obtain:
  • the random access channel configuration information may be configured in at least one of the following: a System Information Block (SIB);
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each set of subsets may support one or more types of second nodes to send a random access sequence
  • the second node may be classified according to one of the following principles:
  • the second node When the second node successfully decodes the message of the main information block (MIB), the number of repetitions of the MIB message is different;
  • the system information block (SIB) is successfully decoded.
  • SIB system information block
  • the number of repetitions of the MIB message is classified.
  • the second node classifies the number of repetitions of the MIB message according to the number of repetitions of the MIB message when the PBCH is successfully decoded. For example, it is divided into two categories (Type-1 and Type-2), and the random access channel resource is divided into two sets of subsets (subset 1 and subset 2), and the index occupied by each subset is configured by the system or Sent by the first node.
  • Each set of subsets supports a class of said second node to send a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2. Access sequence.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the occupied initial resource may be obtained as follows:
  • the PRACH starting resources allocated by each type of second node are reordered and then determined according to the following formula:
  • RAIdx is the index of the PRACH starting resource reordered by the second node of Type_i, and the value is RA. , ( 0 ) , RA' ( 1 ) , RA' ( 2 ) ,
  • Number - (i Type) resources of the random access signaling comprises occupancy of the initial PRACH resource class RACHKepTime ⁇ 1 second node;
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the first type of second node (Type-1) PRACH starting resource index is RA' (0), RA' (1), RA' (2), ..., and 4
  • the index of the starting resource is RA, (0), RA' (2), RA' (4), ....
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information
  • the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. .
  • the predefined time domain length is 1 frame
  • the second node obtains the time domain occupied subframe in which the PRACH starting resource is within one frame by decoding the prach-ConfigInfo information sent by the first node. 2, 4, and each subframe has two PRACH starting resource starting positions, as shown in Figure 7.
  • the prach-FreqOffset is used to indicate the first PRB index occupied by the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • the second node may be one or more terminals or one or more terminal groups.
  • the starting resource of each PRACH is obtained by calculating the minimum PRB index ⁇ 7 TM in the frequency domain according to the following formula:
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the number of repetitions of the PBCH channel used when the second node successfully decodes the PBCH is allocated according to the number of repetitions of the random access sequence that the second node needs to support.
  • the second node is divided into two types (Type-1 and Type-2) according to different coverage enhancement levels that need to be supported, and the random access channel resources are divided into two sets of subsets.
  • Set 1 and subset 2 each set of subsets supports a class of said second node to send a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 A random access sequence is transmitted on subset 2.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the occupied initial resource may be obtained as follows:
  • RAIdx is the index after the PRACH starting resource is reordered, and the value is RA' ( 0 ), RA' ( 1 ), RA' ( 2 ) , ...;
  • Number - (i Type) resources of the random access signaling comprises occupancy of the initial PRACH resource class RACHKepTime ⁇ 1 second node;
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the first type of second node (Type-1) PRACH starting resource index is RA' (0), RA' (1), RA' (2), ..., and 4
  • the index of the resource is RA, (0), RA' (1), RA' (2), ....
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but need to be pre-processed by the system. Defining a type of a second node that can send random access response information in the same random access response signaling, and UE1 and UE2 belong to the type.
  • the minimum PRB index of the starting resource of each PRACH in the frequency domain can also be calculated according to the following formula:
  • ⁇ RB offiet is described by prach-FreqOffset, for example.
  • ⁇ ? 3 ⁇ 4 ⁇ offiet is the interval of the starting resources of different PRACHs in the frequency domain position, and is signaled by the random access channel configuration signaling.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by multiple sets of random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the random access channel resource configuration information is indicated by two sets of random access channel configuration information.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. .
  • the prach-FreqOffset is used to indicate the frequency domain offset information of the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • the predefined time domain length is 1 Frame;
  • the prach-Configlndex1 information indicates that the PRACH starting resource is within one frame or occupyes subframe 2 and subframe 4, and prach-FreqOffset1 describes that the PRACH starting resource is occupied in a frequency domain of one frame.
  • the first PRB index is PRB Index7;
  • the second set of PRACH configuration information indicates that the prach-ConfigIndex2 information indicates that the PRACH starting resource is within one frame or that the subframe 2 and the subframe 4 are occupied, and the prach-FreqOffset2 describes that the PRACH starting resource is occupied in the frequency domain of one frame.
  • the first PRB index is PRB Index37.
  • the schematic diagram of the initial resource distribution of the PRACH in one frame is shown in FIG. 8.
  • the initial resources RA (0) and RA (1) of the PRACH are indicated by prach-Configlndexl and prach-FreqOffsetl;
  • the initial resource RA of the PRACH (2) And RA ( 3 ) are indicated by prach-ConfigIndex2 and prach-FreqOffset2;
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • each set of subsets may support one or more types of second nodes to send a random access sequence
  • the second node may be classified according to one of the following principles:
  • the classification is performed according to the number of repetitions of the random access sequence that the second node needs to support; when the second node successfully decodes the PBCH (Physical Broadcast Channel), The number of repetitions of the PBCH channel used.
  • the second node is divided into two types (Type-1 and Type-2) according to different coverage enhancement levels that need to be supported, and the random access channel resources are divided into two sets of subsets. Set 1 and subset 2), .
  • Each set of subsets supports a class of said second node transmitting a random access sequence J
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the starting resource of the PRACH in the subset 1 is RA(0) and RA(1) in each frame; the index of the starting resource of the PRACH in the subset 2 is each frame.
  • RA (2) and RA (3) are each frame.
  • the index of the occupied initial resource may be obtained as follows:
  • the PRACH starting resource indexes assigned by each type of second node are reordered, and then determined according to the following formula:
  • RAIdx is the index of the PRACH starting resource reordered for each type of second node, and the value is RA' ( 0 ) , RA' ( 1 ) ,
  • Number - (i Type) resources of the random access signaling comprises occupancy of the initial PRACH resource class RACHKe pTime ⁇ 1 second node;
  • Type _ _ rt is the starting resource index occupied by the second node ( Type —) of the i-th class when transmitting the random access sequence.
  • the second node sends random access signaling on the allocated random access resources; (5) after the first node receives the random access signaling sent by the second node, the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by multiple sets of random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the random access channel resource configuration information is indicated by two sets of random access channel configuration information.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. . In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 Frame.
  • the prach-Configlndex1 information indicates that the PRACH starting resource is within one frame or occupyes subframe 2 and subframe 4, and prach-FreqOffset1 describes that the PRACH starting resource is occupied in a frequency domain of one frame.
  • the first PRB index is PRB Index7;
  • the second set of PRACH configuration information indicates that the prach-Confi g Index 2 information indicates that the PRACH starting resource is within one frame or occupyes subframe 2 and subframe 4, and prach-FreqOffset2 describes that the PRACH starting resource is within one frame frequency domain.
  • the first PRB index occupied is PRB Index37.
  • the schematic diagram of the initial resource distribution of the PRACH in one frame is shown in FIG. 8.
  • the initial resources RA (0) and RA (1) of the PRACH are indicated by prach-Configlndexl and prach-FreqOffsetl; the initial resource RA of the PRACH (2) ) and RA ( 3 ) are indicated by prach-ConfigIndex2 and prach-FreqOffset2.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • each set of subsets may support one or more types of second nodes to send a random access sequence
  • the second node may be classified according to one of the following principles:
  • the number of repetitions of the PBCH channel used when the second node successfully decodes the PBCH is allocated according to the number of repetitions of the random access sequence that the second node needs to support.
  • the second node is divided into two types (Type-1 and Type-2) according to different coverage enhancement levels that need to be supported, and the random access channel resources are divided into two sets of subsets.
  • Set 1 and subset 2 the starting resource index of the PRACH occupied by each set of subsets is configured by the system or sent by the first node.
  • Each set of subsets supports a class of said second node to send a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 A random access sequence is transmitted on subset 2.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the starting resource of the PRACH in the subset 1 is RA(0) and RA(3) in each frame; the index of the starting resource of the PRACH in the subset 2 is each frame.
  • RA (2) and RA (1) are each frame.
  • the index of the occupied initial resource may be obtained as follows:
  • the PRACH starting resource indexes assigned by each type of second node are reordered, and then determined according to the following formula:
  • RAIdx is the index of the PRACH starting resource reordered for each type of second node, and the value is RA' ( 0 ) , RA' ( 1 ) ,
  • Number - (i Type) resources of the random access signaling comprises occupancy of the initial PRACH resource class RACHKepTime ⁇ 1 second node;
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, For example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type, that is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same. Or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the invention provides a random access channel resource configuration, and uses the method to complete the MTC.
  • the process of UE access is as follows, including:
  • the uplink and downlink subframe configuration type selected by the TDD-LTE system is 4, that is, the frame structure of the system is as shown in FIG. It is shown that subframeO, subframe4 ⁇ frame9 are descendants, subframel is a special subframe, and subframe2 and subframe3 are uplink subframes.
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least rach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. .
  • the subframe 2 and the subframe 3 are uplink subframes, and the predefined time domain length is 1 frame, and the second node learns the PRACH starting resource by decoding the prach-ConfigInfo information sent by the first node.
  • the time domain in one frame occupies the subframes 2, 3, and has a total of 4 PRACH starting resources, as shown in FIG.
  • the prach-FreqOffset is used to indicate the first PRB index occupied by the PRACH starting resource described by the prach-Configlndex in the frequency domain.
  • the second node may be one or more terminals or one or more terminal groups.
  • the minimum PRB index of the starting resource of each PRACH in the frequency domain is calculated according to the following formula:
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the Two nodes can be classified according to one of the following principles:
  • the number of repetitions of the PBCH channel used when the second node successfully decodes the PBCH is allocated according to the number of repetitions of the random access sequence that the second node needs to support.
  • the second node is divided into two types (Type-1 and Type-2) according to different coverage enhancement levels that need to be supported, and the random access channel resources are divided into two sets of subsets.
  • Set 1 and subset 2 the PRACH start resource index occupied by each set of subsets is configured by the system or sent by the first node.
  • Each set of subsets supports a class of said second node to transmit a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2 Access sequence.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the index of the occupied initial resource may be obtained as follows:
  • the PRACH starting resource indexes assigned by each type of second node are reordered, and then determined according to the following formula:
  • RAIdx is the index after reordering the PRACH starting resource index in each subset, and the value is RA' ( 0 ) RA' (1), ...
  • R ⁇ H ⁇ PTime ⁇ is the number of PRACH starting resources included in the resources occupied by the random access signaling sent by the second node (Type-1) of the i-th class;
  • Type_ _ rt is the starting resource index occupied when the second access node ( Type — ) of the i-th class transmits a random access sequence.
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. Different values of prach-Configlndex The location information of the PRACH starting resource within the predefined time domain length and the number of the starting resources of the PRACH within the predefined time domain length have a mapping relationship, which is configured by the system. In the embodiment of the present invention, it is assumed that the predefined time domain length is 1 frame, and the second node obtains the time domain occupied subframe in which the PRACH starting resource is within one frame by decoding the prach-ConfigInfo information sent by the first node. O, 2, 4, 6, 8, and a total of 5 PRACH starting resources, as shown in Figure 1.
  • the second node may be one or more terminals or one or more terminal groups.
  • the prach-FreqOffset is used to indicate the frequency domain offset information of the PRACH starting resource described by prach-Configlndex in the frequency domain.
  • prach-Freq0ffset 7, that is, description
  • the first PRB index occupied by the RA PRACH starting resource in the frequency domain of Frame k is determined according to the following formula: ,
  • ⁇ RB offiet is described by prach-FreqOffset, for example.
  • k is the Frame index number.
  • FIG. 10 a schematic diagram of a PRACH starting resource allocation allocated in multiple frames is shown in FIG. 10, and the PRACH starting resources allocated in multiple frames are reordered, and the PRACH starting resource index in the frame k is RA. (0) ⁇ RA (4), the PRACH starting resource index in Frame k+1 is RA (5) ⁇ RA (9), and so on.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a physical broadcast channel (Physical Broadcast Channel, PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the Two nodes can be classified according to one of the following principles:
  • the number of repetitions of the PBCH channel used when the second node successfully decodes the PBCH is allocated according to the number of repetitions of the random access sequence that the second node needs to support.
  • the second node is divided into two types (Type-1, Type-2) according to different coverage enhancement levels that need to be supported, and the random access channel resources are divided into two sets of subsets (sub-subsets).
  • Set 1 and subset 2) the PRACH start resource index occupied by each set of subsets is configured by the system or sent by the first node.
  • Each set of subsets supports a class of said second node to transmit a random access sequence, for example, a second node of Type-1 transmits a random access sequence on subset 1, and a second node of Type-2 transmits a random number on subset 2 Access sequence.
  • the random access sequence sent by the second node of Type-1 occupies 8 subframes, and the random access sequence sent by the second node of Type-2 occupies 12 subframes; wherein, the first node is One of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • the PRACH starting resource indexes occupied by the subset 1 are RA ( 0 ) ⁇ RA ( 1 ) , RA ( 5 ) ⁇ RA ( 6 ) , RA ( 10 ) ⁇ RA ( 11 ) , RA ( 15 ) ⁇ RA ( 16 ) , ...
  • the PRACH starting resource index occupied by subset 2 is RA ( 2 ) ⁇ RA ( 4 ) , RA ( 7 ) ⁇ RA ( 9 ) , RA ( 12 ) - RA ( 14 ) ), RA (17) ⁇ RA (19) ⁇ is shown in Figure 10.
  • the index of the occupied initial resource may be obtained in the following manner:
  • the second node of Type-1 is sent on the subset 1.
  • the PRACH starting resource index occupied by the random access sequence is selected from RA (0), RA (10), RA (20), ...;
  • the PRACH starting resource index occupied by the second node of Type-2 transmitting the random access sequence on the subset 1 may be selected from RA (1), RA (11), RA (21), ....
  • the second node sends random access signaling on the allocated random access resources
  • the first node sends a random access response signaling to the second node, in response to the The random access signaling sent by the second node.
  • the random access response signaling carries one or more random access response information of the second node; the type of the second node that can carry the random access response information in the same random access response signaling Distributed by the system or by the first node to the second node.
  • the random access response signaling carries two second nodes, for example, UE1 (User Equipment 1) and UE2 (User Equipment 2), and UE1 and UE2 belong to the same type. That is, the coverage enhancement level of UE1 and UE2 is the same or the number of repetitions of the random access sequence that UE1 and UE2 need to support is the same or the RA-RNTI calculated by UE1 and UE2 is the same.
  • UE1 and UE2 may also belong to different types, but the type of the second node that can transmit random access response information in the same random access response signaling needs to be predefined by the system, and UE1 and UE2 belongs to the type.
  • the embodiment of the invention provides a random access channel resource configuration, and uses the method to complete the MTC.
  • the process of UE access is as follows, including:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The different values of prach-Configlndex and the location information of the starting resource of the PRACH within the predefined time domain length and the PRACH There is a mapping relationship between the number of resources in the predefined time domain length, which is configured by the system.
  • prach-Configlndex is equivalent to the "PRACH Configuration Index" in Table 2, as shown in Table 2, according to the value of the PRACH Configuration Index, "PreambleFormat", "System frame number” and “Subframe number” can be known.
  • PreambleFormat indicates a random access sequence format
  • System frame number indicates a system frame number (Even indicates an even frame, Any indicates all frames)
  • Subframe number indicates a subframe number.
  • the PRACH starting resource is configured in the subframes of the present invention, which is the PRACH resource in the embodiment of the present invention.
  • the minimum PRB index that the PRACH resource occupies in the frequency domain is PRB7. If the PRACH resource occupies 6 RPBs in the frequency domain, the PRB7 PRB12 in each Subframe is configured as a PRACH resource. , as shown in Figure 11.
  • the LTE UE and the MTC UE are both present in the FDD-LTE system, and the PRACH resources used by the LTE UE and the MTC UE are not the same, and the PRACH resource in FIG. 11 is allocated to the MTC UE.
  • the MTC UE is divided into an MTC UE (ie, a Normal MTC UE) that does not require coverage enhancement, and a Cover Improvement Improvement (TCC UE) that requires coverage enhancement.
  • the Coverage Improvement MTC UE is further divided into multiple levels, which are divided into three levels in the embodiment of the present invention, namely Coverage Improvement Level 1, Coverage Improvement Level 2, and Coverage Improvement Level 3, and the principle of Go' J is At least one of the following:
  • the number of repetitions sent according to the random access sequence that the Coverage Improvement MTC UE needs to support is divided into multiple levels;
  • the Covered Improvement MTC UE When the Covered Improvement MTC UE successfully decodes the PBCH (Physical Broadcast Channel), the number of repetitions of the PBCH channel used is divided into multiple levels.
  • PBCH Physical Broadcast Channel
  • the PRACH resources RA ( 0 ) ⁇ RA ( 4 ) in Frame 0 are allocated to the Normal MTC UE; the RA ( 5 ) is assigned to the MTC UE of the Coverage Improvement Level 1; and the RA ( 6 ) ⁇ RA ( 7 ) is allocated.
  • the MTC UE of the Coverage Improvement Level 2; RA (8) ⁇ RA (9) is assigned to the MTC UE of the Coverage Improvement Level 3, as shown in FIG. Frame 1, Frame 2, ... Frame k... allocate PRACH resources in the same way.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • Enhanced Physical Downlink Control Channel Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the index of the occupied initial resource can be obtained as follows:
  • Each type of MTC UE (Normal MTC UE or Coverage Improvement Level 1)
  • the PRACH starting resource index assigned by the MTC UE or the Coverage Improvement Level 2 MTC UE or the Coverage Improvement Level 3 MTC UE is reordered, and then determined according to the following formula:
  • St rt is the PRACH starting resource index occupied when the random access sequence is sent by the i-type MTC UE.
  • the MTC UE sends random access signaling on the allocated random access resource; (4) after the first node receives the random access signaling sent by the MTC UE, the first The node sends random access response signaling to the MTC UE, and is used to respond to the random access signaling sent by the MTC UE.
  • the random access response signaling carries the random access response information of one or more of the MTC UEs; the type of the MTC UE that can carry the random access response information in the same random access response signaling by the system
  • the configuration is sent by the first node to the MTC UE.
  • the random access response signaling carries random access response information of two MTC UEs, for example, UE1 and UE2, and UE1 and UE2 belong to Coverage Improvement Level 2, and Coverage Improvement Level 2
  • the number of repetitions of the corresponding random access response signaling is A, and the corresponding relationship is configured by the system. Then, when the first node sends the random access response signaling, the first node sends a repeated A transmission.
  • the random access response signaling carries random access response information of two MTC UEs, for example, UE1 and UE2, and UE1 and UE2 belong to Coverage Improvement Level 2, and the random access
  • the repetition number information of the incoming response signaling is directly indicated by the downlink control information, and is sent to the UE1 and the UE2 through the PDCCH or the ePDCCH;
  • the random access response signaling carries random access response information of two MTC UEs, for example, UE1 and UE2, and the number of repeated transmissions of random access sequences supported by UE1 and UE2 is the same, for example
  • the number of repetitions of the random access response signaling corresponding to C times of the random access sequence is C, and the corresponding relationship is configured by the system; except for the implementation of the present invention, UE1 and UE2 may also belong to For example, the UE1 belongs to the Coverage Improvement Level 2, and the UE2 belongs to the Coverage Improvement Level 3, and the number of repetitions of the random access response signaling corresponding to the Coverage Improvement Level 2 is A, and the Coverage Improvement Level 3 corresponds to the The number of repetitions of the random access response signaling is B, for example, B>A, and the random access response signaling is repeatedly transmitted B times;
  • the number of repeated transmissions of the random access sequence supported by the UE1 and the UE2 is different.
  • the number of repeated transmissions of the random access sequence supported by the UE1 is D
  • the number of repeated transmissions of the random access sequence supported by the UE2 is F. Times.
  • the number of repetitions of the random access response signaling corresponding to the random access sequence when the number of repeated transmissions is D is A
  • the number of repetitions of the random access response signaling corresponding to the number of repeated transmissions of the random access sequence is F B, for example, B>A, the random access response signaling is repeated B times;
  • the system configures the PBCH maximum number of repeated transmissions to G times, and
  • the number of repetitions of the random access response signaling corresponding to the number of times of the maximum number of repeated transmissions of the PBCH is A, and the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 And UE2, the random access response signaling is repeated by A times;
  • the system configures several repeated transmission times of the PBCH, for example, G1, G2, G3, and G4, respectively, and the number of repeated transmissions of the PBCH and the repeated transmission times of the random access response signaling exists one.
  • Corresponding relationships, for example, G1, G2, G3, and G4 respectively correspond to the random access response signaling, and the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the PBCH, the accumulated PBCH repetition times are respectively closest to G1 and G2;
  • the random access response signaling is repeated by A2 times;
  • the system configures several repeated transmission times of the PBCH, for example, G1, G2, G3, and G4, respectively, and the number of repeated transmissions of the PBCH and the repeated transmission times of the random access response signaling exists one.
  • Corresponding relationships, for example, G1, G2, G3, and G4 respectively correspond to the random access response signaling, and the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the PBCH, the accumulated PBCH repetition times are closest to G2;
  • the random access response signaling is repeated by A2 times;
  • the system configures the maximum number of repeated transmissions of the MIB to be G times, and the number of repetitions of the random access response signaling corresponding to the number of times of the maximum number of repeated transmissions of the MIB is G, assuming the random access response.
  • the signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and the random access response signaling is repeatedly sent A times;
  • the system configures the number of repeated transmissions of the MIB, for example, G1, G2, G3, and G4, respectively, and the number of repeated transmissions of the MIB and the number of repeated transmissions of the random access response signaling exists one.
  • Corresponding relationships, for example, G1, G2, G3, and G4 respectively correspond to the random access response signaling, and the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the MIB, the accumulated MIB repetition times are respectively closest to G1 and G2;
  • the random access response signaling is repeated by A2 times;
  • the system configures several repeated transmission times of the MIB, for example, respectively Gl, G2, G3, and G4, and there is a corresponding relationship between the number of repeated transmissions of the MIB and the number of repeated transmissions of the random access response signaling, for example, G1, G2, G3, and G4 respectively correspond to the random access response signal.
  • the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the MIB, the accumulated MIB repetition times are closest to G2;
  • the random access response signaling is repeated by A2 times;
  • the system configures the maximum number of repeated transmissions of the SIB to be G times, and the number of repetitions of the random access response signaling corresponding to the number of times of the maximum number of repeated transmissions of the SIB is A, assuming the random access response
  • the signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and the random access response signaling is repeatedly sent A times;
  • the system configures several repeated transmission times of the SIB, for example, G1, G2, G3, and G4, respectively, and the number of repeated transmissions of the foregoing SIB and the repeated transmission times of the random access response signaling exist one.
  • Corresponding relationships, for example, G1, G2, G3, and G4 respectively correspond to the random access response signaling, and the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the SIB, the accumulated SIB repetition times are respectively closest to G1 and G2;
  • the random access response signaling is repeated by A2 times;
  • the system configures several repeated transmission times of the SIB, for example, G1, G2, G3, and G4, respectively, and the number of repeated transmissions of the foregoing SIB and the repeated transmission times of the random access response signaling exist one.
  • Corresponding relationships, for example, G1, G2, G3, and G4 respectively correspond to the random access response signaling, and the number of repeated transmissions is Al, A2, A3, and A4.
  • the random access response signaling carries the random access response information of the two MTC UEs, for example, UE1 and UE2, and when the UE1 and the UE2 decode the SIB, the cumulative number of SIB repetitions is closest to G2;
  • the random access response signaling is repeated by A2 times;
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • Embodiment 13 of the present invention is also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • the embodiment of the present invention provides a random access channel resource configuration, and the process of completing the MTC UE access by using the method is as follows:
  • the random access channel resource configuration information is indicated by a random access channel configuration information, and the random access channel configuration information includes at least prach-Configlndex and prach-FreqOffset.
  • the prach-Configlndex is used to describe the time domain location information of the PRACH starting resource (the time domain length is a subframe) allocated within a predefined time domain length and the starting resource of the PRACH within the predefined time domain length. Quantity. The difference between the value of the prach-Configlndex and the location information of the starting resource of the PRACH in the predefined time domain length and the number of the starting resource of the PRACH in the predefined time domain length are configured by the system. .
  • prach-Configlndex is equivalent to the "PRACH Configuration Index" in Table 2. As shown in Table 2, “PreambleFormat” "System frame number” and “Subframe number” can be known according to the value of the PRACH Configuration Index. Among them, “PreambleFormat” indicates the random access sequence format; “System frame number” indicates the system frame number (Even indicates an even frame, Any indicates all frames); “Subframe number” indicates a subframe number.
  • PreambleFormat 0 (The PRACH resource occupies only one Subframe in this format.)
  • the PRACH start resource is configured in the Subframes 0 ⁇ 9 of each frame, which is also the PRACH resource in the embodiment of the present invention.
  • RA PRB "PRB can be calculated from prach-FreqOffset
  • k is the Frame index number
  • the PRACH resource configuration in each frame is as shown in Figure 13.
  • Frame0, Frame2, Frame4, ... occupy the frequency domain resources PRB7 ⁇ PRB 12; occupy the frequency domain resources PRB37 ⁇ PRB42 in Frame 1, Frame3, Frame5, ... .
  • the LTE UE and the MTC UE are both present in the FDD-LTE system, and the PRACH resources used by the LTE UE and the MTC UE are not the same, and the PRACH resource in FIG. 13 is allocated to the MTC UE.
  • the MTC UE is divided into an MTC UE (ie, a Normal MTC UE) that does not require coverage enhancement, and a Cover Improvement MTC UE that requires coverage enhancement.
  • the Coverage Improvement MTC UE is further divided into multiple levels, which are divided into three levels in the embodiment of the present invention, namely Coverage Improvement Level 1, Coverage Improvement Level 2, and Coverage Improvement Level 3, and the principle of Go' J is At least one of the following:
  • the number of repetitions sent according to the random access sequence that the Coverage Improvement MTC UE needs to support is divided into multiple levels;
  • the Covered Improvement MTC UE When the Covered Improvement MTC UE successfully decodes the PBCH (Physical Broadcast Channel), the number of repetitions of the PBCH channel used is divided into multiple levels.
  • PBCH Physical Broadcast Channel
  • the PRACH resources RA ( 0 ) ⁇ RA ( 4 ) in Frame 0 are allocated to the Normal MTC UE; the RA ( 5 ) is assigned to the MTC UE of the Coverage Improvement Level 1; and the RA ( 6 ) ⁇ RA ( 7 ) is allocated.
  • RA (8) ⁇ RA (9) is given to the MTC UE of Coverage Improvement Level 3, as shown in Figure 14.
  • Frame 1, Frame 2, ... Frame k allocate PRACH resources in the same way.
  • the random access channel configuration information may be configured in at least one of the following:
  • SIB System Information Block
  • MIB Master Information Block
  • DCI Downlink Control Information
  • the random access channel configuration information may be sent in at least one of the following: a Physical Broadcast Channel (PBCH);
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the index of the occupied initial resource can be obtained as follows:
  • the PRACH starting resource indexes assigned by each type of MTC UE are reordered, and then determined according to the following formula:
  • RAGH RepTime the number of PRACH starting resources included in the resources occupied by the random access signaling sent by the i-th class MTC UE ;
  • St rt is the PRACH starting resource index occupied when the random access sequence is sent by the i-type MTC UE.
  • the MTC UE sends random access signaling on the allocated random access resources
  • the first node After the first node receives the random access signaling sent by the MTC UE, the first node sends a random access response signaling to the MTC UE, and is configured to send in response to the MTC UE.
  • the random access signaling After the first node receives the random access signaling sent by the MTC UE, the first node sends a random access response signaling to the MTC UE, and is configured to send in response to the MTC UE.
  • the random access signaling After the first node receives the random access signaling sent by the MTC UE, the first node sends a random access response signaling to the MTC UE, and is configured to send in response to the MTC UE. The random access signaling.
  • the random access response signaling carries a random connection of one or more of the MTC UEs.
  • Incoming response information the type of the MTC UE that can carry the random access response information in the same random access response signaling is configured by the system or sent by the first node to the MTC UE.
  • the random access response signaling carries random access response information of two MTC UEs, for example, UE1 and UE2, and UE1 and UE2 belong to Coverage Improvement Level 2.
  • UE1 and UE2 may also belong to different Coverage Improvement Levels, but need to be predefined by the system.
  • the first node shown is one of the following:
  • Macrocells, Microcells, Picocells, Femtocells are also called home base stations, low-power nodes (LPNs), relays, and small cells.
  • LPNs low-power nodes
  • a random access channel resource configuration system includes a first node and a second node in the embodiment of the present invention
  • the first node is configured to send random access channel resource configuration information to the second node, where the random access channel resource configuration information includes one or more random access channel configuration information indications.
  • the second node is one or more terminals, or one or more terminal groups.
  • the first node is at least one of the following:
  • the second node is configured to determine a corresponding random access channel resource according to the random access channel configuration information, and send random access to the first node by using the random access channel resource.
  • the first node is further configured to send random access response signaling to the second node, to respond to the random access signaling sent by the second node.
  • the random access channel resource configuration system provided by the embodiment of the present invention can be combined with a random access channel resource configuration method provided by an embodiment of the present invention to complete the LTE/A-LTE system. Access to the MTC UE.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • the various devices/function modules/functional units in the above embodiments may be implemented using a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/functional unit in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a standalone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention provides a method and system for configuring a random access channel resource, where a first node sends random access channel resource configuration information to a second node, where the random access channel resource configuration information includes one or more random
  • the access channel configuration information indicates that the second node sends the random access channel resource of the random access signaling, and implements the random access channel resource configuration for the MTC UE in the LTE/LTE-A system, and solves the LTE/LTE - The problem of MTC UE access in the -A system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入信道资源配置方法和系统。涉及通信领域;解决了LTE/LTE-A系统中MTC UE接入的问题。该方法包括:第一节点向第二节点发送随机接入信道资源配置信息,随机接入信道资源配置信息由一个或多个随机接入信道配置信息指示。本发明实施例提供的技术方案适用于LTE/LTE-A网络,实现了LTE/LTE-A系统中对MTC UE的随机接入信道资源配置。

Description

随机接入信道资源配置方法和系统
技术领域
本发明涉及通信领域,尤其涉及一种随机接入信道资源配置方法和系统。 背景技术
机器类型通信( Machine Type Communication, MTC )用户终端( MTC User Equipment, 简称 MTC UE ) , 又称机器到机器( Machine to Machine, 简称 M2M )用户通信设备, 是现阶段物联网的主要应用形式。 低功耗低成本是其 可大规模应用的重要保障。 目前市场上部署的 M2M设备主要基于全球移动 通信( Global System of Mobile communication, GSM ) 系统。 近年来, 由于 长期演进(Long Term Evolution, LTE ) / LTE的后续演进(LTE-A ) 的频谱 效率的提高,越来越多的移动运营商选择 LTE/LTE- A作为未来宽带无线通信 系统的演进方向。基于 LTE/LTE-A的 M2M多种类数据业务也将更具吸引力。 只有当 LTE-M2M设备的成本能做到比 GSM系统的 MTC终端低时, M2M 业务才能真正从 GSM转到 LTE系统上。
目前对于降低 MTC用户终端成本的主要备选方法包括: 减少终端接收 天线的数目、 降低终端基带处理带宽、 降低终端支持的峰值速率、 釆用半双 工模式等等。然而成本的降低意味着性能的下降,对于 LTE/LTE-A系统小区 覆盖的需求是不能降低的, 因此釆用低成本配置的 MTC终端需要釆取一些 措施才能达到现有 LTE终端的覆盖性能需求。 另外, MTC终端可能位于地 下室、 墙角等位置, 所处场景要比普通 LTE UE恶劣。 为了弥补穿透损耗导 致的覆盖下降, 部分 MTC UE需要更高的性能提升, 因此针对这种场景进行 部分 MTC UE的上下行覆盖增强是必要的。如何保证用户的接入质量则是首 先需要考虑的问题, 有必要针对 LTE/LTE-A系统的随机接入信道(Physical Random Access Channel, 简称为 PRACH )进行增强设计, 保证 MTC UE可 以正常接入系统。
LTE/LTE-A系统中随机接入响应消息 ( Random Access Response , 简称 为 RAR ) 所占用的时频资源的位置信息是包含在下行控制信息 (Downlink Control Information, 简称为 DCI ) 中且通过物理下行控制信道(Physical Downlink Control Channel, 简称为 PDCCH )发送的。 此外, 上述 DCI信息 中还包括 16 比特的循环冗余校验码 (Cyclic Redundancy Check, 简称为 CRC ) , 并且上述 CRC 进一步釆用 16 比特的随机接入无线网络临时标识 ( Random Access Radio Network Temporary Identity, 简称为 RA-RNTI )进行 力口 4尤, 力口 4尤方 为:
ck = (¾ + ¾ ) mod 2 k=0, l, - - - , 15 其中, 为 CRC中的第 个比特; ^为 RA-RNTI中的第 个比特; 为加扰后生成的第 个比特。
由于对 LTE/LTE-A 系统的随机接入信道 (Physical Random Access
Channel , 简称为 PRACH )进行了增强设计, 以保证 MTC UE可以正常接入 系统,所以 LTE/LTE-A系统的随机接入响应消息( Random Access Response, 简称为 RAR )也需要进行增强设计, 保证 MTC UE可以正常接收到。 发明内容 本发明提供了一种随机接入信道资源配置方法和系统, 解决了 LTE/LTE-A系统中 MTC UE接入的问题。
一种随机接入信道资源配置方法, 包括:
第一节点向第二节点发送随机接入信道资源配置信息, 随机接入信道资 源配置信息由一个或多个随机接入信道配置信息指示。
优选的, 所述随机接入信道配置信息中至少包括第一资源的配置信息, 所述第一资源为以下之一:
为所述第二节点分配的用来发送随机接入信令的资源;
为所述第二节点分配的用来发送随机接入信令的起始资源。
优选的, 所述第一资源在时域上占用一个或多个第一时域度量单位, 在 频域上占用一个或多个第一频域度量单位。
优选的, 所述第一时域度量单位是以下之一: 帧 (Frame ) 、 子帧 ( Subframe ) 、 半帧、 时隙、 OFDM符号、 物理资 源块(PRB ) 、 物理资源块组。
优选的, 所述第一频域度量单位是以下之一:
子载波、 物理资源块(PRB ) 、 物理资源块组。
优选的, 所述第一资源的配置信息包括以下至少之一:
所述第一资源的配置索引信息;
所述第一资源的频域偏置信息。
优选的, 所述第一资源的配置索引信息指示以下任一或任意多个信息: 在一个预定义时域周期内, 所述第一资源在所述预定义时域周期内占用 的时域位置分布信息,所述预定义时域周期釆用所述第一时域度量单位描述, 且由系统配置或由第一节点发送;
在一个预定义时域周期内, 所述第一资源的数量信息, 所述预定义时域 周期釆用所述第一时域度量单位描述,且由系统配置或由所述第一节点发送。
所述随机接入信令的格式信息;
所述第一资源是否支持跳频的信息;
所述第一资源的跳频图样信息。
优选的,所述系统配置是指由标准配置或由网络配置或由网络高层配置。 优选的, 所述第一资源在频域上的位置信息由所述第一资源的频域偏置 信息确定。
优选的, 所述第一资源在频域上的位置信息是以下至少之一:
所述第一资源在频域上起始资源位置的信息,
所述第一资源在频域上结束资源位置的信息,
所述第一资源在频域上占用的资源位置的信息。
优选的, 所述起始资源位置的信息、 结束资源位置的信息、 占用的资源 位置的信息釆用第一频域度量单位来度量。
优选的, 所述第一资源的频域位置分布信息由所述第一资源的频域偏置 信息和所述第一资源的配置索引信息确定。
优选的, 所述第一资源在频域上有多个位置。
优选的, 在相同的所述时域位置上的多个所述第一资源在频域上位置不 同。
优选的, 所述随机接入信道配置信息还包括:
所述第一资源的频域位置分布间隔信息。
优选的, 所述第一资源的频域位置分布信息由所述第一资源的频域偏置 信息、 第一资源的频域位置分布间隔信息和所述第一资源的配置索引信息确 定。
优选的, 当随机接入信道资源配置信息由多个随机接入信道配置信息指 示时, 每个随机接入信道配置信息中包括的第一资源的配置信息不同。
优选的, 所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 所述随机接入信道资源子集之间釆用时分复用和 /或频分复用和 /或码分 复用的方式复用所述随机接入信道资源。
优选的, 当所述随机接入信道资源子集之间釆用时分复用的方式复用所 述随机接入信道资源时:
所述第一资源中时域位置在一个预定义时域集合内的所述第一资源分配 到一个随机接入信道资源子集; 或,
所述第一资源中时域位置在一个预定义时域集合内且具有相同频域位置 的所述第一资源分配到一个随机接入信道资源子集; 或,
所述第一资源中时域位置在一个预定义时域集合内且在预定义频域位置 的所述第一资源分配到一个随机接入信道资源子集。
优选的, 所述预定义时域集合中包括一个或多个时域时间点, 且所述时 域时间点由所述第一时域度量单位来度量, 所述一个或多个时域时间点在时 域上连续或离散分布。
优选的, 所述预定义频域位置需要满足以下条件:
相邻的两个所述时域时间点上的所述第一资源的频域位置不同; 和 /或, 所述预定义频域位置中有 N种不同的频域位置 ,且将所述预定义时域集 合划分为 N个子集,每个子集中的所述第一资源的频域位置对应所述预定义 频域位置中的一种, N为大于等于 1的整数。
优选的, 当所述随机接入信道资源子集之间釆用频分复用的方式复用所 述随机接入信道资源时:
所述第一资源中频域位置在一个预定义频域集合内的所述第一资源分配 到一个随机接入信道资源子集; 或,
所述第一资源中频域位置在一个预定义频域集合内且在预定义时域位置 的所述第一资源分配到一个随机接入信道资源子集。
优选的, 所述预定义频域集合中包括一个或多个频域点, 且所述频域点 由所述第一频域度量单位来度量, 所述一个或多个频域点在频域上连续或离 散分布。
优选的, 所述预定义时域位置包括一个或多个时域时间点, 且所述时域 时间点由所述第一时域度量单位来度量, 所述一个或多个时域时间点在时域 上连续或离散分布。
优选的, 当所述随机接入信道资源子集之间釆用时分复用和频分复用的 方式复用所述随机接入信道资源时, 一个预定义集合内的所述第一资源分配 到一个随机接入信道资源子集。
优选的,所述预定义集合中的元素是一个或多个排序后的所述第一资源。 优选的, 所述第一资源的排序规则由系统配置。
优选的, 当所述随机接入信道资源子集之间釆用码分复用的方式复用所 述随机接入信道资源时:
一个随机接入信道资源子集由至少一个预定义的随机接入序列集合构 成。
优选的,所述预定义随机接入序列集合中包含一个或多个随机接入序列。 优选的, 所述随机接入信道资源子集支持一种类型或多种类型的所述第 二节点发送随机接入序列。 优选的, 所述第二节点按照以下原则之一划分类型:
第二节点需要支持的覆盖增强等级,
第二节点需要支持的随机接入序列发送的重复次数,
第二节点成功解码物理广播信道(PBCH ) 时, 使用的 PBCH信道的重 复次数,
第二节点成功解码主要信息块(ΜΙΒ ) 消息时, ΜΙΒ消息的重复次数, 第二节点成功解码系统信息块(SIB ) 消息时, SIB消息的重复次数, 第二节点成功解码 PBCH时, MIB消息的重复次数。
优选的, 所述第二节点是一个或多个终端, 或一个或多个终端组。
优选的, 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 家庭基站( Femtocell )、低功率节点( LPN )、中继站( Relay )、小基站( Small Cell ) 。
优选的, 所述第一节点向第二节点发送随机接入信道资源配置信息的步 骤之后, 还包括:
所述第二节点根据所述随机接入信道配置信息, 确定相应的随机接入信 道资源, 使用所述随机接入信道资源向所述第一节点发送随机接入信令。
优选的, 所述第二节点根据所述随机接入信道配置信息, 确定相应的随 机接入信道资源, 使用所述随机接入信道资源向所述第一节点发送随机接入 信令的步骤之后, 还包括:
所述第一节点向所述第二节点发送随机接入响应信令, 以响应所述第二 节点发送的所述随机接入信令。
优选的 , 所述随机接入响应信令中携带一个或多个所述第二节点的随机 接入响应信息。
优选的, 由系统配置或由所述第一节点配置所述一个或多个第二节点。 优选的, 所述一个或多个第二节点具有以下任一或任意多种属性: 所述一个或多个所述第二节点属于同一个所述类型, 所述一个或多个所述第二节点需要支持的覆盖增强等级相同, 所述一个或多个所述第二节点需要支持的随机接入序列发送的重复次数 相同,
所述一个或多个所述第二节点计算的到的 RA-RNTI相同。
优选的, 所述一个或多个所述第二节点的类型由系统配置;
所述一个或多个所述第二节点需要支持的覆盖增强等级由系统配置; 所述一个或多个所述第二节点需要支持的随机接入序列发送的重复次数 由系统配置。
优选的, 所述随机接入响应信令重复发送的次数信息由所述第一节点指 示。
优选的, 所述第一节点通过以下至少之一的方式指示所述随机接入响应 信令重复发送的次数信息:
在下行控制信息中指示所述随机接入响应信令重复发送的次数信息; 所述第一节点发送的 PBCH支持的最大重复次数信息与所述随机接入响 应信令重复发送的次数信息存在一个映射关系;
所述第一节点发送的 MIB信息支持的最大重复次数信息与所述随机接 入响应信令重复发送的次数信息存在一个映射关系;
所述第一节点发送的 SIB信息支持的最大重复次数信息与所述随机接入 响应信令重复发送的次数信息存在一个映射关系;
PBCH支持的重复次数信息与所述随机接入响应信令重复发送的次数信 息存在一个映射关系;
MIB 支持的重复次数信息与所述随机接入响应信令重复发送的次数信 息存在一个映射关系;
SIB 支持的重复次数信息与所述随机接入响应信令重复发送的次数信息 存在一个映射关系。
优选的, 所述随机接入响应信令重复发送的次数信息由所述第二节点的 类型或覆盖增强等级或支持的随机接入序列发送的重复次数指示。 本发明还提供了一种随机接入信道资源配置系统, 包括第一节点和第二 节点;
所述第一节点, 设置为: 向所述第二节点发送随机接入信道资源配置信 息,随机接入信道资源配置信息包含一个或多个随机接入信道配置信息指示。
优选的, 所述第二节点是一个或多个终端, 或一个或多个终端组。
优选的, 所述第一节点是以下至少之一:
MacrocelK MicrocelK PicocelK 家庭基站、 LPN、 Relay、 Small Cell。 优选的, 所述第二节点, 设置为: 根据所述随机接入信道配置信息, 确 定相应的随机接入信道资源, 使用所述随机接入信道资源向所述第一节点发 送随机接入信令;
所述第一节点, 还设置为: 向所述第二节点发送随机接入响应信令, 以 响应所述第二节点发送的所述随机接入信令。
本发明实施例提供了一种随机接入信道资源配置方法和系统, 第一节点 向第二节点发送随机接入信道资源配置信息, 随机接入信道资源配置信息包 含一个或多个随机接入信道配置信息指示, 指示了第二节点发送随机接入信 令的随机接入信道资源 , 实现了 LTE/LTE-A系统中对 MTC UE的随机接入 信道资源配置, 解决了 LTE/LTE-A系统中 MTC UE接入的问题。 附图概述
图 1为本发明的实施例一提供的一种随机接入信道资源配置方法中随机 接入信道资源配置信息的示意图;
图 2为本发明的实施例一中 PRACH起始资源排序原理示意图; 图 3为本发明的实施例二中各子集占用的 PRACH资源示意图; 图 4为本发明的实施例三中不同类型第二节点占用的 PRACH起始资源 示意图; 图 5为本发明的实施例五提供的一种随机接入信道资源配置方法中随机 接入信道资源配置信息的示意图;
图 6为本发明的实施例六提供的一种随机接入信道资源配置方法中随机 接入信道资源配置信息的示意图;
图 7为本发明的实施例七提供的一种随机接入信道资源配置方法中随机 接入信道资源配置信息的示意图;
图 8为本发明的实施例八中 1个 Frame内 PRACH的起始资源分布示意 图;
图 9为本发明的实施例十提供的一种随机接入信道资源配置方法中随机 接入信道资源配置信息的示意图;
图 10为本发明的实施例十一中多个 Frame中分配的 PRACH起始资源分 配的示意图;
图 11 为本发明的实施例十二提供的一种随机接入信道资源配置方法中 随机接入信道资源配置信息的示意图;
图 12为本发明的实施例十二中 Frame 0中的 PRACH资源配置示意图; 图 13为本发明的实施例十三中各 Frame中 PRACH资源配置示意图; 图 14为本发明的实施例十三中 Frame 0中的 PRACH资源配置示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的实施例提供了一种随机接入信道资源配置方法, 第一节点向第 二节点发送随机接入信道资源配置信息, 随机接入信道资源配置信息由一个 或多个随机接入信道配置信息指示。
所述随机接入信道配置信息中至少包括第一资源的配置信息, 所述第一 资源为以下之一:
为所述第二节点分配的用来发送随机接入信令的资源; 为所述第二节点分配的用来发送随机接入信令的起始资源。
本发明的实施例中, 以所述第一资源为 PRACH的资源或 PRACH的起 始资源为例进行说明。
本发明的实施例一:
本发明实施例提供了一种随机接入信道资源配置方法, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-ConfigIndex。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe 0、 2、 4、 6、 8, 且一共有 5个 PRACH起始资 源, 如图 1所示;
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组; 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。 本发明实施例中, prach-Freq0ffset=7, 由系统 默认配置, 即描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB 索引是 PRB Index7, 如图 1所示。
本发明实施例中, 将多个 Frame中分配的 PRACH起始资源进行排序, 如图 2所示, Frame k中 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 4 ) , Frame k+1中 PRACH起始资源索引为 RA ( 5 ) ~ RA ( 9 ) , 以此类推, 并且组成一 个 PRACH起始资源集合 PRACHSet。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ; 主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述 PRACHSet划分为一套或多套随机接入信道资源子集, 每 套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。
本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为两类 ( Type— 1和 Type— 2 ) , 且将所述 PRACHSet划分为 2套子集(子 集 1和子集 2 ) , 每套子集占用的 PRACH起始资源索引由系统配置或由第 一节点发送。 每套子集支持一类所述第二节点发送随机接入序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点在子 集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
Subset - ^{RAIdx |mod (RAIdx,MervalSuhset , ) = bSuhsetJ, 0≤ ubset」≤ Interval Subset i -\) , 其中, RAIdx为 PRACH起始资源在 PRACHSet中的索引, 取值为 RA ( 0 ) 、 RA ( 1 ) 、 Interval
为子集 i中 PRACH起始资源时域位置的间隔; bs 为子集 i中 PRACH起始资源索引偏置量;
Subset _i为千集 i的 PRACH起始资源索引。
本发明实施例中, 4叚设 Interva ubsetJ = 2 , Interval Subset 2 = 2 , bSubset = 0 , δκ2 =1,则子集 1的 PRACH起始资源索引为 RA(0)、RA(2)、RA(4)、 子集 2的 PRACH起始资源索引为 RA ( 1 ) 、 RA ( 3 ) 、 RA ( 5 ) 、 其 中 Interval Subset = 2 , Interval Subset 2 = 2 , bSubset = 0 , bSubset 2 = 1信息由系统配置或由 所述第一节点发送;
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每个子集的 PRACH起始资源索引重新排序,然后按照如下公式确定: Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ .) = 0} 其中, RAIdx为 PRACH起始资源索引重新排序后的索引, 取值为 RA' (0) 、 RA' ( 1 ) 、 ^eH PTi1^^'为第 i类第二节点 (Type— 1 )发送随机接入信令占用的 资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。
本发明实施例中, 第 1类第二节点 (Type— 1 ) PRACH起始资源索引为 RA (0) 、 RA (2) 、 RA (4) 、 ..., 并且假设其发送的随机接入序列时域 长度为 4个 subframe, ^Η^ τ1ιη^ ,=2, 则第 i类第二节点( Type— )发 送的随机接入序列时起始资源的索引是 RA, (0)、 RA' (2)、 RA' (4) 、 ..., 即索引 RA (0) 、 RA (4 ) 、 RA (8 ) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
(5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。 其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例二
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 如表 1所示, 其 中, "PreambleFormat"表示随机接入序列格式; "System frame number"表 示系统帧号 ( Even表示偶数帧 , Any表示所有帧 ); "Subframe number"表 示子帧号。
表 1 : prach-Configlndex资源映射表
Figure imgf000015_0001
Figure imgf000016_0001
本发明实施例中, prach-ConfigIndex=12 , PreambleFormat= "0" , 表 示随机接入序歹1 J格式为 PreambleFormat 0; System frame number: "Any" , 表示 PRACH的起始资源存在于任意帧内; Subframe number= "0、 2、 4、 6、 8" , 表示 PRACH的起始资源存在于 subframe 0、 subframe 2、 subframe 4、 subframe 6和 subframe 8中;由于默认每个 subframe中最多只有一个 PRACH 的起始资源, 则本发明实施例中在一个 Frame中有 5个 PRACH起始资源, 如图 1所示。
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。 本发明实施例中, prach-Freq0ffset=7 , 即描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index7 , 如图 1所示。
本发明实施例中, 将多个 Frame中分配的 PRACH起始资源进行排序, 如图 2所示, Frame k中 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 4 ) , Frame k+1中 PRACH起始资源索引为 RA ( 5 ) ~ RA ( 9 ) , 以此类推, 并且组成一 个 PRACH起始资源集合 PRACHSet。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述 PRACHSet划分为一套或多套随机接入信道资源子集, 每 套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数;
本发明实施例中, 所述第二节点根据需要支持的随机接入序列发送的重 复次数不同, 划分为两类 ( Type— 1和 Type— 2 ) , 且将所述 PRACHSet划分 为 2套子集(子集 1和子集 2 ) , 每套子集占用的 PRACH起始资源索引由 系统配置或由第一节点发送。 每套子集支持一类所述第二节点发送随机接入 序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第 二节点在子集 2上发送随机接入序列。
本发明实施例中, Type— 1 的第二节点发送的随机接入序列占用 2 个 subframe, Type— 2的第二节点发送的随机接入序列占用 4个 subframe;
其中, 所示第一节点是以下之一
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 占用的 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 3 ) 、 RA ( 10 ) ~ RA ( 13 ) 、 RA ( 20 ) ~ RA ( 23 ) 、 ..., 子集 2占用的 PRACH起始资源索引为 RA ( 4 ) ~ RA ( 9 ) 、 RA ( 14 ) ~ RA ( 19 ) 、 RA ( 24 ) - RA ( 29 ) 、 ..., 如图 3所示。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
本发明实施例中, Type— 1的第二节点在子集 1上发送随机接入序列占用 的 PRACH起始资源索引可以从 RA ( 0 ) ~ RA ( 3 ) 、 RA ( 10 ) ~ RA ( 13 ) 、 RA ( 20 ) ~ RA ( 23 ) 、 …中选择; Type_2的第二节点在子集 2上发送随机
RA ( 14 ) 、 RA ( 16 ) 、 RA ( 18 ) 、 RA ( 24 ) 、 RA ( 26 ) 、 RA ( 28 ) 、 ... 中选择。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
上述第二节点的类型是随着 UE所处的环境不同可以变化的, 不是设定 之后就固定不变的, 本发明实施例中的类型的概念, 是类似集合的概念, 当 满足相应的划分原则时, 第二节点归属到相应的类型中。
本发明的实施例三
本发明实施例提供了一种随机接入信道资源配置方法, 使用该方法完成 MTC UE接入的流程如下 , 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 4叚设所述预定义时域长度为 1个 Frame, prach-Configlndex信 息由系统默认配置, 例如, 描述 PRACH起始资源在 1个 Frame内的时域占 用 subframe 0、 2、 4、 6、 8, 且一共有 5个 PRACH起始资源, 如图 1所示; 进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。 本发明实施例中, prach-FreqOffset=7 , 即描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index7 , 如图 1所示。
本发明实施例中, 将多个 Frame中分配的 PRACH起始资源进行排序, 如图 2所示, Frame k中 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 4 ) , Frame k+1中 PRACH起始资源索引为 RA ( 5 ) ~ RA ( 9 ) , 以此类推。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列; 其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类; 根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH时, 累积使用的 PBCH信道的重复次数。
本发明实施例中, 根据第二节点成功解码 PBCH时, 累积使用的 PBCH 信道的重复次数不同, 将所述第二节点, 划分为四类 (Type— 1、 Type— 2、 Type— 3、 Type— 4 ) , 且将所述随机接入信道资源划分为 2套子集(子集 1和 子集 2 ) , 每套子集占用的 PRACH起始资源索引由系统配置或由第一节点 发送。 每套子集支持两类所述第二节点发送随机接入序列, 例如 Type— 1、 Type— 2的第二节点在子集 1上发送随机接入序列, Type— 3、 Type— 4的第二 节点在子集 2上发送随机接入序列。
本发明实施例中, Type— 1 的第二节点发送的随机接入序列占用 2 个 subframe, Type— 2的第二节点发送的随机接入序列占用 6个 subframe; Type— 3 的第二节点发送的随机接入序列占用 4个 subframe, Type— 4的第二节点发送 的随机接入序列占用 8个 subframe。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 占用的 PRACH起始资源索引为 RA ( 0 ) ~ RA
( 3 ) 、 RA ( 10 ) ~ RA ( 13 ) 、 RA ( 20 ) ~ RA ( 23 ) 、 ..., 子集 2占用的 PRACH起始资源索引为 RA ( 4 ) ~ RA ( 9 ) 、 RA ( 14 ) ~ RA ( 19 ) 、 RA ( 24 ) ~ RA ( 29 ) 、 如图 3所示。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
本发明实施例中, Type— 1的第二节点在子集 1上发送随机接入序列占用 的 PRACH起始资源索引为 RA ( 0 ) 、 RA ( 10 ) 、 RA ( 20 ) 、 …中选择; Type— 2的第二节点在子集 1上发送随机接入序列占用的 PRACH起始资源索 引可以从 RA ( 1 ) 、 RA ( 11 ) 、 RA ( 21 ) 、 …中选择; Type_3的第二节点
RA ( 14 ) 、 RA ( 24 ) 、 …中选择; Type_4的第二节点在子集 2上发送随机 中选择, 如图 4所示。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令;
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例四
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe 0、 2、 4、 6、 8, 且一共有 5个 PRACH起始资 源, 如图 1所示。
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。 本发明实施例中, prach-Freq0ffset=7 , 即描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index7 , 如图 1所示。
本发明实施例中, 将多个 Frame中分配的 PRACH起始资源进行排序, 如图 2所示, Frame k中 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 4 ) , Frame k+1中 PRACH起始资源索引为 RA ( 5 ) ~ RA ( 9 ) , 以此类推。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点成功解码主要信息块(Master Information Block, MIB )消 息时, MIB消息的重复次数不同进行分类;
根据第二节点成功解码系统信息块( System Information Block, SIB )消 息时, SIB消息的重复次数不同进行分类;
根据第二节点成功解码 PBCH时, MIB消息的重复次数不同进行分类。 本发明实施例中, 所述第二节点根据成功解码主要信息块 (Master Information Block , MIB )消息时 , MIB消息的重复次数不同进行分类 ,例如 , 划分为四类(Type— 1、 Type— 2、 Type— 3、 Type— 4 ) , 且将所述随机接入信道 资源划分为 2套子集(子集 1和子集 2 ) , 每套子集占用的 PRACH起始资 源索引由系统配置或由第一节点发送。 每套子集支持两类所述第二节点发送 随机接入序列, 例如 Type— 1、 Type— 2的第二节点在子集 1上发送随机接入 序列, Type— 3、 Type— 4的第二节点在子集 2上发送随机接入序列。 分配相同 子集的两类第二节点使用的随机接入序列索引不同;
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) ;
Subset _ i={RAIdx |mod (RAIdx,MervalSuhset , ) = bSuhsetJ , 0≤ ubset」≤ Interval Subset i -\ ) 其中, RAIdx为 PRACH起始资源索引, 取值为 RA ( 0 ) 、 RA ( 1 ) 、
Interval 为子集 i中 PRACH起始资源时域位置的间隔;
b
为子集 i中 PRACH起始资源索引偏置量;
Subset _i为子集 i的 PRACH起始资源索引;
本发明实施例中, 4叚设 Interva ubsetJ = 2 , Interval Subset 2 = 2 , bSubset = 0 , bs = 1 ,则子集 1的 PRACH起始资源索引为 RA( 0 )、 RA( 2 )、 RA( 4 )、 ...; 子集 2的 PRACH起始资源索引为 RA ( 1 ) 、 RA ( 3 ) 、 RA ( 5 ) 、 其 中 Interval Subset = 2 , Interval Subset 2 = 2 , bSubset = 0 , bSubset 2 = 1信息由系统配置或由 所述第一节点发送;
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每个子集的 PRACH起始资源索引重新排序,然后按照如下公式确定:
Type _ j _ Start subset t ={RAIdx' mod(RAIdx' ,RACH Re pTime ) = 0} 其中, RAIdx为每个子集的 PRACH起始资源索引重新排序后的索引, 取值为 RA' ( 0 ) 、 RA' ( 1 ) 、 …;
RACHI e pTime : /为第 j类第二节点( Typej )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type j _¾^„te」为第 j类第二节点 ( Typej )发送随机接入序列时占用 的起始资源索引。 本发明实施例中, Type— 1和 Type— 2第二节点的 PRACH起始资源索引 为 RA ( 0 ) 、 RA (2) 、 RA (4) 、 ..., 并且假设 Type— 1发送的随机接入序 列时域长度为 2个 subframe,
Figure imgf000025_0001
Type_2发送的随机接入 序列时域长度为 4个 subframe, RACHRepTime--'=2, 则 Type— 1发送的随机 接入序列时起始资源的索引是 RA' (0) 、 RA' (1) 、 RA' (2) 、 即索 引 RA (0) 、 RA (2) 、 RA (4) 、 …; Type_2发送的随机接入序列时起始 资源的索引是 RA' (0) 、 RA' (2) 、 RA' (4) 、 即索引 RA (0) 、 RA
(4) 、 RA (8) 、 …。
本发明实施例中, Type— 3和 Type— 4第二节点的 PRACH起始资源索引 为 RA ( 1 ) 、 RA ( 3 ) 、 RA ( 5 ) 、 ..., 并且假设 Type— 3发送的随机接入序 列时域长度为 2个 subframe, RACHRe Ti rLi , Type_4发送的随机接入 序列时域长度为 4个 subframe, ^^^^1111^-' =2, 则 Type— 3发送的随机 接入序列时起始资源的索引是 RA' (0) 、 RA' (1) 、 RA' (2) 、 即索 引 RA (1) 、 RA (3) 、 RA (5) 、 …; Type_4发送的随机接入序列时起始 资源的索引是 RA' (0) 、 RA' (2) 、 RA' (4) 、 ..., 即索引 RA (1) 、 RA
(5) 、 RA (7) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。 除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例五
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe 2、 4 , 且一共有 4个 PRACH起始资源 , 如图 5所示。
其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域占用的第一个 PRB索引。
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 本发明实施例中,每个 PRACH的起始资源在频域上最小 PRB索引 ^7™按 照下式计算获得:
^PRB offset + 6 if RA mod 2 = 0
77 PRRAB
— 6— WpRB offset - 6 otherwise 其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 ^7™。ffiet =7;
为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50; 为在相同 subframe的 PRACH的起始资源的索引, 例如 ^ =0-1;
则 subframe2、 subframe4内 PRACH的起始资源分布示意图如图 5所示。 其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道( Physical Downlink control Channel , PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点成功解码主要信息块( Master Information Block, MIB )消 息时, MIB消息的重复次数不同进行分类;
根据第二节点成功解码系统信息块( System Information Block, SIB )消 息时, SIB消息的重复次数不同进行分类;
根据第二节点成功解码 PBCH时, MIB消息的重复次数不同进行分类。
本发明实施例中, 所述第二节点根据成功解码系统信息块 (System Information Block, SIB ) 消息时, SIB消息的重复次数不同进行分类。 , 例 如, 划分为两类(Type— 1和 Type— 2 ) , 且将所述随机接入信道资源划分为 2 套子集(子集 1和子集 2 ) , 每套子集占用的 PRACH起始资源索引由系统 配置或由第一节点发送。每套子集支持一类所述第二节点发送随机接入序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点 在子集 2上发送随机接入序列。 其中, 所示第一节点是以下之一
宏基站(Macrocell) 、 微基站(Microcell) 、 微微基站(Picocell) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中的 ΛΑ=Ο;子集 2中的 PRACH的起始资源的索引为每个 Frame中的 ^=1。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源索引重新排序, 然后按照如 下公式确定:
Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ .) = 0} 其中, RAIdx为每个子集中 PRACH起始资源索引重新排序后的索引, 取值为 RA' (0) 、 RA' ( 1 ) 、 …;
RACHKepTime^为第 1类第二节点 ( Type— i )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。
本发明实施例中, 第 1类第二节点 (Type— 1) PRACH起始资源索引为 Frame中 Subframe2和 Subframe4的 ^=0, 重新排序为 RA' ( 0 )、 RA' ( 1 )、 RA,( 2 )、 ...,并且 4叚设 Type— 1发送的随机接入序列时域长度为 4个 subframe , RACHKepTimeTi=2, 则 Type— i 发送的随机接入序列时起始资源的索引是
RA' (0) 、 RA' (2) 、 RA' (4) 、 …; 第 2类第二节点 ( Type— 2 ) PRACH 起始资源索引为 Frame中 Subframe2和 Subframe4的 ^=1,重新排序为 RA' (0) 、 RA' ( 1 ) 、 RA' (2) 、 ..., 并且假设 Type_2发送的随机接入序列时 域长度为 2个 subframe, ^Η^ Τ^^ 2=ι , 则 Type— 2发送的随机接入序 列时起始资源的索引是 RA' (0) 、 RA' (1) 、 RA' (2) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令; ( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例六
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时 i或占用 subframe 0、 2、 4、 6、 8, 如图 6所示; 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域占用的第一个 PRB索引;
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组; 本发明实施例中,每个 PRACH的起始资源在频域上最小 PRB索引 ^7™按 照下式计算获得:
^PRB offset + 6 if RA mod 2 = 0
77 PRRAB
— 6— WpRB offset - 6 otherwise 其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 ^7™。ffiet =7;
为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50;
^为在 lFrame内不同 PRACH的起始资源的索引, 例如 ^ =0-4; 则 1个 Frame内 PRACH的起始资源分布示意图如图 6所示。
其中, 所述随机接入信道配置信息可以配置在以下至少之一: 系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点成功解码主要信息块(Master Information Block, MIB )消 息时, MIB消息的重复次数不同进行分类;
根据第二节点成功解码系统信息块( System Information Block, SIB )消 息时, SIB消息的重复次数不同进行分类;
根据第二节点成功解码 PBCH时, MIB消息的重复次数不同进行分类。
本发明实施例中, 所述第二节点根据成功解码 PBCH时, MIB消息的重 复次数不同进行分类。 , 例如, 划分为两类 (Type— 1 和 Type— 2 ) , 且将所 述随机接入信道资源划分为 2套子集 (子集 1和子集 2 ) , 每套子集占用的 索引由系统配置或由第一节点发送。 每套子集支持一类所述第二节点发送随 机接入序列,例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2 的第二节点在子集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中的 ^=0、 1、 2; 子集 2中的 PRACH的起始资源的索引为每个 Frame中的
,RA=3、 4。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源重新排序, 然后按照如下公 式确定:
Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ . ) = 0} 其中, RAIdx为 Type— i的第二节点分配的 PRACH起始资源重新排序后 的索引, 取值为 RA, ( 0 ) 、 RA' ( 1 ) 、 RA' ( 2 ) 、
RACHKepTime^为第 1类第二节点 ( Type— i )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。 本发明实施例中, 第 1类第二节点 (Type— 1) PRACH起始资源索引为 RA' (0) 、 RA' ( 1 ) 、 RA' (2) 、 ..., 并且 4叚设其发送的随机接入序列时 域长度为 6个 subframe, ^Η^ τ1ιη^ ,=3, 则第 1类第二节点 ( Type— 1 ) 发送的随机接入序列时起始资源的索引是 RA,( 0 )、 RA,( 3 )、 RA,( 6 )、 ...; 第 2类第二节点 (Type_2) PRACH起始资源索引为 RA' (0) 、 RA' (1) 、 RA' (2) 、 ..., 并且假设其发送的随机接入序列时域长度为 4个 subframe, RACHRepTimeTw i=2? 则第 类第二节点(Type— 1 )发送的随机接入序列时起 始资源的索引是 RA, (0) 、 RA' (2) 、 RA' (4) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
(5)所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例七
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。 其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe 2、 4 , 且每个子帧有两个 PRACH起始资源起 始位置, 如图 7所示。
其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域占用的第一个 PRB索引。
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 本发明实施例中,每个 PRACH的起始资源在频域上最小 PRB索引 ^7™按 照下式计算获得:
^PRB offset + 6 if RA mod 2 = 0
77 PRRAB
— 6— WpRB offset - 6 otherwise 其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 ^7™。ffiet =7;
为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50;
为在相同时域位置的不同 PRACH 的起始资源在频域的索引, 例如
Figure imgf000033_0001
则 1个 Frame内 PRACH的起始资源分布示意图如图 7所示。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。 其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。 ( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列; 其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。
本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为两类 (Type— 1和 Type— 2 ) , 且将所述随机接入信道资源划分为 2套子 集(子集 1和子集 2 ) , 每套子集支持一类所述第二节点发送随机接入序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点 在子集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay ) 、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中 Subframe2的 ^=0和 Subframe4的 ^=1; 子集 2中的 PRACH的起始资 源的索引为每个 Frame中 Subframe2的^ A=1和 Subframe4的^ A=0。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源重新排序, 然后按照如下公 式确定: Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ .) = 0} 其中, RAIdx为 PRACH起始资源重新排序后的索引, 取值为 RA' ( 0 )、 RA' ( 1 ) 、 RA' ( 2 ) 、 ...;
RACHKepTime^为第 1类第二节点 ( Type— i )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。
本发明实施例中, 第 1类第二节点 (Type— 1) PRACH起始资源索引为 RA' (0) 、 RA' ( 1 ) 、 RA' (2) 、 ..., 并且 4叚设其发送的随机接入序列时 域长度为 4个 subframe, ^Η^ τ1ιη^ , =2, 则第 1类第二节点 ( Type— 1 ) 发送的随机接入序列时起始资源的索引是 RA,( 0 )、 RA,( 2 )、 RA,( 4 )、 ...; 第 2类第二节点 (Type_2) PRACH起始资源索引为 RA' (0) 、 RA' (1) 、 RA' (2) 、 ..., 并且假设其发送的随机接入序列时域长度为 2个 subframe, RACHRepTimeTw i=L 则第 2 类第二节点 ( Type2 )发送的随机接入序列时 起始资源的索引是 RA, (0) 、 RA' (1) 、 RA' (2) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
除本发明实施例外, 步骤( 1 )中, 每个 PRACH的起始资源在频域上最 小 PRB索引 ^还可以按照下式计算获得:
RA _ RA , ^_L/ WR \
^RB ^RB offiet十、O ZA/7PRB offset JRA ,
RA RA
其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 。ffiet =7; 为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50;
为在相同时域位置的不同 PRACH 的起始资源在频域的索引;
Figure imgf000036_0001
Δ?¾Β offiet为不同 PRACH的起始资源在频域位置的间隔,由随机接入信道 配置信令通知。
本发明的实施例八
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由多套随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
本发明实施例中, 假设随机接入信道资源配置信息由 2套随机接入信道 配置信息指示。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。
其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。
本发明实施例中, 假设所述预定义时域长度为 1个 Frame; 第 1套 PRACH配置信息指示中 prach-Configlndexl信息指示 PRACH起 始资源在 1 个 Frame 内的时 i或占用 subframe 2 和 subframe 4 , prach-FreqOffsetl描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index7;
第 2套 PRACH配置信息指示中 prach-ConfigIndex2信息指示 PRACH起 始资源在 1 个 Frame 内的时 i或占用 subframe 2 和 subframe 4 , prach-FreqOffset2描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index37。
则 1个 Frame内 PRACH的起始资源分布示意图如图 8所示, PRACH的 起始资源 RA ( 0 )和 RA ( 1 ) 由 prach-Configlndexl和 prach-FreqOffsetl指 示; PRACH 的起始资源 RA ( 2 ) 和 RA ( 3 ) 由 prach-ConfigIndex2 和 prach-FreqOffset2指示;
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类; 根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。 本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为两类 (Type— 1和 Type— 2 ) , 且将所述随机接入信道资源划分为 2套子 集(子集 1和子集 2 ) , 。 每套子集支持一类所述第二节点发送随机接入序 歹 |J , 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二 节点在子集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中的 RA( 0 )和 RA( 1 );子集 2中的 PRACH的起始资源的索引为每个 Frame 中的 RA ( 2 )和 RA ( 3 ) 。
除本发明实施例外, 子集 1 中的 PRACH 的起始资源还可以由 prach-Configlndexl和 prach-FreqOffsetl指示; 子集 2中的 PRACH的起始资 源还可以由 rach-ConfigIndex2和 rach-FreqOffset2指示。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源索引重新排序, 然后按照如 下公式确定:
Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ . ) = 0 } 其中, RAIdx为每一类第二节点分配的 PRACH起始资源重新排序后的 索引, 取值为 RA' ( 0 ) 、 RA' ( 1 ) 、
RACHKe pTime^为第 1类第二节点 ( Type— i )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type _ _ rt为第 i类第二节点( Type—)发送随机接入序列时占用的起 始资源索引。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令; ( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例九
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由多套随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
本发明实施例中, 假设随机接入信道资源配置信息由 2套随机接入信道 配置信息指示。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本发明实施例中, 假设所述预定义时域长度为 1个 Frame。 第 1套 PRACH配置信息指示中 prach-Configlndexl信息指示 PRACH起 始资源在 1 个 Frame 内的时 i或占用 subframe 2 和 subframe 4 , prach-FreqOffsetl描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index7;
第 2套 PRACH配置信息指示中 prach-ConfigIndex2信息指示 PRACH起 始资源在 1 个 Frame 内的时 i或占用 subframe 2 和 subframe 4 , prach-FreqOffset2描述 PRACH起始资源在 1个 Frame内频域占用的第一个 PRB索引是 PRB Index37。
则 1个 Frame内 PRACH的起始资源分布示意图如图 8所示, PRACH的 起始资源 RA ( 0 )和 RA ( 1 ) 由 prach-Configlndexl和 prach-FreqOffsetl指 示; PRACH 的起始资源 RA ( 2 ) 和 RA ( 3 ) 由 prach-ConfigIndex2 和 prach-FreqOffset2指示。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列;
其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。
本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为两类 (Type— 1和 Type— 2 ) , 且将所述随机接入信道资源划分为 2套子 集(子集 1和子集 2 ) , 每套子集占用的 PRACH的起始资源索引由系统配 置或由第一节点发送。 每套子集支持一类所述第二节点发送随机接入序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点 在子集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中的 RA( 0 )和 RA( 3 );子集 2中的 PRACH的起始资源的索引为每个 Frame 中的 RA ( 2 )和 RA ( 1 ) 。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源索引重新排序, 然后按照如 下公式确定:
Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ . ) = 0} 其中, RAIdx为每一类第二节点分配的 PRACH起始资源重新排序后的 索引, 取值为 RA' ( 0 ) 、 RA' ( 1 ) 、
RACHKepTime^为第 1类第二节点 ( Type— i )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例十
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC
UE接入的流程如下, 包括:
( 1 ) TDD-LTE系统中一共有 7种上、 下行子帧配置类型, 本发明实施 例中 TDD-LTE系统选择的上、下行子帧配置类型为 4 , 即系统的帧结构如图 9所示, subframeO、 subframe4~ subframe9为下行子中贞, subframel为特殊子 †贞, subframe2、 subframe3为上行子贞。
随机接入信道资源配置信息由一个随机接入信道配置信息指示, 所述随 机接入信道配置信息中至少包括 rach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, subframe2、 subframe3 为上行子帧, 4叚设所述预定义时域长 度为 1个 Frame, 第二节点通过解码第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe 2、 3 , 且一 共有 4个 PRACH起始资源, 如图 9所示。
其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域占用的第一个 PRB索引。 进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 本发明实施例中,每个 PRACH的起始资源在频域上最小 PRB索引 按 照下式计算获得:
^PRB offset + 6 if RA mod 2 = 0
77 PRRAB
— 6— WpRB offset - 6 otherwise 其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 ^7™。ffiet =7; 为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50;
为在相同 subframe的 PRACH的起始资源的索引, 例如 ^ =0-1。 则 subframe2、 subframe3内 PRACH的起始资源分布示意图如图 9所示。 其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列; 其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。 本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为两类 (Type— 1和 Type— 2 ) , 且将所述随机接入信道资源划分为 2套子 集(子集 1和子集 2 ) , 每套子集占用的 PRACH起始资源索引由系统配置 或由第一节点发送。 每套子集支持一类所述第二节点发送随机接入序列, 例 如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点在 子集 2上发送随机接入序列。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 中的 PRACH的起始资源的索引为每个 Frame 中的 ΛΑ=Ο;子集 2中的 PRACH的起始资源的索引为每个 Frame中的 ^=1。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得:
将每一类第二节点分配的 PRACH起始资源索引重新排序, 然后按照如 下公式确定:
Type _ i _ Start ={RAIdx' mod(RAIdx' ,RACH Re pTime^ . ) = 0} 其中, RAIdx为每个子集中 PRACH起始资源索引重新排序后的索引, 取值为 RA' ( 0 ) 、 RA' ( 1 ) 、 …; R^H^PTime^为第 i类第二节点 ( Type— 1 )发送的随机接入信令占用 的资源中包括的 PRACH起始资源的数量;
Type_ _ rt为第 i类第二节点( Type— )发送随机接入序列时占用的起 始资源索引。
本发明实施例中, 第 1类第二节点 (Type— 1 ) PRACH起始资源索引为 Frame中 Subframe2和 Subframe4的 ^=0, 重新排序为 RA' ( 0 )、 RA' ( 1 )、 RA'( 2 )、 ...,并且叚设 Type— 1发送的随机接入序列时域长度为 4个 subframe, RACHKepTimeTi =2, 则 Type— i 发送的随机接入序列时起始资源的索引是
RA' ( 0 ) 、 RA' ( 2 ) 、 RA' ( 4 ) 、 …; 第 2类第二节点 ( Type— 2 ) PRACH 起始资源索引为 Frame中 Subframe2和 Subframe4的 ^=1 ,重新排序为 RA' ( 0 ) 、 RA' ( 1 ) 、 RA' ( 2 ) 、 ..., 并且假设 Type_2发送的随机接入序列时 域长度为 2个 subframe, ^Η^ 1^^ 2 =1 , 则 Type— 2发送的随机接入序 列时起始资源的索引是 RA' ( 0 ) 、 RA' ( 1 ) 、 RA' ( 2 ) 、 …。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例十一
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )随机接入信道资源配置信息由一个随机接入信道配置信息指示,所 述随机接入信道配置信息中至少包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, 假设所述预定义时域长度为 1个 Frame, 第二节点通过解码 第一节点发送的 prach-Configlndex信息, 获知描述 PRACH起始资源在 1个 Frame内的时域占用 subframe O、 2、 4、 6、 8, 且一共有 5个 PRACH起始资 源, 如图 1所示。
进一步的, 所述第二节点可以是一个或多个终端或一个或多个终端组。 其中, prach-FreqOffset用来指示 prach-Configlndex描述的 PRACH起始 资源在频域的频域偏置信息。 本发明实施例中, prach-Freq0ffset=7 , 即描述
RA PRACH起始资源在 Frame k内频域占用的第一个 PRB索引 ^按照下式确 定:
Figure imgf000046_0001
,
RA RA
其中, ^RB offiet的取值由 prach-FreqOffset描述, 例如 。ffiet =7; 为上行系统带宽大小, 以 PRB为单位, 例如7 ^^ =50;
k为 Frame索引号。
本发明实施例中, 多个 Frame中分配的 PRACH起始资源分配的示意图 如图 10所示,并且将多个 Frame中分配的 PRACH起始资源重新排序, Frame k中 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 4 ) , Frame k+1中 PRACH起 始资源索引为 RA ( 5 ) ~ RA ( 9 ) , 以此类推。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道(Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel, PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel, PDSCH ) 。
( 2 )将所述随机接入信道资源划分为一套或多套随机接入信道资源子 集, 每套子集可以支持一类或多类第二节点发送随机接入序列; 其中, 所述第二节点可以按照以下原则之一分类:
根据第二节点需要支持的覆盖增强等级不同进行分类;
根据第二节点需要支持的随机接入序列发送的重复次数不同进行分配; 第二节点成功解码 PBCH ( Physical Broadcast Channel, 物理广播信道) 时, 使用的 PBCH信道的重复次数。
本发明实施例中, 所述第二节点根据需要支持的覆盖增强等级不同, 划 分为 2类(Type— 1、 Type— 2 ) , 且将所述随机接入信道资源划分为 2套子集 (子集 1和子集 2 ) , 每套子集占用的 PRACH起始资源索引由系统配置或 由第一节点发送。 每套子集支持一类所述第二节点发送随机接入序列, 例如 Type— 1的第二节点在子集 1上发送随机接入序列, Type— 2的第二节点在子 集 2上发送随机接入序列。
本发明实施例中, Type— 1 的第二节点发送的随机接入序列占用 8 个 subframe, Type— 2的第二节点发送的随机接入序列占用 12个 subframe; 其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明实施例中, 子集 1 占用的 PRACH起始资源索引为 RA ( 0 ) ~ RA ( 1 ) 、 RA ( 5 ) ~ RA ( 6 ) 、 RA ( 10 ) ~ RA ( 11 ) 、 RA ( 15 ) ~ RA ( 16 ) 、 ..., 子集 2占用的 PRACH起始资源索引为 RA ( 2 ) ~ RA ( 4 ) 、 RA ( 7 ) ~ RA ( 9 ) 、 RA ( 12 ) - RA ( 14 ) 、 RA ( 17 ) ~ RA ( 19 ) ^口图 10所示。
( 3 )所述第二节点发送所述随机接入序列时, 占用的起始资源的索引可 以釆用如下方式获得: 本发明实施例中, Type— 1的第二节点在子集 1上发送随机接入序列占用 的 PRACH起始资源索引为 RA ( 0 ) 、 RA ( 10 ) 、 RA ( 20 ) 、 …中选择; Type— 2的第二节点在子集 1上发送随机接入序列占用的 PRACH起始资源索 引可以从 RA ( 1 ) 、 RA ( 11 ) 、 RA ( 21 ) 、 …中选择。
( 4 )所述第二节点在分配的随机接入资源上发送随机接入信令;
( 5 )所述第一节点接收到所述第二节点发送的所述随机接入信令后,所 述第一节点向所述第二节点发送随机接入响应信令, 用来响应所述第二节点 发送的所述随机接入信令。
其中, 所述随机接入响应信令中携带一个或多个所述第二节点的随机接 入响应信息; 同一个随机接入响应信令中可以携带随机接入响应信息的第二 节点的类型由系统配置或由所述第一节点发送给所述第二节点。
本发明实施例中,假设所述随机接入响应信令中携带 2个所述第二节点, 例如, UE1 ( User Equipment 1 )和 UE2 ( User Equipment 2 ) , 且 UE1和 UE2 属于同一个类型, 即 UE1、 UE2的覆盖增强等级相同或 UE1、 UE2需要支持 的随机接入序列发送的重复次数相同或 UE1、 UE2计算得到的 RA-RNTI相 同。
除本发明实施例外, UE1和 UE2还可以属于不同类型,但需要由系统预 定义可以在同一个所述随机接入响应信令中发送随机接入响应信息的第二节 点的类型, 且 UE1和 UE2属于所述类型。
本发明的实施例十二
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC
UE接入的流程如下, 包括:
( 1 )在 FDD-LTE系统中, 随机接入信道资源配置信息由一个随机接入 信道配置信息指示, 所述随机接入信道配置信息中至少 包括 prach-Configlndex和 prach-FreqOffset。
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, prach-Configlndex等同于表 2 中的 "PRACH Configuration Index" , 如表 2 所示, 根据 PRACH Configuration Index 的取值可以获知 "PreambleFormat" 、 "System frame number" 和 "Subframe number" 。 其 中, "PreambleFormat"表示随机接入序列格式; "System frame number"表 示系统帧号 ( Even表示偶数帧 , Any表示所有帧 ); "Subframe number"表 示子帧号。
表 2: FDD LTE prach-Configlndex资源映射表
Figure imgf000049_0001
Figure imgf000050_0001
当 prach-ConfigIndex=14 时, 通过查表 2 可知, 随机接入序列格式为 PreambleFormat=0(这种格式下 PRACH资源只占用 1个 Subframe )每个 Frame 的 Subframe0~9 中都配置了 PRACH起始资源, 本发明实施例中也就是 PRACH资源。
当 prach-FreqOffset=7时, 表示 PRACH资源在频域上占用的最小 PRB 索引为 PRB7 , 如果 PRACH资源在频域上占用 6个 RPB, 则每个 Frame中 每个 Subframe中 PRB7 PRB12配置为 PRACH资源, 如图 11所示。
本发明实施例中 , FDD-LTE系统中同时存在有 LTE UE和 MTC UE, 且 LTE UE和 MTC UE使用的 PRACH资源并不相同, 图 11中的 PRACH资源 是分配给 MTC UE的。 进一步的将 MTC UE划分为不需要覆盖增强的 MTC UE(即 Normal MTC UE )和需要覆盖增强的 MTC UE( Coverage Improvement MTC UE ) 。 更进一步的将 Coverage Improvement MTC UE再划分为多个级 别,本发明实施例中划分为 3个级别,分别是 Coverage Improvement Level 1、 Coverage Improvement Level 2和 Coverage Improvement Level 3 , 戈 'J分々原则 是以下至少之一:
根据 Coverage Improvement MTC UE需要支持的覆盖增强等级不同划分 为多个级别;
根据 Coverage Improvement MTC UE需要支持的随机接入序列发送的重 复次数不同划分为多个级别;
根据 Coverage Improvement MTC UE成功解码 PBCH( Physical Broadcast Channel, 物理广播信道)时, 使用的 PBCH信道的重复次数不同划分为多个 级别。
本发明实施例中, Frame 0中 PRACH 资源 RA ( 0 ) ~ RA ( 4 )分配给 Normal MTC UE; RA ( 5 )分配给 Coverage Improvement Level 1的 MTC UE; RA ( 6 ) ~ RA ( 7 )分配给 Coverage Improvement Level 2的 MTC UE; RA ( 8 ) ~ RA ( 9 )分配给 Coverage Improvement Level 3的 MTC UE, 如图 12所示。 Frame 1、 Frame2、 ...Frame k...按照同样的方式分配 PRACH资源。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ;
主要信息块 ( Master Information Block, MIB ) ; 下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel , PDCCH ) ; 增强型物理下行控制信道 ( Enhanced Physical Downlink control Channel ,
PDCCH ) ;
物理下行共享信道(Physical Downlink Shared Channel , PDSCH ) 。
( 2 ) MTC UE发送所述随机接入序列时, 占用的起始资源的索引可以釆 用如下方式获得:
将每一类 MTC UE ( Normal MTC UE或者 Coverage Improvement Level 1
MTC UE 或者 Coverage Improvement Level 2 MTC UE 或者 Coverage Improvement Level 3 MTC UE )分配的 PRACH起始资源索引重新排序 ,然后 按照如下公式确定:
Start'
Figure imgf000052_0001
|mod( AIdx , ACH Re pTime . ) = 0 } 其中, ^16^为第 i类 MTC UE的 PRACH起始资源重新排序后的第 k 个资源;
i=0表示 Normal MTC UE; i=l表示 Coverage Improvement Level 1 MTC UE; i=2表示 Coverage Improvement Level 2 MTC UE; i=3表示 Coverage Improvement Level 3 MTC UE; ^GH KepT111^为第 i类 MTC UE发送的随机接入信令占用的资源中包 括的 PRACH起始资源的数量;
St rt为第 i类 MTC UE发送随机接入序列时占用的 PRACH起始资源索 引。
( 3 )所述 MTC UE在分配的随机接入资源上发送随机接入信令; ( 4 ) 当第一节点接收到所述 MTC UE发送的所述随机接入信令后, 所 述第一节点向所述 MTC UE发送随机接入响应信令,用来响应所述 MTC UE 发送的所述随机接入信令。 其中,所述随机接入响应信令中携带一个或多个所述 MTC UE的随机接 入响应信息;同一个随机接入响应信令中可以携带随机接入响应信息的 MTC UE的类型由系统配置或由所述第一节点发送给所述 MTC UE。
本发明实施例中,假设所述随机接入响应信令中携带 2个 MTC UE的随 机接入响应信息, 例如, UE1 和 UE2 , 且 UE1 和 UE2 都属于 Coverage Improvement Level 2 , 并且 Coverage Improvement Level 2对应的所述随机接 入响应信令的重复次数为 A, 上述对应关系由系统配置。 则所述第一节点发 送所述随机接入响应信令时釆用重复 A次发送。
除本发明实施例外,假设所述随机接入响应信令中携带 2个 MTC UE的 随机接入响应信息, 例如, UE1 和 UE2 , 且 UE1 和 UE2都属于 Coverage Improvement Level 2 , 并且所述随机接入响应信令的重复次数信息直接由下 行控制信息指示, 通过 PDCCH或 ePDCCH发送给 UE1和 UE2;
除本发明实施例外,假设所述随机接入响应信令中携带 2个 MTC UE的 随机接入响应信息, 例如, UE1和 UE2 , 且 UE1和 UE2支持的随机接入序 列重复发送次数相同, 例如都为 C次, 并且随机接入序列重复发送次数 C次 对应的所述随机接入响应信令的重复次数为 A, 上述对应关系由系统配置; 除本发明实施例外, UE1 和 UE2 还可以属于不同 Coverage Improvement Level, 例如, UE1属于 Coverage Improvement Level 2, UE2属于 Coverage Improvement Level 3 , 且 Coverage Improvement Level 2对应的所述随机接入 响应信令的重复次数为 A, Coverage Improvement Level 3对应的所述随机接 入响应信令的重复次数为 B, 例如 B>A, 则所述随机接入响应信令釆用重复 B次发送;
除本发明实施例外, UE1和 UE2支持的随机接入序列重复发送次数并不 相同, 例如, UE1支持的随机接入序列重复发送次数为 D次, UE2支持的随 机接入序列重复发送次数为 F次。随机接入序列重复发送次数为 D时对应的 所述随机接入响应信令的重复次数为 A, 随机接入序列重复发送次数为 F时 对应的所述随机接入响应信令的重复次数为 B , 例如 B>A, 则所述随机接入 响应信令釆用重复 B次发送;
除本发明实施例外, 系统配置 PBCH最大重复发送次数为 G次, 并且 PBCH最大重复发送次数为 G次时对应的所述随机接入响应信令的重复次数 为 A,假设所述随机接入响应信令中携带 2个 MTC UE的随机接入响应信息, 例如, UE1和 UE2 , 则所述随机接入响应信令釆用重复 A次发送;
除本发明实施例外, 系统配置 PBCH的几种重复发送次数, 例如分别为 为 Gl、 G2、 G3和 G4, 并且上述 PBCH的重复发送次数与所述随机接入响 应信令的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对 应所述随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述 随机接入响应信令中携带 2个 MTC UE的随机接入响应信息, 例如, UE1和 UE2 , 并且 UE1和 UE2解码 PBCH时, 累积的 PBCH重复次数分别最接近 于 G1和 G2; 则所述随机接入响应信令釆用重复 A2次发送;
除本发明实施例外, 系统配置 PBCH的几种重复发送次数, 例如分别为 为 Gl、 G2、 G3和 G4, 并且上述 PBCH的重复发送次数与所述随机接入响 应信令的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对 应所述随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述 随机接入响应信令中携带 2个 MTC UE的随机接入响应信息, 例如, UE1和 UE2, 并且 UE1和 UE2解码 PBCH时, 累积的 PBCH重复次数都最接近于 G2; 则所述随机接入响应信令釆用重复 A2次发送;
除本发明实施例外,系统配置 MIB最大重复发送次数为 G次,并且 MIB 最大重复发送次数为 G次时对应的所述随机接入响应信令的重复次数为 A, 假设所述随机接入响应信令中携带 2个 MTC UE的随机接入响应信息,例如, UE1和 UE2 , 则所述随机接入响应信令釆用重复 A次发送;
除本发明实施例外, 系统配置 MIB的几种重复发送次数, 例如分别为为 Gl、 G2、 G3和 G4, 并且上述 MIB的重复发送次数与所述随机接入响应信 令的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对应所 述随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述随机 接入响应信令中携带 2个 MTC UE的随机接入响应信息,例如,UE1和 UE2, 并且 UE1和 UE2解码 MIB时, 累积的 MIB重复次数分别最接近于 G1和 G2; 则所述随机接入响应信令釆用重复 A2次发送;
除本发明实施例外, 系统配置 MIB的几种重复发送次数, 例如分别为为 Gl、 G2、 G3和 G4, 并且上述 MIB的重复发送次数与所述随机接入响应信 令的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对应所 述随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述随机 接入响应信令中携带 2个 MTC UE的随机接入响应信息,例如,UE1和 UE2, 并且 UE1和 UE2解码 MIB时, 累积的 MIB重复次数都最接近于 G2; 则所 述随机接入响应信令釆用重复 A2次发送;
除本发明实施例外, 系统配置 SIB最大重复发送次数为 G次, 并且 SIB 最大重复发送次数为 G次时对应的所述随机接入响应信令的重复次数为 A, 假设所述随机接入响应信令中携带 2个 MTC UE的随机接入响应信息,例如, UE1和 UE2 , 则所述随机接入响应信令釆用重复 A次发送;
除本发明实施例外, 系统配置 SIB的几种重复发送次数, 例如分别为为 Gl、 G2、 G3和 G4 , 并且上述 SIB的重复发送次数与所述随机接入响应信令 的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对应所述 随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述随机接 入响应信令中携带 2个 MTC UE的随机接入响应信息, 例如, UE1和 UE2, 并且 UE1和 UE2解码 SIB时,累积的 SIB重复次数分别最接近于 G1和 G2; 则所述随机接入响应信令釆用重复 A2次发送;
除本发明实施例外, 系统配置 SIB的几种重复发送次数, 例如分别为为 Gl、 G2、 G3和 G4 , 并且上述 SIB的重复发送次数与所述随机接入响应信令 的重复发送次数存在一个对应关系, 例如 Gl、 G2、 G3和 G4分别对应所述 随机接入响应信令的重复发送次数为 Al、 A2、 A3和 A4。 艮设所述随机接 入响应信令中携带 2个 MTC UE的随机接入响应信息 , 例如 , UE1和 UE2 , 并且 UE1和 UE2解码 SIB时, 累积的 SIB重复次数都最接近于 G2; 则所述 随机接入响应信令釆用重复 A2次发送;
其中, 所示第一节点是以下之一
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。 本发明的实施例十三
本发明实施例提供了一种随机接入信道资源配置 ,使用该方法完成 MTC UE接入的流程如下, 包括:
( 1 )在 FDD-LTE系统中, 随机接入信道资源配置信息由一个随机接入 信道配置信息指示, 所述随机接入信道配置信息中至少 包括 prach-Configlndex和 prach-FreqOffset
其中, prach-Configlndex用来描述 PRACH的起始资源 (时域长度一个 subframe )在一个预定义时域长度内分配的时域位置信息以及在所述预定义 时域长度内 PRACH 的起始资源的数量。 prach-Configlndex 的不同取值与 PRACH的起始资源在所述预定义时域长度内的位置信息以及 PRACH的起 始资源在所述预定义时域长度内的数量存在一个映射关系, 由系统配置。 本 发明实施例中, prach-Configlndex等同于表 2 中的 "PRACH Configuration Index" , 如表 2 所示, 根据 PRACH Configuration Index 的取值可以获知 "PreambleFormat" "System frame number" 和 "Subframe number" 。 其 中, "PreambleFormat"表示随机接入序列格式; "System frame number"表 示系统帧号 ( Even表示偶数帧 , Any表示所有帧 ); "Subframe number"表 示子帧号。
当 prach-ConfigIndex=14 时, 通过查表 2 可知, 随机接入序列格式为
PreambleFormat=0(这种格式下 PRACH资源只占用 1个 Subframe )每个 Frame 的 Subframe0~9 中都配置了 PRACH起始资源, 本发明实施例中也就是 PRACH资源。
当 prach-FreqOffset=7时 , PRACH资源在 Frame k内频域上占用的最小
RA PRB "PRB可以根据 prach-FreqOffset计算得到;
Figure imgf000056_0001
其中, "PRB offiet的取值由 prach-FreqOffset描述, 例如 =7; ^ ^为上行系统带宽大小, 以 PRB为单位, 例如 =50;
k为 Frame索引号;
N^为 PRACH在频域上占用的 PRB数量, 例如 =6。
则每个 Frame 中 PRACH 资源配置如图 13 所示, Frame0、 Frame2、 Frame4、 …中占用频域资源 PRB7~PRB 12; 在 Frame 1、 Frame3、 Frame5、 ... 中占用频域资源 PRB37~PRB42。
本发明实施例中 , FDD-LTE系统中同时存在有 LTE UE和 MTC UE, 且 LTE UE和 MTC UE使用的 PRACH资源并不相同, 图 13中的 PRACH资源 是分配给 MTC UE的。 进一步的将 MTC UE划分为不需要覆盖增强的 MTC UE (即 Normal MTC UE )和需要覆盖增强的 MTC UE( Coverage Improvement MTC UE ) 。 更进一步的将 Coverage Improvement MTC UE再划分为多个级 别,本发明实施例中划分为 3个级别,分别是 Coverage Improvement Level 1、 Coverage Improvement Level 2和 Coverage Improvement Level 3 , 戈 'J分々原则 是以下至少之一:
根据 Coverage Improvement MTC UE需要支持的覆盖增强等级不同划分 为多个级别;
根据 Coverage Improvement MTC UE需要支持的随机接入序列发送的重 复次数不同划分为多个级别;
根据 Coverage Improvement MTC UE成功解码 PBCH( Physical Broadcast Channel, 物理广播信道)时, 使用的 PBCH信道的重复次数不同划分为多个 级别。
本发明实施例中, Frame 0中 PRACH 资源 RA ( 0 ) ~ RA ( 4 )分配给 Normal MTC UE; RA ( 5 )分配给 Coverage Improvement Level 1的 MTC UE; RA ( 6 ) ~ RA ( 7 )分配给 Coverage Improvement Level 2的 MTC UE; RA ( 8 ) ~ RA ( 9 )分西己给 Coverage Improvement Level 3的 MTC UE, ^口图 14所示。 Frame 1、 Frame2、 ...Frame k...按照同样的方式分配 PRACH资源。
其中, 所述随机接入信道配置信息可以配置在以下至少之一:
系统信息块 ( System Information Block, SIB ) ; 主要信息块 ( Master Information Block, MIB ) ;
下行控制信息 ( Downlink Control Information, DCI ) 。
其中, 所述随机接入信道配置信息可以在以下至少之一中发送: 物理广播信道 ( Physical Broadcast Channel, PBCH ) ;
物理下行控制信道(Physical Downlink control Channel , PDCCH ) ; 物理下行共享信道(Physical Downlink Shared Channel , PDSCH ) 。
( 2 ) MTC UE发送所述随机接入序列时, 占用的起始资源的索引可以釆 用如下方式获得:
将每一类 MTC UE ( Normal MTC UE或者 Coverage Improvement Level 1 MTC UE 或者 Coverage Improvement Level 2 MTC UE 或者 Coverage Improvement Level 3 MTC UE )分配的 PRACH起始资源索引重新排序 ,然后 按照如下公式确定:
Start'
Figure imgf000058_0001
|mod( AIdx , ACH Re pTime . ) = 0 } 其中 , RAId4为第 i类 UE的 PRACH起始资源重新排序后的第 k 个资源;
i=0表示 Normal MTC UE; i=l表示 Coverage Improvement Level 1 MTC UE; i=2表示 Coverage Improvement Level 2 MTC UE; i=3表示 Coverage Improvement Level 3 MTC UE;
RAGH RepTime,为第 i类 MTC UE发送的随机接入信令占用的资源中包 括的 PRACH起始资源的数量;
St rt为第 i类 MTC UE发送随机接入序列时占用的 PRACH起始资源索 引。
( 3 )所述 MTC UE在分配的随机接入资源上发送随机接入信令;
( 4 ) 当第一节点接收到所述 MTC UE发送的所述随机接入信令后, 所 述第一节点向所述 MTC UE发送随机接入响应信令,用来响应所述 MTC UE 发送的所述随机接入信令。
其中,所述随机接入响应信令中携带一个或多个所述 MTC UE的随机接 入响应信息;同一个随机接入响应信令中可以携带随机接入响应信息的 MTC UE的类型由系统配置或由所述第一节点发送给所述 MTC UE。
本发明实施例中,假设所述随机接入响应信令中携带 2个 MTC UE的随 机接入响应信息, 例如, UE1 和 UE2 , 且 UE1 和 UE2 都属于 Coverage Improvement Level 2。
除本发明实施例外, UE1和 UE2还可以属于不同 Coverage Improvement Level, 但需要由系统预定义。
其中, 所示第一节点是以下之一:
宏基站(Macrocell ) 、 微基站(Microcell ) 、 微微基站(Picocell ) 、 毫 微微基站( Femtocell )又叫家庭基站、低功率节点( LPN )及中继站( Relay )、 小基站 ( Small Cell ) 。
本发明的实施例十四
本发明实施例一种随机接入信道资源配置系统, 包括第一节点和第二节 点;
所述第一节点, 用于向所述第二节点发送随机接入信道资源配置信息, 随机接入信道资源配置信息包含一个或多个随机接入信道配置信息指示。
优选的, 所述第二节点是一个或多个终端, 或一个或多个终端组。
优选的, 所述第一节点是以下至少之一:
MacrocelK MicrocelK PicocelK 家庭基站、 LPN、 Relay、 Small Cell。 优选的, 所述第二节点, 用于才艮据所述随机接入信道配置信息, 确定相 应的随机接入信道资源, 使用所述随机接入信道资源向所述第一节点发送随 机接入信令;
所述第一节点, 还用于向所述第二节点发送随机接入响应信令, 以响应 所述第二节点发送的所述随机接入信令。
本发明实施例所提供的随机接入信道资源配置系统, 能够与本发明的实 施例提供的一种随机接入信道资源配置方法相结合,完成 LTE/A-LTE系统中 MTC UE的接入。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、 设备、 装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。
上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以权利要求所述的保护范围为准。
工业实用性 本发明实施例提供了一种随机接入信道资源配置方法和系统, 第一节点 向第二节点发送随机接入信道资源配置信息, 随机接入信道资源配置信息包 含一个或多个随机接入信道配置信息指示, 指示了第二节点发送随机接入信 令的随机接入信道资源 , 实现了 LTE/LTE-A系统中对 MTC UE的随机接入 信道资源配置, 解决了 LTE/LTE-A系统中 MTC UE接入的问题。

Claims

权 利 要 求 书
1、 一种随机接入信道资源配置方法, 包括:
第一节点向第二节点发送随机接入信道资源配置信息, 随机接入信道资 源配置信息由一个或多个随机接入信道配置信息指示。
2、根据权利要求 1所述的随机接入信道资源配置方法, 其中, 所述随机 接入信道配置信息中至少包括第一资源的配置信息, 所述第一资源为以下之 为所述第二节点分配的用来发送随机接入信令的资源;
为所述第二节点分配的用来发送随机接入信令的起始资源。
3、 根据权利要求 2所述的随机接入信道资源配置方法, 其中, 所述第一资源在时域上占用一个或多个第一时域度量单位, 在频域上占 用一个或多个第一频域度量单位。
4、 根据权利要求 3所述的随机接入信道资源配置方法, 其中, 所述第一时域度量单位是以下之一:
帧 (Frame ) 、 子帧 ( Subframe ) 、 半帧、 时隙、 OFDM符号、 物理资 源块(PRB ) 、 物理资源块组。
5、根据权利要求 3所述的随机接入信道资源配置方法, 其中, 所述第一 频域度量单位是以下之一:
子载波、 物理资源块(PRB ) 、 物理资源块组。
6、根据权利要求 3所述的随机接入信道资源配置方法, 其中, 所述第一 资源的配置信息包括以下至少之一:
所述第一资源的配置索引信息;
所述第一资源的频域偏置信息。
7、根据权利要求 6所述的随机接入信道资源配置方法, 其中, 所述第一 资源的配置索引信息指示以下任一或任意多个信息:
在一个预定义时域周期内, 所述第一资源在所述预定义时域周期内占用 的时域位置分布信息,所述预定义时域周期釆用所述第一时域度量单位描述, 且由系统配置或由第一节点发送;
在一个预定义时域周期内, 所述第一资源的数量信息, 所述预定义时域 周期釆用所述第一时域度量单位描述,且由系统配置或由所述第一节点发送; 所述随机接入信令的格式信息;
所述第一资源是否支持跳频的信息;
所述第一资源的跳频图样信息。
8、根据权利要求 7所述的随机接入信道资源配置方法, 其中, 所述系统 配置是指由标准配置或由网络配置或由网络高层配置。
9、根据权利要求 6所述的随机接入信道资源配置方法, 其中, 所述第一 资源在频域上的位置信息由所述第一资源的频域偏置信息确定。
10、 根据权利要求 6所述的随机接入信道资源配置方法, 其中, 所述第 一资源在频域上的位置信息是以下至少之一:
所述第一资源在频域上起始资源位置的信息,
所述第一资源在频域上结束资源位置的信息,
所述第一资源在频域上占用的资源位置的信息。
11、根据权利要求 10所述的随机接入信道资源配置方法, 其中, 所述起 始资源位置的信息、 结束资源位置的信息、 占用的资源位置的信息釆用第一 频域度量单位来度量。
12、 根据权利要求 6所述的随机接入信道资源配置方法, 其中, 所述第 一资源的频域位置分布信息由所述第一资源的频域偏置信息和所述第一资源 的配置索引信息确定。
13、根据权利要求 12所述的随机接入信道资源配置方法, 其中, 所述第 一资源在频域上有多个位置。
14、根据权利要求 13所述的随机接入信道资源配置方法, 其中, 在相同 的所述时域位置上的多个所述第一资源在频域上位置不同。
15、 根据权利要求 6所述的随机接入信道资源配置方法, 其中, 所述随 机接入信道配置信息还包括:
所述第一资源的频域位置分布间隔信息。
16、根据权利要求 15所述的随机接入信道资源配置方法, 其中, 所述第 一资源的频域位置分布信息由所述第一资源的频域偏置信息、 第一资源的频 域位置分布间隔信息和所述第一资源的配置索引信息确定。
17、 根据权利要求 1所述的随机接入信道资源配置方法, 其中, 当随机 接入信道资源配置信息由多个随机接入信道配置信息指示时, 每个随机接入 信道配置信息中包括的第一资源的配置信息不同。
18、根据权利要求 6或 15所述的随机接入信道资源配置方法, 其中, 所 述随机接入信道资源划分为一套或多套随机接入信道资源子集, 所述随机接 入信道资源子集之间釆用时分复用和 /或频分复用和 /或码分复用的方式复用 所述随机接入信道资源。
19、根据权利要求 18所述的随机接入信道资源配置方法, 其中, 当所述 随机接入信道资源子集之间釆用时分复用的方式复用所述随机接入信道资源 时:
所述第一资源中时域位置在一个预定义时域集合内的所述第一资源分配 到一个随机接入信道资源子集; 或,
所述第一资源中时域位置在一个预定义时域集合内且具有相同频域位置 的所述第一资源分配到一个随机接入信道资源子集; 或,
所述第一资源中时域位置在一个预定义时域集合内且在预定义频域位置 的所述第一资源分配到一个随机接入信道资源子集。
20、根据权利要求 19所述的随机接入信道资源配置方法, 其中, 所述预 定义时域集合中包括一个或多个时域时间点, 且所述时域时间点由所述第一 时域度量单位来度量,所述一个或多个时域时间点在时域上连续或离散分布。
21、根据权利要求 20所述的随机接入信道资源配置方法, 其中, 所述预 定义频域位置需要满足以下条件:
相邻的两个所述时域时间点上的所述第一资源的频域位置不同; 和 /或, 所述预定义频域位置中有 N种不同的频域位置,且将所述预定义时域集 合划分为 N个子集,每个子集中的所述第一资源的频域位置对应所述预定义 频域位置中的一种, N为大于等于 1的整数。
22、根据权利要求 18所述的随机接入信道资源配置方法, 其中, 当所述 随机接入信道资源子集之间釆用频分复用的方式复用所述随机接入信道资源 时:
所述第一资源中频域位置在一个预定义频域集合内的所述第一资源分配 到一个随机接入信道资源子集; 或,
所述第一资源中频域位置在一个预定义频域集合内且在预定义时域位置 的所述第一资源分配到一个随机接入信道资源子集。
23、根据权利要求 22所述的随机接入信道资源配置方法, 其中, 所述预 定义频域集合中包括一个或多个频域点, 且所述频域点由所述第一频域度量 单位来度量, 所述一个或多个频域点在频域上连续或离散分布。
24、根据权利要求 22所述的随机接入信道资源配置方法, 其中, 所述预 定义时域位置包括一个或多个时域时间点, 且所述时域时间点由所述第一时 域度量单位来度量, 所述一个或多个时域时间点在时域上连续或离散分布。
25、根据权利要求 19所述的随机接入信道资源配置方法, 其中, 当所述 随机接入信道资源子集之间釆用时分复用和频分复用的方式复用所述随机接 入信道资源时, 一个预定义集合内的所述第一资源分配到一个随机接入信道 资源子集。
26、根据权利要求 23所述的随机接入信道资源配置方法, 其中, 所述预 定义集合中的元素是一个或多个排序后的所述第一资源。
27、根据权利要求 26所述的随机接入信道资源配置方法, 其中, 所述第 一资源的排序规则由系统配置。
28、根据权利要求 19所述的随机接入信道资源配置方法, 其中, 当所述 随机接入信道资源子集之间釆用码分复用的方式复用所述随机接入信道资源 时:
一个随机接入信道资源子集由至少一个预定义的随机接入序列集合构 成。
29、根据权利要求 28所述的随机接入信道资源配置方法, 其中, 所述预 定义随机接入序列集合中包含一个或多个随机接入序列。
30、根据权利要求 19或 22或 28所述的随机接入信道资源配置方法,其 中, 所述随机接入信道资源子集支持一种类型或多种类型的所述第二节点发 送随机接入序列。
31、根据权利要求 30所述的随机接入信道资源配置方法, 其中, 所述第 二节点按照以下原则之一划分类型:
第二节点需要支持的覆盖增强等级,
第二节点需要支持的随机接入序列发送的重复次数,
第二节点成功解码物理广播信道(PBCH ) 时, 使用的 PBCH信道的重 复次数,
第二节点成功解码主要信息块(MIB ) 消息时, MIB消息的重复次数, 第二节点成功解码系统信息块(SIB ) 消息时, SIB消息的重复次数, 第二节点成功解码 PBCH时, MIB消息的重复次数。
32、根据权利要求 31所述的随机接入信道资源配置方法, 其中, 所述第 二节点是一个或多个终端, 或一个或多个终端组。
33、 根据权利要求 7所述的随机接入信道资源配置方法, 其中, 所述第 一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 家庭基站( Femtocell )、低功率节点( LPN )、中继站( Relay )、小基站( Small Cell ) 。
34、 根据权利要求 7所述的随机接入信道资源配置方法, 其中, 所述第 一节点向第二节点发送随机接入信道资源配置信息的步骤之后, 还包括: 所述第二节点根据所述随机接入信道配置信息, 确定相应的随机接入信 道资源, 使用所述随机接入信道资源向所述第一节点发送随机接入信令。
35、根据权利要求 34所述的随机接入信道资源配置方法, 其中, 所述第 二节点根据所述随机接入信道配置信息, 确定相应的随机接入信道资源, 使 用所述随机接入信道资源向所述第一节点发送随机接入信令的步骤之后, 还 包括:
所述第一节点向所述第二节点发送随机接入响应信令, 以响应所述第二 节点发送的所述随机接入信令。
36、根据权利要求 35所述的随机接入信道资源配置方法, 其中, 所述随 机接入响应信令中携带一个或多个所述第二节点的随机接入响应信息。
37、根据权利要求 36所述的随机接入信道资源配置方法, 其中, 由系统 配置或由所述第一节点配置所述一个或多个第二节点。
38、根据权利要求 36所述的随机接入信道资源配置方法, 其中, 所述一 个或多个第二节点具有以下任一或任意多种属性:
所述一个或多个所述第二节点属于同一个所述类型,
所述一个或多个所述第二节点需要支持的覆盖增强等级相同,
所述一个或多个所述第二节点需要支持的随机接入序列发送的重复次数 相同,
所述一个或多个所述第二节点计算的到的 RA-RNTI相同。
39、 根据权利要求 36所述的随机接入信道资源配置方法, 其中, 所述一个或多个所述第二节点的类型由系统配置;
所述一个或多个所述第二节点需要支持的覆盖增强等级由系统配置; 所述一个或多个所述第二节点需要支持的随机接入序列发送的重复次数 由系统配置。
40、根据权利要求 35所述的随机接入信道资源配置方法, 其中, 所述随 机接入响应信令重复发送的次数信息由所述第一节点指示。
41、根据权利要求 40所述的随机接入信道资源配置方法, 其中, 所述第 一节点通过以下至少之一的方式指示所述随机接入响应信令重复发送的次数 信息:
在下行控制信息中指示所述随机接入响应信令重复发送的次数信息; 所述第一节点发送的 PBCH支持的最大重复次数信息与所述随机接入响 应信令重复发送的次数信息存在一个映射关系;
所述第一节点发送的 MIB信息支持的最大重复次数信息与所述随机接 入响应信令重复发送的次数信息存在一个映射关系;
所述第一节点发送的 SIB信息支持的最大重复次数信息与所述随机接入 响应信令重复发送的次数信息存在一个映射关系;
PBCH支持的重复次数信息与所述随机接入响应信令重复发送的次数信 息存在一个映射关系;
MIB 支持的重复次数信息与所述随机接入响应信令重复发送的次数信 息存在一个映射关系;
SIB 支持的重复次数信息与所述随机接入响应信令重复发送的次数信息 存在一个映射关系。
42、根据权利要求 35所述的随机接入信道资源配置方法, 其中, 所述随 机接入响应信令重复发送的次数信息由所述第二节点的类型或覆盖增强等级 或支持的随机接入序列发送的重复次数指示。
43、 一种随机接入信道资源配置系统, 包括第一节点和第二节点; 所述第一节点, 设置为: 向所述第二节点发送随机接入信道资源配置信 息,随机接入信道资源配置信息包含一个或多个随机接入信道配置信息指示。
44、根据权利要求 43所述的随机接入信道资源配置系统, 其中, 所述第 二节点是一个或多个终端, 或一个或多个终端组。
45、根据权利要求 43所述的随机接入信道资源配置系统, 其中, 所述第 一节点是以下至少之一:
MacrocelK MicrocelK PicocelK 家庭基站、 LPN、 Relay、 Small Cell。
46、 根据权利要求 43所述的随机接入信道资源配置系统, 其中, 所述第二节点, 设置为: 根据所述随机接入信道配置信息, 确定相应的 随机接入信道资源, 使用所述随机接入信道资源向所述第一节点发送随机接 入信令;
所述第一节点, 还设置为: 向所述第二节点发送随机接入响应信令, 以 响应所述第二节点发送的所述随机接入信令。
PCT/CN2014/000531 2013-08-09 2014-05-26 随机接入信道资源配置方法和系统 WO2014176935A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14791890.8A EP3032910B1 (en) 2013-08-09 2014-05-26 Random access channel resource allocation method and system
US14/910,254 US20160183295A1 (en) 2013-08-09 2014-05-26 Random Access Channel Resource Allocation Method and System
JP2016532199A JP6198950B2 (ja) 2013-08-09 2014-05-26 ランダムアクセスチャネルリソース設定方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310349543.XA CN104349476B (zh) 2013-08-09 2013-08-09 随机接入信道资源配置方法和系统
CN201310349543.X 2013-08-09

Publications (1)

Publication Number Publication Date
WO2014176935A1 true WO2014176935A1 (zh) 2014-11-06

Family

ID=51843095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000531 WO2014176935A1 (zh) 2013-08-09 2014-05-26 随机接入信道资源配置方法和系统

Country Status (5)

Country Link
US (1) US20160183295A1 (zh)
EP (1) EP3032910B1 (zh)
JP (1) JP6198950B2 (zh)
CN (1) CN104349476B (zh)
WO (1) WO2014176935A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN107734595A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 接入控制方法及装置、系统
WO2018068640A1 (zh) * 2016-10-13 2018-04-19 中兴通讯股份有限公司 一种信道资源分配方法和装置、计算机存储介质
JPWO2017026435A1 (ja) * 2015-08-13 2018-08-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654868B (zh) * 2015-01-27 2024-05-03 华为技术有限公司 一种公共信息的传输方法及装置
US10455544B2 (en) * 2015-01-30 2019-10-22 Qualcomm Incorporated Enhanced paging procedures for machine type communications (MTC)
WO2016127412A1 (zh) * 2015-02-13 2016-08-18 华为技术有限公司 Pbch重复传输的方法及基站
CN106162921A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种随机接入的方法、节点以及系统
US11637593B2 (en) 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
WO2017028024A1 (en) * 2015-08-14 2017-02-23 Mediatek Singapore Pte. Ltd. Paging and random access response (rar) scheduling and dci format
CN105101454B (zh) * 2015-08-14 2019-02-01 电信科学技术研究院 一种mtc ue随机接入的方法及装置
EP3376814A4 (en) * 2015-11-12 2018-10-31 Fujitsu Limited Terminal device, base station device, wireless communication system, and wireless communication method
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置
WO2017118197A1 (zh) * 2016-01-05 2017-07-13 中兴通讯股份有限公司 随机接入的控制方法和装置
CN106961709B (zh) * 2016-01-11 2021-08-03 中兴通讯股份有限公司 一种接入信号的生成方法及装置
JP2019054311A (ja) 2016-01-29 2019-04-04 シャープ株式会社 端末装置、基地局装置および通信方法
CN107046729A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 随机接入信道的配置方法、装置及系统
JP2019506100A (ja) * 2016-02-22 2019-02-28 ゼットティーイー ウィストロン テレコム エービー 動的ランダムアクセス応答(rar)受信終了
CN107371242B (zh) * 2016-05-12 2020-11-10 华为技术有限公司 一种数据传输方法、网络设备及用户设备
CN107734677A (zh) * 2016-08-12 2018-02-23 中国移动通信有限公司研究院 随机接入信号配置方法、装置、相关设备和系统
CN107734690B (zh) * 2016-08-12 2023-05-12 华为技术有限公司 随机接入方法、装置、系统、终端和基站
CN107734714B (zh) 2016-08-12 2023-04-18 中兴通讯股份有限公司 无线通信系统中的随机接入方法和装置、用户终端
US10531492B2 (en) 2016-08-19 2020-01-07 Qualcomm Incorporated Conveying RACH information through PBCH
CN107770733B (zh) * 2016-08-22 2021-08-13 华为技术有限公司 一种数据通信的方法、装置及系统
RU2717344C1 (ru) * 2016-11-04 2020-03-23 Телефонактиеболагет Лм Эрикссон (Пабл) Способы, устройства и узлы сети связи для осуществления процедуры доступа
CN108200650B (zh) * 2016-12-08 2021-10-29 中国移动通信有限公司研究院 一种资源分配方法及装置
CN108347770B (zh) * 2017-01-24 2020-07-17 北京佰才邦技术有限公司 小区公共信号的覆盖增强、获取方法、装置、基站及终端
CN113347719A (zh) * 2017-03-22 2021-09-03 华为技术有限公司 信息传输方法、装置及系统
CN108632790B (zh) * 2017-03-24 2023-06-13 中兴通讯股份有限公司 一种资源配置方法及装置
CN108631902B (zh) * 2017-03-24 2024-06-11 中兴通讯股份有限公司 一种配置方法及装置
CN108668362A (zh) * 2017-03-27 2018-10-16 中兴通讯股份有限公司 一种随机接入物理资源的指示方法及装置
EP3620024A4 (en) 2017-05-05 2020-11-04 Intel IP Corporation MULTIFIRE DESIGN OF A DIRECT ACCESS CHANNEL AND DIRECT ACCESS CHANNEL PROCEDURE FOR OPERATING AN INTERNET OF THINGS DEVICE IN AN UNLICENSED SPECTRUM
CN109413755B (zh) 2017-08-18 2020-10-23 华硕电脑股份有限公司 无线通信系统中随机接入配置的方法和设备
CN109788575B (zh) * 2017-11-15 2021-03-23 维沃移动通信有限公司 随机接入响应的接收方法、发送方法、终端及网络设备
CN109787736B (zh) * 2017-11-15 2023-03-24 夏普株式会社 配置随机接入信道传输资源的方法及其设备
CN109803446B (zh) * 2017-11-17 2023-11-17 华为技术有限公司 随机接入信号的发送方法、接收方法和相关装置
CN109995443B (zh) * 2017-12-29 2022-03-11 华为技术有限公司 一种通信方法、装置和系统
CN110034863B (zh) * 2018-01-12 2020-10-23 华为技术有限公司 数据包的传输方法及通信装置
CN110351852B (zh) * 2018-04-04 2021-12-10 华为技术有限公司 一种通信方法及装置
CN110392428A (zh) * 2018-04-17 2019-10-29 展讯通信(上海)有限公司 随机接入资源的指示及获取方法、基站、终端、可读介质
CN110831236A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 随机接入的方法和装置
CN110831238B (zh) * 2018-08-09 2022-12-30 中兴通讯股份有限公司 数据的发送、资源的获取方法及装置
WO2020065617A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for repetition
CN111465100B (zh) * 2019-01-18 2024-05-21 中国信息通信研究院 一种中继上行接入信道配置方法、配置信令和设备
US11419155B2 (en) * 2019-12-20 2022-08-16 Qualcomm Incorporated Message 2 PDSCH repetition based on multi-segment RAR window
CN113950057A (zh) * 2020-07-15 2022-01-18 北京三星通信技术研究有限公司 信息处理的方法、装置、设备及计算机可读存储介质
CN116318564A (zh) * 2021-12-17 2023-06-23 中国电信股份有限公司 物理随机接入信道重复传输方法及装置
WO2024065694A1 (en) * 2022-09-30 2024-04-04 Zte Corporation Signal transmission methods, devices, and storage media

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056300A (zh) * 2009-11-03 2011-05-11 中兴通讯股份有限公司 分量载波配置方法、用户设备及基站
CN102740492A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 随机接入控制方法及系统
CN103220811A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信息处理方法、mtc ue随机接入lte系统的方法
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
CN103813467A (zh) * 2012-11-02 2014-05-21 中兴通讯股份有限公司 一种mtc指示信令的发送方法及基站、mtc调度方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201731266A (zh) * 2011-05-10 2017-09-01 內數位專利控股公司 獲德次胞元上鏈定時校準方法及裝置
KR101550126B1 (ko) * 2011-06-15 2015-09-11 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
KR20190044141A (ko) * 2011-09-30 2019-04-29 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
JP2013157699A (ja) * 2012-01-27 2013-08-15 Sharp Corp 移動局装置、基地局装置、および無線通信システム
WO2014055878A1 (en) * 2012-10-05 2014-04-10 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056300A (zh) * 2009-11-03 2011-05-11 中兴通讯股份有限公司 分量载波配置方法、用户设备及基站
CN102740492A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 随机接入控制方法及系统
CN103220811A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信息处理方法、mtc ue随机接入lte系统的方法
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
CN103813467A (zh) * 2012-11-02 2014-05-21 中兴通讯股份有限公司 一种mtc指示信令的发送方法及基站、mtc调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3032910A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017026435A1 (ja) * 2015-08-13 2018-08-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN106686691A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种随机接入响应rar传输方法及相关设备
CN107734595A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 接入控制方法及装置、系统
CN107734595B (zh) * 2016-08-12 2020-08-04 中兴通讯股份有限公司 接入控制方法及装置、系统
WO2018068640A1 (zh) * 2016-10-13 2018-04-19 中兴通讯股份有限公司 一种信道资源分配方法和装置、计算机存储介质

Also Published As

Publication number Publication date
JP6198950B2 (ja) 2017-09-20
CN104349476A (zh) 2015-02-11
EP3032910A4 (en) 2016-08-10
JP2016527831A (ja) 2016-09-08
CN104349476B (zh) 2019-09-24
US20160183295A1 (en) 2016-06-23
EP3032910B1 (en) 2018-09-05
EP3032910A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2014176935A1 (zh) 随机接入信道资源配置方法和系统
US11647510B2 (en) Devices and method for communicating PDCCH information and PDSCH data
TWI728328B (zh) 新無線電系統實體下行鏈路控制通道設計方法及使用者設備
US11070951B2 (en) Systems and methods for multicast resource allocation
AU2017203534B2 (en) Telecommunications systems and methods
JP7317873B2 (ja) 無線通信システムにおいてリソースを選択してpsschを伝送する方法及び装置
CN105101431B (zh) 一种设备到设备通信方法、装置及系统
CN108141841B (zh) 用于无线传输的自适应下行链路控制信息集的系统和方法
WO2016019734A1 (zh) D2d的通信方法及装置
US20160219622A1 (en) Method for processing random access response message, and first node
CN105338589A (zh) 随机接入响应消息的传输方法及装置
WO2015157879A1 (zh) 随机接入序列传输方法和装置
WO2014183474A1 (zh) 随机接入信道资源分配方法和系统
WO2014169694A1 (zh) 授权信令发送、获取方法及装置
US9167584B2 (en) Method and apparatus for allocating resources in a multi-node system
KR101854522B1 (ko) 스케줄링 방법 및 장치
US9236980B2 (en) Control channel transmitting, receiving method, base station and terminal
CN110267226B (zh) 信息发送的方法和装置
US20220217718A1 (en) Time domain resource determining method and apparatus, device, and storage media
KR101706958B1 (ko) 무선 통신 시스템에서 그룹 통신을 위한 제어 정보 송수신 방법
CN106162921A (zh) 一种随机接入的方法、节点以及系统
WO2014043902A1 (zh) 下行控制信息传输的方法、网络侧设备及用户设备
CN103391626B (zh) E-pdcch的传输方法、时频资源确定方法及装置
CN107302423B (zh) 一种窄带蜂窝通信的方法和装置
KR102207628B1 (ko) 무선 네트워크에서의 디바이스간 직접 통신에서 자원 할당 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910254

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016532199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014791890

Country of ref document: EP