WO2014175244A1 - Printed-circuit-board material and printed circuit board using same - Google Patents

Printed-circuit-board material and printed circuit board using same Download PDF

Info

Publication number
WO2014175244A1
WO2014175244A1 PCT/JP2014/061235 JP2014061235W WO2014175244A1 WO 2014175244 A1 WO2014175244 A1 WO 2014175244A1 JP 2014061235 W JP2014061235 W JP 2014061235W WO 2014175244 A1 WO2014175244 A1 WO 2014175244A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufactured
mass
cellulose
printed wiring
wiring board
Prior art date
Application number
PCT/JP2014/061235
Other languages
French (fr)
Japanese (ja)
Inventor
武徳 角谷
柴田 大介
宇敷 滋
遠藤 新
崇夫 三輪
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013090377A external-priority patent/JP6317068B2/en
Priority claimed from JP2013097987A external-priority patent/JP6317070B2/en
Priority claimed from JP2013097986A external-priority patent/JP2014220342A/en
Priority claimed from JP2013097983A external-priority patent/JP6317069B2/en
Priority claimed from JP2013097989A external-priority patent/JP6317071B2/en
Priority claimed from JP2013097985A external-priority patent/JP6321327B2/en
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to KR1020157030379A priority Critical patent/KR102192598B1/en
Priority to CN201480018767.5A priority patent/CN105122953B/en
Publication of WO2014175244A1 publication Critical patent/WO2014175244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions

Definitions

  • the present invention relates to a printed wiring board material and a printed wiring board using the same.
  • a metal material such as copper is applied to a fiber such as glass impregnated with an epoxy resin, which is called a core material, and a circuit is formed by an etching method, There is one in which a circuit is formed after an insulating layer is formed by coating an insulating resin composition or laminating a sheet-like insulating resin composition.
  • a solder resist is formed on the outermost layer of the wiring board for the purpose of protecting the formed circuit and mounting the electronic component at the correct position.
  • an insulating material such as an epoxy resin or an acrylate resin is used for the solder resist (see, for example, Patent Documents 1, 2, and 3).
  • a laser processing method is used to expose the circuit by removing the solder resist at the desired part by laser processing, in addition to the photo development method using a photosensitive solder resist, which is a general technique. ing.
  • the laser processing method has a problem that smears (residues) are likely to remain as in the case of the hole (via) for interlayer conduction (see, for example, Patent Document 5).
  • JP 2006-182991 A (Claims etc.) JP 2013-36042 A (Claims etc.) JP 08-269172 A (Claims etc.) JP 2009-200301 A (Claims etc.) JP 2010-031216 A (claims, paragraphs [0079] to [0086], etc.)
  • An object of the present invention is to provide a printed wiring board material that does not easily cause smear on the surface of a metal foil such as copper and that can be easily removed even if it occurs, and a printed wiring board using the printed wiring board material.
  • the printed wiring board material of the present invention is characterized by including a binder component, cellulose nanofibers having a number average fiber diameter of 3 nm to 1000 nm, and an acrylic copolymer compound.
  • thermoplastic resin and a curable resin can be suitably used as the binder component.
  • the printed wiring board material of the present invention preferably contains a layered silicate. Moreover, it is preferable that the printed wiring board material of this invention contains any one or both of a silicone compound and a fluorine compound. Furthermore, in the printed wiring board material of this invention, it is preferable that the number average fiber diameter of the said cellulose nanofiber is 3 nm or more and less than 1000 nm, and also contains a cellulose fiber with a number average fiber diameter of 1 micrometer or more.
  • the cellulose nanofiber has a carboxylate in its structure. Furthermore, in the printed wiring board material of the present invention, it is preferable that the cellulose nanofiber is manufactured from lignocellulose.
  • the printed wiring board material of the present invention can be suitably used for solder resists and interlayer insulating materials for multilayer printed wiring boards.
  • the printed wiring board of the present invention is characterized by using the printed wiring board material of the present invention.
  • a printed wiring board material containing cellulose nanofibers and an acrylic copolymer compound is less likely to cause smear on the surface of a metal foil such as copper and is generated. Even so, a printed wiring board material that can be easily removed and a printed wiring board using the same can be realized.
  • the printed wiring board material of the present invention is characterized in that it contains a binder component, cellulose nanofibers having a number average fiber diameter of 3 nm to 1000 nm, and an acrylic copolymer compound.
  • the cellulose nanofiber can be obtained as follows.
  • the cellulose nanofiber can be obtained as follows.
  • raw materials for cellulose nanofibers use pulp made from natural plant fiber materials such as wood, hemp, bamboo, cotton, jute, kenaf, beet, agricultural waste, cloth, regenerated cellulose fibers such as rayon and cellophane, etc. Among them, pulp is particularly preferable.
  • pulp chemical pulp such as kraft pulp and sulfite pulp, semi-chemical pulp, chemi-ground pulp, chemimechanical pulp, obtained by pulping plant raw materials chemically or mechanically, or a combination of both, Thermomechanical pulp, chemithermomechanical pulp, refiner mechanical pulp, groundwood pulp, deinked wastepaper pulp, magazine wastepaper pulp, corrugated wastepaper pulp and the like mainly composed of these plant fibers can be used.
  • various kraft pulps derived from conifers having strong fiber strength for example, softwood unbleached kraft pulp, softwood oxygen bleached unbleached kraft pulp, and softwood bleached kraft pulp are particularly suitable.
  • the raw material is mainly composed of cellulose, hemicellulose and lignin, and the content of lignin is usually about 0 to 40% by mass, particularly about 0 to 10% by mass.
  • or a bleaching process can be performed as needed, and the amount of lignin can be adjusted.
  • the lignin content can be measured by the Klason method.
  • cellulose molecules are not a single molecule but regularly agglomerate to form crystalline microfibrils (cellulose nanofibers) that gather together and form the basic skeletal material of plants. ing. Therefore, in order to produce cellulose nanofibers from the above raw materials, a method of unraveling the fibers to the nano size by subjecting the raw materials to beating or crushing treatment, high-temperature high-pressure steam treatment, treatment with phosphate, etc. Can be used.
  • the beating or pulverization treatment is a method of obtaining cellulose nanofibers by applying a force directly to the raw materials such as pulp, mechanically beating or pulverizing, and unraveling the fibers. More specifically, for example, pulp fibers or the like are mechanically treated with a high-pressure homogenizer or the like, and cellulose fibers that have been loosened to a fiber diameter of about 0.1 to 10 ⁇ m are made into an aqueous suspension of about 0.1 to 3% by mass. Furthermore, by repeatedly grinding or crushing this with a grinder or the like, cellulose nanofibers having a fiber diameter of about 10 to 100 nm can be obtained.
  • the grinding or crushing treatment can be performed using, for example, a grinder “Pure Fine Mill” manufactured by Kurita Machine Seisakusho.
  • This grinder is a stone mill that pulverizes raw materials into ultrafine particles by impact, centrifugal force and shearing force generated when the raw material passes through the gap between the upper and lower two grinders. Shearing, grinding, atomization Dispersion, emulsification and fibrillation can be performed simultaneously.
  • the above grinding or crushing treatment can also be carried out using an ultrafine grinding machine “Supermass colloider” manufactured by Masuko Sangyo Co., Ltd.
  • the Super Mass Collider is an attritor that enables ultra-fine atomization that feels like melting beyond the mere grinding area.
  • the super mass collider is a stone mill type ultrafine grinding machine composed of two top and bottom non-porous grindstones whose spacing can be freely adjusted.
  • the upper grindstone is fixed and the lower grindstone rotates at high speed.
  • the raw material thrown into the hopper is fed into the gap between the upper and lower grinding stones by centrifugal force, and the raw material is gradually crushed by the strong compression, shearing, rolling frictional force, etc. generated there, and is made into ultrafine particles.
  • the high temperature and high pressure steam treatment is a method of obtaining cellulose nanofibers by unraveling the fibers by exposing the raw materials such as pulp to high temperature and high pressure steam.
  • the surface of the raw material such as the pulp is phosphorylated to weaken the bonding force between the cellulose fibers, and then the refiner treatment (grinding or crushing treatment) is performed.
  • This is a treatment method for unraveling the fibers and obtaining cellulose nanofibers.
  • the raw materials such as pulp are immersed in a solution containing 50% by mass of urea and 32% by mass of phosphoric acid, and the solution is sufficiently soaked between cellulose fibers at 60 ° C., and then heated at 180 ° C. After proceeding with phosphorylation and washing with water, it was hydrolyzed in a 3% by mass aqueous hydrochloric acid solution at 60 ° C.
  • Cellulose nanofibers can be obtained by completing phosphorylation by treating at room temperature for about 20 minutes, and defibrating the treated product with a refiner (such as the above-mentioned grinder).
  • the cellulose nanofiber used in the present invention may be chemically modified and / or physically modified to enhance functionality.
  • a functional group is added by acetalization, acetylation, cyanoethylation, etherification, isocyanateation, etc., or inorganic substances such as silicate and titanate are combined by chemical reaction or sol-gel method, Or it can carry out by the method of coat
  • the chemical modification method include a method in which cellulose nanofibers formed into a sheet are immersed in acetic anhydride and heated.
  • PVD method physical vapor deposition
  • CVD chemical vapor deposition
  • electroless plating electrolytic plating
  • electrolytic plating etc.
  • PVD method physical vapor deposition
  • the method of covering by the plating method etc. of this is mentioned. These modifications may be before the treatment or after the treatment.
  • the number average fiber diameter of the cellulose nanofiber used in the present invention is required to be 3 nm to 1000 nm, preferably 3 nm to 200 nm, and more preferably 3 nm to 100 nm. Since the minimum diameter of the cellulose nanofiber single fiber is 3 nm, it cannot be produced substantially less than 3 nm, and when it exceeds 1000 nm, the dispersibility with the binder component is deteriorated. In addition, the number average fiber diameter of the cellulose nanofiber is observed with SEM (Scanning Electron Microscope; Scanning Electron Microscope), TEM (Transmission Electron Microscope; Transmission Electron Microscope), etc., and the diagonal line of the photograph is drawn. This is an average value obtained by extracting 12 points of fibers in the vicinity at random, removing the thickest fiber and the thinnest fiber, and measuring the remaining 10 points.
  • SEM Sccanning Electron Microscope
  • Scanning Electron Microscope Scanning Electron Microscope
  • TEM Transmission Electron Microscope
  • the blending amount of the cellulose nanofiber used in the present invention is preferably 0.1 to 80% by mass, more preferably 0.2 to 70% by mass, based on the total amount of the composition excluding the solvent.
  • the blending amount of the cellulose nanofiber is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily.
  • film forming property improves.
  • acrylic copolymer compound examples include poly (meth) acrylate, modified poly (meth) acrylate and the like, and specific examples thereof include BYK-350, BYK-352, BYK- manufactured by BYK Chemie Japan Co., Ltd.
  • the amount of the acrylic copolymer compound used in the present invention is usually a ratio that is usually used. For example, it is preferably 0.01 to 20 parts by weight, more preferably 100 parts by weight of the binder component. Is 0.01 to 10 parts by mass, and more preferably 0.05 to 3 parts by mass. If the amount of the acrylic copolymer compound is too small, the desired effect of the present invention may not be obtained. If it is too much, some liquid components of the acrylic copolymer compound are cured from the cured product. Since a so-called bleed phenomenon that oozes out to the surface of the object occurs, it is not preferable anyway.
  • Binder component As the binder component used in the present invention, a thermoplastic resin and a curable resin such as a thermosetting resin or a photocurable resin can be suitably used.
  • Thermoplastic resins include acrylic, modified acrylic, low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polyethylene terephthalate, polypropylene, modified polypropylene, polystyrene, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer.
  • General-purpose plastics such as polymers, cellulose acetate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polylactic acid, polyamide, thermoplastic polyurethane, polyacetal, polycarbonate, ultrahigh molecular weight polyethylene, polybutylene terephthalate, modified polyphenylene ether, polysulfone, Polyphenylene sulfide, polyethersulfone, polyetheretherketone, polyarylate, polyetherimide, poly Midimide, liquid crystal polymer, polyamide 6T, polyamide 9T, polytetrafluoroethylene, polyvinylidene fluoride, polyesterimide, engineering plastics such as thermoplastic polyimide, olefin, styrene, polyester, urethane, amide, vinyl chloride And thermoplastic elastomers such as hydrogenated systems.
  • the thermosetting resin may be any resin that is cured by heating and exhibits electrical insulation.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac epoxy resin, biphenyl type epoxy Resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, tetraphenylol ethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin Resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer epoxy resin, copolymer epoxy resin of cyclo
  • Phenol resin such as resol type phenol resin such as modified oil-modified resol phenol resin, phenoxy resin, urea (urea) resin, triazine ring-containing resin such as melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone Resin, resin having benzoxazine ring, norbornene resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, A polyazomethine resin, a thermosetting polyimide, etc. are mentioned.
  • resol type phenol resin such as modified oil-modified resol phenol resin, phenoxy resin, urea (urea) resin, triazine ring-containing resin such as melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone Resin, resin having benzoxazine ring, norbornene resin
  • the radically polymerizable photocurable resin may be any resin that is cured by irradiation with active energy rays and exhibits electrical insulation, and in particular, a compound having one or more ethylenically unsaturated bonds in the molecule is preferably used. It is done.
  • a compound having one or more ethylenically unsaturated bonds known and commonly used photopolymerizable oligomers and photopolymerizable vinyl monomers are used.
  • Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers.
  • Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
  • (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • photopolymerizable vinyl monomer known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide (Meth) acrylamides such as rilamide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyan
  • an alicyclic epoxy compound As the cationic polymerizable photocurable resin, an alicyclic epoxy compound, an oxetane compound, a vinyl ether compound, or the like can be suitably used.
  • alicyclic epoxy compounds include 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxy).
  • Examples of commercially available products include Celoxide 2000, Celoxide 2021, Celoxide 3000, EHPE 3150 manufactured by Daicel Corporation, Epomic VG-3101 manufactured by Mitsui Chemicals, Inc., E-1031S manufactured by Mitsubishi Chemical Corporation, and Mitsubishi Gas Chemical ( And TETRAD-X and TETRAD-C manufactured by Nippon Soda Co., Ltd. and EPB-27 manufactured by Nippon Soda Co., Ltd.
  • oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3- Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) methyl acrylate
  • polyfunctional oxetanes such as (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, poly (p -Hydroxystyrene
  • vinyl ether compounds include cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanorbornene divinyl ether (vinyl ethers having a cyclic ether group such as oxirane ring, oxetane ring and oxolane ring); aryl vinyl ethers such as phenyl vinyl ether; n-butyl vinyl ether Alkyl vinyl ethers such as octyl vinyl ether; cycloalkyl vinyl ethers such as cyclohexyl vinyl ether; polyfunctional vinyl ethers such as hydroquinone divinyl ether, 1,4-butanediol divinyl ether, cyclohexane divinyl ether, cyclohexanedimethanol divinyl ether, ⁇ and / or ⁇ position And vinyl ether compounds having a substituent such as an alkyl group and an allyl group.
  • HEVE 2-hydroxyethyl vinyl ether
  • DEGV diethylene glycol monovinyl ether
  • HBVE 2-hydroxybutyl vinyl ether
  • triethylene glycol divinyl ether manufactured by Maruzen Petrochemical Co., Ltd.
  • the printed wiring board material of the present invention is used as an alkali development type photo solder resist that can be developed with an alkaline aqueous solution, it is also preferable to use a carboxyl group-containing resin as a binder component.
  • Carboxyl group-containing resin As the carboxyl group-containing resin, any of a photosensitive carboxyl group-containing resin having at least one photosensitive unsaturated double bond and a carboxyl group-containing resin having no photosensitive unsaturated double bond can be used. However, it is not limited to a specific one. As the carboxyl group-containing resin, in particular, the resins listed below can be suitably used. (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid and a compound having an unsaturated double bond, and a carboxyl group-containing resin having a molecular weight and an acid value adjusted by modifying it.
  • a photosensitive carboxyl group-containing resin obtained by reacting a carboxyl group-containing (meth) acrylic copolymer resin with a compound having an oxirane ring and an ethylenically unsaturated group in one molecule.
  • An unsaturated monocarboxylic acid is reacted with a copolymer of a compound having one epoxy group and an unsaturated double bond in each molecule and a compound having an unsaturated double bond, and formed by this reaction.
  • a photosensitive carboxyl group-containing resin obtained by reacting a secondary hydroxyl group with a saturated or unsaturated polybasic acid anhydride.
  • a polyfunctional epoxy compound is reacted with a compound having one reactive group other than a hydroxyl group that reacts with two or more hydroxyl groups and an epoxy group in one molecule, and an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
  • Carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
  • the printed wiring board material of the present invention in addition to cellulose nanofibers, a binder component, and an acrylic copolymer compound, other conventional compounding components can be appropriately blended depending on the application.
  • Examples of other conventional compounding components include a curing catalyst, a photopolymerization initiator, a colorant, and an organic solvent.
  • the curing catalyst is mainly for curing a thermosetting resin among curable resins.
  • imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- Imidazole derivatives such as phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) Amine compounds such as —N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydr
  • Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), U-CAT3503N, U-CAT3502T, DBU, DBN, U-CATSA102, U- CAT5002 (manufactured by San Apro Co., Ltd.) and the like may be mentioned, and these may be used alone or in admixture of two or more.
  • the photopolymerization initiator is for curing the photocurable resin among the curable resins, for example, benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • Acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl -1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) ) -2-[(4-Methylphenyl) methyl Aminoalkylphenones such as 1- [4- (4-morpholinyl) phenyl] -1-butanone; anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 1-chloroanthraquinone Thioxanthones such
  • These photopolymerization initiators can be used alone or in combination of two or more.
  • a known and conventional one represented by a color index as a color pigment or dye can be used.
  • Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4 15: 6, 16, 60 Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136 , 67, 70, Pigment Green 7, 36, 3, 5, 20, 28, Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202, 110, 109, 139, 179, 185, 93, 94 95, 128, 155, 166, 180, 120, 151, 154, 156, 175, 181, 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 16 , 182, 183, 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152
  • organic solvents examples include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol Glycol ethers such as monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; Mention may be made of petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha,
  • additives such as a defoaming and leveling agent, a thixotropy imparting agent / thickening agent, a coupling agent, a dispersant, and a flame retardant, may be included as necessary.
  • Antifoaming and leveling agents include compounds such as silicone, modified silicone, mineral oil, vegetable oil, aliphatic alcohol, fatty acid, metal soap, fatty acid amide, polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, etc. Etc. can be used.
  • clay minerals such as kaolinite, smectite, montmorillonite, bentonite, talc, mica, zeolite, etc., silica gel, silica gel, amorphous inorganic particles, polyamide additives, modified urea additives, Wax-based additives can be used.
  • alkoxy group is methoxy group, ethoxy group, acetyl, etc.
  • reactive functional group is vinyl, methacryl, acrylic, epoxy, cyclic epoxy, mercapto, amino, diamino, acid anhydride, ureido, sulfide, Isocyanates and the like, for example, vinyl silane compounds such as vinyl ethoxylane, vinyl trimethoxysilane, vinyl tris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxylane, ⁇ -aminopropyltrimethoxylane, ⁇ - ⁇ - (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, amino-based silane compounds such as ⁇ -ureidopropyltriethoxysilane, ⁇ -glycid
  • Dispersants include polycarboxylic acid-based, naphthalene sulfonic acid formalin condensation-based, polyethylene glycol, polycarboxylic acid partial alkyl ester-based, polyether-based, polyalkylene polyamine-based polymeric dispersants, alkyl sulfonic acid-based, four Low molecular weight dispersants such as secondary ammonium series, higher alcohol alkylene oxide series, polyhydric alcohol ester series and alkylpolyamine series can be used.
  • Flame retardants include hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
  • hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
  • ingredients include photoacid generators such as diazonium salts, sulfonium salts, iodonium salts, photobase generators such as carbamate compounds, ⁇ -aminoketone compounds, O-acyloxime compounds, barium sulfate, spherical silica, hydrotalcite.
  • photoacid generators such as diazonium salts, sulfonium salts, iodonium salts
  • photobase generators such as carbamate compounds, ⁇ -aminoketone compounds, O-acyloxime compounds, barium sulfate, spherical silica, hydrotalcite.
  • inorganic fillers such as silicon powder, nylon powder and fluorine powder, radical scavengers, ultraviolet absorbers, peroxide decomposers, thermal polymerization inhibitors, adhesion promoters, rust inhibitors and the like.
  • the printed wiring board material according to the present invention having the configuration as described above can be suitably applied to a solder resist, and can be suitably used for an interlayer insulating material of a multilayer printed wiring board.
  • the desired effect of the present invention can be obtained.
  • a method of forming a prepreg by forming the cellulose nanofibers into a sheet shape, impregnating the sheet-like cellulose nanofibers with a binder component, and drying. Can be used.
  • FIG. 1 is a partial cross-sectional view showing a configuration example of a multilayer printed wiring board according to the present invention.
  • the illustrated multilayer printed wiring board can be manufactured, for example, as follows. First, a through hole is formed in the core substrate 2 on which the conductor pattern 1 is formed. The through hole can be formed by an appropriate means such as a drill, a die punch, or laser light. Then, a roughening process is performed using a roughening agent. Generally, the roughening treatment is carried out by swelling with an organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol, or an alkaline aqueous solution such as caustic soda or caustic potash. It is carried out using an oxidizing agent such as salt, ozone, hydrogen peroxide / sulfuric acid or nitric acid.
  • an organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or meth
  • the conductor pattern 3 is formed by a combination of electroless plating or electrolytic plating.
  • the step of forming the conductor layer by electroless plating is a step of immersing in an aqueous solution containing a plating catalyst, adsorbing the catalyst, and then immersing in a plating solution to deposit the plating.
  • a predetermined circuit pattern is formed on the conductor layer on the surface of the core substrate 2 in accordance with a conventional method (subtractive method, semi-additive method, etc.), and a conductor pattern 3 is formed on both sides as shown.
  • a plated layer is also formed in the through hole, and as a result, the connection portion 4 of the conductor pattern 3 of the multilayer printed wiring board and the connection portion 1a of the conductor pattern 1 are electrically connected.
  • Through hole 5 is formed.
  • the interlayer insulating layer 6 is formed by heating and curing.
  • the interlayer insulating layer 6 is formed by laminating or hot plate pressing and heat curing.
  • vias 7 for electrically connecting the connection portions of the conductor layers are formed by appropriate means such as laser light, and the conductor pattern 8 is formed by the same method as the conductor pattern 3.
  • the interlayer insulating layer 9, the via 10 and the conductor pattern 11 are formed by the same method.
  • a multilayer printed wiring board is manufactured by forming the solder resist layer 12 in the outermost layer.
  • a single-sided substrate or a double-sided substrate may be used instead of the multilayer substrate.
  • the printed wiring board material of the present invention preferably further contains a layered silicate.
  • a layered silicate By blending cellulose nanofiber and layered silicate in combination, the linear expansion coefficient can be significantly reduced with a smaller amount of blending than when either one is blended.
  • the layered silicate is not particularly limited, but clay minerals and hydrotalcite compounds having swelling properties and / or cleavage properties, and similar compounds are preferable.
  • these clay minerals include kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, beidellite, nontronite, saponite, sauconite, stevensite, hectorite, tetrasilic mica, sodium.
  • Examples include teniolite, muscovite, margarite, talc, vermiculite, phlogopite, xanthophyllite, chlorite.
  • These layered silicates may be natural products or synthetic products. These layered silicates can be used alone or in combination.
  • the shape of the layered silicate is not particularly limited, but it is difficult to cleave after layering when the layered silicate overlaps multiple layers.
  • the thickness of the salt is preferably as thick as possible in one layer (about 1 nm). Further, those having an average length of 0.01 to 50 ⁇ m, preferably 0.05 to 10 ⁇ m, and an aspect ratio of 20 to 500, preferably 50 to 200 can be suitably used.
  • the layered silicate has an inorganic cation capable of ion exchange between the layers.
  • the ion-exchangeable inorganic cation is a metal ion such as sodium, potassium, or lithium existing on the surface of the layered silicate crystal. These ions have an ion exchange property with a cationic substance, and various substances having a cationic property can be inserted (intercalated) between the layers of the layered silicate by an ion exchange reaction.
  • the cation exchange capacity (CEC) of the layered silicate is not particularly limited, but is preferably, for example, 25 to 200 meq / 100 g, more preferably 50 to 150 meq / 100 g, and 90 to 130 meq. More preferably, it is / 100g. If the cation exchange capacity of the layered silicate is 25 meq / 100 g or more, a sufficient amount of a cationic substance is inserted (intercalated) between the layers of the layered silicate by ion exchange, and the layers are sufficiently made organophilic. . On the other hand, if the cation exchange capacity is 200 meq / 100 g or less, the bonding strength between the layers of the layered silicate becomes too strong and the crystal flakes are not easily peeled off, and good dispersibility can be maintained.
  • layered silicate satisfying the above preferred conditions include, for example, Sumecton SA manufactured by Kunimine Industry Co., Ltd., Kunipia F manufactured by Kunimine Industry Co., Ltd., Somasif ME-100 manufactured by Corp Chemical Co., Ltd. Examples of such products include Lucentite STN manufactured by Chemical Corporation.
  • any general onium salt may be used, and it is disclosed in JP-A-2004-107541 from the viewpoint of heat resistance. It is preferable to use an onium salt having a high thermal decomposition temperature.
  • the method for containing the organophilic agent between the layered silicate layers is not particularly limited, but from the viewpoint that the synthesis operation is easy, the inorganic cation is made to be an organophilic agent by an ion exchange reaction. A method of containing them by exchanging them is preferable.
  • the method for ion-exchanging the ion-exchangeable inorganic cation of the layered silicate with the organophilic agent is not particularly limited, and a known method can be used. Specifically, techniques such as ion exchange in water, ion exchange in alcohol, and ion exchange in a water / alcohol mixed solvent can be used.
  • an organophilic agent is added and stirred to replace the inorganic cation between layers of the layered silicate with the organophilic agent. Thereafter, the unsubstituted organophilic agent is thoroughly washed, filtered and dried.
  • the progress of the ion exchange can be confirmed by a known method. For example, the method of confirming the exchanged inorganic ions by ICP emission analysis of the filtrate, the method of confirming that the layer spacing of the layered silicate has been expanded by X-ray analysis, It can be confirmed that the inorganic cation of the layered silicate has been replaced with the organophilic agent by a method for confirming the presence of the organic agent.
  • the ion exchange is preferably 0.05 equivalents (5% by mass) or more, more preferably 0.1 equivalents (10% by mass) or more with respect to 1 equivalent of inorganic ions capable of ion exchange of the layered silicate. Preferably, it is 0.5 equivalent (50 mass%) or more.
  • Ion exchange is preferably performed at a temperature of 0 to 100 ° C., more preferably at a temperature range of 10 to 90 ° C., and even more preferably at a temperature range of 15 to 80 ° C.
  • the amount of the layered silicate used in the present invention is preferably 0.02 to 48% by mass, more preferably 0.04 to 42% by mass, based on the total amount of the composition excluding the solvent. is there.
  • the compounding quantity of layered silicate is 0.02 mass% or more, the reduction effect of a linear expansion coefficient can be acquired favorably.
  • film forming property improves.
  • the present invention by combining cellulose nanofibers and layered silicates, a material having a greatly reduced linear expansion coefficient with a smaller amount than when either one is blended due to a synergistic effect. Can be obtained.
  • the total amount of the cellulose nanofiber and the layered silicate in the present invention is preferably 0.1 to 80% by mass, more preferably 0.2 to 70% by mass with respect to the total amount of the composition excluding the solvent. %.
  • the printed wiring board material of the present invention preferably contains one or both of a silicone compound and a fluorine compound.
  • a silicone compound and a fluorine compound By including one or both of the silicone compound and the fluorine compound, it is possible to obtain an effect of suppressing the occurrence of migration between holes.
  • silicone compound examples include polydimethylsiloxane, polyalkylphenylsiloxane, alkyl-modified silicone oil, polyether-modified silicone oil, polyalkylsiloxane, polymethylsilsesquioxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, and polymethylphenyl.
  • silicone compound examples include siloxane, aralkyl-modified silicone oil, and alkylaralkyl-modified silicone oil.
  • fluorine compound examples include fluorine-based resins having a perfluoroalkyl group or a perfluoroalkenyl group in the molecule.
  • Commercially available products include, for example, MegaFuck F-444, F-472, F-477, F-552, F-553, F-554, F-443, F-470, F- 470, F-475, F-482, F-482, F-487, F-487, R-30, RS-75 (manufactured by DIC Corporation), F-top EF301, 303, 352 (Shin-Akita Kasei Co., Ltd.), Florad FC-430, FC-431 (Sumitomo 3M Co., Ltd.), Asahi Guard AG-E300D, Surflon S-382, SC-101, SC- 102, SC-103, SC-104, SC-105, SC-106 (above, Asahi Glass Co., Ltd.), BM-1000, BM
  • the amount of one or both of the silicone compound and fluorine compound used in the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.01 to 100 parts by mass of the binder component. To 10 parts by mass, more preferably 0.05 to 3 parts by mass.
  • the blending amount of either one or both of the silicone compound and the fluorine compound is 0.01% by mass or more, the desired effect of the present invention can be obtained satisfactorily.
  • film forming property improves.
  • the printed wiring board material of the present invention preferably contains cellulose fibers having a number average fiber diameter of 1 ⁇ m or more and cellulose nanofibers having the number average fiber diameter of 3 nm or more and less than 1000 nm.
  • the cellulose fiber can be obtained as follows. Examples of the raw material of the cellulose fiber include the same materials as the cellulose nanofiber.
  • pulp is mechanically treated with a high-pressure homogenizer or the like to loosen the fiber to a fiber diameter of about 1 to 10 ⁇ m, and the cellulose fiber is made into a water suspension of about 0.1 to 3% by mass. Obtainable.
  • cellulose nanofibers having a fiber diameter of about 10 to 100 nm can also be obtained by repeatedly unraveling cellulose fibers obtained by beating or pulverization with a grinder or the like.
  • the cellulose fiber used in the present invention may be one having enhanced functionality by chemical modification and / or physical modification in the same manner as the cellulose nanofiber.
  • the number average fiber diameter of the cellulose fiber used in the present invention is a value obtained in the same manner as the cellulose nanofiber.
  • the number average fiber diameter of the cellulose fibers needs to be 1 ⁇ m or more, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m. If the number average fiber diameter of the cellulose fiber is smaller than the above range, the desired effect cannot be obtained.
  • the printed wiring board material of the present invention has a number average fiber diameter outside the range of the specific number average fiber diameter in addition to the cellulose fiber and the cellulose nanofiber satisfying the specific number average fiber diameter range.
  • Cellulose fibers may be included.
  • cellulose fiber a commercially available product can be appropriately used as long as it satisfies the condition of the number average fiber diameter, and is not particularly limited.
  • an excellent peel strength can be realized by combining the cellulose fiber and the cellulose nanofiber in combination.
  • the mass ratio of the cellulose fiber to the cellulose nanofiber is preferably 9: 1 to 1: 9, more preferably 8: 2 to 2: 8. By setting it within this range, higher peel strength can be obtained.
  • the total amount of the cellulose fiber and the cellulose nanofiber is preferably 0.5 to 80% by mass, more preferably 1 to 70% by mass with respect to the total amount of the composition excluding the solvent. is there.
  • the total amount of the cellulose fibers and the cellulose nanofibers 0.5% by mass or more, higher peel strength can be obtained, and by 80% by mass or less, good film-forming properties are obtained. Can be obtained.
  • the printed wiring board material of the present invention preferably contains cellulose nanofibers having a carboxylate in the structure and a number average fiber diameter of 3 nm to 1000 nm.
  • cellulose nanofibers can be obtained by oxidizing natural cellulose fibers and then refining them according to the following.
  • an aqueous dispersion is prepared by dispersing natural cellulose fibers in about 10 to 1000 times (mass basis) of water on an absolute dry basis using a mixer or the like.
  • the natural cellulose fiber used as a raw material for the cellulose nanofiber include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as straw pulp and bagasse pulp, cotton pulp such as cotton lint and cotton linter, Examples include bacterial cellulose. These may be used individually by 1 type, or may be used in combination of 2 or more types as appropriate. Further, these natural cellulose fibers may be subjected to a treatment such as beating in order to increase the surface area in advance.
  • N-oxyl compounds include TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), 4-carboxy-TEMPO, 4-acetamido-TEMPO, 4-amino-TEMPO, 4 -Dimethylamino-TEMPO, 4-phosphonooxy-TEMPO, 4-hydroxy TEMPO, 4-oxy TEMPO, 4-methoxy TEMPO, 4- (2-bromoacetamido) -TEMPO, 2-azaadamantane N-oxyl, etc.
  • TEMPO derivatives having various functional groups at the C4 position can be used.
  • a catalytic amount is sufficient, and it can usually be in a range of 0.1 to 10% by mass with respect to natural cellulose fiber on an absolute dry basis.
  • an oxidizing agent and a co-oxidizing agent are used in combination.
  • the oxidizing agent include halous acid, hypohalous acid and perhalogenic acid and salts thereof, hydrogen peroxide, perorganic acid, among which sodium hypochlorite and sodium hypobromite.
  • Alkali metal hypohalites such as are preferred.
  • an alkali metal bromide such as sodium bromide can be used as the co-oxidant.
  • the amount of the oxidizing agent used is usually in the range of about 1 to 100% by mass based on the absolute dry standard relative to the natural cellulose fiber, and the amount of the co-oxidant used is usually based on the absolute dry standard relative to the natural cellulose fiber Is about 1 to 30% by mass.
  • the pH of the aqueous dispersion in the range of 9 to 12 from the viewpoint of efficiently proceeding the oxidation reaction.
  • the temperature of the aqueous dispersion during the oxidation treatment can be arbitrarily set in the range of 1 to 50 ° C., and the reaction can be performed at room temperature without temperature control.
  • the reaction time can be in the range of 1 to 240 minutes.
  • a penetrant can be added to the aqueous dispersion in order to allow the drug to penetrate into the inside of the natural cellulose fiber and introduce more carboxyl groups into the fiber surface.
  • penetrating agent examples include anionic surfactants such as carboxylate, sulfate ester salt, sulfonate salt, and phosphate ester salt, and nonionic surfactants such as polyethylene glycol type and polyhydric alcohol type. .
  • the oxidation treatment of the natural cellulose fiber it is preferable to carry out a purification treatment to remove impurities such as unreacted oxidant and various by-products contained in the aqueous dispersion prior to refinement.
  • a technique of repeatedly washing and filtering the oxidized natural cellulose fiber can be used.
  • the natural cellulose fiber obtained after the refining treatment is usually subjected to a refining treatment in a state impregnated with an appropriate amount of water. However, if necessary, the natural cellulose fiber may be dried to obtain a fibrous or powdery form.
  • the solvent as a dispersion medium used in the micronization treatment is usually preferably water, but if desired, alcohols (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, Ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, etc.), etc.
  • alcohols methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, Ethylene glycol, glycerin
  • a water-soluble organic solvent may be used, or a mixture thereof may be used.
  • the solid content concentration of the natural cellulose fiber in the dispersion of these solvents is preferably 50% by mass or less. When the solid content concentration of the natural cellulose fiber exceeds 50% by mass, extremely high energy is required for dispersion, which is not preferable.
  • Refinement of natural cellulose treatment includes low-pressure homogenizers, high-pressure homogenizers, grinders, cutter mills, ball mills, jet mills, beating machines, disintegrators, short-screw extruders, twin-screw extruders, ultrasonic agitators, household juicer mixers, etc. This can be done using a dispersing device.
  • the cellulose nanofibers obtained by the refinement treatment can be made into a suspension in which the solid content concentration is adjusted, or a dried powder, as desired.
  • a suspension only water may be used as a dispersion medium, and water and other organic solvents, for example, alcohols such as ethanol, surfactants, acids, bases, etc.
  • a mixed solvent may be used.
  • the hydroxyl group at the C6 position of the structural unit of the cellulose molecule is selectively oxidized to a carboxyl group via an aldehyde group, and the content of the carboxyl group is 0.1.
  • This highly crystalline cellulose nanofiber has a cellulose I-type crystal structure. This means that the cellulose nanofibers are those obtained by surface-oxidizing naturally-derived cellulose molecules having an I-type crystal structure.
  • natural cellulose fibers have a high-order solid structure formed by a bundle of fine fibers called microfibrils produced in the process of biosynthesis, and a strong cohesive force between the microfibrils (between surfaces).
  • the cellulose nanofibers can be obtained by weakening the hydrogen bond) by introducing an aldehyde group or a carboxyl group by an oxidation treatment, and further through a refinement treatment. By adjusting the conditions of the oxidation treatment, the content of the carboxyl group is increased or decreased, the polarity is changed, or by the electrostatic repulsion or refinement treatment of the carboxyl group, the average fiber diameter or average fiber length of the cellulose nanofiber, The average aspect ratio can be controlled.
  • the introduction of a carboxyl group into the cellulose molecule of the cellulose nanofibers indicates that in a sample from which moisture has been completely removed, absorption due to a carbonyl group (1608 cm ⁇ 1 ) in the total reflection infrared spectroscopic spectrum (ATR). This can be confirmed by the presence of the vicinity. In the case of a carboxyl group (COOH), there is an absorption at 1730 cm ⁇ 1 in the above measurement.
  • dehalogenation treatment can be performed for the purpose of removing such residual halogen atoms.
  • the dehalogenation treatment can be performed by immersing the oxidized natural cellulose fiber in a hydrogen peroxide solution or an ozone solution.
  • the oxidized natural cellulose fiber is added to a hydrogen peroxide solution having a concentration of 0.1 to 100 g / L in a bath ratio of about 1: 5 to 1: 100, preferably 1:10 to 1. : Immerse under conditions of about 60 (mass ratio).
  • the concentration of the hydrogen peroxide solution is preferably 1 to 50 g / L, and more preferably 5 to 20 g / L.
  • the pH of the hydrogen peroxide solution is preferably 8 to 11, more preferably 9.5 to 10.7.
  • the number average fiber diameter of the cellulose nanofiber having a carboxylate salt in the structure used in the present invention can be the same as that of the cellulose nanofiber.
  • the amount of the cellulose nanofiber having a carboxylate in the structure in the printed wiring board material is preferably 0.1 to 80% by mass, more preferably based on the total amount of the composition excluding the solvent. Is 0.2 to 70% by mass.
  • the blending amount of the cellulose nanofiber having a carboxylate salt in the structure is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily.
  • film forming property improves.
  • the printed wiring board material of the present invention preferably contains cellulose nanofibers (hereinafter also referred to as lignocellulose nanofibers) produced from lignocellulose and having a number average fiber diameter of 3 nm to 1000 nm.
  • lignocellulose nanofibers cellulose nanofibers produced from lignocellulose and having a number average fiber diameter of 3 nm to 1000 nm.
  • Lignocellulose that exists in nature has a three-dimensional network hierarchical structure in which cellulose is tightly bound to lignin and hemicellulose. Cellulose molecules in the cell wall are not single molecules but regularly agglomerate to collect dozens of them. Crystalline microfibrils (cellulose nanofibers) are formed.
  • the lignocellulose used in the present invention can be obtained from, for example, woody biomass obtained from plants such as wood, agricultural products, vegetation, and cotton, or bacterial cellulose produced by microorganisms. In order to produce cellulose nanofibers from lignocellulose, a method of mechanically grinding in the presence of a medium can be used.
  • Such mechanical pulverization methods include, for example, a ball mill (vibrating ball mill, rotating ball mill, planetary ball mill), rod mill, bead mill, disk mill, cutter mill, hammer mill, impeller mill, extruder, mixer (high-speed rotating blade mixer, Homogenizer), homogenizer (high pressure homogenizer, mechanical homogenizer, ultrasonic homogenizer) and the like.
  • pulverization is preferably performed by a ball mill, a rod mill, a bead mill, a disk mill, a cutter mill, an extruder or a mixer.
  • the medium used in the pulverization step is not particularly limited, but water, a low molecular compound, a high molecular compound, fatty acids, and the like are preferably used. These may be used alone or in combination of two or more. Among these, it is preferable to mix water and a low molecular compound, a high molecular compound, or fatty acids, and to use as a pulverization medium.
  • examples of the low molecular weight compound include alcohols, ethers, ketones, sulfoxides, amides, amines, aromatics, morpholines, ionic liquids, and the like.
  • examples of the polymer compound include alcohol polymers, ether polymers, amide polymers, amine polymers, aromatic polymers, and the like.
  • examples of fatty acids include saturated fatty acids and unsaturated fatty acids. In this case, it is preferable to use water-soluble compounds as the low molecular compounds, polymer compounds and fatty acids to be used.
  • ozone treatment as a pretreatment may be performed in order to facilitate pulverization.
  • the number average fiber diameter of the lignocellulose nanofiber used in the present invention can be the same as that of the cellulose nanofiber.
  • the amount of the above lignocellulose nanofibers in the printed wiring board material is preferably 0.1 to 80% by mass, more preferably 0, based on the total amount of the composition excluding the organic solvent described later. 2 to 70% by mass.
  • the blending amount of the cellulose nanofiber is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily.
  • 80 mass% or less film forming property improves.
  • tetrahydrophthalic anhydride was added to the OH group of the resin obtained above at 95 to 105 ° C. for 8 hours at a molar ratio of 0.26. This was taken out after cooling to obtain a solution containing 50% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 78.1 mgKOH / g and a mass average molecular weight of 35,000.
  • Thermosetting compound 3 Unidic V-8000 (solid content: 40% by mass), manufactured by DIC Corporation * 1-10)
  • Thermosetting compound 4 Denacol EX-830, manufactured by Nagase ChemteX Corporation * 1-11)
  • Curing catalyst 2 Triphenylphosphine * 1-12)
  • Photocurable compound 1 Bisphenol A type epoxy acrylate * 1-13)
  • Photocurable compound 2 Trimethylolpropane triacrylate * 1-14)
  • Photocurable compound 3 Kayamar PM2 Nippon Kayaku Co., Ltd. * 1-15)
  • Photocurable compound 4 Light ester HO Kyoeisha Chemical Co., Ltd. * 1-16)
  • Photopolymerization initiator 1 2-ethylanthraquinone
  • Thermoplastic resin 1 Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd. * 1-18)
  • Thermoplastic resin 2 Novatec LD LC561 manufactured by Nippon Polyethylene Co., Ltd.
  • Thermoplastic resin 3 Socsea SOXR-OB, varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
  • each component was blended and then 150 ° C. using a kneader (labor plast mill, manufactured by Toyo Seiki Co., Ltd.). For 10 minutes at a rotational speed of 70 rpm. The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. Thereby, a sheet-like cellulose nanofiber composite molded body having a thickness of 0.05 mm was obtained.
  • a kneader labor plast mill, manufactured by Toyo Seiki Co., Ltd.
  • the obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd
  • FIG. 2 is an explanatory view showing a method for producing a smear removability evaluation substrate.
  • (a) to (c-1) are plan views
  • (c-2) is a sectional view of (c-1).
  • the compositions of Examples 1-1 to 1-6 and Comparative Example 1-1 were measured in a thickness of 50 mm ⁇ 50 mm in which a conductor layer 13a was provided on an insulating layer 13b.
  • FR-4 copper-clad laminate (with copper pad, copper thickness 18 ⁇ m), printed on the entire surface by screen printing method, 140 ° C for 30 minutes in a hot air circulation drying oven
  • the insulating resin layer 14 was formed by curing.
  • a hole (via) 15 having a diameter of 100 ⁇ m was formed on the conductor layer 13a with a carbon dioxide gas laser to produce a test piece.
  • compositions of Examples 1-7 to 1-9 and Comparative Example 1-2 were printed on the entire surface of the test substrate by the screen printing method, and the conditions were 100 ° C. for 30 minutes in a hot air circulating drying furnace. After drying, a test piece was prepared in the same manner as above except that it was cured at 170 ° C. for 60 minutes to form an insulating resin layer.
  • compositions of Examples 1-10 to 1-12 and Comparative Example 1-3 were printed on the entire surface of the test substrate by a screen printing method, and 2 J / cm 2 at a wavelength of 350 nm using a metal halide lamp.
  • a test piece was prepared in the same manner as described above except that the integrated light amount was irradiated and cured to form an insulating resin layer.
  • the cellulose nanofiber composite molded bodies having a thickness of 0.05 mm of Examples 1-13 to 1-18, Comparative Examples 1-4, and Comparative Examples 1-5 were placed on the test substrate at 190 ° C. and 20 MPa for 1 minute.
  • a test piece was prepared in the same manner as described above except that the insulating resin layer was formed by further hot pressing for 23 minutes at 25 ° C. and 0.5 MPa for 1 minute.
  • compositions of Examples 1-19 to 1-21 and Comparative Example 1-6 were printed on the entire surface of the above test substrate by the screen printing method, and the conditions were 120 ° C. and 10 minutes in a hot air circulating drying oven. After drying, a test piece was prepared in the same manner as above except that it was cured at 250 ° C. for 30 minutes to form an insulating resin layer.
  • Each test piece was produced by forming an insulating resin layer on a test substrate of FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 50 mm ⁇ 50 mm and a thickness of 1.6 mm.
  • the insulating resin layer was formed under the same conditions as described for the smear removability evaluation test piece.
  • test piece for evaluating peel strength of plating layer
  • An insulating resin layer was formed on a test substrate of FR-4 copper-clad laminate (copper thickness: 18 ⁇ m) having a size of 50 mm ⁇ 50 mm and a thickness of 1.6 mm.
  • the insulating resin layer was formed under the same conditions as described for the smear removability evaluation test piece.
  • each test piece was produced by forming a plating layer on the entire surface of the insulating resin layer by an electroless copper plating method and then an electrolytic copper plating method.
  • the printed wiring board material of the present invention As described above in detail, according to the printed wiring board material of the present invention, it can be seen that smear on the surface of a metal foil such as copper is difficult to occur and is easy to remove even if it occurs. Moreover, it was confirmed that the printed wiring board material of the present invention has sufficient characteristics as a solder resist and an interlayer insulating material.
  • Example 2 [Production of evaluation sheet]
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and cured in a hot air circulation type drying furnace at 140 ° C. for 30 minutes. Thereafter, the copper foil was removed to prepare a sheet having a thickness of 50 ⁇ m.
  • Thermosetting compound 1 Epicoat 828 Mitsubishi Chemical Corporation * 2-2)
  • Thermosetting compound 2 Epicoat 807 Mitsubishi Chemical Corporation * 2-3)
  • Curing catalyst 1 2MZ-A Shikoku Kasei Kogyo Co., Ltd. * 2-4)
  • Colorant Phthalocyanine Blue * 2-5)
  • Layered silicate Lucentite STN Coop Chemical Co., Ltd. * 2-6)
  • Organic solvent Carbitol acetate
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then at 170 ° C. for 60 minutes. And cured. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Thermosetting compound 3 Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 2-8)
  • Thermosetting compound 4 Denacol EX-830 manufactured by Nagase ChemteX Corporation * 2-9) Curing catalyst 2: Triphenylphosphine
  • each component was blended and melt-kneaded at 180 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.).
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • the obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.). Cold pressing was performed at 0.5 MPa for 1 minute.
  • the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Thermoplastic resin 1 Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
  • each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (Laboplast Mill, manufactured by Toyo Seiki Co., Ltd.).
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • the obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute.
  • the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Thermoplastic resin 2 Novatec LD LC561, manufactured by Nippon Polyethylene Co., Ltd.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, dried in a hot air circulating drying oven at 120 ° C. for 10 minutes, and then at 250 ° C. for 30 minutes. And cured. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Thermoplastic resin 3 Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content: 70% by mass)
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Photo-curable compound 1 Bisphenol A type epoxy acrylate * 2-14)
  • Photo-curable compound 2 Trimethylolpropane triacrylate * 2-15)
  • Photo-curable compound 3 Kayamar PM2 Nippon Kayaku Co., Ltd. * 2-16)
  • Photocurable compound 4 Light ester HO Kyoeisha Chemical Co., Ltd. * 2-17)
  • Photopolymerization initiator 1 2-ethylanthraquinone
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and dried at 80 ° C. for 30 minutes in a hot air circulation drying furnace.
  • the printed wiring board exposure machine HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • the aqueous sodium carbonate solution was developed for 60 seconds with a developing machine for printed wiring boards, and the edge portion was removed. Subsequently, thermosetting was performed at 150 ° C. for 60 minutes in a hot air circulation drying oven. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 ⁇ m was measured.
  • Curing catalyst 3 Finely pulverized melamine * 2-19) Curing catalyst 4: Dicyandiamide * 2-20) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 2-21) Hikari Curing compound 5: Dipentaerythritol tetraacrylate * 2-22) Thermosetting compound 5: TEPIC-H Nissan Chemical Co., Ltd.
  • Thermosetting compound 1 Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 3-3)
  • Thermosetting compound 2 Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 3-3)
  • Curing catalyst 1 2MZ-A * 3-4)
  • Fluorine compound 1 Megafac RS-75 (solid content 40 mass) %) DIC Corporation * 3-9) Fluorine Compound 2: Asahi Guard AG-E300D (solid content 30% by mass) Asahi Glass Co., Ltd. * 3-10) Organic Solvent: Carbitol Acetate
  • Thermosetting compound 3 Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 3-12)
  • Thermosetting compound 4 Denacol EX-830 manufactured by Nagase ChemteX Corporation * 3-13)
  • Thermosetting compound 5 TEPIC-H, Nissan Chemical Co., Ltd. * 3-14)
  • Thermoplastic resin 1 Novatec PPBC03L, Nippon Polypro Co., Ltd.
  • Thermoplastic resin 2 Novatec LDLC561 * 3-16) Thermoplastic resin 3 manufactured by Nippon Polyethylene Co., Ltd .: Socsea SOXR-OB (solid content 70% by mass) Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. * 3-17) Photo-curable compound 1: Bisphenol A Type epoxy acrylate manufactured by Mitsubishi Chemical Co., Ltd. * 3-18) Photocurable compound 2: Trimethylolpropane triacrylate * 3-19) Photocurable compound 3: Kayamer PM2 Nippon Kayaku Co., Ltd. * 3-20) Photocurable Compound 4: Light Ester HO Kyoeisha Chemical Co., Ltd.
  • Photocurable Compound 5 Dipentaerythritol Tetraacrylate * 3-22 )
  • Curing catalyst 2 Triphenylphosphine * 3-23)
  • Curing catalyst 3 Finely ground melamine * 3-24)
  • Curing catalyst 4 Dicyandiamide * 3-25)
  • Photopolymerization initiator 1 2-ethyl Anthraquinone * 3-26)
  • Photopolymerization initiator 2 Irgacure 907 manufactured by BASF
  • Example 3-14 Example 3-22, and Comparative Example 3-3, the respective components were blended and used at 180 ° C. for 10 minutes using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.) Melt kneading was performed at a rotation speed of 70 rpm. The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. This obtained the sheet-like cellulose nanofiber composite molded object of thickness 0.5mm and 0.05mm.
  • Example 3-15 Example 3-23, and Comparative Example 3-4, the respective components were blended and used at 150 ° C. for 10 minutes using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.) Melt kneading was performed at a rotation speed of 70 rpm. The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. This obtained the sheet-like cellulose nanofiber composite molded object of thickness 0.5mm and 0.05mm.
  • FIG. 3 is an explanatory view showing a method for producing a substrate for evaluating an interlayer insulating material.
  • (a) to (e-1) are plan views
  • (e-2) is a sectional view of (e-1).
  • the compositions of Examples 3-1 to 3-12 and Comparative Example 3-1 were 50 mm ⁇ 50 mm in thickness with the conductor layer 21a provided on the insulating layer 21b.
  • the insulating resin layer 22 was formed by curing. Next, a hole (via) 23 having a diameter of 100 ⁇ m is formed on the conductor layer 21a with a carbon dioxide laser, and then smear is removed with an aqueous potassium permanganate solution, followed by electroless copper plating and then electrolytic copper plating on the entire surface. Thus, the plating layer 24 was formed. Furthermore, the test piece was produced by forming the wiring pattern 26 by the etching method. Reference numeral 25 in the figure indicates an etching resist pattern.
  • Example 3-13, Example 3-21 and Comparative Example 3-2 were printed on the entire surface of the above test substrate by screen printing, and the conditions were 100 ° C. and 30 minutes in a hot air circulating drying oven. And dried at 170 ° C. for 60 minutes. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
  • Sheet-like cellulose nanofiber having a thickness of 0.05 mm comprising Example 3-14, Example 3-15, Example 3-22, Example 3-23, Comparative Example 3-3, and Comparative Example 3-4
  • the composite molded body was hot-pressed on the test substrate at 190 ° C. and 20 MPa for 1 minute, and further cold-pressed at 23 ° C. and 0.5 MPa for 1 minute.
  • a test piece was prepared by forming a wiring pattern in the same manner as described above.
  • Example 3-16, Example 3-24, and Comparative Example 3-5 were printed on the entire surface of the test substrate by the screen printing method, and were heated at 120 ° C. for 10 minutes in a hot air circulating drying oven. After drying, it was cured at 250 ° C. for 30 minutes. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
  • Example 3-17, Example 3-25, and Comparative Example 3-6 were printed on the entire surface of the test substrate by a screen printing method, and accumulated at 2 J / cm 2 at a wavelength of 350 nm using a metal halide lamp. Light was irradiated and cured. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
  • Example 3-18 to Example 3-20, Example 3-26 to Example 3-28 and Comparative Example 3-7 to Comparative Example 3-9 were printed on the entire surface by screen printing. Then, it was dried in a hot air circulation drying oven at 80 ° C. for 30 minutes. Next, using a negative pattern that can cover the edge of the test substrate, the printed wiring board exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) is exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. A developing solution for a printed wiring board was used for 60 seconds by using a sodium carbonate aqueous solution as a developing solution, and the edges were then thermally cured at 150 ° C. for 60 minutes in a hot air circulating drying oven. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
  • Example 3-29 50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Chemie Japan Co., Ltd.), Shikoku 3 parts by mass of 2MZ-A manufactured by Kasei Kogyo Co., Ltd., 2 parts by mass of BYK-313 manufactured by Big Chemie Japan Co., Ltd., and 100 parts by mass of methyl ethyl ketone were mixed and stirred to prepare a resin solution. This was impregnated into each cellulose nanofiber sheet, left in an atmosphere at 50 ° C. for 12 hours, then taken out and dried at 80 ° C.
  • an acrylic copolymer BYK-361N manufactured by BYK Chemie Japan Co., Ltd.
  • Shikoku 3 parts by mass of 2MZ-A manufactured by Kasei Kogyo Co., Ltd. 2 parts by mass of BYK-313 manufactured by Big Chemie
  • a prepreg Ten prepregs were stacked, and a copper foil having a thickness of 18 ⁇ m was stacked on the front and back, and cured for 3 hours in a vacuum press at a temperature of 160 ° C. and a pressure of 2 MPa.
  • a through hole 27 having a drill diameter of 300 ⁇ m is formed by drilling on the laminated plate 21 made of the insulating layer 21b having the conductor layer 21a formed on both surfaces thereof. , With a pitch of 5 mm. Thereafter, smear was removed with an aqueous potassium permanganate solution, electroless copper plating treatment, and then electrolytic copper plating treatment were performed to form through holes 28.
  • a wiring pattern 26 was produced by an etching method to obtain a test piece.
  • Example 3-30 50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Chemie Japan Co., Ltd.), Shikoku 3 parts by mass of 2MZ-A manufactured by Kasei Kogyo Co., Ltd., 0.75 parts by mass of MegaFac RS-75 manufactured by DIC Co., Ltd., and 100 parts by mass of methyl ethyl ketone are mixed and stirred to prepare a resin solution.
  • a test piece was obtained in the same manner as in Example 3-29 except for the above.
  • Example 3-10 50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 3 parts by mass of 2MZ-A manufactured by Shikoku Chemicals Co., Ltd., and 100 parts by mass of methyl ethyl ketone
  • a test piece was obtained in the same manner as in Example 3-29 except that a resin solution was prepared by mixing a part.
  • Example 3-31 100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacol EX-830 manufactured by Nagase ChemteX Corporation, acrylic copolymer (BYK-361N manufactured by BYK Japan Japan Co., Ltd.) 1 part by weight, 1 part by weight of triphenylphosphine, 2 parts by weight of BYK-313 manufactured by Big Chemie Japan Co., Ltd., and 100 parts by weight of methyl ethyl ketone were mixed, and the procedure was carried out except that a resin solution was prepared. A test piece was obtained in the same manner as in Example 3-29.
  • Example 3-32 100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacol EX-830 manufactured by Nagase ChemteX Corporation, acrylic copolymer (BYK-361N manufactured by BYK Japan Japan Co., Ltd.) 1 part by weight, 1 part by weight of triphenylphosphine, 0.75 part by weight of Megafic RS-75 manufactured by DIC Corporation, and 100 parts by weight of methyl ethyl ketone were mixed and stirred to produce a resin solution Obtained a test piece in the same manner as in Example 3-29.
  • Example 3-33 100 parts by mass of Sokkeal SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd., 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Japan Japan), BYK-313 manufactured by BYK Japan Japan
  • a test piece was obtained in the same manner as in Example 3-29, except that 1.3 parts by mass and 70 parts by mass of methyl ethyl ketone were mixed and stirred to prepare a resin solution.
  • Example 3-34 100 parts by weight of Socsea SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd., 1 part by weight of an acrylic copolymer (BYK-361N manufactured by Big Chemie Japan Co., Ltd.), and 0.5 parts by weight of MegaFac RS-75
  • a test piece was obtained in the same manner as in Example 3-29 except that 70 parts by mass of methyl ethyl ketone was blended and stirred to prepare a resin solution.
  • Example 3-35 In Example 3-14, the sheet-like cellulose nanofiber composite molded body having a thickness of 0.5 mm was overlapped with 18 ⁇ m copper foil on the front and back, and a vacuum press machine was used at a temperature of 190 ° C. and a pressure of 0.5 MPa. Heated for minutes. Next, as shown in FIGS. 4A to 4C, a through hole 27 having a drill diameter of 300 ⁇ m is formed by drilling on the laminated plate 21 made of the insulating layer 21b having the conductor layer 21a formed on both surfaces thereof. , With a pitch of 5 mm.
  • a wiring pattern 26 was produced by an etching method to obtain a test piece.
  • Example 3-36 A test piece was produced in the same manner as in Example 3-35, except that the 0.5 mm thick sheet of Example 3-22 was used.
  • Comparative Example 3-13 A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Comparative Example 3-3 was used.
  • Example 3-37 A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Example 3-15 was used.
  • Example 3-38 A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Example 3-23 was used.
  • Comparative Example 3-14 A test piece was produced in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Comparative Example 3-4 was used.
  • Example 4 [Preparation of cellulose fiber dispersion] Softwood kraft pulp (NBKP) is mechanically treated with a high-pressure homogenizer, and the resulting cellulose fiber with a number average fiber diameter of 3 ⁇ m is added to water and stirred sufficiently to produce an aqueous suspension of 10% by weight cellulose fiber. did. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This substitution operation was repeated three times, and 10 times the amount of carbitol acetate by weight of the filtrate was added to prepare a 10% by mass cellulose fiber dispersion.
  • NNKP Softwood kraft pulp
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by a screen printing method. Curing was carried out at 30 ° C. for 30 minutes. The film thickness after curing was 50 ⁇ m. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate.
  • Thermosetting compound 1 Epicote 828, manufactured by Mitsubishi Chemical Corporation * 4-2)
  • Thermosetting compound 2 Epicote 807, manufactured by Mitsubishi Chemical Corporation * 4-3)
  • Curing catalyst 1 2MZ-A * 4-4)
  • Colorant Phthalocyanine Blue * 4-5)
  • Organic solvent Carbitol acetate
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by a screen printing method. After drying at 30 ° C. for 30 minutes, it was cured at 170 ° C. for 60 minutes. The film thickness after curing was 50 ⁇ m. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate.
  • Thermosetting compound 3 Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 4-7)
  • Thermosetting compound 4 Denacol EX-830 manufactured by Nagase ChemteX Corporation * 4-8) Curing catalyst 2: Triphenylphosphine
  • each component was blended and melt-kneaded at 180 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.).
  • the obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.). Cold pressing was performed at 0.5 MPa for 1 minute. As a result, a sheet having a thickness of 50 ⁇ m was obtained.
  • This sheet was hot-pressed on a FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by hot pressing at 190 ° C. and 20 MPa for 1 minute, and further at 23 ° C.
  • a test piece was produced by cold pressing at 0.5 MPa for 1 minute. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate.
  • Thermoplastic resin 1 Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
  • each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.).
  • the obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute.
  • a sheet having a thickness of 50 ⁇ m was obtained.
  • This sheet was hot-pressed on a FR-4 copper-clad laminate (copper thickness: 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by hot pressing at 190 ° C. and 20 MPa for 1 minute.
  • a test piece was produced by cooling and pressing at 5 MPa for 1 minute. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate.
  • Thermoplastic resin 2 Novatec LDLC561 Made by Nippon Polyethylene Co., Ltd.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by a screen printing method, and 120 ° C. in a hot air circulation drying oven. After drying at 10 ° C. for 10 minutes, it was cured at 250 ° C. for 30 minutes. The film thickness after curing was 50 ⁇ m.
  • the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
  • Thermoplastic resin 3 Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industry Co., Ltd. (solid content: 70% by mass)
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by a screen printing method, and a wavelength of 350 nm using a metal halide lamp.
  • a metal halide lamp was irradiated with an integrated light amount of 2 J / cm 2 and cured.
  • the film thickness after curing was 50 ⁇ m.
  • the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
  • Photocurable compound 1 Bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 4-13)
  • Photocurable compound 2 Trimethylolpropane triacrylate * 4-14)
  • Photocurable compound 3 Kayamar PM2 Nippon Kayaku Co., Ltd. * 4-15)
  • Photocurable Compound 4 Light Ester HO Kyoeisha Chemical Co., Ltd. * 4-16)
  • Photopolymerization initiator 1 2-ethylanthraquinone
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • the obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness: 18 ⁇ m) having a size of 150 mm ⁇ 100 mm and a thickness of 1.6 mm by a screen printing method. , And dried at 80 ° C. for 30 minutes.
  • the printed wiring board exposure machine HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • aqueous sodium carbonate solution as a developer, development was performed with a printed wiring board developing machine for 60 seconds, and then the edges were thermally cured at 150 ° C. for 60 minutes in a hot-air circulating drying furnace. The film thickness after curing was 50 ⁇ m. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
  • Curing catalyst 3 Finely pulverized melamine * 4-18) Curing catalyst 4: Dicyandiamide * 4-19) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 4-20) Light Curing compound 5: Dipentaerythritol tetraacrylate * 4-21) Thermosetting compound 5: TEPIC-H Nissan Chemical Co., Ltd.
  • Example 5 [Production of Cellulose Nanofiber Dispersion Having Carboxylate] (Production Example 1) 2, 2, 6, 6 5 g of softwood bleached kraft pulp (manufactured by Oji Paper Co., Ltd., moisture 50% by mass, Canadian standard freeness (CSF) 550 ml, mainly in an absolutely dry state with a number average fiber diameter exceeding 1000 nm) -Tetramethylpiperidine-N-oxyl (TEMPO) 79 mg (0.5 mmol) and sodium bromide 515 mg (5 mmol) were added to 500 ml of an aqueous solution and stirred until the pulp was uniformly dispersed.
  • CSF Canadian standard freeness
  • TEMPO Tetramethylpiperidine-N-oxyl
  • distilled water was added to the reaction product to obtain an aqueous dispersion having a pulp concentration of 2% by mass, and the mixture was stirred and dispersed with a rotary blade mixer for 5 minutes. Since the viscosity of the slurry significantly increased with stirring, distilled water was added little by little, and stirring and dispersion with a mixer was continued until the solid content concentration reached 0.2% by mass to obtain a transparent gelled aqueous solution. This was observed with TEM and confirmed to be an aqueous dispersion of cellulose nanofibers having a carboxylate having a number average fiber diameter of 10 nm. The amount of carboxyl groups in the aqueous dispersion was 1.25 mmol / g.
  • Thermosetting compound 1 Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 5-2)
  • Thermosetting compound 2 Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 5-3)
  • Curing catalyst 1 2MZ-A Shikoku Kasei Kogyo Co., Ltd. * 5-4)
  • Colorant Phthalocyanine Blue * 5-5)
  • Organic solvent Carbitol acetate
  • Thermoset 1 compound 3 Unidic V-8000 manufactured by DIC Corporation (solid content 40% by mass) * 5-7)
  • Thermosetting compound 4 Denacol EX-830, manufactured by Nagase ChemteX Corporation * 5-8)
  • Curing catalyst 2 Triphenylphosphine
  • Thermoplastic resin 1 Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
  • Photocurable compound 1 Bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 5-11
  • Photocurable compound 2 Trimethylolpropane triacrylate * 5-12
  • Photocurable compound 3 Kayamar PM2 Nippon Kayaku Co., Ltd. * 5-13
  • Photocurable Compound 4 Light Ester HO Kyoeisha Chemical Co., Ltd. * 5-14)
  • Photopolymerization initiator 1 2-ethylanthraquinone
  • Curing catalyst 3 Finely pulverized melamine * 5-16) Curing catalyst 4: Dicyandiamide * 5-17) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 5-18) Photocuring Compound 5: dipentaerythritol tetraacrylate * 5-19) thermosetting compound 5: TEPIC-H manufactured by Nissan Chemical Co., Ltd.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and cured in a hot air circulation type drying furnace at 140 ° C. for 30 minutes. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 ⁇ m.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then at 170 ° C. for 60 minutes. And cured. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 ⁇ m.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, dried in a hot air circulating drying oven at 120 ° C. for 10 minutes, and then at 250 ° C. for 30 minutes. And cured. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 ⁇ m.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 ⁇ m.
  • each component was blended, stirred, and dispersed with a three roll to prepare each composition.
  • this composition was printed on a copper foil having a thickness of 18 ⁇ m on the entire surface by a screen printing method, and dried at 80 ° C. for 30 minutes in a hot air circulation drying furnace.
  • the printed wiring board exposure machine HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • HMW-680GW manufactured by Oak Manufacturing Co., Ltd.
  • the aqueous sodium carbonate solution was developed for 60 seconds with a developing machine for printed wiring boards, and the copper foil edge was removed. Subsequently, it was cured at 150 ° C. for 60 minutes in a hot air circulating drying oven. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 ⁇ m.
  • the crack resistance can be improved by using a printed wiring board material containing cellulose nanofibers having a carboxylate.
  • each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.).
  • the obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute.
  • sheet-like cellulose nanofiber composite molded bodies having a thickness of 0.5 mm and 0.05 mm were obtained, respectively.
  • Thermosetting compound 1 Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 6-2)
  • Thermosetting compound 2 Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 6-3)
  • Curing catalyst 1 2MZ-A * 6-4)
  • Pigment phthalocyanine blue * 6-5)
  • Organic solvent Carbitol acetate
  • Thermosetting compound 3 Unidic V-8000 manufactured by DIC Corporation (solid content 40% by mass) * 6-7)
  • Thermosetting compound 4 Denacol EX-830, manufactured by Nagase ChemteX Corporation * 6-8)
  • Curing catalyst 2 Triphenylphosphine
  • Thermoplastic resin 1 Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
  • Thermoplastic resin 2 Novatec LD LC561, manufactured by Nippon Polyethylene Co., Ltd.
  • Thermoplastic resin 3 Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
  • Photocurable compound 1 bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 6-13)
  • Photocurable compound 2 Trimethylolpropane triacrylate * 6-14)
  • Photocurable compound 3 Kayamar PM2 Nippon Kayaku Co., Ltd. * 6-15)
  • Photocurable compound 4 Light ester HO Kyoeisha Chemical Co., Ltd. * 6-16)
  • Photopolymerization initiator 1 2-ethylanthraquinone
  • Curing catalyst 3 Finely pulverized melamine (manufactured by Nissan Chemical Co., Ltd.) * 6-18) Curing catalyst 4: Dicyandiamide * 6-19) Photopolymerization initiator 2: Irgacure 907 (BASF) * 6-20) Photocurable compound 5: Dipentaerythritol tetraacrylate * 6-21) Thermosetting compound 5: TEPIC-H (manufactured by Nissan Chemical Co., Ltd.)
  • Example 6-1 to 6-6 and Comparative Examples 6-1 and 6-2 were printed by screen printing so as to cover the comb electrodes, A test piece was prepared by curing in a circulation drying oven at 140 ° C. for 30 minutes. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ⁇ , and the case where it was less than 4.5 kV was evaluated as ⁇ . As a result, the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
  • Example 6-7 to 6-12 and Comparative Examples 6-3 and 6-4 were printed by screen printing so as to cover the comb electrodes, After drying at 100 ° C. for 30 minutes in a circulation drying oven, the test piece was cured by curing at 170 ° C. for 60 minutes.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ⁇ , and the case where it was less than 5.5 kV was evaluated as x.
  • the 0.05 mm-thick sheets of Examples 6-13 to 6-24 and Comparative Examples 6-5 to 6-8 were cut and processed so as to cover the comb-shaped electrodes. Then, hot pressing was performed at 190 ° C. and 20 MPa for 1 minute by hot pressing, and further cooling pressing was performed at 23 ° C. and 0.5 MPa for 1 minute to prepare a test piece. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 3.5 kV or more was evaluated as ⁇ , and the case where it was less than 3.5 kV was evaluated as ⁇ .
  • the compositions of Examples 6-25 to 6-30 and Comparative Examples 6-9 and 6-10 were printed by a screen printing method so as to cover the comb electrodes, After drying at 120 ° C. for 10 minutes in a circulation drying furnace, the test piece was cured by curing at 250 ° C. for 30 minutes.
  • a withstand voltage test a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • the case where the average of 6 sheets was 5.5 kV or more was evaluated as ⁇ , and the case where it was less than 5.5 kV was evaluated as x.
  • the results of Examples 6-25 to 6-30 were all “good”, and those of Comparative Examples 6-9 and 6-10 were all “x”.
  • Example 6-31 to 6-36 and Comparative Examples 6-11 and 6-12 were printed by the screen printing method so as to cover the comb electrodes. Then, an accumulated light amount of 2 J / cm 2 was irradiated with a metal halide lamp at a wavelength of 350 nm and cured to prepare a test piece. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 3.5 kV or more was evaluated as ⁇ , and the case where it was less than 3.5 kV was evaluated as ⁇ .
  • compositions of Examples 6-37 to 6-54 and Comparative Examples 6-13 to 6-18 were applied to the entire surface by screen printing using a 100 mesh polyester bias plate. Printed and dried in a hot air circulating drying oven at 80 ° C. for 30 minutes. Next, using a negative pattern that can be covered with a comb-shaped electrode, exposure is performed with an integrated light quantity of 700 mJ / cm 2 with an exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) for printed wiring boards, and 1% at 30 ° C. Using a sodium carbonate aqueous solution as a developer, development was performed for 60 seconds with a developing machine for printed wiring boards, followed by heat curing at 150 ° C.
  • test pieces For 60 minutes in a hot-air circulating drying furnace to prepare test pieces.
  • a withstand voltage test a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • the case where the average of 6 sheets was 4.5 kV or more was evaluated as ⁇ , and the case where it was less than 4.5 kV was evaluated as ⁇ .
  • all of Examples 6-37 to 6-54 were “good”, and those of Comparative Examples 6-13 to 6-18 were all “x”.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.
  • Example 6-1 to Example 6-6 and Comparative Examples 6-1 and 6-2 were combined with an FR-4 copper-clad laminate (copper thickness) having a size of 100 mm ⁇ 150 mm and a thickness of 1.6 mm. 9 ⁇ m) was printed on the entire surface by a screen printing method, and cured in a hot air circulating drying oven at 140 ° C. for 30 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.
  • compositions of Examples 6-7 to 6-12 and Comparative Examples 6-3 and 6-4 were combined with an FR-4 copper-clad laminate (copper thickness of 100 mm ⁇ 150 mm and 1.6 mm thickness). 9 ⁇ m) was printed on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then cured at 170 ° C. for 60 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • Sheets having a thickness of 0.05 mm in Examples 6-13 to 6-24 and Comparative Examples 6-5 to 6-8 were FR-4 having a size of 100 mm ⁇ 150 mm and a thickness of 1.6 mm.
  • a copper-clad laminate (copper thickness 9 ⁇ m) was hot-pressed by hot pressing at 190 ° C. and 20 MPa for 1 minute, and further cold-pressed by 23 ° C. and 0.5 MPa for 1 minute. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.
  • compositions of Examples 6-25 to 6-30 and Comparative Examples 6-9 and 6-10 were FR-4 copper-clad laminates (copper thickness) having a size of 100 mm ⁇ 150 mm and a thickness of 1.6 mm. 9 ⁇ m) was printed on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 120 ° C. for 10 minutes, and then cured at 250 ° C. for 30 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.
  • compositions of Examples 6-31 to 6-36 and Comparative Examples 6-11 and 6-12 were FR-4 copper clad laminates (copper thickness) having a size of 100 mm ⁇ 150 mm and a thickness of 1.6 mm. 9 ⁇ m) was printed on the entire surface by a screen printing method, and then cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • all of Examples 6-31 to 6-36 were “good”, and those of Comparative Examples 6-11 and 6-12 were all “x”.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.
  • compositions of Examples 6-37 to 6-54 and Comparative Examples 6-13 to 6-18 were combined with an FR-4 copper-clad laminate (100 mm ⁇ 150 mm and 1.6 mm thick).
  • a copper mesh thickness of 9 ⁇ m) was printed on the entire surface by screen printing using a 100 mesh polyester bias plate and dried in a hot air circulation drying oven at 80 ° C. for 30 minutes.
  • the printed wiring board exposure machine HMW-680GW (Oak Manufacturing Co., Ltd.) was exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C.
  • aqueous sodium carbonate solution as a developing solution, development was performed with a developing machine for printed wiring boards for 60 seconds, followed by heat curing at 150 ° C. for 60 minutes in a hot air circulation drying oven. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ⁇ , and the case where it was less than 5.5 kV was evaluated as x.
  • lignocellulose nanofiber sheet (Preparation of lignocellulose nanofiber sheet) About lignocellulose nanofiber dispersion liquid 1 and lignocellulose nanofiber dispersion liquid 2, a 0.2% by mass dispersion liquid is prepared with carbitol acetate, filtered through a glass filter, and has a size of 100 mm ⁇ 150 mm and a thickness of 40 ⁇ m. A sheet was produced.
  • Example 6-55 the test piece of lignocellulose nanofiber dispersion 1 was Example 6-55
  • the test piece of lignocellulose nanofiber dispersion 2 was Example 6-56
  • the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-19
  • a glass cloth was used instead of the cellulose nanofiber, and a similar product was made as Comparative Example 6-20.
  • the filling rate of the cellulose fiber was 30% by mass.
  • Examples 6-55 and 6-56 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ⁇ , and the case where it was less than 5.5 kV was evaluated as x. As a result, the samples of Examples 6-55 and 6-56 were all “good”, and the samples of Comparative Examples 6-19 and 6-20 were all “ ⁇ ”.
  • an acrylic copolymer compound BYK-361N manufactured by Big Chemie Japan Co., Ltd.
  • test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
  • the test piece of lignocellulose nanofiber dispersion 1 was Example 6-57
  • the test piece of lignocellulose nanofiber dispersion 2 was Example 6-58
  • the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-21
  • a glass cloth was used instead of cellulose nanofiber, and a similar product was produced as Comparative Example 6-22.
  • the filling rate of the cellulose fibers was 30% by mass.
  • Examples 6-57 and 6-58 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added. As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 6.5 kV or more was evaluated as ⁇ , and the case where it was less than 6.5 kV was evaluated as ⁇ . As a result, the samples of Examples 6-57 and 6-58 were all “good”, and the samples of Comparative Examples 6-21 and 6-22 were all “ ⁇ ”.
  • an acrylic copolymer compound BYK-361N manufactured by Big Chemie Japan Co., Ltd.
  • the test piece of lignocellulose nanofiber dispersion 1 was Example 6-59
  • the test piece of lignocellulose nanofiber dispersion 2 was Example 6-60
  • the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-23
  • a glass cloth was used in place of the cellulose nanofiber, and a similar product was made as Comparative Example 6-24.
  • the cellulose fiber filling factor was 30% by mass.
  • 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added.
  • a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage.
  • a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured.

Abstract

This invention provides the following: a printed-circuit-board material wherein the top surface of a copper or other metal film is resistant to smearing, and even if smearing does occur, said smearing is easy to remove; and a printed circuit board using said printed-circuit-board material. Said printed-circuit-board material contains the following: a binder component; cellulose nanofibers having a number-average diameter between 3 and 1,000 nm, inclusive; and an acrylic-copolymer compound. Said printed-circuit-board material is suitable for use as a solder resist or as an interlayer insulation material for multilayer printed circuit boards. This printed circuit board uses said printed-circuit-board material.

Description

プリント配線板材料およびそれを用いたプリント配線板Printed wiring board material and printed wiring board using the same
 本発明は、プリント配線板材料およびそれを用いたプリント配線板に関する。 The present invention relates to a printed wiring board material and a printed wiring board using the same.
 プリント配線板などの配線基板としては、コア材と呼ばれる、ガラスなどの繊維にエポキシ樹脂などを含浸させたものに銅などの金属箔を貼って、エッチング法で回路を形成したものや、さらに、絶縁性樹脂組成物を塗工またはシート状の絶縁性樹脂組成物をラミネートすることにより絶縁層を形成した後に、回路を形成したものなどがある。また、配線基板の最外層には、形成された回路の保護や、電子部品を正しい位置に実装する目的で、ソルダーレジストが形成される。ソルダーレジストには、一般に、エポキシ樹脂やアクリレート樹脂などの絶縁材料が用いられている(例えば、特許文献1,2,3参照)。 As a wiring board such as a printed wiring board, a metal material such as copper is applied to a fiber such as glass impregnated with an epoxy resin, which is called a core material, and a circuit is formed by an etching method, There is one in which a circuit is formed after an insulating layer is formed by coating an insulating resin composition or laminating a sheet-like insulating resin composition. In addition, a solder resist is formed on the outermost layer of the wiring board for the purpose of protecting the formed circuit and mounting the electronic component at the correct position. In general, an insulating material such as an epoxy resin or an acrylate resin is used for the solder resist (see, for example, Patent Documents 1, 2, and 3).
 ところで、回路形成の際には、層間導通用の穴(ビア)をあけるためにレーザーを用いるが、銅などの金属箔上表面(ビア底)に、スミア(残渣)が残りやすいという問題がある。このビア底のスミアを除去しようとしてデスミア処理を強化しようとすると、絶縁層が浸食されるため、ビア底およびビア内部をめっきで埋めることが困難になる(例えば、特許文献4参照)。 By the way, when forming a circuit, a laser is used to form a hole (via) for interlayer conduction, but there is a problem that smear (residue) tends to remain on the surface (via bottom) of a metal foil such as copper. . If the desmear process is reinforced to remove the smear at the bottom of the via, the insulating layer is eroded, making it difficult to fill the via bottom and the inside of the via with plating (see, for example, Patent Document 4).
 また、ソルダーレジストは、一部を除去して回路を露出させた後、はんだなどにより部品実装を行ったり、配線の取り出しを行う。その回路の露出の際に、一般的な手法である感光性ソルダーレジストを用いた写真現像法以外に、レーザー加工により所望部分のソルダーレジストを除去して回路を露出させる、レーザー加工法が用いられている。しかし、レーザー加工法においては、上記層間導通用の穴(ビア)あけ時と同様、スミア(残渣)が残りやすいという問題がある(例えば、特許文献5参照)。 Also, after removing a part of the solder resist to expose the circuit, components are mounted with solder or the like and the wiring is taken out. When the circuit is exposed, a laser processing method is used to expose the circuit by removing the solder resist at the desired part by laser processing, in addition to the photo development method using a photosensitive solder resist, which is a general technique. ing. However, the laser processing method has a problem that smears (residues) are likely to remain as in the case of the hole (via) for interlayer conduction (see, for example, Patent Document 5).
特開2006-182991号公報(特許請求の範囲等)JP 2006-182991 A (Claims etc.) 特開2013-36042号公報(特許請求の範囲等)JP 2013-36042 A (Claims etc.) 特開平08-269172号公報(特許請求の範囲等)JP 08-269172 A (Claims etc.) 特開2009-200301号公報(特許請求の範囲等)JP 2009-200301 A (Claims etc.) 特開2010-031216号公報(特許請求の範囲,段落[0079]~[0086]等)JP 2010-031216 A (claims, paragraphs [0079] to [0086], etc.)
 本発明の目的は、銅などの金属箔上表面のスミアを発生しにくく、かつ、発生しても除去し易いプリント配線板材料およびそれを用いたプリント配線板を提供することにある。 An object of the present invention is to provide a printed wiring board material that does not easily cause smear on the surface of a metal foil such as copper and that can be easily removed even if it occurs, and a printed wiring board using the printed wiring board material.
 本発明者らは鋭意検討した結果、プリント配線板材料として、セルロースナノファイバーおよびアクリル系共重合化合物を含有するものを用いることで、上記課題を解決できることを見出して、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that the above-described problems can be solved by using a material containing cellulose nanofibers and an acrylic copolymer compound as a printed wiring board material, thereby completing the present invention. It was.
 すなわち、本発明のプリント配線板材料は、バインダー成分と、数平均繊維径3nm~1000nmのセルロースナノファイバーと、アクリル系共重合化合物と、を含むことを特徴とするものである。 That is, the printed wiring board material of the present invention is characterized by including a binder component, cellulose nanofibers having a number average fiber diameter of 3 nm to 1000 nm, and an acrylic copolymer compound.
 本発明のプリント配線板材料において、前記バインダー成分としては、熱可塑性樹脂、および、硬化性樹脂を好適に用いることができる。 In the printed wiring board material of the present invention, a thermoplastic resin and a curable resin can be suitably used as the binder component.
 本発明のプリント配線板材料は、層状珪酸塩を含むことが好ましい。また、本発明のプリント配線板材料は、シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方を含むことが好ましい。さらに、本発明のプリント配線板材料においては、前記セルロースナノファイバーの数平均繊維径が3nm以上1000nm未満であって、さらに、数平均繊維径1μm以上のセルロースファイバーを含むことが好ましい。 The printed wiring board material of the present invention preferably contains a layered silicate. Moreover, it is preferable that the printed wiring board material of this invention contains any one or both of a silicone compound and a fluorine compound. Furthermore, in the printed wiring board material of this invention, it is preferable that the number average fiber diameter of the said cellulose nanofiber is 3 nm or more and less than 1000 nm, and also contains a cellulose fiber with a number average fiber diameter of 1 micrometer or more.
 さらにまた、本発明のプリント配線板材料においては、前記セルロースナノファイバーが、その構造中にカルボン酸塩を有することが好ましい。さらにまた、本発明のプリント配線板材料においては、前記セルロースナノファイバーが、リグノセルロースから製造されたものであることが好ましい。 Furthermore, in the printed wiring board material of the present invention, it is preferable that the cellulose nanofiber has a carboxylate in its structure. Furthermore, in the printed wiring board material of the present invention, it is preferable that the cellulose nanofiber is manufactured from lignocellulose.
 本発明のプリント配線板材料は、ソルダーレジスト用、および、多層プリント配線板の層間絶縁材用に好適に用いることができる。 The printed wiring board material of the present invention can be suitably used for solder resists and interlayer insulating materials for multilayer printed wiring boards.
 また、本発明のプリント配線板は、上記本発明のプリント配線板材料を用いたことを特徴とするものである。 The printed wiring board of the present invention is characterized by using the printed wiring board material of the present invention.
 本発明によれば、プリント配線板材料として、セルロースナノファイバーおよびアクリル系共重合化合物を含有するものを用いるものとしたことで、銅などの金属箔上表面のスミアを発生しにくく、かつ、発生しても除去し易いプリント配線板材料およびそれを用いたプリント配線板を実現することが可能となった。 According to the present invention, a printed wiring board material containing cellulose nanofibers and an acrylic copolymer compound is less likely to cause smear on the surface of a metal foil such as copper and is generated. Even so, a printed wiring board material that can be easily removed and a printed wiring board using the same can be realized.
本発明に係る多層プリント配線板の一構成例を示す部分断面図である。It is a fragmentary sectional view which shows one structural example of the multilayer printed wiring board which concerns on this invention. 実施例におけるソルダーレジストおよび層間絶縁材のスミア除去性評価用基板の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the board | substrate for the smear removal property evaluation of the soldering resist and interlayer insulation material in an Example. 実施例における層間絶縁材の評価用基板の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the board | substrate for the evaluation of the interlayer insulation material in an Example. 実施例におけるコア材の評価用基板の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the board | substrate for evaluation of the core material in an Example. 実施例における他のコア材の評価用基板の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the board | substrate for evaluation of the other core material in an Example.
 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。
 本発明のプリント配線板材料は、バインダー成分と、数平均繊維径3nm~1000nmのセルロースナノファイバーと、アクリル系共重合化合物と、を含む点に特徴を有する。上記セルロースナノファイバーは、以下のようにして得ることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The printed wiring board material of the present invention is characterized in that it contains a binder component, cellulose nanofibers having a number average fiber diameter of 3 nm to 1000 nm, and an acrylic copolymer compound. The cellulose nanofiber can be obtained as follows.
(数平均繊維径3nm~1000nmのセルロースナノファイバー)
 上記セルロースナノファイバーは、以下のようにして得ることができる。
 セルロースナノファイバーの原材料としては、木材や麻、竹、綿、ジュート、ケナフ、ビート、農産物残廃物、布等の天然植物繊維原料から得られるパルプ、レーヨンやセロファン等の再生セルロース繊維等を用いることができ、中でも特に、パルプが好適である。パルプとしては、植物原料を化学的若しくは機械的に、または、両者を併用してパルプ化することにより得られるクラフトパルプや亜硫酸パルプ等のケミカルパルプ、セミケミカルパルプ、ケミグランドパルプ、ケミメカニカルパルプ、サーモメカニカルパルプ、ケミサーモメカニカルパルプ、リファイナーメカニカルパルプ、砕木パルプおよびこれらの植物繊維を主成分とする脱墨古紙パルプ、雑誌古紙パルプ、段ボール古紙パルプなどを用いることができる。中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ、例えば、針葉樹未漂白クラフトパルプ、針葉樹酸素晒し未漂白クラフトパルプ、針葉樹漂白クラフトパルプが特に好適である。
(Cellulose nanofibers with a number average fiber diameter of 3 nm to 1000 nm)
The cellulose nanofiber can be obtained as follows.
As raw materials for cellulose nanofibers, use pulp made from natural plant fiber materials such as wood, hemp, bamboo, cotton, jute, kenaf, beet, agricultural waste, cloth, regenerated cellulose fibers such as rayon and cellophane, etc. Among them, pulp is particularly preferable. As pulp, chemical pulp such as kraft pulp and sulfite pulp, semi-chemical pulp, chemi-ground pulp, chemimechanical pulp, obtained by pulping plant raw materials chemically or mechanically, or a combination of both, Thermomechanical pulp, chemithermomechanical pulp, refiner mechanical pulp, groundwood pulp, deinked wastepaper pulp, magazine wastepaper pulp, corrugated wastepaper pulp and the like mainly composed of these plant fibers can be used. Among them, various kraft pulps derived from conifers having strong fiber strength, for example, softwood unbleached kraft pulp, softwood oxygen bleached unbleached kraft pulp, and softwood bleached kraft pulp are particularly suitable.
 上記原材料は主としてセルロース、ヘミセルロースおよびリグニンから構成され、このうちリグニンの含有量は通常0~40質量%程度、特には0~10質量%程度である。これらの原材料については、必要に応じ、リグニンの除去ないし漂白処理を行って、リグニン量の調整を行うことができる。なお、リグニン含有量の測定は、Klason法により行うことができる。 The raw material is mainly composed of cellulose, hemicellulose and lignin, and the content of lignin is usually about 0 to 40% by mass, particularly about 0 to 10% by mass. About these raw materials, the removal of a lignin thru | or a bleaching process can be performed as needed, and the amount of lignin can be adjusted. The lignin content can be measured by the Klason method.
 植物の細胞壁の中では、セルロース分子が単分子ではなく規則的に凝集して数十本集まった結晶性を有するミクロフィブリル(セルロースナノファイバー)を形成しており、これが植物の基本骨格物質となっている。よって、上記原材料からセルロースナノファイバーを製造するためには、上記原材料に対し、叩解ないし粉砕処理、高温高圧水蒸気処理、リン酸塩等による処理等を施すことにより、その繊維をナノサイズまで解きほぐす方法を用いることができる。 In the cell wall of a plant, cellulose molecules are not a single molecule but regularly agglomerate to form crystalline microfibrils (cellulose nanofibers) that gather together and form the basic skeletal material of plants. ing. Therefore, in order to produce cellulose nanofibers from the above raw materials, a method of unraveling the fibers to the nano size by subjecting the raw materials to beating or crushing treatment, high-temperature high-pressure steam treatment, treatment with phosphate, etc. Can be used.
 上記のうち叩解ないし粉砕処理は、上記パルプ等の原材料に対し直接力を加えて、機械的に叩解ないし粉砕を行い、繊維を解きほぐすことで、セルロースナノファイバーを得る方法である。より具体的には、例えば、パルプ等を高圧ホモジナイザー等により機械的に処理して、繊維径0.1~10μm程度に解きほぐしたセルロース繊維を0.1~3質量%程度の水懸濁液とし、さらに、これをグラインダー等で繰り返し磨砕ないし融砕処理することにより、繊維径10~100nm程度のセルロースナノファイバーを得ることができる。 Among the above, the beating or pulverization treatment is a method of obtaining cellulose nanofibers by applying a force directly to the raw materials such as pulp, mechanically beating or pulverizing, and unraveling the fibers. More specifically, for example, pulp fibers or the like are mechanically treated with a high-pressure homogenizer or the like, and cellulose fibers that have been loosened to a fiber diameter of about 0.1 to 10 μm are made into an aqueous suspension of about 0.1 to 3% by mass. Furthermore, by repeatedly grinding or crushing this with a grinder or the like, cellulose nanofibers having a fiber diameter of about 10 to 100 nm can be obtained.
 上記磨砕ないし融砕処理は、例えば、栗田機械製作所製グラインダー「ピュアファインミル」等を用いて行うことができる。このグラインダーは、上下2枚のグラインダーの間隙を原料が通過するときに発生する衝撃、遠心力および剪断力により、原料を超微粒子に粉砕する石臼式粉砕機であり、剪断、磨砕、微粒化、分散、乳化およびフィブリル化を同時に行うことができるものである。また、上記磨砕ないし融砕処理は、増幸産業(株)製超微粒磨砕機「スーパーマスコロイダー」を用いて行うこともできる。スーパーマスコロイダーは、単なる粉砕の域を超えた融けるように感じるほどの超微粒化を可能にした磨砕機である。スーパーマスコロイダーは、間隔を自由に調整できる上下2枚の無気孔砥石によって構成された石臼形式の超微粒磨砕機であり、上部砥石は固定であり、下部砥石が高速回転する。ホッパーに投入された原料は遠心力によって上下砥石の間隙に送り込まれ、そこで生じる強大な圧縮、剪断および転がり摩擦力などにより、原材料は次第にすり潰されて、超微粒化される。 The grinding or crushing treatment can be performed using, for example, a grinder “Pure Fine Mill” manufactured by Kurita Machine Seisakusho. This grinder is a stone mill that pulverizes raw materials into ultrafine particles by impact, centrifugal force and shearing force generated when the raw material passes through the gap between the upper and lower two grinders. Shearing, grinding, atomization Dispersion, emulsification and fibrillation can be performed simultaneously. Further, the above grinding or crushing treatment can also be carried out using an ultrafine grinding machine “Supermass colloider” manufactured by Masuko Sangyo Co., Ltd. The Super Mass Collider is an attritor that enables ultra-fine atomization that feels like melting beyond the mere grinding area. The super mass collider is a stone mill type ultrafine grinding machine composed of two top and bottom non-porous grindstones whose spacing can be freely adjusted. The upper grindstone is fixed and the lower grindstone rotates at high speed. The raw material thrown into the hopper is fed into the gap between the upper and lower grinding stones by centrifugal force, and the raw material is gradually crushed by the strong compression, shearing, rolling frictional force, etc. generated there, and is made into ultrafine particles.
 また、上記高温高圧水蒸気処理は、上記パルプ等の原材料を高温高圧水蒸気に曝すことによって繊維を解きほぐすことで、セルロースナノファイバーを得る方法である。 The high temperature and high pressure steam treatment is a method of obtaining cellulose nanofibers by unraveling the fibers by exposing the raw materials such as pulp to high temperature and high pressure steam.
 さらに、上記リン酸塩等による処理は、上記パルプ等の原材料の表面をリン酸エステル化することにより、セルロース繊維間の結合力を弱め、次いで、リファイナー処理(磨砕ないし融砕処理)を行うことにより、繊維を解きほぐし、セルロースナノファイバーを得る処理法である。例えば、上記パルプ等の原材料を50質量%の尿素および32質量%のリン酸を含む溶液に浸漬して、60℃で溶液をセルロース繊維間に十分に染み込ませた後、180℃で加熱してリン酸化を進め、これを水洗した後、3質量%の塩酸水溶液中、60℃で2時間、加水分解処理をして、再度水洗を行い、さらにその後、3質量%の炭酸ナトリウム水溶液中において、室温で20分間程処理することでリン酸化を完了させ、この処理物をリファイナー(前記磨砕機等)で解繊することにより、セルロースナノファイバーを得ることができる。 Further, in the treatment with the phosphate, etc., the surface of the raw material such as the pulp is phosphorylated to weaken the bonding force between the cellulose fibers, and then the refiner treatment (grinding or crushing treatment) is performed. This is a treatment method for unraveling the fibers and obtaining cellulose nanofibers. For example, the raw materials such as pulp are immersed in a solution containing 50% by mass of urea and 32% by mass of phosphoric acid, and the solution is sufficiently soaked between cellulose fibers at 60 ° C., and then heated at 180 ° C. After proceeding with phosphorylation and washing with water, it was hydrolyzed in a 3% by mass aqueous hydrochloric acid solution at 60 ° C. for 2 hours, washed again with water, and then further washed with a 3% by mass aqueous sodium carbonate solution. Cellulose nanofibers can be obtained by completing phosphorylation by treating at room temperature for about 20 minutes, and defibrating the treated product with a refiner (such as the above-mentioned grinder).
 また、本発明において用いるセルロースナノファイバーは、化学修飾および/または物理修飾して、機能性を高めたものであってもよい。ここで、化学修飾としては、アセタール化、アセチル化、シアノエチル化、エーテル化、イソシアネート化等により官能基を付加させたり、シリケートやチタネート等の無機物を化学反応やゾルゲル法等によって複合化させたり、または被覆させるなどの方法で行うことができる。化学修飾の方法としては、例えば、シート状に成形したセルロースナノファイバーを無水酢酸中に浸漬して加熱する方法が挙げられる。また、物理修飾の方法としては、例えば、金属やセラミック原料を、真空蒸着、イオンプレーティング、スパッタリング等の物理蒸着法(PVD法)、化学蒸着法(CVD法)、無電解めっきや電解めっき等のめっき法等により、被覆させる方法が挙げられる。これらの修飾は、上記処理前であっても、処理後であってもよい。 In addition, the cellulose nanofiber used in the present invention may be chemically modified and / or physically modified to enhance functionality. Here, as the chemical modification, a functional group is added by acetalization, acetylation, cyanoethylation, etherification, isocyanateation, etc., or inorganic substances such as silicate and titanate are combined by chemical reaction or sol-gel method, Or it can carry out by the method of coat | covering. Examples of the chemical modification method include a method in which cellulose nanofibers formed into a sheet are immersed in acetic anhydride and heated. Examples of the physical modification method include physical vapor deposition (PVD method) such as vacuum deposition, ion plating, sputtering, chemical vapor deposition (CVD), electroless plating, electrolytic plating, etc. The method of covering by the plating method etc. of this is mentioned. These modifications may be before the treatment or after the treatment.
 本発明に用いられるセルロースナノファイバーの数平均繊維径は、3nm~1000nmであることが必要であり、好適には3nm~200nm、より好適には3nm~100nmである。セルロースナノファイバー単繊維の最小径が3nmであるため、3nm未満は実質的に製造できず、また、1000nmを超えると、バインダー成分との分散性が悪くなる。なお、セルロースナノファイバーの数平均繊維径は、SEM(Scanning Electron Microscope;走査型電子顕微鏡)やTEM(Transmission Electron Microscope;透過型電子顕微鏡)等で観察して、写真の対角線に線を引き、その近傍にある繊維をランダムに12点抽出して、最も太い繊維と最も細い繊維を除去した後、残る10点を測定して、平均した値である。 The number average fiber diameter of the cellulose nanofiber used in the present invention is required to be 3 nm to 1000 nm, preferably 3 nm to 200 nm, and more preferably 3 nm to 100 nm. Since the minimum diameter of the cellulose nanofiber single fiber is 3 nm, it cannot be produced substantially less than 3 nm, and when it exceeds 1000 nm, the dispersibility with the binder component is deteriorated. In addition, the number average fiber diameter of the cellulose nanofiber is observed with SEM (Scanning Electron Microscope; Scanning Electron Microscope), TEM (Transmission Electron Microscope; Transmission Electron Microscope), etc., and the diagonal line of the photograph is drawn. This is an average value obtained by extracting 12 points of fibers in the vicinity at random, removing the thickest fiber and the thinnest fiber, and measuring the remaining 10 points.
 本発明に用いられる上記セルロースナノファイバーの配合量は、溶剤を除く組成物の全体量に対し、好適には0.1~80質量%、より好適には0.2~70質量%である。セルロースナノファイバーの配合量が0.1質量%以上の場合、本発明の所期の効果を良好に得ることができる。一方、80質量%以下の場合、製膜性が向上する。 The blending amount of the cellulose nanofiber used in the present invention is preferably 0.1 to 80% by mass, more preferably 0.2 to 70% by mass, based on the total amount of the composition excluding the solvent. When the blending amount of the cellulose nanofiber is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily. On the other hand, in the case of 80 mass% or less, film forming property improves.
 上記アクリル系共重合化合物としては、ポリ(メタ)アクリレート、変性ポリ(メタ)アクリレート等が挙げられ、その具体例としては、ビックケミー・ジャパン(株)製のBYK-350、BYK-352、BYK-354、BYK-355、BYK-356、BYK-358N、BYK-361N、BYK-380N、BYK-381、BYK-392、BYK-394、BYK-3440、BYK-3550、BYK-SILCLEAN3700、Disperbyk-2000、Disperbyk-2001、Disperbyk-2020、Disperbyk-2050、Disperbyk-2070、楠本化学(株)製のOX-880EF、OX-881、OX-883、OX-883HF、OX-77EF、OX-710、1970、230、LF-1980、LF-1982、LF-1983、LF-1984、LF-1985、共栄社化学(株)製のポリフローNo.7、ポリフローNo.50E、ポリフローNo.50EHF、ポリフローNo.54N、ポリフローNo.75、ポリフローNo.77、ポリフローNo.85、ポリフローNo.85HF、ポリフローNo.90、ポリフローNo.90D-50、ポリフローNo.95、ポリフローPW-95、ポリフローNo.99C等が挙げられるが、これらに限定されるものではない。これらは、1種を単独で使用しても、または、2種以上を併用してもよい。 Examples of the acrylic copolymer compound include poly (meth) acrylate, modified poly (meth) acrylate and the like, and specific examples thereof include BYK-350, BYK-352, BYK- manufactured by BYK Chemie Japan Co., Ltd. 354, BYK-355, BYK-356, BYK-358N, BYK-361N, BYK-380N, BYK-381, BYK-392, BYK-394, BYK-3440, BYK-3550, BYK-SILCLEAN3700, Disperbyk-2000, Disperbyk-2001, Disperbyk-2020, Disperbyk-2050, Disperbyk-2070, OX-880EF, OX-881, OX-883, OX-883HF, OX-77EF, OX-7 manufactured by Enomoto Chemical Co., Ltd. 0,1970,230, LF-1980, LF-1982, LF-1983, LF-1984, LF-1985, manufactured by Kyoeisha Chemical Co., Ltd. of the (stock) Polyflow No. 7, Polyflow No. 50E, Polyflow No. 50EHF, Polyflow No. 54N, Polyflow No. 75, Polyflow No. 77, Polyflow No. 85, Polyflow No. 85HF, Polyflow No. 90, polyflow no. 90D-50, Polyflow No. 95, Polyflow PW-95, Polyflow No. 99C etc. are mentioned, but it is not limited to these. These may be used individually by 1 type, or may use 2 or more types together.
 また、発明に用いられる上記アクリル系共重合化合物の配合量は、通常用いられる割合で十分であり、例えば、バインダー成分100質量部に対し、好適には0.01~20質量部、より好適には0.01~10質量部、さらに好適には0.05~3質量部である。アクリル系共重合化合物の配合量が少なすぎると、本発明の所期の効果を得ることができないおそれがあり、多すぎると、硬化物中からアクリル系共重合化合物の一部の液状成分が硬化物表面へ染み出す、いわゆるブリード現象が生じるので、いずれにしても好ましくない。 In addition, the amount of the acrylic copolymer compound used in the present invention is usually a ratio that is usually used. For example, it is preferably 0.01 to 20 parts by weight, more preferably 100 parts by weight of the binder component. Is 0.01 to 10 parts by mass, and more preferably 0.05 to 3 parts by mass. If the amount of the acrylic copolymer compound is too small, the desired effect of the present invention may not be obtained. If it is too much, some liquid components of the acrylic copolymer compound are cured from the cured product. Since a so-called bleed phenomenon that oozes out to the surface of the object occurs, it is not preferable anyway.
(バインダー成分)
 本発明で用いられるバインダー成分としては、熱可塑性樹脂、および、熱硬化性樹脂や光硬化性樹脂などの硬化性樹脂を好適に用いることができる。
(Binder component)
As the binder component used in the present invention, a thermoplastic resin and a curable resin such as a thermosetting resin or a photocurable resin can be suitably used.
 熱可塑性樹脂としては、アクリル、変性アクリル、低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリエチレンテレフタレート、ポリプロピレン、変性ポリプロピレン、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、酢酸セルロース、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ乳酸等の汎用プラスチック類、ポリアミド、熱可塑性ポリウレタン、ポリアセタール、ポリカーボネート、超高分子量ポリエチレン、ポリブチレンテレフタレート、変性ポリフェニレンエーテル、ポリスルホン、ポリフェニレンスルファイド、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、液晶ポリマー、ポリアミド6T、ポリアミド9T、ポリテトラフロロエチレン、ポリフッ化ビニリデン、ポリエステルイミド、熱可塑性ポリイミド等のエンジニアリングプラスチック類、オレフィン系、スチレン系、ポリエステル系、ウレタン系、アミド系、塩化ビニル系、水添系等の熱可塑性エラストマーが挙げられる。 Thermoplastic resins include acrylic, modified acrylic, low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polyethylene terephthalate, polypropylene, modified polypropylene, polystyrene, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer. General-purpose plastics such as polymers, cellulose acetate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polylactic acid, polyamide, thermoplastic polyurethane, polyacetal, polycarbonate, ultrahigh molecular weight polyethylene, polybutylene terephthalate, modified polyphenylene ether, polysulfone, Polyphenylene sulfide, polyethersulfone, polyetheretherketone, polyarylate, polyetherimide, poly Midimide, liquid crystal polymer, polyamide 6T, polyamide 9T, polytetrafluoroethylene, polyvinylidene fluoride, polyesterimide, engineering plastics such as thermoplastic polyimide, olefin, styrene, polyester, urethane, amide, vinyl chloride And thermoplastic elastomers such as hydrogenated systems.
 熱硬化性樹脂としては、加熱により硬化して電気絶縁性を示す樹脂であればよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、フェノキシ樹脂、尿素(ユリア)樹脂、メラミン樹脂などのトリアジン環含有樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、イソシアネート樹脂、ウレタン樹脂、ベンゾシクロブテン樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアゾメチン樹脂、熱硬化性ポリイミド等が挙げられる。 The thermosetting resin may be any resin that is cured by heating and exhibits electrical insulation. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol type epoxy resin such as bisphenol Z type epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac epoxy resin, biphenyl type epoxy Resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, tetraphenylol ethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin Resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer epoxy resin, copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate Epoxy-modified polybutadiene rubber derivatives, CTBN-modified epoxy resins, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4′-diglycidyl ether, 1,6-hexanediol diglycidyl ether , Ethylene glycol or propylene glycol diglycidyl ether, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanur , Triglycidyl tris (2-hydroxyethyl) isocyanurate, phenol novolac resin, cresol novolac resin, bisphenol A novolac resin and other novolak type phenol resins, unmodified resole phenol resin, tung oil, linseed oil, walnut oil, etc. Phenol resin such as resol type phenol resin such as modified oil-modified resol phenol resin, phenoxy resin, urea (urea) resin, triazine ring-containing resin such as melamine resin, unsaturated polyester resin, bismaleimide resin, diallyl phthalate resin, silicone Resin, resin having benzoxazine ring, norbornene resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, A polyazomethine resin, a thermosetting polyimide, etc. are mentioned.
 ラジカル重合性の光硬化性樹脂としては、活性エネルギー線照射により硬化して電気絶縁性を示す樹脂であればよく、特に、分子中に1個以上のエチレン性不飽和結合を有する化合物が好ましく用いられる。エチレン性不飽和結合を有する化合物としては、公知慣用の光重合性オリゴマーおよび光重合性ビニルモノマー等が用いられる。 The radically polymerizable photocurable resin may be any resin that is cured by irradiation with active energy rays and exhibits electrical insulation, and in particular, a compound having one or more ethylenically unsaturated bonds in the molecule is preferably used. It is done. As the compound having an ethylenically unsaturated bond, known and commonly used photopolymerizable oligomers and photopolymerizable vinyl monomers are used.
 光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers. Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like. In addition, in this specification, (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレンなどのスチレン誘導体;酢酸ビニル、酪酸ビニルまたは安息香酸ビニルなどのビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテルなどのビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミドなどの(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリルなどのアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレートなどのアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルキレンポリオールポリ(メタ)アクリレート、;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレートなどのポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレートなどのポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレートなどのイソシアヌルレート型ポリ(メタ)アクリレート類などが挙げられる。 As the photopolymerizable vinyl monomer, known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide (Meth) acrylamides such as rilamide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl Esters of (meth) acrylic acid such as (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol Hydroxyalkyl (meth) acrylates such as tri (meth) acrylate; Alkyl such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Coxyalkylene glycol mono (meth) acrylates; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylates, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tri Alkylene polyol poly (meth) acrylates such as methylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate Polyoxyalkylene glycol poly, such as ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane tri (meth) acrylate (Meth) acrylates; poly (meth) acrylates such as neopentyl glycol ester di (meth) acrylate of hydroxybivalic acid; isocyanurate type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate Is mentioned.
 カチオン重合性の光硬化性樹脂としては、脂環エポキシ化合物、オキセタン化合物およびビニルエーテル化合物等を好適に用いることができる。このうち脂環エポキシ化合物としては、3,4,3’,4’-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、1-[1,1-ビス(3,4-エポキシシクロヘキシル)]エチルベンゼン、ビス(3,4-エポキシシクロヘキシル)アジペート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3’,4’-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレン-1,2-ビス(3,4-エポキシシクロヘキサンカルボン酸)エステル、シクロヘキセンオキサイド、3,4-エポキシシクロヘキシルメチルアルコール、3,4-エポキシシクロヘキシルエチルトリメトキシシラン等のエポキシ基を有する脂環エポキシ化合物などが挙げられる。市販品としては、例えば、(株)ダイセル製のセロキサイド2000、セロキサイド2021、セロキサイド3000、EHPE3150;三井化学(株)製のエポミックVG-3101;三菱化学(株)のE-1031S;三菱ガス化学(株)製のTETRAD-X、TETRAD-C;日本曹達(株)製のEPB-13、EPB-27などが挙げられる。 As the cationic polymerizable photocurable resin, an alicyclic epoxy compound, an oxetane compound, a vinyl ether compound, or the like can be suitably used. Among these, alicyclic epoxy compounds include 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxy). Cyclohexyl) -1,3-hexafluoropropane, bis (3,4-epoxycyclohexyl) methane, 1- [1,1-bis (3,4-epoxycyclohexyl)] ethylbenzene, bis (3,4-epoxycyclohexyl) Adipate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4-epoxy-6-methylcyclohexyl) methyl-3 ′, 4′-epoxy-6-methylcyclohexanecarboxylate, ethylene -1,2-bis (3,4-epoxycyclohexanecarboxylic acid) ester Cyclohexene oxide, 3,4-epoxycyclohexylmethyl alcohol and alicyclic epoxy compounds having an epoxy group such as 3,4-epoxycyclohexyl ethyl trimethoxy silane. Examples of commercially available products include Celoxide 2000, Celoxide 2021, Celoxide 3000, EHPE 3150 manufactured by Daicel Corporation, Epomic VG-3101 manufactured by Mitsui Chemicals, Inc., E-1031S manufactured by Mitsubishi Chemical Corporation, and Mitsubishi Gas Chemical ( And TETRAD-X and TETRAD-C manufactured by Nippon Soda Co., Ltd. and EPB-27 manufactured by Nippon Soda Co., Ltd.
 オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体などの多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等のオキセタン化合物が挙げられる。市販品としては、例えば、宇部興産(株)製のエタナコールOXBP、OXMA、OXBP、EHO、キシリレンビスオキセタン、東亞合成(株)製のアロンオキセタンOXT-101、OXT-201、OXT-211、OXT-221、OXT-212、OXT-610、PNOX-1009等が挙げられる。 Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3- Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) methyl acrylate In addition to polyfunctional oxetanes such as (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, poly (p -Hydroxystyrene), cardo type bisphenol Oxetane compounds such as ethers of calixarenes, calixresorcinarenes, or resins having a hydroxyl group such as silsesquioxane, and copolymers of unsaturated monomers having an oxetane ring and alkyl (meth) acrylate It is done. Commercially available products include, for example, etanacol OXBP, OXMA, OXBP, EHO, xylylene bisoxetane manufactured by Ube Industries, Ltd., Aron Oxetane OXT-101, OXT-201, XT-211, OXT manufactured by Toagosei Co., Ltd. -221, OXT-212, OXT-610, PNOX-1009, and the like.
 ビニルエーテル化合物としては、イソソルバイトジビニルエーテル、オキサノルボルネンジビニルエーテル等の環状エーテル型ビニルエーテル(オキシラン環、オキセタン環、オキソラン環等の環状エーテル基を有するビニルエーテル);フェニルビニルエーテル等のアリールビニルエーテル;n-ブチルビニルエーテル、オクチルビニルエーテル等のアルキルビニルエーテル;シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル;ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル等の多官能ビニルエーテル、αおよび/またはβ位にアルキル基、アリル基等の置換基を有するビニルエーテル化合物などが挙げられる。市販品としては、例えば、丸善石油化学(株)製の2-ヒドロキシエチルビニルエーテル(HEVE)、ジエチレングリコールモノビニルエーテル(DEGV)、2-ヒドロキシブチルビニルエーテル(HBVE)、トリエチレングリコールジビニルエーテルなどが挙げられる。 Examples of vinyl ether compounds include cyclic ether type vinyl ethers such as isosorbite divinyl ether and oxanorbornene divinyl ether (vinyl ethers having a cyclic ether group such as oxirane ring, oxetane ring and oxolane ring); aryl vinyl ethers such as phenyl vinyl ether; n-butyl vinyl ether Alkyl vinyl ethers such as octyl vinyl ether; cycloalkyl vinyl ethers such as cyclohexyl vinyl ether; polyfunctional vinyl ethers such as hydroquinone divinyl ether, 1,4-butanediol divinyl ether, cyclohexane divinyl ether, cyclohexanedimethanol divinyl ether, α and / or β position And vinyl ether compounds having a substituent such as an alkyl group and an allyl group. It is. Examples of commercially available products include 2-hydroxyethyl vinyl ether (HEVE), diethylene glycol monovinyl ether (DEGV), 2-hydroxybutyl vinyl ether (HBVE), and triethylene glycol divinyl ether manufactured by Maruzen Petrochemical Co., Ltd.
 また、本発明のプリント配線板材料をアルカリ水溶液で現像可能なアルカリ現像型のフォトソルダーレジストとして使用する場合には、バインダー成分としてカルボキシル基含有樹脂を使用することも好ましい。 Further, when the printed wiring board material of the present invention is used as an alkali development type photo solder resist that can be developed with an alkaline aqueous solution, it is also preferable to use a carboxyl group-containing resin as a binder component.
(カルボキシル基含有樹脂)
 カルボキシル基含有樹脂としては、感光性の不飽和二重結合を1個以上有する感光性のカルボキシル基含有樹脂、および、感光性の不飽和二重結合を有しないカルボキシル基含有樹脂のいずれも使用可能であり、特定のものに限定されるものではない。カルボキシル基含有樹脂としては、特には、以下に列挙する樹脂を好適に使用することができる。
(1)不飽和カルボン酸と不飽和二重結合を有する化合物との共重合によって得られるカルボキシル基含有樹脂、および、それを変性して分子量や酸価を調整したカルボキシル基含有樹脂。
(2)カルボキシル基含有(メタ)アクリル系共重合樹脂に1分子中にオキシラン環とエチレン性不飽和基を有する化合物を反応させて得られる感光性のカルボキシル基含有樹脂。
(3)1分子中にそれぞれ1個のエポキシ基および不飽和二重結合を有する化合物と不飽和二重結合を有する化合物との共重合体に不飽和モノカルボン酸を反応させ、この反応により生成した第2級の水酸基に飽和または不飽和多塩基酸無水物を反応させて得られる感光性のカルボキシル基含有樹脂。
(4)水酸基含有ポリマーに飽和または不飽和多塩基酸無水物を反応させた後、この反応により生成したカルボン酸に1分子中にそれぞれ1個のエポキシ基および不飽和二重結合を有する化合物を反応させて得られる感光性の水酸基およびカルボキシル基含有樹脂。
(5)多官能エポキシ化合物と不飽和モノカルボン酸とを反応させ、この反応により生成した第2級の水酸基の一部または全部に多塩基酸無水物を反応させて得られる感光性のカルボキシル基含有樹脂。
(6)多官能エポキシ化合物と、1分子中に2個以上の水酸基およびエポキシ基と反応する水酸基以外の1個の反応基を有する化合物と、不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(7)フェノール性水酸基をもつ樹脂とアルキレンオキシドまたは環状カーボネートとの反応生成物に不飽和基含有モノカルボン酸を反応させ、得られた反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(8)多官能エポキシ化合物と、1分子中に少なくとも1個のアルコール性水酸基および1個のフェノール性水酸基を有する化合物と、不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して多塩基酸無水物の無水物基を反応させて得られるカルボキシル基含有感光性樹脂。
(Carboxyl group-containing resin)
As the carboxyl group-containing resin, any of a photosensitive carboxyl group-containing resin having at least one photosensitive unsaturated double bond and a carboxyl group-containing resin having no photosensitive unsaturated double bond can be used. However, it is not limited to a specific one. As the carboxyl group-containing resin, in particular, the resins listed below can be suitably used.
(1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid and a compound having an unsaturated double bond, and a carboxyl group-containing resin having a molecular weight and an acid value adjusted by modifying it.
(2) A photosensitive carboxyl group-containing resin obtained by reacting a carboxyl group-containing (meth) acrylic copolymer resin with a compound having an oxirane ring and an ethylenically unsaturated group in one molecule.
(3) An unsaturated monocarboxylic acid is reacted with a copolymer of a compound having one epoxy group and an unsaturated double bond in each molecule and a compound having an unsaturated double bond, and formed by this reaction. A photosensitive carboxyl group-containing resin obtained by reacting a secondary hydroxyl group with a saturated or unsaturated polybasic acid anhydride.
(4) After reacting a hydroxyl group-containing polymer with a saturated or unsaturated polybasic acid anhydride, a compound having one epoxy group and an unsaturated double bond in each molecule of the carboxylic acid produced by this reaction. Photosensitive hydroxyl group and carboxyl group-containing resin obtained by reaction.
(5) A photosensitive carboxyl group obtained by reacting a polyfunctional epoxy compound with an unsaturated monocarboxylic acid and reacting a polybasic acid anhydride with some or all of the secondary hydroxyl groups produced by this reaction. Containing resin.
(6) A polyfunctional epoxy compound is reacted with a compound having one reactive group other than a hydroxyl group that reacts with two or more hydroxyl groups and an epoxy group in one molecule, and an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
(7) Obtained by reacting a reaction product of a resin having a phenolic hydroxyl group with an alkylene oxide or a cyclic carbonate with an unsaturated group-containing monocarboxylic acid, and reacting the resulting reaction product with a polybasic acid anhydride. Carboxyl group-containing photosensitive resin.
(8) A reaction product obtained by reacting a polyfunctional epoxy compound, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting an anhydride group of a polybasic acid anhydride with an alcoholic hydroxyl group.
 本発明のプリント配線板材料には、セルロースナノファイバー、バインダー成分、並びに、アクリル系共重合化合物の他、その用途に応じて、慣用の他の配合成分を適宜配合することが可能である。 In the printed wiring board material of the present invention, in addition to cellulose nanofibers, a binder component, and an acrylic copolymer compound, other conventional compounding components can be appropriately blended depending on the application.
 慣用の他の配合成分としては、例えば、硬化触媒、光重合開始剤、着色剤、有機溶剤などが挙げられる。
 硬化触媒は、硬化性樹脂のうち、主に熱硬化性樹脂を硬化させるためのものであり、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、市販品としては、例えば、2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(四国化成工業(株)製)、U-CAT3503N、U-CAT3502T、DBU、DBN、U-CATSA102、U-CAT5002(サンアプロ(株)製)などが挙げられ、単独で、または2種以上を混合して使用してもかまわない。また同様に、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。
Examples of other conventional compounding components include a curing catalyst, a photopolymerization initiator, a colorant, and an organic solvent.
The curing catalyst is mainly for curing a thermosetting resin among curable resins. For example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- Imidazole derivatives such as phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) Amine compounds such as —N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; Phosphorylation of phenylphosphine, etc. Things and the like. Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), U-CAT3503N, U-CAT3502T, DBU, DBN, U-CATSA102, U- CAT5002 (manufactured by San Apro Co., Ltd.) and the like may be mentioned, and these may be used alone or in admixture of two or more. Similarly, guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6 S-triazine derivatives such as -diamino-S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be used.
 また、光重合開始剤は、硬化性樹脂のうち、光硬化性樹脂を硬化させるためのものであり、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインとベンゾインアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン等のアミノアルキルフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;又はキサントン類;(2,6-ジメトキシベンゾイル)-2,4,4-ペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-2,4,6-トリメチルベンゾイルフェニルフォスフィネイト等のフォスフィンオキサイド類;各種パーオキサイド類、チタノセン系開始剤などが挙げられる。これらは、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤等と併用してもよい。これらの光重合開始剤は単独で、または2種以上を組み合わせて用いることができる。 In addition, the photopolymerization initiator is for curing the photocurable resin among the curable resins, for example, benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl -1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) ) -2-[(4-Methylphenyl) methyl Aminoalkylphenones such as 1- [4- (4-morpholinyl) phenyl] -1-butanone; anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 1-chloroanthraquinone Thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; or Xanthones; (2,6-dimethoxybenzoyl) -2,4,4-pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-to Methyl benzoyl diphenyl phosphine oxide, phosphine oxide such as ethyl 2,4,6-trimethylbenzoylphenyl phosphinate Nate; various peroxides, and the like titanocene initiators. These are photosensitized like tertiary amines such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine and the like. You may use together with an agent etc. These photopolymerization initiators can be used alone or in combination of two or more.
 着色剤としては、着色顔料や染料等としてカラーインデックスで表される公知慣用のものが使用可能である。例えば、Pigment Blue 15、15:1、15:2、15:3、15:4 15:6、16、60、Solvent Blue 35、63、68、70、83、87、94、97、122、136、67、70、Pigment Green 7、36、3、5、20、28、Solvent Yellow 163、Pigment Yellow 24、108、193、147、199、202、110、109、139、179、185、93、94、95、128、155、166、180、120、151、154、156、175、181、1、2、3、4、5、6、9、10、12、61、62、62:1、65、73、74、75、97、100、104、105、111、116、167、168、169、182、183、12、13、14、16、17、55、63、81、83、87、126、127、152、170、172、174、176、188、198、Pigment Orange 1、5、13、14、16、17、24、34、36、38、40、43、46、49、51、61、63、64、71、73、Pigment Red 1、2、3、4、5、6、8、9、12、14、15、16、17、21、22、23、31、32、112、114、146、147、151、170、184、187、188、193、210、245、253、258、266、267、268、269、37、38、41、48:1、48:2、48:3、48:4、49:1、49:2、50:1、52:1、52:2、53:1、53:2、57:1、58:4、63:1、63:2、64:1、68、171、175、176、185、208、123、149、166、178、179、190、194、224、254、255、264、270、272、220、144、166、214、220、221、242、168、177、216、122、202、206、207、209、Solvent Red 135、179、149、150、52、207、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet 13、36、Pigment Brown 23、25、Pigment Black 1、7等が挙げられる。 As the colorant, a known and conventional one represented by a color index as a color pigment or dye can be used. For example, Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4 15: 6, 16, 60, Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136 , 67, 70, Pigment Green 7, 36, 3, 5, 20, 28, Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202, 110, 109, 139, 179, 185, 93, 94 95, 128, 155, 166, 180, 120, 151, 154, 156, 175, 181, 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 16 , 182, 183, 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198, Pigment Orange 1, 5, 13 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, 73, Pigment Red 1, 2, 3, 4, 5, 6, 8 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114, 146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258 266, 267, 268, 269, 37, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2. , 3: 1, 53: 2, 57: 1, 58: 4, 63: 1, 63: 2, 64: 1, 68, 171, 175, 176, 185, 208, 123, 149, 166, 178, 179, 190, 194, 224, 254, 255, 264, 270, 272, 220, 144, 166, 214, 220, 221, 242, 168, 177, 216, 122, 202, 206, 207, 209, Solvent Red 135, 179, 149, 150, 52, 207, Pigment Violet 19, 23, 29, 32, 36, 38, 42, Solvent Violet 13, 36, Pigment Brown 23, 25, Pigment Black 1, 7, and the like.
 有機溶剤としては、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロプレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテートおよび上記グリコールエーテル類のエステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;オクタン、デカンなどの脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤等を挙げることができる。 Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol Glycol ethers such as monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; Mention may be made of petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, a petroleum solvent or the like, such as solvent naphtha; down, aliphatic hydrocarbons such as decane.
 また、必要に応じて、消泡・レベリング剤、チクソトロピー付与剤・増粘剤、カップリング剤、分散剤、難燃剤等の添加剤を含有させることができる。
 消泡剤・レベリング剤としては、シリコーン、変性シリコーン、鉱物油、植物油、脂肪族アルコール、脂肪酸、金属石鹸、脂肪酸アミド、ポリオキシアルキレングリコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル等の化合物等が使用できる。
Moreover, additives, such as a defoaming and leveling agent, a thixotropy imparting agent / thickening agent, a coupling agent, a dispersant, and a flame retardant, may be included as necessary.
Antifoaming and leveling agents include compounds such as silicone, modified silicone, mineral oil, vegetable oil, aliphatic alcohol, fatty acid, metal soap, fatty acid amide, polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, etc. Etc. can be used.
 チクソトロピー付与剤・増粘剤としては、カオリナイト、スメクタイト、モンモリロナイト、ベントナイト、タルク、マイカ、ゼオライト等の粘土鉱物や微粒子シリカ、シリカゲル、不定形無機粒子、ポリアミド系添加剤、変性ウレア系添加剤、ワックス系添加剤などが使用できる。 As thixotropy imparting agent / thickening agent, clay minerals such as kaolinite, smectite, montmorillonite, bentonite, talc, mica, zeolite, etc., silica gel, silica gel, amorphous inorganic particles, polyamide additives, modified urea additives, Wax-based additives can be used.
 カップリング剤としては、アルコキシ基としてメトキシ基、エトキシ基、アセチル等であり、反応性官能基としてビニル、メタクリル、アクリル、エポキシ、環状エポキシ、メルカプト、アミノ、ジアミノ、酸無水物、ウレイド、スルフィド、イソシアネート等である、例えば、ビニルエトキシラン、ビニルトリメトキシシラン、ビニル・トリス(β―メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシラン等のビニル系シラン化合物、γ-アミノプロピルトリメトキシラン、Ν―β―(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノ系シラン化合物、γ-グリシドキシプロピルトリメトキシシラン、β―(3,4-エポキシシクロヘキシル)エチルトリメトキシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシ系シラン化合物、γ-メルカプトプロピルトリメトキシシラン等のメルカプト系シラン化合物、Ν―フェニル―γ-アミノプロピルトリメトキシシラン等のフェニルアミノ系シラン化合物等のシランカップリング剤、イソプロピルトリイソステアロイル化チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(1,1-ジアリルオキシメチル-1-ブチル)ビス-(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等のチタネート系カップリング剤、エチレン性不飽和ジルコネート含有化合物、ネオアルコキシジルコネート含有化合物、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデシル)ベンゼンスルホニルジルコネート、ネオアルコキシトリス(ジオクチル)ホスフェートジルコネート、ネオアルコキシトリス(ジオクチル)ピロホスフェートジルコネート、ネオアルコキシトリス(エチレンジアミノ)エチルジルコネート、ネオアルコキシトリス(m-アミノ)フェニルジルコネート、テトラ(2,2-ジアリルオキシメチル)ブチル,ジ(ジトリデシル)ホスフィトジルコネート、ネオペンチル(ジアリル)オキシ,トリネオデカノイルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ドデシル)ベンゼン-スルホニルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ピロ-ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(N-エチレンジアミノ)エチルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(m-アミノ)フェニルジルコネート、ネオペンチル(ジアリル)オキシ,トリメタクリルジルコネート、ネオペンチル(ジアリル)オキシ,トリアクリルジルコネート、ジネオペンチル(ジアリル)オキシ,ジパラアミノベンゾイルジルコネート、ジネオペンチル(ジアリル)オキシ,ジ(3-メルカプト)プロピオニックジルコネート、ジルコニウム(IV)2,2-ビス(2-プロペノラトメチル)ブタノラト,シクロジ[2,2-(ビス2-プロペノラトメチル)ブタノラト]ピロホスファト-O,O等のジルコネート系カップリング剤、ジイソブチル(オレイル)アセトアセチルアルミネート、アルキルアセトアセテートアルミニウムジイソプロピレート等のアルミネート系カップリング剤等が使用できる。 As the coupling agent, alkoxy group is methoxy group, ethoxy group, acetyl, etc., and reactive functional group is vinyl, methacryl, acrylic, epoxy, cyclic epoxy, mercapto, amino, diamino, acid anhydride, ureido, sulfide, Isocyanates and the like, for example, vinyl silane compounds such as vinyl ethoxylane, vinyl trimethoxysilane, vinyl tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxylane, γ-aminopropyltrimethoxylane,系 -β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, amino-based silane compounds such as γ-ureidopropyltriethoxysilane, γ-glycid Xylpropyltrimeth Epoxy silane compounds such as silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxylane, γ-glycidoxypropylmethyldiethoxysilane, mercapto silane compounds such as γ-mercaptopropyltrimethoxysilane, Silane coupling agents such as phenylamino silane compounds such as phenyl-γ-aminopropyltrimethoxysilane, isopropyl triisostearoylated titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate , Isopropyltridodecylbenzenesulfonyl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, Tora (1,1-diallyloxymethyl-1-butyl) bis- (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltristearoyl diacryl Titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, dicumylphenyloxyacetate titanate, diisostearoyl ethylene titanate, etc., ethylenically unsaturated zirconate-containing compound, neoalkoxy zirconate-containing compound , Neoalkoxytris neodecanoyl zirconate, neoalkoxytris (dodecyl) benzene Sulfonyl zirconate, neoalkoxy tris (dioctyl) phosphate zirconate, neoalkoxy tris (dioctyl) pyrophosphate zirconate, neoalkoxy tris (ethylenediamino) ethyl zirconate, neoalkoxy tris (m-amino) phenyl zirconate, tetra ( 2,2-diallyloxymethyl) butyl, di (ditridecyl) phosphito zirconate, neopentyl (diallyl) oxy, trineodecanoyl zirconate, neopentyl (diallyl) oxy, tri (dodecyl) benzene-sulfonyl zirconate, neopentyl ( Diallyl) oxy, tri (dioctyl) phosphatozirconate, neopentyl (diallyl) oxy, tri (dioctyl) pyro-phosphatozirconate, neopentyl ( Allyl) oxy, tri (N-ethylenediamino) ethyl zirconate, neopentyl (diallyl) oxy, tri (m-amino) phenyl zirconate, neopentyl (diallyl) oxy, trimethacryl zirconate, neopentyl (diallyl) oxy, triacryl Zirconate, dineopentyl (diallyl) oxy, diparaaminobenzoyl zirconate, dineopentyl (diallyl) oxy, di (3-mercapto) propionic zirconate, zirconium (IV) 2,2-bis (2-propenolatomethyl) Zirconate coupling agents such as butanolato, cyclodi [2,2- (bis-2-propenolatomethyl) butanolato] pyrophosphato-O, O, diisobutyl (oleyl) acetoacetylaluminate, alkylacetoacetate DOO diisopropylate aluminate coupling agents such like.
 分散剤としては、ポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、ポリエチレングリコール、ポリカルボン酸部分アルキルエステル系、ポリエーテル系、ポリアルキレンポリアミン系等の高分子型分散剤、アルキルスルホン酸系、四級アンモニウム系、高級アルコールアルキレンオキサイド系、多価アルコールエステル系、アルキルポリアミン系等の低分子型分散剤等が使用できる。 Dispersants include polycarboxylic acid-based, naphthalene sulfonic acid formalin condensation-based, polyethylene glycol, polycarboxylic acid partial alkyl ester-based, polyether-based, polyalkylene polyamine-based polymeric dispersants, alkyl sulfonic acid-based, four Low molecular weight dispersants such as secondary ammonium series, higher alcohol alkylene oxide series, polyhydric alcohol ester series and alkylpolyamine series can be used.
 難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の水和金属系、赤燐、燐酸アンモニウム、炭酸アンモニウム、ホウ酸亜鉛、錫酸亜鉛、モリブデン化合物系、臭素化合物系、塩素化合物系、燐酸エステル、含燐ポリオール、含燐アミン、メラミンシアヌレート、メラミン化合物、トリアジン化合物、グアニジン化合物、シリコンポリマー等が使用できる。 Flame retardants include hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
 その他配合成分としては、ジアゾニウム塩、スルホニウム塩、ヨードニウム塩等の光酸発生剤、カルバメート化合物、α-アミノケトン化合物、O-アシルオキシム化合物等の光塩基発生剤、硫酸バリウム、球状シリカ、ハイドロタルサイト等の無機フィラー、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機フィラー、ラジカル捕捉剤、紫外線吸収剤、過酸化物分解剤、熱重合禁止剤、密着促進剤、防錆剤等が挙げられる。 Other ingredients include photoacid generators such as diazonium salts, sulfonium salts, iodonium salts, photobase generators such as carbamate compounds, α-aminoketone compounds, O-acyloxime compounds, barium sulfate, spherical silica, hydrotalcite. And inorganic fillers such as silicon powder, nylon powder and fluorine powder, radical scavengers, ultraviolet absorbers, peroxide decomposers, thermal polymerization inhibitors, adhesion promoters, rust inhibitors and the like.
 以上説明したような構成の本発明に係るプリント配線板材料は、ソルダーレジストに好適に適用することができる他、多層プリント配線板の層間絶縁材用に好適に使用することができ、これにより、得られたプリント配線板において、本発明の所期の効果を得ることができるものである。さらに、本発明をプリント配線板材料に適用する場合には、例えば、上記セルロースナノファイバーをシート状に成形し、このシート状セルロースナノファイバーにバインダー成分を含浸、乾燥させてプリプレグを作製する方法も用いることができる。 The printed wiring board material according to the present invention having the configuration as described above can be suitably applied to a solder resist, and can be suitably used for an interlayer insulating material of a multilayer printed wiring board. In the obtained printed wiring board, the desired effect of the present invention can be obtained. Furthermore, when the present invention is applied to a printed wiring board material, for example, there is a method of forming a prepreg by forming the cellulose nanofibers into a sheet shape, impregnating the sheet-like cellulose nanofibers with a binder component, and drying. Can be used.
 図1に、本発明に係る多層プリント配線板の一構成例を示す部分断面図を示す。図示する多層プリント配線板は、例えば、以下のように製造することができる。まず、導体パターン1が形成されたコア基板2に貫通穴を形成する。貫通穴の形成は、ドリルや金型パンチ、レーザー光など適切な手段によって行うことができる。その後、粗化剤を用いて粗化処理を行う。一般に、粗化処理は、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、または苛性ソーダ、苛性カリ等のアルカリ性水溶液等で膨潤させ、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤を用いて行われる。 FIG. 1 is a partial cross-sectional view showing a configuration example of a multilayer printed wiring board according to the present invention. The illustrated multilayer printed wiring board can be manufactured, for example, as follows. First, a through hole is formed in the core substrate 2 on which the conductor pattern 1 is formed. The through hole can be formed by an appropriate means such as a drill, a die punch, or laser light. Then, a roughening process is performed using a roughening agent. Generally, the roughening treatment is carried out by swelling with an organic solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol, or an alkaline aqueous solution such as caustic soda or caustic potash. It is carried out using an oxidizing agent such as salt, ozone, hydrogen peroxide / sulfuric acid or nitric acid.
 次に、無電解めっきや電解めっきの組合せ等により、導体パターン3を形成する。無電解めっきにより導体層を形成する工程は、めっき用触媒を含む水溶液に浸漬し、触媒の吸着を行った後、めっき液に浸漬してめっきを析出させるという工程である。常法(サブトラクティブ法、セミアデティブ法等)に従って、コア基板2の表面の導体層に所定の回路パターンを形成し、図示するように、両側に導体パターン3を形成する。このとき、貫通穴にもめっき層が形成され、その結果、上記多層プリント配線板の導体パターン3のコネクション部4と導体パターン1のコネクション部1aとの間は電気的に接続されることになり、スルーホール5が形成される。 Next, the conductor pattern 3 is formed by a combination of electroless plating or electrolytic plating. The step of forming the conductor layer by electroless plating is a step of immersing in an aqueous solution containing a plating catalyst, adsorbing the catalyst, and then immersing in a plating solution to deposit the plating. A predetermined circuit pattern is formed on the conductor layer on the surface of the core substrate 2 in accordance with a conventional method (subtractive method, semi-additive method, etc.), and a conductor pattern 3 is formed on both sides as shown. At this time, a plated layer is also formed in the through hole, and as a result, the connection portion 4 of the conductor pattern 3 of the multilayer printed wiring board and the connection portion 1a of the conductor pattern 1 are electrically connected. Through hole 5 is formed.
 次に、スクリーン印刷法やスプレーコーティング法、カーテンコーティング法等の適切な方法により、例えば、熱硬化性組成物を塗布した後、加熱硬化させ、層間絶縁層6を形成する。ドライフィルムまたはプリプレグを用いる場合には、ラミネートもしくは熱板プレスして加熱硬化させ、層間絶縁層6を形成する。次に、各導体層のコネクション部間を電気的に接続するためのビア7を、例えば、レーザー光など適切な手段によって形成し、上記導体パターン3と同様の方法で導体パターン8を形成する。さらに、同様の方法で層間絶縁層9、ビア10および導体パターン11を形成する。その後、最外層にソルダーレジスト層12を形成することで、多層プリント配線板が製造される。上記においては、積層基板上に層間絶縁層および導体層を形成する例について説明したが、積層基板の代わりに片面基板、または、両面基板を用いてもよい。 Next, for example, by applying a thermosetting composition by an appropriate method such as a screen printing method, a spray coating method, or a curtain coating method, the interlayer insulating layer 6 is formed by heating and curing. When a dry film or prepreg is used, the interlayer insulating layer 6 is formed by laminating or hot plate pressing and heat curing. Next, vias 7 for electrically connecting the connection portions of the conductor layers are formed by appropriate means such as laser light, and the conductor pattern 8 is formed by the same method as the conductor pattern 3. Further, the interlayer insulating layer 9, the via 10 and the conductor pattern 11 are formed by the same method. Then, a multilayer printed wiring board is manufactured by forming the solder resist layer 12 in the outermost layer. In the above, the example in which the interlayer insulating layer and the conductor layer are formed on the multilayer substrate has been described. However, a single-sided substrate or a double-sided substrate may be used instead of the multilayer substrate.
 本発明のプリント配線板材料は、さらに、層状珪酸塩を含むことが好ましい。セルロースナノファイバーと層状珪酸塩とを組み合わせて配合することで、いずれか一方を配合する場合よりも少量の配合量で、線膨張係数を大幅に低減することが可能となる。 The printed wiring board material of the present invention preferably further contains a layered silicate. By blending cellulose nanofiber and layered silicate in combination, the linear expansion coefficient can be significantly reduced with a smaller amount of blending than when either one is blended.
 上記層状珪酸塩としては、特に限定されるものではないが、膨潤性および/または劈開性を有する粘土鉱物やハイドロタルサイト類化合物、および、その類似化合物が好ましい。これら粘土鉱物としては、例えば、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ソーコナイト、スチブンサイト、ヘクトライト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、バーミキュライト、金雲母、ザンソフィライト、緑泥石などを挙げることができる。これら層状珪酸塩は、天然物であっても合成物であってもよい。また、これらの層状珪酸塩は、単独で用いることができ、複数を併用することもできる。 The layered silicate is not particularly limited, but clay minerals and hydrotalcite compounds having swelling properties and / or cleavage properties, and similar compounds are preferable. Examples of these clay minerals include kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, beidellite, nontronite, saponite, sauconite, stevensite, hectorite, tetrasilic mica, sodium. Examples include teniolite, muscovite, margarite, talc, vermiculite, phlogopite, xanthophyllite, chlorite. These layered silicates may be natural products or synthetic products. These layered silicates can be used alone or in combination.
 上記層状珪酸塩の形状は、特に限定されるものではないが、層状珪酸塩が多層に重なっていると、有機化した後に劈開することが困難になることから、親有機化されていない層状珪酸塩の厚さは、可能な限り1層における厚さ(約1nm)であることが好ましい。また、平均長さは0.01~50μm、好ましくは0.05~10μm、アスペクト比は20~500、好ましくは50~200であるものを好適に用いることができる。 The shape of the layered silicate is not particularly limited, but it is difficult to cleave after layering when the layered silicate overlaps multiple layers. The thickness of the salt is preferably as thick as possible in one layer (about 1 nm). Further, those having an average length of 0.01 to 50 μm, preferably 0.05 to 10 μm, and an aspect ratio of 20 to 500, preferably 50 to 200 can be suitably used.
 上記層状珪酸塩は、その層間にイオン交換可能な無機カチオンを有する。イオン交換可能な無機カチオンとは、層状珪酸塩の結晶表面上に存在するナトリウム、カリウム、リチウムなどの金属イオンのことである。これらのイオンは、カチオン性物質とのイオン交換性を有し、イオン交換反応によりカチオン性を有する種々の物質を上記層状珪酸塩の層間に挿入(インターカレート)できる。 The layered silicate has an inorganic cation capable of ion exchange between the layers. The ion-exchangeable inorganic cation is a metal ion such as sodium, potassium, or lithium existing on the surface of the layered silicate crystal. These ions have an ion exchange property with a cationic substance, and various substances having a cationic property can be inserted (intercalated) between the layers of the layered silicate by an ion exchange reaction.
 上記層状珪酸塩のカチオン交換容量(CEC)は、特に限定されるものではないが、例えば、25~200meq/100gであることが好ましく、50~150meq/100gであることがより好ましく、90~130meq/100gであることがさらに好ましい。層状珪酸塩のカチオン交換容量が25meq/100g以上であれば、イオン交換により層状珪酸塩の層間に十分な量のカチオン性物質が挿入(インターカレート)され、層間が十分に親有機化される。一方、カチオン交換容量が200meq/100g以下であれば、層状珪酸塩の層間の結合力が強固になりすぎて結晶薄片が剥離しにくくなることもなく、良好な分散性を維持することができる。 The cation exchange capacity (CEC) of the layered silicate is not particularly limited, but is preferably, for example, 25 to 200 meq / 100 g, more preferably 50 to 150 meq / 100 g, and 90 to 130 meq. More preferably, it is / 100g. If the cation exchange capacity of the layered silicate is 25 meq / 100 g or more, a sufficient amount of a cationic substance is inserted (intercalated) between the layers of the layered silicate by ion exchange, and the layers are sufficiently made organophilic. . On the other hand, if the cation exchange capacity is 200 meq / 100 g or less, the bonding strength between the layers of the layered silicate becomes too strong and the crystal flakes are not easily peeled off, and good dispersibility can be maintained.
 上記好適条件を満足する層状珪酸塩の具体例としては、例えば、クニミネ工業(株)製のスメクトンSA、クニミネ工業(株)製のクニピアF、コープケミカル(株)製のソマシフME-100、コープケミカル(株)製のルーセンタイトSTN等の商品を挙げることができる。 Specific examples of the layered silicate satisfying the above preferred conditions include, for example, Sumecton SA manufactured by Kunimine Industry Co., Ltd., Kunipia F manufactured by Kunimine Industry Co., Ltd., Somasif ME-100 manufactured by Corp Chemical Co., Ltd. Examples of such products include Lucentite STN manufactured by Chemical Corporation.
 また、本発明で用いられる層状珪酸塩の有機化剤としては、一般的なオニウム塩であればいかなるものを用いてもよく、耐熱性の観点からは、特開2004-107541号公報に開示されているような熱分解温度の高いオニウム塩を用いることが好ましい。 Further, as a layered silicate organic agent used in the present invention, any general onium salt may be used, and it is disclosed in JP-A-2004-107541 from the viewpoint of heat resistance. It is preferable to use an onium salt having a high thermal decomposition temperature.
 上記層状珪酸塩の層間に親有機化剤を含有させる方法は、特に限定されるものではないが、合成操作が容易であるとの観点からは、イオン交換反応により、無機カチオンを親有機化剤に交換することにより含有させる方法が好適である。上記層状珪酸塩のイオン交換可能な無機カチオンを親有機化剤とイオン交換する手法としては、特に限定されるものではなく、既知の方法を用いることができる。具体的には、水中におけるイオン交換、アルコール中におけるイオン交換、水/アルコール混合溶媒中におけるイオン交換等の手法を用いることができる。 The method for containing the organophilic agent between the layered silicate layers is not particularly limited, but from the viewpoint that the synthesis operation is easy, the inorganic cation is made to be an organophilic agent by an ion exchange reaction. A method of containing them by exchanging them is preferable. The method for ion-exchanging the ion-exchangeable inorganic cation of the layered silicate with the organophilic agent is not particularly limited, and a known method can be used. Specifically, techniques such as ion exchange in water, ion exchange in alcohol, and ion exchange in a water / alcohol mixed solvent can be used.
 具体的には、層状珪酸塩を水やアルコール等で十分溶媒和させた後、親有機化剤を加え、撹拌し、層状珪酸塩の層間の無機カチオンを親有機化剤で置換させる。その後、未置換の親有機化剤を十分に洗浄し、濾取し、乾燥する。その他、有機溶剤中で層状珪酸塩と有機カチオンを直接反応させたり、樹脂などの存在下、層状珪酸塩と親有機化剤とを押出機中で加熱混練しながら反応させたりすることも可能である。 Specifically, after the layered silicate is sufficiently solvated with water, alcohol or the like, an organophilic agent is added and stirred to replace the inorganic cation between layers of the layered silicate with the organophilic agent. Thereafter, the unsubstituted organophilic agent is thoroughly washed, filtered and dried. In addition, it is also possible to react the layered silicate and organic cation directly in an organic solvent, or to react the layered silicate and the organophilic agent in the presence of a resin while heating and kneading them in an extruder. is there.
 上記イオン交換の進行状況は、既知の方法で確認することができる。例えば、濾液のICP発光分析法により交換された無機イオンを確認する方法や、X線解析により層状珪酸塩の層間隔が拡張したことを確認する方法、熱天秤により昇温過程の質量減少から親有機化剤の存在を確認する方法等により、層状珪酸塩の無機カチオンが親有機化剤と置換されたことを確認することができる。イオン交換は、層状珪酸塩のイオン交換可能な無機イオン1当量に対し、0.05当量(5質量%)以上であることが好ましく、0.1当量(10質量%)以上であることがより好ましく、0.5当量(50質量%)以上であることがさらに好ましい。イオン交換は、0~100℃の温度で行うことが好ましく、10~90℃の温度範囲で行うことがより好ましく、15~80℃の温度範囲で行うことがさらに好ましい。 The progress of the ion exchange can be confirmed by a known method. For example, the method of confirming the exchanged inorganic ions by ICP emission analysis of the filtrate, the method of confirming that the layer spacing of the layered silicate has been expanded by X-ray analysis, It can be confirmed that the inorganic cation of the layered silicate has been replaced with the organophilic agent by a method for confirming the presence of the organic agent. The ion exchange is preferably 0.05 equivalents (5% by mass) or more, more preferably 0.1 equivalents (10% by mass) or more with respect to 1 equivalent of inorganic ions capable of ion exchange of the layered silicate. Preferably, it is 0.5 equivalent (50 mass%) or more. Ion exchange is preferably performed at a temperature of 0 to 100 ° C., more preferably at a temperature range of 10 to 90 ° C., and even more preferably at a temperature range of 15 to 80 ° C.
 また、本発明に用いられる上記層状珪酸塩の配合量は、溶剤を除く組成物の全体量に対し、好適には0.02~48質量%、より好適には0.04~42質量%である。層状珪酸塩の配合量が0.02質量%以上の場合、線膨張係数の低減効果を良好に得ることができる。一方、48質量%以下の場合、製膜性が向上する。 The amount of the layered silicate used in the present invention is preferably 0.02 to 48% by mass, more preferably 0.04 to 42% by mass, based on the total amount of the composition excluding the solvent. is there. When the compounding quantity of layered silicate is 0.02 mass% or more, the reduction effect of a linear expansion coefficient can be acquired favorably. On the other hand, in the case of 48 mass% or less, film forming property improves.
 本発明によれば、セルロースナノファイバーと層状珪酸塩とを組み合わせて配合することで、相乗効果により、いずれか一方を配合する場合よりも少量の配合量で、大幅に線膨張係数を低減した材料を得ることができるものである。本発明における上記セルロースナノファイバーおよび層状珪酸塩の配合量の総量は、溶剤を除く組成物の全体量に対し、好適には0.1~80質量%、より好適には0.2~70質量%である。 According to the present invention, by combining cellulose nanofibers and layered silicates, a material having a greatly reduced linear expansion coefficient with a smaller amount than when either one is blended due to a synergistic effect. Can be obtained. The total amount of the cellulose nanofiber and the layered silicate in the present invention is preferably 0.1 to 80% by mass, more preferably 0.2 to 70% by mass with respect to the total amount of the composition excluding the solvent. %.
 また、本発明のプリント配線板材料は、シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方を含むことが好ましい。シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方を含有するものとすることで、ホール間マイグレーションの発生を抑制する効果を得ることが可能となる。 Further, the printed wiring board material of the present invention preferably contains one or both of a silicone compound and a fluorine compound. By including one or both of the silicone compound and the fluorine compound, it is possible to obtain an effect of suppressing the occurrence of migration between holes.
(シリコーン化合物)
 上記シリコーン化合物としては、ポリジメチルシロキサン、ポリアルキルフェニルシロキサン、アルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、ポリアルキルシロキサン、ポリメチルシルセスキオキサン、ポリアルキル水素シロキサン、ポリアルキルアルケニルシロキサン、ポリメチルフェニルシロキサン、アラルキル変性シリコーンオイル、アルキルアラルキル変性シリコーンオイルなどが挙げられる。市販品としては、BYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-313、BYK-330、BYK-331、BYK-333、BYK-337、BYK-341、BYK-344、BYK-370、BYK375(以上、ビックケミー・ジャパン(株)製)、KS-66、KS-69、FZ-2110、FZ-2166、FZ-2154、FZ-2120、L-720、L-7002、SH8700、L-7001、FZ-2123、SH8400、FZ-77、FZ-2164、FZ-2203、FZ-2208(以上、東レ・ダウコーニング(株)製)、KF-353、KF-615A、KF-640、KF-642、KF-643、KF-6020、X-22-6191、KF-6011、KF-6015、X-22-2516、KF-410、X-22-821、KF-412、KF-413、KF-4701(以上、信越化学(株)製)が挙げられる。
(Silicone compound)
Examples of the silicone compound include polydimethylsiloxane, polyalkylphenylsiloxane, alkyl-modified silicone oil, polyether-modified silicone oil, polyalkylsiloxane, polymethylsilsesquioxane, polyalkylhydrogensiloxane, polyalkylalkenylsiloxane, and polymethylphenyl. Examples thereof include siloxane, aralkyl-modified silicone oil, and alkylaralkyl-modified silicone oil. Commercially available products include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-313, BYK-330, BYK-331, BYK-333, BYK-337, BYK-341, BYK -344, BYK-370, BYK375 (above, manufactured by Big Chemie Japan Co., Ltd.), KS-66, KS-69, FZ-2110, FZ-2166, FZ-2154, FZ-2120, L-720, L- 7002, SH8700, L-7001, FZ-2123, SH8400, FZ-77, FZ-2164, FZ-2203, FZ-2208 (above, manufactured by Toray Dow Corning Co., Ltd.), KF-353, KF-615A, KF-640, KF-642, KF-643, KF-6020, X-22-6191, KF-60 1, KF-6015, X-22-2516, KF-410, X-22-821, KF-412, KF-413, KF-4701 (manufactured by Shin-Etsu Chemical Co.) and the like.
(フッ素化合物)
 上記フッ素化合物としては、例えば、分子中にパーフルオロアルキル基やパーフルオロアルケニル基などを有するフッ素系樹脂を挙げることができる。市販品としては、例えばメガファックF-444、同F-472、同F-477、同F-552、同F-553、同F-554、同F-443、同F-470、同F-470、同F-475、同F-482、同F-483、同F-489、同R-30、同RS-75(以上、DIC(株)製)、エフトップEF301、同303、同352(以上 新秋田化成(株)製)、フロラードFC-430、同FC-431(以上、住友スリーエム(株)製)、アサヒガードAG-E300D、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子(株)製)、BM-1000、BM-1100(以上、裕商(株)製)、NBX-15、FTX-218(以上、(株)ネオス製)が挙げられる。
(Fluorine compound)
Examples of the fluorine compound include fluorine-based resins having a perfluoroalkyl group or a perfluoroalkenyl group in the molecule. Commercially available products include, for example, MegaFuck F-444, F-472, F-477, F-552, F-553, F-554, F-443, F-470, F- 470, F-475, F-482, F-482, F-487, F-487, R-30, RS-75 (manufactured by DIC Corporation), F-top EF301, 303, 352 (Shin-Akita Kasei Co., Ltd.), Florad FC-430, FC-431 (Sumitomo 3M Co., Ltd.), Asahi Guard AG-E300D, Surflon S-382, SC-101, SC- 102, SC-103, SC-104, SC-105, SC-106 (above, Asahi Glass Co., Ltd.), BM-1000, BM-1100 (above, Yusho Co., Ltd.), NBX -15, FTX-218 (above, (Manufactured by Neos Co., Ltd.).
 本発明に用いられる上記シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方の配合量は、バインダー成分100質量部に対し、好適には0.01~20質量部、より好適には0.01~10質量部、さらに好適には0.05~3質量部である。シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方の配合量が0.01質量%以上の場合、本発明の所期の効果を良好に得ることができる。一方、20質量%以下の場合、製膜性が向上する。 The amount of one or both of the silicone compound and fluorine compound used in the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.01 to 100 parts by mass of the binder component. To 10 parts by mass, more preferably 0.05 to 3 parts by mass. When the blending amount of either one or both of the silicone compound and the fluorine compound is 0.01% by mass or more, the desired effect of the present invention can be obtained satisfactorily. On the other hand, in the case of 20 mass% or less, film forming property improves.
 さらに、本発明のプリント配線板材料は、数平均繊維径1μm以上のセルロースファイバーと、上記数平均繊維径3nm以上1000nm未満のセルロースナノファイバーと、を含むことが好ましい。繊維径の異なるセルロース繊維を組み合わせて配合することで、従来と比較して高いピール強度を実現することが可能となる。 Furthermore, the printed wiring board material of the present invention preferably contains cellulose fibers having a number average fiber diameter of 1 μm or more and cellulose nanofibers having the number average fiber diameter of 3 nm or more and less than 1000 nm. By combining and blending cellulose fibers having different fiber diameters, it is possible to realize a high peel strength as compared with the conventional case.
(セルロースファイバー)
 上記セルロースファイバーは、以下のようにして得ることができる。
 セルロースファイバーの原材料としては、上記セルロースナノファイバーと同様のものを挙げることができる。
(Cellulose fiber)
The cellulose fiber can be obtained as follows.
Examples of the raw material of the cellulose fiber include the same materials as the cellulose nanofiber.
 上記原材料からセルロースファイバーを製造するためには、上記原材料に対し、叩解ないし粉砕処理を施す方法を用いることができる。 In order to produce cellulose fibers from the above raw materials, a method of beating or crushing the above raw materials can be used.
 上記叩解ないし粉砕処理は、例えば、パルプ等を高圧ホモジナイザー等により機械的に処理して、繊維径1~10μm程度に解きほぐし、0.1~3質量%程度の水懸濁液として、セルロースファイバーを得ることができる。 In the above beating or pulverization treatment, for example, pulp is mechanically treated with a high-pressure homogenizer or the like to loosen the fiber to a fiber diameter of about 1 to 10 μm, and the cellulose fiber is made into a water suspension of about 0.1 to 3% by mass. Obtainable.
 また、例えば、叩解ないし粉砕処理により得られたセルロースファイバーをグラインダー等で繰り返し解きほぐすことにより、繊維径10~100nm程度のセルロースナノファイバーを得ることもできる。 For example, cellulose nanofibers having a fiber diameter of about 10 to 100 nm can also be obtained by repeatedly unraveling cellulose fibers obtained by beating or pulverization with a grinder or the like.
 また、本発明において用いるセルロースファイバーは、上記セルロースナノファイバーと同様に、化学修飾および/または物理修飾して、機能性を高めたものであってもよい。 In addition, the cellulose fiber used in the present invention may be one having enhanced functionality by chemical modification and / or physical modification in the same manner as the cellulose nanofiber.
 本発明に用いられるセルロースファイバーの数平均繊維径は、上記セルロースナノファイバーと同様に求めた値である。 The number average fiber diameter of the cellulose fiber used in the present invention is a value obtained in the same manner as the cellulose nanofiber.
 上記セルロースファイバーの数平均繊維径は、1μm以上であることが必要であり、好適には1μm~50μm、より好適には1μm~20μmである。セルロースファイバーの数平均繊維径が上記範囲よりも小さいと、所期の効果が得られない。 The number average fiber diameter of the cellulose fibers needs to be 1 μm or more, preferably 1 μm to 50 μm, more preferably 1 μm to 20 μm. If the number average fiber diameter of the cellulose fiber is smaller than the above range, the desired effect cannot be obtained.
 本発明においては、上記セルロースナノファイバーの調製過程において、繊維をナノサイズまで解きほぐす際に、処理を途中で止めて全量を解きほぐさない状態とし、上記数平均繊維径の範囲のセルロース繊維を残すことによっても、本発明の好適条件を満足するセルロースファイバーとセルロースナノファイバーとの混合物を得ることができる。したがって、本発明のプリント配線板材料においては、上記特定の数平均繊維径の範囲を満足するセルロースファイバーおよびセルロースナノファイバー以外に、上記特定の数平均繊維径の範囲外の数平均繊維径を有するセルロース繊維を含むものであってもよい。 In the present invention, in the preparation process of the cellulose nanofibers, when unraveling the fibers to nano size, the treatment is stopped in the middle and the whole amount is not unraveled, leaving the cellulose fibers in the range of the number average fiber diameter. Also, a mixture of cellulose fiber and cellulose nanofiber satisfying the preferred conditions of the present invention can be obtained. Therefore, the printed wiring board material of the present invention has a number average fiber diameter outside the range of the specific number average fiber diameter in addition to the cellulose fiber and the cellulose nanofiber satisfying the specific number average fiber diameter range. Cellulose fibers may be included.
 上記セルロースファイバーとしては、上記数平均繊維径の条件を満足するものであれば、市販品を適宜使用することができ、特に制限されるものではない。 As the cellulose fiber, a commercially available product can be appropriately used as long as it satisfies the condition of the number average fiber diameter, and is not particularly limited.
 本発明によれば、上記セルロースファイバーと上記セルロースナノファイバーとを組み合わせて配合することで、従来になく優れたピール強度を実現することができる。本発明における上記セルロースファイバーと上記セルロースナノファイバーとの質量比は、好適には9:1~1:9、より好適には8:2~2:8である。この範囲内とすることで、より高いピール強度を得ることができる。 According to the present invention, an excellent peel strength can be realized by combining the cellulose fiber and the cellulose nanofiber in combination. In the present invention, the mass ratio of the cellulose fiber to the cellulose nanofiber is preferably 9: 1 to 1: 9, more preferably 8: 2 to 2: 8. By setting it within this range, higher peel strength can be obtained.
 この場合の上記セルロースファイバーおよび上記セルロースナノファイバーの配合量の総量は、溶剤を除く組成物の全体量に対し、好適には0.5~80質量%、より好適には1~70質量%である。上記セルロースファイバーおよび上記セルロースナノファイバーの配合量の総量を、0.5質量%以上とすることで、より高いピール強度を得ることができ、80質量%以下とすることで、良好な製膜性を得ることができる。 In this case, the total amount of the cellulose fiber and the cellulose nanofiber is preferably 0.5 to 80% by mass, more preferably 1 to 70% by mass with respect to the total amount of the composition excluding the solvent. is there. By making the total amount of the cellulose fibers and the cellulose nanofibers 0.5% by mass or more, higher peel strength can be obtained, and by 80% by mass or less, good film-forming properties are obtained. Can be obtained.
 さらにまた、本発明のプリント配線板材料は、構造中にカルボン酸塩を有する数平均繊維径3nm~1000nmのセルロースナノファイバーを含むことが好ましい。これにより、耐クラック性に優れたプリント配線板材料を得ることができる。かかるセルロースナノファイバーは、以下に従い、天然セルロース繊維を酸化させた後、微細化することにより得ることができる。 Furthermore, the printed wiring board material of the present invention preferably contains cellulose nanofibers having a carboxylate in the structure and a number average fiber diameter of 3 nm to 1000 nm. Thereby, the printed wiring board material excellent in crack resistance can be obtained. Such cellulose nanofibers can be obtained by oxidizing natural cellulose fibers and then refining them according to the following.
(構造中にカルボン酸塩を有するセルロースナノファイバー)
 まず、天然セルロース繊維を、絶対乾燥基準で約10~1000倍量(質量基準)の水中に、ミキサー等を用いて分散させることにより、水分散液を調製する。上記セルロースナノファイバーの原料となる天然セルロース繊維としては、例えば、針葉樹系パルプや広葉樹系パルプ等の木材パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、コットンリントやコットンリンター等の綿系パルプ、バクテリアセルロース等を挙げることができる。これらは、1種を単独で用いても、2種以上を適宜組み合わせて用いてもよい。また、これら天然セルロース繊維には、あらかじめ表面積を大きくするために叩解等の処理を施しておいてもよい。
(Cellulose nanofibers with carboxylate in the structure)
First, an aqueous dispersion is prepared by dispersing natural cellulose fibers in about 10 to 1000 times (mass basis) of water on an absolute dry basis using a mixer or the like. Examples of the natural cellulose fiber used as a raw material for the cellulose nanofiber include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as straw pulp and bagasse pulp, cotton pulp such as cotton lint and cotton linter, Examples include bacterial cellulose. These may be used individually by 1 type, or may be used in combination of 2 or more types as appropriate. Further, these natural cellulose fibers may be subjected to a treatment such as beating in order to increase the surface area in advance.
 次に、上記水分散液中で、N-オキシル化合物を酸化触媒として用いて、天然セルロース繊維の酸化処理を行う。かかるN-オキシル化合物としては、例えば、TEMPO(2,2,6,6-テトラメチルピペリジンーN-オキシル)の他、4-カルボキシ-TEMPO、4-アセトアミド-TEMPO、4-アミノ-TEMPO、4-ジメチルアミノ-TEMPO、4-フォスフォノオキシ-TEMPO、4-ヒドロキシTEMPO、4-オキシTEMPO、4-メトキシTEMPO、4-(2-ブロモアセトアミド)-TEMPO、2-アザアダマンタンN-オキシル等の、C4位に各種の官能基を有するTEMPO誘導体等を用いることができる。これらN-オキシル化合物の添加量としては、触媒量で十分であり、通常、天然セルロース繊維に対し、絶対乾燥基準で0.1~10質量%となる範囲とすることができる。 Next, natural cellulose fibers are oxidized in the aqueous dispersion using an N-oxyl compound as an oxidation catalyst. Examples of such N-oxyl compounds include TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), 4-carboxy-TEMPO, 4-acetamido-TEMPO, 4-amino-TEMPO, 4 -Dimethylamino-TEMPO, 4-phosphonooxy-TEMPO, 4-hydroxy TEMPO, 4-oxy TEMPO, 4-methoxy TEMPO, 4- (2-bromoacetamido) -TEMPO, 2-azaadamantane N-oxyl, etc. TEMPO derivatives having various functional groups at the C4 position can be used. As the addition amount of these N-oxyl compounds, a catalytic amount is sufficient, and it can usually be in a range of 0.1 to 10% by mass with respect to natural cellulose fiber on an absolute dry basis.
 上記天然セルロース繊維の酸化処理においては、酸化剤と共酸化剤とを併用する。酸化剤としては、例えば、亜ハロゲン酸、次亜ハロゲン酸および過ハロゲン酸並びにそれらの塩、過酸化水素、過有機酸を挙げることができ、中でも、次亜塩素酸ナトリウムや次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好適である。また、共酸化剤としては、例えば、臭化ナトリウム等の臭化アルカリ金属を用いることができる。酸化剤の使用量は、通常、天然セルロース繊維に対し、絶対乾燥基準で約1~100質量%となる範囲であり、共酸化剤の使用量は、通常、天然セルロース繊維に対し、絶対乾燥基準で約1~30質量%となる範囲である。 In the oxidation treatment of the natural cellulose fiber, an oxidizing agent and a co-oxidizing agent are used in combination. Examples of the oxidizing agent include halous acid, hypohalous acid and perhalogenic acid and salts thereof, hydrogen peroxide, perorganic acid, among which sodium hypochlorite and sodium hypobromite. Alkali metal hypohalites such as are preferred. Further, as the co-oxidant, for example, an alkali metal bromide such as sodium bromide can be used. The amount of the oxidizing agent used is usually in the range of about 1 to 100% by mass based on the absolute dry standard relative to the natural cellulose fiber, and the amount of the co-oxidant used is usually based on the absolute dry standard relative to the natural cellulose fiber Is about 1 to 30% by mass.
 上記天然セルロース繊維の酸化処理の際には、水分散液のpHを9~12の範囲で維持することが、酸化反応を効率よく進行させる観点から好ましい。また、酸化処理の際の水分散液の温度は、1~50℃の範囲で任意に設定することができ、温度制御なしで、室温においても反応可能である。反応時間としては、1~240分間の範囲とすることができる。なお、水分散液には、天然セルロース繊維の内部まで薬剤を浸透させて、より多くのカルボキシル基を繊維表面に導入するために、浸透剤を添加することもできる。浸透剤としては、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等のアニオン系界面活性剤や、ポリエチレングルコール型、多価アルコール型等の非イオン界面活性剤などが挙げられる。 In the oxidation treatment of the natural cellulose fiber, it is preferable to maintain the pH of the aqueous dispersion in the range of 9 to 12 from the viewpoint of efficiently proceeding the oxidation reaction. In addition, the temperature of the aqueous dispersion during the oxidation treatment can be arbitrarily set in the range of 1 to 50 ° C., and the reaction can be performed at room temperature without temperature control. The reaction time can be in the range of 1 to 240 minutes. In addition, a penetrant can be added to the aqueous dispersion in order to allow the drug to penetrate into the inside of the natural cellulose fiber and introduce more carboxyl groups into the fiber surface. Examples of the penetrating agent include anionic surfactants such as carboxylate, sulfate ester salt, sulfonate salt, and phosphate ester salt, and nonionic surfactants such as polyethylene glycol type and polyhydric alcohol type. .
 上記天然セルロース繊維の酸化処理の後には、微細化を行うに先立って、水分散液中に含まれる未反応の酸化剤や各種副生成物等の不純物を除去する精製処理を行うことが好ましい。具体的には例えば、酸化処理された天然セルロース繊維の水洗および濾過を繰り返し行う手法を用いることができる。精製処理後に得られる天然セルロース繊維は、通常、適量の水が含浸された状態で微細化処理に供されるが、必要に応じ、乾燥処理を行って、繊維状または粉末状としてもよい。 After the oxidation treatment of the natural cellulose fiber, it is preferable to carry out a purification treatment to remove impurities such as unreacted oxidant and various by-products contained in the aqueous dispersion prior to refinement. Specifically, for example, a technique of repeatedly washing and filtering the oxidized natural cellulose fiber can be used. The natural cellulose fiber obtained after the refining treatment is usually subjected to a refining treatment in a state impregnated with an appropriate amount of water. However, if necessary, the natural cellulose fiber may be dried to obtain a fibrous or powdery form.
 次に、天然セルロース処理の微細化は、所望に応じ精製処理された天然セルロース繊維を、水等の溶媒中に分散させた状態で行う。微細化処理において使用する分散媒としての溶媒は、通常は水が好ましいが、所望に応じ、アルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)やエーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等)等の水に可溶な有機溶媒を使用してもよく、これらの混合物を用いることもできる。これら溶媒の分散液中の天然セルロース繊維の固形分濃度は、好適には、50質量%以下とする。天然セルロース繊維の固形分濃度が50質量%を超えると、分散に極めて高いエネルギーを必要とするため好ましくない。天然セルロース処理の微細化は、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、叩解機、離解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等の分散装置を使用して行うことができる。 Next, the refinement of the natural cellulose treatment is performed in a state where the natural cellulose fibers purified as desired are dispersed in a solvent such as water. The solvent as a dispersion medium used in the micronization treatment is usually preferably water, but if desired, alcohols (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, Ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, etc.), etc. A water-soluble organic solvent may be used, or a mixture thereof may be used. The solid content concentration of the natural cellulose fiber in the dispersion of these solvents is preferably 50% by mass or less. When the solid content concentration of the natural cellulose fiber exceeds 50% by mass, extremely high energy is required for dispersion, which is not preferable. Refinement of natural cellulose treatment includes low-pressure homogenizers, high-pressure homogenizers, grinders, cutter mills, ball mills, jet mills, beating machines, disintegrators, short-screw extruders, twin-screw extruders, ultrasonic agitators, household juicer mixers, etc. This can be done using a dispersing device.
 微細化処理により得られるセルロースナノファイバーは、所望に応じ、固形分濃度を調整した懸濁液状、または、乾燥させた粉末状とすることができる。ここで、懸濁液状にする場合には、分散媒として水のみを使用してもよく、水と他の有機溶媒、例えば、エタノール等のアルコール類や、界面活性剤、酸、塩基等との混合溶媒を使用してもよい。 The cellulose nanofibers obtained by the refinement treatment can be made into a suspension in which the solid content concentration is adjusted, or a dried powder, as desired. Here, in the case of a suspension, only water may be used as a dispersion medium, and water and other organic solvents, for example, alcohols such as ethanol, surfactants, acids, bases, etc. A mixed solvent may be used.
 上記天然セルロース繊維の酸化処理および微細化処理により、セルロース分子の構成単位のC6位の水酸基がアルデヒド基を経由してカルボキシル基へと選択的に酸化され、かかるカルボキシル基の含有量が0.1~3mmol/gであるセルロース分子からなる、上記所定の数平均繊維径を有する高結晶性のセルロースナノファイバーを得ることができる。この高結晶性のセルロースナノファイバーは、セルロースI型結晶構造を有している。これは、かかるセルロースナノファイバーが、I型結晶構造を有する天然由来のセルロース分子が表面酸化され微細化されたものであることを意味している。すなわち、天然セルロース繊維は、その生合成の過程において生産されるミクロフィブリルと呼ばれる微細な繊維が多束化して高次な固体構造を構築しており、そのミクロフィブリル間の強い凝集力(表面間の水素結合)を、酸化処理によるアルデヒド基またはカルボキシル基の導入によって弱め、さらに、微細化処理を経ることで、セルロースナノファイバーが得られる。酸化処理の条件を調整することにより、カルボキシル基の含有量を増減させて、極性を変化させたり、カルボキシル基の静電反発や微細化処理により、セルロースナノファイバーの平均繊維径や平均繊維長、平均アスペクト比等を制御することができる。 By the oxidation treatment and refinement treatment of the natural cellulose fiber, the hydroxyl group at the C6 position of the structural unit of the cellulose molecule is selectively oxidized to a carboxyl group via an aldehyde group, and the content of the carboxyl group is 0.1. A highly crystalline cellulose nanofiber having the above-mentioned predetermined number average fiber diameter, which is composed of cellulose molecules of ˜3 mmol / g, can be obtained. This highly crystalline cellulose nanofiber has a cellulose I-type crystal structure. This means that the cellulose nanofibers are those obtained by surface-oxidizing naturally-derived cellulose molecules having an I-type crystal structure. That is, natural cellulose fibers have a high-order solid structure formed by a bundle of fine fibers called microfibrils produced in the process of biosynthesis, and a strong cohesive force between the microfibrils (between surfaces). The cellulose nanofibers can be obtained by weakening the hydrogen bond) by introducing an aldehyde group or a carboxyl group by an oxidation treatment, and further through a refinement treatment. By adjusting the conditions of the oxidation treatment, the content of the carboxyl group is increased or decreased, the polarity is changed, or by the electrostatic repulsion or refinement treatment of the carboxyl group, the average fiber diameter or average fiber length of the cellulose nanofiber, The average aspect ratio can be controlled.
 上記天然セルロース繊維がI型結晶構造であることは、その広角X線回折像の測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークをもつことから同定することができる。また、セルロースナノファイバーのセルロース分子中にカルボキシル基が導入されていることは、水分を完全に除去したサンプルにおいて、全反射式赤外分光スペクトル(ATR)においてカルボニル基に起因する吸収(1608cm-1付近)が存在することにより確認することができる。カルボキシル基(COOH)の場合には、上記の測定において1730cm-1に吸収が存在する。 That the natural cellulose fiber has a type I crystal structure is typical at two positions in the vicinity of 2θ = 14 to 17 ° and 2θ = 22 to 23 ° in a diffraction profile obtained by measurement of a wide-angle X-ray diffraction image. It can be identified from having a typical peak. In addition, the introduction of a carboxyl group into the cellulose molecule of the cellulose nanofibers indicates that in a sample from which moisture has been completely removed, absorption due to a carbonyl group (1608 cm −1 ) in the total reflection infrared spectroscopic spectrum (ATR). This can be confirmed by the presence of the vicinity. In the case of a carboxyl group (COOH), there is an absorption at 1730 cm −1 in the above measurement.
 なお、酸化処理後の天然セルロース繊維にはハロゲン原子が付着または結合しているため、このような残留ハロゲン原子を除去する目的で、脱ハロゲン処理を行うこともできる。脱ハロゲン処理は、過酸化水素溶液やオゾン溶液に酸化処理後の天然セルロース繊維を浸漬することにより、行うことができる。 In addition, since halogen atoms are attached or bonded to the natural cellulose fiber after the oxidation treatment, dehalogenation treatment can be performed for the purpose of removing such residual halogen atoms. The dehalogenation treatment can be performed by immersing the oxidized natural cellulose fiber in a hydrogen peroxide solution or an ozone solution.
 具体的には、例えば、酸化処理後の天然セルロース繊維を、濃度が0.1~100g/Lの過酸化水素溶液に、浴比1:5~1:100程度、好ましくは1:10~1:60程度(質量比)の条件で浸漬する。この場合の過酸化水素溶液の濃度は、好適には1~50g/Lであり、より好適には5~20g/Lである。また、過酸化水素溶液のpHは、好適には8~11であり、より好適には9.5~10.7である。 Specifically, for example, the oxidized natural cellulose fiber is added to a hydrogen peroxide solution having a concentration of 0.1 to 100 g / L in a bath ratio of about 1: 5 to 1: 100, preferably 1:10 to 1. : Immerse under conditions of about 60 (mass ratio). In this case, the concentration of the hydrogen peroxide solution is preferably 1 to 50 g / L, and more preferably 5 to 20 g / L. The pH of the hydrogen peroxide solution is preferably 8 to 11, more preferably 9.5 to 10.7.
 なお、水分散液に含まれるセルロースナノファイバーの重量に対するセルロース中のカルボキシル基の量[mmol/g]は、以下の手法により評価することができる。すなわち、あらかじめ乾燥重量を精秤したセルロースナノファイバー試料の0.5~1質量%水分散液を60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液をpHが約11になるまで滴下して、電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記式を用いて官能基量を決定することができる。この官能基量が、カルボキシル基の量を示す。
 官能基量[mmol/g]=V[ml]×0.05/セルロースナノファイバー試料[g]
The amount [mmol / g] of carboxyl groups in cellulose relative to the weight of cellulose nanofibers contained in the aqueous dispersion can be evaluated by the following method. That is, 60 ml of a 0.5 to 1% by mass aqueous dispersion of a cellulose nanofiber sample, the dry weight of which was precisely weighed in advance, was prepared, and the pH was adjusted to about 2.5 with 0.1 M hydrochloric acid aqueous solution. An aqueous sodium hydroxide solution is dropped until the pH is about 11, and the electrical conductivity is measured. From the amount (V) of sodium hydroxide consumed in the weak acid neutralization stage where the change in electrical conductivity is slow, the functional group amount can be determined using the following formula. This amount of functional groups indicates the amount of carboxyl groups.
Functional group amount [mmol / g] = V [ml] × 0.05 / cellulose nanofiber sample [g]
 本発明に用いられる、構造中にカルボン酸塩を有するセルロースナノファイバーの数平均繊維径は、セルロースナノファイバーと同様とすることができる。 The number average fiber diameter of the cellulose nanofiber having a carboxylate salt in the structure used in the present invention can be the same as that of the cellulose nanofiber.
 この場合の、プリント配線板材料における、構造中にカルボン酸塩を有するセルロースナノファイバーの配合量は、溶剤を除く組成物の全体量に対し、好適には0.1~80質量%、より好適には0.2~70質量%である。構造中にカルボン酸塩を有するセルロースナノファイバーの配合量が0.1質量%以上の場合、本発明の所期の効果を良好に得ることができる。一方、80質量%以下の場合、製膜性が向上する。 In this case, the amount of the cellulose nanofiber having a carboxylate in the structure in the printed wiring board material is preferably 0.1 to 80% by mass, more preferably based on the total amount of the composition excluding the solvent. Is 0.2 to 70% by mass. When the blending amount of the cellulose nanofiber having a carboxylate salt in the structure is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily. On the other hand, in the case of 80 mass% or less, film forming property improves.
 さらにまた、本発明のプリント配線板材料は、リグノセルロースから製造された数平均繊維径3nm~1000nmのセルロースナノファイバー(以下、リグノセルロースナノファイバーともいう。)を含むことが好ましい。これにより、かかるセルロースナノファイバーは、以下のようにして得ることができる。高精細な回路や大電流用途において、回路間の耐電圧が高く、かつ、長期にわたり高い絶縁信頼性を維持できるプリント配線板材料を得ることができるものとなる。 Furthermore, the printed wiring board material of the present invention preferably contains cellulose nanofibers (hereinafter also referred to as lignocellulose nanofibers) produced from lignocellulose and having a number average fiber diameter of 3 nm to 1000 nm. Thereby, this cellulose nanofiber can be obtained as follows. In a high-definition circuit or a large current application, a printed wiring board material that has a high withstand voltage between circuits and can maintain high insulation reliability over a long period of time can be obtained.
(リグノセルロースナノファイバー)
 自然界に存在するリグノセルロースは、セルロースがリグニンおよびヘミセルロースに強固に結びついた三次元ネットワーク階層構造を有しており、細胞壁中のセルロース分子が単分子ではなく規則的に凝集して数十本集まった結晶性を有するミクロフィブリル(セルロースナノファイバー)を形成している。具体的には、本発明において使用するリグノセルロースは、例えば、木材や農産物、草木、綿花等の植物から得られる木質バイオマスや、微生物が産生するバクテリアセルロース等から得ることができる。リグノセルロースからセルロースナノファイバーを製造するためには、媒体を共存させて機械的に粉砕する方法を用いることができる。
(Lignocellulose nanofiber)
Lignocellulose that exists in nature has a three-dimensional network hierarchical structure in which cellulose is tightly bound to lignin and hemicellulose. Cellulose molecules in the cell wall are not single molecules but regularly agglomerate to collect dozens of them. Crystalline microfibrils (cellulose nanofibers) are formed. Specifically, the lignocellulose used in the present invention can be obtained from, for example, woody biomass obtained from plants such as wood, agricultural products, vegetation, and cotton, or bacterial cellulose produced by microorganisms. In order to produce cellulose nanofibers from lignocellulose, a method of mechanically grinding in the presence of a medium can be used.
 かかる機械的粉砕方法としては、例えば、ボールミル(振動ボールミル、回転ボールミル、遊星型ボールミル)やロッドミル、ビーズミル、ディスクミル、カッターミル、ハンマーミル、インペラーミル、エクストルーダー、ミキサー(高速回転羽根型ミキサー、ホモミキサー)、ホモジナイザー(高圧ホモジナイザー、機械式ホモジナイザー、超音波ホモジナイザー)等が挙げられる。これらの中でも、粉砕は、ボールミル、ロッドミル、ビーズミル、ディスクミル、カッターミル、エクストルーダーまたはミキサーにより行うことが好ましい。これらの粉砕方法を用いることで、比較的容易にセルロースナノファイバーを製造することができる。また、得られるセルロースナノファイバーのサイズのバラツキが小さくなる。 Such mechanical pulverization methods include, for example, a ball mill (vibrating ball mill, rotating ball mill, planetary ball mill), rod mill, bead mill, disk mill, cutter mill, hammer mill, impeller mill, extruder, mixer (high-speed rotating blade mixer, Homogenizer), homogenizer (high pressure homogenizer, mechanical homogenizer, ultrasonic homogenizer) and the like. Among these, pulverization is preferably performed by a ball mill, a rod mill, a bead mill, a disk mill, a cutter mill, an extruder or a mixer. By using these pulverization methods, cellulose nanofibers can be produced relatively easily. Moreover, the size variation of the cellulose nanofiber obtained becomes small.
 粉砕工程において用いられる媒体としては、特に限定されないが、水、低分子化合物、高分子化合物または脂肪酸類等が好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。これらの中でも、水と、低分子化合物、高分子化合物または脂肪酸類とを混合して、粉砕用媒体として用いることが好ましい。 The medium used in the pulverization step is not particularly limited, but water, a low molecular compound, a high molecular compound, fatty acids, and the like are preferably used. These may be used alone or in combination of two or more. Among these, it is preferable to mix water and a low molecular compound, a high molecular compound, or fatty acids, and to use as a pulverization medium.
 上記のうち低分子化合物としては、アルコール類やエーテル類、ケトン類、スルホキシド類、アミド類、アミン類、芳香族類、モルフォリン類、イオン性液体等が挙げられる。また、高分子化合物としては、アルコール系高分子類やエーテル系高分子類、アミド系高分子類、アミン系高分子類、芳香族系高分子類等が挙げられる。さらに、脂肪酸類としては、飽和脂肪酸類や不飽和脂肪酸類等が挙げられる。なお、この場合、使用する低分子化合物、高分子化合物および脂肪酸類としては、水溶性のものを用いることが好ましい。 Among these, examples of the low molecular weight compound include alcohols, ethers, ketones, sulfoxides, amides, amines, aromatics, morpholines, ionic liquids, and the like. Examples of the polymer compound include alcohol polymers, ether polymers, amide polymers, amine polymers, aromatic polymers, and the like. Furthermore, examples of fatty acids include saturated fatty acids and unsaturated fatty acids. In this case, it is preferable to use water-soluble compounds as the low molecular compounds, polymer compounds and fatty acids to be used.
 また、上記粉砕工程に先立って、粉砕を容易にするために、前処理としてのオゾン処理などを行ってもよい。 Further, prior to the pulverization step, ozone treatment as a pretreatment may be performed in order to facilitate pulverization.
 本発明に用いられるリグノセルロースナノファイバーの数平均繊維径は、上記セルロースナノファイバーと同様とすることができる。 The number average fiber diameter of the lignocellulose nanofiber used in the present invention can be the same as that of the cellulose nanofiber.
 この場合の、プリント配線板材料における、上記リグノセルロースナノファイバーの配合量は、後述する有機溶剤を除く組成物の全体量に対し、好適には0.1~80質量%、より好適には0.2~70質量%である。セルロースナノファイバーの配合量が0.1質量%以上の場合、本発明の所期の効果を良好に得ることができる。一方、80質量%以下の場合、製膜性が向上する。 In this case, the amount of the above lignocellulose nanofibers in the printed wiring board material is preferably 0.1 to 80% by mass, more preferably 0, based on the total amount of the composition excluding the organic solvent described later. 2 to 70% by mass. When the blending amount of the cellulose nanofiber is 0.1% by mass or more, the desired effect of the present invention can be obtained satisfactorily. On the other hand, in the case of 80 mass% or less, film forming property improves.
 以下、本発明を、実施例を用いてより詳細に説明する。なお、以下の表中の数字は、すべて質量部を示す。
[合成例1]
(ワニス1)
 攪拌機、温度計、還流冷却器、滴下ロートおよび窒素導入管を備えた2リットルセパラブルフラスコに、溶媒としてのジエチレングリコールジメチルエーテル900g、および、重合開始剤としてのt-ブチルパーオキシ2-エチルヘキサノエート(日油(株)製、商品名;パーブチルO)21.4gを加えて、90℃に加熱した。加熱後、ここに、メタクリル酸309.9g、メタクリル酸メチル116.4g、および、ラクトン変性2-ヒドロキシエチルメタクリレート((株)ダイセル製、商品名;プラクセルFM1)109.8gを、重合開始剤であるビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(日油(株)製、商品名;パーロイルTCP)21.4gとともに3時間かけて滴下して加えた。さらに、これを6時間熟成することにより、カルボキシル基含有共重合樹脂を得た。なお、これらの反応は、窒素雰囲気下で行った。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, all the numbers in the following table | surfaces show a mass part.
[Synthesis Example 1]
(Varnish 1)
In a 2 liter separable flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen introduction tube, 900 g of diethylene glycol dimethyl ether as a solvent and t-butylperoxy 2-ethylhexanoate as a polymerization initiator 21.4 g (manufactured by NOF Corporation, trade name: Perbutyl O) was added and heated to 90 ° C. After heating, 309.9 g of methacrylic acid, 116.4 g of methyl methacrylate, and 109.8 g of lactone-modified 2-hydroxyethyl methacrylate (manufactured by Daicel Corporation, trade name: Plaxel FM1) were used as a polymerization initiator. Along with 21.4 g of certain bis (4-t-butylcyclohexyl) peroxydicarbonate (manufactured by NOF Corporation, trade name: Parroyl TCP), it was added dropwise over 3 hours. Further, this was aged for 6 hours to obtain a carboxyl group-containing copolymer resin. These reactions were performed in a nitrogen atmosphere.
 次に、得られたカルボキシル基含有共重合樹脂に、3,4-エポキシシクロヘキシルメチルアクリレート((株)ダイセル製、商品名;サイクロマーA200)363.9g、開環触媒としてのジメチルベンジルアミン3.6g、重合抑制剤としてのハイドロキノンモノメチルエーテル1.80gを加え、100℃に加熱し、これを攪拌することにより、エポキシの開環付加反応を行った。16時間後、固形分の酸価が108.9mgKOH/g、質量平均分子量が25,000のカルボキシル基含有樹脂を53.8質量%(不揮発分)含む溶液を得た。 Next, to the obtained carboxyl group-containing copolymer resin, 363.9 g of 3,4-epoxycyclohexylmethyl acrylate (manufactured by Daicel Corp., trade name: Cyclomer A200), 3. dimethylbenzylamine as a ring-opening catalyst; 6 g and 1.80 g of hydroquinone monomethyl ether as a polymerization inhibitor were added, heated to 100 ° C., and stirred to carry out an epoxy ring-opening addition reaction. After 16 hours, a solution containing 53.8% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 108.9 mgKOH / g and a weight average molecular weight of 25,000 was obtained.
[合成例2]
(ワニス2)
 温度計、攪拌機、滴下ロートおよび還流冷却器を備えたフラスコに、溶媒としてのジエチレングリコールモノエチルエーテルアセテート、および、触媒としてのアゾビスイソブチロニトリルを入れ、窒素雰囲気下、これを80℃に加熱し、メタアクリル酸とメチルメタアクリレートとを0.40:0.60のモル比で混合したモノマーを約2時間かけて滴下した。さらに、これを1時間攪拌した後、温度を115℃にまで上げ、失活させて樹脂溶液を得た。
[Synthesis Example 2]
(Varnish 2)
A flask equipped with a thermometer, stirrer, dropping funnel and reflux condenser is charged with diethylene glycol monoethyl ether acetate as a solvent and azobisisobutyronitrile as a catalyst and heated to 80 ° C. in a nitrogen atmosphere. Then, a monomer in which methacrylic acid and methyl methacrylate were mixed at a molar ratio of 0.40: 0.60 was dropped over about 2 hours. Furthermore, after stirring this for 1 hour, the temperature was raised to 115 ° C. and deactivated to obtain a resin solution.
 この樹脂溶液を冷却後、これを触媒として臭化テトラブチルアンモニウムを用い、95~105℃で30時間の条件で、ブチルグリシジルエーテルを0.40のモル比で、得られた樹脂のカルボキシル基の等量と付加反応させ、冷却した。 After cooling the resin solution, tetrabutylammonium bromide was used as a catalyst, and butyl glycidyl ether was added at a molar ratio of 0.40 at 95 to 105 ° C. for 30 hours. Addition reaction with an equal volume and cooling.
 さらに、上記で得られた樹脂のOH基に対して、95~105℃で8時間の条件で、無水テトラヒドロフタル酸を0.26のモル比で付加反応させた。これを、冷却後に取り出して、固形分の酸価が78.1mgKOH/g、質量平均分子量が35,000のカルボキシル基含有樹脂を50質量%(不揮発分)含む溶液を得た。 Further, tetrahydrophthalic anhydride was added to the OH group of the resin obtained above at 95 to 105 ° C. for 8 hours at a molar ratio of 0.26. This was taken out after cooling to obtain a solution containing 50% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 78.1 mgKOH / g and a mass average molecular weight of 35,000.
[合成例3]
(ワニス3)
 温度計、攪拌器、滴下ロートおよび還流冷却器を備えたフラスコに、クレゾールノボラック型エポキシ樹脂(DIC(株)製、エピクロンN-680、エポキシ当量=210)210gと、溶媒としてのカルビトールアセテート96.4gとを加え、加熱溶解させた。続いて、これに、重合禁止剤としてのハイドロキノン0.1g、および、反応触媒としてのトリフェニルホスフィン2.0gを加えた。この混合物を95~105℃に加熱し、アクリル酸72gを徐々に滴下し、酸価が3.0mgKOH/g以下となるまで、約16時間反応させた。この反応生成物を80~90℃にまで冷却した後、テトラヒドロフタル酸無水物76.1gを加え、赤外吸光分析により、酸無水物の吸収ピーク(1780cm-1)がなくなるまで、約6時間反応させた。この反応溶液に、出光興産(株)製の芳香族系溶剤イプゾール#150を96.4g加え、希釈した後に取り出した。このようにして得られたカルボキシル基含有の感光性ポリマー溶液は、不揮発分が65質量%、固形分の酸価が78mgKOH/gであった。
[Synthesis Example 3]
(Varnish 3)
In a flask equipped with a thermometer, stirrer, dropping funnel and reflux condenser, 210 g of cresol novolac type epoxy resin (DIC Corporation, Epicron N-680, epoxy equivalent = 210) and carbitol acetate 96 as a solvent .4 g was added and dissolved by heating. Subsequently, 0.1 g of hydroquinone as a polymerization inhibitor and 2.0 g of triphenylphosphine as a reaction catalyst were added thereto. This mixture was heated to 95-105 ° C., 72 g of acrylic acid was gradually added dropwise, and the mixture was reacted for about 16 hours until the acid value became 3.0 mgKOH / g or less. After the reaction product was cooled to 80 to 90 ° C., 76.1 g of tetrahydrophthalic anhydride was added, and about 6 hours until the absorption peak (1780 cm −1 ) of the acid anhydride disappeared by infrared absorption analysis. Reacted. To this reaction solution, 96.4 g of aromatic solvent ipsol # 150 manufactured by Idemitsu Kosan Co., Ltd. was added, diluted, and taken out. The thus obtained carboxyl group-containing photosensitive polymer solution had a nonvolatile content of 65 mass% and a solid content acid value of 78 mgKOH / g.
[セルロースナノファイバー分散液の作製]
 セルロースナノファイバー((株)スギノマシン製 BiNFi-s(ビンフィス) 10質量%セルロース、数平均繊維径80nm)を脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加えて、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のセルロースナノファイバー分散液を作製した。
[Preparation of cellulose nanofiber dispersion]
Cellulose nanofiber (BiNFi-s (binfis) 10% by weight cellulose, number average fiber diameter 80 nm, manufactured by Sugino Machine Co., Ltd.) was dehydrated and filtered, and 10 times the amount of carbitol acetate as the weight of the filtrate was added, followed by stirring for 30 minutes. And then filtered. This replacement operation was repeated three times, and 10 times the weight of the filtrate was added with carbitol acetate to prepare a 10% by mass cellulose nanofiber dispersion.
<実施例1>
Figure JPOXMLDOC01-appb-T000001
*1-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*1-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*1-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*1-4)アクリル系共重合化合物1:BYK-361N ビックケミー・ジャパン(株)製
*1-5)アクリル系共重合化合物2:ポリフローNo.50EHF(固形分50質量%)楠本化成(株)製
*1-6)アクリル系共重合化合物3:ポリフローNo.90 楠本化成(株)製
*1-7)着色剤:フタロシアニンブルー
*1-8)有機溶剤:カルビトールアセテート
<Example 1>
Figure JPOXMLDOC01-appb-T000001
* 1-1) Thermosetting compound 1: Epicote 828, manufactured by Mitsubishi Chemical Corporation * 1-2) Thermosetting compound 2: Epicote 807, manufactured by Mitsubishi Chemical Corporation * 1-3) Curing catalyst 1: 2MZ-A Shikoku Kasei Kogyo Co., Ltd. * 1-4) Acrylic copolymer compound 1: BYK-361N Bicchem Japan Co., Ltd. * 1-5) Acrylic copolymer compound 2: Polyflow No. 50EHF (solid content 50% by mass) * 1-6) Acrylic copolymer compound 3 manufactured by Enomoto Kasei Co., Ltd. 90 manufactured by Enomoto Kasei Co., Ltd. * 1-7) Colorant: Phthalocyanine Blue * 1-8) Organic solvent: Carbitol acetate
Figure JPOXMLDOC01-appb-T000002
*1-9)熱硬化性化合物3:ユニディック V-8000(固形分40質量%) DIC(株)製
*1-10)熱硬化性化合物4:デナコール EX-830 ナガセケムテックス(株)製
*1-11)硬化触媒2:トリフェニルホスフィン
*1-12)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*1-13)光硬化性化合物2:トリメチロールプロパントリアクリレート
*1-14)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*1-15)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*1-16)光重合開始剤1:2-エチルアントラキノン
Figure JPOXMLDOC01-appb-T000002
* 1-9) Thermosetting compound 3: Unidic V-8000 (solid content: 40% by mass), manufactured by DIC Corporation * 1-10) Thermosetting compound 4: Denacol EX-830, manufactured by Nagase ChemteX Corporation * 1-11) Curing catalyst 2: Triphenylphosphine * 1-12) Photocurable compound 1: Bisphenol A type epoxy acrylate * 1-13) Photocurable compound 2: Trimethylolpropane triacrylate * 1-14) Photocurable compound 3: Kayamar PM2 Nippon Kayaku Co., Ltd. * 1-15) Photocurable compound 4: Light ester HO Kyoeisha Chemical Co., Ltd. * 1-16) Photopolymerization initiator 1 : 2-ethylanthraquinone
Figure JPOXMLDOC01-appb-T000003
*1-17)熱可塑性樹脂1:ノバテックPP BC03L 日本ポリプロ(株)製
*1-18)熱可塑性樹脂2:ノバテックLD LC561 日本ポリエチレン(株)製
Figure JPOXMLDOC01-appb-T000003
* 1-17) Thermoplastic resin 1: Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd. * 1-18) Thermoplastic resin 2: Novatec LD LC561 manufactured by Nippon Polyethylene Co., Ltd.
Figure JPOXMLDOC01-appb-T000004
*1-19)熱可塑性樹脂3:ソクシール SOXR-OB、ニッポン高度紙工業(株)製のワニス(固形分70質量%、N-メチルピロリドン30質量%)
Figure JPOXMLDOC01-appb-T000004
* 1-19) Thermoplastic resin 3: Socsea SOXR-OB, varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
[組成物の調製]
 上記表1および表2中の実施例1-1~実施例1-12および比較例1-1~比較例1-3、並びに、上記表4中の実施例1-19~実施例1-21および比較例1-6について、各成分を配合、攪拌して、3本ロールにて分散させて、それぞれ組成物を調製した。
[Preparation of composition]
Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-3 in Table 1 and Table 2, and Examples 1-19 to 1-21 in Table 4 above For Comparative Example 1-6, each component was blended, stirred, and dispersed with a three roll to prepare compositions.
[複合成形体の作製]
 上記表3中の実施例1-13~実施例1-15および比較例1-4について、各成分を配合した後、混練機(ラボプラストミル、東洋精機(株)製)を用いて180℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、190℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.05mmのシート状のセルロースナノファイバー複合成形体を得た。
[Production of composite molded body]
For Examples 1-13 to 1-15 and Comparative Example 1-4 in Table 3 above, each component was blended and then 180 ° C. using a kneader (Laboplast Mill, manufactured by Toyo Seiki Co., Ltd.). For 10 minutes at a rotational speed of 70 rpm. The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. Thereby, a sheet-like cellulose nanofiber composite molded body having a thickness of 0.05 mm was obtained.
 上記表3中の実施例1-16~実施例1-18および比較例1-5について、各成分を配合した後、混練機(ラボプラストミル、東洋精機(株)製)を用いて150℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、160℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.05mmのシート状のセルロースナノファイバー複合成形体を得た。 For Examples 1-16 to 1-18 and Comparative Example 1-5 in Table 3 above, each component was blended and then 150 ° C. using a kneader (labor plast mill, manufactured by Toyo Seiki Co., Ltd.). For 10 minutes at a rotational speed of 70 rpm. The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. Thereby, a sheet-like cellulose nanofiber composite molded body having a thickness of 0.05 mm was obtained.
(スミア除去性評価用試験片の作製)
 図2に、スミア除去性評価用基板の作製方法を示す説明図を示す。図中の(a)~(c-1)は平面図であり、(c-2)は、(c-1)の断面図である。図2に示すように、実施例1-1~実施例1-6および比較例1-1の組成物を、絶縁層13b上に導体層13aが設けられた、50mm×50mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅パッド付、銅厚18μm)の試験基板13にスクリーン印刷法にて、全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させて、絶縁樹脂層14を形成した。次に、炭酸ガスレーザーにて、直径100μmの穴(ビア)15を導体層13a上にあけ、試験片を作製した。
(Preparation of smear removability evaluation test piece)
FIG. 2 is an explanatory view showing a method for producing a smear removability evaluation substrate. In the figure, (a) to (c-1) are plan views, and (c-2) is a sectional view of (c-1). As shown in FIG. 2, the compositions of Examples 1-1 to 1-6 and Comparative Example 1-1 were measured in a thickness of 50 mm × 50 mm in which a conductor layer 13a was provided on an insulating layer 13b. 1.6mm thick FR-4 copper-clad laminate (with copper pad, copper thickness 18μm), printed on the entire surface by screen printing method, 140 ° C for 30 minutes in a hot air circulation drying oven The insulating resin layer 14 was formed by curing. Next, a hole (via) 15 having a diameter of 100 μm was formed on the conductor layer 13a with a carbon dioxide gas laser to produce a test piece.
 実施例1-7~実施例1-9および比較例1-2の組成物を、上記試験基板に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化し絶縁樹脂層を形成したこと以外は、上記同様に試験片を作製した。 The compositions of Examples 1-7 to 1-9 and Comparative Example 1-2 were printed on the entire surface of the test substrate by the screen printing method, and the conditions were 100 ° C. for 30 minutes in a hot air circulating drying furnace. After drying, a test piece was prepared in the same manner as above except that it was cured at 170 ° C. for 60 minutes to form an insulating resin layer.
 実施例1-10~実施例1-12および比較例1-3の組成物を、上記試験基板に、スクリーン印刷法にて全面に印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化し絶縁樹脂層を形成したこと以外は、上記同様に試験片を作製した。 The compositions of Examples 1-10 to 1-12 and Comparative Example 1-3 were printed on the entire surface of the test substrate by a screen printing method, and 2 J / cm 2 at a wavelength of 350 nm using a metal halide lamp. A test piece was prepared in the same manner as described above except that the integrated light amount was irradiated and cured to form an insulating resin layer.
 実施例1-13~実施例1-18、比較例1-4および比較例1-5の厚さ0.05mmのセルロースナノファイバー複合成形体を、上記試験基板に、190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスし絶縁樹脂層を形成したこと以外は、上記同様に試験片を作製した。 The cellulose nanofiber composite molded bodies having a thickness of 0.05 mm of Examples 1-13 to 1-18, Comparative Examples 1-4, and Comparative Examples 1-5 were placed on the test substrate at 190 ° C. and 20 MPa for 1 minute. A test piece was prepared in the same manner as described above except that the insulating resin layer was formed by further hot pressing for 23 minutes at 25 ° C. and 0.5 MPa for 1 minute.
 実施例1-19~実施例1-21および比較例1-6の組成物を、上記試験基板に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化し絶縁樹脂層を形成したこと以外は、上記同様に試験片を作製した。 The compositions of Examples 1-19 to 1-21 and Comparative Example 1-6 were printed on the entire surface of the above test substrate by the screen printing method, and the conditions were 120 ° C. and 10 minutes in a hot air circulating drying oven. After drying, a test piece was prepared in the same manner as above except that it was cured at 250 ° C. for 30 minutes to form an insulating resin layer.
(スミア除去性)
 各試験片を膨潤液としてサーキュポジットMLBコンディショナー211(ロームアンドハース社製、200ml/l)およびサーキュポジットZ(ロームアンドハース社製、100ml/l)の混合液に80℃で5分浸漬し、次に、粗化液としてサーキュポジットMLBプロモーター213A(ロームアンドハース社製、100ml/l)およびサーキュポジットMLBプロモーター213B(ロームアンドハース社製、150ml/l)の混合液に、80℃で10分浸漬し、最後に、中和液としてサーキュポジットMLBニュートラライザー216-2(ロームアンドハース社製、200ml/l)に、50℃で5分間浸漬した。その後、ビア底(銅表面)を走査型電子顕微鏡(SEM、日本電子(株)製JSM-6610LV、倍率:3,500倍)で観察し、ビア底(銅表面)のスミアの有無を目視確認した。評価基準は以下の通りである。評価結果を下記の表5および表6中に示す。
(評価)○:スミア無し
    ×:スミア有り
(Smear removal)
Each test piece was immersed in a mixed solution of Circposit MLB Conditioner 211 (Rohm and Haas, 200 ml / l) and Circposit Z (Rohm and Haas, 100 ml / l) as a swelling liquid at 80 ° C. for 5 minutes. Next, as a roughening solution, a mixture of Circposit MLB promoter 213A (Rohm and Haas, 100 ml / l) and Circposit MLB promoter 213B (Rohm and Haas, 150 ml / l) was added at 80 ° C. for 10 minutes. Finally, it was immersed in a circular deposit MLB neutralizer 216-2 (Rohm and Haas, 200 ml / l) as a neutralizing solution at 50 ° C. for 5 minutes. Thereafter, the via bottom (copper surface) was observed with a scanning electron microscope (SEM, JSM-6610LV, JEOL Ltd., magnification: 3,500 times), and the presence of smear on the via bottom (copper surface) was visually confirmed. did. The evaluation criteria are as follows. The evaluation results are shown in Table 5 and Table 6 below.
(Evaluation) ○: No smear ×: With smear
(耐熱性、耐酸性および鉛筆硬度評価用試験片の作製)
 50mm×50mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)の試験基板上に、絶縁樹脂層を形成することで、各試験片を作製した。前記絶縁樹脂層は、スミア除去性評価用試験片の記載と同様の条件で形成した。
(Preparation of heat resistance, acid resistance and pencil hardness test specimens)
Each test piece was produced by forming an insulating resin layer on a test substrate of FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 50 mm × 50 mm and a thickness of 1.6 mm. The insulating resin layer was formed under the same conditions as described for the smear removability evaluation test piece.
(耐熱性)
 上記の各試験片を用いて、ロジン系フラックスを塗布した後、あらかじめ260℃に設定したはんだ槽に30秒間フローさせ、プロピレングリコールモノメチルエーテルアセテートで洗浄し乾燥した後、セロハン粘着テープによるピールテストを行い、塗膜の剥がれの有無を確認した。評価基準は以下の通りである。評価結果を下記の表5および表6中に示す。
(評価)○:塗膜に剥がれが全くないもの
    ×:塗膜に剥がれが生じているもの
(Heat-resistant)
After applying rosin-based flux using each of the above test pieces, it was allowed to flow in a solder bath set at 260 ° C. for 30 seconds in advance, washed with propylene glycol monomethyl ether acetate, dried, and then peel-tested with a cellophane adhesive tape. It was performed and the presence or absence of peeling of the coating film was confirmed. The evaluation criteria are as follows. The evaluation results are shown in Table 5 and Table 6 below.
(Evaluation) ○: The coating film has no peeling ×: The coating film has peeling
(耐酸性)
 上記の各試験片を用いて、10容量%の硫酸水溶液に25℃で60分浸漬させて、水洗し、乾燥させた。その後、セロハン粘着テープによるピールテストを行い、塗膜の剥がれの有無を確認した。評価基準は上記耐熱性と同様である。評価結果を下記の表5および表6中に示す。
(Acid resistance)
Each test piece was immersed in a 10% by volume sulfuric acid aqueous solution at 25 ° C. for 60 minutes, washed with water, and dried. Thereafter, a peel test with a cellophane adhesive tape was performed to confirm the presence or absence of peeling of the coating film. Evaluation criteria are the same as the above heat resistance. The evaluation results are shown in Table 5 and Table 6 below.
(鉛筆硬度)
 上記の各試験片を用いて、芯の先が平らになるように研がれたBから9Hの鉛筆を、約45°の角度で押し付けて、塗膜の剥がれが生じない鉛筆の硬さを記録した。結果を下記の表5および表6中に示す。
(Pencil hardness)
Using each of the above test pieces, the pencil of B to 9H sharpened so that the tip of the core becomes flat is pressed at an angle of about 45 °, and the pencil hardness that does not cause peeling of the coating film is obtained. Recorded. The results are shown in Table 5 and Table 6 below.
(電気絶縁性評価用試験片の作製)
 100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚18μm)を用いて、エッチング工法によりIPC規格Bパターンのくし型電極のパターンを作製し、試験基板とした。この試験基板上に、くし形電極部がカバーされるように、絶縁樹脂層を形成することで、各試験片を作製した。前記絶縁樹脂層は、スミア除去性評価用試験片の記載と同様の条件で形成した。
(Preparation of electrical insulation test piece)
Using an FR-4 copper-clad laminate (copper thickness 18 μm) with a size of 100 mm × 150 mm and a thickness of 1.6 mm, an IPC standard B pattern comb-shaped electrode pattern was prepared by an etching method, did. Each test piece was produced by forming an insulating resin layer on the test substrate so as to cover the comb-shaped electrode portion. The insulating resin layer was formed under the same conditions as described for the smear removability evaluation test piece.
(電気絶縁性)
 上記の各試験片を用いて、くし形電極間にDC500Vのバイアスを印加し、絶縁抵抗値を測定した。値が100GΩ以上であれば○、100GΩ未満であれば×とした。結果を下記の表5および表6中に示す。
(Electrical insulation)
Using each of the above test pieces, a bias of 500 V DC was applied between the comb electrodes, and the insulation resistance value was measured. When the value was 100 GΩ or more, it was rated as “◯”, and when it was less than 100 GΩ, it was marked as “X”. The results are shown in Table 5 and Table 6 below.
(めっき層の引き剥がし強さ評価用試験片の作製)
 50mm×50mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)の試験基板上に、絶縁樹脂層を形成した。前記絶縁樹脂層は、スミア除去性評価用試験片の記載と同様の条件で形成した。次に、無電解銅めっき法、次いで電解銅めっき法により、絶縁樹脂層上の全面にめっき層を形成することで、各試験片を作製した。
(Preparation of test piece for evaluating peel strength of plating layer)
An insulating resin layer was formed on a test substrate of FR-4 copper-clad laminate (copper thickness: 18 μm) having a size of 50 mm × 50 mm and a thickness of 1.6 mm. The insulating resin layer was formed under the same conditions as described for the smear removability evaluation test piece. Next, each test piece was produced by forming a plating layer on the entire surface of the insulating resin layer by an electroless copper plating method and then an electrolytic copper plating method.
(めっき層の引き剥がし強さ試験(ピール強度試験))
 各試験片のめっき層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重を測定した。0.8kN/m以上であれば○、0.8kN/m未満であれば×とした。結果を下記の表5および表6中に示す。
(Peeling strength test for plating layer (peel strength test))
A notch with a width of 10 mm and a length of 100 mm was cut into the plating layer of each test piece, and one end was peeled off and grasped with a gripper, and 35 mm was peeled off at a rate of 50 mm / min in the vertical direction at room temperature. The load at the time was measured. If it was 0.8 kN / m or more, it was rated as ◯, and if it was less than 0.8 kN / m, it was marked as x. The results are shown in Table 5 and Table 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上詳述した通り、本発明のプリント配線板材料によれば、銅などの金属箔上表面のスミアを発生しにくく、かつ、発生しても除去し易いことがわかる。また、本発明のプリント配線板材料は、ソルダーレジストおよび層間絶縁材として充分な特性を持っていることが確認された。 As described above in detail, according to the printed wiring board material of the present invention, it can be seen that smear on the surface of a metal foil such as copper is difficult to occur and is easy to remove even if it occurs. Moreover, it was confirmed that the printed wiring board material of the present invention has sufficient characteristics as a solder resist and an interlayer insulating material.
<実施例2>
[評価シートの作製]
 下記表7中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させた。その後、銅箔を除去し、厚さ50μmのシートを作製した。
<Example 2>
[Production of evaluation sheet]
In accordance with the description in Table 7 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and cured in a hot air circulation type drying furnace at 140 ° C. for 30 minutes. Thereafter, the copper foil was removed to prepare a sheet having a thickness of 50 μm.
[線膨張係数の評価]
 前記で作製したシートを、3mm幅×30mm長にカットした。これを、SII製 TMA(Thermomechanical Analysis)「EXSTAR6000」を用いて、引張モードで、チャック間10mm、荷重30mN、窒素雰囲気下、室温から200℃まで5℃/分で昇温し、次いで、200℃から20℃まで5℃/分で降温した。その後、20℃から200℃まで5℃/分で昇温した際の30℃から100℃の測定値から、線膨張係数を求めた。評価結果を表7中に示した。
[Evaluation of linear expansion coefficient]
The sheet prepared above was cut into 3 mm width × 30 mm length. Using TMA (Thermal Mechanical Analysis) “EXSTAR6000” manufactured by SII, the temperature was increased from room temperature to 200 ° C. at a rate of 5 ° C./min in a tensile mode, 10 mm between chucks, 30 mN load, and then 200 ° C. The temperature was decreased from 5 to 20 ° C. at 5 ° C./min. Then, the linear expansion coefficient was calculated | required from the measured value of 30 to 100 degreeC when it heated up at 5 degree-C / min from 20 degreeC to 200 degreeC. The evaluation results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
*2-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*2-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*2-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*2-4)着色剤:フタロシアニンブルー
*2-5)層状珪酸塩:ルーセンタイトSTN コープケミカル(株)製
*2-6)有機溶剤:カルビトールアセテート
Figure JPOXMLDOC01-appb-T000007
* 2-1) Thermosetting compound 1: Epicoat 828 Mitsubishi Chemical Corporation * 2-2) Thermosetting compound 2: Epicoat 807 Mitsubishi Chemical Corporation * 2-3) Curing catalyst 1: 2MZ-A Shikoku Kasei Kogyo Co., Ltd. * 2-4) Colorant: Phthalocyanine Blue * 2-5) Layered silicate: Lucentite STN Coop Chemical Co., Ltd. * 2-6) Organic solvent: Carbitol acetate
 下記表8中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させた。その後、銅箔を除去し、得られた厚さ50μmのシートの線膨張係数を測定した。 According to the description in Table 8 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then at 170 ° C. for 60 minutes. And cured. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000008
*2-7)熱硬化性化合物3:ユニディック V-8000(固形分40質量%) DIC(株)製
*2-8)熱硬化性化合物4:デナコール EX-830 ナガセケムテックス(株)製
*2-9)硬化触媒2:トリフェニルホスフィン
Figure JPOXMLDOC01-appb-T000008
* 2-7) Thermosetting compound 3: Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 2-8) Thermosetting compound 4: Denacol EX-830 manufactured by Nagase ChemteX Corporation * 2-9) Curing catalyst 2: Triphenylphosphine
 下記表9中の記載に従って、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて、180℃で10分間、回転数70rpmで溶融混練した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、190℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、得られた厚さ50μmのシートの線膨張係数を測定した。 According to the description in Table 9 below, each component was blended and melt-kneaded at 180 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.). The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.). Cold pressing was performed at 0.5 MPa for 1 minute. Thus, the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000009
*2-10)熱可塑性樹脂1:ノバテックPP BC03L 日本ポリプロ(株)製
Figure JPOXMLDOC01-appb-T000009
* 2-10) Thermoplastic resin 1: Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
 下記表10中の記載に従って、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて、150℃で10分間、回転数70rpmで溶融混練した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、160℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、得られた厚さ50μmのシートの線膨張係数を測定した。 According to the description in Table 10 below, each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (Laboplast Mill, manufactured by Toyo Seiki Co., Ltd.). The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute. Thus, the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000010
*2-11)熱可塑性樹脂2:ノバテックLD LC561 日本ポリエチレン(株)製
Figure JPOXMLDOC01-appb-T000010
* 2-11) Thermoplastic resin 2: Novatec LD LC561, manufactured by Nippon Polyethylene Co., Ltd.
 下記表11中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化させた。その後、銅箔を除去し、得られた厚さ50μmのシートの線膨張係数を測定した。 According to the description in Table 11 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, dried in a hot air circulating drying oven at 120 ° C. for 10 minutes, and then at 250 ° C. for 30 minutes. And cured. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000011
*2-12)熱可塑性樹脂3:ソクシール SOXR-OB ニッポン高度紙工業(株)製のワニス(固形分70質量%)
Figure JPOXMLDOC01-appb-T000011
* 2-12) Thermoplastic resin 3: Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content: 70% by mass)
 下記表12中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化させた。その後、銅箔を除去し、得られた厚さ50μmのシートの線膨張係数を測定した。 In accordance with the description in Table 12 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000012
*2-13)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*2-14)光硬化性化合物2:トリメチロールプロパントリアクリレート
*2-15)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*2-16)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*2-17)光重合開始剤1:2-エチルアントラキノン
Figure JPOXMLDOC01-appb-T000012
* 2-13) Photo-curable compound 1: Bisphenol A type epoxy acrylate * 2-14) Photo-curable compound 2: Trimethylolpropane triacrylate * 2-15) Photo-curable compound 3: Kayamar PM2 Nippon Kayaku Co., Ltd. * 2-16) Photocurable compound 4: Light ester HO Kyoeisha Chemical Co., Ltd. * 2-17) Photopolymerization initiator 1: 2-ethylanthraquinone
 下記表13~表15中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。セルロースナノファイバーおよび層状珪酸塩の添加量は、溶剤を除く組成物の全体量に対し、それぞれ10質量%とした。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉にて、80℃、30分間で乾燥させた。次に、試験基板縁部をカバーできるネガパターンを用い、プリント配線板用露光機HMW-680GW((株)オーク製作所製)により、700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し、縁部を、除去した。続いて150℃で60分間、熱風循環式乾燥炉で熱硬化させた。その後、銅箔を除去し、得られた厚さ50μmのシートの線膨張係数を測定した。 In accordance with the description in Table 13 to Table 15 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The addition amount of the cellulose nanofiber and the layered silicate was 10% by mass with respect to the total amount of the composition excluding the solvent. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and dried at 80 ° C. for 30 minutes in a hot air circulation drying furnace. Next, using a negative pattern that can cover the edge of the test substrate, the printed wiring board exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) is exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. The aqueous sodium carbonate solution was developed for 60 seconds with a developing machine for printed wiring boards, and the edge portion was removed. Subsequently, thermosetting was performed at 150 ° C. for 60 minutes in a hot air circulation drying oven. Thereafter, the copper foil was removed, and the linear expansion coefficient of the obtained sheet having a thickness of 50 μm was measured.
Figure JPOXMLDOC01-appb-T000013
*2-18)硬化触媒3:微粉砕メラミン 日産化学(株)製
*2-19)硬化触媒4:ジシアンジアミド
*2-20)光重合開始剤2:イルガキュア907 BASF社製
*2-21)光硬化性化合物5:ジペンタエリスリトルテトラアクリレート
*2-22)熱硬化性化合物5:TEPIC-H 日産化学(株)製
Figure JPOXMLDOC01-appb-T000013
* 2-18) Curing catalyst 3: Finely pulverized melamine * 2-19) Curing catalyst 4: Dicyandiamide * 2-20) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 2-21) Hikari Curing compound 5: Dipentaerythritol tetraacrylate * 2-22) Thermosetting compound 5: TEPIC-H Nissan Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 以上詳述した通り、セルロースナノファイバーと層状珪酸塩とを併用した絶縁材料によれば、線膨張係数が飛躍的に小さくなることが確認された。 As described in detail above, it was confirmed that the linear expansion coefficient was drastically reduced according to the insulating material using the cellulose nanofiber and the layered silicate in combination.
<実施例3>
Figure JPOXMLDOC01-appb-T000016
*3-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*3-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*3-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*3-4)着色剤:フタロシアニンブルー
*3-5)シリコーン化合物1:BYK-313(固形分15質量%) ビックケミー・ジャパン(株)製
*3-6)シリコーン化合物2:SH-8400 東レ・ダウコーニング(株)製
*3-7)シリコーン化合物3:KS-66 信越化学(株)製
*3-8)フッ素化合物1:メガファックRS-75(固形分40質量%) DIC(株)製
*3-9)フッ素化合物2:アサヒガードAG-E300D(固形分30質量%) 旭硝子(株)製
*3-10)有機溶剤:カルビトールアセテート
<Example 3>
Figure JPOXMLDOC01-appb-T000016
* 3-1) Thermosetting compound 1: Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 3-3) Thermosetting compound 2: Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 3-3) Curing catalyst 1: 2MZ-A * 3-4) Colorant: Phthalocyanine Blue * 3-5) Silicone compound 1: BYK-313 (solid content 15% by mass) * 3-6) Silicone compound manufactured by Big Chemie Japan Co., Ltd. 2: SH-8400 manufactured by Toray Dow Corning Co., Ltd. * 3-7) Silicone compound 3: KS-66 manufactured by Shin-Etsu Chemical Co., Ltd. * 3-8) Fluorine compound 1: Megafac RS-75 (solid content 40 mass) %) DIC Corporation * 3-9) Fluorine Compound 2: Asahi Guard AG-E300D (solid content 30% by mass) Asahi Glass Co., Ltd. * 3-10) Organic Solvent: Carbitol Acetate
Figure JPOXMLDOC01-appb-T000017
*3-11)熱硬化性化合物3:ユニディックV-8000(固形分40質量%) DIC(株)製
*3-12)熱硬化性化合物4:デナコールEX-830 ナガセケムテックス(株)製
*3-13)熱硬化性化合物5:TEPIC-H 日産化学(株)製
*3-14)熱可塑性樹脂1:ノバテックPPBC03L 日本ポリプロ(株)製
*3-15)熱可塑性樹脂2:ノバテックLDLC561 日本ポリエチレン(株)製
*3-16)熱可塑性樹脂3:ソクシールSOXR-OB(固形分70質量%) ニッポン高度紙工業(株)製のワニス
*3-17)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*3-18)光硬化性化合物2:トリメチロールプロパントリアクリレート
*3-19)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*3-20)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*3-21)光硬化性化合物5:ジペンタエリスリトルテトラアクリレート
*3-22)硬化触媒2:トリフェニルホスフィン
*3-23)硬化触媒3:微粉砕メラミン 日産化学(株)製
*3-24)硬化触媒4:ジシアンジアミド
*3-25)光重合開始剤1:2-エチルアントラキノン
*3-26)光重合開始剤2:イルガキュア907 BASF社製
Figure JPOXMLDOC01-appb-T000017
* 3-11) Thermosetting compound 3: Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 3-12) Thermosetting compound 4: Denacol EX-830 manufactured by Nagase ChemteX Corporation * 3-13) Thermosetting compound 5: TEPIC-H, Nissan Chemical Co., Ltd. * 3-14) Thermoplastic resin 1: Novatec PPBC03L, Nippon Polypro Co., Ltd. * 3-15) Thermoplastic resin 2: Novatec LDLC561 * 3-16) Thermoplastic resin 3 manufactured by Nippon Polyethylene Co., Ltd .: Socsea SOXR-OB (solid content 70% by mass) Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. * 3-17) Photo-curable compound 1: Bisphenol A Type epoxy acrylate manufactured by Mitsubishi Chemical Co., Ltd. * 3-18) Photocurable compound 2: Trimethylolpropane triacrylate * 3-19) Photocurable compound 3: Kayamer PM2 Nippon Kayaku Co., Ltd. * 3-20) Photocurable Compound 4: Light Ester HO Kyoeisha Chemical Co., Ltd. * 3-21) Photocurable Compound 5: Dipentaerythritol Tetraacrylate * 3-22 ) Curing catalyst 2: Triphenylphosphine * 3-23) Curing catalyst 3: Finely ground melamine * 3-24) Curing catalyst 4: Dicyandiamide * 3-25) Photopolymerization initiator 1: 2-ethyl Anthraquinone * 3-26) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記表中の配合(実施例3-14、実施例3-15、実施例3-22、実施例3-23、比較例3-3および比較例3-4を除く)に従って、各成分を配合、攪拌して3本ロールにて分散させて、それぞれ組成物を作製した。なお、表中の数字は、質量部を示す。 Each component was blended according to the blending in the above table (excluding Example 3-14, Example 3-15, Example 3-22, Example 3-23, Comparative Example 3-3 and Comparative Example 3-4) The mixture was stirred and dispersed with three rolls to prepare compositions. In addition, the number in a table | surface shows a mass part.
 実施例3-14、実施例3-22および比較例3-3については、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて180℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、190℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.5mmおよび0.05mmのシート状のセルロースナノファイバー複合成形体を得た。 For Example 3-14, Example 3-22, and Comparative Example 3-3, the respective components were blended and used at 180 ° C. for 10 minutes using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.) Melt kneading was performed at a rotation speed of 70 rpm. The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. This obtained the sheet-like cellulose nanofiber composite molded object of thickness 0.5mm and 0.05mm.
 実施例3-15、実施例3-23および比較例3-4については、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて150℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、160℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.5mmおよび0.05mmのシート状のセルロースナノファイバー複合成形体を得た。 For Example 3-15, Example 3-23, and Comparative Example 3-4, the respective components were blended and used at 150 ° C. for 10 minutes using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.) Melt kneading was performed at a rotation speed of 70 rpm. The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., 0 Cooled and pressed at 5 MPa for 1 minute. This obtained the sheet-like cellulose nanofiber composite molded object of thickness 0.5mm and 0.05mm.
[層間絶縁材としての評価]
(試験片の作製)
 図3に、層間絶縁材の評価用基板の作製方法を示す説明図を示す。図中の(a)~(e-1)は平面図であり、(e-2)は、(e-1)の断面図である。図3に示すように、実施例3-1~実施例3-12および比較例3-1の組成物を、絶縁層21b上に導体層21aが設けられた、50mm×50mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅パッド付、銅厚18μm)の試験基板21に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させて、絶縁樹脂層22を形成した。次に、炭酸ガスレーザーにて直径100μmの穴(ビア)23を導体層21a上にあけ、その後、過マンガン酸カリウム水溶液にてスミアを除去し、無電解銅めっき、次いで電解銅めっきを全面につけて、めっき層24を形成した。さらに、エッチング工法により配線パターン26を形成することで、試験片を作製した。図中の符号25は、エッチングレジストパターンを示す。
[Evaluation as interlayer insulation material]
(Preparation of test piece)
FIG. 3 is an explanatory view showing a method for producing a substrate for evaluating an interlayer insulating material. In the figure, (a) to (e-1) are plan views, and (e-2) is a sectional view of (e-1). As shown in FIG. 3, the compositions of Examples 3-1 to 3-12 and Comparative Example 3-1 were 50 mm × 50 mm in thickness with the conductor layer 21a provided on the insulating layer 21b. Printed on the entire surface of a test substrate 21 of a 1.6 mm thick FR-4 copper-clad laminate (with copper pad, copper thickness 18 μm) by screen printing method, at 140 ° C. for 30 minutes in a hot air circulating drying oven The insulating resin layer 22 was formed by curing. Next, a hole (via) 23 having a diameter of 100 μm is formed on the conductor layer 21a with a carbon dioxide laser, and then smear is removed with an aqueous potassium permanganate solution, followed by electroless copper plating and then electrolytic copper plating on the entire surface. Thus, the plating layer 24 was formed. Furthermore, the test piece was produced by forming the wiring pattern 26 by the etching method. Reference numeral 25 in the figure indicates an etching resist pattern.
 実施例3-13、実施例3-21および比較例3-2の組成物を、上記試験基板に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させた。次に、上記同様に配線パターンを形成することで、試験片を作製した。 The compositions of Example 3-13, Example 3-21 and Comparative Example 3-2 were printed on the entire surface of the above test substrate by screen printing, and the conditions were 100 ° C. and 30 minutes in a hot air circulating drying oven. And dried at 170 ° C. for 60 minutes. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
 実施例3-14、実施例3-15、実施例3-22、実施例3-23、比較例3-3および比較例3-4からなる厚さ0.05mmのシート状の上記セルロースナノファイバー複合成形体を、上記試験基板に、190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。次に、上記同様に配線パターンを形成することで、試験片を作製した。 Sheet-like cellulose nanofiber having a thickness of 0.05 mm comprising Example 3-14, Example 3-15, Example 3-22, Example 3-23, Comparative Example 3-3, and Comparative Example 3-4 The composite molded body was hot-pressed on the test substrate at 190 ° C. and 20 MPa for 1 minute, and further cold-pressed at 23 ° C. and 0.5 MPa for 1 minute. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
 実施例3-16、実施例3-24および比較例3-5の組成物を、上記試験基板に、スクリーン印刷法にて全面印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化させた。次に、上記同様に配線パターンを形成することで、試験片を作製した。 The compositions of Example 3-16, Example 3-24, and Comparative Example 3-5 were printed on the entire surface of the test substrate by the screen printing method, and were heated at 120 ° C. for 10 minutes in a hot air circulating drying oven. After drying, it was cured at 250 ° C. for 30 minutes. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
 実施例3-17、実施例3-25および比較例3-6の組成物を、上記試験基板に、スクリーン印刷法にて全面印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化させた。次に、上記同様に配線パターンを形成することで、試験片を作製した。 The compositions of Example 3-17, Example 3-25, and Comparative Example 3-6 were printed on the entire surface of the test substrate by a screen printing method, and accumulated at 2 J / cm 2 at a wavelength of 350 nm using a metal halide lamp. Light was irradiated and cured. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
 実施例3-18~実施例3-20、実施例3-26~実施例3-28および比較例3-7~比較例3-9の組成物を、スクリーン印刷法にて、全面に印刷し、熱風循環式乾燥炉にて、80℃、30分間で乾燥させた。次に、試験基板縁部をカバーできるネガパターンを用い、プリント配線板用露光機HMW-680GW((株)オーク製作所製)で700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し、縁部を、続いて150℃で60分間、熱風循環式乾燥炉で熱硬化させた。次に、上記同様に配線パターンを形成することで、試験片を作製した。 The compositions of Example 3-18 to Example 3-20, Example 3-26 to Example 3-28 and Comparative Example 3-7 to Comparative Example 3-9 were printed on the entire surface by screen printing. Then, it was dried in a hot air circulation drying oven at 80 ° C. for 30 minutes. Next, using a negative pattern that can cover the edge of the test substrate, the printed wiring board exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) is exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. A developing solution for a printed wiring board was used for 60 seconds by using a sodium carbonate aqueous solution as a developing solution, and the edges were then thermally cured at 150 ° C. for 60 minutes in a hot air circulating drying oven. Next, a test piece was prepared by forming a wiring pattern in the same manner as described above.
(絶縁信頼性評価)
 6枚の試験片の電極に50Vの直流電圧をかけて、130℃85%の雰囲気下で放置試験を行なった。試験槽内で絶縁抵抗を測定し、試験開始後1時間後の絶縁抵抗値から100分の1になった時間を記録した。100時間を過ぎても絶縁抵抗値が下がらないものはそこで終了とした。その結果を、下記の表中に示す。
(Insulation reliability evaluation)
A direct voltage of 50 V was applied to the electrodes of the six test pieces, and a standing test was performed in an atmosphere of 130 ° C. and 85%. The insulation resistance was measured in the test tank, and the time when it became 1/100 from the insulation resistance value 1 hour after the start of the test was recorded. If the insulation resistance value did not decrease after 100 hours, it was terminated. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
[コア材としての評価]
(セルロースナノファイバーシートの作製)
 セルロースナノファイバーについて、蒸留水にて0.2質量%水懸濁液を作製し、ガラスフィルターで濾過して成膜し、50mm×50mmの大きさで厚み40μmのシートを作製した。
[Evaluation as core material]
(Production of cellulose nanofiber sheet)
About cellulose nanofiber, 0.2 mass% water suspension was produced with distilled water, it filtered with the glass filter, and it formed into a film, and produced the sheet | seat of the size of 50 mm x 50 mm and thickness 40 micrometers.
(実施例3-29)
 三菱化学(株)製のエピコート828を50質量部、三菱化学(株)製のエピコート807を50質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、四国化成工業(株)製の2MZ-Aを3質量部、ビックケミー・ジャパン(株)製のBYK-313を2質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製した。これを、各セルロースナノファイバーシートに含浸させて、50℃の雰囲気に12時間放置した後、取り出し、80℃、5時間乾燥させてプリプレグを作製した。このプリプレグを10枚重ね、さらに、表裏に厚み18μmの銅箔を重ねて、真空プレス機で温度160℃、圧力2MPaの条件で、3時間硬化させた。次に、図4(a)~(c)に示すように、この両面に導体層21aの形成された絶縁層21bよりなる積層板21に、ドリル加工にて、ドリル径300μmの貫通穴27を、ピッチ5mmであけた。その後、過マンガン酸カリウム水溶液にてスミアを除去し、無電解銅めっき処理、次いで、電解銅めっき処理を行い、スルーホール28を形成した。次に、図5(a)~(c)に示すように、配線パターン26をエッチング工法により作製し、試験片を得た。
(Example 3-29)
50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Chemie Japan Co., Ltd.), Shikoku 3 parts by mass of 2MZ-A manufactured by Kasei Kogyo Co., Ltd., 2 parts by mass of BYK-313 manufactured by Big Chemie Japan Co., Ltd., and 100 parts by mass of methyl ethyl ketone were mixed and stirred to prepare a resin solution. This was impregnated into each cellulose nanofiber sheet, left in an atmosphere at 50 ° C. for 12 hours, then taken out and dried at 80 ° C. for 5 hours to prepare a prepreg. Ten prepregs were stacked, and a copper foil having a thickness of 18 μm was stacked on the front and back, and cured for 3 hours in a vacuum press at a temperature of 160 ° C. and a pressure of 2 MPa. Next, as shown in FIGS. 4A to 4C, a through hole 27 having a drill diameter of 300 μm is formed by drilling on the laminated plate 21 made of the insulating layer 21b having the conductor layer 21a formed on both surfaces thereof. , With a pitch of 5 mm. Thereafter, smear was removed with an aqueous potassium permanganate solution, electroless copper plating treatment, and then electrolytic copper plating treatment were performed to form through holes 28. Next, as shown in FIGS. 5A to 5C, a wiring pattern 26 was produced by an etching method to obtain a test piece.
(実施例3-30)
 三菱化学(株)製のエピコート828を50質量部、三菱化学(株)製のエピコート807を50質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、四国化成工業(株)製の2MZ-Aを3質量部、DIC(株)製のメガファックRS-75を0.75質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Example 3-30)
50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Chemie Japan Co., Ltd.), Shikoku 3 parts by mass of 2MZ-A manufactured by Kasei Kogyo Co., Ltd., 0.75 parts by mass of MegaFac RS-75 manufactured by DIC Co., Ltd., and 100 parts by mass of methyl ethyl ketone are mixed and stirred to prepare a resin solution. A test piece was obtained in the same manner as in Example 3-29 except for the above.
(比較例3-10)
 三菱化学(株)製のエピコート828を50質量部、三菱化学(株)製のエピコート807を50質量部、四国化成工業(株)製の2MZ-Aを3質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Comparative Example 3-10)
50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 3 parts by mass of 2MZ-A manufactured by Shikoku Chemicals Co., Ltd., and 100 parts by mass of methyl ethyl ketone A test piece was obtained in the same manner as in Example 3-29 except that a resin solution was prepared by mixing a part.
(実施例3-31)
 DIC(株)製のユニディックV-8000を100質量部、ナガセケムテックス(株)製のデナコールEX-830を23質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、トリフェニルホスフィンを1質量部、ビックケミー・ジャパン(株)製のBYK-313を2質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Example 3-31)
100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacol EX-830 manufactured by Nagase ChemteX Corporation, acrylic copolymer (BYK-361N manufactured by BYK Japan Japan Co., Ltd.) 1 part by weight, 1 part by weight of triphenylphosphine, 2 parts by weight of BYK-313 manufactured by Big Chemie Japan Co., Ltd., and 100 parts by weight of methyl ethyl ketone were mixed, and the procedure was carried out except that a resin solution was prepared. A test piece was obtained in the same manner as in Example 3-29.
(実施例3-32)
 DIC(株)製のユニディックV-8000を100質量部、ナガセケムテックス(株)製のデナコールEX-830を23質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、トリフェニルホスフィンを1質量部、DIC(株)製のメガファックRS-75を0.75質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Example 3-32)
100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacol EX-830 manufactured by Nagase ChemteX Corporation, acrylic copolymer (BYK-361N manufactured by BYK Japan Japan Co., Ltd.) 1 part by weight, 1 part by weight of triphenylphosphine, 0.75 part by weight of Megafic RS-75 manufactured by DIC Corporation, and 100 parts by weight of methyl ethyl ketone were mixed and stirred to produce a resin solution Obtained a test piece in the same manner as in Example 3-29.
(比較例3-11)
 DIC(株)製のユニディックV-8000を100質量部、ナガセケムテックス(株)製のデナコールEX-830を23質量部、トリフェニルホスフィンを1質量部、および、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Comparative Example 3-11)
100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacol EX-830 manufactured by Nagase ChemteX Corporation, 1 part by weight of triphenylphosphine, and 100 parts by weight of methyl ethyl ketone A test piece was obtained in the same manner as in Example 3-29 except that a resin solution was prepared by stirring.
(実施例3-33)
 ニッポン高度紙工業(株)製のソクシールSOXR-OBを100質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、ビックケミー・ジャパン(株)製のBYK-313を1.3質量部、および、メチルエチルケトンを70質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Example 3-33)
100 parts by mass of Sokkeal SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd., 1 part by mass of an acrylic copolymer (BYK-361N manufactured by BYK Japan Japan), BYK-313 manufactured by BYK Japan Japan A test piece was obtained in the same manner as in Example 3-29, except that 1.3 parts by mass and 70 parts by mass of methyl ethyl ketone were mixed and stirred to prepare a resin solution.
(実施例3-34)
 ニッポン高度紙工業(株)製のソクシールSOXR-OBを100質量部、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部、メガファックRS-75を0.5質量部、および、メチルエチルケトンを70質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Example 3-34)
100 parts by weight of Socsea SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd., 1 part by weight of an acrylic copolymer (BYK-361N manufactured by Big Chemie Japan Co., Ltd.), and 0.5 parts by weight of MegaFac RS-75 A test piece was obtained in the same manner as in Example 3-29 except that 70 parts by mass of methyl ethyl ketone was blended and stirred to prepare a resin solution.
(比較例3-12)
 ニッポン高度紙工業(株)製のソクシールSOXR-OBを100質量部、および、メチルエチルケトンを70質量部配合し、攪拌して樹脂溶液を作製したこと以外は実施例3-29と同様に、試験片を得た。
(Comparative Example 3-12)
Test piece as in Example 3-29 except that 100 parts by weight of Socsea SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd. and 70 parts by weight of methyl ethyl ketone were mixed and stirred to prepare a resin solution. Got.
(実施例3-35)
 実施例3-14の厚さ0.5mmのシート状の上記セルロースナノファイバー複合成形体の表裏に18μmの銅箔を重ねて、真空プレス機で温度190℃、圧力0.5MPaの条件で、1分間加熱した。次に、図4(a)~(c)に示すように、この両面に導体層21aの形成された絶縁層21bよりなる積層板21に、ドリル加工にて、ドリル径300μmの貫通穴27を、ピッチ5mmであけた。その後、過マンガン酸カリウム水溶液にてスミアを除去し、無電解銅めっき処理、次いで、電解銅めっき処理を行い、スルーホール28を形成した。次に、図5(a)~(c)に示すように、配線パターン26をエッチング工法により作製し、試験片を得た。
(Example 3-35)
In Example 3-14, the sheet-like cellulose nanofiber composite molded body having a thickness of 0.5 mm was overlapped with 18 μm copper foil on the front and back, and a vacuum press machine was used at a temperature of 190 ° C. and a pressure of 0.5 MPa. Heated for minutes. Next, as shown in FIGS. 4A to 4C, a through hole 27 having a drill diameter of 300 μm is formed by drilling on the laminated plate 21 made of the insulating layer 21b having the conductor layer 21a formed on both surfaces thereof. , With a pitch of 5 mm. Thereafter, smear was removed with an aqueous potassium permanganate solution, electroless copper plating treatment, and then electrolytic copper plating treatment were performed to form through holes 28. Next, as shown in FIGS. 5A to 5C, a wiring pattern 26 was produced by an etching method to obtain a test piece.
(実施例3-36)
 実施例3-22の厚さ0.5mmのシートを用いたこと以外は実施例3-35と同様に、試験片を作製した。
(Example 3-36)
A test piece was produced in the same manner as in Example 3-35, except that the 0.5 mm thick sheet of Example 3-22 was used.
(比較例3-13)
 比較例3-3の厚さ0.5mmのシートを用いたこと以外は実施例3-35と同様に、試験片を作製した。
(Comparative Example 3-13)
A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Comparative Example 3-3 was used.
(実施例3-37)
 実施例3-15の厚さ0.5mmのシートを用いたこと以外は実施例3-35と同様に、試験片を作製した。
(Example 3-37)
A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Example 3-15 was used.
(実施例3-38)
 実施例3-23の厚さ0.5mmのシートを用いたこと以外は実施例3-35と同様に、試験片を作製した。
(Example 3-38)
A test piece was prepared in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Example 3-23 was used.
(比較例3-14)
 比較例3-4の厚さ0.5mmのシートを用いたこと以外は実施例3-35と同様に、試験片を作製した。
(Comparative Example 3-14)
A test piece was produced in the same manner as in Example 3-35 except that the 0.5 mm thick sheet of Comparative Example 3-4 was used.
(絶縁信頼性評価)
 6枚の試験片の電極に50Vの直流電圧をかけて、130℃85%の雰囲気下で放置試験を行なった。試験槽内で絶縁抵抗を測定し、試験開始から1時間後の絶縁抵抗値から、その100分の1になった時間を記録した。100時間を過ぎても絶縁抵抗値が下がらないものは、そこで終了とした。
(Insulation reliability evaluation)
A direct voltage of 50 V was applied to the electrodes of the six test pieces, and a standing test was performed in an atmosphere of 130 ° C. and 85%. The insulation resistance was measured in the test tank, and the time that became 1/100 of the insulation resistance value one hour after the start of the test was recorded. If the insulation resistance value did not decrease after 100 hours, it was terminated.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 以上詳述した通り、セルロースナノファイバーを添加した絶縁材料は、シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方の存在により、飛躍的に絶縁信頼性が向上されることが確かめられた。 As described in detail above, it has been confirmed that the insulation reliability of the insulating material to which cellulose nanofibers are added is dramatically improved by the presence of one or both of a silicone compound and a fluorine compound.
<実施例4>
[セルロースファイバー分散液の作製]
 針葉樹クラフトパルプ(NBKP)を高圧ホモジナイザーで機械的に処理し、得られた数平均繊維径3μmのセルロースファイバーを水に添加して十分に撹拌し、セルロースファイバー10質量%の水懸濁液を作製した。これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のセルロースファイバー分散液を作製した。
<Example 4>
[Preparation of cellulose fiber dispersion]
Softwood kraft pulp (NBKP) is mechanically treated with a high-pressure homogenizer, and the resulting cellulose fiber with a number average fiber diameter of 3 μm is added to water and stirred sufficiently to produce an aqueous suspension of 10% by weight cellulose fiber. did. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This substitution operation was repeated three times, and 10 times the amount of carbitol acetate by weight of the filtrate was added to prepare a 10% by mass cellulose fiber dispersion.
[評価]
 下記表24および表25中の記載に従い、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。得られた組成物を、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)にスクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させた。硬化後の膜厚は50μmであった。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。
[Evaluation]
In accordance with the description in Table 24 and Table 25 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by a screen printing method. Curing was carried out at 30 ° C. for 30 minutes. The film thickness after curing was 50 μm. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000024
*4-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*4-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*4-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*4-4)着色剤:フタロシアニンブルー
*4-5)有機溶剤:カルビトールアセテート
Figure JPOXMLDOC01-appb-T000024
* 4-1) Thermosetting compound 1: Epicote 828, manufactured by Mitsubishi Chemical Corporation * 4-2) Thermosetting compound 2: Epicote 807, manufactured by Mitsubishi Chemical Corporation * 4-3) Curing catalyst 1: 2MZ-A * 4-4) Colorant: Phthalocyanine Blue * 4-5) Organic solvent: Carbitol acetate
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 下記表26および表27中の記載に従い、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。得られた組成物を、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)にスクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させた。硬化後の膜厚は50μmであった。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 According to the description in Table 26 and Table 27 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by a screen printing method. After drying at 30 ° C. for 30 minutes, it was cured at 170 ° C. for 60 minutes. The film thickness after curing was 50 μm. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000026
*4-6)熱硬化性化合物3:ユニディック V-8000(固形分40質量%) DIC(株)製
*4-7)熱硬化性化合物4:デナコールEX-830 ナガセケムテックス(株)製
*4-8)硬化触媒2:トリフェニルホスフィン
Figure JPOXMLDOC01-appb-T000026
* 4-6) Thermosetting compound 3: Unidic V-8000 (solid content 40% by mass) manufactured by DIC Corporation * 4-7) Thermosetting compound 4: Denacol EX-830 manufactured by Nagase ChemteX Corporation * 4-8) Curing catalyst 2: Triphenylphosphine
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 下記表28および表29中の記載に従い、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて、180℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、190℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ50μmのシートを得た。このシートを、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)に、熱プレスにより190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスして、試験片を作製した。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 According to the description in Table 28 and Table 29 below, each component was blended and melt-kneaded at 180 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.). The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.). Cold pressing was performed at 0.5 MPa for 1 minute. As a result, a sheet having a thickness of 50 μm was obtained. This sheet was hot-pressed on a FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by hot pressing at 190 ° C. and 20 MPa for 1 minute, and further at 23 ° C. A test piece was produced by cold pressing at 0.5 MPa for 1 minute. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000028
*4-9)熱可塑性樹脂1:ノバテックPP BC03L 日本ポリプロ(株)製
Figure JPOXMLDOC01-appb-T000028
* 4-9) Thermoplastic resin 1: Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 下記表30および表31中の記載に従い、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて、150℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、160℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ50μmのシートを得た。このシートを150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)に、熱プレスにより190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスして、試験片を作製した。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 According to the description in Table 30 and Table 31 below, each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.). The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute. As a result, a sheet having a thickness of 50 μm was obtained. This sheet was hot-pressed on a FR-4 copper-clad laminate (copper thickness: 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by hot pressing at 190 ° C. and 20 MPa for 1 minute. A test piece was produced by cooling and pressing at 5 MPa for 1 minute. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000030
*4-10)熱可塑性樹脂2:ノバテックLDLC561 日本ポリエチレン(株)製
Figure JPOXMLDOC01-appb-T000030
* 4-10) Thermoplastic resin 2: Novatec LDLC561 Made by Nippon Polyethylene Co., Ltd.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 下記表32および表33中の記載に従い、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。得られた組成物を、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)にスクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化させた。硬化後の膜厚は50μmであった。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 According to the description in Table 32 and Table 33 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by a screen printing method, and 120 ° C. in a hot air circulation drying oven. After drying at 10 ° C. for 10 minutes, it was cured at 250 ° C. for 30 minutes. The film thickness after curing was 50 μm. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000032
*4-11)熱可塑性樹脂3:ソクシール SOXR-OB ニッポン高度紙工業(株)製のワニス(固形分70質量%)
Figure JPOXMLDOC01-appb-T000032
* 4-11) Thermoplastic resin 3: Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industry Co., Ltd. (solid content: 70% by mass)
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 下記表34および表35中の記載に従い、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。得られた組成物を、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)にスクリーン印刷法にて全面に印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化させた。硬化後の膜厚は50μmであった。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 In accordance with the description in Table 34 and Table 35 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by a screen printing method, and a wavelength of 350 nm using a metal halide lamp. Was irradiated with an integrated light amount of 2 J / cm 2 and cured. The film thickness after curing was 50 μm. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000034
*4-12)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*4-13)光硬化性化合物2:トリメチロールプロパントリアクリレート
*4-14)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*4-15)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*4-16)光重合開始剤1:2-エチルアントラキノン
Figure JPOXMLDOC01-appb-T000034
* 4-12) Photocurable compound 1: Bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 4-13) Photocurable compound 2: Trimethylolpropane triacrylate * 4-14) Photocurable compound 3: Kayamar PM2 Nippon Kayaku Co., Ltd. * 4-15) Photocurable Compound 4: Light Ester HO Kyoeisha Chemical Co., Ltd. * 4-16) Photopolymerization initiator 1: 2-ethylanthraquinone
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 下記表36~表41中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。得られた組成物を、150mm×100mmの大きさで厚さ1.6mmのFR-4銅張り積層板(銅厚18μm)にスクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉にて、80℃、30分間で乾燥させた。次に、試験基板縁部をカバーできるネガパターンを用い、プリント配線板用露光機HMW-680GW((株)オーク製作所製)で700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し縁部を、続いて150℃で60分間、熱風循環式乾燥炉で熱硬化させた。硬化後の膜厚は50μmであった。その後、過マンガン酸カリウム水溶液にて硬化物の表面を粗化し、無電解銅めっき、次いで電解銅めっきを全面につけて、評価基板を作製した。銅めっき部に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(ピール強度)を測定した。 In accordance with the description in Table 36 to Table 41 below, each component was blended, stirred, and dispersed with a three roll to prepare each composition. The obtained composition was printed on the entire surface of a FR-4 copper-clad laminate (copper thickness: 18 μm) having a size of 150 mm × 100 mm and a thickness of 1.6 mm by a screen printing method. , And dried at 80 ° C. for 30 minutes. Next, using a negative pattern that can cover the edge of the test substrate, the printed wiring board exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) is exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. Using an aqueous sodium carbonate solution as a developer, development was performed with a printed wiring board developing machine for 60 seconds, and then the edges were thermally cured at 150 ° C. for 60 minutes in a hot-air circulating drying furnace. The film thickness after curing was 50 μm. Thereafter, the surface of the cured product was roughened with an aqueous potassium permanganate solution, and electroless copper plating and then electrolytic copper plating were applied to the entire surface to prepare an evaluation substrate. Cut the copper plated part into a 10mm wide and 100mm long part, peel off one end of the copper plated part, grab it with a gripping tool, and peel off 35mm vertically at a speed of 50mm / min at room temperature (Peel strength) was measured.
Figure JPOXMLDOC01-appb-T000036
*4-17)硬化触媒3:微粉砕メラミン 日産化学(株)製
*4-18)硬化触媒4:ジシアンジアミド
*4-19)光重合開始剤2:イルガキュア907 BASF社製
*4-20)光硬化性化合物5:ジペンタエリスリトルテトラアクリレート
*4-21)熱硬化性化合物5:TEPIC-H 日産化学(株)製
Figure JPOXMLDOC01-appb-T000036
* 4-17) Curing catalyst 3: Finely pulverized melamine * 4-18) Curing catalyst 4: Dicyandiamide * 4-19) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 4-20) Light Curing compound 5: Dipentaerythritol tetraacrylate * 4-21) Thermosetting compound 5: TEPIC-H Nissan Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 以上詳述した通り、数平均繊維径3nm以上1000nm未満のセルロースナノファイバーと、数平均繊維径1μm以上のセルロースファイバーとを含有する絶縁材料を用いることにより、飛躍的にピール強度の向上が確認された。 As detailed above, by using an insulating material containing cellulose nanofibers having a number average fiber diameter of 3 nm or more and less than 1000 nm and cellulose fibers having a number average fiber diameter of 1 μm or more, the peel strength has been dramatically improved. It was.
<実施例5>
[カルボン酸塩を有するセルロースナノファイバー分散液の製造]
(製造例1)
 針葉樹晒クラフトパルプ(王子製紙(株)製、水分50質量%、カナダ標準濾水度(CSF)550ml、主に数平均繊維径1000nm超の絶乾状態)5gを、2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)79mg(0.5mmol)と臭化ナトリウム515mg(5mmol)とを溶解した水溶液500mlに加え、パルプが均一分散するまで撹拌した。ここに、有効塩素5%の次亜塩素酸ナトリウム水溶液18mlを添加し、0.5N塩酸水溶液でpHを10に調整し、酸化反応を開始した。反応中は系内pHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pHを10に調整した。2時間反応の後、ガラスフィルターで濾過し、濾物を十分に水洗して反応物を得た。
<Example 5>
[Production of Cellulose Nanofiber Dispersion Having Carboxylate]
(Production Example 1)
2, 2, 6, 6 5 g of softwood bleached kraft pulp (manufactured by Oji Paper Co., Ltd., moisture 50% by mass, Canadian standard freeness (CSF) 550 ml, mainly in an absolutely dry state with a number average fiber diameter exceeding 1000 nm) -Tetramethylpiperidine-N-oxyl (TEMPO) 79 mg (0.5 mmol) and sodium bromide 515 mg (5 mmol) were added to 500 ml of an aqueous solution and stirred until the pulp was uniformly dispersed. To this, 18 ml of an aqueous sodium hypochlorite solution containing 5% effective chlorine was added, the pH was adjusted to 10 with an aqueous 0.5N hydrochloric acid solution, and an oxidation reaction was started. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After the reaction for 2 hours, the mixture was filtered through a glass filter, and the residue was sufficiently washed with water to obtain a reaction product.
 次に、上記反応物に蒸留水を加え、パルプ濃度2質量%の水分散液とし、回転刃式ミキサーで5分間攪拌分散した。攪拌に伴い著しくスラリーの粘度が上昇したため、蒸留水を少しずつ加え、固形分濃度が0.2質量%となるまでミキサーによる攪拌分散を続け、透明なゲル状水溶液を得た。これをTEMで観察し、数平均繊維径10nmのカルボン酸塩を有するセルロースナノファイバーの水分散液であることを確認した。上記水分散液のカルボキシル基の量は、1.25mmol/gであった。 Next, distilled water was added to the reaction product to obtain an aqueous dispersion having a pulp concentration of 2% by mass, and the mixture was stirred and dispersed with a rotary blade mixer for 5 minutes. Since the viscosity of the slurry significantly increased with stirring, distilled water was added little by little, and stirring and dispersion with a mixer was continued until the solid content concentration reached 0.2% by mass to obtain a transparent gelled aqueous solution. This was observed with TEM and confirmed to be an aqueous dispersion of cellulose nanofibers having a carboxylate having a number average fiber diameter of 10 nm. The amount of carboxyl groups in the aqueous dispersion was 1.25 mmol / g.
 これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のカルボン酸塩を有するセルロースナノファイバー分散液1を作製した。 This was dehydrated and filtered, 10 times the weight of the filtrate was added, carbitol acetate was added, and the mixture was stirred for 30 minutes and then filtered. This substitution operation was repeated three times to add 10 times the amount of carbitol acetate as the weight of the filtrate to prepare cellulose nanofiber dispersion 1 having 10% by mass of carboxylate.
(製造例2)
 2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)79mg(0.5mmol)に代えて4-ジメチルアミノ-2,2,6,6-テトラメチルピペリジン-N-オキシル(4-ジメチルアミノ-TEMPO)100mg(0.5mmol)を用いた以外は、製造例1と同様にして、10質量%のカルボン酸塩を有するセルロースナノファイバー分散液2を作製した。なお、水分散液のカルボキシル基の量は1.30mmol/gであり、カルボン酸塩を有するセルロースナノファイバーの数平均繊維径は12nmであった。
(Production Example 2)
Instead of 79 mg (0.5 mmol) of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), 4-dimethylamino-2,2,6,6-tetramethylpiperidine-N-oxyl (4- A cellulose nanofiber dispersion 2 having 10% by mass of a carboxylate was prepared in the same manner as in Production Example 1 except that 100 mg (0.5 mmol) of (dimethylamino-TEMPO) was used. The amount of carboxyl groups in the aqueous dispersion was 1.30 mmol / g, and the number average fiber diameter of the cellulose nanofibers having a carboxylate salt was 12 nm.
(製造例3)
 2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)79mg(0.5mmol)に代えて4-カルボキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(4-カルボキシ-TEMPO)101mg(0.5mmol)を用いた以外は、製造例1と同様にして、10質量%のカルボン酸塩を有するセルロースナノファイバー分散液3を作製した。なお、水分散液のカルボキシル基の量は1.16mmol/gであり、カルボン酸塩を有するセルロースナノファイバーの数平均繊維径は10nmであった。
(Production Example 3)
Instead of 79 mg (0.5 mmol) of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), 4-carboxy-2,2,6,6-tetramethylpiperidine-N-oxyl (4-carboxyl) A cellulose nanofiber dispersion 3 having 10% by mass of carboxylate was prepared in the same manner as in Production Example 1 except that 101 mg (0.5 mmol) of -TEMPO) was used. The amount of carboxyl groups in the aqueous dispersion was 1.16 mmol / g, and the number average fiber diameter of the cellulose nanofibers having a carboxylate salt was 10 nm.
[セルロースナノファイバー分散液の製造]
(製造例4)
 ユーカリを製材した板を、カッターミルを用いて粉砕し、0.2mm角程度の木粉を作製した。次に、この木粉を、亜硫酸ナトリウムや水酸化ナトリウム等の水溶液中で高温高圧処理し、リグニンを除去した。50倍の蒸留水を加えて攪拌し、ディスクミルを用いた機械的粉砕を15回施した後、10質量%となるように蒸留水を加え、撹拌し、数平均繊維径80nmのセルロースナノファイバーを得た。これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のセルロースナノファイバー分散液1を作製した。
[Production of cellulose nanofiber dispersion]
(Production Example 4)
A plate made of eucalyptus was pulverized using a cutter mill to produce a wood powder of about 0.2 mm square. Next, this wood flour was subjected to high-temperature and high-pressure treatment in an aqueous solution such as sodium sulfite and sodium hydroxide to remove lignin. 50 times distilled water was added and stirred, and after mechanical pulverization using a disk mill 15 times, distilled water was added and stirred to 10% by mass, and cellulose nanofibers having a number average fiber diameter of 80 nm Got. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This replacement operation was repeated three times, and 10 times the weight of the filtrate was added with carbitol acetate to prepare a 10% by mass cellulose nanofiber dispersion 1.
Figure JPOXMLDOC01-appb-T000042
*5-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*5-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*5-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*5-4)着色剤:フタロシアニンブルー
*5-5)有機溶剤:カルビトールアセテート
Figure JPOXMLDOC01-appb-T000042
* 5-1) Thermosetting compound 1: Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 5-2) Thermosetting compound 2: Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 5-3) Curing catalyst 1: 2MZ-A Shikoku Kasei Kogyo Co., Ltd. * 5-4) Colorant: Phthalocyanine Blue * 5-5) Organic solvent: Carbitol acetate
Figure JPOXMLDOC01-appb-T000043
*5-6)熱硬化性1合物3:ユニディックV-8000 DIC(株)製(固形分40質量%)
*5-7)熱硬化性化合物4:デナコールEX-830 ナガセケムテックス(株)製
*5-8)硬化触媒2:トリフェニルホスフィン
Figure JPOXMLDOC01-appb-T000043
* 5-6) Thermoset 1 compound 3: Unidic V-8000 manufactured by DIC Corporation (solid content 40% by mass)
* 5-7) Thermosetting compound 4: Denacol EX-830, manufactured by Nagase ChemteX Corporation * 5-8) Curing catalyst 2: Triphenylphosphine
Figure JPOXMLDOC01-appb-T000044
*5-9)熱可塑性樹脂1:ソクシール SOXR-OB ニッポン高度紙工業(株)製のワニス(固形分70質量%、N-メチルピロリドン30質量%)
Figure JPOXMLDOC01-appb-T000044
* 5-9) Thermoplastic resin 1: Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
Figure JPOXMLDOC01-appb-T000045
*5-10)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*5-11)光硬化性化合物2:トリメチロールプロパントリアクリレート
*5-12)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*5-13)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*5-14)光重合開始剤1:2-エチルアントラキノン
Figure JPOXMLDOC01-appb-T000045
* 5-10) Photocurable compound 1: Bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 5-11) Photocurable compound 2: Trimethylolpropane triacrylate * 5-12) Photocurable compound 3: Kayamar PM2 Nippon Kayaku Co., Ltd. * 5-13) Photocurable Compound 4: Light Ester HO Kyoeisha Chemical Co., Ltd. * 5-14) Photopolymerization initiator 1: 2-ethylanthraquinone
Figure JPOXMLDOC01-appb-T000046
*5-15)硬化触媒3:微粉砕メラミン 日産化学(株)製
*5-16)硬化触媒4:ジシアンジアミド
*5-17)光重合開始剤2:イルガキュア907 BASF製
*5-18)光硬化性化合物5:ジペンタエリスリトールテトラアクリレート
*5-19)熱硬化性化合物5:TEPIC-H 日産化学(株)製
Figure JPOXMLDOC01-appb-T000046
* 5-15) Curing catalyst 3: Finely pulverized melamine * 5-16) Curing catalyst 4: Dicyandiamide * 5-17) Photopolymerization initiator 2: Irgacure 907 manufactured by BASF * 5-18) Photocuring Compound 5: dipentaerythritol tetraacrylate * 5-19) thermosetting compound 5: TEPIC-H manufactured by Nissan Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
[破断強度および破断伸度評価用シートの作製]
 上記表42の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させた。その後、銅箔を除去し、厚さ50μmの評価用シートを作製した。
[Production of sheet for evaluation of breaking strength and breaking elongation]
In accordance with the description in Table 42 above, each component was blended, stirred, and dispersed with a three roll to prepare each composition. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and cured in a hot air circulation type drying furnace at 140 ° C. for 30 minutes. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 μm.
 上記表43の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させた。その後、銅箔を除去し、厚さ50μmの評価用シートを作製した。 According to the description in Table 43 above, each component was blended, stirred, and dispersed with a three roll to prepare each composition. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then at 170 ° C. for 60 minutes. And cured. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 μm.
 上記表44の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化させた。その後、銅箔を除去し、厚さ50μmの評価用シートを作製した。 According to the description in Table 44 above, each component was blended, stirred, and dispersed with a three roll to prepare each composition. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, dried in a hot air circulating drying oven at 120 ° C. for 10 minutes, and then at 250 ° C. for 30 minutes. And cured. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 μm.
 上記表45の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化させた。その後、銅箔を除去し、厚さ50μmの評価用シートを作製した。 In accordance with the description in Table 45 above, each component was blended, stirred, and dispersed with a three roll to prepare each composition. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 μm.
 上記表46~表48の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。次に、この組成物を、厚さ18μmの銅箔に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉にて、80℃、30分間で乾燥させた。次に、銅箔中央部をカバーできるネガパターンを用い、プリント配線板用露光機HMW-680GW((株)オーク製作所製)により、700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し、銅箔縁部を除去した。続いて150℃で60分間、熱風循環式乾燥炉で硬化させた。その後、銅箔を除去し、厚さ50μmの評価用シートを作製した。 According to the descriptions in Tables 46 to 48, each component was blended, stirred, and dispersed with a three roll to prepare each composition. Next, this composition was printed on a copper foil having a thickness of 18 μm on the entire surface by a screen printing method, and dried at 80 ° C. for 30 minutes in a hot air circulation drying furnace. Next, using a negative pattern capable of covering the center of the copper foil, the printed wiring board exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) was exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. The aqueous sodium carbonate solution was developed for 60 seconds with a developing machine for printed wiring boards, and the copper foil edge was removed. Subsequently, it was cured at 150 ° C. for 60 minutes in a hot air circulating drying oven. Thereafter, the copper foil was removed to prepare an evaluation sheet having a thickness of 50 μm.
[破断強度および破断伸度の評価]
 JIS K7127に準拠し、上記評価用シートを所定の大きさに裁断して試験片を作製した。この試験片を、引張試験機((株)島津製作所製AGS-G)を用い、引っ張り速度10mm/分にて破断強度[MPa]、破断伸度[%]を測定した後、下記評価基準に基づき評価した。その結果を、下記の表49~表52に示す。破断強度および破断伸度の評価基準において、ともに○の場合、試験片の硬化物は高い靭性を有しており、耐クラック性に優れていることがわかる。
[Evaluation of breaking strength and breaking elongation]
Based on JIS K7127, the said evaluation sheet | seat was cut | judged to the predetermined magnitude | size, and the test piece was produced. After measuring the breaking strength [MPa] and breaking elongation [%] of this test piece using a tensile testing machine (AGS-G manufactured by Shimadzu Corporation) at a pulling speed of 10 mm / min, the following evaluation criteria were satisfied. Based on the evaluation. The results are shown in Table 49 to Table 52 below. In the evaluation criteria of the breaking strength and breaking elongation, when both are good, it can be seen that the cured product of the test piece has high toughness and excellent crack resistance.
(破断強度の評価基準)
○:75MPa以上
△:50MPa以上75MPa未満
×:50MPa未満
(破断伸度の評価基準)
○:6%以上
△:4%以上6%未満
×:4%未満
(Evaluation criteria for breaking strength)
○: 75 MPa or more Δ: 50 MPa or more and less than 75 MPa x: less than 50 MPa (Evaluation criteria for breaking elongation)
○: 6% or more Δ: 4% or more and less than 6% ×: less than 4%
[耐クラック性評価用基板の作製]
 上記破断強度および破断伸度評価シートの作製において、銅箔の代わりに1.6mmの厚さのFR-4銅張り積層板(銅厚18μm)を用い、膜厚20μmの硬化物を得た以外は同様の工程を経て、銅張り積層板上に硬化物が形成された評価用基板を作製した。
[Preparation of crack resistance evaluation substrate]
In the preparation of the above-mentioned breaking strength and breaking elongation evaluation sheet, an FR-4 copper-clad laminate (copper thickness 18 μm) having a thickness of 1.6 mm was used instead of the copper foil, and a cured product having a thickness of 20 μm was obtained. Went through the same steps to produce an evaluation substrate having a cured product formed on a copper-clad laminate.
[耐クラック性の評価]
 上記評価用基板を、-65℃で30分間、150℃で30分間を1サイクルとして、1000サイクルの温度履歴を与え、その後の評価用基板のクラックおよび剥離の程度を、光学顕微鏡((株)キーエンス製VHX-2000)により観察し、下記評価基準に基づき評価した。その結果を、下記の表49~表52に示す。
(評価基準)
○:クラック発生がない
△:クラック発生がある
×:クラック発生が著しい
[Evaluation of crack resistance]
The evaluation substrate was given a temperature history of 1000 cycles with one cycle of −65 ° C. for 30 minutes and 150 ° C. for 30 minutes, and the degree of cracking and peeling of the evaluation substrate thereafter was measured with an optical microscope (Corporation). Observation was carried out with VHX-2000 (manufactured by Keyence), and evaluation was performed based on the following evaluation criteria. The results are shown in Table 49 to Table 52 below.
(Evaluation criteria)
○: No crack is generated Δ: Crack is generated ×: Crack is significantly generated
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 以上詳述した通り、カルボン酸塩を有するセルロースナノファイバーを含有するプリント配線板材料を用いることにより、耐クラック性を向上できることが確認された。 As described in detail above, it was confirmed that the crack resistance can be improved by using a printed wiring board material containing cellulose nanofibers having a carboxylate.
<実施例6>
[リグノセルロースナノファイバー分散液の製造]
(製造例1)
 ユーカリを製材した板を、カッターミルを用いて粉砕し、0.2mm角程度の木粉を作製した。次に、この木粉に、その質量の50倍の蒸留水を加えて攪拌し、ディスクミルを用いた機械的粉砕を15回施した後、10質量%となるように蒸留水を加え、撹拌し、数平均繊維径80nmのセルロースナノファイバーを得た。これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のリグノセルロースナノファイバー分散液1を作製した。
<Example 6>
[Production of lignocellulose nanofiber dispersion]
(Production Example 1)
A plate made of eucalyptus was pulverized using a cutter mill to produce a wood powder of about 0.2 mm square. Next, 50 times the mass of distilled water is added to this wood flour and stirred. After 15 times of mechanical pulverization using a disk mill, distilled water is added to a mass of 10% and stirred. Thus, cellulose nanofibers having a number average fiber diameter of 80 nm were obtained. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This substitution operation was repeated three times, and 10 times the amount of carbitol acetate as the weight of the filtrate was added to prepare a 10 mass% lignocellulose nanofiber dispersion 1.
(製造例2)
 杉を製材した板を、カッターミルを用いて粉砕し、0.2mm角程度の木粉を作製した。次に、この木粉に、その質量の50倍の蒸留水を加えて攪拌し、ディスクミルを用いた機械的粉砕を15回施した後、10質量%となるように蒸留水を加え、撹拌し、数平均繊維径80nmのセルロースナノファイバーを得た。これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のリグノセルロースナノファイバー分散液2を作製した。
(Production Example 2)
A board made of cedar was pulverized using a cutter mill to produce a wood powder of about 0.2 mm square. Next, 50 times the mass of distilled water is added to this wood flour and stirred. After 15 times of mechanical pulverization using a disk mill, distilled water is added to a mass of 10% and stirred. Thus, cellulose nanofibers having a number average fiber diameter of 80 nm were obtained. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This substitution operation was repeated three times, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and 10 mass% lignocellulose nanofiber dispersion liquid 2 was produced.
[比較用セルロースナノファイバー分散液の製造]
(製造例3)
 ユーカリを製材した板を、カッターミルを用いて粉砕し、0.2mm角程度の木粉を作製した。次に、この木粉を、亜硫酸ナトリウムや水酸化ナトリウム等の水溶液中で高温高圧処理し、リグニンを除去した。これに50倍の蒸留水を加えて攪拌し、ディスクミルを用いた機械的粉砕を15回施した後、10質量%となるように蒸留水を加え、撹拌し、数平均繊維径80nmのセルロースナノファイバーを得た。これを脱水濾過し、濾物重量の10倍量のカルビトールアセテートを加え、30分間攪拌した後に濾過した。この置換操作を3回繰返して、濾物重量の10倍量のカルビトールアセテートを加え、10質量%のセルロースナノファイバー分散液1を作製した。
[Production of comparative cellulose nanofiber dispersion]
(Production Example 3)
A plate made of eucalyptus was pulverized using a cutter mill to produce a wood powder of about 0.2 mm square. Next, this wood flour was subjected to high-temperature and high-pressure treatment in an aqueous solution such as sodium sulfite and sodium hydroxide to remove lignin. 50 times distilled water was added thereto and stirred, and after mechanical grinding using a disk mill 15 times, distilled water was added and stirred so as to be 10% by mass, and cellulose having a number average fiber diameter of 80 nm. Nanofibers were obtained. This was subjected to dehydration filtration, 10 times the amount of carbitol acetate as the weight of the filtrate was added, and the mixture was stirred for 30 minutes and then filtered. This replacement operation was repeated three times, and 10 times the weight of the filtrate was added with carbitol acetate to prepare a 10% by mass cellulose nanofiber dispersion 1.
[プリント配線板材料の調製]
 下記の表53、表54、表57~表61中の記載に従って、各成分を配合、攪拌して、3本ロールにて分散させて、各組成物を作製した。なお、下記の表中の数字は、すべて質量部を示す。
[Preparation of printed wiring board materials]
According to the descriptions in Table 53, Table 54, and Tables 57 to 61 below, the respective components were blended, stirred, and dispersed by a three roll to prepare each composition. In addition, all the numbers in the following table | surface show a mass part.
 下記の表55中の記載に従って、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて180℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、190℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.5mmおよび0.05mmのシート状のセルロースナノファイバー複合成形体を、それぞれ得た。 Each component was blended according to the description in Table 55 below, and melt-kneaded at 180 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.). The obtained kneaded product was hot-pressed at 190 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.). Cold pressing was performed at 0.5 MPa for 1 minute. Thereby, sheet-like cellulose nanofiber composite molded bodies having a thickness of 0.5 mm and 0.05 mm were obtained, respectively.
 下記の表56中の記載に従って、各成分を配合して、混練機(ラボプラストミル、東洋精機(株)製)を用いて150℃で10分間、回転数70rpmで溶融混練した。得られた混練物を、プレス機(ラボプレスP2-30T、東洋精機(株)製)を用いて、160℃、0.5MPaで3分間、20MPaで1分間にわたり熱プレスし、さらに、23℃、0.5MPaで1分間にわたり冷却プレスした。これにより、厚さ0.5mmおよび0.05mmのシート状のセルロースナノファイバー複合成形体を、それぞれ得た。 According to the description in Table 56 below, each component was blended and melt-kneaded at 150 ° C. for 10 minutes at a rotation speed of 70 rpm using a kneader (laboplast mill, manufactured by Toyo Seiki Co., Ltd.). The obtained kneaded product was hot-pressed at 160 ° C., 0.5 MPa for 3 minutes, and 20 MPa for 1 minute using a press machine (Lab Press P2-30T, manufactured by Toyo Seiki Co., Ltd.), and further at 23 ° C., Cold pressing was performed at 0.5 MPa for 1 minute. Thereby, sheet-like cellulose nanofiber composite molded bodies having a thickness of 0.5 mm and 0.05 mm were obtained, respectively.
Figure JPOXMLDOC01-appb-T000053
*6-1)熱硬化性化合物1:エピコート828 三菱化学(株)製
*6-2)熱硬化性化合物2:エピコート807 三菱化学(株)製
*6-3)硬化触媒1:2MZ-A 四国化成工業(株)製
*6-4)顔料:フタロシアニンブルー
*6-5)有機溶剤:カルビトールアセテート
Figure JPOXMLDOC01-appb-T000053
* 6-1) Thermosetting compound 1: Epicoat 828, manufactured by Mitsubishi Chemical Corporation * 6-2) Thermosetting compound 2: Epicoat 807, manufactured by Mitsubishi Chemical Corporation * 6-3) Curing catalyst 1: 2MZ-A * 6-4) Pigment: phthalocyanine blue * 6-5) Organic solvent: Carbitol acetate
Figure JPOXMLDOC01-appb-T000054
*6-6)熱硬化性化合物3:ユニディックV-8000 DIC(株)製(固形分40質量%)
*6-7)熱硬化性化合物4:デナコールEX-830 ナガセケムテックス(株)製
*6-8)硬化触媒2:トリフェニルホスフィン
Figure JPOXMLDOC01-appb-T000054
* 6-6) Thermosetting compound 3: Unidic V-8000 manufactured by DIC Corporation (solid content 40% by mass)
* 6-7) Thermosetting compound 4: Denacol EX-830, manufactured by Nagase ChemteX Corporation * 6-8) Curing catalyst 2: Triphenylphosphine
Figure JPOXMLDOC01-appb-T000055
*6-9)熱可塑性樹脂1:ノバテックPP BC03L 日本ポリプロ(株)製
Figure JPOXMLDOC01-appb-T000055
* 6-9) Thermoplastic resin 1: Novatec PP BC03L manufactured by Nippon Polypro Co., Ltd.
Figure JPOXMLDOC01-appb-T000056
*6-10)熱可塑性樹脂2:ノバテックLD LC561 日本ポリエチレン(株)製
Figure JPOXMLDOC01-appb-T000056
* 6-10) Thermoplastic resin 2: Novatec LD LC561, manufactured by Nippon Polyethylene Co., Ltd.
Figure JPOXMLDOC01-appb-T000057
*6-11)熱可塑性樹脂3:ソクシール SOXR-OB ニッポン高度紙工業(株)製のワニス(固形分70質量%、N-メチルピロリドン30質量%)
Figure JPOXMLDOC01-appb-T000057
* 6-11) Thermoplastic resin 3: Socsea SOXR-OB Varnish manufactured by Nippon Kogyo Paper Industries Co., Ltd. (solid content 70% by mass, N-methylpyrrolidone 30% by mass)
Figure JPOXMLDOC01-appb-T000058
*6-12)光硬化性化合物1:ビスフェノールA型エポキシアクリレート 三菱化学(株)製
*6-13)光硬化性化合物2:トリメチロールプロパントリアクリレート
*6-14)光硬化性化合物3:カヤマーPM2 日本化薬(株)製
*6-15)光硬化性化合物4:ライトエステルHO 共栄社化学(株)製
*6-16)光重合開始剤1:2-エチルアントラキノン
Figure JPOXMLDOC01-appb-T000058
* 6-12) Photocurable compound 1: bisphenol A type epoxy acrylate Mitsubishi Chemical Corporation * 6-13) Photocurable compound 2: Trimethylolpropane triacrylate * 6-14) Photocurable compound 3: Kayamar PM2 Nippon Kayaku Co., Ltd. * 6-15) Photocurable compound 4: Light ester HO Kyoeisha Chemical Co., Ltd. * 6-16) Photopolymerization initiator 1: 2-ethylanthraquinone
Figure JPOXMLDOC01-appb-T000059
*6-17)硬化触媒3:微粉砕メラミン(日産化学(株)製)
*6-18)硬化触媒4:ジシアンジアミド
*6-19)光重合開始剤2:イルガキュア907(BASF社製)
*6-20)光硬化性化合物5:ジペンタエリスリトールテトラアクリレート
*6-21)熱硬化性化合物5:TEPIC-H(日産化学(株)製)
Figure JPOXMLDOC01-appb-T000059
* 6-17) Curing catalyst 3: Finely pulverized melamine (manufactured by Nissan Chemical Co., Ltd.)
* 6-18) Curing catalyst 4: Dicyandiamide * 6-19) Photopolymerization initiator 2: Irgacure 907 (BASF)
* 6-20) Photocurable compound 5: Dipentaerythritol tetraacrylate * 6-21) Thermosetting compound 5: TEPIC-H (manufactured by Nissan Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
[ソルダーレジストとしての評価]
(試験基板の作製)
 100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)を用いて、エッチング工法によりIPC規格Bパターンのくし型電極のパターンを作製した。
[Evaluation as solder resist]
(Production of test substrate)
Using an FR-4 copper-clad laminate (copper thickness 9 μm) having a size of 100 mm × 150 mm and a thickness of 1.6 mm, an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
 上記試験基板上に、実施例6-1~実施例6-6、比較例6-1、6-2の組成物をスクリーン印刷法にて、くし形電極がカバーされるように印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させて、試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が4.5kV以上の場合を○、4.5kV未満の場合を×と評価した。結果は、実施例6-1~実施例6-6のものは全て○であり、比較例6-1、6-2のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が200時間以上の場合を○、200時間未満の場合を×と評価した。結果は、実施例6-1~実施例6-6のものは全て○であり、比較例6-1、6-2のものは全て×であった。
On the test substrate, the compositions of Examples 6-1 to 6-6 and Comparative Examples 6-1 and 6-2 were printed by screen printing so as to cover the comb electrodes, A test piece was prepared by curing in a circulation drying oven at 140 ° C. for 30 minutes.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ◯, and the case where it was less than 4.5 kV was evaluated as ×. As a result, the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 200 hours or more was evaluated as “◯”, and the case where it was less than 200 hours was evaluated as “X”. As a result, the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
 上記試験基板上に、実施例6-7~実施例6-12、比較例6-3、6-4の組成物をスクリーン印刷法にて、くし形電極がカバーされるように印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させて、試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が5.5kV以上の場合を○、5.5kV未満の場合を×と評価した。結果は、実施例6-7~実施例6-12のものは全て○、比較例6-3、6-4のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が300時間以上の場合を○、300時間未満の場合を×と評価した。結果は、実施例6-7~実施例6-12のものは全て○であり、比較例6-3、6-4のものは全て×であった。
On the test substrate, the compositions of Examples 6-7 to 6-12 and Comparative Examples 6-3 and 6-4 were printed by screen printing so as to cover the comb electrodes, After drying at 100 ° C. for 30 minutes in a circulation drying oven, the test piece was cured by curing at 170 ° C. for 60 minutes.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ◯, and the case where it was less than 5.5 kV was evaluated as x. As a result, all of Examples 6-7 to 6-12 were evaluated as ◯, and those of Comparative Examples 6-3 and 6-4 were evaluated as x.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 300 hours or more was evaluated as ◯, and the case where it was less than 300 hours was evaluated as ×. As a result, all of Examples 6-7 to 6-12 were “good”, and those of Comparative Examples 6-3 and 6-4 were all “x”.
 上記試験基板上に、実施例6-13~実施例6-24、比較例6-5~比較例6-8の厚さ0.05mmのシートをくし形電極がカバーされるように切り取り加工して、熱プレスにより190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスして試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が3.5kV以上の場合を○、3.5kV未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が250時間以上の場合を○、250時間未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
On the test substrate, the 0.05 mm-thick sheets of Examples 6-13 to 6-24 and Comparative Examples 6-5 to 6-8 were cut and processed so as to cover the comb-shaped electrodes. Then, hot pressing was performed at 190 ° C. and 20 MPa for 1 minute by hot pressing, and further cooling pressing was performed at 23 ° C. and 0.5 MPa for 1 minute to prepare a test piece.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 3.5 kV or more was evaluated as ◯, and the case where it was less than 3.5 kV was evaluated as ×. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 250 hours or more was evaluated as ◯, and the case where it was less than 250 hours was evaluated as ×. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
 上記試験基板上に、実施例6-25~実施例6-30、比較例6-9、6-10の組成物をスクリーン印刷法にて、くし形電極がカバーされるように印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化させて、試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が5.5kV以上の場合を○、5.5kV未満の場合を×と評価した。結果は、実施例6-25~実施例6-30のものは全て○であり、比較例6-9、6-10のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が250時間以上の場合を○、250時間未満の場合を×と評価した。結果は、実施例6-25~実施例6-30のものは全て○であり、比較例6-9、6-10のものは全て×であった。
On the test substrate, the compositions of Examples 6-25 to 6-30 and Comparative Examples 6-9 and 6-10 were printed by a screen printing method so as to cover the comb electrodes, After drying at 120 ° C. for 10 minutes in a circulation drying furnace, the test piece was cured by curing at 250 ° C. for 30 minutes.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ◯, and the case where it was less than 5.5 kV was evaluated as x. The results of Examples 6-25 to 6-30 were all “good”, and those of Comparative Examples 6-9 and 6-10 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 250 hours or more was evaluated as ◯, and the case where it was less than 250 hours was evaluated as ×. The results of Examples 6-25 to 6-30 were all “good”, and those of Comparative Examples 6-9 and 6-10 were all “x”.
 上記試験基板上に、実施例6-31~実施例6-36、比較例6-11、6-12の組成物をスクリーン印刷法にて、くし形電極がカバーされるように印刷し、次に、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射し、硬化させて試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が3.5kV以上の場合を○、3.5kV未満の場合を×と評価した。結果は、実施例6-31~実施例6-36のものは全て○であり、比較例6-11、6-12のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が100時間以上の場合を○、100時間未満の場合を×と評価した。結果は、実施例6-31~実施例6-36のものは全て○であり、比較例6-11、6-12のものは全て×であった。
On the test substrate, the compositions of Examples 6-31 to 6-36 and Comparative Examples 6-11 and 6-12 were printed by the screen printing method so as to cover the comb electrodes. Then, an accumulated light amount of 2 J / cm 2 was irradiated with a metal halide lamp at a wavelength of 350 nm and cured to prepare a test piece.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 3.5 kV or more was evaluated as ◯, and the case where it was less than 3.5 kV was evaluated as ×. As a result, all of Examples 6-31 to 6-36 were “good”, and those of Comparative Examples 6-11 and 6-12 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 100 hours or more was evaluated as ◯, and the case where it was less than 100 hours was evaluated as ×. As a result, all of Examples 6-31 to 6-36 were “good”, and those of Comparative Examples 6-11 and 6-12 were all “x”.
 上記試験基板上に、実施例6-37~実施例6-54、比較例6-13~比較例6-18の組成物をスクリーン印刷法にて、100メッシュポリエステルバイアス版を用いて、全面に印刷し、熱風循環式乾燥炉にて、80℃、30分間で乾燥させた。次に、くし形電極がカバーできるネガパターンを用いて、プリント配線板用露光機HMW-680GW((株)オーク製作所製)で700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し、続いて150℃で60分間、熱風循環式乾燥炉で熱硬化を行い、試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が4.5kV以上の場合を○、4.5kV未満の場合を×と評価した。結果は、実施例6-37~実施例6-54のものは全て○であり、比較例6-13~比較例6-18のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が200時間以上の場合を○、200時間未満の場合を×と評価した。結果は、実施例6-37~実施例6-54のものは全て○であり、比較例6-13~比較例6-18のものは全て×であった。
On the test substrate, the compositions of Examples 6-37 to 6-54 and Comparative Examples 6-13 to 6-18 were applied to the entire surface by screen printing using a 100 mesh polyester bias plate. Printed and dried in a hot air circulating drying oven at 80 ° C. for 30 minutes. Next, using a negative pattern that can be covered with a comb-shaped electrode, exposure is performed with an integrated light quantity of 700 mJ / cm 2 with an exposure machine HMW-680GW (manufactured by Oak Manufacturing Co., Ltd.) for printed wiring boards, and 1% at 30 ° C. Using a sodium carbonate aqueous solution as a developer, development was performed for 60 seconds with a developing machine for printed wiring boards, followed by heat curing at 150 ° C. for 60 minutes in a hot-air circulating drying furnace to prepare test pieces.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ◯, and the case where it was less than 4.5 kV was evaluated as ×. As a result, all of Examples 6-37 to 6-54 were “good”, and those of Comparative Examples 6-13 to 6-18 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 200 hours or more was evaluated as “◯”, and the case where it was less than 200 hours was evaluated as “X”. As a result, all of Examples 6-37 to 6-54 were “good”, and those of Comparative Examples 6-13 to 6-18 were all “x”.
[層間絶縁材としての評価]
 実施例6-1~実施例6-6、比較例6-1、6-2の組成物を、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で140℃、30分間の条件で硬化させた。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が5.5kV以上の場合を○、5.5kV未満の場合を×と評価した。結果は、実施例6-1~実施例6-6のものは全て○であり、比較例6-1、6-2のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-1~実施例6-6のものは全て○であり、比較例6-1、6-2のものは全て×であった。
[Evaluation as interlayer insulation material]
The compositions of Example 6-1 to Example 6-6 and Comparative Examples 6-1 and 6-2 were combined with an FR-4 copper-clad laminate (copper thickness) having a size of 100 mm × 150 mm and a thickness of 1.6 mm. 9 μm) was printed on the entire surface by a screen printing method, and cured in a hot air circulating drying oven at 140 ° C. for 30 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ◯, and the case where it was less than 5.5 kV was evaluated as x. As a result, the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. As a result, the results for Examples 6-1 to 6-6 were all “good”, and the results for comparative examples 6-1 and 6-2 were all “x”.
 実施例6-7~実施例6-12、比較例6-3、6-4の組成物を、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で100℃、30分間の条件で乾燥後、170℃、60分間の条件で硬化させた。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が6.5kV以上の場合を○、6.5kV未満の場合を×と評価した。結果は、実施例6-7~実施例6-12のものは全て○であり、比較例6-3、6-4のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が500時間以上のものを○、500時間未満のものを×と評価した。結果は実施例6-7~実施例6-12のものは全て○であり、比較例6-3、6-4のものは全て×であった。
The compositions of Examples 6-7 to 6-12 and Comparative Examples 6-3 and 6-4 were combined with an FR-4 copper-clad laminate (copper thickness of 100 mm × 150 mm and 1.6 mm thickness). 9 μm) was printed on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 100 ° C. for 30 minutes, and then cured at 170 ° C. for 60 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 6.5 kV or more was evaluated as ◯, and the case where it was less than 6.5 kV was evaluated as ×. As a result, all of Examples 6-7 to 6-12 were “good”, and those of Comparative Examples 6-3 and 6-4 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The average of 6 sheets was evaluated as “◯” when the average was 500 hours or more, and “×” when the average was less than 500 hours. The results of Examples 6-7 to 6-12 were all “good”, and those of Comparative Examples 6-3 and 6-4 were all “x”.
 実施例6-13~実施例6-24、比較例6-5~比較例6-8の厚さ0.05mmのシートを、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、熱プレスにより190℃、20MPaで1分間にわたり熱プレスし、さらに23℃、0.5MPaで1分間にわたり冷却プレスした。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が4.5kV以上の場合を○、4.5kV未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
Sheets having a thickness of 0.05 mm in Examples 6-13 to 6-24 and Comparative Examples 6-5 to 6-8 were FR-4 having a size of 100 mm × 150 mm and a thickness of 1.6 mm. A copper-clad laminate (copper thickness 9 μm) was hot-pressed by hot pressing at 190 ° C. and 20 MPa for 1 minute, and further cold-pressed by 23 ° C. and 0.5 MPa for 1 minute. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ◯, and the case where it was less than 4.5 kV was evaluated as ×. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
 実施例6-25~実施例6-30、比較例6-9、6-10の組成物を、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、スクリーン印刷法にて全面に印刷し、熱風循環式乾燥炉で120℃、10分間の条件で乾燥後、250℃、30分間の条件で硬化した。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が6kV以上の場合を○、6kV未満の場合を×と評価した。結果は、実施例6-25~実施例6-30のものは全て○であり、比較例6-9、6-10のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-25~実施例6-30のものは全て○であり、比較例6-9、6-10のものは全て×であった。
The compositions of Examples 6-25 to 6-30 and Comparative Examples 6-9 and 6-10 were FR-4 copper-clad laminates (copper thickness) having a size of 100 mm × 150 mm and a thickness of 1.6 mm. 9 μm) was printed on the entire surface by a screen printing method, dried in a hot air circulation drying oven at 120 ° C. for 10 minutes, and then cured at 250 ° C. for 30 minutes. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 6 kV or more was evaluated as ◯, and the case where it was less than 6 kV was evaluated as ×. The results of Examples 6-25 to 6-30 were all “good”, and those of Comparative Examples 6-9 and 6-10 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. The results of Examples 6-25 to 6-30 were all “good”, and those of Comparative Examples 6-9 and 6-10 were all “x”.
 実施例6-31~実施例6-36、比較例6-11、6-12の組成物を、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、スクリーン印刷法にて全面に印刷し、次に、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射して硬化した。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が4.5kV以上の場合を○、4.5kV未満の場合を×と評価した。結果は、実施例6-31~実施例6-36のものは全て○であり、比較例6-11、6-12のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が250時間以上の場合を○、250時間未満の場合を×と評価した。結果は、実施例6-31~実施例6-36のものは全て○であり、比較例6-11、6-12のものは全て×であった。
The compositions of Examples 6-31 to 6-36 and Comparative Examples 6-11 and 6-12 were FR-4 copper clad laminates (copper thickness) having a size of 100 mm × 150 mm and a thickness of 1.6 mm. 9 μm) was printed on the entire surface by a screen printing method, and then cured by irradiating an integrated light amount of 2 J / cm 2 at a wavelength of 350 nm with a metal halide lamp. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ◯, and the case where it was less than 4.5 kV was evaluated as ×. As a result, all of Examples 6-31 to 6-36 were “good”, and those of Comparative Examples 6-11 and 6-12 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 250 hours or more was evaluated as ◯, and the case where it was less than 250 hours was evaluated as ×. As a result, all of Examples 6-31 to 6-36 were “good”, and those of Comparative Examples 6-11 and 6-12 were all “x”.
 実施例6-37~実施例6-54、比較例6-13~比較例6-18の組成物を、100mm×150mmの大きさで1.6mmの厚さのFR-4銅張り積層板(銅厚9μm)に、スクリーン印刷法にて、100メッシュポリエステルバイアス版を用いて、全面に印刷し、熱風循環式乾燥炉にて80℃、30分間で乾燥させた。次に、透明PETフィルムをネガパターンの代わりに用いて、プリント配線板用露光機HMW-680GW((株)オーク製作所製)で700mJ/cmの積算光量で露光し、30℃で1%の炭酸ナトリウム水溶液を現像液として、プリント配線板用現像機にて60秒間現像し、続いて150℃で60分間、熱風循環式乾燥炉で熱硬化を行った。次に、無電解銅めっきをつけて、次いで、電解銅めっきをつけた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が5.5kV以上の場合を○、5.5kV未満の場合を×と評価した。結果は、実施例6-37~実施例6-54のものは全て○であり、比較例6-13~比較例6-18のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-37~実施例6-54のものは全て○であり、比較例6-13~比較例6-18のものは全て×であった。
The compositions of Examples 6-37 to 6-54 and Comparative Examples 6-13 to 6-18 were combined with an FR-4 copper-clad laminate (100 mm × 150 mm and 1.6 mm thick). A copper mesh thickness of 9 μm) was printed on the entire surface by screen printing using a 100 mesh polyester bias plate and dried in a hot air circulation drying oven at 80 ° C. for 30 minutes. Next, using a transparent PET film instead of the negative pattern, the printed wiring board exposure machine HMW-680GW (Oak Manufacturing Co., Ltd.) was exposed with an integrated light amount of 700 mJ / cm 2 and 1% at 30 ° C. Using an aqueous sodium carbonate solution as a developing solution, development was performed with a developing machine for printed wiring boards for 60 seconds, followed by heat curing at 150 ° C. for 60 minutes in a hot air circulation drying oven. Next, electroless copper plating was applied, and then electrolytic copper plating was applied. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ◯, and the case where it was less than 5.5 kV was evaluated as x. As a result, all of Examples 6-37 to 6-54 were “good”, and those of Comparative Examples 6-13 to 6-18 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. As a result, all of Examples 6-37 to 6-54 were “good”, and those of Comparative Examples 6-13 to 6-18 were all “x”.
[コア材としての評価]
(リグノセルロースナノファイバーシートの作製)
 リグノセルロースナノファイバー分散液1およびリグノセルロースナノファイバー分散液2について、カルビトールアセテートにて0.2質量%分散液を作製し、ガラスフィルターで濾過して、100mm×150mmの大きさで厚み40μmのシートを作製した。
[Evaluation as core material]
(Preparation of lignocellulose nanofiber sheet)
About lignocellulose nanofiber dispersion liquid 1 and lignocellulose nanofiber dispersion liquid 2, a 0.2% by mass dispersion liquid is prepared with carbitol acetate, filtered through a glass filter, and has a size of 100 mm × 150 mm and a thickness of 40 μm. A sheet was produced.
(セルロースナノファイバーシートの作製)
 セルロースナノファイバー分散液1について、カルビトールアセテートにて0.2質量%分散液を作製し、ガラスフィルターで濾過して、100mm×150mmの大きさで厚み40μmのシートを作製した。
(Production of cellulose nanofiber sheet)
About the cellulose nanofiber dispersion liquid 1, 0.2 mass% dispersion liquid was produced with carbitol acetate, and it filtered with the glass filter, and produced the sheet | seat of the size of 100 mm x 150 mm, and thickness 40 micrometers.
 三菱化学(株)製のエピコート828を50質量部、三菱化学(株)製のエピコート807を50質量部、四国化成工業(株)製の2MZ-Aを3質量部、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を得た。これを、各セルロースナノファイバーシートに含浸させて、50℃の雰囲気に12時間放置した後、取り出し、80℃、5時間乾燥させてプリプレグを作製した。このプリプレグを10枚重ね、さらに、表裏に厚み18μmの銅箔を重ねて、真空プレス機で温度160℃、圧力2MPaの条件で、3時間硬化させた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。リグノセルロースナノファイバー分散液1の試験片を実施例6-55、リグノセルロースナノファイバー分散液2の試験片を実施例6-56、セルロースナノファイバー分散液1の試験片を比較例6-19、さらに、セルロースナノファイバーの代わりにガラスクロスを使用し、同様に作製したものを比較例6-20とした。実施例6-55、実施例6-56、比較例6-19、比較例6-20のセルロース繊維の充填率は30質量%であった。なお、実施例6-55、実施例6-56では、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部を加えた。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が5.5kV以上の場合を○、5.5kV未満の場合を×と評価した。結果は、実施例6-55、6-56のものは全て○であり、比較例6-19、6-20のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-55、6-56のものは全て○であり、比較例6-19、6-20のものは全て×であった。
50 parts by mass of Epicoat 828 manufactured by Mitsubishi Chemical Corporation, 50 parts by mass of Epicoat 807 manufactured by Mitsubishi Chemical Corporation, 3 parts by mass of 2MZ-A manufactured by Shikoku Kasei Kogyo Co., Ltd., and 100 parts by mass of methyl ethyl ketone And stirred to obtain a resin solution. This was impregnated into each cellulose nanofiber sheet, left in an atmosphere at 50 ° C. for 12 hours, then taken out and dried at 80 ° C. for 5 hours to prepare a prepreg. Ten prepregs were stacked, and a copper foil having a thickness of 18 μm was stacked on the front and back, and cured for 3 hours in a vacuum press at a temperature of 160 ° C. and a pressure of 2 MPa. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method. The test piece of lignocellulose nanofiber dispersion 1 was Example 6-55, the test piece of lignocellulose nanofiber dispersion 2 was Example 6-56, the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-19, Further, a glass cloth was used instead of the cellulose nanofiber, and a similar product was made as Comparative Example 6-20. In Example 6-55, Example 6-56, Comparative Example 6-19, and Comparative Example 6-20, the filling rate of the cellulose fiber was 30% by mass. In Examples 6-55 and 6-56, 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 5.5 kV or more was evaluated as ◯, and the case where it was less than 5.5 kV was evaluated as x. As a result, the samples of Examples 6-55 and 6-56 were all “good”, and the samples of Comparative Examples 6-19 and 6-20 were all “×”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. As a result, the samples of Examples 6-55 and 6-56 were all “good”, and the samples of Comparative Examples 6-19 and 6-20 were all “×”.
 DIC(株)製のユニディックV-8000を100質量部、ナガセケムテックス(株)製のデナコールEX-830を23質量部、トリフェニルホスフィンを1質量部、メチルエチルケトンを100質量部配合し、攪拌して樹脂溶液を得た。これを、各セルロースナノファイバーシートに含浸させて、50℃の雰囲気に12時間放置した後、取り出し、80℃、5時間乾燥させてプリプレグを作製した。このプリプレグを10枚重ね、さらに、表裏に18μmの銅箔を重ねて、真空プレス機で温度160℃、圧力2MPaの条件で、3時間硬化させた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。リグノセルロースナノファイバー分散液1の試験片を実施例6-57、リグノセルロースナノファイバー分散液2の試験片を実施例6-58、セルロースナノファイバー分散液1の試験片を比較例6-21、さらに、セルロースナノファイバーの代わりにガラスクロスを使用し、同様に作製したものを比較例6-22とした。実施例6-57、実施例6-58、比較例6-21、比較例6-22のセルロース繊維の充填率は30質量%であった。なお、実施例6-57、実施例6-58では、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部を加えた。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が6.5kV以上の場合を○、6.5kV未満の場合を×と評価した。結果は、実施例6-57、6-58のものは全て○であり、比較例6-21、6-22のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が500時間以上の場合を○、500時間未満の場合を×と評価した。結果は、実施例6-57、6-58のものは全て○であり、比較例6-21、6-22のものは全て×であった。
100 parts by weight of Unidic V-8000 manufactured by DIC Corporation, 23 parts by weight of Denacor EX-830 manufactured by Nagase ChemteX Corporation, 1 part by weight of triphenylphosphine, and 100 parts by weight of methyl ethyl ketone are mixed and stirred. Thus, a resin solution was obtained. This was impregnated into each cellulose nanofiber sheet, left in an atmosphere at 50 ° C. for 12 hours, then taken out and dried at 80 ° C. for 5 hours to prepare a prepreg. Ten prepregs were stacked, and 18 μm copper foils were stacked on the front and back, and cured for 3 hours at 160 ° C. under a pressure of 2 MPa with a vacuum press. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method. The test piece of lignocellulose nanofiber dispersion 1 was Example 6-57, the test piece of lignocellulose nanofiber dispersion 2 was Example 6-58, the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-21, Further, a glass cloth was used instead of cellulose nanofiber, and a similar product was produced as Comparative Example 6-22. In Example 6-57, Example 6-58, Comparative Example 6-21, and Comparative Example 6-22, the filling rate of the cellulose fibers was 30% by mass. In Examples 6-57 and 6-58, 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 6.5 kV or more was evaluated as ◯, and the case where it was less than 6.5 kV was evaluated as ×. As a result, the samples of Examples 6-57 and 6-58 were all “good”, and the samples of Comparative Examples 6-21 and 6-22 were all “×”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 500 hours or more was evaluated as “◯”, and the case where it was less than 500 hours was evaluated as “X”. As a result, the samples of Examples 6-57 and 6-58 were all “good”, and the samples of Comparative Examples 6-21 and 6-22 were all “×”.
 ニッポン高度紙工業(株)製のソクシールSOXR-OBを100質量部、メチルエチルケトンを70質量部配合し、攪拌して樹脂溶液を得た。これを、各セルロースナノファイバーシートに含浸させて、50℃の雰囲気に12時間放置した後、取り出し、80℃、5時間乾燥させてプリプレグを作製した。このプリプレグを10枚重ね、さらに、表裏に18μmの銅箔を重ねて、真空プレス機で温度160℃、圧力2MPaの条件で、3時間硬化させた。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。リグノセルロースナノファイバー分散液1の試験片を実施例6-59、リグノセルロースナノファイバー分散液2の試験片を実施例6-60、セルロースナノファイバー分散液1の試験片を比較例6-23、さらに、セルロースナノファイバーの代わりにガラスクロスを使用し、同様に作製したものを比較例6-24とした。実施例6-59、実施例6-60、比較例6-23、比較例6-24のセルロース繊維の充填率は30質量%であった。なお、実施例6-59、実施例6-60では、アクリル系共重合化合物(BYK-361N ビックケミー・ジャパン(株)製)1質量部を加えた。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が6kV以上の場合を○、6kV未満の場合を×と評価した。結果は、実施例6-59、6-60のものは全て○であり、比較例6-23、6-24のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-59、6-60のものは全て○であり、比較例6-23、6-24のものは全て×であった。
100 parts by mass of Socsea SOXR-OB manufactured by Nippon Kogyo Paper Industries Co., Ltd. and 70 parts by mass of methyl ethyl ketone were mixed and stirred to obtain a resin solution. This was impregnated into each cellulose nanofiber sheet, left in an atmosphere at 50 ° C. for 12 hours, then taken out and dried at 80 ° C. for 5 hours to prepare a prepreg. Ten prepregs were stacked, and 18 μm copper foils were stacked on the front and back, and cured for 3 hours at 160 ° C. under a pressure of 2 MPa with a vacuum press. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method. The test piece of lignocellulose nanofiber dispersion 1 was Example 6-59, the test piece of lignocellulose nanofiber dispersion 2 was Example 6-60, the test piece of cellulose nanofiber dispersion 1 was Comparative Example 6-23, Further, a glass cloth was used in place of the cellulose nanofiber, and a similar product was made as Comparative Example 6-24. In Example 6-59, Example 6-60, Comparative Example 6-23, and Comparative Example 6-24, the cellulose fiber filling factor was 30% by mass. In Examples 6-59 and 6-60, 1 part by mass of an acrylic copolymer compound (BYK-361N manufactured by Big Chemie Japan Co., Ltd.) was added.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 6 kV or more was evaluated as ◯, and the case where it was less than 6 kV was evaluated as ×. The results of Examples 6-59 and 6-60 were all “good”, and those of Comparative Examples 6-23 and 6-24 were all “x”.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. The results of Examples 6-59 and 6-60 were all “good”, and those of Comparative Examples 6-23 and 6-24 were all “x”.
 実施例6-13~実施例6-24、比較例6-5~比較例6-8の厚さ0.5mmのシートの表裏に18μmの銅箔を重ねて、真空プレス機で温度190℃、圧力0.5MPaの条件で、1分間加熱した。その後、エッチング工法により、IPC規格Bパターンのくし型電極のパターンをもつ試験片を作製した。
 耐電圧試験として、各6枚の試験片に昇圧速度毎秒500Vで直流電圧をかけて、破壊する電圧を測定した。6枚の平均が4.5kV以上の場合を○、4.5kV未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
 また、絶縁信頼性試験として、各6枚の試験片に50Vの直流電圧をかけて、130℃、85%RHの雰囲気下で放置試験を行い、ショートするまでの時間を計測した。6枚の平均が400時間以上の場合を○、400時間未満の場合を×と評価した。結果は、実施例6-13~実施例6-24のものは全て○であり、比較例6-5~比較例6-8のものは全て×であった。
18 μm copper foils were stacked on both sides of the 0.5 mm thick sheets of Examples 6-13 to 6-24 and Comparative Examples 6-5 to 6-8, and the temperature was 190 ° C. with a vacuum press. Heating was performed for 1 minute under the condition of a pressure of 0.5 MPa. Thereafter, a test piece having an IPC standard B pattern comb-shaped electrode pattern was produced by an etching method.
As a withstand voltage test, a DC voltage was applied to each of the six test pieces at a boosting speed of 500 V / second to measure the breakdown voltage. The case where the average of 6 sheets was 4.5 kV or more was evaluated as ◯, and the case where it was less than 4.5 kV was evaluated as ×. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
In addition, as an insulation reliability test, a DC voltage of 50 V was applied to each of six test pieces, a standing test was performed in an atmosphere of 130 ° C. and 85% RH, and the time until short-circuiting was measured. The case where the average of 6 sheets was 400 hours or more was evaluated as “◯”, and the case where it was less than 400 hours was evaluated as “X”. As a result, all of Examples 6-13 to 6-24 were ○, and all of Comparative Examples 6-5 to 6-8 were ×.
 以上詳述した通り、リグノセルロースから製造されたセルロースナノファイバーを含有するプリント配線板材料を用いることにより、従来不可能であった耐電圧と絶縁信頼性の向上が達成されることが確認された。 As described above in detail, it was confirmed that by using a printed wiring board material containing cellulose nanofibers manufactured from lignocellulose, improvement in withstand voltage and insulation reliability, which was impossible in the past, was achieved. .
1,3,8,11 導体パターン
2 コア基板
1a,4 コネクション部
5 スルーホール
6,9 層間絶縁層
7,10 ビア
12 ソルダーレジスト層
13 銅張り積層板(試験基板)
13a 導体層
13b 絶縁層
14 絶縁樹脂層
15 レーザービア
16 めっき層
17 エッチングレジストパターン
18 配線パターン
21 銅張り積層板(試験基板)
21a 導体層
21b 絶縁層
22 絶縁樹脂層
23 レーザービア
24 めっき層
25 エッチングレジストパターン
26 配線パターン
27 貫通穴
28 スルーホール
1, 3, 8, 11 Conductor pattern 2 Core substrate 1a, 4 Connection portion 5 Through hole 6, 9 Interlayer insulating layer 7, 10 Via 12 Solder resist layer 13 Copper-clad laminate (test substrate)
13a Conductor layer 13b Insulating layer 14 Insulating resin layer 15 Laser via 16 Plating layer 17 Etching resist pattern 18 Wiring pattern 21 Copper-clad laminate (test substrate)
21a Conductor layer 21b Insulating layer 22 Insulating resin layer 23 Laser via 24 Plating layer 25 Etching resist pattern 26 Wiring pattern 27 Through hole 28 Through hole

Claims (11)

  1.  バインダー成分と、数平均繊維径3nm~1000nmのセルロースナノファイバーと、アクリル系共重合化合物と、を含むことを特徴とするプリント配線板材料。 A printed wiring board material comprising a binder component, cellulose nanofibers having a number average fiber diameter of 3 nm to 1000 nm, and an acrylic copolymer compound.
  2.  前記バインダー成分が熱可塑性樹脂である請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, wherein the binder component is a thermoplastic resin.
  3.  前記バインダー成分が硬化性樹脂である請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, wherein the binder component is a curable resin.
  4.  層状珪酸塩を含む請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, comprising layered silicate.
  5.  シリコーン化合物およびフッ素化合物のうちのいずれか一方または双方を含む請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, comprising one or both of a silicone compound and a fluorine compound.
  6.  前記セルロースナノファイバーの数平均繊維径が3nm以上1000nm未満であって、さらに、数平均繊維径1μm以上のセルロースファイバーを含む請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, wherein the cellulose nanofiber has a number average fiber diameter of 3 nm or more and less than 1000 nm, and further includes a cellulose fiber having a number average fiber diameter of 1 μm or more.
  7.  前記セルロースナノファイバーが、その構造中にカルボン酸塩を有する請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, wherein the cellulose nanofiber has a carboxylate in its structure.
  8.  前記セルロースナノファイバーが、リグノセルロースから製造された請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, wherein the cellulose nanofiber is manufactured from lignocellulose.
  9.  ソルダーレジスト用である請求項1記載のプリント配線板材料。 The printed wiring board material according to claim 1, which is for solder resist.
  10.  多層プリント配線板の層間絶縁材用である請求項1記載のプリント配線板材料。 2. The printed wiring board material according to claim 1, which is used for an interlayer insulating material of a multilayer printed wiring board.
  11.  請求項1~10のうちいずれか一項記載のプリント配線板材料を用いたことを特徴とするプリント配線板。 A printed wiring board comprising the printed wiring board material according to any one of claims 1 to 10.
PCT/JP2014/061235 2013-04-23 2014-04-22 Printed-circuit-board material and printed circuit board using same WO2014175244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157030379A KR102192598B1 (en) 2013-04-23 2014-04-22 Printed-circuit-board material and printed circuit board using same
CN201480018767.5A CN105122953B (en) 2013-04-23 2014-04-22 Printed circuit board material and the printed circuit board for having used the material

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013-090377 2013-04-23
JP2013090377A JP6317068B2 (en) 2013-04-23 2013-04-23 Printed wiring board material and printed wiring board using the same
JP2013-097989 2013-05-07
JP2013-097983 2013-05-07
JP2013097987A JP6317070B2 (en) 2013-05-07 2013-05-07 Printed wiring board material and printed wiring board using the same
JP2013097986A JP2014220342A (en) 2013-05-07 2013-05-07 Printed wiring board material and printed wiring board using the same
JP2013097983A JP6317069B2 (en) 2013-05-07 2013-05-07 Printed wiring board material and printed wiring board using the same
JP2013-097985 2013-05-07
JP2013097989A JP6317071B2 (en) 2013-05-07 2013-05-07 Printed wiring board material and printed wiring board using the same
JP2013-097987 2013-05-07
JP2013-097986 2013-05-07
JP2013097985A JP6321327B2 (en) 2013-05-07 2013-05-07 Printed wiring board material and printed wiring board using the same

Publications (1)

Publication Number Publication Date
WO2014175244A1 true WO2014175244A1 (en) 2014-10-30

Family

ID=51791817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061235 WO2014175244A1 (en) 2013-04-23 2014-04-22 Printed-circuit-board material and printed circuit board using same

Country Status (4)

Country Link
KR (1) KR102192598B1 (en)
CN (1) CN105122953B (en)
TW (1) TWI621380B (en)
WO (1) WO2014175244A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094538A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition
JP2018104567A (en) * 2016-12-27 2018-07-05 王子ホールディングス株式会社 Sheet
WO2020066210A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metallic foil provided with resin, metal clad laminated board, and printed wiring board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475819B (en) * 2017-03-31 2023-01-24 太阳控股株式会社 Curable resin composition, dry film, cured product, and electronic component
CN112831154A (en) * 2021-01-14 2021-05-25 惠州市富邦电子科技有限公司 Printed circuit board material and preparation method and application thereof
CN114334217B (en) * 2022-03-17 2022-05-27 西安宏星电子浆料科技股份有限公司 Fine line printing type conductor paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050276U (en) * 1997-12-27 1998-06-30 イビデン株式会社 Printed wiring board
JP4107394B2 (en) * 2005-09-15 2008-06-25 積水化学工業株式会社 Resin composition, sheet-like molded body, prepreg, cured body, laminated board, and multilayer laminated board
JP2009102623A (en) * 2007-10-01 2009-05-14 Sanei Kagaku Kk Inorganic filler and organic filler-containing curable resin composition, resist film coated printed wiring board, and method for producing the same
JP2012119470A (en) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp Wiring board
WO2013022025A1 (en) * 2011-08-08 2013-02-14 王子ホールディングス株式会社 Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582240Y2 (en) * 1989-09-13 1998-09-30 株式会社 三陽電機製作所 Card-type fare settlement device
JP2707495B2 (en) 1996-03-11 1998-01-28 太陽インキ製造株式会社 Photosensitive thermosetting resin composition
CN100365083C (en) * 2002-09-19 2008-01-30 住友化学工业株式会社 Hardening resin composition and protective film
JP2006182991A (en) 2004-12-28 2006-07-13 Hitachi Chem Co Ltd Resin composition for printed wiring board, resin varnish, prepreg and laminated plate using it
JP4711208B2 (en) * 2006-03-17 2011-06-29 山栄化学株式会社 Photosensitive thermosetting resin composition, resist film-coated smoothed printed wiring board, and method for producing the same.
JP4998981B2 (en) 2006-06-20 2012-08-15 国立大学法人 東京大学 Fine cellulose fiber
JP2008080625A (en) 2006-09-27 2008-04-10 Fujifilm Corp Method for detecting displacement of droplet hitting point and method for detecting size of droplet hitting point
JP5495002B2 (en) 2008-02-22 2014-05-21 日立化成株式会社 Printed wiring board and manufacturing method thereof
JP5053972B2 (en) 2008-06-30 2012-10-24 積水化学工業株式会社 Composition for thermosetting solder resist, film for forming solder resist, method for forming solder resist, and circuit board
JP2011140632A (en) * 2009-12-11 2011-07-21 Kao Corp Composite material
JP5632887B2 (en) 2012-09-18 2014-11-26 太陽ホールディングス株式会社 Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050276U (en) * 1997-12-27 1998-06-30 イビデン株式会社 Printed wiring board
JP4107394B2 (en) * 2005-09-15 2008-06-25 積水化学工業株式会社 Resin composition, sheet-like molded body, prepreg, cured body, laminated board, and multilayer laminated board
JP2009102623A (en) * 2007-10-01 2009-05-14 Sanei Kagaku Kk Inorganic filler and organic filler-containing curable resin composition, resist film coated printed wiring board, and method for producing the same
JP2012119470A (en) * 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp Wiring board
WO2013022025A1 (en) * 2011-08-08 2013-02-14 王子ホールディングス株式会社 Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094538A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition
JP2018104567A (en) * 2016-12-27 2018-07-05 王子ホールディングス株式会社 Sheet
WO2020066210A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metallic foil provided with resin, metal clad laminated board, and printed wiring board

Also Published As

Publication number Publication date
KR102192598B1 (en) 2020-12-17
TWI621380B (en) 2018-04-11
CN105122953A (en) 2015-12-02
KR20160002810A (en) 2016-01-08
TW201513742A (en) 2015-04-01
CN105122953B (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2014175196A1 (en) Solder-resist composition and printed circuit board using same
JP7134166B2 (en) Curable resin composition, dry film, cured product, electronic component and printed wiring board
WO2014175244A1 (en) Printed-circuit-board material and printed circuit board using same
WO2014175315A1 (en) Printed-circuit-board material and printed circuit board using same
JP6317071B2 (en) Printed wiring board material and printed wiring board using the same
JP2018024878A (en) Curable resin composition for printed wiring board, dry film, cured product and printed wiring board
JP6317068B2 (en) Printed wiring board material and printed wiring board using the same
JP6317069B2 (en) Printed wiring board material and printed wiring board using the same
JP7203013B2 (en) Curable resin compositions, dry films, cured products and electronic components
JP6317070B2 (en) Printed wiring board material and printed wiring board using the same
JP6321327B2 (en) Printed wiring board material and printed wiring board using the same
JP6594475B2 (en) Printed wiring board material and printed wiring board using the same
JP2014220342A (en) Printed wiring board material and printed wiring board using the same
JP6644828B2 (en) Composition and cured product using the same
JP2014220344A (en) Printed wiring board material and printed wiring board using the same
JP7169154B2 (en) Curable resin compositions, dry films, cured products and electronic components
JP2018135536A (en) Composition and cured product prepared therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030379

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787696

Country of ref document: EP

Kind code of ref document: A1