CN111757519B - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
CN111757519B
CN111757519B CN201910253504.7A CN201910253504A CN111757519B CN 111757519 B CN111757519 B CN 111757519B CN 201910253504 A CN201910253504 A CN 201910253504A CN 111757519 B CN111757519 B CN 111757519B
Authority
CN
China
Prior art keywords
channel
channels
information
time period
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910253504.7A
Other languages
English (en)
Other versions
CN111757519A (zh
Inventor
邵家枫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201910253504.7A priority Critical patent/CN111757519B/zh
Priority to PCT/CN2020/081175 priority patent/WO2020200012A1/zh
Publication of CN111757519A publication Critical patent/CN111757519A/zh
Application granted granted Critical
Publication of CN111757519B publication Critical patent/CN111757519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,能够应用于5G移动通信系统中的不按顺序调度场景。该方法包括:当网络设备先后发送了两个下行信道,但这两个下行信道对应的上行信道的时序与这两个下行信道的时序相反时,终端设备确定当前处于不按顺序调度的场景,并根据预设规则确定优先处理的下行信道或者上行信道。应用上述方法的终端设备能够根据实际情况确定不同场景中需要被优先处理的信道,相比于现有技术中一律处理时间上后调度的信道的方法,本申请提供的通信方法能够满足紧急数据或者更重要数据的传输需求,从而能够提高重要紧急数据的传输效率。

Description

通信方法和通信装置
技术领域
本申请涉及通信领域,尤其涉及通信领域中的一种通信方法和一种通信装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。5G移动通信系统需要支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。
不同业务对移动通信系统的需求不同。例如,典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性。
目前,终端设备按照时间次序处理业务,即,先处理先到的信道,等先到的信道处理完成后再处理后到的信道。但在一些情况下,为了满足URLLC业务的低时延的要求,即使承载URLLC业务的信道在承载eMBB业务的信道之后被调度,承载URLLC业务的信道也需要先于承载eMBB业务的信道被处理,这种业务处理方式被称为不按顺序(out of order)调度。如何在复杂多变的5G通信系统中实现不按顺序调度是一个亟待解决的问题。
发明内容
本申请提供了一种通信方法和一种通信装置,能够应用于5G移动通信系统中的不按顺序调度场景。
第一方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的模块(如芯片)执行。该方法包括:在第一时段内接收第一下行信道,第一下行信道与第一上行信道之间存在对应关系,第一上行信道占用第四时段,第四时段位于所述第一时段之后;在第二时段内接收第二下行信道,第二下行信道与第二上行信道之间存在对应关系,第二上行信道占用第三时段,第二时段位于第一时段之后且位于第三时段之前,第三时段位于第四时段之前;根据预设规则从第一信道集合中确定优先处理的第一目标信道,第一信道集合包括第一下行信道和第二下行信道,或者,第一信道集合包括第一上行信道和第二上行信道。
应用上述方法的终端设备能够根据实际情况确定不同场景中需要被优先处理的信道,相比于现有技术中一律处理时间上后调度的信道的方法,本申请提供的通信方法能够满足紧急数据或者更重要数据的传输需求,从而能够提高重要紧急数据的传输效率。
可选地,所述预设规则包括以下信息中的至少一种:第一信道集合中信道对应的下行控制信道指示的优先级信息或第一信道集合中信道指示的优先级信息;第一信道集合中信道对应的时频资源;第一信道集合中信道对应的层数;第一信道集合中信道对应的误块率;第一信道集合中信道承载的传输块大小TBS;第一信道集合中信道承载的上行控制信息UCI的类型;第一信道集合中信道对应的下行控制信道指示的混合自动重传请求HARQ进程号;第一信道集合中信道对应的传输次数;第一下行信道的时域位置与所述第二下行信道的时域位置;第一上行信道的时域位置与所述第二上行信道的时域位置。
可选地,第一信道集合还包括第三下行信道,所述方法还包括:在第五时段内接收第三下行信道,第三下行信道与第三上行信道之间存在对应关系,第三上行信道占用第六时段,第五时段位于第二时段之前且位于第六时段之前,第六时段位于第三时段之后;根据预设规则从第一信道集合中除第一目标信道之外的信道中确定优先处理的第二目标信道。
当存在多个下行信道时,上述方案使得终端设备可以根据自身能力确定是否处理多个信道,而非仅处理时间上后调度的信道,从而能够提高资源效率。
可选地,第一信道集合中除第一目标信道之外的信道为其它信道,所述预设规则包括以下信息中的至少一种:其它信道中信道对应的下行控制信道指示的优先级信息或其它信道中信道指示的优先级信息;其它信道中信道对应的时频资源;其它信道中信道对应的层数;其它信道中信道对应的误块率;其它信道中信道承载的TBS;其它信道中信道承载的UCI的类型;其它信道中信道对应的下行控制信道指示的HARQ进程号;其它信道中信道对应的传输次数;其它信道中信道对应的时域位置。
可选地,上述预设规则包括:其它信道中信道对应的第一信息的取值之和与第一信息的阈值的差值最小的信道为优先处理的信道;第二目标信道为其它信道中满足预设规则的M个信道,M个信道对应的第一信息的取值之和小于第一信息的阈值,M为正整数,第一信息包括以下信息中的至少一种:时频资源、层数和TBS。
上述方案使得终端设备能够在不超出自身处理能力的前提下,尽可能多地处理信道,从而提高了资源效率。
可选地,预设规则包括:其它信道中信道对应的第一信息的取值与第一信息的阈值的差值最大或最小的信道为优先处理的信道,第一信息包括以下信息中的至少一种:时频资源、层数和TBS;第二目标信道为其它信道中满足预设规则的M个信道,M个信道对应的参数小于参数的阈值,M为正整数。
上述方案具有简单易实施的特点,能够减小终端设备在确定第二目标信息时的负担。
可选地,所述方法还包括:接收第一配置信息或第二配置信息,第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
上述方案的优点在于:当多个网络设备之间的回程为理想回程时,或者,当终端设备对应一个网络设备时,时域位置靠后的信道必然承载或调度了重要数据,应用时域位置靠后的信道的优先级较高规则能够避免重要数据被跳过。当多个网络设备之间的回程为非理想回程时,时域位置靠后的信道并不一定承载或调度了重要数据,终端设备根据其它规则判断优先处理的信道,有利于终端设备确定承载更重要信息的信道,有利于提高通信资源的效率。
可选地,所述方法还包括:发送能力信息,能力信息用于指示终端设备是否支持不按顺序传输。
该方案使得网络设备能够根据终端设备的能力进行调度,避免出现终端设备不支持不按顺序传输却接收到不按顺序调度的信息而导致传输失败的情况。
可选地,所述方法还包括:接收第三配置信息,第三配置信息用于配置终端设备是否能够执行不按顺序传输。
若终端设备具有执行不按顺序调度的能力,网络设备可以根据实际情况使能或者去使能该能力。例如,终端设备的电量不足,或者,终端设备当前的负载较重,执行不按顺序调度可能会加大终端设备的电量消耗和负载。网络设备可以通过第三配置信息去使能终端设备的不按顺序调度的能力,从而能够有效提高终端设备的续航能力和可靠性。
可选地,不按顺序传输包括:下行数据信道到HARQ信息的不按顺序传输,和/或,下行控制信道到上行数据信道的不按顺序传输。
终端设备可以进一步在能力信息中指示其支持的具体能力,以便于网络设备更加精准地进行调度。
第二方面,本申请还提供了一种通信方法,该方法可以由网络设备或者网络设备中的模块(如芯片)执行。该方法包括:在第一时段内发送第一下行信道,第一下行信道与第一上行信道之间存在对应关系,第一上行信道占用第四时段,第四时段位于第一时段之后;在第二时段内发送第二下行信道,第二下行信道与第二上行信道之间存在对应关系,第二上行信道占用第三时段,第二时段位于第一时段之后且位于第三时段之前,第三时段位于第四时段之前;根据预设规则从第一信道集合中确定第一目标信道,第一信道集合包括第一下行信道和第二下行信道,或者,第一信道集合包括第一上行信道和第二上行信道;接收第一目标信道或者第一目标信道对应的HARQ信息。
应用上述方法的网络设备能够根据实际情况确定不同场景中待接收的信道(即,需要被终端设备优先处理的信道),相比于现有技术中一律接收时间上后调度的信道(或,该信道对应的HARQ信息)的方法,上述方法能够满足紧急数据或者更重要数据的传输需求,从而能够提高重要紧急数据的传输效率。
可选地,第一信道集合中除第一目标信道之外的信道为其它信道,所述方法还包括:接收其它信道中部分或全部信道对应的HARQ信息,其它信道中部分或全部信道对应的HARQ信息为NACK。
若终端设备有能力处理多个信道,则网络设备可以接收除第一目标信道之外的信道,无需重传或者重新调度除第一目标信道之外的信道,从而能够提供资源效率。
可选地,所述预设规则包括以下信息中的至少一种:第一信道集合中信道对应的优先级标识;第一信道集合中信道对应的时频资源;第一信道集合中信道对应的层数;第一信道集合中信道对应的误块率;第一信道集合中信道承载的TBS;第一信道集合中信道承载的UCI的类型;第一信道集合中信道对应的HARQ进程号;第一信道集合中信道对应的传输次数;第一下行信道的时域位置与第二下行信道的时域位置;第一上行信道的时域位置与第二上行信道的时域位置。
可选地,第一信道集合还包括第三下行信道,所述方法还包括:在第五时段内发送第三下行信道,第三下行信道与第三上行信道之间存在对应关系,第三上行信道占用第六时段,第五时段位于第二时段之前且位于第六时段之前,第六时段位于第三时段之后;根据预设规则从第一信道集合中除第一目标信道之外的信道中确定第二目标信道;接收第二目标信道或者第二目标信道对应的HARQ信息。
当存在多个下行信道时,上述方案使得网络设备能够根据终端设备的能力确定是否接收第二目标信道或者第二目标信道对应的HARQ信息,而非仅接收第一目标信道,从而能够提高资源效率。
可选地,第一信道集合中除第一目标信道之外的信道为其它信道,所述预设规则包括以下信息中的至少一种:其它信道中信道对应的优先级标识;其它信道中信道对应的时频资源;其它信道中信道对应的层数;其它信道中信道对应的误块率;其它信道中信道承载的TBS;其它信道中信道承载的UCI的类型;其它信道中信道对应的HARQ进程号;其它信道中信道对应的传输次数;其它信道中信道对应的时域位置。
可选地,所述预设规则包括:其它信道中信道对应的第一信息的取值之和与第一信息的阈值的差值最小的信道为优先处理的信道;第二目标信道为其它信道中满足预设规则的M个信道,M个信道对应的第一信息的取值之和小于第一信息的阈值,M为正整数,第一信息包括以下信息中的至少一种:时频资源、层数和TBS。
上述方案使得网络设备能够在终端设备不超出自身处理能力的前提下,尽可能多地接收信道,从而提高了资源效率。
可选地,所述预设规则包括:其它信道中信道对应的第一信息的取值与第一信息的阈值的差值最大或最小的信道为优先处理的信道,第一信息包括以下信息中的至少一种:时频资源、层数和TBS;第二目标信道为其它信道中满足预设规则的M个信道,M个信道对应的参数小于参数的阈值,M为正整数。
上述方案具有简单易实施的特点,能够减小网络设备在确定第二目标信息时的负担。
可选地,所述方法还包括:发送第一配置信息或第二配置信息,第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
上述方案的优点在于:当多个网络设备之间的回程为理想回程时,或者,当终端设备对应一个网络设备时,时域位置靠后的信道必然承载或调度了重要数据,应用时域位置靠后的信道的优先级较高规则能够避免重要数据被跳过。当多个网络设备之间的回程为非理想回程时,时域位置靠后的信道并不一定承载或调度了重要数据,网络设备根据其它规则判断终端设备优先处理的信道,有利于接收承载更重要信息的信道,有利于提高通信资源的效率。
可选地,所述方法还包括:接收能力信息,能力信息用于指示终端设备是否支持不按顺序传输。
该方案使得网络设备能够根据终端设备的能力进行调度,避免出现终端设备不支持不按顺序传输却接收到不按顺序调度的信息而导致传输失败的情况。
可选地,所述方法还包括:发送第三配置信息,第三配置信息用于配置终端设备是否能够执行不按顺序传输。
若终端设备具有执行不按顺序调度的能力,网络设备可以根据实际情况使能或者去使能该能力。例如,终端设备的电量不足,或者,终端设备当前的负载较重,执行不按顺序调度可能会加大终端设备的电量消耗和负载。网络设备可以通过第三配置信息去使能终端设备的不按顺序调度的能力,从而能够有效提高终端设备的续航能力和可靠性。
可选地,不按顺序传输包括:下行数据信道到HARQ信息的不按顺序传输,和/或,下行控制信道到上行数据信道的不按顺序传输。
终端设备可以进一步在能力信息中指示其支持的具体能力,以便于网络设备更加精准地进行调度。
第三方面,本申请提供了一种通信装置,该装置可以实现上述第一方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与网络设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第四方面,本申请提供了另一种通信装置,该装置可以实现上述第二方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与终端设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面所述的方法。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第二方面所述的方法。
第七方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面所述的方法。
第八方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第二方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是另一种适用于本申请的通信系统的示意图;
图3是本申请提供的一种信息传输的方法的示意图;
图4是本申请提供的一种不按顺序调度的场景的示意图;
图5是本申请提供的另一种不按顺序调度的场景的示意图;
图6是本申请提供的再一种不按顺序调度的场景的示意图;
图7是本申请提供的再一种不按顺序调度的场景的示意图;
图8是本申请提供的再一种不按顺序调度的场景的示意图;
图9是本申请提供的再一种不按顺序调度的场景的示意图;
图10是本申请提供的再一种不按顺序调度的场景的示意图;
图11是本申请提供的再一种不按顺序调度的场景的示意图;
图12是本申请提供的再一种不按顺序调度的场景的示意图;
图13是本申请提供的再一种不按顺序调度的场景的示意图;
图14是本申请提供的一种通信方法的示意图;
图15是本申请提供的一种通信装置的示意图;
图16是本申请提供的一种终端设备的示意图;
图17是本申请提供的一种网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信,即,终端设备120可以发送数据给网络设备110,网络设备110也可以发送数据给终端设备120。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的用户设备(userequipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等,应用于上述设备中的芯片也可以称为终端设备。
网络设备110可以是3GPP所定义的基站,例如,5G通信系统中的基站(newgeneration node B,gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备,应用于上述设备中的芯片也可以称为网络设备。
作为示例而非限定,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图2示出了适用于本申请的另一种通信系统。
在通信系统200中,基站210为网络设备110的一种形态,UE1~UE6为终端设备120的六种不同的形态。其中,UE1为轨道交通系统中的通信设备,UE2为机顶盒,UE3为智能加油设备或者智能充电桩,UE4为智能杯子,UE5为手机,UE6为智能打印机。UE4、UE5和UE6之间可以组成一个局域网,此时,UE5可以作为该局域网中的网络设备,UE4和UE6可以作为该局域网中的终端设备。
图1和图2所示的通信系统仅是举例说明,适用于本申请的通信系统不限于此。
在通信系统100中,终端设备120向网络设备110发送数据的过程可以称为上行传输,网络设备110向终端设备120发送数据的过程可以称为下行传输。为了简洁,下文中的终端设备和网络设备不再附带附图标记。
对于上行传输,如果该上行传输是基于动态调度的,那么如图3所示,终端设备会接收到网络设备发送的下行控制信息(downlink control information,DCI),该DCI携带指示物理上行共享信道(physical uplink shared channel,PUSCH)占用的时域资源、频域资源、调制方式等指示信息。终端设备接收到DCI,就可以确定在哪个时域资源和频域资源上发送PUSCH,进而执行发送PUSCH的准备步骤。准备步骤一般包括:对信息的编码、调制、资源映射和傅里叶变换等。最终,终端设备在DCI指示的时域资源和频域资源上发送准备好的PUSCH。由此可见,在接收物理下行控制信道(physical downlink control channel,PDCCH)之后,终端设备需要一段时间才能够发送PUSCH,这段时间被称为准备时间。
需要说明的是,PDCCH通常情况下只用于承载DCI,PDCCH相当于载体,其承载的内容为DCI,因为PDCCH和DCI是一一对应,所以接收PDCCH与接收DCI的描述是等价的。类似地,数据信道(例如,PUSCH)通常用于承载业务数据(例如,eMBB业务和URLLC业务),因此,接收或发送数据信道与接收或发送业务数据的描述也是等价的。
对于下行传输,如果该下行传输是基于动态调度的,那么如图3所示,终端设备会接收到网络设备发送的DCI,该DCI携带指示物理下行共享信道(physical downlinkshared channel,PUSCH)占用的时域资源、频域资源、调制方式等指示信息。终端设备接收DCI之后,会对PDSCH进行解码处理,解码处理的过程一般包括:资源解映射、反傅里叶变换、解调和解编码等。最终解编码的结果正确就是接收正确,如果结果错误就是接收失败。由此可见,接收DCI之后,终端设备需要一段时间才能够确定PDSCH是否接收正确,这段时间被称为解码时间。
上述DCI还携带指示上行资源的指示信息,该上行资源例如是物理上行控制信道(physical uplink control channel,PUCCH),该PUCCH用于承载PDSCH对应的混合自动重传请求(hybrid automatic repeat request,HARQ)信息。终端设备对PDSCH进行解码处理之后,将解编码的结果通过DCI指示的上行资源反馈给网络设备。其中,如果接收正确,则反馈信息为肯定应答(acknowledgement,ACK);如果接收错误,则反馈信息为否定应答(negativeacknowledgement,NACK),ACK和NACK统称为HARQ信息。一般情况下,终端设备都会反馈PDSCH对应的HARQ信息,以便于网络设备在获知终端设备接收错误后可以快速进行重传。
为了减小终端设备处理信息的复杂程度,通常情况下,网络设备会按照顺序调度各个信道,以便于终端设备在处理完一个信道后再处理下一个信道。但是,在一些特殊场景中,存在不按顺序调度的需求。
例如,当网络设备需要传输URLLC业务的数据包(简称为“URLLC数据”)时,网络设备希望尽快确定URLLC数据是否接收正确,这时,网络设备会指示终端设备尽快反馈URLLC数据的HARQ信息。
如图4所示,PDSCH-1承载eMBB业务的数据包(简称为“eMBB数据”),PDSCH-2承载URLLC数据。为了尽快确定PDSCH-2承载URLLC数据是否接收正确,网络设备调度终端设备在反馈eMBB数据的HARQ信息(即,HARQ-1)之前反馈URLLC数据的HARQ信息(即,HARQ-2),此时,终端设备需要中断PDSCH-1的解码过程,先进行PDSCH-2的解码过程。
此外,还存在另外一种不按顺序调度的场景。
如图5所示,PDCCH-1调度PUSCH-1,PDCCH-2调度PUSCH-2,其中,PUSCH-1承载eMBB数据,PUSCH-2承载URLLC数据。为了尽快接收终端设备传输的URLLC数据,网络设备调度终端设备在发送PUSCH-1之前发送PUSCH-2。终端设备需要中断PUSCH-1的准备过程,先进行PUSCH-2的准备过程。
图4所示的情况可以称为下行数据信道到HARQ信息的不按顺序调度(或“不按顺序传输”),图5所示的情况可以称为下行控制信道到上行数据信道的不按顺序调度(或“不按顺序传输”)。
需要说明的是,图4和图5所示的场景仅是不按顺序调度的两个示例,适用于本申请的不按顺序调度的场景不限于此。例如,适用于本申请的不按顺序调度的场景还可以是:网络设备不按顺序调度至少两个承载eMBB数据的PDSCH,或者,网络设备不按顺序调度至少两个承载eMBB数据的PDSCH和至少一个承载URLLC数据的PDSCH。
上文所示的例子均为理想回程场景中的不按顺序调度。图6示出了非理想回程场景中的一种不按顺序调度。
终端设备分别与多发射接收节点(transmit/receive point,TRP)1和TRP2进行通信。TRP1和TRP2可以是分别属于两个基站的收发装置,TRP1和TRP2也可以是属于一个基站的收发装置,TRP1和TRP2通过光纤或者其它传输介质连接。
若TRP1和TRP2之间存在较大的通信时延,可以认为两个TRP不能做到实时交互信息,则TRP1和TRP2处于非理想回程场景。在该情况下,即使TRP1和TRP2属于一个网络设备,由于两个TRP之间不清楚对方的调度情况,所以也会出现不按顺序调度的情况。此时,TRP1和TRP2可以视为两个网络设备。若TRP1和TRP2之间存在较小的通信时延,可以认为两个TRP可以做到实时交互信息,则TRP1和TRP2处于理想回程场景。在该情况下,即使TRP1和TRP2分别属于不同的网络设备,TRP1和TRP2可以被视为一个网络设备。但由于URLLC的低时延需求,也可能出现不按顺序调度的情况。
若TRP1和TRP2之间的连接为非理想回程连接,则TPR2在时隙1内调度eMBB数据1时,不能及时获取TPR1在时隙0中已调度了eMBB数据2的信息,因此,TPR2可能会调度终端设备在时隙3内上传eMBB数据2的HARQ信息。实际上,TPR1已经调度了终端设备在时隙4内上传eMBB数据1的HARQ信息,从而导致了终端设备发生不按顺序调度的情况。
类似地,在TRP1和TRP2之间的连接为非理想回程连接的情况下,TPR2可能会调度终端设备在时隙3内上传eMBB数据的HARQ信息。实际上,TPR1已经调度了终端设备在时隙4内上传URLLC数据的HARQ信息,如图7所示,这也导致了不按顺序调度的情况。
上文所示的例子均为包含两个下行数据信道的不按顺序调度。图8示出了一种包含三个下行数据信道的不按顺序调度。
在TRP1和TRP2之间的连接为理想回程连接的情况下,或者,在终端设备与一个TRP通信的情况下,调度eMBB数据的TRP已经调度了终端设备在时隙4的后半部分上传eMBB数据的HARQ信息,则调度URLLC数据的TRP会调度终端设备在时隙4的前半部分上传URLLC数据的HARQ信息,从而导致了不按顺序调度的情况。
在TRP1和TRP2之间的连接为非理想回程连接的情况下,TPR1可能会调度终端设备在时隙4的前半部分上传eMBB数据1和eMBB数据2的HARQ信息。实际上,TPR2已经调度了终端设备在时隙4的后半部分上传URLLC数据的HARQ信息,如图9所示,这也导致了不按顺序调度的情况。
图8和图9示出了包含一个承载URLLC数据的PDSCH的不按顺序调度,适用于本申请的不按顺序调度还可以包含多个承载URLLC数据的PDSCH。此外,图5至图9均为PDSCH到HARQ信息(PDSCH to HARQ)的不按顺序调度,下面再结合图10至图13介绍PDCCH到PUSCH(PDCCHto PUSCH)的不按顺序调度。
如图10所示,TRP1和TRP2之间的连接为非理想回程连接,TPR2在时隙1内调度承载eMBB数据2时,不能及时获取TPR1在时隙0中已调度了eMBB数据1的信息,因此,TPR2可能会调度终端设备在时隙3内发送承载eMBB数据2的PUSCH。实际上,TPR1已经调度了终端设备在时隙4内发送eMBB数据1的PUSCH,从而导致了不按顺序调度的情况。
类似地,在TRP1和TRP2之间的连接为非理想回程连接的情况下,TPR2可能会调度终端设备在时隙3内发送承载eMBB数据的PUSCH。实际上,TPR1已经调度了终端设备在时隙4内发送承载URLLC数据的PUSCH,如图11所示,这也导致了不按顺序调度的情况。
图12示出了一种包含三个下行数据信道的不按顺序调度。在TRP1和TRP2之间的连接为理想回程连接的情况下,或者,在终端设备与一个TRP通信的情况下,调度eMBB数据的TRP已经调度了终端设备在时隙4的后半部分上传eMBB数据的HARQ信息,则调度URLLC数据的TRP会调度终端设备在时隙4的前半部分上传URLLC数据的HARQ信息,从而导致了不按顺序调度的情况。
在TRP1和TRP2之间的连接为非理想回程连接的情况下,TPR1可能会调度终端设备在时隙4的前半部分上传eMBB数据1和eMBB数据2的HARQ信息。实际上,TPR2已经调度了终端设备在时隙4的后半部分上传URLLC数据的HARQ信息,如图13所示,这也导致了不按顺序调度的情况。
图6至图13中的虚线箭头表示对应关系,实线箭头表示信息传输方向。
由上可知,不按顺序调度的情况复杂多样,后调度的数据并不一定是重要数据,为此,本申请提供了一种通信方法,能够应用于不按顺序调度的场景。
如图14所示,该方法100包括:
S110,终端设备在第一时段内接收第一下行信道,第一下行信道与第一上行信道之间存在对应关系,第一上行信道占用第四时段,第四时段位于所述第一时段之后。
S120,终端设备在第二时段内接收第二下行信道,第二下行信道与第二上行信道之间存在对应关系,第二上行信道占用第三时段,第二时段位于第一时段之后且位于第三时段之前,第三时段位于第四时段之前。
可选地,本申请中下行信道与上行信道之间存在对应关系可以理解为:下行信道为PDSCH,上行信道为承载该PDSCH的HARQ信息的上行信道。其中上行信道为PUCCH或PUSCH。
可选的,本申请中下行信道与上行信道之间存在对应关系可以理解为:下行信道为PDCCH,上行信道为该PDCCH指示的上行信道。其中上行信道为PUCCH或PUSCH。该PDCCH承载的信息指示了该上行信道的资源信息等
第一时段可以是一个时隙(slot),也可以是一个半个时隙或者一个或多个符号。类似地,第二时段、第三时段和第四时段也可以是任意长度的时间,本申请这些时段的长度不作限定。
第一时段位于第二时段之前,可以被解释为以下一种或多种情况的组合:第一时段的起始时域位置位于第二时段的起始时域位置之前,第一时段的终止时域位置位于第二时段的终止时域位置之前,第一时段的终止时域位置位于第二时段的起始时域位置之前。其中,时域位置可以是符号,半时隙,或者时隙。以第一时段位于第二时段均为时隙为例,第一时段的起始时域符号位于第二时段的起始时域符号之前,即,第一时段位于第二时段之前,第二时段与第一时段可以存在重叠的时域符号,也可以不存在重叠的时域符号。本段的解释适用于本申请中其它关于时域位置先后顺序的描述。
终端设备先收到第一下行信道,后收到第二下行信道,由于第一下行信道对应的第一上行信道的时域位置(第四时段)位于第二下行信道对应的第二上行信道的时域位置(第三时段)之后,因此,终端设备确定当前场景属于不按顺序调度场景。
作为一个可选的示例,第一下行信道和第二下行信道可以是下行数据信道,例如,该两个下行信道均为PDSCH。相应地,第一上行信道和第二上行信道为传输HARQ信息的信道,例如,该两个上行信道均为PUCCH。
作为另一个可选的示例,第一下行信道和第二下行信道可以是下行控制信道,例如,该两个下行信道均为PDCCH。相应地,第一上行信道和第二上行信道为传输上行业务数据的信道,例如,该两个上行信道均为PUSCH。
适用于本申请的信道不限于上述两个示例,例如,当第一上行信道和第二上行信道为传输HARQ信息的信道时,第一上行信道和第二上行信道还可以是PUSCH;第一上行信道和第二上行信道还可以是一个PUSCH和一个PUCCH。
终端设备接收第一下行信道和第二下行信道之后,即可执行下述步骤。
S130,终端设备根据预设规则从第一信道集合中确定优先处理的第一目标信道,第一信道集合包括第一下行信道和第二下行信道,或者,第一信道集合包括第一上行信道和第二上行信道。
相应地,网络设备可以执行S131,S131包括:
网络设备根据预设规则从第一信道集合中确定第一目标信道,第一信道集合包括第一下行信道和所述第二下行信道,或者,第一信道集合包括第一上行信道和第二上行信道。
当第一下行信道和第二下行信道为PDSCH时,终端设备从第一下行信道和第二下行信道中确定第一目标信道,即,优先处理的信道。此处的优先处理可以被解释为:优先解码第一目标信道。若第一目标信道为第一下行信道,则解码第一下行信道,可以缓存第二下行信道或跳过解码第二下行信道或跳过解码第二下行信道中的部分信息;若第一目标信道为第二下行信道,则解码第二下行信道,可以缓存第一下行信道或跳过解码第一下行信道或跳过解码第一下行信道中的部分信息。
以图6为例,TRP1调度的PDSCH为第一下行信道,TRP2调度的PDSCH为第二下行信道,位于时隙3内的HARQ信息承载于第二上行信道,位于时隙4内的HARQ信息承载于第一上行信道。若TRP1调度的PDSCH占用的资源较大,为了避免跳过该PDSCH导致通信系统传输资源的效率降低,终端设备可以确定TRP1调度的PDSCH为第一目标信道(即,预设规则为占用资源较大的信道优先被处理),缓存第二下行信道或者跳过解码第二下行信道或者跳过解码第二下行信道的部分信息。一种可能的实现方法,终端设备在时隙3内向TRP2发送HARQ,所述HARQ包括第二下行信道的传输块对应的NACK,之后,终端设备等待TRP2对第二下行信道进行重传。另一种可能的实现方法,终端设备在时隙3内向TRP2发送HARQ,所述HARQ包括第二下行信道的部分码块组对应的NACK之后,终端设备等待TRP2对第二下行信道的部分码块组进行重传。
当第一下行信道和第二下行信道为PDCCH时,终端设备从第一上行信道和第二上行信道中确定第一目标信道。若第一目标信道为第一上行信道,则执行发送第一上行信道的准备过程,可以不执行发送第二上行信道的准备过程,或者,稍后执行发送第二上行信道的准备过程;若第一目标信道为第二上行信道,则执行发送第二上行信道的准备过程,可以不执行发送第一上行信道的准备过程,或者,稍后执行发送第一上行信道的准备过程。
以包括单TRP的图12为例,该TRP在时隙1内发送的DCI相当于第一下行信道,第一下行信道对应的优先级标识为0,该TRP在时隙2内发送的DCI相当于第二下行信道,第二下行信道对应的优先级标识为3,时隙4中,URLLC数据对应的PUSCH为第二上行信道,eMBB数据2对应的PDSCH为第一上行信道(即,预设规则为承载优先级标识小的信道优先被处理,这里优先级标识越小代表越紧急或重要)。由于时隙2中的DCI调度的数据为URLLC数据,因此,终端设备确定URLLC数据对应的PUSCH为第一目标信道,执行发送URLLC数据的准备过程。待URLLC数据发送完成后,终端设备可以执行发送eMBB数据2的准备过程,或者,终端设备请求或等待网络设备重新分配用于传输eMBB数据2的传输资源。
终端设备确定第一目标信道之后,可以执行下列步骤。
S140,发送第一目标信道或者第一目标信道对应的HARQ信息。
相应地,网络设备接收第一目标信道或者第一目标信道对应的HARQ信息。
由上可知,应用方法100的终端设备能够根据实际情况确定不同场景中需要被优先处理的信道,相比于现有技术中一律处理时间上后调度的信道的方法,方法100能够满足紧急数据或者更重要数据的传输需求,从而能够提高重要紧急数据的传输效率。
可选地,方法100中的预设规则包括以下信息中的至少一种:
A1,第一信道集合中信道对应的下行控制信道指示的优先级信息或第一信道集合中信道指示的优先级信息;
A2,第一信道集合中信道对应的时频资源;
A3,第一信道集合中信道对应的层数;
A4,第一信道集合中信道对应的误块率;
A5,第一信道集合中信道承载的传输块大小(transport control size,TBS);
A6,第一信道集合中信道承载的上行控制信息(uplink control information,UCI)的类型;
A7,所述第一信道集合中信道对应的下行控制信道指示的HARQ进程号;
A8,所述第一信道集合中信道对应的传输次数;
A9,所述第一下行信道的时域位置与所述第二下行信道的时域位置;
A10,所述第一上行信道的时域位置与所述第二上行信道的时域位置。
上述十种信息中,每个信息对应一条预设规则,下面,将详细介绍这些预设规则。需要说明的是,下文已尽量列举出不同场景中的规则,通过前文描述可以发现本申请可以应用在两种不按顺序调度的两种场景下,下文示例中以PDSCH进行描述的,也可以适用于PUSCH的不按顺序调度时的处理方式,只需要把PDSCH替换成PUSCH,即PUSCH的不按顺序调度属于本申请的保护范围。
A1。
作为一种可选的实施方式,网络设备可以通过PDCCH指示信道的优先级。可选的,PDCCH中DCI的优先级比特域指示的标识用于信道的优先级,此比特指示域可以为1bit,2bit,或3bit,其中一种比特状态值对应一个优先级的标识。不同的优先级对应不同的优先级标识,例如,网络设备预先为终端设备配置了2到8个优先级。其中,如果配置了8个优先级,那么该8个优先级对应的优先级标识可以为0,1,2,3,4,5,6,7。终端设备根据PDCCH指示信道的优先级,确定信道的优先级。
优先级标识对应的优先级高低可以预先设置。一种可选的预设规则是:优先级标识越小,优先级越高。另一种可选的预设规则是:优先级标识越大,优先级越高。
以图8为例,时隙0中的PDSCH对应的优先级标识为5,时隙1中的PDSCH对应的优先级标识为6,时隙2中的PDSCH对应的优先级标识为0。若优先级标识越小,优先级越高,则终端设备优先处理时隙2中的PDSCH。终端设备还可以选择在时隙2中的PDSCH处理完成后,再处理时隙0中的PDSCH。若终端设备的处理能力还有剩余,还可以随后处理时隙1中的PDSCH。终端设备也可以在处理时隙2中的PDSCH之后,由于处理能力不足跳过处理时隙1中的PDSCH和/或时隙0中的PDSCH,并通过HARQ信息进行反馈之后,等待网络设备重传该PDSCH。终端设备也可以在处理时隙2中的PDSCH之后,由于处理能力不足跳过处理时隙1中的PDSCH的部分码块组和/或时隙0中的PDSCH的部分码块组,并通过HARQ信息进行反馈之后,等待网络设备重传该PDSCH的部分码块组。
因此,根据优先级标识确定优先处理的信道能够避免重要的信道被跳过。此外,在终端设备的处理能力有剩余的情况下,可以最大限度避免网络设备再次消耗系统资源重传非重要数据,从而提高了通信系统传输资源的效率。
上述优先级标识可以是传输配置指示(transmission configurationindicator,TCI)和/或控制资源集(control resource set,CORESET)标识,和/或优先级比特域指示的标识。
一个TCI包含一个准共址(quasi co-location,QCL)关系,这个关系是一个或两个下行参考信号与PDSCH的解调参考信号(demodulation reference signal,DMRS)之间的对应关系。TCI可以是由PDCCH中的DCI通知的,也可以由高层信令配置的,也可以是由PDCCH所在的CORESET确定的。高层协议层为物理层以上的每个协议层中的至少一个协议层。其中,高层协议层具体可以为以下协议层中的至少一个:媒体接入控制(Medium AccessControl,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据会聚协议(PacketData Convergence Protocol,PDCP)层、无线资源控制(Radio Resource Control,RRC)层和非接入层(Non Access Stratum,NAS)。可以理解的是,高层信令一般也可以等同于配置信息。一种可选的预设规则是:在DCI或高层信令通知的TCI中信息排序靠前,优先级越高。例如,信息排序为{TCI1,TCI2},那么TCI1对应的优先级高于TCI2对应的优先级。另一种可选的预设规则是:在DCI或高层信令通知的TCI中信息排序靠后,优先级越高。例如,信息排序为{TCI1,TCI2},那么TCI2对应的优先级高于TCI1对应的优先级。
CORESET对应的时频资源可用于终端设备检测PDCCH或网络设备发送PDCCH,一个终端设备可以网络设备被配置一个或多个CORESET。其中,一个CORESET在时域上可以占用1至3个符号,在频域上可以占用一个或多个RB。CORESET占用的资源可以高层信令配置。一个CORESET中可以包含多个搜索空间,一个搜索空间对应至少一个CORESET。一个CORESET关联一个或者两个TCI。一种可选的预设规则是:CORESET标识越小,优先级越高。另一种可选的预设规则是:CORESET标识越大,优先级越高。另一种可选的预设规则是:根据CORSET对应的TCI,确定信道的优先级,其中TCI的优先级可以参考前述。
作为一种可选的实施方式,终端设备可以根据优先级标识确定信道的优先级。
以图8为例,若时隙0中的DCI携带的TCI的优先级高于时隙1中的DCI携带的TCI的优先级,则终端设备在解码URLLC数据并发送HARQ信息之后,可以优先处理时隙0中的PDSCH。若时隙0中的DCI对应的CORESET标识的优先级高于时隙1中的DCI对应的CORESET标识的优先级,则终端设备在解码URLLC数据并发送HARQ信息之后,可以优先处理时隙0中的PDSCH。若时隙0中的DCI携带的TCI的优先级与时隙1中的DCI携带的TCI的优先级相同,则终端设备可以对比该两个DCI对应的CORESET标识的优先级。若时隙0中的DCI对应的CORESET标识的优先级与时隙1中的DCI对应的CORESET标识的优先级相同,则终端设备可以对比该两个DCI携带的TCI的优先级。
A2。
第一信道集合中信道对应的时频资源。时频资源包括时域资源和/或频域资源。频域资源可以是一个或多个资源块(resource block,RB),也可以是一个或多个资源单元(resource element,RE),也可以是一个或多个载波/服务小区,也可以是一个或多个部分带宽(bandwidth part,BWP)。时域资源可以是一个或多个时隙,也可以是一个或多个符号。符号可以是正交频分复用符号(orthogonal frequency division multiplexing,OFDM)。其中,OFDM符号可以使用转换预编码(transform precoding),也可以不使用转换预编码。如果OFDM符号使用转换预编码,该OFDM符号又可以被称为单载波频分复用(singlecarrier frequency division multiplexing,SC-FDM)符号。
作为一种可选的实施方式,终端设备或网络设备根据信道占用的时频资源的数量,确定信道的优先级。一种可选的预设规则是:信道占用的时频资源越多,该信道的优先级越高。另一种可选的预设规则是:信道占用的时频资源越少,优先级越高。
以图6为例,时隙0中的PDSCH占用的RB的数量大于时隙1中的PDSCH占用的RB的数量,若终端设备选择跳过时隙0中的PDSCH,则会造成传输资源的效率降低。按照信道占用的频域资源越多,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH并跳过解码时隙1中的PDSCH,这样,重传时隙1中的PDSCH仅需少量的RB,从而提高了通信系统传输资源的效率。
以图6为例,时隙0中的PDSCH占用的符号的数量大于时隙1中的PDSCH占用的符号的数量,若终端设备选择跳过时隙0中的PDSCH,则会造成传输资源的效率降低。按照信道占用的时域资源越多,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH并跳过解码时隙1中的PDSCH,这样,重传时隙1中的PDSCH仅需少量的符号,从而提高了通信系统传输资源的效率。
A3。
信道所在的层(layer)在5G通信系统中一般等价于天线端口数,即,不同的层对应不同的空间传输通道。
作为一种可选的实施方式,终端设备或网络设备根据信道对应的层数,确定信道的优先级。一种可选的预设规则是:信道对应的层数越大,该信道的优先级越高。另一种可选的预设规则是:信道对应的层数越小,该信道的优先级越高。
以图6为例,时隙0中的PDSCH对应的层数为4,时隙1中的PDSCH对应的层数为2。按照信道对应的层数越大,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH并跳过时隙1中的PDSCH,这样,重传时隙1中的PDSCH仅需少量的天线端口,从而提高了通信系统传输资源的效率。
以图6为例,时隙0中的PDSCH对应的层数为1,时隙1中的PDSCH对应的层数为2。按照信道对应的层数越小,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,因为一般可能性要求高的信道均在层数为1的信道上传输,终端设备可以优先处理该PDSCH并跳过时隙1中的PDSCH,这样,可以保证重要的信道被优先处理,从而提高了重要信息的传输资源效率。
A4。
误块率的高低反映了数据传输的可靠性。误块率越高,数据传输越不可靠;误块率越低,数据传输越可靠,即此时数据越重要。
作为一种可选的实施方式,终端设备或网络设备根据误块率,确定信道的优先级。一种可选的预设规则是:信道对应的误块率越低,该信道的优先级越高。另一种可选的预设规则是:信道对应的误块率越高,该信道的优先级越高。
以图6为例,时隙0中的PDSCH对应的误块率为0.00001,时隙1中的PDSCH对应的误块率为0.1。按照信道对应的误块率越低,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH并跳过时隙1中的PDSCH,这样,时隙0中的PDSCH有更高的接收正确的概率,从而提高了通信系统传输资源的效率。
以图10为例,时隙3中的PUSCH承载的UCI对应的误块率为0.00001,时隙4中的PUSCH承载的UCI对应的误块率为0.1。按照信道对应的误块率越低,该信道的优先级越高的规则,终端设备确定时隙3中的PUSCH的优先级较高,终端设备可以优先处理该PUSCH并跳过准备时隙4中的PUSCH,这样,时隙3中的PUSCH有更高的接收正确的概率,从而提高了通信系统传输资源的效率。
A5。
TBS可以是进行信道编码前的原始信息比特数,也可以是原始信息比特数与循环校验比特数之和,也可以是进行信道编码后的编码比特数。
作为一种可选的实施方式,终端设备或网络设备根据信道承载的TBS,确定信道的优先级。一种可选的预设规则是:信道对应的TBS越大,该信道的优先级越高。一种可选的预设规则是:信道对应的TBS越小,该信道的优先级越高。
以图6为例,时隙0中的PDSCH承载的TBS为1000,时隙1中的PDSCH承载的TBS为800。按照信道对应的TBS越大,该信道的优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH并跳过时隙1中的PDSCH,这样,仅需少量的传输资源即可重传时隙1中的PDSCH,从而提高了通信系统传输资源的效率。
以图10为例,时隙3中的PUSCH承载的TBS为1000,时隙4中的PUSCH承载的TBS为800。按照信道对应的TBS越大,该信道的优先级越高的规则,终端设备确定时隙3中的PUSCH的优先级较高,终端设备可以优先处理该PUSCH并跳过准备时隙4中的PUSCH,这样,仅需少量的传输资源即可重传时隙4中的PUSCH,从而提高了通信系统传输资源的效率。
A6。
UCI一般包括:HARQ信息,调度请求(scheduling request,SR)和信道状态信息(channel state information,CSI)。HARQ信息包括ACK和ACK。SR包括正(positive)SR和负(negative)SR,正SR代表终端设备目前有上行数据传输的请求,负SR代表终端设备目前没有上行数据传输的请求。CSI一般包括信道质量信息(channel quality indicator,CQI),秩指示(rank indicator,RI),预编码矩阵指示(precoding matrix indicator,PMI),信道状态信息参考信号资源指示(CSI reference signalresource indicator,CRI)和测量链路配置集合信息中的一个或者多个的组合。
作为一种可选的实施方式,终端设备或网络设备根据信道承载的UCI的类型,确定信道的优先级。不同的UCI的重要性不同,例如,HARQ信息是网络设备决定是否重传的依据,为了保证数据传输的可靠性,网络设备需要尽早获得HARQ信息。而CSI则是重要性较低的信息,即使网络设备未获得CSI,网络设备也可以选择使用较低的码率传输,以克服可能存在的通信干扰。
因此,一种可选的规则是:HARQ的优先级大于CSI的优先级,或者,HARQ的优先级大于第一类型CSI的优先级,第一类CSI大于第二类CSI的优先级。
以图10为例,时隙3中的PUSCH承载的UCI包含HARQ信息,时隙4中的PUSCH承载的UCI只包含CSI。按照上述规则,终端设备确定时隙3中的PUSCH的优先级较高,终端设备可以优先处理该PUSCH并跳过准备时隙4中的PUSCH,这样,可以保证重要信息的传输可靠性。
A7。
作为一种可选的实施方式,终端设备或网络设备根据信道对应的HARQ进程号确定信道的优先级。网络设备可以通过PDCCH指示信道对应的HARQ进程号。不同的HARQ进程号对应不同的优先级,例如,网络设备预先为终端设备配置了2到12个HARQ进程号。其中,如果配置了12个HARQ进程号,那么HARQ进程号可以是0~11。
HARQ进程号对应的优先级高低可以预先设置,也可以由高层信令配置。一种可选的预设规则是:HARQ进程号越小,优先级越高。另一种可选的预设规则是:HARQ进程号越大,优先级越高。
以图8为例,时隙0中的PDSCH对应的HARQ进程号为5,时隙1中的PDSCH对应的HARQ进程号为6,时隙2中的PDSCH对应的HARQ进程号为0。若HARQ进程号越小,优先级越高,则终端设备优先处理时隙2中的PDSCH。终端设备还可以选择在时隙2中的PDSCH处理完成后,再优先处理时隙0中的PDSCH。若终端设备的处理能力还有剩余,还可以随后处理时隙1中的PDSCH。终端设备也可以在处理时隙2中的PDSCH之后,由于处理能力不足跳过处理时隙1中的PDSCH和/或时隙0中的PDSCH,并通过HARQ信息进行反馈之后,等待网络设备重传该PDSCH。终端设备也可以在处理时隙2中的PDSCH之后,由于处理能力不足跳过处理时隙1中的PDSCH的部分码块组和/或时隙0中的PDSCH的部分码块组,并通过HARQ信息进行反馈之后,等待网络设备重传该PDSCH的部分码块组。
以图13为例,时隙0中的DCI对应的HARQ进程号为5,时隙1中的DCI对应的HARQ进程号为6,时隙2中的DCI对应的HARQ进程号为0。若HARQ进程号越小,优先级越高,则终端设备优先准备时隙0中DCI对应的PUSCH。在时隙0中DCI对应的PUSCH发送完成后,若终端设备的处理能力还有剩余,还可以随后准备时隙1和时隙2中DCI对应的PUSCH。终端设备也可以在时隙0中DCI对应的PUSCH发送完成之后,由于处理能力不足跳过准备时隙1中DCI对应的PUSCH和/或时隙2中DCI对应的PUSCH,等待网络设备重新指示终端设备重传该PUSCH。
因此,根据HARQ进程号确定优先处理的信道能够避免重要的信道被跳过。此外,在终端设备的处理能力有剩余的情况下,可以最大限度避免网络设备再次消耗系统资源重传非重要数据,从而提高了通信系统传输资源的效率。
A8。
信道对应的传输次数为正整数,信道对应的传输次数可以是高层信令配置的,也可以是预先定义的,也可以是下行控制信息指示的。例如,信道的传输次数可以是1~8中的一个数值。传输次数通常指的一个信道被重复传输次数,即一个信道承载的数据在多个时频资源和/或多个天线端口上从开始传输到传输成功或者停止传输被发送的次数。当传输次数大于或等于2时,两次传输所发送的数据可以相同,也可以不同,即,重传时可以传输整个TB,也可以传输部分TB,即TB中的一部分码块组。
作为一种可选的实施方式,终端设备或网络设备根据信道对应的传输次数,确定信道的优先级。一种可选的预设规则是:传输次数越大,优先级越高。另一种可选的预设规则是:传输次数越小,优先级越高。
以图6为例,时隙0中的PDSCH对应的传输次数为4,时隙1中的PDSCH对应的传输次数为1。按照传输次数越大,优先级越高的规则,终端设备确定时隙0中的PDSCH的优先级较高,终端设备可以优先处理该PDSCH,和/或跳过处理时隙1中的PDSCH。其中,跳过处理时隙1中的PDSCH可以是跳过处理时隙1中的PDSCH的TB,也可以跳过处理处理时隙1中的PUSCH的部分码块组。
传输次数较大的信道所对应的数据的大部分可能已经被正确接收,若先处理时隙1中的PDSCH,则时隙0中的PDSCH可能由于传输次数达到最大值或者终端设备的缓存被清空而需要重新传输整个数据,从而会降低通信系统传输资源的效率。按照“传输次数越大,优先级越高”的规则,终端设备跳过时隙1中的PDSCH,网络设备还可以通过重传该PDSCH对应的数据的部分码块组或全部TB完成数据传输,从而提高了通信系统传输资源的效率。
以图10为例,时隙0中的DCI对应的传输次数为1,时隙1中的DCI对应的传输次数为4。按照传输次数越大,优先级越高的规则,终端设备确定时隙1中的DCI的优先级较高,终端设备可以优先准备该DCI对应的PUSCH,可选地,终端设备可以跳过准备时隙0中的DCI对应的PUSCH。其中,跳过准备时隙0中的DCI对应的PUSCH可以是跳过准备该PUSCH对应的传输块TB,也可以是跳过准备该PUSCH对应的部分码块组。
传输次数较大的信道所对应的数据的大部分可能已经被正确接收,若先准备时隙0中DCI对应的PUSCH,则时隙1中DCI对应的PUSCH可能由于传输次数达到最大值或者终端设备的缓存被清空而需要重新传输整个数据,从而会降低通信系统传输资源的效率。按照“传输次数越大,优先级越高”的规则,终端设备跳过准备时隙0中DCI对应的PUSCH,网络设备还可以通过重传该PDSCH对应的数据的部分码块组或全部TB完成数据传输,从而提高了通信系统传输资源的效率。
A9。
作为一种可选的实施方式,终端设备或网络设备还可以根据第一下行信道的时域位置与第二下行信道的时域位置确定信道的优先级。
一个可选的预设规则是:信道的时域位置越靠后,该信道的优先级越高。
第一下行信道的时域位置在第二下行信道的时域位置之后,存在以下几种情况:
情况1、第一下行信道的起始符号在第二下行信道的起始符号之后,第一下行信道的终止符号在第二下行信道的终止符号之后;
情况2、第一下行信道的起始符号在第二下行信道的起始符号之后,第一下行信道的终止符号在第二下行信道的终止符号的之前;
情况3、第一下行信道的起始符号在第二下行信道的起始符号之前,第一下行信道的终止符号在第二下行信道的终止符号的之后;
情况4、第一下行信道的起始符号在第二下行信道的终止符号的之后。
示例性的,在单网络设备场景或者具有理想回程连接的多网络设备场景中,下行信道的时域位置靠后,说明该下行信道承载或调度的数据为紧急数据或重要数据,该下行信道的优先级较高。
以图8为例,时隙2中的PDSCH位于时隙1和时隙0中的PDSCH之后,但时隙2中的PDSCH对应的HARQ信息却被提前调度,说明时隙2中的PDSCH承载了比较重要的数据,因此,终端设备可以优先处理时隙2中的PDSCH。
再以图12为例,时隙2中的DCI位于时隙1和时隙0中的DCI之后,但时隙2中的DCI对应的PUSCH却被提前调度,说明时隙2中的DCI调度了比较重要的数据,因此,终端设备可以优先处理时隙4前半部分中的PUSCH。
另一个可选的预设规则是:信道的时域位置越靠前,该信道的优先级越高。
第一信道的时域位置在第二下行信道的时域位置之前,存在以下几种情况:
情况1、第一下行信道的起始符号在第二下行信道的起始符号之前,第一下行信道的终止符号在第二下行信道的终止符号之前;
情况2、第一下行信道的起始符号在第二下行信道的起始符号之前,第一下行信道的终止符号在第二下行信道的终止符号的之后;
情况3、第一下行信道的起始符号在第二下行信道的起始符号之后,第一下行信道的终止符号在第二下行信道的终止符号的之前;
情况4、第一下行信道的终止符号在第二下行信道的起始符号的之前。
可选地,在具有非理想回程连接的多网络设备场景中,由于多个网络设备之间的通信存在明显时延,根据时域位置靠后信道不一定是承载重要数据的信道。因此,终端设备可以优先处理较早到达的下行信道,或者,终端设备可以优先处理较早到达的下行信道对应的上行信道。
以图6为例,时隙1中的PDSCH位于时隙0中的PDSCH之后,但时隙1中的PDSCH对应的HARQ信息却被提前调度,说明时隙1中的PDSCH为不按顺序调度的信道。由于TRP1和TRP2处于非理想回程连接状态,终端设备可以优先处理时隙0中的PDSCH。这样做的好处在于:时隙0中的PDSCH是最先接收的信道,终端设备在接收到时隙1中的DCI时,时隙0中的PDSCH的解码可能已经接近完成,跳过时隙0中的PDSCH会导致计算资源的浪费,并且,可能会导致重传。因此,终端设备优先处理时隙0中的PDSCH能够提高终端设备的处理效率以及通信资源的效率。
以图10为例,时隙1中的DCI位于时隙0中的DCI之后,但时隙1中的DCI对应的PUSCH却被提前调度,说明时隙3中的PUSCH为不按顺序调度的信道。由于TRP1和TRP2处于非理想回程连接状态,终端设备可以优先处理时隙4中的PDSCH,这样,终端设备可以按照顺序进行解码,减小了终端设备处理任务的复杂度。
A10。
作为一种可选的实施方式,终端设备或网络设备还可以根据第一上行信道的时域位置与第二上行信道的时域位置确定信道的优先级。
一个可选的预设规则是:信道的时域位置越靠前,该信道的优先级越高。
第一上行信道的时域位置在第二上行信道的时域位置之后,存在以下几种情况:
情况1、第一上行信道的起始符号在第二上行信道的起始符号之后,第一上行信道的终止符号在第二上行信道的终止符号之后;
情况2、第一上行信道的起始符号在第二上行信道的起始符号之后,第一上行信道的终止符号在第二上行信道的终止符号的之前;
情况3、第一上行信道的起始符号在第二上行信道的起始符号之前,第一上行信道的终止符号在第二上行信道的终止符号的之后;
情况4、第一上行信道的起始符号在第二上行信道的终止符号的之后。
示例性地,在单网络设备场景或者具有理想回程连接的多网络设备场景中,上行信道的时域位置靠前,说明该上行信道承载的数据为紧急数据或重要数据,该上行信道的优先级较高。
以图8为例,时隙4中的URLLC数据对应的HARQ信息位于eMBB数据1和eMBB数据2对应的HARQ信息之前,说明时隙4前半部分的信道承载了比较重要的数据,因此,终端设备可以优先处理时隙4前半部分的信道(例如,PUCCH)。
再以图12为例,时隙4中的URLLC数据对应的PUSCH位于eMBB数据1和eMBB数据2对应的PUSCH之前,说明时隙4前半部分中的PUSCH承载了比较重要的数据,因此,终端设备可以优先处理时隙4前半部分中的PUSCH。
上述各个规则可以是通信协议定义的,也可以是网络设备通过高层信令配置的,还可以是网络设备通过下行控制信息指示的。
高层信令通常是长效信息,即,网络设备通过高层信令配置的内容长期有效,除非网络设备重新配置此高层信令。
动态信令通常是短效信息,即,网络设备通过动态信令配置的内容短期有效。例如,动态信令可以是DCI,DCI所调度的信息传输完成后,该DCI所指示的内容也就失效了。
若网络设备为终端设备配置了多个规则,则终端设备可以根据各个规则的优先级确定应用规则的先后顺序。
即,S130可以包括以下步骤:
终端设备根据第一预设规则从第一信道集合中确定候选目标信道;
若候选目标信道为一个信道,则终端设备确定该候选目标信道为第一目标信道;若候选目标信道包括多个信道,则终端设备根据第二预设规则从候选目标信道中确定第一目标信道。
第二预设规则为与第一预设规则相异的规则。若第二预设规则仍然无法确定出一个信道,则继续使用新的预设规则确定第一目标信道,直至从第一信道集合中确定出一个信道,即,第一目标信道。可以理解的是,在确定第一目标信道的过程中,每个预设规则只使用一次,在使用过一个预设规则之后,终端设备会使用其它未使用过的预设规则中的一种或多种进行确定第一目标信道。
第一预设规则和第二预设规则可以是上述包含A1至A10中不同信息的规则,本申请对此不作限定。
可选地,预设规则的先后顺序为A1->A5->A2,或者,A1->A8->A2,或者,A1->A8->A2->A9(或者A10)。
可选地,预设规则包含A1的规则、包含A2的规则和包含A5的规则。包含A1的规则的优先级高于包含A5的规则的优先级,包含A5的规则的优先级高于包含A2的规则的优先级。终端设备可以首先应用包含A1的规则,若两个信道的优先级标识相同或在同一个的优先级标识集合中。终端设备可以再应用包含A5的规则,根据该两个信道承载的TBS的大小确定该两个信道的优先级。若该两个信道承载的TBS相同或在相同的TBS取值范围内,那么终端设备可以再应用包含A2的规则,根据该两个信道占用的时频资源的数量确定该两个信道的优先级。
当前终端设备使用的规则包括:
规则1,信道的优先级标识对应的标识越高,该信道的优先级越高。
规则2,信道承载的TBS越大,该信道的优先级越高。
规则3,信道占用的时频资源越多,该信道的优先级越高。
规则1的优先级>规则2的优先级>规则3的优先级。
结合图6再详细说明多个优先级存在的场景。
当前终端设备使用的规则包括:
规则1,信道的优先级标识对应的标识越高,该信道的优先级越高。
规则2,信道对应的传输次数越大,该信道的优先级越高。
规则3,信道占用的时频资源越多,该信道的优先级越高。
规则1的优先级>规则2的优先级>规则3的优先级。
终端设备在时隙0和时隙1内分别接收到PDSCH之后,首先根据规则1比较这两个PDSCH的优先级标识。若这两个PDSCH的优先级标识相同,则根据规则2比较这两个PDSCH传输的传输次数。若时隙0中PDSCH对应的传输次数为4,时隙1中PDSCH对应的传输次数为2,则终端设备确定时隙0中PDSCH的优先级较高,优先处理时隙0中PDSCH。若时隙0中PDSCH对应的传输次数和时隙1中PDSCH对应的传输次数相同,则终端设备根据规则3比较这两个PDSCH占用的时频资源。
可选地,预设规则包含A1的规则、包含A2的规则、包含A8的规则和包含A9(或A10)的规则。包含A1的规则的优先级高于包含A8的规则的优先级,包含A8的规则的优先级高于包含A2的规则的优先级,包含A2的规则的优先级高于包含A9(或A10)的规则的优先级。终端设备可以首先应用包含A1的规则,若两个信道的优先级标识相同或在同一个的优先级标识集合中。终端设备可以再应用包含A8的规则,根据该两个信道的传输次数的大小确定该两个信道的优先级。若该两个信道的传输次数相同或在相同的传输次数取值范围内,那么终端设备可以再应用包含A2的规则,根据该两个信道占用的时频资源的数量确定该两个信道的优先级。若该两个信道占用的时频资源的数量相同或在相同的时频资源的数量取值范围内,那么终端设备可以再应用包含A9(或A10)的规则,根据该两个信道占用的时频资源的时域位置确定该两个信道的优先级。
当前终端设备使用的规则包括:
规则1,信道的优先级标识对应的标识越高,该信道的优先级越高。
规则2,信道对应的传输次数越大,该信道的优先级越高。
规则3,信道占用的时频资源越多,该信道的优先级越高。
规则4,下行信道的时域位置越靠后,该下行信道的优先级越高;或者,上行信道的时域位置越靠前,该上行信道的优先级越高
规则1的优先级>规则2的优先级>规则3的优先级>规则4的优先级。
上述示例仅是举例说明,还可以将规则3中的规则替换为包含A3至A10中任意一个信息的规则。规则的顺序可以是预先定义的,也可以是高层信令配置的,本发明不做限定。
可选的,在通过A1-A10判断出第一下行信道和第二下行信道的优先级,或者判断出第一上行信道和第二上行信道的优先级之后,那么终端设备可以根据下行信道占用时域资源与上行信道占用时域资源的时间间隔和第一时间间隔阈值,确定优先处理的第一目标信道。可选的,终端设备获取第一时间间隔阈值,其中,所述第一时间间隔阈值可以是预先定义,也可以是网络设备通过高层信令配置的,还可以是网络设备通过下行控制信息指示的。
作为一个可选的实施方式,若第二下行信道的优先级高于第一下行信道的优先级,当第二下行信道占用时域资源与第二上行信道占用时域资源的时间间隔大于所述第一时间间隔阈值,那么终端设备可以优先处理第二下行信道,且跳过处理第一下行信道。当第二下行信道占用时域资源与第二上行信道占用时域资源的时间间隔小于或等于所述第一时间间隔阈值,那么终端设备可以优先处理第二下行信道,且处理第一下行信道或处理第一下行信道的部分码块组。
作为另一个可选的实施方式,若第二上行信道的优先级高于第一上行信道的优先级,当第二下行信道占用时域资源与第二上行信道占用时域资源的时间间隔大于所述第一时间间隔阈值,那么终端设备可以优先处理第二上行信道,且跳过处理第一上行信道。当第二下行信道占用时域资源与第二上行信道占用时域资源的时间间隔小于或等于所述第一时间间隔阈值,那么终端设备可以优先处理第二上行信道,且处理第一上行信道。
其中,信道的时间间隔的定义可以是以下情况中的一种:
1、信道A#占用的时域资源的起始符号与信道B#占用的时域资源的起始符号之间的时间间隔;
2、信道A#占用的时域资源的起始符号与信道B#占用的时域资源的终止符号之间的时间间隔;
3、信道A#占用的时域资源的终止符号与信道B#占用的时域资源的终止符号之间的时间间隔;
4、信道A#占用的时域资源的终止符号与信道B#占用的时域资源的起始符号之间的时间间隔。
信道A#为第一下行信道,信道B#为第二下行信道;或者,信道A#为第一上行信道,信道B#为第二上行信道。
网络设备除了可以通过高层信令配置预设规则之外,还可以通过高层信令配置与不按顺序调度相关的其它内容。
例如,方法100还可包含以下步骤:
终端设备接收第一配置信息或第二配置信息,第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
上述网络设备例如可以是TRP。终端设备通过第一配置信息或者第二配置信息即可确定当前网络设备的状态,并根据网络设备的状态选择合适的规则。
例如,若终端设备接收到第一配置信息,则终端设备可以应用以下规则:时域位置靠后的信道的优先级较高;若终端设备接收到第二配置信息,则终端设备可以应用A1-A10中的一个或多个预设规则的组合。
上述方案的优点在于:当多个网络设备之间的回程为理想回程时,或者,当终端设备对应一个网络设备时,时域位置靠后的信道必然承载或调度了重要数据,应用时域位置靠后的信道的优先级较高规则能够避免重要数据被跳过。当多个网络设备之间的回程为非理想回程时,时域位置靠后的信道并不一定承载或调度了重要数据,终端设备根据其他规则判断优先处理的信道,有利于终端设备确定承载更重要信息的信道,有利于提高通信资源的效率。
方法100还可包含以下步骤:
终端设备接收第三配置信息,第三配置信息用于配置终端设备是否能够执行不按顺序调度。
若终端设备具有执行不按顺序调度的能力,网络设备可以根据实际情况使能或者去使能该能力。
例如,终端设备的电量不足,或者,终端设备当前的负载较重,或者,当前系统中的资源不足,执行不按顺序调度可能会加大终端设备的电量消耗和负载,或者增大系统资源的紧张程度。因此,网络设备可以通过第三配置信息去使能终端设备的不按顺序调度的能力,从而能够有效提高终端设备的续航能力和可靠性。
第三配置信息可以是一个比特位,当该比特位取值为“0”时,表示去使能不按顺序调度的能力;当该比特位取值为“1”时,表示使能不按顺序调度的能力。第三配置信息还可以是其它类型的信息,例如,可以通过不同的前导码序列隐式配置终端设备是否能够执行不按顺序调度。
相应地,终端设备可以向网络设备发送能力信息,该能力信息用于指示终端设备是否支持不按顺序调度。
若终端设备上报的能力信息指示终端设备支持不按顺序调度,则网络设备可以不按顺序调度信道,以便于重要数据能够被尽快传输。若终端设备上报的能力信息指示终端设备支持不按顺序调度,网络设备也可以按顺序调度信道,可选的,网络设备可以发送第三配置信息。
若终端设备上报的能力信息指示终端设备不支持不按顺序调度,则网络设备可以按顺序调度信道,以保证重要数据的传输可靠性。可选的,网络设备不可以发送第三配置信息,或者网络设备发送第三配置信息用于指示终端设备不能够执行不按顺序调度。
上述不按顺序调度包括:下行数据信道到HARQ信息的不按顺序调度,和/或,下行控制信道到上行数据信道的不按顺序调度。
当终端设备同时支持上述两种不按顺序调度时,终端设备即支持不区分内容的不按顺序调度。终端设备也只支持一种不按顺序调度,即终端设备可以进一步在能力信息中指示其支持的具体能力,以便于网络设备更加精准地进行调度。例如终端设备上报支持下行数据信道到HARQ信息的不按顺序调度,但终端设备上报不支持下行控制信道到上行数据信道的不按顺序调度。或者,例如终端设备上报不支持下行数据信道到HARQ信息的不按顺序调度,但终端设备上报支持下行控制信道到上行数据信道的不按顺序调度。
上文主要介绍了基于两个下行信道的不按顺序调度的场景,或者基于两个上行信道的不按顺序的场景。若网络设备发送了三个或三个以上的下行信道,例如,网络设备还发送了第三下行信道,则终端设备可以进一步确定第三下行信道的优先级,以便于在第一目标信道处理完成后确定是否处理除去第一目标信道以外的信道。例如第一目标信道为第一下行信道,那么终端设备需要进一步确定是否处理第二下行信道和第三下行信道。若网络设备指示了三个或三个以上的上行信道,例如,网络设备还指示了第三上行信道,则终端设备可以进一步确定第三上行信道的优先级,以便于在第一目标信道处理完成后确定是否处理除去第一目标信道以外的信道。例如第一目标信道为第二上行信道,那么终端设备需要进一步确定是否处理第一上行信道和第三上行信道。
S130中的第一信道集合还可以包括第三下行信道,方法100还包括:
终端设备在第五时段内接收第三下行信道,第三下行信道与第三上行信道之间存在对应关系,第三上行信道占用第六时段,第五时段位于第二时段之前且位于第六时段之前,第六时段位于第三时段之后。
终端设备根据预设规则从第一信道集合中除第一目标信道之外的信道中确定优先处理的第二目标信道。
可以将第一信道集合中除第一目标信道之外的信道称为其它信道。若终端设备的处理能力还有剩余,则可以在第一目标信道处理完成后,从其它信道中确定优先处理的信道,即,第二目标信道。
可选地,终端设备可以直接使用确定第一目标信道时使用的规则从其它信道中确定第二目标信道。
可选地,终端设备也可以先确定其它信道的第一信息的取值之和与第一信息的阈值的关系,再确定第二目标信道。
上述第一信息为时频资源、层数和TBS中的至少一种。
以图8为例,时隙2中的PDSCH相当于第一目标信道,时隙0中的PDSCH和时隙1中的PDSCH相当于其它信道。时隙0中的PDSCH占用的时频资源为8个RB,层数为4,TBS为1000比特;时隙1中的PDSCH占用的时频资源为7个RB,层数为2,TBS为500比特;时频资源的阈值为100个RB,层数的阈值为6,TBS的阈值为800比特。
终端设备可以先确定上述两个PDSCH的时频资源之和是否大于时频资源的阈值,若大于,则需要去除一个或多个PDSCH之后再比较剩余的PDSCH的时频资源之和是否大于时频资源的阈值。
该两个PDSCH的时频资源之和(15)小于时频资源的阈值(100),因此,终端设备可以再确定该两个PDSCH的层数之和是否大于层数的阈值,若大于,则需要去除一个或多个PDSCH之后再比较剩余的PDSCH的层数之和是否大于层数阈值。
该两个PDSCH的层数之和(6)等于层数阈值(6);因此,终端设备可以再确定该两个PDSCH的TBS之和是否大于TBS的阈值,若大于,则需要去除一个或多个PDSCH之后再比较剩余的PDSCH的TBS之和是否大于TBS阈值。
由于该两个PDSCH的TBS之和(1500)大于TBS的阈值(800),因此,为了满足阈值要求,终端设备可以确定时隙1中的PDSCH(TBS为500)为第二目标信道,并解码该PDSCH。时隙0中的PDSCH可以被跳过,也可以等待时隙1中的PDSCH被处理完成后再被处理。
上述方案仅是一个示例,终端设备也可以根据单一阈值确定其它信道是否能够被全部处理。上述各个阈值的具体数值可以根据终端设备的处理能力设定,即终端设备进行对所能处理的能力进行上报。若终端设备的处理能力较强,则阈值可以设定为较大的数值;若终端设备的处理能力较弱,则阈值可以设定为较小的数值。上述各个阈值的具体数值也可以是预先定义或高层信令配置。
若其它信道的第一信息的取值之和小于或等于第一信息阈值,则终端设备可以根据确定第一目标信道时使用的规则从其它信道中确定第二目标信道,也可以根据不同于第一目标信道时使用的规则从其它信道中确定第二目标信道。若其它信道的第一信息的取值之和大于第一信息阈值,则终端设备从其它信道中去除部分信道后,可以根据确定第一目标信道时使用的规则从剩余的信道中确定第二目标信道,也可以根据不同于第一目标信道时使用的规则从其它信道中确定第二目标信道。本发明中,确定第一目标信道和第二目标信道的规则可以相同,也可以不同,本发明不做限定。
作为一个可选的示例,时频资源的阈值可以是一个或多个RB数,例如2-136中的任意一个整数。下面枚举一些RB的阈值,但是,这些数值仅是举例,不应被理解为对本申请的限定,RB的阈值还可以是大于136的正整数。
2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136。
作为一个可选的示例,层数的阈值可以是一个或多个层,例如2-8中的任意一个整数。下面枚举一些层数的阈值,但是,这些数值仅是举例,不应被理解为对本申请的限定,层数的阈值还可以是大于8的正整数。
2、3、4、5、6、7、8。
作为一个可选的示例,TBS的阈值为3824,3824*2,3824*3,3824*4,8824,8824*2,8824*3,8824*4,347716,471400,TBS的阈值还可以是大于等于8且小于等于946256的正整数,本申请对TBS的阈值不做限定。
下面再举一个确定第二目标信道的例子。
第一信息为RB的数量,第一信息的阈值是100个RB,PDSCH1承载的eMBB数据占用的RB数量为8,PDSCH2承载的eMBB数据占用的RB数量为7,PDSCH3承载的eMBB数据占用的RB数量为1,PDSCH4承载的eMBB数据占用的RB数量为90。
终端设备可以根据以下三种方式中的一种确定第二目标信道。
方式一,最接近原则。
其它信道中信道对应的第一信息的取值之和与第一信息的阈值的差值最小的M个信道为优先处理的信道,M为正整数。
由于PDSCH1、PDSCH2、PDSCH3和PDSCH4对应的RB数量之和106大于RB数量阈值100个RB,并且,PDSCH1、PDSCH3和PDSCH4对应的RB数量之和99最接近RB数量阈值,因此,PDSCH1、PDSCH3和PDSCH4为其它信道中需要被优先处理的第二目标信道。终端设备可以进一步基于确定第一目标信道的规则从这三个信道中确定最先被处理的信道。
上述方式能够最大程度地利用终端设备的处理能力。
方式二,小于原则。
其它信道中信道对应的第一信息的取值与第一信息的阈值的差值最大的M个信道为优先处理的信道,M为正整数。
由于PDSCH1、PDSCH2、PDSCH3和PDSCH4对应的RB数量之和106大于RB数量阈值100个RB,并且,PDSCH1、PDSCH2和PDSCH3对应的RB数量与RB数量阈值的差值较大,因此,PDSCH1、PDSCH2和PDSCH3为其它信道中需要被优先处理的第二目标信道。终端设备可以进一步基于确定第一目标信道的规则从这三个信道中确定最先被处理的信道。RB数量与RB数量阈值的差值的门限可以根据终端设备的处理能力设定,若终端设备的处理能力较强,则该门限可以设置较大的数值;若终端设备的处理能力较弱,则该门限可以设置较小的数值。差值的门限也可以是预先定义或高层信令配置。
上述方式能够减小终端设备的确定第二目标信道的复杂度。
方式三,大于原则。
其它信道中信道对应的第一信息的取值与第一信息的阈值的差值最小的M个信道为优先处理的信道,M为正整数。
由于PDSCH1、PDSCH2、PDSCH3和PDSCH4对应的RB数量之和106大于RB数量阈值100个RB,并且,PDSCH4对应的RB数量与RB数量阈值的差值较小,因此,PDSCH4为其它信道中需要被优先处理的第二目标信道。RB数量与RB数量阈值的差值的门限可以根据终端设备的处理能力设定,若终端设备的处理能力较强,则该门限可以设置较大的数值;若终端设备的处理能力较弱,则该门限可以设置较小的数值。差值的门限也可以是预先定义或高层信令配置。
上述方式能够减小终端设备的确定第二目标信道的复杂度。
可选地,终端设备在确定第一目标信道之后,还可以根据时间间隔和第一时间间隔阈值确定第二目标信道。即,第一信息可以是时间间隔。
上述时间间隔包括以下情况中的至少一个:第一下行信道占用时域资源与第一上行信道占用时域资源的时间间隔,第二下行信道占用时域资源与第二上行信道占用时域资源的时间间隔,第三下行信道占用时域资源与第三上行信道占用时域资源的时间间隔,第一下行信道占用时域资源与第二下行信道占用时域资源的时间间隔,第二下行信道占用时域资源与第三下行信道占用时域资源的时间间隔,第一下行信道占用时域资源与第三下行信道占用时域资源的时间间隔,第一上行信道占用时域资源与第二上行信道占用时域资源的时间间隔,第二上行信道占用时域资源与第三上行信道占用时域资源的时间间隔,第一上行信道占用时域资源与第三上行信道占用时域资源的时间间隔。
作为一个可选的示例,第一时间间隔阈值可以是一个或多个符号,也可以是一个或多个时隙,也可以是时长为一个或几个毫秒(ms)的时间段。例如,3个符号,3.5个符号,4个符号,4.5个符号,5个符号,5.5个符号,6个符号,6.5个符号,7个符号,7.5个符号,8个符号,8.5个符号,9个符号,9.5个符号,10个符号,10.5个符号,11个符号,11.5个符号,12个符号,12.5个符号,13个符号,13.5个符号,14个符号,1个时隙,2个时隙,3个时隙,4个时隙,5个时隙,6个时隙,7个时隙,8个时隙,0.25ms,0.5ms,1ms。第一时间间隔阈值还可以是其它数值,例如,从14个符号开始,每个0.5个符号取一个值,直至112个符号。
作为一个可选的示例,第一信息还可以是HARQ进程号,HARQ进程号的阈值可以是2、3、4、5、6、7、8、9、10、11、12。HARQ进程号的阈值可以是大于12的正整数。
可选地,终端设备还可根据第一目标信道对应的第一信息的取值与第一信息的阈值确定是否处理其它信道。
作为一个可选的实施方式,若第一目标信道对应的第一信息超过第一信息的阈值,那么终端设备优先处理第一目标信道,且跳过处理其它信道。可以理解的,这里的第一信息可以是一个信息,也可以是多个信息的组合。也就是说可以是当多个信息中有一个信息超过了阈值,终端设备则只处理第一目标信道。也可以是当多个信息中所有信息都超过了阈值,终端设备则只处理第一目标信道。上述实施方式的优点在于:当最重要的信道对应的信息超过了阈值,那么可以认为此时终端设备的所有能力都只能处理第一目标信道,而没有其余能力来处理其他信道,这样可以在不按顺序调度场景中使用低成本的终端设备。
作为另一个可选的实施方式,若第一目标信道对应的第一信息没有超过第一信息的阈值,那么终端设备优先处理第一目标信道,且处理上述的第二目标信道。进一步可选的,终端设备跳过处理除去第一目标信道和第二目标信道之外的信道。进一步可选的,此时其他信道对应的第一信息超过所述第一信息的阈值。这里的第一信息可以是一个信息,也可以是多个信息的组合。若第一目标信道对应的至少一个第一信息没有超过阈值,则终端设备还处理第二目标信道。或者,若第一目标信道对应的所有第一信息都没有超过阈值,那么终端设备还处理第二目标信道。上述实施方式的优点在于:当最重要的信道对应的信息没超过阈值,那么可以认为此时终端设备的还有剩余的能力,这样可以提高系统的传输效率。
上文主要从终端设备的角度描述了本申请提供的通信方法,网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备从网络设备接收信息,意味着网络设备发送了该信息;终端设备向网络设备发送信息,意味着网络设备从终端设备接收该信息。因此,即使上文个别地方未明确写明网络设备的处理过程,本领域技术人员也可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
例如,在图14中,终端设备从网络设备接收了第一下行信道和第二下行信道,意味着,网络设备执行了下列步骤:
网络设备在第一时段内发送第一下行信道,所述第一下行信道与第一上行信道之间存在对应关系,所述第一上行信道占用第四时段,所述第四时段位于所述第一时段之后。
所述网络设备在第二时段内发送第二下行信道,所述第二下行信道与第二上行信道之间存在对应关系,所述第二上行信道占用第三时段,所述第二时段位于所述第一时段之后且位于所述第三时段之前,所述第三时段位于所述第四时段之前。
网络设备还可以执行下列步骤:
所述网络设备根据预设规则从第一信道集合中确定第一目标信道,所述第一信道集合包括所述第一下行信道和所述第二下行信道,或者,所述第一信道集合包括所述第一上行信道和所述第二上行信道。
所述网络设备接收所述第一目标信道或者所述第一目标信道对应的HARQ信息。
因此,应用方法100的网络设备能够根据实际情况确定不同场景中待接收的信道(即,需要被终端设备优先处理的信道),相比于现有技术中一律接收时间上后调度的信道(或,该信道对应的HARQ信息)的方法,应用方法100的网络设备能够满足紧急数据或者更重要数据的传输需求,从而能够提高重要紧急数据的传输效率。
上文详细介绍了本申请提供的通信方法的示例。下面,将详细介绍本申请提供的实现上述通信方法的通信装置。可以理解的是,通信装置为了实现上述通信方法中的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个功能单元中。例如,所述通信装置可包括用于执行上述方法示例中确定动作的处理单元、用于实现上述方法示例中接收动作的接收单元和用于实现上述方法示例中发送动作的发送单元。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图15示出了本申请提供的一种通信装置的结构示意图。通信装置1500可用于实现上述方法实施例中描述的方法。该通信装置1500可以是芯片、网络设备或终端设备。
通信装置1500包括一个或多个处理器1501,该一个或多个处理器1501可支持通信装置1500实现图14所对应方法实施例中的方法。处理器1501可以是通用处理器或者专用处理器。例如,处理器1501可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的各个信道承载的数据),CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置1500还可以包括收发单元1505,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置1500可以是芯片,收发单元1505可以是该芯片的输入和/或输出电路,或者,收发单元1505可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置1500中可以包括一个或多个存储器1502,其上存有程序1504,程序1504可被处理器1501运行,生成指令1503,使得处理器1501根据指令1503执行上述方法实施例中描述的方法。可选地,存储器1502中还可以存储有数据。可选地,处理器1501还可以读取存储器1502中存储的数据(例如,方法100中的各个信道承载的数据),该数据可以与程序1504存储在相同的存储地址,该数据也可以与程序1504存储在不同的存储地址。
处理器1501和存储器1502可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置1500还可以包括收发单元1505以及天线1506。收发单元1505可以称为收发机、收发电路或者收发器,用于通过天线1506实现通信装置的收发功能。
在一种可能的设计中,处理器1501用于控制收发单元1505以及天线1506执行:
在第一时段内接收第一下行信道,所述第一下行信道与第一上行信道之间存在对应关系,所述第一上行信道占用第四时段,所述第四时段位于所述第一时段之后;
在第二时段内接收第二下行信道,所述第二下行信道与第二上行信道之间存在对应关系,所述第二上行信道占用第三时段,所述第二时段位于所述第一时段之后且位于所述第三时段之前,所述第三时段位于所述第四时段之前;
处理器1501还用于执行:根据预设规则从第一信道集合中确定优先处理的第一目标信道,所述第一信道集合包括所述第一下行信道和所述第二下行信道,或者,所述第一信道集合包括所述第一上行信道和所述第二上行信道。
可选地,处理器1501还用于通过收发单元1505以及天线1506执行:
在第五时段内接收第三下行信道,所述第三下行信道与第三上行信道之间存在对应关系,所述第三上行信道占用第六时段,所述第五时段位于所述第二时段之前且位于所述第六时段之前,所述第六时段位于所述第三时段之后;
处理器1501还用于执行:根据所述预设规则从第一信道集合中除所述第一目标信道之外的信道中确定优先处理的第二目标信道。
上述预设规则可以参考方法实施例中的相关描述,在此不再赘述。
可选地,处理器1501用于通过收发单元1505以及天线1506执行:
接收第一配置信息或第二配置信息,所述第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,所述第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
可选地,处理器1501用于通过收发单元1505以及天线1506执行:
发送能力信息,所述能力信息用于指示终端设备是否支持不按顺序传输。
可选地,处理器1501用于通过收发单元1505以及天线1506执行:
接收第三配置信息,所述第三配置信息用于配置终端设备是否能够执行不按顺序传输。
在另一种可能的设计中,处理器1501用于控制收发单元1505以及天线1506执行:
在第一时段内发送第一下行信道,所述第一下行信道与第一上行信道之间在对应关系,所述第一上行信道占用第四时段,所述第四时段位于所述第一时段之后;
在第二时段内发送第二下行信道,所述第二下行信道与第二上行信道之间存在对应关系,所述第二上行信道占用第三时段,所述第二时段位于所述第一时段之后且位于所述第三时段之前,所述第三时段位于所述第四时段之前;
根据预设规则从第一信道集合中确定第一目标信道,所述第一信道集合包括所述第一下行信道和所述第二下行信道,或者,所述第一信道集合包括所述第一上行信道和所述第二上行信道;
接收所述第一目标信道或者所述第一目标信道对应的混合自动重传请求HARQ信息。
可选地,所述第一信道集合中除所述第一目标信道之外的信道为其它信道,处理器1501用于通过收发单元1505以及天线1506执行:
接收所述其它信道中部分或全部信道对应的HARQ信息,所述其它信道中部分或全部信道对应的HARQ信息为NACK。
可选地,所述第一信道集合还包括第三下行信道,处理器1501用于通过收发单元1505以及天线1506执行:
在第五时段内发送第三下行信道,所述第三下行信道与第三上行信道之间存在对应关系,所述第三上行信道占用第六时段,所述第五时段位于所述第二时段之前且位于所述第六时段之前,所述第六时段位于所述第三时段之后;
处理器1501还用于执行:
根据所述预设规则从第一信道集合中除所述第一目标信道之外的信道中确定第二目标信道;
处理器1501还用于通过收发单元1505以及天线1506执行:
接收所述第二目标信道或者所述第二目标信道对应的HARQ信息。
上述预设规则可以参考方法实施例中的相关描述,在此不再赘述。
可选地,处理器1501还用于通过收发单元1505以及天线1506执行:
发送第一配置信息或第二配置信息,所述第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,所述第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
可选地,处理器1501还用于通过收发单元1505以及天线1506执行:
接收能力信息,所述能力信息用于指示终端设备是否支持不按顺序传输。
可选地,处理器1501还用于通过收发单元1505以及天线1506执行:
发送第三配置信息,所述第三配置信息用于配置终端设备是否能够执行不按顺序传输。
应理解,方法实施例的各步骤可以通过处理器1501中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1501可以是CPU、数字信号处理器(digital signalprocessor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1501执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器1502中,例如是程序1504,程序1504经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1501执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1502。存储器1502可以是易失性存储器或非易失性存储器,或者,存储器1502可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置1500为终端设备的情况下,图16示出了本申请提供的一种终端设备的结构示意图。该终端设备1600可适用于图1所示的系统中,实现上述方法实施例中终端设备的功能。为了便于说明,图16仅示出了终端设备的主要部件。
如图16所示,终端设备1600包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器通过天线和控制电路接收第一指示信息和第二指示信息。存储器主要用于存储程序和数据,例如存储通信协议和待发送数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图16仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图16中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备1600的收发单元1601,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备1600的处理单元1602。如图16所示,终端设备1600包括收发单元1601和处理单元1602。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1601中用于实现接收功能的器件视为接收单元,将收发单元1601中用于实现发送功能的器件视为发送单元,即收发单元1601包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1602可用于执行存储器存储的程序,以控制收发单元1601接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1601的功能可以考虑通过收发电路或者收发专用芯片实现。
在通信装置1500为网络设备的情况下,图17是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图17所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中网络设备的功能。基站1700可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1701和至少一个基带单元(baseband unit,BBU)1702。其中,BBU1702可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU1701可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线17011和射频单元17012。RRU1701主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU1702主要用于进行基带处理,对基站进行控制等。RRU1701与BBU1702可以是物理上设置在一起的,也可以物理上分离设置的,即分布式基站。
BBU1702也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU1702可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU1702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。BBU1702还包括存储器17021和处理器17022,存储器17021用于存储必要的指令和数据。例如,存储器17021存储上述方法实施例中的各种指信息。处理器17022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器17021和处理器17022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
需要说明的是,图17所示的基站仅是一个示例,适用于本申请的网络设备还可以是有源天线系统(active antenna system,AAS)中的有源天线单元(active antennaunit,AAU)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

1.一种通信方法,其特征在于,包括:
在第一时段内接收第一下行信道,所述第一下行信道与第一上行信道之间存在对应关系,所述第一上行信道占用第四时段,所述第四时段位于所述第一时段之后;
在第二时段内接收第二下行信道,所述第二下行信道与第二上行信道之间存在对应关系,所述第二上行信道占用第三时段,所述第二时段位于所述第一时段之后且位于所述第三时段之前,所述第三时段位于所述第四时段之前;
根据预设规则从第一信道集合中确定优先处理的第一目标信道,所述第一信道集合包括所述第一下行信道和所述第二下行信道,或者,所述第一信道集合包括所述第一上行信道和所述第二上行信道;
所述预设规则包括以下信息中的至少一种:
所述第一信道集合中信道对应的下行控制信道指示的优先级信息或者所述第一信道集合中信道所指示的优先级信息;
所述第一信道集合中信道对应的时频资源;
所述第一信道集合中信道对应的层数;
所述第一信道集合中信道对应的误块率;
所述第一信道集合中信道承载的传输块大小TBS;
所述第一信道集合中信道承载的上行控制信息UCI的类型;
所述第一信道集合中信道对应的下行控制信道指示的混合自动重传请求HARQ进程号;
所述第一信道集合中信道对应的传输次数;
所述第一下行信道的时域位置与所述第二下行信道的时域位置;
所述第一上行信道的时域位置与所述第二上行信道的时域位置。
2.根据权利要求1所述的方法,其特征在于,所述第一信道集合还包括第三下行信道,所述方法还包括:
在第五时段内接收第三下行信道,所述第三下行信道与第三上行信道之间存在对应关系,所述第三上行信道占用第六时段,所述第五时段位于所述第二时段之前且位于所述第六时段之前,所述第六时段位于所述第三时段之后;
根据所述预设规则从第一信道集合中除所述第一目标信道之外的信道中确定优先处理的第二目标信道。
3.根据权利要求2所述的方法,其特征在于,所述第一信道集合中除所述第一目标信道之外的信道为其它信道,所述预设规则包括以下信息中的至少一种:
所述其它信道中信道对应的下行控制信道指示的优先级信息或者所述其它信道中信道指示的优先级信息;
所述其它信道中信道对应的时频资源;
所述其它信道中信道对应的层数;
所述其它信道中信道对应的误块率;
所述其它信道中信道承载的TBS;
所述其它信道中信道承载的UCI的类型;
所述其它信道中信道对应的下行控制信道指示的HARQ进程号;
所述其它信道中信道对应的传输次数;
所述其它信道中信道对应的时域位置。
4.根据权利要求3所述的方法,其特征在于,所述预设规则包括:所述其它信道中信道对应的第一信息的取值之和与所述第一信息的阈值的差值最小的信道为优先处理的信道;
所述第二目标信道为所述其它信道中满足所述预设规则的M个信道,所述M个信道对应的所述第一信息之和小于所述第一信息的阈值,所述M为正整数,所述第一信息包括以下信息中的至少一种:所述时频资源、所述层数和所述TBS。
5.根据权利要求3所述的方法,其特征在于,所述预设规则包括:所述其它信道中信道对应的第一信息的取值与所述第一信息的阈值的差值最大或最小的信道为优先处理的信道,所述第一信息包括以下信息中的至少一种:所述时频资源、所述层数和所述TBS;
所述第二目标信道为所述其它信道中满足所述预设规则的M个信道,所述M个信道对应的参数小于所述参数的阈值,所述M为正整数。
6.根据权利要求1所述的方法,其特征在于,所述方法还包括:
接收第一配置信息或第二配置信息,所述第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,所述第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
7.根据权利要求1所述的方法,其特征在于,所述方法还包括:
发送能力信息,所述能力信息用于指示终端设备是否支持不按顺序传输。
8.根据权利要求1所述的方法,其特征在于,所述方法还包括:
接收第三配置信息,所述第三配置信息用于配置终端设备是否能够执行不按顺序传输。
9.根据权利要求7或8所述的方法,其特征在于,所述不按顺序传输包括:下行数据信道到HARQ信息的不按顺序传输,和/或,下行控制信道到上行数据信道的不按顺序传输。
10.一种通信方法,其特征在于,包括:
在第一时段内发送第一下行信道,所述第一下行信道与第一上行信道之间存在对应关系,所述第一上行信道占用第四时段,所述第四时段位于所述第一时段之后;
在第二时段内发送第二下行信道,所述第二下行信道与第二上行信道之间存在对应关系,所述第二上行信道占用第三时段,所述第二时段位于所述第一时段之后且位于所述第三时段之前,所述第三时段位于所述第四时段之前;
根据预设规则从第一信道集合中确定第一目标信道,所述第一信道集合包括所述第一下行信道和所述第二下行信道,或者,所述第一信道集合包括所述第一上行信道和所述第二上行信道;
接收所述第一目标信道或者所述第一目标信道对应的混合自动重传请求HARQ信息;
所述预设规则包括以下信息中的至少一种:
所述第一信道集合中信道对应的优先级信息;
所述第一信道集合中信道对应的时频资源;
所述第一信道集合中信道对应的层数;
所述第一信道集合中信道对应的误块率;
所述第一信道集合中信道承载的传输块大小TBS;
所述第一信道集合中信道承载的上行控制信息UCI的类型;
所述第一信道集合中信道对应的混合自动重传请求HARQ进程号;
所述第一信道集合中信道对应的传输次数;
所述第一下行信道的时域位置与所述第二下行信道的时域位置;
所述第一上行信道的时域位置与所述第二上行信道的时域位置。
11.根据权利要求10所述的方法,其特征在于,所述第一信道集合中除所述第一目标信道之外的信道为其它信道,所述方法还包括:
接收所述其它信道中部分或全部信道对应的HARQ信息,所述其它信道中部分或全部信道对应的HARQ信息为否定应答NACK。
12.根据权利要求10所述的方法,其特征在于,所述第一信道集合还包括第三下行信道,所述方法还包括:
在第五时段内发送第三下行信道,所述第三下行信道与第三上行信道之间存在对应关系,所述第三上行信道占用第六时段,所述第五时段位于所述第二时段之前且位于所述第六时段之前,所述第六时段位于所述第三时段之后;
根据所述预设规则从第一信道集合中除所述第一目标信道之外的信道中确定第二目标信道;
接收所述第二目标信道或者所述第二目标信道对应的HARQ信息。
13.根据权利要求12所述的方法,其特征在于,所述第一信道集合中除所述第一目标信道之外的信道为其它信道,所述预设规则包括以下信息中的至少一种:
所述其它信道中信道对应的优先级信息;
所述其它信道中信道对应的时频资源;
所述其它信道中信道对应的层数;
所述其它信道中信道对应的误块率;
所述其它信道中信道承载的TBS;
所述其它信道中信道承载的UCI的类型;
所述其它信道中信道对应的HARQ进程号;
所述其它信道中信道对应的传输次数;
所述其它信道中信道对应的时域位置。
14.根据权利要求13所述的方法,其特征在于,所述预设规则包括:所述其它信道中信道对应的第一信息之和与所述第一信息的阈值的差值最小的信道为优先处理的信道;
所述第二目标信道为所述其它信道中满足所述预设规则的M个信道,所述M个信道对应的所述第一信息的取值之和小于所述第一信息的阈值,所述M为正整数,所述第一信息包括以下信息中的至少一种:所述时频资源、所述层数和所述TBS。
15.根据权利要求13所述的方法,其特征在于,所述预设规则包括:所述其它信道中信道对应的第一信息的取值与所述第一信息的阈值的差值最大或最小的信道为优先处理的信道,所述第一信息包括以下信息中的至少一种:所述时频资源、所述层数和所述TBS;
所述第二目标信道为所述其它信道中满足所述预设规则的M个信道,所述M个信道对应的参数小于所述参数的阈值,所述M为正整数。
16.根据权利要求10所述的方法,其特征在于,所述方法还包括:
发送第一配置信息或第二配置信息,所述第一配置信息用于指示终端设备对应的多个网络设备之间的回程为理想回程或者用于指示终端设备对应一个网络设备,所述第二配置信息用于指示终端设备对应的多个网络设备之间的回程为非理想回程。
17.根据权利要求10所述的方法,其特征在于,所述方法还包括:
接收能力信息,所述能力信息用于指示终端设备是否支持不按顺序传输。
18.根据权利要求10所述的方法,其特征在于,所述方法还包括:
发送第三配置信息,所述第三配置信息用于配置终端设备是否能够执行不按顺序传输。
19.根据权利要求17或18所述的方法,其特征在于,所述不按顺序传输包括:下行数据信道到HARQ信息的不按顺序传输,和/或,下行控制信道到上行数据信道的不按顺序传输。
20.一种通信装置,其特征在于,包括用于执行如权利要求1至9中任一项,或10至19中任一项所述的方法的模块。
21.一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9中任一项,或10至19中任一项所述的方法。
22.一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序或指令,当所述程序或指令被运行时,实现如权利要求1至9中任一项,或10至19中任一项所述的方法。
CN201910253504.7A 2019-03-29 2019-03-29 通信方法和通信装置 Active CN111757519B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910253504.7A CN111757519B (zh) 2019-03-29 2019-03-29 通信方法和通信装置
PCT/CN2020/081175 WO2020200012A1 (zh) 2019-03-29 2020-03-25 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910253504.7A CN111757519B (zh) 2019-03-29 2019-03-29 通信方法和通信装置

Publications (2)

Publication Number Publication Date
CN111757519A CN111757519A (zh) 2020-10-09
CN111757519B true CN111757519B (zh) 2022-03-29

Family

ID=72664548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910253504.7A Active CN111757519B (zh) 2019-03-29 2019-03-29 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN111757519B (zh)
WO (1) WO2020200012A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822000B (zh) * 2021-01-19 2022-07-15 深圳市联诚发科技股份有限公司 基于5g控制系统的智能LED显示屏的控制方法及智能LED显示屏
CN115529630B (zh) * 2022-11-29 2023-03-10 广州世炬网络科技有限公司 复合通信系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595610A (zh) * 2004-11-04 2012-07-18 三星电子株式会社 通信系统中分配子信道的方法、基站和用户站
KR20150012654A (ko) * 2013-07-26 2015-02-04 삼성전자주식회사 이동통신 시스템에서 효과적인 다중 반송파 다중 셀 스케줄링 장치 및 방법
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统
CN106797283A (zh) * 2016-11-11 2017-05-31 北京小米移动软件有限公司 传输、获取上行harq反馈信息的方法及装置
CN107872303A (zh) * 2016-09-26 2018-04-03 华为技术有限公司 传输反馈信息的方法和装置
CN108631969A (zh) * 2017-03-21 2018-10-09 中国移动通信有限公司研究院 一种指示信息的发送方法、接收方法、基站及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2959502T3 (es) * 2015-06-23 2024-02-26 Huawei Tech Co Ltd Método de envío de información de control y método de detección, estación base y equipo de usuario
CN108282882B (zh) * 2017-01-06 2021-06-22 华为技术有限公司 信息传输方法、终端设备及接入网设备
KR102464567B1 (ko) * 2017-01-16 2022-11-09 삼성전자 주식회사 무선 통신 시스템에서 데이터 처리 방법 및 장치
EP4210380A1 (en) * 2017-06-05 2023-07-12 Samsung Electronics Co., Ltd. Method and apparatus for configuring pdcp device and sdap device in next-generation mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595610A (zh) * 2004-11-04 2012-07-18 三星电子株式会社 通信系统中分配子信道的方法、基站和用户站
KR20150012654A (ko) * 2013-07-26 2015-02-04 삼성전자주식회사 이동통신 시스템에서 효과적인 다중 반송파 다중 셀 스케줄링 장치 및 방법
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统
CN107872303A (zh) * 2016-09-26 2018-04-03 华为技术有限公司 传输反馈信息的方法和装置
CN106797283A (zh) * 2016-11-11 2017-05-31 北京小米移动软件有限公司 传输、获取上行harq反馈信息的方法及装置
CN108631969A (zh) * 2017-03-21 2018-10-09 中国移动通信有限公司研究院 一种指示信息的发送方法、接收方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Summary of contributions on potential enhancements for PUSCH for NR URLLC (AI 7.2.6.1.3);Nokia等;《3GPP TSG-RAN WG1 Meeting #96 R1-1903368》;20190301;全文 *

Also Published As

Publication number Publication date
CN111757519A (zh) 2020-10-09
WO2020200012A1 (zh) 2020-10-08

Similar Documents

Publication Publication Date Title
US11552749B2 (en) Data transmission method and terminal device
EP2745593B1 (en) Scheduling communications
US11647503B2 (en) Information transmission method, terminal device, and network device
CA3115860C (en) Wireless communication method and device
US20210219300A1 (en) Communication method and communications apparatus
WO2021204218A1 (zh) 一种harq信息传输方法及装置
CN111865515B (zh) 通信方法和通信装置
WO2018209803A1 (zh) 一种传输信息的方法和装置
CN111757519B (zh) 通信方法和通信装置
WO2019192500A1 (zh) 通信方法和通信装置
JP7400964B2 (ja) 電力割り当て方法及び装置
US20230199799A1 (en) Wireless communication method, terminal device and network device
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
CN114175538A (zh) 用于增强型dai的方法和设备
WO2021088041A1 (zh) 上行数据传输方法、装置、终端及存储介质
CN114830576A (zh) 信息反馈方法和相关设备
WO2021184223A1 (zh) 通信方法、装置、设备及可读存储介质
CN116097589A (zh) 一种上行信息传输方法及装置
CN116489790A (zh) Uci传输方法、终端、网络设备、装置及存储介质
JP2024510280A (ja) 情報伝送方法、装置、デバイス及び記憶媒体
CN116998122A (zh) 一种信息传输方法、电子设备及存储介质
CN114365438A (zh) 通信方法和通信装置
CN115484007A (zh) 一种pdsch处理时间的确定方法及通信装置
CN116489791A (zh) 上行传输方法、终端设备和网络设备
CN116438765A (zh) 用于反馈配置的方法、终端设备、网络设备和计算机可读介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant