WO2014183474A1 - 随机接入信道资源分配方法和系统 - Google Patents

随机接入信道资源分配方法和系统 Download PDF

Info

Publication number
WO2014183474A1
WO2014183474A1 PCT/CN2014/000524 CN2014000524W WO2014183474A1 WO 2014183474 A1 WO2014183474 A1 WO 2014183474A1 CN 2014000524 W CN2014000524 W CN 2014000524W WO 2014183474 A1 WO2014183474 A1 WO 2014183474A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
node
coverage enhancement
access channel
resource allocation
Prior art date
Application number
PCT/CN2014/000524
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
夏树强
方惠英
石靖
李新彩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/032,315 priority Critical patent/US10080242B2/en
Priority to EP14798489.2A priority patent/EP3051897B1/en
Publication of WO2014183474A1 publication Critical patent/WO2014183474A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a random access channel resource allocation method and system. Background technique
  • MTC UE Machine Type Communication (MTC) User Equipment
  • M2M Machine to Machine
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Subsequent Evolution
  • M2M multi-class data services based on LTE/LTE-A will also be more attractive. Only when the cost of the LTE-M2M device can be lower than the MTC terminal of the GSM system can the M2M service actually switch from GSM to LTE system.
  • the current main options for reducing the cost of MTC user terminals include: reducing the number of antennas received by the terminal, reducing the baseband processing bandwidth, reducing the peak rate supported by the terminal, using the half-duplex mode, and so on.
  • the cost reduction means that the performance is degraded, and the demand for the LTE/LTE-A system cell coverage cannot be reduced. Therefore, the MTC terminal configured with low cost needs to take some measures to meet the coverage performance requirement of the existing LTE terminal. .
  • the MTC terminal may be located in the underground room, corner, etc., and the scene is worse than the ordinary LTE UE. In order to compensate for the drop in coverage caused by the penetration loss, some MTC UEs need higher performance improvement.
  • LTE Long Term Evolution
  • PDCCH Physical Downlink Control Channel
  • the DCI information further includes a 16-bit Cyclic Redundancy Check (CRC), and the CRC further uses a 16-bit random access radio network temporary identifier (Random Access Radio Network Temporary Identity).
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the UE receives the RAR message and obtains the uplink time synchronization and uplink resources. However, it is not determined at this time that the RAR message is sent to the UE itself instead of to other UEs because there are different UEs in the same time-frequency resource. The possibility of sending the same random access sequence, so that they receive the same RAR through the same RA-RNTI. Moreover, the UE also has no way of knowing whether other UEs are using the same resources for random access. To this end, the UE needs to resolve such random access collisions through subsequent Msg3 and Msg4 messages.
  • Msg3 is the first message based on uplink scheduling and transmitted on PUSCH by HARQ (Hybrid Automatic Repeat request) mechanism.
  • the RRC layer connection request message (RRCConnectionRequest) is transmitted in the Msg3.
  • RRCConnectionRequest RRC layer connection request message
  • the UE After the UE sends the MSg3 message, it immediately starts the contention elimination timer (and then restarts the timer every time Msg3 is retransmitted), and the UE needs to listen to the conflict resolution message returned by the eNodeB to itself during this time (ContentionResolution) , Msg4 message).
  • the UE receives the Msg4 message returned by the eNodeB, and the UE ID carried in it matches the eNodeB reported in Msg3, the UE considers that it has won the random access. Into the conflict, random access is successful. And will be in RAR The temporary C-RNTI obtained in the interest is set as its own C-RNTI. Otherwise, the UE considers that the access fails and re-transmits the random access retransmission process.
  • the enhanced design of the Physical Random Access Channel (PRACH) of the LTE/LTE-A system is implemented to ensure that the MTC UE can access the system normally, so the Msg2 and Msg3 of the LTE/LTE-A system are Msg4 also needs to be enhanced to ensure that the MTC UE can access the system normally.
  • PRACH Physical Random Access Channel
  • the invention provides a random access channel resource allocation method and system, which solves the problem that the MTC UE receives the random access response message.
  • a random access channel resource allocation method includes:
  • the first node transmits random access channel configuration information through the downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the random access channel configuration information is configured by the system or configured by the first node in system information (SI) or in downlink control information (DCI).
  • SI system information
  • DCI downlink control information
  • the SI is sent in a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the DCI is sent in a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH, ).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the method further comprises: dividing the second node into one or more sets according to different coverage enhancement targets that need to be supported, and the second node of each set corresponds to one coverage enhancement level.
  • the method further comprises: system configuration or transmitting, by the first node, the number N of coverage enhancement levels to the second node by using a downlink channel.
  • the coverage enhancement level corresponds to a value interval of the coverage enhancement target.
  • the maximum value of the coverage enhancement target is configured by the system or sent by the first node to the second node by using a downlink channel.
  • the minimum value of the coverage enhancement target is configured by the system or sent by the first node to the second node by using a downlink channel.
  • the value interval of the coverage enhancement target corresponding to each coverage enhancement level is determined by the number of coverage enhancement levels and the maximum value of the coverage enhancement according to a predefined rule; or, the coverage enhancement target corresponding to each coverage enhancement level The value interval is determined by the number of coverage enhancement levels, the maximum value of the coverage enhancement, and the minimum value of the coverage enhancement and according to predefined rules.
  • the predefined rule is any one of the following:
  • the value intervals of the coverage enhancement targets corresponding to each coverage enhancement level are equal and do not overlap, and the value intervals of the coverage enhancement targets are the same as the interval from the minimum value of the coverage enhancement target to the maximum value of the coverage enhancement target;
  • the value of the coverage enhancement target corresponding to each coverage enhancement level is equal and does not overlap, and the value interval of the total coverage enhancement target is smaller than the value range of the minimum value of the coverage enhancement target to the maximum value of the coverage enhancement target. ;
  • the value interval of the coverage enhancement target corresponding to each coverage enhancement level does not overlap, and the proportional relationship of the length of the coverage interval of the coverage enhancement target corresponding to each coverage enhancement level is configured by the system or sent by the first node through the downlink channel.
  • the value interval of the coverage enhancement target is the same as the interval from the minimum value of the coverage enhancement target to the maximum value of the coverage enhancement target.
  • the coverage interval of the coverage enhancement target corresponding to each coverage enhancement level does not overlap.
  • the proportional relationship of the length of the value of the coverage enhancement target corresponding to each coverage enhancement level is configured by the system or sent by the first node to the second node by using a downlink channel, where the value ranges of all the coverage enhancement targets are combined. It is smaller than the value range of the minimum value of the coverage enhancement target to the maximum value of the coverage enhancement target.
  • the method further includes:
  • a random access sequence is configured for each coverage enhancement level, and the ratio of the number of configured random access sequences includes one or more proportional relationships.
  • the method further comprises: the proportional relationship being configured by the system or sent by the first node to the second node by using a downlink channel.
  • the method further includes: indicating, by the coverage enhancement level of the second node, a repetition transmission number or a repetition transmission level of at least one of the following information: a PDCCH indicating a random access response message of the second node; a PDCCH of an RRC layer connection request message (RRCConnectionRequest) of the second node; indicating a conflict resolution message of the second node a PDCCH of the (ContentionResolution); a random access response message of the second node; an RRC layer connection request message of the second node; and a conflict resolution message of the second node.
  • a PDCCH indicating a random access response message of the second node
  • RRCConnectionRequest RRC layer connection request message
  • mapping relationship between the repeated transmission level of the information and the number of repeated transmissions of the information is determined according to the repeated transmission level of the information.
  • the number of repetitions of the random access response message of the second node is indicated in the PDCCH.
  • the number of repetitions of the RRC layer connection request message of the second node is indicated in the PDCCH.
  • the repetition number information of the RRC layer connection request message of the second node is indicated in the random access response message of the second node.
  • the number of repetitions of the conflict resolution message of the second node is indicated in the PDCCH.
  • the repetition number information of the conflict resolution message of the second node is indicated in the random access response message of the second node or in the RRC layer connection request message of the second node.
  • an initial repetition quantity of the PDCCH of the second node is indicated by a coverage enhancement level of the second node
  • the initial number of repetitions of the PDCCH of the second node is the same as the number of repetitions of the PDCCH indicating the random access response message of the second node
  • the initial number of repetitions of the PDCCH of the second node is the same as the number of repetitions of the PDCCH indicating the conflict resolution message of the second node.
  • the time-frequency resources of the random access channel allocation of the second node of different coverage enhancement levels are different.
  • the first node allocates different time-frequency resources to the random access channel of the second node with different coverage enhancement levels by time division multiplexing (TDM) and/or frequency division multiplexing (FDM).
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • the first node may use FDM as a different coverage enhancement level.
  • the random access channel of the second node allocates different time-frequency resources.
  • the time-frequency resources allocated by the random access channels of the second nodes of the multiple coverage enhancement levels are the same.
  • the second node assigned multiple coverage enhancement levels has different random access sequences.
  • PRB physical resource block
  • the multiple coverage enhancements are set in each set of PRB group resources.
  • the ratio of the number of random access sequences allocated by the second node of each coverage enhancement level in the level is the same, or the ratio of the number of random access sequences allocated by the second node of each coverage enhancement level of the multiple coverage enhancement levels is determined by the system.
  • the configuration is sent by the first node to the second node through a downlink channel.
  • the time-frequency resource refers to at least one of the following: a PRB, a PRB set, a subframe, and a subframe set.
  • a format used by the second node to send a random access sequence is configured by the system or sent by the first node to the second node by using a downlink channel.
  • the method further includes: the second node repeatedly sending the random access sequence M times according to the format, where the value of M is indicated by a coverage enhancement level of the second node.
  • the time-frequency resource of the random access channel occupied by the second node repeatedly transmitting the M times of the random access sequence is determined according to a predefined rule, and the predefined rule is at least one of the following:
  • the index of the PRB or PRB group corresponding to the time-frequency resource of the random access channel occupied by the M times random access sequence is the same,
  • the index of the PRB or PRB group corresponding to the time-frequency resource of the random access channel occupied by the M random access sequences is different.
  • the time-frequency resources of the random access channel occupied by the M random access sequences have the same frequency domain position.
  • the time-frequency resources of the random access channel occupied by the M random access sequences have different frequency domain positions.
  • the random access sequence sent by the adjacent two times is occupied.
  • the index of PRB is different.
  • PRB physical resource block
  • the random access sequences sent in the adjacent two times occupy different sets.
  • the PRB group resource, and the system configures that the random access sequence sent by the neighboring two times occupies a selection rule of the PRB resource.
  • the random access channel information allocated by the second node further includes the second node sending random access sequence starting resource location information on the allocated random access channel, where the initial resource location information is For at least one of the following:
  • the subframe information where the starting resource is located the frame information where the starting resource is located, the physical resource block (PRB) information where the starting resource is located, the physical resource block group (PRB group) information where the starting resource is located, and the starting resource is located.
  • Subcarrier information The subframe information where the starting resource is located, the frame information where the starting resource is located, the physical resource block (PRB) information where the starting resource is located, the physical resource block group (PRB group) information where the starting resource is located, and the starting resource is located.
  • the method further includes: when initially accessing the system, the second node selects an coverage enhancement level for the first time according to the following rules:
  • the second node measures the reference signal sent by the first node, and determines, according to the measurement result and the mapping result of the system configuration measurement and the coverage enhancement level, that the second node selects the coverage enhancement level for the first time.
  • the measurement result is at least one of: reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), between the second node and the first node Path loss value, the received signal to noise ratio of the downlink reference signal.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the method further includes:
  • the second node selects a minimum coverage enhancement level configured by the system when initially accessing the system.
  • the system configuration is specifically any one or any of the following: predefined by the standard, predefined by the network, configured by the standard, configured by the network, configured by the network upper layer.
  • the first node is at least one of the following:
  • the second node is at least one of the following: One or more terminals, one or more terminal groups.
  • the terminal is an MTC terminal and/or an MTC coverage enhanced terminal.
  • the present invention also provides a random access channel resource allocation system, including a first node and a second node;
  • the first node is configured to: send random access channel configuration information by using a downlink channel, where at least the random access channel information allocated for the second node is included.
  • An embodiment of the present invention provides a random access channel resource allocation method and system, where a first node sends random access channel configuration information through a downlink channel, where the random access channel configuration information includes at least a random access allocated by a third node.
  • Channel resource information, the random access channel configuration information is configured by the system or configured by the first node in the SI or in the DCI, and the received configuration of the enhanced design random access response message is implemented, and the MTC UE is randomly configured. Access to the problem received by the response message.
  • FIG. 1 is a schematic diagram of time-frequency resource allocation of a random access channel according to Embodiments 1, 2, and 3 of the present invention
  • FIG. 2 is a schematic diagram of an arrangement of re-numbering time-frequency resources of a random access channel according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of time-frequency resource allocation results of random access channels of each coverage enhancement level according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of time-frequency resource allocation results of random access channels of each coverage enhancement level in Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of time-frequency resource allocation of a random access channel in Embodiments 4, 5, 6, and 7 of the present invention.
  • FIG. 6 is a schematic diagram of RA arrangement after re-numbering time-frequency resources of a random access channel in Embodiments 4, 5, 6, and 7 of the present invention
  • FIG. 7 is a schematic diagram of an arrangement of time-frequency resources of a random access channel after renumbering according to Embodiment 5 of the present invention
  • 8 is a schematic diagram of an arrangement of time-frequency resources of a random access channel after renumbering according to Embodiment 6 of the present invention
  • FIG. 9 is a schematic diagram showing an arrangement of time-frequency resources of a random access channel after renumbering according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of time-frequency resource allocation of a random access channel according to Embodiments 8, 9, and 10 of the present invention.
  • FIG. 11 is a schematic diagram showing time-frequency resource allocation results of random access channels of each coverage enhancement level in Embodiment 14 of the present invention.
  • FIG. 12 is a schematic diagram of time-frequency resource allocation results of random access channels of each coverage enhancement level in Embodiment 9 of the present invention.
  • FIG. 13 is a schematic diagram of a time-frequency resource allocation result of a random access channel of each coverage enhancement level according to Embodiment 10 of the present invention
  • FIG. 14 is a schematic diagram of time-frequency resource allocation of a random access channel according to Embodiment 11 of the present invention
  • 15 is a schematic diagram of a time-frequency resource allocation result of each coverage enhancement level random access channel in Embodiment 11 of the present invention
  • FIG. 16 is a schematic diagram of time-frequency resource allocation results of random access channels of each coverage enhancement level according to Embodiment 12 of the present invention.
  • FIG. 17 is a schematic diagram of time-frequency resource allocation results of random access channels of each coverage enhancement level according to Embodiment 13 of the present invention.
  • the random access response (LTE) of the LTE/LTE-A system is enhanced to ensure that the MTC UE can access the system normally, so the random access response of the LTE/LTE-A system
  • a random access response (RAR) also needs to be enhanced to ensure that the MTC UE can receive it normally.
  • an embodiment of the present invention provides a random access channel resource allocation method and system.
  • Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be mutually exclusive. Combination of meanings.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the location where the coverage enhancement target value supported by the CI MTC UE is in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the measurement result selects RSRP, and the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where.
  • RSRP 0 and RSRP 0 are the minimum and maximum values of the UR interval;
  • RSRP U and RSR ⁇ 1 are the minimum and maximum values of the CIL1 value interval;
  • RSRP 2 and RSR/ 2 are CIL2 The minimum and maximum values of the value interval.
  • RSRP 0 , RSRP. , RSRP, RSRP, RSRP RSR ⁇ 2 is predefined by the standard or sent by the eNB to the UE through the downlink channel
  • Table 2 Mapping of RSRP measurements to coverage enhancement levels
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard pre-defines each CIL configuration. If the number of preamble sequences is the same, the Preamble index available for CIL0 is Index31 ⁇ Index40, and the available Preamble index for CIL1 is Index31 ⁇ : lndex50, then the available Preamble index for CIL2 is Index51 ⁇ Index60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index40;
  • Table 3 Mapping relationship between coverage enhancement level and repeated transmission sequence of random access sequence
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is .
  • Table 3 the number of repeated transmissions of the random access sequence is .
  • RA resources are renumbered as RA0, RA1, RA2 RA9, ..., as shown in Figure 2, UE1 can send Preamble at the starting resource position with RA0, RA2, RA4, ...;
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. ;
  • the repetition number information of the RRC layer connection request message of the UE1 may also be indicated in the random access response message of the UE1;
  • the repetition number information of the UE 1 conflict resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message;
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE).
  • CI MTC UE Three coverage enhancement levels are configured in the system (Coverage Improvement Level, CIL), as shown in Table 1, the Cover Improvement Target (CIT) corresponding interval range of each CIL is equal, which is 5 dB in this embodiment.
  • CIL Cover Improvement Level
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the RSRP is selected for the measurement result.
  • the mapping table of the RSRP and the coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • Thumbs up. , do. , , , , 2 , ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • five sets of PRACH time-frequency resources are allocated in each frame, and the same six PRB resources are occupied in the frequency domain, and a maximum of one PRACH resource is configured in each subframe, as shown in FIG. 1 , where RA is PRACH. 6 PRBs occupied by frequency resources;
  • the TDM mode is used to allocate PRACH resources for each CIL, and the RA resources are renumbered as RA0, RA1, RA2 RA9, ..., as shown in FIG. 3, RA0, RA3,
  • RA6, RA9, ... are configured as CILO resources, RA1, RA4, RA7, ... are configured as CIL1 Resources, RA2, RA5, RA8, ... are configured as resources for CIL2.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the UE1 may send the Preamble with the RA0, RA6, RA12, ... as the starting resource location.
  • the information of the repeated transmission times of at least one of the following may be Indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • An embodiment of the present invention provides a method for allocating a random access channel resource, where the first node passes The line channel transmits random access channel configuration information, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of the following:
  • One or more terminals are One or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • Measurement result selection RSRP, eNB pre-configured RSRP and coverage enhancement level mapping table The grid is shown in Table 2, where is the measured value of RSRP, and is the minimum and maximum value of the CILO value interval; ⁇ 1 , ⁇ TM ⁇ 1 is the minimum and maximum value of the CIL1 value interval; Xiao 2 , ⁇ 2 is the minimum and maximum value of the CIL2 value interval. . , do. , , , , , 2 , ⁇ ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel.
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • five sets of PRACH time-frequency resources are allocated in each frame, and the same six PRB resources are occupied in the frequency domain, and a maximum of one PRACH resource is configured in each subframe, as shown in FIG. 1 , where RA is PRACH. 6 PRBs occupied by frequency resources.
  • the PRACH resource is allocated to each CIL by using the TDM method, and the RA resources are renumbered as RA0, RA1, RA2, RA9, ..., as shown in FIG. 4, RA0, RA2, RA4, RA6, ... are configured as The resources of CILO and CIL1, RA1, RA3, RA5, ... are configured as resources of CIL2.
  • CDM Use the CDM method to assign PRACH resources to CILO and CIL1, that is, assign different preamble sequences to CIL0 and CIL1.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard predefined CIL and CIL1 configurations are configured.
  • the number of preamble sequences is the same, and the Preamble index available for CIL0 is Index31 ⁇ Index45.
  • the available Preamble index of CIL1 is Index46 ⁇ Index60, and UE1 randomly selects one of the Preamble indexes with Index31 ⁇ Index45.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the UE1 may send the Preamble with the RA0, RA4, RA8, ... as the starting resource location.
  • the repetition of at least one of the following The number of transmission times information may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of the following: One or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • Thumbs up. , do. , , , , 2 , ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel
  • UE1 determines its own CIL by measuring RSRP and according to the above rules. For CIL0.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • five sets of PRACH time-frequency resources are allocated in each frame, and the frequency domain occupies different six PRB resources, and a maximum of one PRACH resource is configured in each subframe, as shown in FIG. 5, where RA is PRACH. 6 PRBs occupied by frequency resources;
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example
  • the initial preamble index is Index 31
  • the Preamble index available to the CI MTC UE is Index31 ⁇ Index60
  • the standard pre-defined number of preamble sequences per CIL configuration is the same
  • the Preamble index available for CIL0 is Index31 ⁇ Index40
  • the Preamble index available for CIL1 is Index31 ⁇ : lndex50
  • the Preamble index available for CIL2 is Index51 ⁇ [iidex60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index40.
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. ;
  • the repetition number information of the RRC layer connection request message of the UE1 may also be indicated in the random access response message of the UE1;
  • the repetition number information of the UE 1 conflict resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message;
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE).
  • CI MTC UE Three coverage enhancement levels are configured in the system (Coverage Improvement Level, CIL), as shown in Table 1, the Cover Improvement Target (CIT) corresponding interval range of each CIL is equal, which is 5 dB in this embodiment.
  • CIL Cover Improvement Level
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the RSRP is selected for the measurement result.
  • the mapping table of the RSRP and the coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • Thumbs up. , do. , , , , 2 , ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • five sets of PRACH time-frequency resources are allocated in each frame, and the frequency domain occupies different six PRB resources, and a maximum of one PRACH resource is configured in each subframe, as shown in FIG. 5, where RA is PRACH. 6 PRBs occupied by frequency resources.
  • the PRACH resource is allocated to each CIL by using the TDM method, and the RA resources are renumbered as RA0, RA1, RA2, RA9, ..., as shown in FIG. 7, RA0, RA3,
  • RA6, RA9, ... are configured as CILO resources, RA1, RA4, RA7, ... are configured as CIL1 Resources, RA2, RA5, RA8, ... are configured as resources for CIL2.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the UE1 may send the Preamble with the RA0, RA6, RA12, ... as the starting resource location.
  • the information of the repeated transmission times of at least one of the following may be Indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. ;
  • the repetition number information of the RRC layer connection request message of the UE1 may also be indicated in the random access response message of the UE1;
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into ordinary MTC UEs. (Normal MTC UE) and Coverage Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • five sets of PRACH time-frequency resources are allocated in each frame, and the frequency domain occupies different six PRB resources, and a maximum of one PRACH resource is configured in each subframe, as shown in FIG. 5, where RA is PRACH. 6 PRBs occupied by frequency resources;
  • the TDM mode is used to allocate PRACH resources for each CIL, and the RA resources are
  • the source is renumbered as RA0, RA1, RA2 RA9, ⁇ ⁇ ⁇ , as shown in Figure 8, RA0, RA1
  • RA6, RA7, ... are configured as resources of CILO, RA2, RA3, RA8, RA9, ... are configured as resources of CIL1, and RA4, RA5, RA10, RA11, ... are configured as resources of CIL2.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the UE1 may send the Preamble with the RA0, RA6, RA12, ... as the starting resource location.
  • the information of the retransmission times of at least one of the following may be Indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • ⁇ . , do. , , , , , 2 , ⁇ ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel.
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • the RA is the six PRBs occupied by the PRACH time-frequency resources.
  • the PRACH resource is allocated to each CIL by using the TDM method, and the RA resources are renumbered as RA0, RA1, RA2, RA9, ..., as shown in FIG. 9, RA0, RA1.
  • RA4, RA5, ... are configured as resources of CILO and CIL1
  • RA2, RA3, RA6, RA7, ... are configured as resources of CIL2.
  • CDM Use the CDM method to assign PRACH resources to CILO and CIL1, that is, assign different preamble sequences to CILO and CIL1.
  • the preamble collection assigned by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard predefined CIL and CIL1 configurations are configured.
  • the number of preamble sequences is the same, and the available Preamble index of CILO is Index31 ⁇ Index45, and the available Preamble index of CIL1 is Index46 ⁇ Index60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index45.
  • the UE1 may send the Preamble with the RA0, RA4, RA8, ... as the starting resource location.
  • the repeated transmission number information of at least one of the following may be indicated by CIL0 of the UE1. :
  • the number of random access response message repetitions of UE1 may also be in the PDCCH.
  • the indication that the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH.
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 conflict resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • the CI MTC UE is divided into three coverage enhancement levels according to the location where the coverage enhancement target value supported by the CI MTC UE is in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 2 sets of PRACH resources are configured in each subframe, as shown in FIG. 10, where RA is 6 PRBs occupied by PRACH time-frequency resources.
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Premmble cable available to the CI MTC UE.
  • Index31 ⁇ Index60 and the standard pre-defined the number of preamble sequences for each CIL configuration is the same, then the Preamble index available for CIL0 is Index31 ⁇ Index40, then the available Preamble index for CIL1 is Index31 ⁇ : lndex50, then the available Preamble index for CIL2 is Index51 ⁇ Index60.
  • UE1 randomly selects one of the Preambles whose indexes are Index31 ⁇ Index40;
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the RA resources are renumbered as RAO, RA1, RA2, RA9, ..., and then UE1 can send the Preamble with the RAO, RA1, RA4, RA5, ... as the starting resource location.
  • the information of the number of repeated transmissions of at least one of the following may be indicated by the CILO of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is determined by the UE1.
  • the coverage enhancement level CIL0 indication is the same as the number of repetitions of the PDCCH indicating the random access response message of UE1; or the same number of repetitions of the PDCCH indicating the collision resolution message of UE1.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of the following:
  • One or more terminals are One or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement targets (CIT) corresponding to each CIL are equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement targets
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where W ⁇ —is the RSRP measurement value, ⁇ 1 ⁇ 0 , ⁇ .
  • Thumbs up. , do. , , , , 2 , ⁇ ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel.
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 2 sets of PRACH resources are configured in each subframe, as shown in FIG. 10, where RA is 6 PRBs occupied by PRACH time-frequency resources.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the PRACH resource is allocated to each CIL by using the TDM mode, and the RA resources are renumbered as RA0, RA1, RA2, RA3, ..., as shown in FIG. 12, RA0, RA1, and RA6. , RA7, ... PRACH time-frequency resources allocated for CILO; RA2, RA3, RA8, RA9, ... PRACH time-frequency resources allocated for CIL1; RA4, RA5, RA10, RA11, ... PRACH time-frequency resources allocated for CIL2.
  • UE1 may send a Preamble at a resource location starting with RA0, RA12, RA24, ....
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • a repetition number information of a PDCCH indicating a random access response message of the UE1 The number of repetitions of the PDCCH indicating the RRC layer connection request message (RRCConnectionRequest) of the UE1;
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into ordinary MTC UEs.
  • CIL Coverage Improvement MTC UE
  • CIT coverage improvement targets
  • the CI MTC UE is divided into three coverage enhancement levels according to the location where the coverage enhancement target value supported by the CI MTC UE is in the value interval in Table 1.
  • the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • ⁇ . , do. , , , , 2 , ⁇ ⁇ 2 are predefined by the standard or sent by the eNB to the UE through the downlink channel.
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 2 sets of PRACH resources are configured in each subframe, as shown in FIG. 10, where RA is 6 PRBs occupied by PRACH time-frequency resources.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the number of repeated transmissions of the random access sequence is ⁇ . .
  • the PRACH resources are allocated to each CIL by means of FDM and TDM, and the RA resources are renumbered as RA0, RA1, RA2, RA3, ..., as shown in FIG. 13, RA1, RA3, RA5, RA7 , ... PRACH time-frequency resources allocated for CIL2; RA0, RA2, RA4, RA6, ... are PRACH time-frequency resources allocated for CILO and CIL1. Further, RA0, RA4, RA8, ... are PRACH allocated time-frequency resources; RA2, RA6, RA10, ... are PRIL time-frequency resources allocated by CIL1.
  • UE1 may send a resource location starting with RA0, RA8, RA16, ... Preamble.
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • Macrocell Microcell, Picocell, Femtocell, low power node (LPN) and relay (Relay).
  • LPN low power node
  • Relay relay
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other devices listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a coverage enhanced MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 2 sets of PRACH resources are configured in each subframe, as shown in FIG. 14, where RA is 6 PRBs occupied by PRACH time-frequency resources.
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard pre-defines each CIL configuration. If the number of preamble sequences is the same, the Preamble index available for CIL0 is Index31 ⁇ Index40, and the available Preamble index for CIL1 is Index31 ⁇ : lndex50, then the available Preamble index for CIL2 is Index51 ⁇ Index60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index40.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the RA resources are renumbered as RAO, RA1, RA2 RA9, ..., as shown in FIG. 15, the first set of hopping patterns is RAO, RA2, RA4, and the second set of hopping patterns is RA1. , RA3, RA5, ...; UE1 can randomly select a set of hopping patterns to use, for example, UE1 selects hopping pattern 1, then UE1 can send Preamble at the starting resource position with RA0, RA4, RA8, ....
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • a repetition number information of a PDCCH indicating a random access response message of the UE1 The number of repetitions of the PDCCH indicating the RRC layer connection request message (RRCConnectionRequest) of the UE1;
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of the following:
  • One or more terminals are One or more terminals,
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that, when the first node or the second node is the other device listed above, the application scenario is also applicable to the embodiment of the present invention, and the implementation principle is the same, which are all within the protection scope of the embodiment of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into ordinary MTC UEs.
  • CIL Coverage Improvement MTC UE
  • CI MTC UE Coverage Improvement MTC UE
  • Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format to be sent by the random access sequence. Format 0, occupying one subframe (frame) in the real-time domain and occupying 6 PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 4 sets of PRACH resources are configured in each subframe, as shown in FIG. 16, where RA is 6 PRBs occupied by PRACH time-frequency resources.
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard pre-defines each CIL configuration. If the number of preamble sequences is the same, the Preamble index available for CIL0 is Index31 ⁇ Index40, and the available Preamble index for CIL1 is Index31 ⁇ : lndex50, then the available Preamble index for CIL2 is Index51 ⁇ Index60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index40.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the RA resources are renumbered as RAO, RA1, RA2 RA9, ..., as shown in FIG. 16, the first set of hopping patterns are RAO, RA5, RA8, RA13, RA16, and the second set of hops.
  • the frequency patterns are RA1, RA4, RA9, RA12, RA17
  • the third set of hopping patterns are RA2, RA7, RA10, RA15, RA18
  • the fourth set of hopping patterns are RA3, RA6, RA11, RA14, RA19, ....
  • UE1 can randomly select a set of hopping patterns to use. For example, UE1 selects hopping pattern 1, and UE1 can send Preamble at the starting resource position with RA0, RA8, RA16, ....
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • the embodiment of the present invention provides a random access channel resource allocation method, where the first node sends random access channel configuration information through a downlink channel, where at least the configuration information of the random access channel allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the first node is an eNB
  • the second node is an MTC UE. It should be noted that when the first node or the second node is other devices listed above, the response should be
  • the usage scenarios are also applicable to the embodiments of the present invention, and the implementation principles are the same, and are all within the protection scope of the embodiments of the present invention.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Three Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 1, the coverage improvement target (CIT) corresponding to each CIL is equal in size, which is 5 dB in this embodiment.
  • CIT coverage improvement target
  • the CI MTC UE is divided into three coverage enhancement levels according to the coverage enhancement target value that the CI MTC UE needs to support in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and determines the coverage enhancement level selected by the UE for the first time according to the measurement result and the mapping table of the eNB pre-configured measurement result and the coverage enhancement level.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the received signal to noise ratio of the downlink reference signal is the received signal to noise ratio of the downlink reference signal.
  • the measurement result selects RSRP.
  • the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 2, where is the RSRP measurement value, ⁇ 1 ⁇ 0 , .
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and each subframe is allocated.
  • a maximum of four sets of PRACH resources are configured, as shown in Figure 17, where RA is the six PRBs occupied by the PRACH time-frequency resources.
  • the PRACH resource is allocated to each CIL by using the CDM mode, that is, each CIL allocates the same PRACH time-frequency resource, but allocates different preamble indexes.
  • the preamble set allocated by each CIL can be obtained as follows:
  • the eNB configures the total number of preamble sequences that the CI MTC UE can use in the SIB, for example, 30, and the initial preamble index is Index 31, and the Preamble index available to the CI MTC UE is Index31 ⁇ Index60, and the standard pre-defines each CIL configuration. If the number of preamble sequences is the same, the Preamble index available for CIL0 is Index31 ⁇ Index40, and the available Preamble index for CIL1 is Index31 ⁇ : lndex50, then the available Preamble index for CIL2 is Index51 ⁇ Index60.
  • UE1 randomly selects one transmission in the Preamble whose index is Index31 ⁇ Index40.
  • the UE1 determines, according to Table 3, the number of repeated transmissions of the random access sequence is ⁇ . .
  • the RA resources are renumbered as RAO, RA1, RA2, and RA3, as shown in FIG. 16, the first set of hopping patterns are RA0, RA7, RA8, RA15, RA16, and the second set of hopping patterns is RA1, RA6, RA9, RA14, RA17, the third set of hopping patterns are RA2, RA5, RA10, RA13, RA18, and the fourth set of hopping patterns are RA3, RA4, RA11, RA12, RA19, ....
  • UE1 can randomly select a set of hopping patterns to use. For example, UE1 selects hopping pattern 1, and UE1 can send Preamble at the starting resource position with RA0, RA8, RA16, ....
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of UE1 The number of repetitions of the RRC layer connection request message of UE1;
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. .
  • the repetition number information of the RRC layer connection request message of UE1 may also be indicated in the random access response message of the UE1.
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is indicated by the coverage enhancement level CIL0 of the UE1, or the number of repetitions of the PDCCH indicating the random access response message of the UE1 is the same; or the conflict with the indication UE1
  • the number of repetitions of the PDCCH that resolves the message is the same.
  • MTC UEs There are MTC UEs in the LTE system, and the MTC UEs are divided into a normal MTC UE (Normal MTC UE) and a Cover Improvement Improvement MTC UE (CI MTC UE). Two Coverage Improvement Levels (CILs) are configured in the system. As shown in Table 4, the coverage enhancement target (CIT) corresponding to each CIL is equal in size, which is 7.5 dB in this embodiment. .
  • the CI MTC UE is divided into two coverage enhancement levels according to the location where the coverage enhancement target value supported by the CI MTC UE is in the value interval in Table 1. For example, the UE measures the reference signal sent by the eNB, and according to the measurement result and the pre-configured measurement result and coverage enhancement level of the eNB. The mapping table determines the coverage enhancement level selected by the UE for the first time.
  • the measurement result may be at least one of the following:
  • RSRP Reference Signal Receive Power
  • RSRP Reference Signal Receive Quality
  • RSI Received Signal Strength Indicator
  • the measurement result selects RSRP, and the mapping table of the RSRP and coverage enhancement level pre-configured by the eNB is shown in Table 5, where.
  • RSRP 0 and RSRP 0 are the minimum and maximum values of the CU interval;
  • RSRP U and RSR ⁇ 1 are the minimum and maximum values of the CIL1 value interval;
  • RSRP ⁇ , RSR/ ⁇ is pre-defined by the standard or sent by the eNB to the UE through the downlink channel;
  • Table 5 Mapping of RSRP measurements to coverage enhancement levels
  • UE1 determines that its CIL is CIL0 by measuring RSRP and according to the above rules.
  • the eNB configures a preamble format for the random access sequence to be format 0, and occupies one subframe (frame) in the immediate domain, and occupies six PRBs in the frequency domain.
  • 10 sets of PRACH time-frequency resources are allocated in each frame, and a maximum of 6 sets of PRACH resources are configured in each subframe, as shown in FIG. 10, where RA is 6 PRBs occupied by PRACH time-frequency resources;
  • Table 6 Mapping between coverage enhancement level and number of repeated transmissions of random access sequences
  • the UE1 determines, according to Table 6, the number of times the random access sequence is repeatedly transmitted.
  • Table 6 the number of times the random access sequence is repeatedly transmitted.
  • the PRACH resource is allocated to each CIL by using the FDM method, and the RA resources are renumbered as RA0, RA1, RA2, RA3, ..., as shown in FIG. 11, RA0, RA2, RA4, RA6, ... are PRACH allocated time-frequency resources; RA1, RA3, RA5, RA7, ... are allocated PRACH time-frequency resources for CIL1;
  • UE1 may send a Preamble at a resource location starting with RA0, RA4, RA8, ...;
  • the information of the number of repeated transmissions of at least one of the following may be indicated by CIL0 of UE1:
  • the number of repetitions of the random access response message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the RRC layer connection request message of the UE1 may also be indicated in the PDCCH; the number of repetitions of the collision resolution message of the UE1 may also be indicated in the PDCCH. ;
  • the repetition number information of the RRC layer connection request message of the UE1 may also be indicated in the random access response message of the UE1;
  • the repetition number information of the UE 1 collision resolution message may also be indicated in the UE1's random access response message or in the UE1 RRC layer connection request message.
  • the initial repetition number of the PDCCH of the UE1 is determined by the UE1.
  • the coverage enhancement level CILO indication is the same as the number of repetitions of the PDCCH indicating the random access response message of UE1; or the same number of repetitions of the PDCCH indicating the collision resolution message of UE1.
  • An embodiment of the present invention provides a random access channel resource allocation system, including a first node and a second node;
  • the first node is configured to send random access channel configuration information by using a downlink channel, where at least the random access channel information allocated for the second node is included.
  • the first node is at least one of the following:
  • the second node is at least one of: one or more terminals,
  • One or more terminal groups are One or more terminal groups.
  • the random access channel resource allocation system provided by the embodiment of the present invention can be combined with the random access channel resource allocation method provided by the embodiment of the present invention.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • An embodiment of the present invention provides a random access channel resource allocation method and system, where a first node sends random access channel configuration information through a downlink channel, where the random access channel configuration information includes at least a random connection allocated by a third node.
  • Incoming channel resource information the random access channel configuration information is configured by the system or configured by the first node in the SI or in the DCI, and the received configuration of the enhanced design random access response message is implemented, and the MTC UE pair is solved. The problem of random access response message reception.

Abstract

一种随机接入信道资源分配方法和系统,所述方法包括以下步骤:第一节点通过下行信道发送随机接入信道配置信息,其中至少包括为第二节点分配的随机接入信道的配置信息。本发明涉及移动通信领域。本发明实施例的技术方案适用于机器类型通信(MTC)系统,解决了MTC用户终端(UE)对随机接入响应消息接收的问题,实现了增强设计的随机接入响应消息的接收配置。

Description

随机接入信道资源分配方法和系统
技术领域
本发明涉及移动通信领域, 尤其涉及一种随机接入信道资源分配方法和 系统。 背景技术
机器类型通信( Machine Type Communication,简称 MTC )用户终端( User Equipment ) (以下简称为 MTC UE ) , 又称机器到机器( Machine to Machine, 简称 M2M )用户通信设备, 是现阶段物联网的主要应用形式。 低功耗低成 本是其可大规模应用的重要保障。 目前市场上部署的 M2M设备主要基于全 球移动通信 ( Global System of Mobile communication, 简称 GSM ) 系统。 近 年来, 由于长期演进(Long Term Evolution, 简称 LTE ) I LTE的后续演进 ( LTE-A )的频谱效率的提高,越来越多的移动运营商选择 LTE/LTE-A作为 未来宽带无线通信系统的演进方向。基于 LTE/LTE-A的 M2M多种类数据业 务也将更具吸引力。只有当 LTE-M2M设备的成本能做到比 GSM系统的 MTC 终端低时, M2M业务才能真正从 GSM转到 LTE系统上。
目前对于降低 MTC用户终端成本的主要备选方法包括: 减少终端接收 天线的数目、 降低终端基带处理带宽、 降低终端支持的峰值速率、 釆用半双 工模式等等。然而成本的降低意味着性能的下降,对于 LTE/LTE-A系统小区 覆盖的需求是不能降低的, 因此釆用低成本配置的 MTC终端需要釆取一些 措施才能达到现有 LTE终端的覆盖性能需求。 另外, MTC终端可能位于地 下室、 墙角等位置, 所处场景要比普通 LTE UE恶劣。 为了弥补穿透损耗导 致的覆盖下降, 部分 MTC UE需要更高的性能提升, 因此针对这种场景进行 部分 MTC UE的上下行覆盖增强是必要的。如何保证用户的接入质量则是首 先需要考虑的问题, 有必要针对 LTE/LTE-A系统的随机接入信道(Physical Random Access Channel, 简称为 PRACH )进行增强设计, 保证 MTC UE可 以正常接入系统。
LTE/LTE-A系统中随机接入响应消息 ( Random Access Response , 简称 为 RAR )所占用的物理资源块( Physical Resource Block, 简称 PRB )的位置 信息是包含在下行控制信息( Downlink Control Information, 简称为 DCI )中 且通过物理下行控制信道 ( Physical Downlink Control Channel , 简称为 PDCCH )发送的。 此外, 上述 DCI信息中还包括 16比特的循环冗余校验码 ( Cyclic Redundancy Check, 简称为 CRC ) , 并且上述 CRC进一步釆用 16 比特的随机接入无线网络临时标识 ( Random Access Radio Network Temporary Identity, 简称为 RA-RNTI )进行加扰, 加扰方式为:
ck = (¾ + ¾ ) mod 2 k=0,l, - - - , 15 其中, 为 CRC中的第 个比特; 为 RA-RNTI中的第 个比特; 为加扰后生成的第 个比特。
UE接收到 RAR消息, 获得上行的时间同步和上行资源. 但此时并不能 确定 RAR消息是发送给 UE自己而不是发送给其他的 UE的, 因为存在着不 同的 UE在相同的时间 -频率资源上发送相同的随机接入序列的可能性, 这样, 他们就会通过相同的 RA-RNTI接收到同样的 RAR。 而且, UE也无从知道是 否有其他的 UE在使用相同的资源进行随机接入。 为此 UE需要通过随后的 Msg3 和 Msg4消息, 来解决这样的随机接入冲突。
Msg3是第一条基于上行调度并且釆用 HARQ (Hybrid Automatic Repeat request)机制在 PUSCH上传输的消息。 在初始随机接入过程中, Msg3中传输 的是 RRC层连接请求消息( RRCConnectionRequest ) , 如果不同的 UE接收 到相同的 RAR消息, 那么他们就会获得相同的上行资源, 同时发送 Msg3消 息, 为了区分不同的 UE, 在 MSG3中会携带一个 UE特定的 ID, 用于区分不 同的 UE. 在初始接入的情况下, 这个 ID可以是 UE的 S-TMSI (如果存在的 话)或者随机生成的一个 40位的值。
UE在发完 MSg3 消息后就要立刻启动竟争消除定时器 (而随后每一次 重传 Msg3都要重新启动这个定时器), UE需要在此时间内监听 eNodeB返 回给自己的冲突解决消息 ( ContentionResolution, Msg4消息) 。
如果在竟争消除定时器配置的时间内, UE接收到 eNodeB返回的 Msg4 消息, 并且其中携带的 UE ID与自己在 Msg3中上报给 eNodeB的相符,那么 UE就认为自己赢得了此次的随机接入冲突, 随机接入成功. 并将在 RAR消 息中得到的临时 C-RNTI置为自己的 C-RNTI。否则的话,UE认为此次接入失 败, 并重新进行随机接入的重传过程。
由于对 LTE/LTE-A 系统的随机接入信道 (Physical Random Access Channel , 简称为 PRACH )进行了增强设计, 以保证 MTC UE可以正常接入 系统, 所以 LTE/LTE-A系统的 Msg2、 Msg3和 Msg4也需要进行增强设计, 保证 MTC UE可以正常接入系统。
发明内容
本发明提供了一种随机接入信道资源分配方法和系统, 解决了 MTC UE 对随机接入响应消息接收的问题。
一种随机接入信道资源分配方法, 包括:
第一节点通过下行信道发送随机接入信道配置信息, 其中至少包括为第 二节点分配的随机接入信道的配置信息。
优选的, 所述随机接入信道配置信息由系统配置或者由所述第一节点在 系统信息 (SI )或者在下行控制信息 (DCI ) 中配置。
优选的, 所述 SI在物理下行共享信道(PDSCH ) 中发送。
优选的, 所述 DCI在物理下行控制信道(PDCCH )或增强物理下行控 制信道(EPDCCH, ) 中发送。
优选的, 该方法还包括: 根据需要支持的覆盖增强目标不同将所述第二 节点划分为一个或多个集合, 每个集合的第二节点对应一个覆盖增强等级。
优选的, 该方法还包括: 系统配置或所述第一节点通过下行信道将所述 覆盖增强等级的数量 N发送给所述第二节点。
优选的 , 所述覆盖增强等级对应一个覆盖增强目标的取值区间。
优选的, 所述覆盖增强目标的最大值由系统配置或者由所述第一节点通 过下行信道发送给所述第二节点。
优选的, 所述覆盖增强目标的最小值由系统配置或者由所述第一节点通 过下行信道发送给所述第二节点。 优选的, 每个覆盖增强等级对应的覆盖增强目标的取值区间由覆盖增强 等级的数量以及所述覆盖增强的最大值并且按照预定义规则确定; 或, 每个 覆盖增强等级对应的覆盖增强目标的取值区间由覆盖增强等级的数量、 所述 覆盖增强的最大值以及所述覆盖增强的最小值并且按照预定义规则确定。
优选的, 所述预定义规则是以下任一:
每个覆盖增强等级对应的覆盖增强目标的取值区间相等且不重叠, 并且 所述全部覆盖增强目标的取值区间合起来与覆盖增强目标的最小值到覆盖增 强目标的最大值的区间相同;
每个覆盖增强等级对应的覆盖增强目标的取值区间相等且不重叠, 并且 所述全部覆盖增强目标的取值区间合起来小于覆盖增强目标的最小值到覆盖 增强目标的最大值的取值区间;
每个覆盖增强等级对应的覆盖增强目标的取值区间不重叠, 各个覆盖增 强等级对应的覆盖增强目标的取值区间长度的比例关系由系统配置或者由所 述第一节点通过下行信道发送给所述第二节点, 所述全部覆盖增强目标的取 值区间合起来与覆盖增强目标的最小值到覆盖增强目标的最大值的区间相同 每个覆盖增强等级对应的覆盖增强目标的取值区间不重叠, 各个覆盖增强等 级对应的覆盖增强目标的取值区间长度的比例关系由系统配置或者由所述第 一节点通过下行信道发送给所述第二节点, 所述全部覆盖增强目标的取值区 间合起来小于覆盖增强目标的最小值到覆盖增强目标的最大值的取值区间。
优选的, 该方法还包括:
为每个覆盖增强等级配置随机接入序列, 配置的随机接入序列数量的比 例包括一种或多种比例关系。
优选的, 该方法还包括: 所述比例关系由系统配置或由所述第一节点通 过下行信道发送给所述第二节点。
优选的, 该方法还包括: 通过所述第二节点的覆盖增强级别指示至少一 种以下信息的重复发送次数或重复发送级别: 指示所述第二节点的随机接入 响应消息的 PDCCH ; 指示所述第二节点的 RRC 层连接请求消息 ( RRCConnectionRequest ) 的 PDCCH; 指示所述第二节点的冲突解决消息 ( ContentionResolution )的 PDCCH; 所述第二节点的随机接入响应消息; 所 述第二节点的 RRC层连接请求消息; 所述第二节点的冲突解决消息。
优选的, 所述信息的重复发送级别与所述信息的重复发送次数之间存在 映射关系, 根据所述信息的重复发送级别确定所述信息的重复发现次数。
优选的,所述第二节点的随机接入响应消息重复次数在 PDCCH中指示。 优选的,所述第二节点的 RRC层连接请求消息的重复次数在 PDCCH中 指示。
优选的,所述第二节点的 RRC层连接请求消息的重复次数信息在所述第 二节点的随机接入响应消息中指示
优选的, 所述第二节点的冲突解决消息重复次数在 PDCCH中指示。 优选的, 所述第二节点的冲突解决消息的重复次数信息在所述第二节点 的随机接入响应消息中指示或所述第二节点的 RRC层连接请求消息中指示。
优选的, 所述第二节点接入系统之后, 所述第二节点的 PDCCH的初始 重复次数由所述第二节点的覆盖增强等级指示,
或者所述第二节点的 PDCCH的初始重复次数与指示所述第二节点的随 机接入响应消息的 PDCCH的重复次数相同,
或者所述第二节点的 PDCCH的初始重复次数与指示所述第二节点的冲 突解决消息的 PDCCH的重复次数相同。
优选的, 不同覆盖增强等级的所述第二节点的随机接入信道分配的时频 资源不同。
优选的, 所述第一节点通过时分复用 (TDM )和 /或频分复用 (FDM ) 为不同覆盖增强等级的所述第二节点的随机接入信道分配不同的时频资源。
优选的, 在同一个时间段内, 频域资源上配置了多套发送随机接入序列 所需的物理资源块(PRB )组时, 所述第一节点可以釆用 FDM为不同覆盖 增强等级的所述第二节点的随机接入信道分配不同的时频资源。
优选的 , 多个覆盖增强等级的所述第二节点的随机接入信道分配的时频 资源相同。 优选的, 多个覆盖增强等级的所述第二节点分配的随机接入序列不同。 优选的, 在同一个时间段内, 频域资源上配置了多套所述随机接入序列 发送所需的物理资源块( PRB )组时, 每套 PRB组资源中为所述多个覆盖增 强等级中每个覆盖增强等级的第二节点分配的随机接入序列数量比例相同, 或所述多个覆盖增强等级中每个覆盖增强等级的第二节点分配的随机接入序 列数量比例关系由系统配置或由所述第一节点通过下行信道发送给所述第二 节点。
优选的, 时频资源是指以下至少之一: PRB、 PRB集合、 子帧、 子帧集 合。
优选的, 所述第二节点发送随机接入序列釆用的格式(format ) 由系统 配置或由所述第一节点通过下行信道发送给所述第二节点。
优选的, 该方法还包括: 所述第二节点按照所述 format, 重复发送 M次 所述随机接入序列, M的取值由所述第二节点的覆盖增强等级指示。
优选的,所述第二节点重复发送 M次的随机接入序列占用的随机接入信 道的时频资源按照预定义规则确定, 所述预定义规则是以下至少之一:
M 次的随机接入序列占用的随机接入信道的时频资源对应的 PRB 或 PRB组的索引相同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的 PRB 或 PRB组的索引不同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的频域位置 相同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的频域位置 不同,
当在同一个时间段内, 频域资源上只配置了一套所述随机接入序列发送 所需的物理资源块( PRB )组时, 相邻两次发送的所述随机接入序列占用的 PRB的索引不同,
当在同一个时间段内, 频域资源上只配置了一套所述随机接入序列发送 所需的物理资源块(PRB )组时, 相邻两次发送的所述随机接入序列占用的 PRB的所处的频域位置不同,
当在同一个时间段内, 频域资源上配置了多套所述随机接入序列发送所 需的物理资源块(PRB )组时, 相邻两次发送的所述随机接入序列占用不同 套的 PRB组资源,且由系统配置所述相邻两次发送的所述随机接入序列占用 PRB资源的选择规则。
优选的, 所述第二节点分配的随机接入信道信息还包括所述第二节点在 分配的所述随机接入信道上发送随机接入序列起始资源位置信息, 所述起始 资源位置信息为以下至少之一:
起始资源所在的子帧信息, 起始资源所在的帧信息, 起始资源所在的物 理资源块(PRB )信息, 起始资源所在的物理资源块组(PRB组)信息, 起 始资源所在的子载波信息。
优选的, 该方法还包括: 在初始接入系统时, 所述第二节点按照以下规 则第一次选择覆盖增强等级:
所述第二节点测量所述第一节点发送的参考信号, 并且根据测量结果以 及系统配置的测量结果与覆盖增强等级的映射表格确定所述第二节点第一次 选择覆盖增强等级。
优选的, 所述测量结果是以下至少之一: 参考信号接收功率(RSRP ) , 参考信号接收质量(RSRQ ) , 接收信号强度指示 (RSSI ) , 所述第二节点 与所述第一节点之间的路径损耗值, 所述下行参考信号的接收信噪比。
优选的, 该方法还包括:
在初始接入系统时, 所述第二节点选择系统配置的最小覆盖增强等级。 优选的, 所述由系统配置具体为以下任一或任意多个: 由标准预定义, 由网络预定义, 由标准配置, 由网络配置, 由网络高层配置。
优选的, 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
优选的, 所述第二节点为以下至少之一: 一个或多个终端, 一个或多个终端组。
优选的, 所述终端是 MTC终端和 /或 MTC覆盖增强的终端。
本发明还提供了一种随机接入信道资源分配系统, 包括第一节点和第二 节点;
所述第一节点, 设置为: 通过下行信道发送随机接入信道配置信息, 其 中至少包括为第二节点分配的随机接入信道信息。
本发明实施例提供了一种随机接入信道资源分配方法和系统, 第一节点 通过下行信道发送随机接入信道配置信息, 所述随机接入信道配置信息至少 包括第三节点分配的随机接入信道资源信息, 所述随机接入信道配置信息由 系统配置或者由所述第一节点在 SI或者在 DCI中配置, 实现了增强设计的 随机接入响应消息的接收配置,解决了 MTC UE对随机接入响应消息接收的 问题。 附图概述
图 1为本发明的实施例一、 二、 三中随机接入信道的时频资源分配示意 图;
图 2为本发明的实施例一中随机接入信道的时频资源重新编号后的排列 示意图;
图 3为本发明的实施例二中各个覆盖增强等级的随机接入信道的时频资 源分配结果示意图;
图 4为本发明的实施例三中各个覆盖增强等级的随机接入信道的时频资 源分配结果示意图;
图 5为本发明的实施例四、 五、 六、 七中随机接入信道的时频资源分配 示意图;
图 6为本发明的实施例四、 五、 六、 七中随机接入信道的时频资源重新 编号后的 RA排列示意图;
图 7为本发明的实施例五中随机接入信道的时频资源重新编号后的排列 示意图; 图 8为本发明的实施例六中随机接入信道的时频资源重新编号后的排列 示意图;
图 9为本发明的实施例七中随机接入信道的时频资源重新编号后的排列 示意图;
图 10为本发明的实施例八、九、十中随机接入信道的时频资源分配示意 图;
图 11 本发明的实施例十四中各个覆盖增强等级的随机接入信道的时频 资源分配结果示意图;
图 12 为本发明的实施例九中各个覆盖增强等级的随机接入信道的时频 资源分配结果示意图;
图 13 为本发明的实施例十中各个覆盖增强等级的随机接入信道的时频 资源分配结果示意图; 图 14为本发明的实施例十一中随机接入信道的时频资源分配示意图; 图 15 为本发明的实施例十一中各个覆盖增强等级的随机接入信道的时 频资源分配结果示意图;
图 16 为本发明的实施例十二中各个覆盖增强等级的随机接入信道的时 频资源分配结果示意图;
图 17 为本发明的实施例十三中各个覆盖增强等级的随机接入信道的时 频资源分配结果示意图。
本发明的较佳实施方式
由于对 LTE/LTE-A 系统的随机接入信道 (Physical Random Access Channel , 简称为 PRACH )进行了增强设计, 以保证 MTC UE可以正常接入 系统,所以 LTE/LTE-A系统的随机接入响应消息( Random Access Response, 简称为 RAR )也需要进行增强设计, 保证 MTC UE可以正常接收到。
为了解决上述问题, 本发明的实施例提供了一种随机接入信道资源分配 方法和系统。 下文中将结合附图对本发明的实施例进行详细说明。 需要说明 的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任 意组合。
具体实施例一
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
Figure imgf000012_0001
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP , eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 。 为 RSRP测量值, RSRP 0、 RSRP 0为 CU ) 取值区间的最小值和最大值; RSRP U、 RSR ^1为 CIL1取值区间的最小值和 最大值; RSRP 2、 RSR/ 2为 CIL2取值区间的最小值和最大值。 RSRP 0、 RSRP 。、 RSRP 、、 RSRP 、 RSRP RSR ^2由标准预先定义或者由 eNB 通过下行信道发送给 UE
表 2: RSRP测量值与覆盖增强等级的映射关系
Figure imgf000013_0001
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用相同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 1所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB。 本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51 ~Index60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送; 表 3:覆盖增强等级与随机接入序列重复发送次数的映射关系
Figure imgf000014_0001
UE1根据表 3确定随机接入序列重复发送次数为 。 本实施例中,
将 RA资源重新编号为 RA0、 RA1、 RA2 RA9、 ..., 如图 2所示, 则 UE1可以在以 RA0、 RA2、 RA4、 …为起始资源位置发送 Preamble;
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数; UE1的冲突解决消息的重复次数;
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示;
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示;
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示;
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例二
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP , eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 2、 ^^^2为 CIL2取值区间的最小值和最大值。 讚 。、 辦 。、 、 讚 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用相同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 1所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB;
本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2 RA9、 ..., 如图 3所示, RA0、 RA3、
RA6、 RA9、 …配置为 CILO的资源, RA1、 RA4、 RA7、 …配置为 CIL1的 资源, RA2、 RA5、 RA8、 …配置为 CIL2的资源。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 则 UE1可以在以 RA0、 RA6、 RA12、 …为起始资源位置发送 Preamble; 本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例三
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一:
一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, 、 为 CILO 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 2、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用相同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 1所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB。
本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2 RA9、 ..., 如图 4所示, RA0、 RA2、 RA4、 RA6、 …配置为 CILO和 CILl的资源, RA1、 RA3、 RA5、 …配置为 CIL2的资源。釆用 CDM方式为 CILO和 CILl分配 PRACH资源,即为 CIL0 和 CIL1分配不同的 preamble序列。 每个 CIL分配的 preamble集合可以按照 下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义 CIL和 CIL1配置的 preamble序列 数量相同, 则 CIL0可用的 Preamble索引为 Index31~Index45, 则 CILl可用 的 Preamble 索引为 Index46~Index60 , UE1 在索引为 Index31~Index45 的 Preamble中随机选择一条发送。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 则 UE1可以在以 RA0、 RA4、 RA8、 …为起始资源位置发送 Preamble。 本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例四
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 2、 ^^^2为 CIL2取值区间的最小值和最大值。 讚 。、 辦 。、 、 讚 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用不同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 5所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB;
本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数 , 例如为
30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51~[iidex60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送。 UE1 根据表 3确定随机接入序列重复发送次数为 ^ "^。本实施例中, Ν =2。 将 RA资源重新编号为 RAO、 RA1、 RA2 RA9、 ..., 如图 6所示, 则 UE1可以在以 RA0、 RA2、 RA4、 …为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE 1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数; UE1的冲突解决消息的重复次数;
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示;
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示;
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示;
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例五
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP , eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 2、 ^^^2为 CIL2取值区间的最小值和最大值。 讚 。、 辦 。、 、 讚 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用不同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 5所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB。
本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2 RA9、 ..., 如图 7所示, RA0、 RA3、
RA6、 RA9、 …配置为 CILO的资源, RA1、 RA4、 RA7、 …配置为 CIL1的 资源, RA2、 RA5、 RA8、 …配置为 CIL2的资源。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 则 UE1可以在以 RA0、 RA6、 RA12、 …为起始资源位置发送 Preamble; 本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数;
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示;
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示;
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例六
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 2、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用不同 的 6个 PRB资源 ,每个 subframe中最多配置一套 PRACH资源,如图 5所示 , 其中 RA即为 PRACH时频资源占用的 6个 PRB;
本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2 RA9、 · · · , 如图 8所示, RA0、 RA1、
RA6、 RA7、 …配置为 CILO的资源, RA2、 RA3、 RA8、 RA9、 …配置为 CILl 的资源, RA4、 RA5、 RA10、 RA11、 …配置为 CIL2的资源。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 则 UE1可以在以 RA0、 RA6、 RA12、 …为起始资源位置发送 Preamble; 本实施例中, 当 UE1确定自己的 CIL为 CILO后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。 具体实施例七
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; ^ 2、 ^™^2为 CIL2取值区间的最小值和最大值。 ^^ 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中 , 每个 Frame中分配 5套 PRACH时频资源且频域占用相同 的 6个 PRB资源,每个 subframe中最多配置一套 PRACH资源,如图 5所示, 其中 RA即为 PRACH时频资源占用的 6个 PRB。
本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2 RA9、 ..., 如图 9所示, RA0、 RA1、
RA4、 RA5、 …配置为 CILO和 CILl 的资源, RA2、 RA3、 RA6、 RA7、 ... 配置为 CIL2的资源。釆用 CDM方式为 CILO和 CILl分配 PRACH资源, 即 为 CILO和 CILl分配不同的 preamble序列。 每个 CIL分配的 preamble集合 可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义 CIL和 CIL1配置的 preamble序列 数量相同, 则 CILO可用的 Preamble索引为 Index31~Index45, 则 CILl可用 的 Preamble索引为 Index46~Index60。
则 UE1在索引为 Index31~Index45的 Preamble中随机选择一条发送。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 。 =2。
则 UE1可以在以 RA0、 RA4、 RA8、 …为起始资源位置发送 Preamble; 本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外, UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例八
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE , CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。 按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 2、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 2套 PRACH资源, 如图 10所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51 ~Index60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送;
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 将 RA资源重新编号为 RAO、 RA1、 RA2 RA9、 ..., 则 UE1可以 在以 RAO、 RA1、 RA4、 RA5...为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CILO后, 以下至少之一的重复 发送次数信息可以由 UE1的 CILO指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中, UE1接入系统之后, UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例九
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一:
一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置 3个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到 3个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, W^^—为 RSRP测量值, ^1^0、 ^^^。为 CIL0 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 2、 ^^^2为 CIL2取值区间的最小值和最大值。 讚 。、 辦 。、 、 讚 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 2套 PRACH资源, 如图 10所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 本实施例中, 釆用 TDM方式为各个 CIL分配 PRACH资源, 将 RA资 源重新编号为 RA0、 RA1、 RA2、 RA3、 ...,如图 12所示, RA0、 RA1、 RA6、 RA7、 …为 CILO分配的 PRACH时频资源; RA2、 RA3、 RA8、 RA9、 …为 CILl分配的 PRACH时频资源; RA4、 RA5、 RA10、 RA11、 …为 CIL2分配 的 PRACH时频资源。
本实施例中, UE1可以在以 RA0、 RA12、 RA24、 …为起始资源位置发 送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息; 指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE
( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置 3个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到 3个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。 其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; ^ 2、 ^™^2为 CIL2取值区间的最小值和最大值。 ^^ 。、 辦 。、 、 讚 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 2套 PRACH资源, 如图 10所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中,
本实施例中, 釆用 FDM和 TDM的方式为各个 CIL分配 PRACH资源, 将 RA资源重新编号为 RA0、 RA1、 RA2、 RA3、 ..., 如图 13所示, RA1、 RA3、 RA5、 RA7、 …为 CIL2分配的 PRACH时频资源; RA0、 RA2、 RA4、 RA6、 …为 CILO和 CILl分配的 PRACH时频资源。 进一步的, RA0、 RA4、 RA8、 …为 CILO分配的 PRACH时频资源; RA2、 RA6、 RA10、 …为 CILl 分配的 PRACH时频资源。
本实施例中, UE1可以在以 RA0、 RA8、 RA16、 …为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CILO后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十一
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE , CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^^ 01^0为 CIL0 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 =。、 、 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 2套 PRACH资源, 如图 14所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51 ~Index60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送。 UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 将 RA资源重新编号为 RAO、 RA1、 RA2 RA9、 ..., 如图 15所示, 则第一套跳频图案为 RAO、 RA2、 RA4、 第二套跳频图案为 RA1、 RA3、 RA5、 ... ;UE1可以随机选择一套跳频图案使用, 例如 UE1选择跳频图案 1 , 则 UE1可以在以 RA0、 RA4、 RA8、 …为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息; 指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十二
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一:
一个或多个终端,
一个或多个终端组。 本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE
( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level , CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 2、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 4套 PRACH资源, 如图 16所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51 ~Index60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送。 UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 将 RA资源重新编号为 RAO、 RA1、 RA2 RA9、 ..., 如图 16所示, 则第一套跳频图案为 RAO、 RA5、 RA8、 RA13、 RA16、 第二套跳频图案 为 RA1、 RA4、 RA9、 RA12、 RA17、 第三套跳频图案为 RA2、 RA7、 RA10、 RA15、 RA18、 第四套跳频图案为 RA3、 RA6、 RA11、 RA14、 RA19、 …。
UE1 可以随机选择一套跳频图案使用, 例如 UE1 选择跳频图案 1 , 则 UE1可以在以 RA0、 RA8、 RA16、 …为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息; 指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十三
本发明实施例提供了一种随机接入信道资源分配方法, 第一节点通过下 行信道发送随机接入信道配置信息, 其中至少包括为第二节点分配的随机接 入信道的配置信息。 所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例中, 以第一节点为 eNB , 第二节点为 MTC UE为例进行说 明。 需要说明的是, 当第一节点或第二节点为以上所列的其他设备时, 该应 用场景亦适用于本发明实施例, 实现原理相同, 均在本发明实施例的保护范 围之内。
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置三个覆盖增强等级 (Coverage Improvement Level, CIL) , 如表 1所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 5dB。
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到三个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比。
测量结果选择 RSRP, eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 2所示, 其中, 为 RSRP测量值, ^1^0、 。为 C1U) 取值区间的最小值和最大值; ^^^1、 ^™^1为 CIL1取值区间的最小值和 最大值; 蕭 2、 ^^^2为 CIL2取值区间的最小值和最大值。 。、 辦 。、 、 寶 、 2、 ^^ 2由标准预先定义或者由 eNB 通过下行信道发送给 UE。
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 4套 PRACH资源, 如图 17所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB。
本实施例中,釆用 CDM方式为各个 CIL分配 PRACH资源,即各个 CIL 分配相同的 PRACH时频资源, 但分配不同的 preamble索引。 每个 CIL分配 的 preamble集合可以按照下面方案获得:
eNB在 SIB中配置 CI MTC UE可以使用的 preamble序列总数, 例如为 30条, 起始的 preamble索引为 Index 31 , 则 CI MTC UE可用的 Preamble索 引为 Index31~Index60, 并且标准预定义每个 CIL配置的 preamble序列数量 相同, 则 CIL0可用的 Preamble索引为 Index31~Index40, 则 CIL1 可用的 Preamble 索引为 Index31〜: lndex50 , 则 CIL2 可用的 Preamble 索引为 Index51 ~Index60。
则 UE1在索引为 Index31~Index40的 Preamble中随机选择一条发送。
UE1根据表 3确定随机接入序列重复发送次数为 Ν 。 。 本实施例中, 将 RA资源重新编号为 RAO、 RA1、 RA2、 RA3、 如图 16所示, 则 第一套跳频图案为 RA0、 RA7、 RA8、 RA15、 RA16、 第二套跳频图案为 RA1、 RA6、 RA9、 RA14、 RA17、 第三套跳频图案为 RA2、 RA5、 RA10、 RA13、 RA18、 第四套跳频图案为 RA3、 RA4、 RA11、 RA12、 RA19、 …。
UE1 可以随机选择一套跳频图案使用, 例如 UE1 选择跳频图案 1 , 则 UE1可以在以 RA0、 RA8、 RA16、 …为起始资源位置发送 Preamble。
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息( RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数; UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数。
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示。
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示。
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UE1的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中 , UE1接入系统之后 , UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CIL0指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十四
在 LTE系统中存在 MTC UEs, 并且将 MTC UEs划分为普通 MTC UE ( Normal MTC UE )和覆盖增强 MTC UE ( Coverage Improvement MTC UE, CI MTC UE ) 。 系统中配置 2个覆盖增强等级 (Coverage Improvement Level , CIL), 如表 4所示, 每个 CIL对应的覆盖增强目标( Coverage Improvement Target , CIT )取值区间大小相等, 本实施例中为 7.5dB。
Figure imgf000046_0001
按照 CI MTC UE需要支持的覆盖增强目标值处于表 1中取值区间的位 置, 将 CI MTC UE划分到 2个覆盖增强等级中。 例如, UE测量 eNB发送的 参考信号,并且根据测量结果以及 eNB预先配置的测量结果与覆盖增强等级 的映射表格确定 UE第一次选择的覆盖增强等级。
其中, 所述测量结果可以是以下至少之一:
参考信号接收功率( Reference Signal Receive Power, RSRP ) ; 参考信号接收质量(Reference Signal Receive Quality, RSRP ) ; 接收信号强度指示 ( Received Signal Strength Indicator, RSSI ) ;
UE与 eNB之间的路径损耗值;
所述下行参考信号的接收信噪比;
测量结果选择 RSRP , eNB预先配置的 RSRP与覆盖增强等级的映射表 格如表 5所示, 其中, 。 为 RSRP测量值, RSRP 0、 RSRP 0为 CU ) 取值区间的最小值和最大值; RSRP U、 RSR ^1为 CIL1取值区间的最小值和 最大值; RSRP 0、 RSRP 。、 RSRP^、 RSR/^ 由标准预先定义或者由 eNB 通过下行信道发送给 UE;
表 5 : RSRP测量值与覆盖增强等级的映射关系
Figure imgf000047_0001
本实施例中, UE1通过测量 RSRP, 并且按照上述规则,确定自己的 CIL 为 CIL0。
本实施例中, eNB配置随机接入序列发送的格式(preamble format )为 format 0 , 即时域上占用一个子帧 ( subframe ) , 频域上占用 6个 PRB。
本实施例中,每个 Frame中分配 10套 PRACH时频资源,每个 subframe 中最多配置 6套 PRACH资源, 如图 10所示, 其中 RA即为 PRACH时频资 源占用的 6个 PRB;
表 6:覆盖增强等级与随机接入序列重复发送次数的映射关系
Figure imgf000047_0002
UEl根据表 6确定随机接入序列重复发送次数为 。 本实施例中,
本实施例中 ,釆用 FDM方式为各个 CIL分配 PRACH资源 ,将 RA资源 重新编号为 RA0、 RA1、 RA2、 RA3、 ..., 如图 11所示, RA0、 RA2、 RA4、 RA6、 …为 CILO分配的 PRACH时频资源; RA1、 RA3、 RA5、 RA7、 …为 CIL1分配的 PRACH时频资源;
本实施例中, UEl可以在以 RA0、 RA4、 RA8、 …为起始资源位置发送 Preamble;
本实施例中, 当 UE1确定自己的 CIL为 CIL0后, 以下至少之一的重复 发送次数信息可以由 UE1的 CIL0指示:
指示 UE1的随机接入响应消息的 PDCCH的重复次数信息;
指示 UE1的 RRC层连接请求消息(RRCConnectionRequest )的 PDCCH 的重复次数信息;
指示 UE1的冲突解决消息 ( ContentionResolution ) 的 PDCCH的重复次 数信息;
UE1的随机接入响应消息的重复次数;
UE1的 RRC层连接请求消息的重复次数;
UE1的冲突解决消息的重复次数;
除本实施例外, UE1的随机接入响应消息重复次数还可以在 PDCCH中 指示; UE1的 RRC层连接请求消息重复次数还可以在 PDCCH中指示; UE1 的冲突解决消息重复次数还可以在 PDCCH中指示;
除本实施例外, UE1 的 RRC层连接请求消息的重复次数信息还可以在 所述 UE1的随机接入响应消息中指示;
除本实施例外,UE1的冲突解决消息的重复次数信息还可以在 UEl的随 机接入响应消息中指示或 UE1的 RRC层连接请求消息中指示。
本实施例中, UE1接入系统之后, UE1的 PDCCH的初始重复次数由 UE1 的覆盖增强等级 CILO指示,或者与指示 UE1的随机接入响应消息的 PDCCH 的重复次数相同; 或者与指示 UE1的冲突解决消息的 PDCCH的重复次数相 同。
具体实施例十五
本发明实施例提供了一种随机接入信道资源分配系统, 包括第一节点和 第二节点;
所述第一节点, 用于通过下行信道发送随机接入信道配置信息, 其中至 少包括为第二节点分配的随机接入信道信息。
所述第一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
所述第二节点为以下至少之一: 一个或多个终端,
一个或多个终端组。
本发明实施例提供的随机接入信道资源分配系统, 能够与本发明的实施 例提供的随机接入信道资源分配方法相结合。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、 设备、 装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。 上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以权利要求所述的保护范围为准。
工业实用性
本发明的实施例提供了一种随机接入信道资源分配方法和系统, 第一节 点通过下行信道发送随机接入信道配置信息, 所述随机接入信道配置信息至 少包括第三节点分配的随机接入信道资源信息, 所述随机接入信道配置信息 由系统配置或者由所述第一节点在 SI或者在 DCI中配置, 实现了增强设计 的随机接入响应消息的接收配置,解决了 MTC UE对随机接入响应消息接收 的问题。

Claims

权 利 要 求 书
1、 一种随机接入信道资源分配方法, 包括:
第一节点通过下行信道发送随机接入信道配置信息, 其中至少包括为第 二节点分配的随机接入信道的配置信息。
2、根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述随机 接入信道配置信息由系统配置或者由所述第一节点在系统信息 (SI )或者在 下行控制信息 (DCI ) 中配置。
3、 根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述 SI 在物理下行共享信道(PDSCH ) 中发送。
4、根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述 DCI 在物理下行控制信道(PDCCH )或增强物理下行控制信道(EPDCCH, ) 中 发送。
5、根据权利要求 1所述的随机接入信道资源分配方法, 其中, 该方法还 包括: 根据需要支持的覆盖增强目标不同将所述第二节点划分为一个或多个 集合, 每个集合的第二节点对应一个覆盖增强等级。
6、根据权利要求 5所述的随机接入信道资源分配方法, 其中, 该方法还 包括: 系统配置或所述第一节点通过下行信道将所述覆盖增强等级的数量 N 发送给所述第二节点。
7、根据权利要求 6所述的随机接入信道资源分配方法, 其中, 所述覆盖 增强等级对应一个覆盖增强目标的取值区间。
8、根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述覆盖 增强目标的最大值由系统配置或者由所述第一节点通过下行信道发送给所述 第二节点。
9、根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述覆盖 增强目标的最小值由系统配置或者由所述第一节点通过下行信道发送给所述 第二节点。
10、 根据权利要求 5或 6或 7或 8或 9所述的随机接入信道资源分配方 法, 其中, 每个覆盖增强等级对应的覆盖增强目标的取值区间由覆盖增强等级的数 量以及所述覆盖增强的最大值并且按照预定义规则确定; 或,
每个覆盖增强等级对应的覆盖增强目标的取值区间由覆盖增强等级的数 量、 所述覆盖增强的最大值以及所述覆盖增强的最小值并且按照预定义规则 确定。
11、根据权利要求 10所述的随机接入信道资源分配方法, 其中, 所述预 定义规则是以下任一:
每个覆盖增强等级对应的覆盖增强目标的取值区间相等且不重叠, 并且 所述全部覆盖增强目标的取值区间合起来与覆盖增强目标的最小值到覆盖增 强目标的最大值的区间相同;
每个覆盖增强等级对应的覆盖增强目标的取值区间相等且不重叠, 并且 所述全部覆盖增强目标的取值区间合起来小于覆盖增强目标的最小值到覆盖 增强目标的最大值的取值区间;
每个覆盖增强等级对应的覆盖增强目标的取值区间不重叠, 各个覆盖增 强等级对应的覆盖增强目标的取值区间长度的比例关系由系统配置或者由所 述第一节点通过下行信道发送给所述第二节点, 所述全部覆盖增强目标的取 值区间合起来与覆盖增强目标的最小值到覆盖增强目标的最大值的区间相同 每个覆盖增强等级对应的覆盖增强目标的取值区间不重叠, 各个覆盖增强等 级对应的覆盖增强目标的取值区间长度的比例关系由系统配置或者由所述第 一节点通过下行信道发送给所述第二节点, 所述全部覆盖增强目标的取值区 间合起来小于覆盖增强目标的最小值到覆盖增强目标的最大值的取值区间。
12、根据权利要求 5所述的随机接入信道资源分配方法,该方法还包括: 为每个覆盖增强等级配置随机接入序列, 配置的随机接入序列数量的比 例包括一种或多种比例关系。
13、根据权利要求 12所述的随机接入信道资源分配方法,该方法还包括: 所述比例关系由系统配置或由所述第一节点通过下行信道发送给所述第 二节点。
14、根据权利要求 5所述的随机接入信道资源分配方法,该方法还包括: 通过所述第二节点的覆盖增强级别指示至少一种以下信息的重复发送次 数或重复发送级别:
指示所述第二节点的随机接入响应消息的 PDCCH;
指示所述第二节点的 RRC层连接请求消息(RRCConnectionRequest )的 PDCCH;
指示所述第二节点的冲突解决消息 ( ContentionResolution ) 的 PDCCH; 所述第二节点的随机接入响应消息;
所述第二节点的 RRC层连接请求消息;
所述第二节点的冲突解决消息。
15、 根据权利要求 14所述的随机接入信道资源分配方法, 其中, 所述信息的重复发送级别与所述信息的重复发送次数之间存在映射关 系 , 根据所述信息的重复发送级别确定所述信息的重复发现次数。
16、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第二节点的随机接入响应消息重复次数在 PDCCH中指示。
17、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第 二节点的 RRC层连接请求消息的重复次数在 PDCCH中指示。
18、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第 二节点的 RRC层连接请求消息的重复次数信息在所述第二节点的随机接入 响应消息中指示。
19、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第 二节点的冲突解决消息重复次数在 PDCCH中指示。
20、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第 二节点的冲突解决消息的重复次数信息在所述第二节点的随机接入响应消息 中指示或所述第二节点的 RRC层连接请求消息中指示。
21、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第二节点接入系统之后, 所述第二节点的 PDCCH的初始重复次数 由所述第二节点的覆盖增强等级指示, 或者所述第二节点的 PDCCH的初始重复次数与指示所述第二节点的随 机接入响应消息的 PDCCH的重复次数相同,
或者所述第二节点的 PDCCH的初始重复次数与指示所述第二节点的冲 突解决消息的 PDCCH的重复次数相同。
22、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 不同覆 盖增强等级的所述第二节点的随机接入信道分配的时频资源不同。
23、根据权利要求 22所述的随机接入信道资源分配方法, 其中, 所述第 一节点通过时分复用 (TDM )和 /或频分复用 (FDM ) 为不同覆盖增强等级 的所述第二节点的随机接入信道分配不同的时频资源。
24、根据权利要求 23所述的随机接入信道资源分配方法, 其中, 在同一 个时间段内, 频域资源上配置了多套发送随机接入序列所需的物理资源块 ( PRB )组时, 所述第一节点可以釆用 FDM为不同覆盖增强等级的所述第 二节点的随机接入信道分配不同的时频资源。
25、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 多个覆 盖增强等级的所述第二节点的随机接入信道分配的时频资源相同。
26、根据权利要求 25所述的随机接入信道资源分配方法, 其中, 多个覆 盖增强等级的所述第二节点分配的随机接入序列不同。
27、根据权利要求 26所述的随机接入信道资源分配方法, 其中, 在同一 个时间段内, 频域资源上配置了多套所述随机接入序列发送所需的物理资源 块(PRB )组时, 每套 PRB组资源中为所述多个覆盖增强等级中每个覆盖增 强等级的第二节点分配的随机接入序列数量比例相同, 或所述多个覆盖增强 等级中每个覆盖增强等级的第二节点分配的随机接入序列数量比例关系由系 统配置或由所述第一节点通过下行信道发送给所述第二节点。
28、 根据权利要求 22或 25所述的随机接入信道资源分配方法, 其中, 所述时频资源是指以下至少之一: PRB、 PRB集合、 子帧、 子帧集合。
29、 根据权利要求 5所述的随机接入信道资源分配方法, 其中, 所述第 二节点发送随机接入序列釆用的格式(format ) 由系统配置或由所述第一节 点通过下行信道发送给所述第二节点。
30、根据权利要求 29所述的随机接入信道资源分配方法,该方法还包括: 所述第二节点按照所述 format,重复发送 M次所述随机接入序列, M的 取值由所述第二节点的覆盖增强等级指示。
31、根据权利要求 30所述的随机接入信道资源分配方法, 其中, 所述第 二节点重复发送 M 次的随机接入序列占用的随机接入信道的时频资源按照 预定义规则确定, 所述预定义规则是以下至少之一:
M 次的随机接入序列占用的随机接入信道的时频资源对应的 PRB 或 PRB组的索引相同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的 PRB 或 PRB组的索引不同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的频域位置 相同,
M 次的随机接入序列占用的随机接入信道的时频资源对应的频域位置 不同,
当在同一个时间段内, 频域资源上只配置了一套所述随机接入序列发送 所需的物理资源块(PRB )组时, 相邻两次发送的所述随机接入序列占用的 PRB的索引不同,
当在同一个时间段内, 频域资源上只配置了一套所述随机接入序列发送 所需的物理资源块(PRB )组时, 相邻两次发送的所述随机接入序列占用的 PRB的所处的频域位置不同,
当在同一个时间段内, 频域资源上配置了多套所述随机接入序列发送所 需的物理资源块(PRB )组时, 相邻两次发送的所述随机接入序列占用不同 套的 PRB组资源,且由系统配置所述相邻两次发送的所述随机接入序列占用 PRB资源的选择规则。
32、 根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述第 二节点分配的随机接入信道信息还包括所述第二节点在分配的所述随机接入 信道上发送随机接入序列起始资源位置信息, 所述起始资源位置信息为以下 至少之一: 起始资源所在的子帧信息,
起始资源所在的帧信息,
起始资源所在的物理资源块(PRB )信息,
起始资源所在的物理资源块组(PRB组)信息,
起始资源所在的子载波信息。
33、根据权利要求 5所述的随机接入信道资源分配方法,该方法还包括: 在初始接入系统时, 所述第二节点按照以下规则第一次选择覆盖增强等 级:
所述第二节点测量所述第一节点发送的参考信号, 并且根据测量结果以 及系统配置的测量结果与覆盖增强等级的映射表格确定所述第二节点第一次 选择覆盖增强等级。
34、根据权利要求 33所述的随机接入信道资源分配方法, 其中, 所述测 量结果是以下至少之一:
参考信号接收功率(RSRP ) ,
参考信号接收质量(RSRQ ) ,
接收信号强度指示 (RSSI ) ,
所述第二节点与所述第一节点之间的路径损耗值 , 所述下行参考信号的接收信噪比。
35、根据权利要求 5所述的随机接入信道资源分配方法,该方法还包括: 在初始接入系统时, 所述第二节点选择系统配置的最小覆盖增强等级。
36、 根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述由 系统配置具体为以下任一或任意多个:
由标准预定义,
由网络预定义,
由标准配置,
由网络配置, 由网络高层配置。
37、 根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述第 一节点是以下至少之一:
宏基站 (Macrocell ) 、 微基站 ( Microcell ) 、 微微基站 ( Picocell ) 、 毫微微基站(Femtocell ) 、 低功率节点 (LPN )及中继站(Relay ) 。
38、 根据权利要求 1所述的随机接入信道资源分配方法, 其中, 所述第 二节点为以下至少之一:
一个或多个终端,
一个或多个终端组。
39、根据权利要求 38所述的随机接入信道资源分配方法, 其中, 所述终 端是 MTC终端和 /或 MTC覆盖增强的终端。
40、 一种随机接入信道资源分配系统, 包括第一节点和第二节点; 所述第一节点, 设置为: 通过下行信道发送随机接入信道配置信息, 其 中至少包括为第二节点分配的随机接入信道信息。
PCT/CN2014/000524 2013-11-01 2014-05-23 随机接入信道资源分配方法和系统 WO2014183474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/032,315 US10080242B2 (en) 2013-11-01 2014-05-23 Method and system for allocating random access channel resource
EP14798489.2A EP3051897B1 (en) 2013-11-01 2014-05-23 Method and system for allocating random access channel resource

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310536005.1A CN104619025A (zh) 2013-11-01 2013-11-01 随机接入信道资源分配方法和系统
CN201310536005.1 2013-11-01

Publications (1)

Publication Number Publication Date
WO2014183474A1 true WO2014183474A1 (zh) 2014-11-20

Family

ID=51897651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000524 WO2014183474A1 (zh) 2013-11-01 2014-05-23 随机接入信道资源分配方法和系统

Country Status (4)

Country Link
US (1) US10080242B2 (zh)
EP (1) EP3051897B1 (zh)
CN (1) CN104619025A (zh)
WO (1) WO2014183474A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161618A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Corporation Of America Wireless communication method, enodb and user equipment
EP3439336A4 (en) * 2016-03-31 2019-02-06 Fujitsu Limited WIRELESS COMMUNICATION SYSTEM, WIRELESS DEVICE, RELAY NODES AND BASE STATION
EP3490326A4 (en) * 2016-07-22 2020-03-18 LG Electronics Inc. -1- METHOD AND DEVICE FOR TRANSMITTING A DIRECT ACCESS PREAMBLE

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015089743A1 (zh) * 2013-12-17 2015-06-25 华为技术有限公司 上行数据传输的确认装置、设备和方法
US10292143B2 (en) * 2015-04-09 2019-05-14 Intel IP Corporation Methods, apparatuses, and systems for enhancement of evolved physical downlink control channel for machine type communications
CN106304256A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 接入方法和接入装置
US10841910B2 (en) 2015-05-21 2020-11-17 Intel IP Corporation Physical downlink control channel for fifth-generation networks
US10136422B2 (en) * 2015-06-11 2018-11-20 Lg Electronics Inc. Method of receiving downlink signal and apparatus for the same
CN105208635B (zh) * 2015-08-14 2018-09-11 电信科学技术研究院 一种系统信息的读取方法、调度方法及装置
WO2017032701A1 (en) * 2015-08-24 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Method of adapting radio resources, device and computer program
CN106688278A (zh) * 2015-08-31 2017-05-17 华为技术有限公司 一种接入小区的方法、装置及系统
CN106559883A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 消息的资源配置方法及装置
JP6784262B2 (ja) 2015-11-05 2020-11-11 日本電気株式会社 基地局、無線端末、及びこれらの方法
EP3376814A4 (en) * 2015-11-12 2018-10-31 Fujitsu Limited Terminal device, base station device, wireless communication system, and wireless communication method
CN106804043B (zh) * 2015-11-26 2020-12-15 华为技术有限公司 一种上行接入的方法、用户设备和基站
CN106817202B (zh) * 2015-11-30 2020-11-06 华为技术有限公司 随机接入方法及相关设备
CN106961709B (zh) * 2016-01-11 2021-08-03 中兴通讯股份有限公司 一种接入信号的生成方法及装置
US10477540B2 (en) 2016-03-11 2019-11-12 Qualcomm Incorporated Relay for enhanced machine type communication and narrow band-internet of things
US11206688B2 (en) 2016-06-16 2021-12-21 Huawei Technologies Co., Ltd. Network access method for low power terminal, and apparatus
CN107734714B (zh) * 2016-08-12 2023-04-18 中兴通讯股份有限公司 无线通信系统中的随机接入方法和装置、用户终端
CN109155995B (zh) * 2016-08-12 2020-12-04 华为技术有限公司 一种资源指示方法及相关设备
WO2018049654A1 (zh) * 2016-09-18 2018-03-22 富士通株式会社 上行传输配置的配置和获取方法、装置以及通信系统
CN108551666B (zh) * 2016-11-04 2020-06-02 中兴通讯股份有限公司 一种网络选择及接入方法和装置
CN108207027B (zh) 2016-12-20 2021-02-12 华为技术有限公司 一种随机接入方法及设备
CN108401265B (zh) * 2017-02-08 2021-08-17 知鑫知识产权服务(上海)有限公司 一种用于机器对机器通信的随机接入控制方法
CN108633056B (zh) * 2017-03-24 2023-11-10 华为技术有限公司 一种随机接入配置方法及装置
CN108738159B (zh) * 2017-04-13 2021-04-16 普天信息技术有限公司 一种随机接入方法
CN108738134A (zh) * 2017-04-13 2018-11-02 普天信息技术有限公司 一种时分复用随机接入资源选择方法
EP3606265B1 (en) * 2017-04-19 2021-09-08 Huawei Technologies Co., Ltd. Coverage mode identification
JP6921962B2 (ja) * 2017-05-03 2021-08-18 エルジー エレクトロニクス インコーポレイティド ランダムアクセスチャネルを送受信する方法及びそのための装置
WO2018203673A1 (ko) 2017-05-03 2018-11-08 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
CN111386748B (zh) * 2017-11-24 2023-07-25 索尼集团公司 通信方法、终端设备、基站
CN107708132B (zh) * 2017-11-28 2021-01-26 中国联合网络通信集团有限公司 一种尝试接入次数的获取方法和基站
WO2019192011A1 (en) * 2018-04-05 2019-10-10 Nokia Shanghai Bell Co., Ltd. Backup configuration in random access procedure
CN110769435B (zh) * 2018-07-25 2022-08-30 中国电信股份有限公司 通信方法、装置、系统以及计算机可读存储介质
CN111757519B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 通信方法和通信装置
WO2022006916A1 (zh) * 2020-07-10 2022-01-13 北京小米移动软件有限公司 通信方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271418A (zh) * 2011-07-28 2011-12-07 电信科学技术研究院 一种随机接入的方法及装置
CN103220811A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信息处理方法、mtc ue随机接入lte系统的方法
CN103260251A (zh) * 2012-02-17 2013-08-21 华为技术有限公司 数据传输方法、基站及用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120041932A (ko) * 2010-10-22 2012-05-03 한국전자통신연구원 랜덤 액세스 자원 할당을 위한 기지국의 통신 방법 및 랜덤 액세스 자원 할당을 이용한 단말의 통신 방법 및 그 장치
US9232540B2 (en) * 2011-09-30 2016-01-05 Qualcomm Incorporated Random access channel design for narrow bandwidth operation in a wide bandwidth system
JP6082288B2 (ja) * 2012-10-16 2017-02-15 シャープ株式会社 無線通信システム
WO2014069945A1 (ko) * 2012-11-01 2014-05-08 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271418A (zh) * 2011-07-28 2011-12-07 电信科学技术研究院 一种随机接入的方法及装置
CN103220811A (zh) * 2012-01-19 2013-07-24 中兴通讯股份有限公司 信息处理方法、mtc ue随机接入lte系统的方法
CN103260251A (zh) * 2012-02-17 2013-08-21 华为技术有限公司 数据传输方法、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051897A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161618A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Corporation Of America Wireless communication method, enodb and user equipment
RU2679284C1 (ru) * 2015-04-10 2019-02-06 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Способ беспроводной связи, узел enode b и пользовательское оборудование
US10499383B2 (en) 2015-04-10 2019-12-03 Panasonic Intellectual Property Corporation Of America Wireless communication method, enode B, and user equipment
US11012991B2 (en) 2015-04-10 2021-05-18 Panasonic Intellectual Property Corporation Of America Wireless communication method, eNode B, and user equipment
US11659561B2 (en) 2015-04-10 2023-05-23 Panasonic Intellectual Property Corporation Of America Wireless communication method, eNode B, and user equipment
EP3439336A4 (en) * 2016-03-31 2019-02-06 Fujitsu Limited WIRELESS COMMUNICATION SYSTEM, WIRELESS DEVICE, RELAY NODES AND BASE STATION
EP3490326A4 (en) * 2016-07-22 2020-03-18 LG Electronics Inc. -1- METHOD AND DEVICE FOR TRANSMITTING A DIRECT ACCESS PREAMBLE

Also Published As

Publication number Publication date
US20160286580A1 (en) 2016-09-29
EP3051897A4 (en) 2016-10-05
EP3051897A1 (en) 2016-08-03
EP3051897B1 (en) 2020-04-01
US10080242B2 (en) 2018-09-18
CN104619025A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014183474A1 (zh) 随机接入信道资源分配方法和系统
US11388720B2 (en) Methods and apparatus for user equipment capability exchange
US10849166B2 (en) Random access procedures in Next Gen networks
JP6198950B2 (ja) ランダムアクセスチャネルリソース設定方法及びシステム
US20180242309A1 (en) System and Method for Small Traffic Transmissions
CN105992383B (zh) 随机接入响应消息发送方法和节点
CN105453676B (zh) 设备到设备通信中开放发现的资源分配的系统和方法
US20160345325A1 (en) Information transmission and acquisition method, access method, node, system and medium
TW202201920A (zh) 在共享通訊媒體上傳呼使用者設備
KR20180048903A (ko) 공유 통신 매체에서의 제어 시그널링
KR102249733B1 (ko) 무선 통신 시스템에서 단말 간 디스커버리 방법
WO2014177092A1 (zh) 随机接入响应消息的处理方法、第一节点
EP3925349A1 (en) Time resources for new radio configured uplink (ul)
CN105338589A (zh) 随机接入响应消息的传输方法及装置
CN104184548A (zh) 随机接入序列传输方法和装置
JP2016518083A (ja) ランダムアクセス方法及びシステム
US10476834B2 (en) System and method for random access
JP7247372B2 (ja) ランダムアクセスのための方法および装置
US11357055B2 (en) NPRACH formats for NB-IoT transmission in TDD mode
US20210058976A1 (en) Random access channel access and validity procedures
CN113545153A (zh) 用于随机接入过程的方法、终端设备和基站
WO2021001770A1 (en) Frequency domain resource allocation for interlaced transmission
WO2020231316A1 (en) Methods, ue and network node for handling a bandwidth part configuration
EP4055976B1 (en) Two-step rach transmissions using guard band in unlicensed spectrum
US9084278B2 (en) Scheduling method, MS apparatus using the scheduling method, data transmission method, and BS apparatus using the data transmission method in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15032315

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014798489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014798489

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE