WO2013022025A1 - Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite - Google Patents

Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite Download PDF

Info

Publication number
WO2013022025A1
WO2013022025A1 PCT/JP2012/070208 JP2012070208W WO2013022025A1 WO 2013022025 A1 WO2013022025 A1 WO 2013022025A1 JP 2012070208 W JP2012070208 W JP 2012070208W WO 2013022025 A1 WO2013022025 A1 WO 2013022025A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
fine fibrous
fibrous cellulose
group
nonwoven fabric
Prior art date
Application number
PCT/JP2012/070208
Other languages
French (fr)
Japanese (ja)
Inventor
泰友 野一色
裕一 野口
岸田 隆之
日出子 赤井
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2013022025A1 publication Critical patent/WO2013022025A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/12Preparation of cellulose esters of organic acids of polybasic organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a method for producing fine fibrous cellulose, a method for producing a non-woven fabric, fine fibrous cellulose, a fine fibrous cellulose-containing slurry, a non-woven fabric, and a composite.
  • This application is filed in Japanese Patent Application No. 2011-173194 filed in Japan on August 8, 2011, Japanese Patent Application No. 2011-258664 filed in Japan on November 28, 2011, and Japan on February 7, 2012. Claiming priority based on Japanese Patent Application No. 2012-024457 filed in Japan, the contents of which are incorporated herein by reference.
  • cellulose fibers having a fiber diameter of 10 to 50 ⁇ m, especially wood-derived cellulose fibers (pulp) have been widely used as paper products so far.
  • fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known as the cellulose fiber, and the sheet containing the fine fibrous cellulose has advantages such as high mechanical strength, and can be used for various applications.
  • Application has been studied (Patent Document 1). For example, it is known that fine fibrous cellulose is made into a non-woven fabric and used as a high-strength sheet.
  • Patent Document 2 discloses a method of treating lignocellulose in an aqueous solvent containing a nitroxyl radical derivative, an alkali bromide and an oxidizing agent.
  • Patent Document 3 discloses a method in which a polybasic acid anhydride is half-esterified into a part of a hydroxy group of cellulose to introduce a carboxy group, and then fibrillated and refined.
  • Patent Document 2 requires the use of a special catalyst, which increases the cost.
  • the fiber raw material is insufficiently refined. Since the yield was low and the dispersion was insufficiently stable, there were problems such as low production efficiency from the fiber raw material, high cost, and high environmental load.
  • An object of this invention is to provide the manufacturing method of the fine fibrous cellulose which solved the said problem, the manufacturing method of a nonwoven fabric, a fine fibrous cellulose, a fine fibrous cellulose containing slurry, a nonwoven fabric, and a composite_body
  • the present invention relates to the following.
  • a compound containing two or more carboxy groups, an acid anhydride of a compound having two or more carboxy groups, and at least one carboxylic acid compound selected from the group consisting of derivatives thereof include cellulose.
  • a carboxy group introduction step for introducing a carboxy group into the cellulose
  • an alkali treatment step for treating the cellulose introduced with the carboxy group with an alkaline solution after the completion of the carboxy group introduction step, and after the alkali treatment
  • a method for producing fine fibrous cellulose comprising a defibrating treatment step of defibrating cellulose of (2)
  • the carboxylic acid compound is a compound selected from the group consisting of maleic acid, succinic acid, phthalic acid, maleic acid, succinic acid, acid anhydrides of phthalic acid, and derivatives thereof (1) or (2)
  • the manufacturing method of the fine fibrous cellulose as described in (4) The method for producing fine fibrous cellulose according to any one of (1) to (3), wherein the carboxylic acid compound is an acid anhydride, (5)
  • the method for producing fine fibrous cellulose according to any one of (1) to (4), wherein the carboxy group introduction step is a step of treating cellulose with the gasified carboxylic acid compound, (6)
  • a method for producing a nonwoven fabric comprising a drying step of drying the wet paper,
  • a fine fibrous cellulose-containing slurry in which the fine fibrous cellulose according to (8) is dispersed in a dispersion medium (10) A nonwoven fabric containing the fine fibrous cellulose according to (8), (11) A composite containing the fine fibrous cellulose described in (8) and a matrix material, and (12) a composite containing the nonwoven fabric described in (10) and a matrix material.
  • the method for producing fine fibrous cellulose of the present invention since the fiber raw material can be sufficiently refined and the yield of fine fibrous cellulose is high, the production efficiency of fine fibrous cellulose from the fiber raw material is high. Moreover, the manufacturing method of the fine fibrous cellulose of this invention is low cost, and its environmental impact is small. According to the method for producing a nonwoven fabric of the present invention, the production efficiency of the nonwoven fabric with respect to the fiber raw material can be improved. Since the fine fibrous cellulose of the present invention has a small fiber width and a large axial ratio (fiber length / fiber width), the slurry stability of the fine fibrous cellulose is high, and the resulting nonwoven fabric has a high strength. The composite of the fine fibrous cellulose and the matrix resin of the present invention has high strength and a low linear thermal expansion coefficient.
  • FIG. 2 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 1.
  • FIG. 3 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 2.
  • FIG. 4 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 3.
  • FIG. 4 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 4. It is a schematic block diagram of one Embodiment of the manufacturing apparatus used with the manufacturing method of the nonwoven fabric of this invention.
  • ⁇ Fine fibrous cellulose> a part of the hydroxy group (—OH group) is substituted with a functional group represented by the following structural formula (1).
  • the fine fibrous cellulose of the present invention is a cellulose fiber or cellulose rod-like particles that are much thinner than pulp fibers that are usually used in papermaking applications.
  • R in the structural formula (1) is a group connecting two carboxy groups of a carboxylic acid compound used in a carboxy group introduction step described later, and is a group derived from each carboxylic acid compound.
  • a saturated-linear hydrocarbon group for example, derived from malonic acid or succinic acid
  • a saturated-branched hydrocarbon group for example, 2-methylpropanediacid, 2-methylbutanedioic acid, etc.
  • Saturated-cyclic hydrocarbon group for example, derived from 1,2-cyclohexanedicarboxylic acid, etc.
  • unsaturated-linear hydrocarbon group for example, derived from maleic acid or fumaric acid, etc.
  • unsaturated-branched Chain hydrocarbon groups eg, derived from 2-methyl-2-butenedioic acid, itaconic acid, etc.
  • aromatic groups eg, derived from phthalic acid, isophthalic acid, etc.
  • carboxy groups and hydroxyl groups for them examples thereof include a derivative group to
  • M in the structural formula (1) is a cationic group, and forms a carboxylate by pairing with the carboxy group in the structural formula (1).
  • the cationic group M forming the carboxylate monovalent and polyvalent cationic groups can be selected and used as desired. Specific examples include a cation of an alkali metal such as sodium, potassium or lithium, a cation of a divalent metal such as calcium or magnesium, and ammonium, aliphatic ammonium, or aromatic ammonium. A combination of two or more kinds of cationic groups can also be applied.
  • the cationic groups M sodium ions, potassium ions, and ammonium are preferable because they are versatile.
  • the cellulose fiber width is preferably 1 nm to 1000 nm, more preferably 2 nm to 500 nm, and still more preferably 4 nm to 100 nm, as observed with an electron microscope.
  • the fiber width of the fine fibrous cellulose is less than 1 nm, the physical properties (strength, rigidity, or dimensional stability) as the fine fibrous cellulose are not expressed because cellulose molecules are dissolved in water.
  • the fiber width is preferably 2 nm to 30 nm, more preferably 2 to 20 nm, because it tends to occur and the transparency tends to decrease.
  • a composite obtained from fine fibrous cellulose as described above generally has a high strength because it becomes a dense structure, and in addition to obtaining a high elastic modulus derived from cellulose crystals, it also scatters visible light. Since there are few, high transparency is also obtained.
  • the fine fibrous cellulose of the present invention is an aggregate of cellulose molecules and has a crystal structure. Its crystal structure is type I (parallel chain).
  • the measurement of the fiber width by electron microscope observation of fine fibrous cellulose is performed as follows.
  • a fine fibrous cellulose-containing slurry is prepared, and the slurry is cast on a carbon film-coated grid subjected to a hydrophilization treatment to obtain a sample for TEM observation.
  • an SEM image of the surface cast on glass may be observed.
  • Observation by an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, 20000 times, 40000 times, or 50000 times depending on the width of the constituent fibers.
  • the sample, observation conditions, and magnification are adjusted to satisfy the following conditions (1) and (2).
  • (1) One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicularly intersecting the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the fine fiber width in the present invention is an average value of the fiber widths read in this way.
  • the fiber length is preferably 0.1 ⁇ m or more.
  • the fiber length can be determined by TEM, SEM, or AFM image analysis.
  • the said fiber length is a fiber length of the cellulose which occupies 30 mass% or more of fine fibrous cellulose.
  • the fiber length of the fine fibrous cellulose of the present invention is preferably from 0.1 to 100 ⁇ m, more preferably from 0.1 to 50 ⁇ m, still more preferably from 0.1 to 10 ⁇ m.
  • the axial ratio (fiber length / fiber width) of the fine fibrous cellulose according to the present invention is preferably in the range of 100 to 10,000. If the axial ratio is less than 100, it may be difficult to form a fine fibrous cellulose-containing nonwoven fabric. When the axial ratio exceeds 10,000, the slurry viscosity becomes high, which is not preferable.
  • the crystallinity obtained by the X-ray diffraction method is 60% or more, but the crystallinity is preferably 65% or more, more preferably 70%.
  • the degree of crystallinity can be obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Segal et al., Textile Research Journal, 29, 786, 1959).
  • the range of the crystallinity is preferably 60 to 100%, more preferably 65 to 95%, and further preferably 70 to 90%.
  • a fiber raw material containing cellulose is treated with a carboxylic acid compound to introduce a carboxy group into cellulose, and after completion of the carboxy group introduction step, a carboxy group is introduced.
  • Cellulose hereinafter referred to as “carboxy group-introduced cellulose” introduced with an alkali solution, and the cellulose after the alkali treatment (hereinafter referred to as “alkali-treated cellulose”) is defibrated. And a defibrating process.
  • Examples of the method for treating the fiber raw material with the carboxylic acid compound include a method of mixing the gasified carboxylic acid compound with the fiber raw material, or a method of adding the carboxylic acid compound to the fiber raw material slurry. Among these, since the process is simple and the efficiency of introducing a carboxy group is high, a method of mixing a gasified carboxylic acid compound with a fiber raw material is preferable. Examples of the method for gasifying the carboxylic acid compound include a method for heating the carboxylic acid compound. In the carboxy group introduction step, it is preferable to add a carboxylic acid compound to cellulose because the yield of fine fibrous cellulose is further improved. In addition of a carboxylic acid compound to cellulose, a carboxylic acid compound is added to the hydroxy group of cellulose.
  • Examples of the fiber raw material containing cellulose include paper pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as hemp, straw or bagasse; or cellulose isolated from squirts or seaweed .
  • paper pulp is preferable in terms of availability.
  • Paper pulp includes hardwood kraft pulp (bleached kraft pulp (LBKP), unbleached kraft pulp (LUKP), oxygen bleached kraft pulp (LOKP), etc.), softwood kraft pulp (bleached kraft pulp (NBKP), unbleached kraft pulp) (NUKKP, oxygen bleached kraft pulp (NOKP), etc.), sulfite pulp (SP), soda pulp (AP) and other chemical pulp; semi-chemical pulp (SCP), semi-chemical pulp (CGP), etc. Chemical pulp; mechanical pulp such as groundwood pulp (GP), thermomechanical pulp (TMP, or BCTMP); non-wood pulp made from straw, sanjo, hemp, kenaf, etc .; or deinked pulp made from waste paper Can be mentioned.
  • kraft pulp, deinked pulp, or sulfite pulp is preferable because it is more easily available.
  • a fiber raw material may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the fiber raw material is preferably dried in advance before the carboxy group introduction step to reduce the water content.
  • the water content of the fiber raw material is 10% by mass or less based on the absolute dry weight of the fiber raw material. It is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the moisture content of the fiber raw material is preferably 0 to 10% by mass, more preferably 1 to 7% by mass, further preferably 1 to 5% by mass, and particularly preferably 1 to 3% by mass. If the moisture of the fiber raw material is reduced, fine fibrous cellulose having a large axial ratio can be easily obtained.
  • the carboxylic acid compound used in the present invention is at least one compound selected from the group consisting of a compound having two or more carboxy groups, an acid anhydride of a compound having two or more carboxy groups, and derivatives thereof. It is. Among the compounds having two or more carboxy groups, compounds having two or more carboxy groups are preferable, and compounds having two carboxy groups (dicarboxylic acid compounds) are more preferable.
  • Examples of the compound having two or more carboxy groups include propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), hexanedioic acid (adipic acid), 2-methylpropanedioic acid 2-methylbutanedioic acid, 2-methylpentanedioic acid, 1,2-cyclohexanedicarboxylic acid, 2-butenedioic acid (maleic acid or fumaric acid), 2-pentenedioic acid, 2,4-hexadienedioic acid, 2 -Methyl-2-butenedioic acid, 2-methyl-2-pentenedioic acid, 2-methylidenebutanedioic acid (itaconic acid), benzene-1,2-dicarboxylic acid (phthalic acid), benzene-1,3-dicarboxylic acid ( Examples thereof include dicarboxylic acid compounds such as isophthalic
  • Examples of the derivative of a compound having two or more carboxy groups include 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), or benzene-1,2,4,5-tetracarboxylic acid (pyrrole). Derivatives of the dicarboxylic acid compound such as merit acid).
  • Examples of the acid anhydride of the compound having two or more carboxy groups include maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride, pyromellitic anhydride, or 1,2, -Acid anhydrides of dicarboxylic acid compounds such as cyclohexanedicarboxylic acid and compounds containing two or more carboxy groups.
  • the acid anhydride derivative of a compound having two or more carboxy groups includes at least an acid anhydride of a compound having a carboxy group, such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, or diphenylmaleic acid anhydride.
  • a part of hydrogen atoms is substituted with a substituent (for example, an alkyl group or a phenyl group)
  • a substituent for example, an alkyl group or a phenyl group
  • maleic anhydride, succinic anhydride, or phthalic anhydride is preferable because it is industrially applicable and easily gasified.
  • the mass ratio of the carboxylic acid compound to the fiber raw material is preferably 0.1 to 500 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fiber raw material. . If the ratio of a carboxylic acid type compound is more than the said lower limit, the yield of a fine fibrous cellulose can be improved more. However, even if the upper limit is exceeded, the effect of improving the yield reaches its peak, and the carboxylic acid compound is merely used in vain.
  • a part of the hydroxy group (—OH group) of cellulose of the fiber raw material forms an ester bond.
  • the amount of carboxy groups introduced into the hydroxy group (—OH group) of cellulose as a fiber raw material is preferably in the range of 0.1 to 2.0 mmol / g as the amount introduced per gram of cellulose. Within the above range, the dispersion stability of the fine fibrous cellulose-containing slurry obtained by refinement is excellent. If the introduction amount of the carboxy group is less than 0.1 mmol / g, the dispersion stability of the fine fibrous cellulose-containing slurry may be inferior and may easily aggregate. Fibrous cellulose may be dissolved.
  • the amount of carboxy group introduced can be determined by measuring the amount of carboxy group according to TAPPI T237 cm-08 (2008) Carboxyl content of pulp.
  • sodium bicarbonate (NaHCO 3 ) / sodium chloride (NaCl) 0.
  • the difference in the amount of carboxy groups before and after introduction of the carboxy group was defined as the substantial introduction amount of the carboxy group.
  • the apparatus used for introducing the carboxy group is not particularly limited.
  • the treatment temperature of cellulose in the carboxy group introduction step is preferably 0 ° C. or higher and 250 ° C. or lower from the viewpoint of the thermal decomposition temperature of cellulose. Further, when water is contained in the treatment, the temperature is preferably 80 to 200 ° C, more preferably 100 to 170 ° C.
  • a catalyst can be used if desired.
  • a basic catalyst such as pyridine, triethylamine, sodium hydroxide, or sodium acetate
  • an acidic catalyst such as acetic acid, sulfuric acid, or perchloric acid.
  • the fiber raw material After the fiber raw material has been treated with the carboxylic acid compound, it is preferable to carry out an alkali treatment step described later. It can be washed with water or an organic solvent (for example, acetone). However, when water is used, the fiber length may be shortened because an acid generated by dissolution or hydrolysis of the carboxylic acid compound hydrolyzes cellulose.
  • an organic solvent for example, acetone
  • Alkali treatment process Although it does not specifically limit as a method of an alkali treatment, For example, the method of immersing carboxy group introduction
  • the alkali compound contained in the alkali solution may be an inorganic alkali compound or an organic alkali compound.
  • inorganic alkali compounds include alkali metal hydroxides or alkaline earth metal hydroxides, alkali metal carbonates or alkaline earth metal carbonates, alkali metal phosphates or alkaline earth metal phosphorus. Acid salts.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide, and examples of the alkaline earth metal hydroxide include calcium hydroxide.
  • Examples of the alkali metal carbonate include lithium carbonate, lithium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium carbonate, and sodium hydrogen carbonate.
  • Examples of the alkaline earth metal carbonate include calcium carbonate.
  • Examples of the alkali metal phosphate include lithium phosphate, potassium phosphate, trisodium phosphate, and disodium hydrogen phosphate.
  • Examples of alkaline earth metal phosphates include calcium phosphate and calcium hydrogen phosphate.
  • Examples of the organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds and their hydroxides, carbonates, and phosphates.
  • the organic alkali compound contained in the alkali solution of the present invention includes, for example, ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane.
  • Diaminopentane diaminohexane, cyclohexylamine, aniline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4 -Aminopyridine, ammonium carbonate, ammonium hydrogen carbonate, diammonium hydrogen phosphate and the like.
  • the solvent in the alkaline solution may be either water or an organic solvent, but a polar solvent (polar organic solvent such as water or alcohol) is preferred, and an aqueous solvent containing at least water is more preferred.
  • a polar solvent polar organic solvent such as water or alcohol
  • an aqueous solvent containing at least water is more preferred.
  • alkaline solutions a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution and an ammonia aqueous solution are particularly preferred because of their high versatility.
  • the pH at 25 ° C. of the alkaline solution in which the carboxy group-introduced cellulose is immersed is preferably 9 or more and 14 or less, more preferably 10 or more and 14 or less, and even more preferably 11 or more and 14 or less. If the pH of the alkaline solution is at least the lower limit, the yield of fine fibrous cellulose will be higher. However, when pH exceeds 14, the handleability of an alkaline solution will fall.
  • “the pH at 25 ° C. of the alkaline solution in which the carboxy group-introduced cellulose is immersed is 9 or more” means that the pH of the alkaline solution in which the carboxy group-introduced cellulose is immersed is based on a temperature of 25 ° C.
  • the pH range is corrected according to the temperature. It is also included in the scope of the present invention to prepare the alkaline solution in the pH range thus corrected.
  • the temperature of the alkali solution in the alkali treatment step is preferably 0 to 50 ° C, more preferably 10 to 40 ° C.
  • the carboxylic acid introduced into the cellulose becomes a carboxylate and forms a chemical structure of the structural formula (1).
  • the amount of carboxylate introduced by the alkali treatment step is preferably 0.1 to 2.0 mmol / g. Within the above range, many of the introduced carboxy groups are in the form of salts.
  • the alkali treatment it is preferable to wash the alkali-treated cellulose with water or an organic solvent before the defibrating treatment step in order to improve the handleability.
  • Defibration process In the defibrating process, usually, the alkali-treated cellulose is defibrated using a defibrating apparatus to obtain a fine fibrous cellulose-containing slurry.
  • Defibration treatment equipment includes high-speed defibrator, grinder (stone mortar grinder), high-pressure homogenizer and ultra-high pressure homogenizer, high-pressure collision grinder, ball mill, bead mill, disk refiner, conical refiner, twin-screw kneader, vibration mill
  • An apparatus for wet pulverization such as a homomixer under high-speed rotation, an ultrasonic disperser, or a beater, can be used as appropriate.
  • a preferable defibrating method includes a method of defibrating an alkali-treated cellulose slurry into which a carboxy group has been introduced using one or more of the above defibrating devices.
  • two or more kinds of defibrating apparatuses can be used in combination.
  • the defibrating process it is preferable to dilute the alkali-treated cellulose with water and an organic solvent alone or in combination to form a slurry.
  • the solid content concentration of the alkali-treated cellulose after dilution is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass. If the solid content concentration of the alkali-treated cellulose after dilution is equal to or higher than the lower limit, the efficiency of the defibrating process is improved, and if it is equal to or lower than the upper limit, blockage in the defibrating apparatus can be prevented.
  • chemical modification treatment may be applied to cellulose.
  • chemical modification is to add a compound by reacting a hydroxy group in cellulose with a chemical modifier.
  • the chemical modification treatment may be performed at any point in the production of the fine fibrous cellulose, may be performed on the fiber raw material, may be performed on the carboxy group-introduced cellulose, or may be performed on the alkali-treated cellulose, You may give to the below-mentioned nonwoven fabric. Moreover, you may perform a chemical modification process simultaneously with a carboxy group introduction
  • acetyl group As functional groups to be introduced into cellulose by chemical modification, acetyl group, acryloyl group, methacryloyl group, propionyl group, propioyl group, butyryl group, 2-butyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, Decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group, stearoyl group, pivaloyl group, benzoyl group, naphthoyl group, nicotinoyl group, isonicotinoyl group, furoyl group, cinnamoyl group and other acyl groups, 2-methacryloyloxyethyl isocyanate Isocyanate group such as noyl group, methyl group, ethyl group, propyl
  • an acyl group having 2 to 12 carbon atoms such as an acetyl group, an acryloyl group, a methacryloyl group, a benzoyl group, or a naphthoyl group, or an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • an acyl group having 2 to 12 carbon atoms such as an acetyl group, an acryloyl group, a methacryloyl group, a benzoyl group, or a naphthoyl group, or an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • Groups are preferred.
  • the modification method is not particularly limited, and there is a method of reacting cellulose fibers with the following chemical modifiers. Although there are no particular limitations on the reaction conditions, a solvent, a catalyst, or the like can be used, or heating, decompression, or the like can be performed as desired.
  • Examples of the chemical modifier include one or more substances selected from the group consisting of cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies). Can be mentioned.
  • cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies).
  • Examples of the acid include acetic acid, acrylic acid, methacrylic acid, propanoic acid, butanoic acid, 2-butanoic acid, and pentanoic acid.
  • Examples of the acid anhydride include acetic anhydride, acrylic anhydride, methacrylic anhydride, propanoic anhydride, butanoic anhydride, 2-butanoic anhydride, and pentanoic anhydride.
  • halogenating reagent examples include acetyl halide, acryloyl halide, methacryloyl halide, propanoyl halide, butanoyl halide, 2-butanoyl halide, pentanoyl halide, benzoyl halide, or naphthoyl halide.
  • the alcohol examples include methanol, ethanol, propanol, and 2-propanol.
  • isocyanate examples include methyl isocyanate, ethyl isocyanate, and propyl isocyanate.
  • alkoxysilane examples include methoxysilane and ethoxysilane.
  • cyclic ether such as oxirane (epoxy) include ethyl oxirane or ethyl oxetane.
  • acetic anhydride, acrylic anhydride, methacrylic anhydride, benzoyl halide, or naphthoyl halide is particularly preferable.
  • These chemical modifiers may be used alone or in combination of two or more.
  • the catalyst it is preferable to use a basic catalyst such as pyridine, triethylamine, sodium hydroxide, or sodium acetate, or an acidic catalyst such as acetic acid, sulfuric acid, or perchloric acid.
  • a basic catalyst such as pyridine, triethylamine, sodium hydroxide, or sodium acetate
  • an acidic catalyst such as acetic acid, sulfuric acid, or perchloric acid.
  • the reaction time depends on the chemical modifier and the chemical modification rate, it is usually from several minutes to several tens of hours.
  • the chemical modification rate of cellulose is usually 65 mol% or less, preferably 50 mol% or less, more preferably 40 mol% or less, based on the total hydroxy groups of cellulose.
  • the chemical modification rate By performing chemical modification, the decomposition temperature of cellulose increases and the heat resistance increases, but if the chemical modification rate is too high, the cellulose structure is destroyed and the crystallinity is lowered. The thermal expansion coefficient tends to increase, which is not preferable.
  • the chemical modification rate as used herein refers to the proportion of all hydroxy groups in cellulose that have been chemically modified.
  • the chemical modification rate can be determined by IR, NMR, titration method or the like.
  • the chemical modification rate of the ester can be measured by the following titration method.
  • the number of moles Q of the substituent introduced by chemical modification is obtained by the following formula.
  • Q (mol) 0.5 (N) ⁇ 2 (ml) /1000 ⁇ 0.2 (N) ⁇ Z (ml) / 1000
  • the introduction amount of the carboxy group before chemical modification is A mmol / g, a mol%
  • the molecular weight of the substituent is S
  • the introduction amount of the chemical modification group is B mmol / g, b mol%, the substituent.
  • a fiber raw material can fully be refined
  • the reason for this is that by subjecting the carboxy group-introduced cellulose to an alkali treatment, the electrostatic repulsion between the cellulose fibers is increased, the osmotic pressure of water between the cellulose is improved, and the defibration property is increased. Guessed.
  • the manufacturing method of the said fine fibrous cellulose does not use a nitroxy radical derivative, an alkali bromide, and an oxidizing agent, cost is low and environmental impact is also small.
  • the fine fibrous cellulose-containing slurry of the present invention is obtained by dispersing fine fibrous cellulose in a dispersion medium.
  • a polar organic solvent can be used in addition to water.
  • Preferred polar organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, or t-butyl alcohol.
  • Ketones such as acetone or methyl ethyl ketone (MEK), ethers such as diethyl ether or tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), or dimethylacetamide (DMAc).
  • MEK methyl ethyl ketone
  • ethers such as diethyl ether or tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), or dimethylacetamide (DMAc).
  • THF dimethyl sulfoxide
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • the content of fine fibrous cellulose in the fine fibrous cellulose-containing slurry is preferably 0.05 to 20% by mass, and more preferably 0.1 to 10% by mass. If the content of the fine fibrous cellulose is not less than the lower limit, the production efficiency when producing the nonwoven fabric and the composite described later is excellent,
  • Examples of the method for producing the fine fibrous cellulose-containing slurry include stirring and dispersing the slurry using a dispersing device such as a homomixer, a pulper, or a disaggregator.
  • a dispersing device such as a homomixer, a pulper, or a disaggregator.
  • Nonwoven fabric contains the fine fibrous cellulose.
  • the thickness of the nonwoven fabric of the present invention is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, particularly preferably 80 ⁇ m or more, preferably 10 cm or less, more preferably 1 cm or less, more preferably 1 mm. Hereinafter, it is particularly preferably 250 ⁇ m or less.
  • the thickness range of the nonwoven fabric is preferably 10 ⁇ m to 1 cm, more preferably 10 ⁇ m to 1 mm, and even more preferably 20 ⁇ m to 250 ⁇ m.
  • the thickness of the nonwoven fabric is preferably thicker than the lower limit value from the viewpoint of production stability or strength, and is preferably thinner than the upper limit value from the viewpoint of productivity, uniformity, or resin impregnation.
  • the non-woven fabric of the present invention preferably has a porosity of 35 vol% or more, and more preferably 35 vol% or more and 60 vol% or less.
  • porosity of the nonwoven fabric is small, the reaction is difficult to proceed when the above chemical modification is applied, or the matrix material such as resin is difficult to impregnate, and the unimpregnated portion remains when the composite is formed. Scattering occurs and haze increases.
  • the non-woven fabric has a high porosity, when it is made into a composite, a sufficient reinforcing effect by cellulose fibers cannot be obtained, and the linear thermal expansion coefficient becomes large, which is not preferable.
  • the porosity here refers to the volume ratio of the voids in the nonwoven fabric, and the porosity can be determined from the area, thickness, and mass of the nonwoven fabric according to the following formula.
  • Porosity (vol%) ⁇ 1-B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
  • A is the area (cm 2 ) of the nonwoven fabric
  • t (cm) is the thickness
  • B is the mass (g) of the nonwoven fabric
  • M 1.5 g / cm 3 is assumed in the present invention.
  • the film thickness of the nonwoven fabric is measured at 10 points at various positions of the nonwoven fabric using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value is adopted.
  • the porosity when obtaining the porosity of the nonwoven fabric in the composite, the porosity can also be obtained by performing image analysis of spectroscopic analysis or SEM observation of the cross section of the composite.
  • Air permeability of the nonwoven fabric of the present invention is not particularly limited since it depends on the basis weight, for example, when a basis weight of the sheet 50 g / m 2 is preferably 100 to 20,000 sec / 100 cc.
  • the manufacturing apparatus 1 of this embodiment includes a dewatering section 20, a drying section 40 provided on the downstream side of the dewatering section 20, and a winding section 60 provided on the downstream side of the drying section.
  • the dewatering section 20 is a section for dewatering the fine fibrous cellulose-containing slurry 3a using the papermaking wire 10 to obtain the water-containing web 3b.
  • the papermaking wire woven or non-woven fabric such as plastic wire or metal wire, or paper can be used, and among these, non-woven fabric and paper are preferable.
  • the dewatering section 20 is provided with a feed reel 21 for feeding out the papermaking wire 10, a discharge unit 20a for the fine fibrous cellulose-containing slurry 3a, and a dehydrating unit 30 for the dispersion medium.
  • Two or more die heads 22 for discharging the fine fibrous cellulose-containing slurry 3a to the running paper-making wire 10 fed from the delivery reel 21 and disposed downstream of each die head 22 are discharged to the discharge unit 20a.
  • a plate 24 for leveling the upper surface of the fine fibrous cellulose-containing slurry 3a.
  • the discharge unit 20a and the dehydrating unit 30 are provided with suction devices 26 and 32 for forcibly dehydrating the dispersion medium from the fine fibrous cellulose-containing slurry 3a.
  • the suction devices 26 and 32 are disposed below the paper making wire 10, and a plurality of suction holes (not shown) connected to a vacuum pump (not shown) are formed on the upper surface thereof.
  • the suction hole is not formed on the upstream side of the suction device 26 and is a non-suction hole that is not connected to the vacuum pump. If the suction hole is formed on the upstream side, the surface of the coating film of the fine fibrous cellulose-containing slurry 3a may become rough. Further, since the amount of dewatering is reduced on the downstream side, the suction device 32 in the dewatering unit 30 may not have a hole formed on the downstream side.
  • the drying section 40 is a section that obtains the nonwoven fabric 3c by drying the hydrous web 3b using a dryer.
  • the drying section 40 is provided with a first dryer 42 and a second dryer 52 configured by a cylinder dryer, and a felt cloth 44 disposed along the outer periphery of the first dryer 42 in a hood 49.
  • the first dryer 42 is disposed on the upstream side of the second dryer 52. Further, the felt cloth 44 is endless and is circulated by a guide roll 46.
  • the water-containing web 3 b is transferred by the guide roll 48.
  • the surface A (hereinafter referred to as “application surface A”) of the water-containing web 3b on which the fine fibrous cellulose-containing slurry 3a is applied is in contact with the outer peripheral surface of the first dryer 42, and the water-containing web 3b.
  • the surface B on which the fine fibrous cellulose-containing slurry 3a has not been applied (hereinafter referred to as “non-application surface B”) is transferred so as to be in contact with the felt cloth 44, and then the application surface A is the outer peripheral surface of the second dryer 52. To come in contact with.
  • the winding section 60 is a section that separates the nonwoven fabric 3c from the papermaking wire 10 and winds it.
  • a pair of separation rollers 62a and 62b for separating the nonwoven fabric 3c from the papermaking wire 10 a winding reel 64 for winding the nonwoven fabric 3c, and a used papermaking wire 10 are wound and collected.
  • a collection reel 66 is provided.
  • the separation roller 62b is disposed on the papermaking wire 10 side, and the separation roller 62a is disposed on the nonwoven fabric 3c side.
  • the method for producing a nonwoven fabric according to this embodiment includes a dehydration step of dehydrating a slurry containing fine fibrous cellulose produced by the method for producing fine fibrous cellulose on a filter medium to obtain wet paper, and drying the wet paper It has a drying process for obtaining a nonwoven fabric and a winding process for winding the nonwoven fabric.
  • the papermaking wire 10 is fed out from the delivery reel 21, the fine fibrous cellulose-containing slurry 3a is discharged from the die head 22 to the papermaking wire 10, and the upper surface of the fine fibrous cellulose-containing slurry 3a of the papermaking wire 10 is plated. Level by 24.
  • the suction medium 26 and 32 sucks the dispersion medium contained in the fine fibrous cellulose-containing slurry 3a on the papermaking wire 10 and dehydrates it to obtain the water-containing web 3b.
  • the papermaking wire 10 may be broken. Therefore, a wire used for normal papermaking is placed under the papermaking wire 10 for papermaking.
  • the wire 10 may be supported.
  • the papermaking wire 10 Before supplying the fine fibrous cellulose-containing slurry 3a to the papermaking wire 10, the papermaking wire 10 may be preliminarily impregnated with water to be in a wet state. When the fine fibrous cellulose-containing slurry 3a is discharged onto the papermaking wire 10, the wrinkle may be generated due to water absorption of the wire. However, if it is made wet in advance, the generation of the wrinkle can be prevented.
  • Examples of means for bringing the papermaking wire 10 into a wet state include a water tank in which the papermaking wire 10 is immersed in water, or a water coating apparatus.
  • a blade coater As the water coating apparatus, a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a rod blade coater, a lip coater, a curtain coater, a die coater, or the like can be used.
  • the fine fibrous cellulose-containing slurry 3a supplied to the papermaking wire 10 in the dehydration step is a liquid containing fine fibrous cellulose and water.
  • the fine fibrous cellulose-containing slurry 3a may contain a resin emulsion.
  • the resin emulsion is an emulsion in which particles of natural resin or synthetic resin having a particle diameter of 0.001 to 10 ⁇ m are emulsified in water.
  • the particulate resin contained in the resin emulsion is not particularly limited, but polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, poly (meth) acrylic acid alkyl ester polymer, ( (Meth) acrylic acid alkyl ester copolymer, poly (meth) acrylonitrile, polyester, polyurethane, polyamide, epoxy resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, diallyl phthalate resin, etc.
  • Precursors, and resin emulsions such as monomers and oligomers constituting them; natural rubber, styrene-butadiene copolymer, or molecular chain ends of —SH, —CSSH, —SO 3 H, — (COO) xM, — (SO 3) x M, and Modified with at least one functional group selected from the group of CO—R (wherein M is a cation, x is an integer of 1 to 3 depending on the valence of M, and R is an alkyl group) Styrene-butadiene copolymer: acid-modified, amine-modified, amide-modified, or acrylic-modified styrene-butadiene copolymer; (meth) acrylonitrile-butadiene copolymer; polyisoprene; polychloroprene; styrene-butadiene- Methyl methacrylate copolymer; or
  • polyethylene, polypropylene, polyurethane, ethylene-vinyl acetate copolymer or the like may be emulsified by a post-emulsification method. Two or more kinds of these resin emulsions can be contained.
  • the slurry when dehydrated and dried, it can be obtained in a state in which fine fiber cellulose and a matrix material are contained in the nonwoven fabric 3c. You can also. In this case, two or more sheets may be laminated and cured.
  • the fine fibrous cellulose-containing slurry 3a can contain a cellulose coagulant.
  • the cellulose coagulant include a water-soluble inorganic compound and a water-soluble organic compound containing a cationic functional group.
  • Water-soluble inorganic salts include sodium chloride, calcium chloride, potassium chloride, ammonium chloride, magnesium chloride, aluminum chloride, sodium sulfate, potassium sulfate, aluminum sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, sodium carbonate, potassium carbonate, ammonium carbonate Examples thereof include sodium phosphate and ammonium phosphate.
  • water-soluble organic compound containing a cationic functional group examples include polyacrylamide, polyvinylamine, urea resin, melamine resin, melamine-formaldehyde resin, or a polymer obtained by polymerizing or copolymerizing a monomer containing a quaternary ammonium salt. .
  • the fine fibrous cellulose-containing slurry 3a can contain one or more materials such as a water-soluble organic polymer, an inorganic polymer, or a hybrid polymer of an organic polymer and an inorganic polymer.
  • water-soluble polymers include polyvinyl alcohol, vinyl alcohol / ethylene copolymers, and those having a copolymer structure of vinyl alcohol and other monomers such as butyral; polyethylene oxide or alkyl-terminated ends thereof
  • Nonionic water-soluble polymers such as polypropylene oxide or polybutyral resin (water-soluble grade); poly (meth) acrylic acid and poly (meth) acrylate; organic amino derivatives of poly (meth) acrylic acid Polyester; Polyethylene; Polyacrylamide; Acrylamide / sodium acrylate copolymer; Starch; Cationized starch; Phosphorylated starch; Carboxymethylcellulose; or Alginic acid and Alginate.
  • the inorganic polymer include ceramics such as glass, silicate material, and titanate material
  • the mass ratio of water to the organic solvent is preferably 100: 10 to 10: 100, more preferably 100: 30 to 30: 100, : 50 to 50: 100 is more preferable. If the mixing amount of the organic solvent is not less than the lower limit, the porosity of the nonwoven fabric 3c can be sufficiently improved, and if it is not more than the upper limit, the increase in viscosity of the fine fibrous cellulose-containing slurry 3a can be suppressed. .
  • the wet paper prepared to have a solid content of 5% by mass to 30% by mass is combined with an organic solvent or water.
  • the nonwoven fabric of the present invention can be obtained by impregnating a mixed solution of an organic solvent or applying the mixed solution, treating it by suction dehydration, and drying.
  • Examples of the organic solvent include alcohols, ketones, ethers, esters, aromatic compounds, hydrocarbons, cyclic hydrocarbons, and cyclic hydrocarbon derivatives.
  • Alcohols include methanol, ethanol, propanol, isopropanol, n-butanol, t-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-ethyl-1-hexanol, benzyl alcohol, or phenol Monohydric alcohols such as 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,5-pentanediol, 1,6-hexanediol, tri Dihydric alcohols such as ethylene glycol, 1,2-hexanediol, or 1,2-octanediol; dipropylene glyco
  • ketones As ketones, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, t-butyl methyl ketone, diisopropyl ketone, butyl isopropyl ketone, isobutyl isopropyl ketone, diisobutyl ketone, 3-methyl-2-pentanone, 4-methyl-2- Examples include pentanone, 3-methyl-2-hexanone, 5-methyl-3-heptanone, 2-decanone, 3-decanone, 4-decanone, and 5-decanone.
  • Esters include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, butyl acetoacetate, amyl acetate, amyl acetoacetate, hexyl acetate, hexyl acetoacetate, heptyl acetate, aceto Heptyl acetate, octyl acetate, octyl acetoacetate, methyl propionate, ethyl propionate, ethyl 2-hydroxypropionate, methyl butyrate, ethyl butyrate, methyl valerate, ethyl valerate, methyl hexanoate, ethyl hexanoate, methyl heptanoate , Ethyl heptanoate, methyl octanoate, e
  • Examples of the aromatic compound include benzene, toluene, xylene, and ethylbenzene.
  • Examples of the hydrocarbon include n-hexane, n-heptane, and n-octane.
  • Examples of the cyclic hydrocarbon include cyclopentane, cyclohexane, and terpene.
  • Examples of the cyclic hydrocarbon derivative include cyclopentanol, cyclopentanone, cyclopentyl methyl ether, cyclohexanol, cyclohexanone, cyclohexanone dimethyl acetal, terpinolene, and terpineol.
  • the above organic solvents can be used in combination of two or more. Moreover, when mixing and using it, the ratio of the organic solvent which occupies in a mixed solution becomes like this. Preferably it is 40 mass% or more, More preferably, it is 60 mass% or more, More preferably, it is 70 mass% or more. The upper limit of the ratio of the organic solvent is not particularly limited. Two or more kinds of organic solvents can be used in the mixed solution. Furthermore, the organic solvent is preferably dissolved in water, but an organic solvent that does not dissolve in water can be emulsified and used as an emulsion.
  • the solid content concentration of the fine fibrous cellulose-containing slurry 3a is preferably 0.05 to 1.5% by mass, and more preferably 0.1 to 0.8% by mass. If the concentration of the fine fibrous cellulose-containing slurry 3a is equal to or higher than the lower limit value, sufficient production efficiency can be secured in the dehydration step, and if it is equal to or lower than the upper limit value, increase in viscosity is prevented and handling properties are improved. Can do.
  • the fine fibrous cellulose-containing slurry 3a is supplied so that the basis weight of the obtained nonwoven fabric 3c is preferably 10 to 900 g / m 2 , more preferably 20 to 300 g / m 2 .
  • the basis weight is equal to or more than the lower limit, the obtained nonwoven fabric 3c can be easily peeled from the papermaking wire 10 and is suitable for continuous production.
  • the basis weight is not more than the above upper limit value, the dehydration time can be further shortened, and the productivity can be further increased.
  • the coated surface A is in contact with the outer peripheral surface of the first dryer 42, with the water-containing web 3b placed on the upper surface of the paper making wire 10 being approximately half the outer periphery of the heated first dryer 42. It winds and the dispersion medium which remained in the water-containing web 3b is evaporated. The evaporated dispersion medium evaporates from the felt cloth 44 through the pores of the papermaking wire 10.
  • the water-containing web 3b is wound around about 3/4 of the outer peripheral surface of the heated second dryer 52 so that the coating surface A is in contact with the outer peripheral surface of the second dryer 52, and remains on the water-containing web 3b. Evaporate the dispersion medium. In this way, the water-containing web 3b is dried to obtain the nonwoven fabric 3c.
  • Winding process In the winding process, the papermaking wire 10 and the nonwoven fabric 3c are sandwiched between a pair of separation rollers 62a and 62b, whereby the nonwoven fabric 3c is separated from the papermaking wire 10 and transferred to the surface of one separation roller 62a. Thereafter, the nonwoven fabric 3 c is pulled away from the surface of the separation roller 62 a and is taken up by the take-up reel 64. At the same time, the used paper making wire 10 is taken up by the collection reel 66.
  • the said manufacturing apparatus 1 does not need to be used.
  • the papermaking wire 10 may be transported on an endless or endless belt.
  • the paper machine used when manufacturing a general paper can be applied easily.
  • a continuous paper machine such as a long-mesh type, a circular net type, or an inclined type, a multi-layered paper machine combining these can be applied.
  • the method for producing the nonwoven fabric is a method for producing a nonwoven fabric by dehydrating the fine fibrous cellulose-containing slurry 3a produced by the production method above and drying it to improve the yield of the nonwoven fabric relative to the fiber raw material. Can do.
  • the nonwoven fabric obtained by the said nonwoven fabric manufacturing method has a moderate space
  • complex with a matrix material is favorable.
  • the nonwoven fabric of this invention can also be used alone. For example, it can be suitably used for filter members, battery separators, and the like by taking advantage of the fine structure unique to fine fibers.
  • the composite of the present invention contains fine fibrous cellulose and a matrix material.
  • the matrix material is a material that fills voids between fine fibrous celluloses or, when fine fibrous cellulose forms a nonwoven fabric, preferably a polymer material.
  • Polymer materials suitable as the matrix material include thermoplastic resins, thermosetting resins (cured products obtained by polymerization and curing of thermosetting resin precursors by heating), or photocurable resins (precursors of photocurable resins). Is a cured product obtained by polymerization and curing upon irradiation with radiation (such as ultraviolet rays or electron beams). These may be one kind or two or more kinds.
  • thermoplastic resin Styrenic resin, acrylic resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin Resin, cyclic olefin resin, polyamide resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, or amorphous fluorine resin.
  • thermosetting resin is not particularly limited, but epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, polyurethane resin, diallyl phthalate resin, etc. Is mentioned.
  • the photocurable resin is not particularly limited, and examples thereof include the epoxy resin, acrylic resin, or oxetane resin exemplified as the above-described thermosetting resin.
  • thermoplastic resin thermosetting resin
  • photocurable resin examples include those described in JP-A-2009-299043.
  • the matrix material is preferably an amorphous synthetic polymer having a high glass transition temperature (Tg) from the viewpoint of obtaining a composite having excellent transparency and high durability.
  • Tg glass transition temperature
  • the degree of amorphousness is preferably 10% or less, and particularly preferably 5% or less in terms of crystallinity.
  • Tg is preferably 110 ° C. or higher, particularly 120 ° C. or higher, particularly 130 ° C. or higher. If Tg is low, there is a risk of deformation when touched with hot water, for example, which causes a practical problem.
  • the Tg of the matrix material is obtained by measurement by the DSC method, and the crystallinity can be calculated from the density of the amorphous part and the crystalline part.
  • the matrix material When the composite of the present invention is used for transparent applications such as optical materials, it is preferable to use a transparent resin such as an acrylic resin, an aromatic polycarbonate resin, or an aliphatic polycarbonate resin as the matrix material.
  • a transparent resin such as an acrylic resin, an aromatic polycarbonate resin, or an aliphatic polycarbonate resin
  • the matrix material preferably has few hydrophilic functional groups such as a hydroxy group, a carboxy group, or an amino group.
  • the content of fine fibrous cellulose in the composite of the present invention is 1% by mass or more and 99% by mass or less based on the total solid content of the composite, and the content of the matrix material is based on the total solid content of the composite. It is preferable that it is 1 mass% or more and 99 mass% or less.
  • the content of fine fibrous cellulose is 1% by mass or more with respect to the total solid content of the composite, and the content of the matrix material is 99% with respect to the total solid content of the composite.
  • the content of fine fibrous cellulose is 99% by mass or less with respect to the total solid content of the composite, and the content of the matrix material is the total solid content of the composite.
  • the content of fine fibrous cellulose is 2% by mass or more and 90% by mass or less with respect to the total solid content of the composite, and the matrix material is 10% by mass or more and 98% by mass or more with respect to the total solid content of the composite. More preferably, the content of the fine fibrous cellulose is 5% by mass or more and 80% by mass or less, and the content of the matrix material is 20% by mass or more and 95% by mass or less. In particular, in the composite of the present invention, the content of fine fibrous cellulose is 70% by mass or less with respect to the total solid content of the composite and the content of the matrix material is 30% by mass or more with respect to the total solid content of the composite.
  • the content of the fine fibrous cellulose is 60% by mass or less and the content of the matrix material is 40% by mass or more. Further, the content of the fine fibrous cellulose is 10% by mass or more and the content of the matrix material is 90% by mass or less. Furthermore, the content of the fine fibrous cellulose is 15% by mass or more and the content of the matrix material is 85% by mass.
  • the content of the fine fibrous cellulose fiber is 20% by mass or more and the content of the matrix material is 80% by mass or less.
  • the contents of the fine fibrous cellulose and the matrix material in the composite can be determined, for example, from the mass of the nonwoven fabric before the composite and the mass of the composite.
  • the composite can be immersed in a solvent in which the matrix material is soluble to remove only the matrix material, and can be determined from the mass of the remaining fibers.
  • the functional group derived from a matrix material or a cellulose fiber can also be quantified and determined by using a specific gravity of the matrix material, NMR, or IR.
  • the composite of the present invention may be a flat film (film) or a flat plate, a film having a curved surface or a plate, or other three-dimensional shape. .
  • the thickness is preferably 10 ⁇ m or more and 10 cm or less. Strength can be maintained by using a composite having such a thickness.
  • the thickness of the composite is more preferably 50 ⁇ m or more and 1 cm or less, and further preferably 80 ⁇ m or more and 250 ⁇ m or less. Further, the thickness is not necessarily uniform, and may be partially different.
  • the composite of the present invention when the composite of the present invention is in the form of a film or a plate, two or more sheets may be stacked to form a laminate. Moreover, you may laminate
  • a thick film can be formed by applying a heat press treatment to the laminate.
  • a thick film composite can be suitably used as a glazing or structural material.
  • the composite of the present invention may be laminated with an inorganic film on the surface according to the application.
  • the inorganic material constituting the inorganic film include metals such as platinum, silver, aluminum, gold, and copper, silicon, ITO, SiO 2 , SiN, SiOxNy, ZnO, and the like, or TFT. These combinations and film thicknesses can be designed arbitrarily.
  • A A method in which a nonwoven fabric is impregnated with a plastic resin precursor and polymerized.
  • B A method in which a non-woven fabric is impregnated with a thermosetting resin precursor or a photocurable resin precursor and polymerized and cured.
  • C After impregnating a nonwoven fabric with a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) and drying , A method of adhering with a heating press or the like and polymerizing and curing as desired.
  • thermoplastic resin precursor a thermosetting resin precursor, or a photocurable resin precursor is applied to one side or both sides of a non-woven fabric and polymerized and cured.
  • a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) to one side or both sides of a nonwoven fabric Then, after removing the solvent, a method of polymerizing and curing as desired.
  • a fine fibrous cellulose-containing slurry and a monomer solution or dispersion (a solution containing one or more solutes or dispersoids selected from a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor, or (Dispersion liquid) and then solvent removal and polymerization curing.
  • the nonwoven fabric is impregnated with a liquid thermoplastic resin precursor and polymerized.
  • the nonwoven fabric is impregnated with a polymerizable monomer or oligomer, and the monomer is polymerized by heat treatment or the like to obtain a cellulose fiber composite.
  • a method is mentioned.
  • a polymerization catalyst used for polymerization of monomers can be used as a polymerization initiator.
  • thermosetting resin precursor such as an epoxy resin monomer, or a photocurable resin such as an acrylic resin monomer.
  • thermosetting resin precursor such as an epoxy resin monomer
  • photocurable resin such as an acrylic resin monomer.
  • a resin solution a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor
  • a resin solution a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor
  • the method of causing the resin to adhere by heating press or the like and polymerizing and curing as desired include a method in which the resin is dissolved in a solvent in which the resin is dissolved, the nonwoven fabric is impregnated with the solution, and dried to obtain a cellulose fiber composite. .
  • a photo-curing resin polymerization curing by radiation or the like is further performed as desired.
  • the solvent for dissolving the resin may be selected according to the solubility of the resin
  • thermoplastic resin As a method of impregnating a nonwoven fabric with a melt of a thermoplastic resin and closely adhering with a heating press or the like, the thermoplastic resin is dissolved by heat treatment at a glass transition temperature or higher or a melting point or higher, and impregnated into the nonwoven fabric.
  • the method of obtaining a cellulose fiber composite by sticking with a heating press etc. is mentioned.
  • the heat treatment is preferably performed under pressure, and the use of equipment having a vacuum heating press function is effective.
  • thermoplastic resin sheet and the nonwoven fabric As a method of alternately arranging the thermoplastic resin sheet and the nonwoven fabric and closely adhering them with a heating press or the like, placing a thermoplastic resin film or sheet on one side or both sides of the nonwoven fabric, and heating or pressing as desired And a method of laminating a thermoplastic resin and a nonwoven fabric.
  • an adhesive or a primer may be applied to the surface of the nonwoven fabric and bonded together.
  • a method of passing between two pressurized rolls or a method of pressing in a vacuum state can be used so that bubbles are not embraced at the time of bonding.
  • thermosetting resin precursor As a method of applying and curing a liquid thermoplastic resin precursor, a thermosetting resin precursor or a photocurable resin precursor on one side or both sides of the nonwoven fabric, a thermal polymerization initiator is applied to one side or both sides of the nonwoven fabric.
  • a thermosetting resin precursor formulated with a photocuring resin precursor formulated with a photopolymerization initiator After applying a thermosetting resin precursor formulated with a photocuring resin precursor formulated with a photopolymerization initiator on one side or both sides of a nonwoven fabric, by curing by heating and curing both And a method of curing by irradiating with radiation such as ultraviolet rays.
  • the nonwoven fabric may be further laminated and then cured.
  • a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) is applied to one side or both sides of the nonwoven fabric. Then, after removing the solvent, as a method of compounding by polymerizing and curing as desired, a resin solution in which a resin soluble in the solvent is dissolved is prepared, applied to one or both sides of the nonwoven fabric, and the solvent is removed by heating. The method of removing is mentioned. In the case of a photo-curing resin, polymerization curing by radiation or the like is further performed as desired. A solvent for dissolving the resin may be selected according to the solubility of the resin.
  • a fine fibrous cellulose-containing slurry and a monomer solution or dispersion a solution containing one or more solutes or dispersoids selected from a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor, or As a method of compounding by mixing the dispersion liquid) and then passing through the steps of solvent removal and polymerization and curing, a solution in which a monomer soluble in the solvent or a dispersion liquid is prepared, and fine fibrous cellulose is prepared. Mix the slurry.
  • the cellulose fibers are preferably defibrated by using an organic solvent in advance as a dispersion medium (solvent), or when defibrated in water, the water is preferably replaced with an organic solvent.
  • a cellulose fiber composite can be obtained by polymerizing and curing the monomer in this mixed solution or polymerizing and curing the monomer after removing the solvent.
  • the solvent is removed to form a composite.
  • a dispersion is prepared and mixed with the fine fibrous cellulose slurry.
  • the cellulose fibers are preferably defibrated by using an organic solvent in advance as a dispersion medium (solvent), or when defibrated in water, the water is preferably replaced with an organic solvent.
  • a cellulose fiber composite can be obtained by removing the solvent of the mixed solution.
  • thermoplastic resin precursor thermosetting resin precursor, and photocurable resin precursor
  • a chain transfer agent an ultraviolet absorber, a filler other than cellulose, or a silane coupling agent is appropriately blended.
  • curable composition a composition (hereinafter referred to as “curable composition”).
  • the reaction can proceed uniformly.
  • a chain transfer agent for example, a polyfunctional mercaptan compound having two or more thiol groups in the molecule can be used.
  • a polyfunctional mercaptan compound By using a polyfunctional mercaptan compound, moderate toughness can be imparted to the cured product.
  • mercaptan compounds include pentaerythritol tetrakis ( ⁇ -thiopropionate), trimethylolpropane tris ( ⁇ -thiopropionate), or tris [2- ( ⁇ -thiopropionyloxyethoxy) ethyl] triisocyanurate. It is preferable to use 1 type (s) or 2 or more types.
  • the chain transfer agent is usually contained in a proportion of 30% by mass or less with respect to the total of radically polymerizable compounds in the curable composition.
  • the curable composition contains an ultraviolet absorber
  • coloring can be prevented.
  • an ultraviolet absorber it selects from a benzophenone series ultraviolet absorber and a benzotriazole type ultraviolet absorber, for example,
  • the ultraviolet absorber may use 1 type and may use 2 or more types together.
  • the ultraviolet absorber is usually contained at a ratio of 0.01 to 1 part by mass with respect to a total of 100 parts by mass of radically polymerizable compounds in the curable composition. .
  • the filler examples include inorganic particles and organic polymers.
  • inorganic particles such as silica particles, titania particles, or alumina particles, transparent cycloolefin polymer particles such as Zeonex (Nippon Zeon) and Arton (JSR), or general-purpose such as polycarbonate and polymethyl methacrylate
  • thermoplastic polymer particles include thermoplastic polymer particles.
  • use of nano-sized silica particles is preferable because transparency can be maintained.
  • the polymer particles having a structure similar to that of the ultraviolet curable monomer are used as the filler, the polymer can be dissolved to a high concentration, which is preferable.
  • silane coupling agent examples include ⁇ -((meth) acryloxypropyl) trimethoxysilane, ⁇ -((meth) acryloxypropyl) methyldimethoxysilane, and ⁇ -((meth) acryloxypropyl) methyldiethoxy.
  • examples include silane, ⁇ -((meth) acryloxypropyl) triethoxysilane, and ⁇ - (acryloxypropyl) trimethoxysilane. These have a (meth) acryl group in the molecule and are preferable because they can be copolymerized with other monomers.
  • the silane coupling agent is usually 0.1 to 50% by mass, preferably 1 to 20%, based on the total of radically polymerizable compounds in the curable composition. It is made to contain so that it may become mass%. If the blending amount is too small, the effect of containing it is not sufficiently obtained, and if it is too large, optical properties such as transparency of the cured product may be impaired.
  • the curable composition can be polymerized and cured by a known curing method to obtain a cured product.
  • the curing method include thermal curing and radiation curing, and radiation curing is preferable.
  • the radiation include infrared rays, visible rays, ultraviolet rays, electron beams, and the like, but light that is an electromagnetic wave having a wavelength of 1 to 1000 nm is preferable. More preferred is an electromagnetic wave having a wavelength of about 200 nm to 450 nm, and still more preferred is an ultraviolet ray having a wavelength of 300 to 400 nm.
  • thermo polymerization a method in which a thermal polymerization initiator that generates radicals and acids by heating is added to the curable composition in advance and polymerized by heating
  • a photopolymerization initiator that generates radicals and acids by radiation such as ultraviolet rays is added to the curable composition in advance and polymerized by irradiation with radiation (preferably light) (hereinafter referred to as “light”).
  • light preferably light
  • polymerization a method in which both a thermal polymerization initiator and a photopolymerization initiator are added in advance and polymerized by a combination of heat and light.
  • UV of 300 to 450 nm is preferably in the range of 0.1 to 200 J / cm 2 , more preferably in the range of 1 to 20 J / cm 2 . Irradiate with. Further, it is more preferable to irradiate the radiation in two or more times.
  • the lamp used for radiation irradiation include a metal halide lamp, a high pressure mercury lamp lamp, an ultraviolet LED lamp, and an electrodeless mercury lamp.
  • Photopolymerization and thermal polymerization may be performed at the same time in order to quickly complete the polymerization and curing.
  • the curable composition is heated at a temperature in the range of 30 to 300 ° C. at the same time as the irradiation with radiation to be cured.
  • a thermal polymerization initiator may be added to the curable composition in order to complete the polymerization, but when added in a large amount, the birefringence of the cured product is increased and the hue is deteriorated. Therefore, the addition amount of the thermal polymerization initiator is preferably 0.1 to 2% by mass, and more preferably 0.3 to 1% by mass with respect to the total of the curable monomer components.
  • thermal polymerization initiator used for thermal polymerization examples include hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxycarbonate, peroxyketal, and ketone peroxide.
  • hydroperoxide dialkyl peroxide, peroxyester, diacyl peroxide, peroxycarbonate, peroxyketal, and ketone peroxide.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • the thermal polymerization initiator preferably has a 1 minute half-life temperature of 120 ° C. or higher.
  • photopolymerization initiator used for photopolymerization a photoradical generator or a photocationic polymerization initiator is usually used.
  • a photoinitiator may be used independently or may use 2 or more types together.
  • photoradical generator known compounds that can be used for this purpose can be used.
  • examples include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, or 2,4,6-trimethylbenzoyldiphenylphosphine oxide. .
  • benzophenone or 2,4,6-trimethylbenzoyldiphenylphosphine oxide is preferable.
  • the photocationic polymerization initiator is a compound that initiates cationic polymerization by irradiation with radiation such as ultraviolet rays or electron beams, and includes the following.
  • aromatic sulfonium salts include bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate, bis [4- (diphenylsulfone).
  • Nio) phenyl] sulfide bishexafluoroborate bis [4- (diphenylsulfonio) phenyl] sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluoro, diphenyl-4- (phenylthio) ) Phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) phenyl Rufonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium te
  • Aromatic iodonium salts include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecyl) Phenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluorophosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexaflu
  • aromatic diazonium salt examples include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, and the like.
  • Aromatic ammonium salts include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl-2- Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) -2- Examples thereof include cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate.
  • (2,4-Cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron salt includes (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron.
  • UVI6990 UVI6979 manufactured by Union Carbide
  • SP-150 SP-170
  • SP-172 manufactured by ADEKA
  • Irgacure 261 manufactured by Ciba Geigy
  • Irgacure 250 Rhodia SILPI 2074 or JMF-2456 manufactured by Rhodia
  • a curing agent for curing the cationic polymerizable monomer may be added.
  • the curing agent include amine compounds, compounds such as polyaminoamide compounds synthesized from amine compounds, tertiary amine compounds, imidazole compounds, hydrazide compounds, melamine compounds, acid anhydrides, phenolic compounds, thermal latent cationic polymerization catalysts. Or dicyanamide and derivatives thereof. These hardening
  • curing agents may be used independently and 2 or more types may be used together.
  • Adeka Opton CP-66 or CP-77 manufactured by ADEKA Co., Ltd.
  • Sun-Aid SI-15 SI-20, SI-25, SI-40, SI -45, SI-47, SI-60, SI-80, SI-100, SI-100L, SI-110L, SI-145, SI-150, SI-160, or SI-180L (Sanshin Chemical Industry Co., Ltd. )).
  • a photosensitizer can be added.
  • Specific examples include pyrene, perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, and benzoflavin.
  • Examples of commercially available photosensitizers include Adekapitomer SP-100 (manufactured by ADEKA Corporation).
  • the component amount of the photopolymerization initiator is preferably 0.001 part by mass or more and 0.01 part by mass or more when the total amount of polymerizable compounds in the curable composition is 100 parts by mass. Is more preferably 0.05 parts by mass or more. Further, the amount of the component of the photopolymerization initiator is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, and further preferably 0.1 parts by mass or less. That is, the range of the component amount of the photopolymerization initiator is preferably 0.001 to 5 parts by mass, and 0.01 to 2 parts by mass when the total amount of polymerizable compounds in the curable composition is 100 parts by mass.
  • the photopolymerization initiator is a photocationic polymerization initiator, it is 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably, with respect to 100 parts by mass of the total amount of the cationic polymerizable monomer. 0.5 parts by mass or more, usually 10 parts by mass or less, preferably 5 parts by mass or less, and more preferably 1 part by mass or less.
  • the component amount of the photopolymerization initiator ranges from 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the cation polymerizable monomer.
  • 0.1 to 5 parts by mass is more preferable, and 0.5 to 1 part by mass is further preferable.
  • the addition amount of the photopolymerization initiator is too large, the polymerization proceeds rapidly, not only increasing the birefringence of the resulting cured product but also deteriorating the hue.
  • the concentration of the photopolymerization initiator is 5 parts by mass
  • absorption of the photopolymerization initiator causes light to not reach the side opposite to the irradiation of ultraviolet rays, resulting in an uncured part. Further, it is colored yellow and the hue is markedly deteriorated.
  • the amount is too small, the polymerization may not proceed sufficiently even if ultraviolet irradiation is performed.
  • the nonwoven fabric of the present invention and the matrix material are composited, it is preferable to perform the above-described chemical modification treatment on the nonwoven fabric before the composite of the matrix material.
  • the nonwoven fabric may be substituted with an organic solvent such as alcohol and dried, and then the chemical modification may be performed, or the chemical modification may be performed without drying. Since the reaction rate of chemical modification becomes faster after drying, it is preferable. Drying may be air drying, vacuum drying, or pressure drying. It can also be heated.
  • the nonwoven fabric When the nonwoven fabric is chemically modified, it is preferable to thoroughly wash after the chemical modification in order to terminate the reaction. If the unreacted chemical modifier remains, it is not preferable because it causes coloring later or becomes a problem when it is combined with the resin. In addition, after washing sufficiently, it is preferable to further replace with an organic solvent such as alcohol. In this case, the nonwoven fabric can be easily replaced by immersing it in an organic solvent such as alcohol.
  • the nonwoven fabric when chemically modifying a nonwoven fabric, is normally dried after chemical modification. This drying may be air drying, vacuum drying, pressure drying, or heat drying.
  • This drying may be air drying, vacuum drying, pressure drying, or heat drying.
  • the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. That is, the temperature range when heating during drying is preferably 50 to 250 ° C, more preferably 80 to 150 ° C. If the heating temperature is too low, drying may take time or drying may be insufficient. If the heating temperature is too high, the nonwoven fabric may be colored or decomposed.
  • the pressure when pressurizing, is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, and preferably 5 MPa or less, more preferably 1 MPa or less. That is, the range of pressure (gauge pressure) when pressurizing is preferably 0.01 to 5 MPa, and more preferably 0.1 to 15 MPa. If the pressure is too low, drying may be insufficient, and if the pressure is too high, the nonwoven fabric may be crushed or decomposed.
  • the composite of the present invention is a fiber composite having a thickness of 100 ⁇ m, heated at 190 ° C. with an oxygen partial pressure of 0.006 MPa or less for 1 hour, and then the yellowness (YI value) measured according to JIS standard K7105 is 30 or less. It is preferable that The yellowness is more preferably 25 or less.
  • the yellowness of the composite can be measured, for example, using a color computer manufactured by Suga Test Instruments.
  • the yellowness of the composite can be reduced by chemically modifying the cellulose fibers or using a highly transparent matrix material.
  • the composite of the present invention fibers having a fiber diameter thinner than the wavelength of visible light are used. Therefore, if a highly transparent material is used for the matrix material, a composite having high transparency, that is, having a low haze is obtained. Can do.
  • the haze value of the composite is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less, as measured according to JIS standard K7136 for a 100 ⁇ m thick composite. The following is particularly preferable.
  • the haze of the composite can be measured, for example, with a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
  • the composite of the present invention has a low water absorption, but in a 100 ⁇ m thickness, the water absorption measured according to JIS standard K7209 (D method) is preferably 1% or less, 0.8 % Or less is more preferable, 0.5% or less is further preferable, and 0.3% or less is particularly preferable.
  • the water absorption rate exceeds 1%, the composite dehydrated in the processing process is undesirably stretched by absorbing moisture in the air when left in the air and causing dimensional deformation.
  • the composite of the present invention has a thickness of 100 ⁇ m, and the total light transmittance measured in accordance with JIS standard K7105 in the thickness direction is preferably 60% or more, more preferably 70% or more, more preferably 80%. More preferably, it is 82% or more, more preferably 84% or more, still more preferably 86% or more, particularly preferably 88% or more, and particularly preferably 90% or more. If this total light transmittance is less than 60%, it becomes translucent or opaque, and it may be difficult to use it in applications requiring transparency.
  • the total light transmittance can be measured, for example, using a Suga Test Instruments haze meter, and the value of C light is used.
  • the parallel light transmittance measured in accordance with JIS standard K7105 in the thickness direction is 57% or more, further 70% or more, particularly 80% or more, especially 89%. The above is preferable. If the parallel light transmittance is less than 57%, the amount of scattered light is increased and haze is increased. For example, in an organic EL device application, the pixel becomes unclear and the color is blurred or blurred.
  • the parallel light transmittance can be measured, for example, using a Suga Test Instruments haze meter, and the value of C light is used.
  • the composite of the present invention can easily have a low coefficient of linear thermal expansion, but preferably has a coefficient of linear thermal expansion of 1 to 50 ppm / K.
  • the linear thermal expansion coefficient of the composite of the present invention is more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, the linear thermal expansion coefficient is preferably 1 ppm / K or more, and more preferably 5 ppm / K or more. That is, the range of the linear thermal expansion coefficient is preferably 1 to 50 ppm / K, more preferably 5 to 30 ppm / K, and still more preferably 5 to 20 ppm / K.
  • linear thermal expansion coefficient of an inorganic thin film transistor is about 15 ppm / K
  • the linear thermal expansion coefficient of the composite exceeds 50 ppm / K
  • two layers are combined in an inorganic film.
  • the difference in coefficient of linear thermal expansion between layers becomes large, and cracks and the like are generated.
  • the linear thermal expansion coefficient is measured by the method described in the section of Examples described later.
  • the matrix material is filled in the gaps between the fine fibrous celluloses, but when the nonwoven fabric is used, the matrix material is filled in the gaps in the nonwoven fabric. Therefore, the volume ratio of the matrix material filling portion is substantially equal to the porosity of the nonwoven fabric.
  • the tensile strength of the composite of the present invention is preferably 40 MPa or more, more preferably 100 MPa or more. If the tensile strength is lower than 40 MPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
  • the composite of the present invention has a tensile modulus of preferably 0.2 to 100 GPa, more preferably 1 to 100 GPa.
  • a tensile modulus of preferably 0.2 to 100 GPa, more preferably 1 to 100 GPa.
  • the tensile elastic modulus is lower than 0.2 GPa, sufficient strength cannot be obtained, which may affect the use in applications where force is applied such as structural materials.
  • there is a suitable range for the tensile elastic modulus of the substrate If the tensile elastic modulus of the substrate is low, the substrate is bent by its own weight, and it becomes difficult to form a smooth surface. For this reason, transistors and other elements cannot be formed with high accuracy.
  • the tensile elastic modulus is too high, it becomes hard and brittle, causing problems such as cracking of the substrate itself.
  • the composite of the present invention has a low linear thermal expansion coefficient, high elasticity, and high strength.
  • the composite of the present invention can be used as a structural material.
  • it is suitably used as automobile materials such as glazing, interior materials, outer plates, or bumpers, personal computer casings, home appliance parts, packaging materials, building materials, civil engineering materials, marine products, or other industrial materials.
  • a fiber width of 30 nm or less, particularly preferably 20 nm or less is used as the fine fibrous cellulose, and the transparent resin is used as the matrix material
  • the transparency of the composite is increased and haze is reduced.
  • the water absorption can be lowered by appropriately selecting a matrix material.
  • the composites of the present invention those having high transparency, small haze, high strength, and low water absorption are excellent in optical characteristics. It is suitable as a display, a substrate or a panel. Moreover, it is suitable for substrates for solar cells such as silicon-based solar cells or dye-sensitized solar cells. For use as a substrate, it may be laminated with a barrier film, ITO, TFT or the like. Moreover, it is suitably used for window materials for automobiles, window materials for railway vehicles, window materials for houses, window materials for offices, factories and the like. As the window material, a film such as a fluorine film or a hard coat film, or an impact-resistant or light-resistant material may be laminated as desired.
  • a film such as a fluorine film or a hard coat film, or an impact-resistant or light-resistant material may be laminated as desired.
  • the method for producing fine fibrous cellulose includes: Drying the fiber raw material containing cellulose to obtain a dry pulp having a moisture content of 10% or less based on the dry weight of the fiber raw material, and maleic anhydride, succinic anhydride, and phthalic anhydride, or these
  • the dried pulp is treated with at least one carboxylic acid compound selected from the group consisting of derivatives of carboxy group to introduce a carboxy group into cellulose, and a carboxy group is introduced after completion of the carboxy group introduction step.
  • Ri and alkali treatment step of treating at least one alkali solution selected preferably has a fibrillation treatment step of fibrillation treatment the cellulose after the alkali treatment.
  • a method for producing fine fibrous cellulose comprising at least one carboxylic acid compound selected from the group consisting of maleic anhydride, succinic anhydride, phthalic anhydride or derivatives thereof.
  • Cellulose is selected from the group consisting of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, tetramethylammonium hydroxide aqueous solution, tetraethylammonium hydroxide aqueous solution, tetrapropylammonium hydroxide aqueous solution, and tetrabutylammonium hydroxide aqueous solution.
  • alkali treatment step of treating at least one alkali solution that preferably has a fibrillation treatment step of fibrillation treatment the cellulose after the alkali treatment.
  • Example 1 Hardwood kraft pulp (LBKP) was dried at 105 ° C. for 3 hours to obtain a dry pulp having a water content of 3% by mass or less. Next, 4 g of dried pulp and 4 g of maleic anhydride (100 parts by mass with respect to 100 parts by mass of dried pulp) were filled in an autoclave and treated at 150 ° C. for 2 hours. Next, the pulp treated with maleic anhydride was washed with 500 mL of water three times, and then ion-exchanged water was added to prepare 490 mL of slurry.
  • LLKP Hardwood kraft pulp
  • maleic anhydride 100 parts by mass with respect to 100 parts by mass of dried pulp
  • the slurry was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by MTechnic Co., Ltd.) at 21500 rpm, and finally a cooling / high-speed centrifuge (Kokusan Co., Ltd.). Manufactured by H-2000B) and centrifuged at 12000 G for 10 minutes, and the supernatant was recovered to obtain a defibrated pulp slurry. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 1).
  • the cellulose maintained the cellulose I type crystal
  • Measurement of an infrared absorption spectrum by FT-IR showed absorption based on a carboxy group in the vicinity of 1580 and 1720 cm ⁇ 1 , confirming the addition of maleic acid.
  • Example 2 A defibrated pulp slurry was obtained in the same manner as in Example 1 except that succinic anhydride was used instead of maleic anhydride.
  • succinic anhydride was used instead of maleic anhydride.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 2).
  • the cellulose maintained the cellulose I type crystal
  • the addition of succinic acid was confirmed by measurement of the infrared absorption spectrum by FT-IR.
  • Example 3 Example 1 except that the amount of maleic anhydride added was changed to 12 g (300 parts by mass with respect to 100 parts by mass of dried pulp), the treatment time with maleic anhydride was changed to 1 hour, and the washing medium was changed to acetone. A defibrated pulp slurry was obtained. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 3). Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 4 A defibrated pulp slurry was obtained in the same manner as in Example 3 except that the hardwood kraft pulp was not dried and the treatment time with maleic anhydride was changed to 1 hour.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 4). Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 5 Defibering in the same manner as in Example 1 except that softwood kraft pulp (NBKP) was used instead of hardwood kraft pulp and the amount of maleic anhydride added was changed to 2 g (50 parts by weight with respect to 100 parts by weight of dry pulp). A pulp slurry was obtained. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • NNKP softwood kraft pulp
  • Example 6 A defibrated pulp slurry was obtained in the same manner as in Example 1 except that hemp pulp was used in place of hardwood kraft pulp and the amount of maleic anhydride added was changed to 2 g.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 7 A defibrated pulp slurry was obtained in the same manner as in Example 1 except that 4 g of maleic anhydride was changed to 2 g of maleic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp).
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 8 A defibrated pulp slurry was obtained in the same manner as in Example 1 except that 4 g of maleic anhydride was changed to 2 g of phthalic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp).
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained a cellulose I-type crystal, and addition of phthalic acid was confirmed by measurement of an infrared absorption spectrum by FT-IR.
  • Example 9 The hardwood kraft pulp was dried at 105 ° C. for 3 hours to obtain a dry pulp having a moisture content of 3% by mass or less. Next, 4 g of dried pulp and 2 g of maleic anhydride (50 parts by mass with respect to 100 parts by mass of dried pulp) were filled in an autoclave and treated at 150 ° C. for 2 hours. Next, without washing with water, the dried pulp was dispersed in 250 mL of a 0.8 mass% aqueous sodium hydroxide solution, and the pulp was alkali-treated while stirring the slurry. The pH of the pulp slurry was about 12.5. Thereafter, the pulp after alkali treatment was washed with water until the pH became 8 or less.
  • ion-exchanged water was added to the pulp after the alkali treatment to prepare a slurry having a solid content concentration of 0.5% by mass.
  • the slurry was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by MTechnic Co., Ltd.) at 21500 rpm, and finally a cooling / high-speed centrifuge (Kokusan Co., Ltd.). Manufactured by H-2000B) and centrifuged at 12000 G for 10 minutes, and the supernatant was recovered to obtain a defibrated pulp slurry.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Moreover, the cellulose maintained the cellulose I type crystal
  • Example 10 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 2 g of maleic anhydride was changed to 2 g of succinic anhydride (50 parts by mass with respect to 100 parts by mass of the dried pulp).
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose type I crystal, and addition of succinic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 11 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 2 g of maleic anhydride was changed to 2 g of phthalic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp).
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained a cellulose I-type crystal, and addition of phthalic acid was confirmed by measurement of an infrared absorption spectrum by FT-IR.
  • Example 12 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that unbleached hardwood kraft pulp (LUKP, unbleached kraft pulp) was used.
  • LLKP unbleached hardwood kraft pulp
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 13 A defibrated pulp slurry was obtained in the same manner as in Example 9, except that oxygen-bleached hardwood kraft pulp (LOKP, oxygen-bleached kraft pulp) was used.
  • LLKP oxygen-bleached hardwood kraft pulp
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 14 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 12.5 mass% aqueous ammonia solution was used instead of 0.8 mass% sodium hydroxide.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 15 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 2.0 mass% tetramethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide.
  • a 2.0 mass% tetramethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 16 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 2.5 mass% tetraethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide.
  • a 2.5 mass% tetraethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 17 A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 3.0% by mass tetrapropylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide.
  • a 3.0% by mass tetrapropylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 18 A defibrated pulp slurry was obtained in the same manner as in Example 9, except that a 3.5% by mass tetrabutylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide.
  • a 3.5% by mass tetrabutylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 19 A defibrated pulp slurry was obtained in the same manner as in Example 7 except that the reaction was performed at 130 ° C. for 2 hours in an autoclave.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 20 The hardwood kraft pulp was dried at 105 ° C. for 3 hours to obtain a dry pulp having a water content of 3% or less. Next, a maleic anhydride solution obtained by dissolving 2 g of maleic anhydride in 4 g of acetone was added dropwise to 4 g of the dried pulp and stirred to soak the maleic anhydride solution in the dried pulp. Next, acetone was volatilized by drying at 40 ° C. for 30 minutes, and then the autoclave was filled. The autoclave was placed in an oven at 100 ° C. and treated for 2 hours. This introduced a carboxy group into the cellulose.
  • the dried pulp treated with maleic anhydride was dispersed in 250 mL of 0.8% aqueous sodium hydroxide solution to form a slurry, and the resulting slurry was stirred to alkali-treat the pulp.
  • the pH of the slurry was about 12.5.
  • the pulp after alkali treatment was washed with water until the pH became 8 or less.
  • ion-exchanged water was added to the pulp after washing with water to prepare a slurry having a solid content concentration of 0.5%.
  • the slurry was defibrated for 30 minutes at 21500 rpm using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.).
  • the mixture was centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (manufactured by Kokusan Co., Ltd., H-2000B), and the supernatant was collected to obtain a fine fibrous cellulose dispersion.
  • a cooling high-speed centrifuge manufactured by Kokusan Co., Ltd., H-2000B
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm.
  • the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 21 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 20 except that 0.8% calcium hydroxide was used instead of 0.8% sodium hydroxide in the alkali washing step.
  • the pH of the slurry during alkali washing was about 12.8.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
  • Example 1 (Comparative Example 1) The alkali treatment in Example 3 was omitted, and an attempt was made to defibrate the slurry after the maleic anhydride treatment. However, since the slurry contained many lumps of pulp, it could not be defibrated.
  • Example 2 The treatment with the maleic anhydride of the dried pulp was omitted, and a defibrated pulp slurry was obtained in the same manner as in Example 3 except that the dried pulp was alkali-treated and then defibrated.
  • the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Moreover, it was confirmed by X-ray diffraction that the cellulose maintained the cellulose I type crystal.
  • Example 3 A defibrated pulp slurry was obtained in the same manner as in Example 3 except that maleic anhydride treatment and alkali treatment were omitted.
  • the supernatant yield after centrifugation is the yield of fine fibrous cellulose obtained by excluding the aggregates of fine fibrous cellulose and non-fine fibrous materials having a large fiber width, and the supernatant yield is high.
  • the yield of finer fine fibrous cellulose is higher.
  • Example 1 to 21 in which the fiber raw material was treated with an anhydride of dicarboxylic acid and then subjected to alkali treatment, the supernatant yield after centrifugation was high and the yield of fine fibrous cellulose was high.
  • Comparative Example 2 in which the treatment with the dicarboxylic acid anhydride was omitted, the supernatant yield after centrifugation was low, and the yield of fine fibrous cellulose was low.
  • Example 4 in Examples 1 to 3 in which the pulp was dried, the fiber length of the obtained fine fibrous cellulose was obtained in Example 4 in which the pulp was not dried. It was longer than fine fibers.
  • Example 20 Since the fiber width of the fine fibrous cellulose in Examples 1 to 4 is the same, the axial ratio of the fine fibrous cellulose obtained in Examples 1 to 3 is larger than that of the fine fibrous cellulose obtained in Example 4. (See Figures 1-4). In Examples 12 and 13 using unbleached kraft pulp, the supernatant yield after centrifugation was higher than that in Comparative Example 4, and the yield of fine fibrous cellulose was high.
  • Example 20 in which maleic anhydride was dissolved in advance with acetone and uniformly impregnated into the pulp had a higher supernatant yield after centrifugation than Example 9.
  • Example 22 Manufacture of non-woven fabric>
  • the slurry containing fine fibrous cellulose obtained in Example 8 was diluted with water so that the cellulose concentration became 0.127% by mass, adjusted to 150 ml, and 30 ml of isopropyl alcohol was gently added from above the liquid, and the pressure was reduced. Filtration was performed.
  • As a filter KG-90 made by Advantech was used, and a PTFE membrane filter made by Advantech having a pore size of 1.0 ⁇ m was placed on the glass filter. The effective filtration area was 48 cm 2 .
  • Example 23 Manufacture of acetylated nonwoven fabric>
  • the cellulose to which phthalic acid was added by the method of Example 8 was acetylated in acetic anhydride at 115 ° C. for 5 hours. Thereafter, it was thoroughly washed with distilled water and defibrated in the same manner as in Example 1 to obtain a fine fibrous cellulose-containing slurry. Using this fine fibrous cellulose-containing slurry, a nonwoven fabric was formed in the same manner as in Example 22 to obtain an acetylated nonwoven fabric.
  • Porosity of nonwoven fabric It calculated
  • Porosity (vol%) ⁇ 1-B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
  • A is the area (cm 2 ) of the nonwoven fabric
  • t (cm) is the thickness
  • B is the mass (g) of the nonwoven fabric
  • M is the density of cellulose
  • M 1.5 g / cm 3 is assumed in the present invention. did.
  • the film thickness of the nonwoven fabric was measured at 10 points for various positions of the nonwoven fabric using a film thickness meter (IP65 manufactured by Mitutoyo Co., Ltd.), and the average value was adopted.
  • the nonwoven fabrics of Examples 22 and 23 both had an appropriate porosity.
  • Example 24 ⁇ Composite with resin matrix material>
  • the acetylated cellulose nonwoven fabric obtained in Example 23 was mixed with 80 parts by mass of 1,10-decandiol dimethacrylate, 20 parts by mass of pentaerythritol tetrakis (3-mercaptobutyrate), 2,4,6-trimethylbenzoyldiphenylphosphine.
  • a solution prepared by mixing 0.02 parts by mass of oxide (“Lucirin TPO" manufactured by BASF) and 0.02 parts by mass of Irganox 184 was impregnated and left overnight under reduced pressure.
  • the obtained cellulose fiber aggregate impregnated with the resin solution was sandwiched between two glass plates, and was cured with an ultraviolet ray using an electrodeless mercury lamp lamp (“D bulb” manufactured by Fusion UV Systems).
  • D bulb an electrodeless mercury lamp lamp
  • the test was carried out under conditions of complete curing by passing 10 times each on the front and back sides (total 20 times). After the ultraviolet irradiation, the glass plate was removed and heated at 190 ° C.
  • the ultraviolet irradiance was measured with an ultraviolet illuminance meter “UV-M02” manufactured by Oak Seisakusho using an attachment “UV-35”, and the illuminance of ultraviolet rays of 320 to 390 nm was measured at 23 ° C.
  • Example 25 (Epoxy emulsion papermaking) 50 parts by mass of the fine fibrous cellulose-containing slurry obtained in Example 9 diluted to a solid content concentration of 0.2% by mass and an epoxy resin emulsion W2821R70 diluted to a solid content concentration of 0.2% by mass (manufactured by Japan Epoxy Resin Co., Ltd.) ) After mixing 50 parts by mass of slurry and 5 parts by mass of imidazole-based curing agent EMI24 (manufactured by Japan Epoxy Resin Co., Ltd.) diluted to a solids concentration of 0.2% by mass, the slurry has a solids concentration of 0.2% by mass.
  • imidazole-based curing agent EMI24 manufactured by Japan Epoxy Resin Co., Ltd.
  • a coagulant (FS-614, Kurita Kogyo) aqueous solution was added and stirred for 1 minute.
  • the obtained mixed liquid was sucked and dehydrated on a polytetrafluoroethylene membrane filter having a pore diameter of 0.5 ⁇ m so as to have a basis weight of 50 g / m 2 to obtain a deposit.
  • the deposit was dried with a cylinder dryer at 120 ° C. to obtain a fine fibrous cellulose-matrix composite.
  • Four obtained composites were stacked and then pressed for 1 hour at a pressure of 10 kgf / cm 2 using a press machine heated to 170 ° C.
  • the composite after pressing had a thickness of 150 ⁇ m.
  • the resulting composite had a tensile elastic modulus at 23 ° C. of 6.2 GPa.
  • [Tensile modulus of composite] The obtained composite was cut into a length of 10 mm ⁇ 40 mm with a laser cutter. Using a DMS6100 manufactured by SII, the chuck was 20 mm in chuck mode, the frequency was 10 Hz, and 2 ° C./min. The tensile elastic modulus was determined from the storage elastic modulus E ′ (unit: GPa) at 23 ° C. from ⁇ 100 ° C. to 250 ° C.
  • Total light transmittance of composite Based on JIS standard K7105, the total light transmittance by C light was measured using the haze meter by Suga Test Instruments.
  • the composite of Example 24 had a low yellowness with a high elastic modulus and a low linear thermal expansion coefficient.
  • the composite of Example 25 had a high elastic modulus and a low linear thermal expansion coefficient.
  • the fiber raw material can be sufficiently refined, and the yield of fine fibrous cellulose is high, so that the production efficiency of fine fibrous cellulose from the fiber raw material is high.
  • the manufacturing method of the fine fibrous cellulose of this invention is low cost, and its environmental impact is small.
  • the manufacturing efficiency of the nonwoven fabric with respect to a fiber raw material can be improved.
  • the fine fibrous cellulose of the present invention has a small fiber width and a large axial ratio (fiber length / fiber width), the slurry stability of the fine fibrous cellulose is high, and the resulting nonwoven fabric has high strength.
  • the composite of the fine fibrous cellulose and the matrix resin of the present invention has high strength and a low coefficient of linear thermal expansion, it has industrial applicability.

Abstract

The present invention relates to a process for producing microfibrous cellulose which comprises: a carboxy group introduction step in which a fibrous raw material comprising cellulose is treated with at least one carboxylic acid-based compound selected from the group consisting of compounds having two or more carboxy groups, acid anhydrides of compounds having two or more carboxy groups, and derivatives of these to introduce carboxy groups into the cellulose; an alkali treatment step in which after completion of the carboxy group introduction step, the cellulose into which carboxy groups have been introduced is treated with an alkali solution; and a fibrillation step in which the cellulose which has undergone the alkali treatment is fibrillated. According to the invention, it is possible to provide a process for microfibrous-cellulose production in which microfibrous cellulose is highly efficiently produced from a fibrous raw material and which is low in cost and reduced in environmental burden.

Description

微細繊維状セルロースの製造方法、不織布の製造方法、微細繊維状セルロース、微細繊維状セルロース含有スラリー、不織布、及び複合体Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, slurry containing fine fibrous cellulose, nonwoven fabric, and composite
 本発明は、微細繊維状セルロースの製造方法、不織布の製造方法、微細繊維状セルロース、微細繊維状セルロース含有スラリー、不織布、及び複合体に関する。
 本願は、2011年8月8日に日本に出願された特願2011-173194号、2011年11月28日に日本に出願された特願2011-258674号、及び2012年2月7日に日本に出願された特願2012-024457号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing fine fibrous cellulose, a method for producing a non-woven fabric, fine fibrous cellulose, a fine fibrous cellulose-containing slurry, a non-woven fabric, and a composite.
This application is filed in Japanese Patent Application No. 2011-173194 filed in Japan on August 8, 2011, Japanese Patent Application No. 2011-258664 filed in Japan on November 28, 2011, and Japan on February 7, 2012. Claiming priority based on Japanese Patent Application No. 2012-024457 filed in Japan, the contents of which are incorporated herein by reference.
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10~50μmのセルロース繊維、とりわけ木材由来のセルロース繊維(パルプ)は主に紙製品としてこれまでにも幅広く使用されてきた。
 また、セルロース繊維としては、繊維径が1μm以下の微細繊維状セルロースも知られており、その微細繊維状セルロースを含有するシートは機械的強度が高いなどの利点を有し、様々な用途への適用が検討されている(特許文献1)。例えば、微細繊維状セルロースを抄紙して不織布とし、高強度のシートとして利用することが知られている。
In recent years, materials that use reproducible natural fibers have attracted attention due to the substitution of petroleum resources and the growing environmental awareness. Among natural fibers, cellulose fibers having a fiber diameter of 10 to 50 μm, especially wood-derived cellulose fibers (pulp) have been widely used as paper products so far.
In addition, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known as the cellulose fiber, and the sheet containing the fine fibrous cellulose has advantages such as high mechanical strength, and can be used for various applications. Application has been studied (Patent Document 1). For example, it is known that fine fibrous cellulose is made into a non-woven fabric and used as a high-strength sheet.
 微細繊維状セルロースの製造方法としては、特許文献2に、ニトロキシルラジカル誘導体、臭化アルカリ及び酸化剤を含む水系溶媒中でリグノセルロースを処理する方法が開示されている。
 特許文献3には、セルロースのヒドロキシ基の一部に多塩基酸無水物を半エステル化してカルボキシ基を導入した後、解繊して微細化処理する方法が開示されている。
As a method for producing fine fibrous cellulose, Patent Document 2 discloses a method of treating lignocellulose in an aqueous solvent containing a nitroxyl radical derivative, an alkali bromide and an oxidizing agent.
Patent Document 3 discloses a method in which a polybasic acid anhydride is half-esterified into a part of a hydroxy group of cellulose to introduce a carboxy group, and then fibrillated and refined.
特開2008-24788号公報JP 2008-24788 A 特開2008-308802号公報JP 2008-308802 A 特開2009-293167号公報JP 2009-293167 A
 しかしながら、特許文献2は特殊な触媒を用いる必要があり、コストが高くなり、特許文献3に記載の微細繊維状セルロースの製造方法では、繊維原料の微細化が不充分で、微細繊維状セルロースの収率が低く、分散液の安定性も不充分なため、繊維原料からの製造効率が低く、また、コストが高い、環境負荷が大きい等の問題を有していた。
 本発明は、上記問題を解決した微細繊維状セルロースの製造方法、不織布の製造方法、微細繊維状セルロース、微細繊維状セルロース含有スラリー、不織布、及び複合体を提供することを目的とする。
However, Patent Document 2 requires the use of a special catalyst, which increases the cost. In the method for producing fine fibrous cellulose described in Patent Document 3, the fiber raw material is insufficiently refined. Since the yield was low and the dispersion was insufficiently stable, there were problems such as low production efficiency from the fiber raw material, high cost, and high environmental load.
An object of this invention is to provide the manufacturing method of the fine fibrous cellulose which solved the said problem, the manufacturing method of a nonwoven fabric, a fine fibrous cellulose, a fine fibrous cellulose containing slurry, a nonwoven fabric, and a composite_body | complex.
 本発明は以下に関する。
(1)2つ以上のカルボキシ基を有する化合物、2つ以上のカルボキシ基を有する化合物の酸無水物、及びそれらの誘導体よりなる群から選ばれる少なくとも1種のカルボン酸系化合物により、セルロースを含む繊維原料を処理して、セルロースにカルボキシ基を導入するカルボキシ基導入工程と、前記カルボキシ基導入工程終了後に、カルボキシ基を導入したセルロースをアルカリ溶液で処理するアルカリ処理工程と、前記アルカリ処理した後のセルロースを解繊処理する解繊処理工程とを有する微細繊維状セルロースの製造方法、
(2)前記カルボキシ基導入工程が、セルロースのヒドロキシ基に前記カルボン酸系化合物を付加する工程である、(1)に記載の微細繊維状セルロースの製造方法、
(3)前記カルボン酸系化合物は、マレイン酸、コハク酸、フタル酸と、マレイン酸、コハク酸、フタル酸の酸無水物、及びそれらの誘導体からなる群より選ばれる化合物である(1)又は(2)に記載の微細繊維状セルロースの製造方法、
(4)前記カルボン酸系化合物は酸無水物である(1)~(3)のいずれか1項に記載の微細繊維状セルロースの製造方法、
(5)前記カルボキシ基導入工程が、ガス化した前記カルボン酸系化合物によりセルロースを処理する工程である、(1)~(4)のいずれか1項に記載の微細繊維状セルロースの製造方法、
(6)前記繊維原料の水分を予め繊維原料乾燥重量に対して10質量%以下にすることをさらに含む、(1)~(5)のいずれか1項に記載の微細繊維状セルロースの製造方法、
(7)(1)~(6)のいずれか1項に記載の微細繊維状セルロースの製造方法により製造した微細繊維状セルロースを含むスラリーを濾材上で脱水して湿紙を得る脱水工程と、前記湿紙を乾燥させる乾燥工程とを有する不織布の製造方法、
(8)1~1000nmの繊維幅を有し、かつ繊維を構成するセルロースのヒドロキシ基の一部が、下記構造式(1)に示す官能基で置換されたヒドロキシ基である、微細繊維状セルロース、
Figure JPOXMLDOC01-appb-C000002
(構造式(1)において、Rは、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及び単結合のいずれかであり、Mはカチオン性基である。)
(9)(8)に記載の微細繊維状セルロースが分散媒中に分散されてなる微細繊維状セルロース含有スラリー、
(10)(8)に記載の微細繊維状セルロースを含有する不織布、
(11)(8)に記載の微細繊維状セルロースと、マトリックス材料とを含有する複合体、及び
(12)(10)に記載の不織布と、マトリックス材料とを含有する複合体。
The present invention relates to the following.
(1) A compound containing two or more carboxy groups, an acid anhydride of a compound having two or more carboxy groups, and at least one carboxylic acid compound selected from the group consisting of derivatives thereof include cellulose. After the fiber raw material is treated, a carboxy group introduction step for introducing a carboxy group into the cellulose, an alkali treatment step for treating the cellulose introduced with the carboxy group with an alkaline solution after the completion of the carboxy group introduction step, and after the alkali treatment A method for producing fine fibrous cellulose, comprising a defibrating treatment step of defibrating cellulose of
(2) The method for producing fine fibrous cellulose according to (1), wherein the carboxy group introduction step is a step of adding the carboxylic acid compound to a hydroxy group of cellulose.
(3) The carboxylic acid compound is a compound selected from the group consisting of maleic acid, succinic acid, phthalic acid, maleic acid, succinic acid, acid anhydrides of phthalic acid, and derivatives thereof (1) or (2) The manufacturing method of the fine fibrous cellulose as described in
(4) The method for producing fine fibrous cellulose according to any one of (1) to (3), wherein the carboxylic acid compound is an acid anhydride,
(5) The method for producing fine fibrous cellulose according to any one of (1) to (4), wherein the carboxy group introduction step is a step of treating cellulose with the gasified carboxylic acid compound,
(6) The method for producing fine fibrous cellulose according to any one of (1) to (5), further comprising preliminarily setting the moisture of the fiber raw material to 10% by mass or less based on the dry weight of the fiber raw material. ,
(7) a dehydration step of dehydrating a slurry containing fine fibrous cellulose produced by the method for producing fine fibrous cellulose according to any one of (1) to (6) on a filter medium to obtain a wet paper; A method for producing a nonwoven fabric comprising a drying step of drying the wet paper,
(8) A fine fibrous cellulose having a fiber width of 1 to 1000 nm, wherein a part of the hydroxy groups of cellulose constituting the fibers is a hydroxy group substituted with a functional group represented by the following structural formula (1) ,
Figure JPOXMLDOC01-appb-C000002
(In the structural formula (1), R represents a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched group. Any of a chain hydrocarbon group, an aromatic group, and a single bond, and M is a cationic group.)
(9) A fine fibrous cellulose-containing slurry in which the fine fibrous cellulose according to (8) is dispersed in a dispersion medium,
(10) A nonwoven fabric containing the fine fibrous cellulose according to (8),
(11) A composite containing the fine fibrous cellulose described in (8) and a matrix material, and (12) a composite containing the nonwoven fabric described in (10) and a matrix material.
 本発明の微細繊維状セルロースの製造方法によれば、繊維原料を充分に微細化でき、微細繊維状セルロースの収率が高いため、繊維原料からの微細繊維状セルロースの製造効率が高い。また、本発明の微細繊維状セルロースの製造方法は、コストが低く、環境負荷が小さい。
 本発明の不織布の製造方法によれば、繊維原料に対する不織布の製造効率を向上させることができる。
 本発明の微細繊維状セルロースは繊維幅が小さくて、軸比(繊維長/繊維幅)が大きいため、微細繊維状セルロースのスラリー安定性が高く、得られた不織布は強度が高い。また、本発明の微細繊維状セルロースと、マトリックス樹脂の複合体は高強度を有し、線熱膨張率が低い。
According to the method for producing fine fibrous cellulose of the present invention, since the fiber raw material can be sufficiently refined and the yield of fine fibrous cellulose is high, the production efficiency of fine fibrous cellulose from the fiber raw material is high. Moreover, the manufacturing method of the fine fibrous cellulose of this invention is low cost, and its environmental impact is small.
According to the method for producing a nonwoven fabric of the present invention, the production efficiency of the nonwoven fabric with respect to the fiber raw material can be improved.
Since the fine fibrous cellulose of the present invention has a small fiber width and a large axial ratio (fiber length / fiber width), the slurry stability of the fine fibrous cellulose is high, and the resulting nonwoven fabric has a high strength. The composite of the fine fibrous cellulose and the matrix resin of the present invention has high strength and a low linear thermal expansion coefficient.
実施例1で得られた解繊パルプスラリーに含まれるセルロースの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 1. FIG. 実施例2で得られた解繊パルプスラリーに含まれるセルロースの透過型電子顕微鏡写真である。3 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 2. FIG. 実施例3で得られた解繊パルプスラリーに含まれるセルロースの透過型電子顕微鏡写真である。4 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 3. FIG. 実施例4で得られた解繊パルプスラリーに含まれるセルロースの透過型電子顕微鏡写真である。4 is a transmission electron micrograph of cellulose contained in the defibrated pulp slurry obtained in Example 4. 本発明の不織布の製造方法で使用される製造装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the manufacturing apparatus used with the manufacturing method of the nonwoven fabric of this invention.
<微細繊維状セルロース>
 本発明の微細繊維状セルロースは、そのヒドロキシ基(-OH基)の一部が、下記構造式(1)に示す官能基で置換されている。また、本発明の微細繊維状セルロースは、通常製紙用途で用いるパルプ繊維よりもはるかに細いセルロース繊維あるいはセルロースの棒状粒子である。
<Fine fibrous cellulose>
In the fine fibrous cellulose of the present invention, a part of the hydroxy group (—OH group) is substituted with a functional group represented by the following structural formula (1). The fine fibrous cellulose of the present invention is a cellulose fiber or cellulose rod-like particles that are much thinner than pulp fibers that are usually used in papermaking applications.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 構造式(1)におけるRは、後述するカルボキシ基導入工程において使用するカルボン酸系化合物の2つのカルボキシ基の間を連結する基であって、各カルボン酸系化合物に由来する基である。具体的には、飽和-直鎖状炭化水素基(例えばマロン酸、又はコハク酸などに由来)、飽和-分岐鎖状炭化水素基(例えば2-メチルプロパン二酸、又は2-メチルブタン二酸等に由来)、飽和-環状炭化水素基(例えば1,2-シクロヘキサンジカルボン酸等に由来)、不飽和-直鎖状炭化水素基(例えばマレイン酸、又はフマル酸等に由来)、不飽和-分岐鎖状炭化水素基(例えば2-メチル-2-ブテン二酸、又はイタコン酸等に由来)、芳香族基(例えばフタル酸、又はイソフタル酸等に由来)、及びそれらに対してカルボキシ基やヒドロキシル基等の官能基が付加した誘導体基(例えばクエン酸、又はピロメリット酸等に由来)、又は単結合(例えばシュウ酸等に由来)が挙げられる。
 また、構造式(1)におけるRについては、炭化水素基からなる主構造に対して、2以上のカルボキシ基やヒドロキシ基を有することもできる。
R in the structural formula (1) is a group connecting two carboxy groups of a carboxylic acid compound used in a carboxy group introduction step described later, and is a group derived from each carboxylic acid compound. Specifically, a saturated-linear hydrocarbon group (for example, derived from malonic acid or succinic acid), a saturated-branched hydrocarbon group (for example, 2-methylpropanediacid, 2-methylbutanedioic acid, etc.) ), Saturated-cyclic hydrocarbon group (for example, derived from 1,2-cyclohexanedicarboxylic acid, etc.), unsaturated-linear hydrocarbon group (for example, derived from maleic acid or fumaric acid, etc.), unsaturated-branched Chain hydrocarbon groups (eg, derived from 2-methyl-2-butenedioic acid, itaconic acid, etc.), aromatic groups (eg, derived from phthalic acid, isophthalic acid, etc.), and carboxy groups and hydroxyl groups for them Examples thereof include a derivative group to which a functional group such as a group is added (for example, derived from citric acid or pyromellitic acid), or a single bond (for example, derived from oxalic acid).
In addition, R in the structural formula (1) may have two or more carboxy groups or hydroxy groups with respect to the main structure composed of a hydrocarbon group.
 構造式(1)におけるMはカチオン性基であり、構造式(1)におけるカルボキシ基と対になってカルボン酸塩を形成する。
 カルボン酸塩を形成するカチオン性基Mとしては、1価及び多価のカチオン性基を所望により選択して使用することができる。具体的には、ナトリウム、カリウム、又はリチウム等のアルカリ金属の陽イオンや、カルシウム、又はマグネシウム等の2価金属の陽イオン、及びアンモニウム、脂肪族アンモニウム、又は芳香族アンモニウム等が挙げられ、1種又は2種類以上のカチオン性基を組み合わせて適用することもできる。上記カチオン性基Mのうち、汎用的であることから、ナトリウムイオン、カリウムイオン及びアンモニウムが好ましい。
M in the structural formula (1) is a cationic group, and forms a carboxylate by pairing with the carboxy group in the structural formula (1).
As the cationic group M forming the carboxylate, monovalent and polyvalent cationic groups can be selected and used as desired. Specific examples include a cation of an alkali metal such as sodium, potassium or lithium, a cation of a divalent metal such as calcium or magnesium, and ammonium, aliphatic ammonium, or aromatic ammonium. A combination of two or more kinds of cationic groups can also be applied. Among the cationic groups M, sodium ions, potassium ions, and ammonium are preferable because they are versatile.
 本発明の微細繊維状セルロースの短径を幅とした場合、前記セルロースの繊維幅は電子顕微鏡で観察して1nm~1000nmが好ましく、より好ましくは2nm~500nm、さらに好ましくは4nm~100nmである。微細繊維状セルロースの繊維幅が1nm未満であると、セルロース分子として水に溶解しているため、微細繊維状セルロースとしての物性(強度や剛性、又は寸法安定性)が発現しなくなる。一方、1000nmを超えると微細繊維状セルロースとは言えず、通常のパルプに含まれる繊維にすぎないため、微細繊維状セルロースとしての物性(強度や剛性、又は寸法安定性)が得られない。
 微細繊維状セルロースに透明性が求められる用途においては、繊維幅が30nmを超えると、可視光の波長の1/10に近づき、マトリックス材料と複合した場合には界面で可視光の屈折及び散乱が生じ易く、透明性が低下する傾向にあるため、繊維幅は2nm~30nmが好ましく、より好ましくは2~20nmである。前記のような微細繊維状セルロースから得られる複合体は、一般的に緻密な構造体となるために強度が高く、セルロース結晶に由来した高い弾性率が得られることに加え、可視光の散乱が少ないため高い透明性も得られる。
When the minor axis of the fine fibrous cellulose of the present invention is defined as the width, the cellulose fiber width is preferably 1 nm to 1000 nm, more preferably 2 nm to 500 nm, and still more preferably 4 nm to 100 nm, as observed with an electron microscope. When the fiber width of the fine fibrous cellulose is less than 1 nm, the physical properties (strength, rigidity, or dimensional stability) as the fine fibrous cellulose are not expressed because cellulose molecules are dissolved in water. On the other hand, if it exceeds 1000 nm, it cannot be said to be fine fibrous cellulose, but is merely a fiber contained in ordinary pulp, and physical properties (strength, rigidity, or dimensional stability) as fine fibrous cellulose cannot be obtained.
In applications where transparency is required for fine fibrous cellulose, when the fiber width exceeds 30 nm, it approaches 1/10 of the wavelength of visible light, and when combined with a matrix material, visible light is refracted and scattered at the interface. The fiber width is preferably 2 nm to 30 nm, more preferably 2 to 20 nm, because it tends to occur and the transparency tends to decrease. A composite obtained from fine fibrous cellulose as described above generally has a high strength because it becomes a dense structure, and in addition to obtaining a high elastic modulus derived from cellulose crystals, it also scatters visible light. Since there are few, high transparency is also obtained.
 本発明の微細繊維状セルロースはセルロース分子の集合体であり、結晶構造を有する。その結晶構造はI型(平行鎖)である。
 ここで、微細繊維状セルロースがI型結晶構造を有していることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の2箇所の位置に典型的なピークを有することで同定することができる。
 また、微細繊維状セルロースの電子顕微鏡観察による繊維幅の測定は以下のようにして行う。微細繊維状セルロース含有スラリーを調製し、前記スラリーを親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅広の繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍、20000倍、40000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件(1)及び(2)を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、前記直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で前記直線と垂直に交差する直線Yを引き、前記直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、又は直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、又は直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。本発明における微細繊維幅はこのように読み取った繊維幅の平均値である。
The fine fibrous cellulose of the present invention is an aggregate of cellulose molecules and has a crystal structure. Its crystal structure is type I (parallel chain).
Here, the fine fibrous cellulose has the I-type crystal structure in the diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418Å) monochromated with graphite. It can be identified by having typical peaks at two positions near 14 to 17 ° and 2θ = 22 to 23 °.
Moreover, the measurement of the fiber width by electron microscope observation of fine fibrous cellulose is performed as follows. A fine fibrous cellulose-containing slurry is prepared, and the slurry is cast on a carbon film-coated grid subjected to a hydrophilization treatment to obtain a sample for TEM observation. When wide fibers are included, an SEM image of the surface cast on glass may be observed. Observation by an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, 20000 times, 40000 times, or 50000 times depending on the width of the constituent fibers. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions (1) and (2).
(1) One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicularly intersecting the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber intersecting with the straight line X or the straight line Y is visually read with respect to the observation image satisfying the above conditions. In this way, at least three sets of images of the surface portion not overlapping each other are observed, and the width of the fiber intersecting with the straight line X or the straight line Y is read for each image. Thus, at least 20 × 2 × 3 = 120 fiber widths are read. The fine fiber width in the present invention is an average value of the fiber widths read in this way.
 本発明の微細繊維状セルロースの長径を長さとした場合、繊維長は、0.1μm以上が好ましい。繊維長が0.1μm未満では、微細繊維状セルロースを樹脂に複合した際の強度向上効果を得難くなる。繊維長は、TEMやSEM、又はAFMの画像解析より求めることができる。上記繊維長は、微細繊維状セルロースの30質量%以上を占めるセルロースの繊維長である。
 本発明の微細繊維状セルロースの繊維長は、0.1~100μmが好ましく、0.1~50μmがより好ましく、0.1~10μmがさらに好ましい。
When the major axis of the fine fibrous cellulose of the present invention is taken as the length, the fiber length is preferably 0.1 μm or more. When the fiber length is less than 0.1 μm, it is difficult to obtain the strength improvement effect when the fine fibrous cellulose is combined with the resin. The fiber length can be determined by TEM, SEM, or AFM image analysis. The said fiber length is a fiber length of the cellulose which occupies 30 mass% or more of fine fibrous cellulose.
The fiber length of the fine fibrous cellulose of the present invention is preferably from 0.1 to 100 μm, more preferably from 0.1 to 50 μm, still more preferably from 0.1 to 10 μm.
 本発明による微細繊維状セルロースの軸比(繊維長/繊維幅)は100~10000の範囲であることが好ましい。軸比が100未満であると微細繊維状セルロース含有不織布を形成し難くなるおそれがある。軸比が10000を超えるとスラリー粘度が高くなり、好ましくない。 The axial ratio (fiber length / fiber width) of the fine fibrous cellulose according to the present invention is preferably in the range of 100 to 10,000. If the axial ratio is less than 100, it may be difficult to form a fine fibrous cellulose-containing nonwoven fabric. When the axial ratio exceeds 10,000, the slurry viscosity becomes high, which is not preferable.
 本発明の微細繊維状セルロースが含有する結晶部分の比率は、X線回折法によって求められる結晶化度が60%以上であるが、結晶化度は、好ましくは65%以上、より好ましくは70%以上であると、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求めることができる(Segalら、Textile Research Journal、29巻、786ページ、1959年)。
 前記結晶化度の範囲は、60~100%が好ましく、65~95%がより好ましく、70~90%がさらに好ましい。
As for the ratio of the crystal part contained in the fine fibrous cellulose of the present invention, the crystallinity obtained by the X-ray diffraction method is 60% or more, but the crystallinity is preferably 65% or more, more preferably 70%. When it is above, further superior performance can be expected in terms of heat resistance and low linear thermal expansion. The degree of crystallinity can be obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Segal et al., Textile Research Journal, 29, 786, 1959).
The range of the crystallinity is preferably 60 to 100%, more preferably 65 to 95%, and further preferably 70 to 90%.
<微細繊維状セルロースの製造>
 本発明の微細繊維状セルロースの製造方法は、セルロースを含む繊維原料をカルボン酸系化合物により処理して、セルロースにカルボキシ基を導入するカルボキシ基導入工程と、前記カルボキシ基導入工程終了後に、カルボキシ基を導入したセルロース(以下、「カルボキシ基導入セルロース」という。)をアルカリ溶液で処理するアルカリ処理工程と、前記アルカリ処理した後のセルロース(以下、「アルカリ処理セルロース」という。)を解繊処理する解繊処理工程とを有する。
<Manufacture of fine fibrous cellulose>
In the method for producing fine fibrous cellulose of the present invention, a fiber raw material containing cellulose is treated with a carboxylic acid compound to introduce a carboxy group into cellulose, and after completion of the carboxy group introduction step, a carboxy group is introduced. Cellulose (hereinafter referred to as “carboxy group-introduced cellulose”) introduced with an alkali solution, and the cellulose after the alkali treatment (hereinafter referred to as “alkali-treated cellulose”) is defibrated. And a defibrating process.
(カルボキシ基導入工程)
 繊維原料をカルボン酸系化合物により処理する方法としては、繊維原料にガス化したカルボン酸系化合物を混合する方法、又は繊維原料のスラリーにカルボン酸系化合物を添加する方法等が挙げられる。これらのうち、工程が簡便で且つカルボキシ基導入の効率が高くなることから、繊維原料にガス化したカルボン酸系化合物を混合する方法が好ましい。カルボン酸系化合物をガス化する方法としては、カルボン酸系化合物を加熱する方法が挙げられる。
 また、カルボキシ基導入工程では、微細繊維状セルロースの収率がより向上することから、セルロースにカルボン酸系化合物を付加することが好ましい。セルロースへのカルボン酸系化合物の付加では、セルロースのヒドロキシ基にカルボン酸系化合物が付加する。
(Carboxy group introduction step)
Examples of the method for treating the fiber raw material with the carboxylic acid compound include a method of mixing the gasified carboxylic acid compound with the fiber raw material, or a method of adding the carboxylic acid compound to the fiber raw material slurry. Among these, since the process is simple and the efficiency of introducing a carboxy group is high, a method of mixing a gasified carboxylic acid compound with a fiber raw material is preferable. Examples of the method for gasifying the carboxylic acid compound include a method for heating the carboxylic acid compound.
In the carboxy group introduction step, it is preferable to add a carboxylic acid compound to cellulose because the yield of fine fibrous cellulose is further improved. In addition of a carboxylic acid compound to cellulose, a carboxylic acid compound is added to the hydroxy group of cellulose.
 セルロースを含む繊維原料としては、製紙用パルプ;コットンリンターやコットンリントなどの綿系パルプ;麻、麦わら、若しくはバガスなどの非木材系パルプ;又はホヤや海草などから単離されるセルロースなどが挙げられる。これらの中でも、入手のしやすさという点で、製紙用パルプが好ましい。製紙用パルプとしては、広葉樹クラフトパルプ(晒クラフトパルプ(LBKP)、未晒クラフトパルプ(LUKP)、酸素漂白クラフトパルプ(LOKP)など)、針葉樹クラフトパルプ(晒クラフトパルプ(NBKP)、未晒クラフトパルプ(NUKP)、酸素漂白クラフトパルプ(NOKP)など)、サルファイトパルプ(SP)、若しくはソーダパルプ(AP)等の化学パルプ;セミケミカルパルプ(SCP)、若しくはケミグラウンドウッドパルプ(CGP)等の半化学パルプ;砕木パルプ(GP)、サーモメカニカルパルプ(TMP、又はBCTMP)等の機械パルプ;楮、三椏、麻、若しくはケナフ等を原料とする非木材パルプ;又は古紙を原料とする脱墨パルプが挙げられる。これらの中でも、より入手しやすいことから、クラフトパルプ、脱墨パルプ、又はサルファイトパルプが好ましい。
 繊維原料は1種を単独で用いてもよいし、2種以上混合して用いてもよい。
Examples of the fiber raw material containing cellulose include paper pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as hemp, straw or bagasse; or cellulose isolated from squirts or seaweed . Among these, paper pulp is preferable in terms of availability. Paper pulp includes hardwood kraft pulp (bleached kraft pulp (LBKP), unbleached kraft pulp (LUKP), oxygen bleached kraft pulp (LOKP), etc.), softwood kraft pulp (bleached kraft pulp (NBKP), unbleached kraft pulp) (NUKKP, oxygen bleached kraft pulp (NOKP), etc.), sulfite pulp (SP), soda pulp (AP) and other chemical pulp; semi-chemical pulp (SCP), semi-chemical pulp (CGP), etc. Chemical pulp; mechanical pulp such as groundwood pulp (GP), thermomechanical pulp (TMP, or BCTMP); non-wood pulp made from straw, sanjo, hemp, kenaf, etc .; or deinked pulp made from waste paper Can be mentioned. Among these, kraft pulp, deinked pulp, or sulfite pulp is preferable because it is more easily available.
A fiber raw material may be used individually by 1 type, and may be used in mixture of 2 or more types.
 繊維原料は、カルボキシ基導入工程の前に、予め乾燥させて水分を減らしておくことが好ましく、具体的には、繊維原料の水分量を繊維原料絶乾重量に対して10質量%以下にすることが好ましく、7質量%以下にすることがより好ましく、5質量%以下にすることがさらに好ましく、3質量%以下にすることが特に好ましい。
 前記繊維原料の水分の範囲は、0~10質量%が好ましく、1~7質量%がより好ましく、1~5質量%がさらに好ましく、1~3質量%が特に好ましい。
 繊維原料の水分を減らしておくと、軸比が大きい微細繊維状セルロースが得られやすい。軸比の大きい微細繊維状セルロースを不織布、繊維強化樹脂、又は紙基材に配合すると、強度を容易に向上させることができる。
 また、水分量が繊維原料絶乾重量に対して10質量%以下の繊維原料を使用することも、本発明の範囲に含まれる。
The fiber raw material is preferably dried in advance before the carboxy group introduction step to reduce the water content. Specifically, the water content of the fiber raw material is 10% by mass or less based on the absolute dry weight of the fiber raw material. It is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
The moisture content of the fiber raw material is preferably 0 to 10% by mass, more preferably 1 to 7% by mass, further preferably 1 to 5% by mass, and particularly preferably 1 to 3% by mass.
If the moisture of the fiber raw material is reduced, fine fibrous cellulose having a large axial ratio can be easily obtained. When fine fibrous cellulose having a large axial ratio is blended with a nonwoven fabric, a fiber reinforced resin, or a paper base material, the strength can be easily improved.
Moreover, it is also included in the scope of the present invention to use a fiber material having a moisture content of 10% by mass or less based on the absolute dry weight of the fiber material.
 本発明で使用するカルボン酸系化合物は、2つ以上のカルボキシ基を有する化合物、2つ以上のカルボキシ基を有する化合物の酸無水物、及びそれらの誘導体よりなる群から選ばれる少なくとも1種の化合物である。2つ以上のカルボキシ基を有する化合物の中では、2つ以上のカルボキシ基を有する化合物が好ましく、2つのカルボキシ基を有する化合物(ジカルボン酸化合物)がより好ましい。
 2つ以上のカルボキシ基を有する化合物としては、プロパン二酸(マロン酸)、ブタン二酸(コハク酸)、ペンタン二酸(グルタル酸)、ヘキサン二酸(アジピン酸)、2-メチルプロパン二酸、2-メチルブタン二酸、2メチルペンタン二酸、1,2-シクロヘキサンジカルボン酸、2-ブテン二酸(マレイン酸、又はフマル酸)、2-ペンテン二酸、2,4-ヘキサジエン二酸、2-メチル-2-ブテン二酸、2-メチル-2ペンテン二酸、2-メチリデンブタン二酸(イタコン酸)、ベンゼン-1,2-ジカルボン酸(フタル酸)、ベンゼン-1,3-ジカルボン酸(イソフタル酸)、ベンゼン-1,4-ジカルボン酸(テレフタル酸)、又はエタン二酸(シュウ酸)等のジカルボン酸化合物が挙げられる。
 また、2つ以上のカルボキシ基を有する化合物の誘導体としては、2-ヒドロキシプロパン-1,2,3-トリカルボン酸(クエン酸)、又はベンゼン-1,2,4,5-テトラカルボン酸(ピロメリット酸)等の前記ジカルボン酸化合物の誘導体が挙げられる。
 2つ以上のカルボキシ基を有する化合物の酸無水物としては、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸、無水ピロメリット酸、又は無水1,2-シクロヘキサンジカルボン酸等のジカルボン酸化合物や2以上のカルボキシ基を含む化合物の酸無水物が挙げられる。
 2つ以上のカルボキシ基を有する化合物の酸無水物の誘導体としては、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、又はジフェニルマレイン酸無水物等の、カルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、又はフェニル基等)で置換されたものが挙げられる。
 これらのうち、工業的に適用しやすく、また、ガス化しやすいことから、無水マレイン酸、無水コハク酸、又は無水フタル酸が好ましい。
The carboxylic acid compound used in the present invention is at least one compound selected from the group consisting of a compound having two or more carboxy groups, an acid anhydride of a compound having two or more carboxy groups, and derivatives thereof. It is. Among the compounds having two or more carboxy groups, compounds having two or more carboxy groups are preferable, and compounds having two carboxy groups (dicarboxylic acid compounds) are more preferable.
Examples of the compound having two or more carboxy groups include propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), hexanedioic acid (adipic acid), 2-methylpropanedioic acid 2-methylbutanedioic acid, 2-methylpentanedioic acid, 1,2-cyclohexanedicarboxylic acid, 2-butenedioic acid (maleic acid or fumaric acid), 2-pentenedioic acid, 2,4-hexadienedioic acid, 2 -Methyl-2-butenedioic acid, 2-methyl-2-pentenedioic acid, 2-methylidenebutanedioic acid (itaconic acid), benzene-1,2-dicarboxylic acid (phthalic acid), benzene-1,3-dicarboxylic acid ( Examples thereof include dicarboxylic acid compounds such as isophthalic acid), benzene-1,4-dicarboxylic acid (terephthalic acid), and ethanedioic acid (oxalic acid).
Examples of the derivative of a compound having two or more carboxy groups include 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), or benzene-1,2,4,5-tetracarboxylic acid (pyrrole). Derivatives of the dicarboxylic acid compound such as merit acid).
Examples of the acid anhydride of the compound having two or more carboxy groups include maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride, pyromellitic anhydride, or 1,2, -Acid anhydrides of dicarboxylic acid compounds such as cyclohexanedicarboxylic acid and compounds containing two or more carboxy groups.
The acid anhydride derivative of a compound having two or more carboxy groups includes at least an acid anhydride of a compound having a carboxy group, such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, or diphenylmaleic acid anhydride. One in which a part of hydrogen atoms is substituted with a substituent (for example, an alkyl group or a phenyl group) can be mentioned.
Among these, maleic anhydride, succinic anhydride, or phthalic anhydride is preferable because it is industrially applicable and easily gasified.
 繊維原料に対するカルボン酸系化合物の質量割合は、繊維原料100質量部に対して、カルボン酸系化合物が0.1~500質量部であることが好ましく、10~200質量部であることがより好ましい。カルボン酸系化合物の割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えても、収率向上の効果は頭打ちとなり、無駄にカルボン酸系化合物を使用するだけである。 The mass ratio of the carboxylic acid compound to the fiber raw material is preferably 0.1 to 500 parts by mass, more preferably 10 to 200 parts by mass with respect to 100 parts by mass of the fiber raw material. . If the ratio of a carboxylic acid type compound is more than the said lower limit, the yield of a fine fibrous cellulose can be improved more. However, even if the upper limit is exceeded, the effect of improving the yield reaches its peak, and the carboxylic acid compound is merely used in vain.
 本発明においては、カルボキシ基の導入によって、繊維原料のセルロースのヒドロキシ基(-OH基)の一部がエステル結合を形成する。繊維原料のセルロースのヒドロキシ基(-OH基)におけるカルボキシ基の導入量は、セルロース1gあたりに対する導入量として、0.1~2.0mmol/gの範囲が好ましい。上記範囲では微細化によって得られた微細繊維状セルロース含有スラリーの分散安定性が優れる。カルボキシ基の導入量が0.1mmol/g未満では、微細繊維状セルロース含有スラリーの分散安定性が劣り凝集しやすくなるおそれがあり、カルボキシ基の導入量が2.0mmol/gを超えると、微細繊維状セルロースが溶解する恐れがある。
 カルボキシ基の導入量については、TAPPI T237 cm-08(2008) Carboxyl content of pulpに準じてカルボキシ基の量を測定して求めることができる。ただし、本発明においては、カルボキシ基の導入量をより広範囲まで求めることを可能にするために、前記測定方法に用いる試験液のうち、炭酸水素ナトリウム(NaHCO)/塩化ナトリウム(NaCl)=0.84g/5.85gを蒸留水で1000mlに溶解希釈した試験液について、前記試験液の濃度がほぼ4倍となるように、炭酸水素ナトリウム/塩化ナトリウム=3.36g/23.40gに変更した。また、カルボキシ基導入前後のカルボキシ基の量の差を実質的なカルボキシ基導入量とした。
In the present invention, by introducing a carboxy group, a part of the hydroxy group (—OH group) of cellulose of the fiber raw material forms an ester bond. The amount of carboxy groups introduced into the hydroxy group (—OH group) of cellulose as a fiber raw material is preferably in the range of 0.1 to 2.0 mmol / g as the amount introduced per gram of cellulose. Within the above range, the dispersion stability of the fine fibrous cellulose-containing slurry obtained by refinement is excellent. If the introduction amount of the carboxy group is less than 0.1 mmol / g, the dispersion stability of the fine fibrous cellulose-containing slurry may be inferior and may easily aggregate. Fibrous cellulose may be dissolved.
The amount of carboxy group introduced can be determined by measuring the amount of carboxy group according to TAPPI T237 cm-08 (2008) Carboxyl content of pulp. However, in the present invention, in order to make it possible to obtain the introduction amount of the carboxy group over a wider range, among the test solutions used in the measurement method, sodium bicarbonate (NaHCO 3 ) / sodium chloride (NaCl) = 0. About a test solution obtained by dissolving 0.84 g / 5.85 g in 1000 ml with distilled water, the concentration of the test solution was changed to sodium bicarbonate / sodium chloride = 3.36 g / 23.40 g so that the concentration of the test solution was almost 4 times. . Moreover, the difference in the amount of carboxy groups before and after introduction of the carboxy group was defined as the substantial introduction amount of the carboxy group.
 カルボキシ基導入時に用いる装置は特に限定されないが、例えば、攪拌羽根を有する加熱反応容器や回転式加熱反応容器、加熱ジャケットを有する圧力容器や回転式圧力容器、加温ジャケットを有する一軸ミキサー及び二軸ミキサー、あるいは二軸押出機、多軸混練押出機、加圧ニーダー、又は双腕式ニーダーなどの加熱装置を有する混練装置を用いてもよい。 The apparatus used for introducing the carboxy group is not particularly limited. For example, a heating reaction vessel having a stirring blade, a rotary heating reaction vessel, a pressure vessel having a heating jacket, a rotary pressure vessel, a uniaxial mixer having a heating jacket, and a biaxial A mixer or a kneading apparatus having a heating device such as a twin-screw extruder, a multi-screw kneading extruder, a pressure kneader, or a double-arm kneader may be used.
 カルボキシ基導入工程におけるセルロースの処理温度は、セルロースの熱分解温度の点から、0℃以上250℃以下であることが好ましい。
 さらに、処理の際に水が含まれている場合には、80~200℃にすることが好ましく、100~170℃にすることがより好ましい。
The treatment temperature of cellulose in the carboxy group introduction step is preferably 0 ° C. or higher and 250 ° C. or lower from the viewpoint of the thermal decomposition temperature of cellulose.
Further, when water is contained in the treatment, the temperature is preferably 80 to 200 ° C, more preferably 100 to 170 ° C.
 カルボキシ基導入工程においては、所望により触媒を用いることもできる。触媒としてはピリジンやトリエチルアミン、水酸化ナトリウム、又は酢酸ナトリウム等の塩基性触媒や、酢酸、硫酸、又は過塩素酸等の酸性触媒を用いることが好ましい。 In the carboxy group introduction step, a catalyst can be used if desired. As the catalyst, it is preferable to use a basic catalyst such as pyridine, triethylamine, sodium hydroxide, or sodium acetate, or an acidic catalyst such as acetic acid, sulfuric acid, or perchloric acid.
 繊維原料をカルボン酸系化合物により処理した後には、後述するアルカリ処理工程を施すことが好ましいが、アルカリ処理工程におけるアルカリ溶液使用量を減らすために、アルカリ処理工程の前に、カルボキシ基導入セルロースを水や有機溶媒(例えば、アセトン等)により洗浄することができる。
 ただし、水を用いた場合には、カルボン酸系化合物の溶解や加水分解によって生じる酸がセルロースを加水分解するため、繊維長が短くなる可能性がある。
After the fiber raw material has been treated with the carboxylic acid compound, it is preferable to carry out an alkali treatment step described later. It can be washed with water or an organic solvent (for example, acetone).
However, when water is used, the fiber length may be shortened because an acid generated by dissolution or hydrolysis of the carboxylic acid compound hydrolyzes cellulose.
(アルカリ処理工程)
 アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、カルボキシ基導入セルロースを浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、アルカリ金属の水酸化物又はアルカリ土類金属の水酸化物、アルカリ金属の炭酸塩又はアルカリ土類金属の炭酸塩、若しくはアルカリ金属のリン酸塩又はアルカリ土類金属のリン酸塩が挙げられる。アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、又は水酸化カリウムが挙げられ、アルカリ土類金属の水酸化物としては、水酸化カルシウムが挙げられる。
 アルカリ金属の炭酸塩としては炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、又は炭酸水素ナトリウムが挙げられる。アルカリ土類金属の炭酸塩としては炭酸カルシウムなどが挙げられる。
 アルカリ金属のリン酸塩としてはリン酸リチウム、リン酸カリウム、リン酸3ナトリウム、又はリン酸水素2ナトリウムなどが挙げられる。アルカリ土類金属のリン酸塩としてはリン酸カルシウム、又はリン酸水素カルシウムなどが挙げられる。
 有機アルカリ化合物としては、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物及びその水酸化物、炭酸塩、又はリン酸塩等が挙げられる。
 本発明のアルカリ溶液に含まれる有機アルカリ化合物としてより具体的には、例えば、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン、炭酸アンモニウム、炭酸水素アンモニウム、又はリン酸水素2アンモニウム等が挙げられる。
(Alkali treatment process)
Although it does not specifically limit as a method of an alkali treatment, For example, the method of immersing carboxy group introduction | transduction cellulose in an alkaline solution is mentioned.
The alkali compound contained in the alkali solution may be an inorganic alkali compound or an organic alkali compound. Examples of inorganic alkali compounds include alkali metal hydroxides or alkaline earth metal hydroxides, alkali metal carbonates or alkaline earth metal carbonates, alkali metal phosphates or alkaline earth metal phosphorus. Acid salts. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide, and examples of the alkaline earth metal hydroxide include calcium hydroxide.
Examples of the alkali metal carbonate include lithium carbonate, lithium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium carbonate, and sodium hydrogen carbonate. Examples of the alkaline earth metal carbonate include calcium carbonate.
Examples of the alkali metal phosphate include lithium phosphate, potassium phosphate, trisodium phosphate, and disodium hydrogen phosphate. Examples of alkaline earth metal phosphates include calcium phosphate and calcium hydrogen phosphate.
Examples of the organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds and their hydroxides, carbonates, and phosphates.
More specifically, the organic alkali compound contained in the alkali solution of the present invention includes, for example, ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane. , Diaminopentane, diaminohexane, cyclohexylamine, aniline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4 -Aminopyridine, ammonium carbonate, ammonium hydrogen carbonate, diammonium hydrogen phosphate and the like.
 アルカリ溶液における溶媒としては水又は有機溶媒のいずれであってもよいが、極性溶媒(水、又はアルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。
 また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、水酸化カリウム水溶液及びアンモニア水溶液が特に好ましい。
The solvent in the alkaline solution may be either water or an organic solvent, but a polar solvent (polar organic solvent such as water or alcohol) is preferred, and an aqueous solvent containing at least water is more preferred.
Among alkaline solutions, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution and an ammonia aqueous solution are particularly preferred because of their high versatility.
 カルボキシ基導入セルロースを浸漬させたアルカリ溶液の25℃におけるpHは9以上14以下であることが好ましく、10以上14以下であることがより好ましく、11以上14以下であることがさらに好ましい。アルカリ溶液のpHが前記下限値以上であれば、微細繊維状セルロースの収率がより高くなる。しかし、pHが14を超えると、アルカリ溶液の取り扱い性が低下する。
 本発明における「カルボキシ基導入セルロースを浸漬させたアルカリ溶液の25℃におけるpHは9以上」とは、25℃の温度を基準とした時の、カルボキシ基導入セルロースを浸漬させたアルカリ溶液のpHが前記範囲内であることを意味する。すなわち、前記アルカリ溶液が25℃以外の温度に調製される場合は、かかる温度に応じて前記pHの範囲は補正される。このように補正されたpHの範囲の前記アルカリ溶液を調製することも、本発明の範囲に含まれる。
The pH at 25 ° C. of the alkaline solution in which the carboxy group-introduced cellulose is immersed is preferably 9 or more and 14 or less, more preferably 10 or more and 14 or less, and even more preferably 11 or more and 14 or less. If the pH of the alkaline solution is at least the lower limit, the yield of fine fibrous cellulose will be higher. However, when pH exceeds 14, the handleability of an alkaline solution will fall.
In the present invention, “the pH at 25 ° C. of the alkaline solution in which the carboxy group-introduced cellulose is immersed is 9 or more” means that the pH of the alkaline solution in which the carboxy group-introduced cellulose is immersed is based on a temperature of 25 ° C. It means within the above range. That is, when the alkaline solution is prepared at a temperature other than 25 ° C., the pH range is corrected according to the temperature. It is also included in the scope of the present invention to prepare the alkaline solution in the pH range thus corrected.
 アルカリ処理工程におけるアルカリ溶液の温度は、0~50℃が好ましく、10~40℃がより好ましい。 The temperature of the alkali solution in the alkali treatment step is preferably 0 to 50 ° C, more preferably 10 to 40 ° C.
 前記アルカリ処理によって、セルロースに導入されたカルボン酸はカルボン酸塩となって、構造式(1)の化学構造を形成する。
 アルカリ処理工程によるカルボン酸塩の導入量は0.1~2.0mmol/gであることが好ましい。前記範囲では、上記導入されたカルボキシ基の多くが塩になっている。
 セルロースにカルボン酸塩を導入することによって、微細化が容易になり、解繊効率が著しく向上する。また、微細繊維状セルロースのスラリーとしての分散安定性が特に良好になる。理由は定かではないが、セルロース繊維同士の電気的な反発力が強いためと推測される。
By the alkali treatment, the carboxylic acid introduced into the cellulose becomes a carboxylate and forms a chemical structure of the structural formula (1).
The amount of carboxylate introduced by the alkali treatment step is preferably 0.1 to 2.0 mmol / g. Within the above range, many of the introduced carboxy groups are in the form of salts.
By introducing a carboxylate into cellulose, miniaturization is facilitated, and the fibrillation efficiency is significantly improved. Further, the dispersion stability as a slurry of fine fibrous cellulose is particularly good. The reason is not clear, but it is presumed that the electrical repulsion between cellulose fibers is strong.
 アルカリ処理後には、取り扱い性を向上させるために、解繊処理工程の前に、アルカリ処理セルロースを水や有機溶媒により洗浄することが好ましい。 After the alkali treatment, it is preferable to wash the alkali-treated cellulose with water or an organic solvent before the defibrating treatment step in order to improve the handleability.
(解繊処理工程)
 解繊処理工程では、通常、解繊処理装置を用いて、アルカリ処理セルロースを解繊処理して、微細繊維状セルロース含有スラリーを得る。
 解繊処理装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなど、湿式粉砕する装置等を適宜使用することができる。
(Defibration process)
In the defibrating process, usually, the alkali-treated cellulose is defibrated using a defibrating apparatus to obtain a fine fibrous cellulose-containing slurry.
Defibration treatment equipment includes high-speed defibrator, grinder (stone mortar grinder), high-pressure homogenizer and ultra-high pressure homogenizer, high-pressure collision grinder, ball mill, bead mill, disk refiner, conical refiner, twin-screw kneader, vibration mill An apparatus for wet pulverization, such as a homomixer under high-speed rotation, an ultrasonic disperser, or a beater, can be used as appropriate.
 好ましい解繊処理方法としては、上記解繊処理装置を1種以上用いてカルボキシ基を導入したアルカリ処理セルローススラリーを解繊する方法などが挙げられる。また、解繊処理に際しては上記解繊装置を2種以上組み合わせて使用することも可能である。 A preferable defibrating method includes a method of defibrating an alkali-treated cellulose slurry into which a carboxy group has been introduced using one or more of the above defibrating devices. In the defibrating process, two or more kinds of defibrating apparatuses can be used in combination.
 解繊処理の際には、アルカリ処理セルロースを水と有機溶媒を単独又は組み合わせて希釈してスラリー状にすることが好ましい。希釈後のアルカリ処理セルロースの固形分濃度は0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましい。希釈後のアルカリ処理セルロースの固形分濃度が前記下限値以上であれば、解繊処理の効率が向上し、前記上限値以下であれば、解繊処理装置内での閉塞を防止できる。 In the defibrating process, it is preferable to dilute the alkali-treated cellulose with water and an organic solvent alone or in combination to form a slurry. The solid content concentration of the alkali-treated cellulose after dilution is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass. If the solid content concentration of the alkali-treated cellulose after dilution is equal to or higher than the lower limit, the efficiency of the defibrating process is improved, and if it is equal to or lower than the upper limit, blockage in the defibrating apparatus can be prevented.
(化学修飾処理)
 本発明においては、セルロースに対して、化学修飾処理を施してもよい。ここで、化学修飾とは、セルロース中のヒドロキシ基に化学修飾剤を反応させて化合物を付加させることである。化学修飾処理は、微細繊維状セルロースの製造のどの時点で行ってもよく、繊維原料に施してもよいし、カルボキシ基導入セルロースに施してもよいし、アルカリ処理セルロースに施してもよいし、後述の不織布に施してもよい。また、化学修飾処理を、カルボキシ基導入工程と同時に行ってもよい。
(Chemical modification treatment)
In the present invention, chemical modification treatment may be applied to cellulose. Here, chemical modification is to add a compound by reacting a hydroxy group in cellulose with a chemical modifier. The chemical modification treatment may be performed at any point in the production of the fine fibrous cellulose, may be performed on the fiber raw material, may be performed on the carboxy group-introduced cellulose, or may be performed on the alkali-treated cellulose, You may give to the below-mentioned nonwoven fabric. Moreover, you may perform a chemical modification process simultaneously with a carboxy group introduction | transduction process.
 化学修飾によってセルロースに導入させる官能基としては、アセチル基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2-ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、若しくはシンナモイル基等のアシル基、2-メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、若しくはステアリル基等のアルキル基、オキシラン基、オキセタン基、チイラン基、又はチエタン基等が挙げられる。これらの中では特にアセチル基、アクリロイル基、メタクリロイル基、ベンゾイル基、若しくはナフトイル基等の炭素数2~12のアシル基、又はメチル基、エチル基、若しくはプロピル基等の炭素数1~12のアルキル基が好ましい。 As functional groups to be introduced into cellulose by chemical modification, acetyl group, acryloyl group, methacryloyl group, propionyl group, propioyl group, butyryl group, 2-butyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, Decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group, stearoyl group, pivaloyl group, benzoyl group, naphthoyl group, nicotinoyl group, isonicotinoyl group, furoyl group, cinnamoyl group and other acyl groups, 2-methacryloyloxyethyl isocyanate Isocyanate group such as noyl group, methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl Group, nonyl group, decyl group, undecyl group, dodecyl group, myristyl group, palmityl group or stearyl alkyl group such as an oxirane group, an oxetane group, a thiirane group, or a thietane group, and the like. Among these, an acyl group having 2 to 12 carbon atoms such as an acetyl group, an acryloyl group, a methacryloyl group, a benzoyl group, or a naphthoyl group, or an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, or a propyl group. Groups are preferred.
 修飾方法としては、特に限定されるものではないが、セルロース繊維と次に挙げるような化学修飾剤とを反応させる方法がある。この反応条件についても特に限定されるものではないが、所望により溶媒、又は触媒等を用いたり、加熱、又は減圧等を行ったりすることもできる。 The modification method is not particularly limited, and there is a method of reacting cellulose fibers with the following chemical modifiers. Although there are no particular limitations on the reaction conditions, a solvent, a catalyst, or the like can be used, or heating, decompression, or the like can be performed as desired.
 化学修飾剤の種類としては、酸、酸無水物、アルコール、ハロゲン化試薬、イソシアナート、アルコキシシラン、及びオキシラン(エポキシ)等の環状エーテルよるなる群から選ばれる1種又は2種以上の物質が挙げられる。 Examples of the chemical modifier include one or more substances selected from the group consisting of cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies). Can be mentioned.
 酸としては、例えば酢酸、アクリル酸、メタクリル酸、プロパン酸、ブタン酸、2-ブタン酸、又はペンタン酸等が挙げられる。
 酸無水物としては、例えば無水酢酸、無水アクリル酸、無水メタクリル酸、無水プロパン酸、無水ブタン酸、無水2-ブタン酸、又は無水ペンタン酸等が挙げられる。
 ハロゲン化試薬としては、例えばアセチルハライド、アクリロイルハライド、メタクロイルハライド、プロパノイルハライド、ブタノイルハライド、2-ブタノイルハライド、ペンタノイルハライド、ベンゾイルハライド、又はナフトイルハライドが挙げられる。
 アルコールとしては、例えばメタノール、エタノール、プロパノール、又は2-プロパノール等が挙げられる。 
 イソシアナートとしては、例えばメチルイソシアナート、エチルイソシアナート、又はプロピルイソシアナート等が挙げられる。
 アルコキシシランとしては、例えばメトキシシラン、又はエトキシシラン等が挙げられる。
 オキシラン(エポキシ)等の環状エーテルとしては、例えばエチルオキシラン、又はエチルオキセタンが挙げられる。
 これらの中では特に無水酢酸、無水アクリル酸、無水メタクリル酸、ベンゾイルハライド、又はナフトイルハライドが好ましい。
 これらの化学修飾剤は1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the acid include acetic acid, acrylic acid, methacrylic acid, propanoic acid, butanoic acid, 2-butanoic acid, and pentanoic acid.
Examples of the acid anhydride include acetic anhydride, acrylic anhydride, methacrylic anhydride, propanoic anhydride, butanoic anhydride, 2-butanoic anhydride, and pentanoic anhydride.
Examples of the halogenating reagent include acetyl halide, acryloyl halide, methacryloyl halide, propanoyl halide, butanoyl halide, 2-butanoyl halide, pentanoyl halide, benzoyl halide, or naphthoyl halide.
Examples of the alcohol include methanol, ethanol, propanol, and 2-propanol.
Examples of the isocyanate include methyl isocyanate, ethyl isocyanate, and propyl isocyanate.
Examples of the alkoxysilane include methoxysilane and ethoxysilane.
Examples of the cyclic ether such as oxirane (epoxy) include ethyl oxirane or ethyl oxetane.
Among these, acetic anhydride, acrylic anhydride, methacrylic anhydride, benzoyl halide, or naphthoyl halide is particularly preferable.
These chemical modifiers may be used alone or in combination of two or more.
 触媒としてはピリジンやトリエチルアミン、水酸化ナトリウム、又は酢酸ナトリウム等の塩基性触媒や、酢酸、硫酸、又は過塩素酸等の酸性触媒を用いることが好ましい。 As the catalyst, it is preferable to use a basic catalyst such as pyridine, triethylamine, sodium hydroxide, or sodium acetate, or an acidic catalyst such as acetic acid, sulfuric acid, or perchloric acid.
 化学修飾の際の温度条件としては、高すぎるとセルロースの黄変や重合度の低下等が懸念され、低すぎると反応速度が低下することから、10~250℃が好ましい。反応時間は化学修飾剤や化学修飾率にもよるが、通常、数分間から数十時間である。 As the temperature condition for the chemical modification, if it is too high, there is concern about yellowing of cellulose or a decrease in the degree of polymerization, and if it is too low, the reaction rate decreases, so 10 to 250 ° C. is preferable. Although the reaction time depends on the chemical modifier and the chemical modification rate, it is usually from several minutes to several tens of hours.
 本発明において、セルロースの化学修飾率は、セルロースの全ヒドロキシ基に対して、通常65mol%以下、好ましくは50mol%以下、より好ましくは40mol%以下である。化学修飾率の下限は特にない。
 化学修飾を行うことで、セルロースの分解温度が上昇し、耐熱性が高くなるが、化学修飾率が高すぎると、セルロース構造が破壊されて結晶性が低下するため、後述する複合体においては線熱膨張係数が大きくなる傾向にあり、好ましくない。
In the present invention, the chemical modification rate of cellulose is usually 65 mol% or less, preferably 50 mol% or less, more preferably 40 mol% or less, based on the total hydroxy groups of cellulose. There is no particular lower limit for the chemical modification rate.
By performing chemical modification, the decomposition temperature of cellulose increases and the heat resistance increases, but if the chemical modification rate is too high, the cellulose structure is destroyed and the crystallinity is lowered. The thermal expansion coefficient tends to increase, which is not preferable.
 ここでいう化学修飾率とは、セルロース中の全ヒドロキシ基のうちの化学修飾されたものの割合のことである。化学修飾率は、IR、NMR、又は滴定法などにより求めることができる。例えば、エステルの化学修飾率は下記の滴定法によって測定することができる。 The chemical modification rate as used herein refers to the proportion of all hydroxy groups in cellulose that have been chemically modified. The chemical modification rate can be determined by IR, NMR, titration method or the like. For example, the chemical modification rate of the ester can be measured by the following titration method.
 乾燥セルロース0.05gを精秤し、これにエタノール1.5ml、及び蒸留水0.5mlを添加する。これを60~70℃の湯浴中で30分間静置した後、0.5N水酸化ナトリウム水溶液2mlを添加する。これを60~70℃の湯浴中で3時間静置した後、超音波洗浄器にて30分間超音波振とうする。これを、フェノールフタレインを指示薬として0.2N塩酸標準溶液で滴定する。
 ここで、滴定に要した0.2N塩酸水溶液の量Z(ml)から、化学修飾により導入された置換基のモル数Qは、下記式で求められる。
 Q(mol)=0.5(N)×2(ml)/1000-0.2(N)×Z(ml)/1000
 ここで、化学修飾前のカルボキシ基の導入量を、A mmol/g、a mol%、置換基の分子量をSとし、化学修飾基の導入量を、B mmol/g、b mol%、置換基の分子量をTとするとAmmol/gは先の方法により算出されAmmol/gから a mol%は以下の式(I)により算出される。
Figure JPOXMLDOC01-appb-M000004
 一方、Bmmo/gはQとAから以下の式(II)により算出される。
  B(mmol/g)=(Q × 1000)/サンプル量-2A  (II)
 また、Bmmol/gと、 b mol%は以下の式(III)関係にある。
Figure JPOXMLDOC01-appb-M000005
従って、b mol%は下記式(IV)で示される。
Figure JPOXMLDOC01-appb-M000006
Weigh accurately 0.05 g of dry cellulose, and add 1.5 ml of ethanol and 0.5 ml of distilled water to this. This is allowed to stand in a hot water bath at 60 to 70 ° C. for 30 minutes, and then 2 ml of 0.5N aqueous sodium hydroxide solution is added. This is left to stand in a hot water bath at 60 to 70 ° C. for 3 hours, and then shaken with an ultrasonic cleaner for 30 minutes. This is titrated with 0.2N hydrochloric acid standard solution using phenolphthalein as an indicator.
Here, from the amount Z (ml) of the 0.2N aqueous hydrochloric acid solution required for the titration, the number of moles Q of the substituent introduced by chemical modification is obtained by the following formula.
Q (mol) = 0.5 (N) × 2 (ml) /1000−0.2 (N) × Z (ml) / 1000
Here, the introduction amount of the carboxy group before chemical modification is A mmol / g, a mol%, the molecular weight of the substituent is S, and the introduction amount of the chemical modification group is B mmol / g, b mol%, the substituent. Assuming that the molecular weight of T is A, Ammol / g is calculated by the above method, and a mol% is calculated from Ammol / g by the following formula (I).
Figure JPOXMLDOC01-appb-M000004
On the other hand, Bmmo / g is calculated from Q and A by the following formula (II).
B (mmol / g) = (Q × 1000) / sample amount−2A (II)
Further, Bmmol / g and b mol% are in the relationship of the following formula (III).
Figure JPOXMLDOC01-appb-M000005
Therefore, b mol% is represented by the following formula (IV).
Figure JPOXMLDOC01-appb-M000006
(作用効果)
 上記微細繊維状セルロースの製造方法によれば、繊維原料を充分に微細化でき、微細繊維状セルロースの収率が高くなって、微細繊維状セルロースの製造効率が向上する。その理由は、カルボキシ基導入セルロースをアルカリ処理することによって、セルロース繊維同士の静電反発力が高くなり、また、セルロース間への水の浸透圧が向上し、解繊性が高くなるため、と推測される。
 また、上記微細繊維状セルロースの製造方法は、ニトロキシラジカル誘導体、臭化アルカリ及び酸化剤を用いないため、コストが低く、また、環境負荷が小さい。
(Function and effect)
According to the manufacturing method of the said fine fibrous cellulose, a fiber raw material can fully be refined | miniaturized, the yield of a fine fibrous cellulose becomes high, and the manufacturing efficiency of a fine fibrous cellulose improves. The reason for this is that by subjecting the carboxy group-introduced cellulose to an alkali treatment, the electrostatic repulsion between the cellulose fibers is increased, the osmotic pressure of water between the cellulose is improved, and the defibration property is increased. Guessed.
Moreover, since the manufacturing method of the said fine fibrous cellulose does not use a nitroxy radical derivative, an alkali bromide, and an oxidizing agent, cost is low and environmental impact is also small.
<微細繊維状セルロース含有スラリー>
 本発明の微細繊維状セルロース含有スラリーは、微細繊維状セルロースが分散媒中に分散されてなる。
 分散媒としては、水の他に、極性有機溶剤を使用することができ、好ましい極性有機溶剤としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、若しくはt-ブチルアルコール等のアルコール類、アセトン、若しくはメチルエチルケトン(MEK)等のケトン類、ジエチルエーテル、若しくはテトラヒドロフラン(THF)等のエーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),又はジメチルアセトアミド(DMAc)等が挙げられる。これらは1種であってもよいし、2種以上でもよい。また、微細繊維状セルロース含有スラリーの分散安定性を妨げない範囲であれば、上記の水及び極性有機溶剤に加えて非極性有機溶媒を使用することができる。
 微細繊維状セルロース含有スラリーにおける微細繊維状セルロースの含有量は0.05~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。微細繊維状セルロースの含有量が前記下限値以上であれば、後述の不織布や複合体を製造する際の製造効率に優れ、前記上限値以下であれば、スラリーの分散安定性に優れる。
<Slurry containing fine fibrous cellulose>
The fine fibrous cellulose-containing slurry of the present invention is obtained by dispersing fine fibrous cellulose in a dispersion medium.
As the dispersion medium, a polar organic solvent can be used in addition to water. Preferred polar organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, or t-butyl alcohol. , Ketones such as acetone or methyl ethyl ketone (MEK), ethers such as diethyl ether or tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), or dimethylacetamide (DMAc). These may be one type or two or more types. Moreover, if it is a range which does not prevent the dispersion stability of a fine fibrous cellulose containing slurry, in addition to said water and a polar organic solvent, a nonpolar organic solvent can be used.
The content of fine fibrous cellulose in the fine fibrous cellulose-containing slurry is preferably 0.05 to 20% by mass, and more preferably 0.1 to 10% by mass. If the content of the fine fibrous cellulose is not less than the lower limit, the production efficiency when producing the nonwoven fabric and the composite described later is excellent, and if it is not more than the upper limit, the dispersion stability of the slurry is excellent.
 前記微細繊維状セルロース含有スラリーの製造方法としては、ホモミキサー、パルパー、又は離解機といった分散装置を用いてスラリーを攪拌し、分散することなどが挙げられる。 Examples of the method for producing the fine fibrous cellulose-containing slurry include stirring and dispersing the slurry using a dispersing device such as a homomixer, a pulper, or a disaggregator.
<不織布>
 以下に、本発明の不織布及びその製造方法の一実施形態について説明する。
 本発明の不織布は、上記微細繊維状セルロースを含有するものである。
<Nonwoven fabric>
Below, one embodiment of the nonwoven fabric of the present invention and its manufacturing method is described.
The nonwoven fabric of the present invention contains the fine fibrous cellulose.
 本発明の不織布の厚みは特に制限されるものではないが、好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは80μm以上であり、好ましくは10cm以下、さらに好ましくは1cm以下、より好ましくは1mm以下、特に好ましくは250μm以下である。不織布の厚みの範囲は、10μm~1cmが好ましく、10μm~1mmがより好ましく、20μm~250μmがさらに好ましい。
 不織布の厚みは、製造の安定性、又は強度の点から上記下限値以上で厚い方が好ましく、生産性、均一性、又は樹脂の含浸性の点から上記上限値以下で薄い方が好ましい。
The thickness of the nonwoven fabric of the present invention is not particularly limited, but is preferably 10 μm or more, more preferably 50 μm or more, particularly preferably 80 μm or more, preferably 10 cm or less, more preferably 1 cm or less, more preferably 1 mm. Hereinafter, it is particularly preferably 250 μm or less. The thickness range of the nonwoven fabric is preferably 10 μm to 1 cm, more preferably 10 μm to 1 mm, and even more preferably 20 μm to 250 μm.
The thickness of the nonwoven fabric is preferably thicker than the lower limit value from the viewpoint of production stability or strength, and is preferably thinner than the upper limit value from the viewpoint of productivity, uniformity, or resin impregnation.
 本発明の不織布は空隙率が35vol%以上であることが好ましく、さらには35vol%以上60vol%以下であることが好ましい。不織布の空隙率が小さいと、上記化学修飾を施す場合にその反応が進行しにくくなったり、樹脂等のマトリックス材料が含浸しにくくなり、複合体にしたときに未含浸部が残るため、その界面で散乱が生じてヘーズが高くなり好ましくない。また、不織布の空隙率が高いと複合体としたとき、セルロース繊維による充分な補強効果が得られず、線熱膨張率が大きくなるので、好ましくない。 The non-woven fabric of the present invention preferably has a porosity of 35 vol% or more, and more preferably 35 vol% or more and 60 vol% or less. When the porosity of the nonwoven fabric is small, the reaction is difficult to proceed when the above chemical modification is applied, or the matrix material such as resin is difficult to impregnate, and the unimpregnated portion remains when the composite is formed. Scattering occurs and haze increases. Moreover, when the non-woven fabric has a high porosity, when it is made into a composite, a sufficient reinforcing effect by cellulose fibers cannot be obtained, and the linear thermal expansion coefficient becomes large, which is not preferable.
 ここでいう空隙率とは、不織布中における空隙の体積率を示し、空隙率は、不織布の面積、厚み、及び質量から、下記式によって求めることができる。
 空隙率(vol%)={1-B/(M×A×t)}×100 
 ここで、Aは不織布の面積(cm)、t(cm)は厚み、Bは不織布の質量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cmと仮定する。不織布の膜厚は、膜厚計(PEACOK社製PDN-20)を用いて、不織布の種々な位置について10点の測定を行い、その平均値を採用する。
The porosity here refers to the volume ratio of the voids in the nonwoven fabric, and the porosity can be determined from the area, thickness, and mass of the nonwoven fabric according to the following formula.
Porosity (vol%) = {1-B / (M × A × t)} × 100
Here, A is the area (cm 2 ) of the nonwoven fabric, t (cm) is the thickness, B is the mass (g) of the nonwoven fabric, M is the density of cellulose, and M = 1.5 g / cm 3 is assumed in the present invention. To do. The film thickness of the nonwoven fabric is measured at 10 points at various positions of the nonwoven fabric using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value is adopted.
 また、複合体中の不織布の空隙率を求める場合、分光分析や、複合体の断面のSEM観察を画像解析することにより空隙率を求めることもできる。 Further, when obtaining the porosity of the nonwoven fabric in the composite, the porosity can also be obtained by performing image analysis of spectroscopic analysis or SEM observation of the cross section of the composite.
 本発明の不織布の通気度は、坪量に依存するため特に限定されないが、例えば坪量が50g/mのシートの場合には、100~20000秒/100ccであることが好ましい。 Air permeability of the nonwoven fabric of the present invention is not particularly limited since it depends on the basis weight, for example, when a basis weight of the sheet 50 g / m 2 is preferably 100 to 20,000 sec / 100 cc.
(製造装置)
 図5に、本実施形態の不織布の製造方法で使用する製造装置を示す。本実施形態の製造装置1は、脱水セクション20と、脱水セクション20の下流側に設けられた乾燥セクション40と、乾燥セクションの下流側に設けられた巻取セクション60とを具備するものである。
(Manufacturing equipment)
In FIG. 5, the manufacturing apparatus used with the manufacturing method of the nonwoven fabric of this embodiment is shown. The manufacturing apparatus 1 of this embodiment includes a dewatering section 20, a drying section 40 provided on the downstream side of the dewatering section 20, and a winding section 60 provided on the downstream side of the drying section.
[脱水セクション]
 脱水セクション20は、抄紙用ワイヤー10を用いて微細繊維状セルロース含有スラリー3aを脱水して含水ウェブ3bを得るセクションである。
 抄紙用ワイヤーとしては、プラスチックワイヤー、若しくは金属ワイヤーなどの織布や不織布、又は紙類を使用することができ、これらのうち、不織布や紙類が好ましい。
[Dehydration section]
The dewatering section 20 is a section for dewatering the fine fibrous cellulose-containing slurry 3a using the papermaking wire 10 to obtain the water-containing web 3b.
As the papermaking wire, woven or non-woven fabric such as plastic wire or metal wire, or paper can be used, and among these, non-woven fabric and paper are preferable.
 脱水セクション20には、抄紙用ワイヤー10を繰り出す送出リール21と、微細繊維状セルロース含有スラリー3aの吐出部20a及び分散媒の脱水部30とが設けられている。
 吐出部20aには、送出リール21から繰り出された走行中の抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを吐出する2以上のダイヘッド22と、各ダイヘッド22の下流側に配置され、吐出された微細繊維状セルロース含有スラリー3aの上面を均すプレート24とが設けられている。
 吐出部20a及び脱水部30には、微細繊維状セルロース含有スラリー3aから分散媒を強制的に脱水する吸引装置26,32が設けられている。吸引装置26,32は、抄紙用ワイヤー10の下方に配置され、その上面には真空ポンプ(図示せず)に接続された吸引孔(図示せず)が多数形成されている。ただし、吸引装置26の上流側では吸引孔は形成されず、真空ポンプに接続されていない非吸引孔にされていることが好ましい。上流側に吸引孔が形成されると、微細繊維状セルロース含有スラリー3aの塗膜の表面が粗くなるおそれがある。また、下流側では脱水量が少なくなるため、脱水部30における吸引装置32は、下流側に孔が形成されていなくてもよい。
The dewatering section 20 is provided with a feed reel 21 for feeding out the papermaking wire 10, a discharge unit 20a for the fine fibrous cellulose-containing slurry 3a, and a dehydrating unit 30 for the dispersion medium.
Two or more die heads 22 for discharging the fine fibrous cellulose-containing slurry 3a to the running paper-making wire 10 fed from the delivery reel 21 and disposed downstream of each die head 22 are discharged to the discharge unit 20a. And a plate 24 for leveling the upper surface of the fine fibrous cellulose-containing slurry 3a.
The discharge unit 20a and the dehydrating unit 30 are provided with suction devices 26 and 32 for forcibly dehydrating the dispersion medium from the fine fibrous cellulose-containing slurry 3a. The suction devices 26 and 32 are disposed below the paper making wire 10, and a plurality of suction holes (not shown) connected to a vacuum pump (not shown) are formed on the upper surface thereof. However, it is preferable that the suction hole is not formed on the upstream side of the suction device 26 and is a non-suction hole that is not connected to the vacuum pump. If the suction hole is formed on the upstream side, the surface of the coating film of the fine fibrous cellulose-containing slurry 3a may become rough. Further, since the amount of dewatering is reduced on the downstream side, the suction device 32 in the dewatering unit 30 may not have a hole formed on the downstream side.
[乾燥セクション]
 乾燥セクション40は、含水ウェブ3bを、ドライヤーを用いて乾燥して不織布3cを得るセクションである。
 乾燥セクション40には、フード49内に、シリンダードライヤーで構成された第1ドライヤー42及び第2ドライヤー52と、第1ドライヤー42の外周に沿って配置されたフェルト布44とが設けられている。第1ドライヤー42は、第2ドライヤー52よりも上流側に配置されている。また、フェルト布44は無端状にされており、ガイドロール46によって、循環走行している。
 乾燥セクション40では、含水ウェブ3bを、ガイドロール48によって移送するようになっている。具体的には、まず、含水ウェブ3bの微細繊維状セルロース含有スラリー3aが塗布された面A(以下、「塗布面A」という。)が第1ドライヤー42の外周面に接し、含水ウェブ3bの微細繊維状セルロース含有スラリー3aが塗布されなかった面B(以下、「非塗布面B」という。)がフェルト布44に接するように移送し、次いで、塗布面Aが第2ドライヤー52の外周面に接するようになっている。
[Drying section]
The drying section 40 is a section that obtains the nonwoven fabric 3c by drying the hydrous web 3b using a dryer.
The drying section 40 is provided with a first dryer 42 and a second dryer 52 configured by a cylinder dryer, and a felt cloth 44 disposed along the outer periphery of the first dryer 42 in a hood 49. The first dryer 42 is disposed on the upstream side of the second dryer 52. Further, the felt cloth 44 is endless and is circulated by a guide roll 46.
In the drying section 40, the water-containing web 3 b is transferred by the guide roll 48. Specifically, first, the surface A (hereinafter referred to as “application surface A”) of the water-containing web 3b on which the fine fibrous cellulose-containing slurry 3a is applied is in contact with the outer peripheral surface of the first dryer 42, and the water-containing web 3b. The surface B on which the fine fibrous cellulose-containing slurry 3a has not been applied (hereinafter referred to as “non-application surface B”) is transferred so as to be in contact with the felt cloth 44, and then the application surface A is the outer peripheral surface of the second dryer 52. To come in contact with.
[巻取セクション]
 巻取セクション60は、抄紙用ワイヤー10から不織布3cを分離し、これを巻き取るセクションである。
 巻取セクション60には、抄紙用ワイヤー10から不織布3cを分離する一対の分離ローラ62a,62bと、不織布3cを巻き取る巻取リール64と、使用済みの抄紙用ワイヤー10を巻き取って回収する回収リール66とが設けられている。
 分離ローラ62bは抄紙用ワイヤー10側に、分離ローラ62aは不織布3c側に配置されている。
[Winding section]
The winding section 60 is a section that separates the nonwoven fabric 3c from the papermaking wire 10 and winds it.
In the winding section 60, a pair of separation rollers 62a and 62b for separating the nonwoven fabric 3c from the papermaking wire 10, a winding reel 64 for winding the nonwoven fabric 3c, and a used papermaking wire 10 are wound and collected. A collection reel 66 is provided.
The separation roller 62b is disposed on the papermaking wire 10 side, and the separation roller 62a is disposed on the nonwoven fabric 3c side.
(製造方法)
 本実施形態の不織布の製造方法は、上記微細繊維状セルロースの製造方法により製造した微細繊維状セルロースを含むスラリーを濾材上で脱水して湿紙を得る脱水工程と、前記湿紙を乾燥させて不織布を得る乾燥工程と、不織布を巻き取る巻取工程とを有する。
(Production method)
The method for producing a nonwoven fabric according to this embodiment includes a dehydration step of dehydrating a slurry containing fine fibrous cellulose produced by the method for producing fine fibrous cellulose on a filter medium to obtain wet paper, and drying the wet paper It has a drying process for obtaining a nonwoven fabric and a winding process for winding the nonwoven fabric.
[脱水工程]
 脱水工程では、抄紙用ワイヤー10を送出リール21から繰り出し、抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aをダイヘッド22から吐出し、抄紙用ワイヤー10の微細繊維状セルロース含有スラリー3aの上面をプレート24によって均す。それと共に、吸引装置26,32により、抄紙用ワイヤー10上の微細繊維状セルロース含有スラリー3aに含まれる分散媒を吸引し、脱水して、含水ウェブ3bを得る。
 脱水工程において、抄紙用ワイヤー10の走行張力が大きい場合には、抄紙用ワイヤー10が破断するおそれがあるため、通常の抄紙に使用されるワイヤーを抄紙用ワイヤー10の下に配置して抄紙用ワイヤー10を支持してもよい。
[Dehydration process]
In the dehydration step, the papermaking wire 10 is fed out from the delivery reel 21, the fine fibrous cellulose-containing slurry 3a is discharged from the die head 22 to the papermaking wire 10, and the upper surface of the fine fibrous cellulose-containing slurry 3a of the papermaking wire 10 is plated. Level by 24. At the same time, the suction medium 26 and 32 sucks the dispersion medium contained in the fine fibrous cellulose-containing slurry 3a on the papermaking wire 10 and dehydrates it to obtain the water-containing web 3b.
In the dehydration process, when the running tension of the papermaking wire 10 is large, the papermaking wire 10 may be broken. Therefore, a wire used for normal papermaking is placed under the papermaking wire 10 for papermaking. The wire 10 may be supported.
 抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを供給する前には、予め抄紙用ワイヤー10に水を含浸させて湿潤状態にしてもよい。抄紙用ワイヤー10に微細繊維状セルロース含有スラリー3aを吐出すると、ワイヤーの吸水により伸びてシワが発生することがあるが、予め湿潤状態にすれば、そのシワの発生を防止できる。
 抄紙用ワイヤー10を湿潤状態にする手段としては、抄紙用ワイヤー10を水に浸漬させる水槽、又は水の塗工装置が挙げられる。水の塗工装置としては、ブレードコーター、エアーナイフコーター、ロールコーター、バーコーター、グラビアコーター、ロッドブレードコーター、リップコーター、カーテンコーター、又はダイコーター等を使用することができる。
Before supplying the fine fibrous cellulose-containing slurry 3a to the papermaking wire 10, the papermaking wire 10 may be preliminarily impregnated with water to be in a wet state. When the fine fibrous cellulose-containing slurry 3a is discharged onto the papermaking wire 10, the wrinkle may be generated due to water absorption of the wire. However, if it is made wet in advance, the generation of the wrinkle can be prevented.
Examples of means for bringing the papermaking wire 10 into a wet state include a water tank in which the papermaking wire 10 is immersed in water, or a water coating apparatus. As the water coating apparatus, a blade coater, an air knife coater, a roll coater, a bar coater, a gravure coater, a rod blade coater, a lip coater, a curtain coater, a die coater, or the like can be used.
 脱水工程にて抄紙用ワイヤー10に供給する微細繊維状セルロース含有スラリー3aは、微細繊維状セルロース及び水を含有する液である。
 また、微細繊維状セルロース含有スラリー3aは、樹脂エマルションを含有してもよい。ここで、樹脂エマルションとは、粒子径が0.001~10μmの天然樹脂あるいは合成樹脂の粒子が水中に乳化したエマルションである。樹脂エマルションに含まれる粒子状の樹脂としては特に限定されないが、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリ(メタ)アクリル酸アルキルエステル重合体、(メタ)アクリル酸アルキルエステル共重合体、ポリ(メタ)アクリロニトリル、ポリエステル、ポリウレタン、ポリアミド、エポキシ樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂、若しくはジアリルフタレート樹脂等の前駆体、及びこれらを構成するモノマーやオリゴマー等の樹脂エマルション;天然ゴム、スチレン-ブタジエン共重合体、若しくは分子鎖末端が-SH、-CSSH、-SOH、-(COO)xM、-(SO)x M及び-CO-R(前記官能基において、Mはカチオン、xはMの価数に依存する1~3の整数であり、Rはアルキル基である)の群から選ばれる少なくとも1つの官能基で変性されたスチレン-ブタジエン共重合体:酸変性、アミン変性、アミド変性、若しくはアクリル変性等の変性スチレン-ブタジエン共重合体;(メタ)アクリロニトリル-ブタジエン共重合体;ポリイソプレン;ポリクロロプレン;スチレン-ブタジエン-メチルメタクリレート共重合体;又はスチレン-(メタ)アクリル酸アルキルエステル共重合体等が挙げられる。また、ポリエチレン、ポリプロピレン、ポリウレタン、エチレン-酢酸ビニル共重合体等を後乳化法によってエマルション化したものであってもよい。これらの樹脂エマルションは2種類以上含有することができる。
 また、本スラリーを脱水し、乾燥した場合、不織布3c中に微細繊維セルロースとマトリックス材料を含有した状態で得られるため、これをさらに加熱や光照射などによって硬化処理を施す方法によって複合化することもできる。この場合、シートを2枚以上積層して硬化処理を施してもよい。
The fine fibrous cellulose-containing slurry 3a supplied to the papermaking wire 10 in the dehydration step is a liquid containing fine fibrous cellulose and water.
Moreover, the fine fibrous cellulose-containing slurry 3a may contain a resin emulsion. Here, the resin emulsion is an emulsion in which particles of natural resin or synthetic resin having a particle diameter of 0.001 to 10 μm are emulsified in water. The particulate resin contained in the resin emulsion is not particularly limited, but polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, poly (meth) acrylic acid alkyl ester polymer, ( (Meth) acrylic acid alkyl ester copolymer, poly (meth) acrylonitrile, polyester, polyurethane, polyamide, epoxy resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, diallyl phthalate resin, etc. Precursors, and resin emulsions such as monomers and oligomers constituting them; natural rubber, styrene-butadiene copolymer, or molecular chain ends of —SH, —CSSH, —SO 3 H, — (COO) xM, — (SO 3) x M, and Modified with at least one functional group selected from the group of CO—R (wherein M is a cation, x is an integer of 1 to 3 depending on the valence of M, and R is an alkyl group) Styrene-butadiene copolymer: acid-modified, amine-modified, amide-modified, or acrylic-modified styrene-butadiene copolymer; (meth) acrylonitrile-butadiene copolymer; polyisoprene; polychloroprene; styrene-butadiene- Methyl methacrylate copolymer; or styrene- (meth) acrylic acid alkyl ester copolymer. Further, polyethylene, polypropylene, polyurethane, ethylene-vinyl acetate copolymer or the like may be emulsified by a post-emulsification method. Two or more kinds of these resin emulsions can be contained.
In addition, when the slurry is dehydrated and dried, it can be obtained in a state in which fine fiber cellulose and a matrix material are contained in the nonwoven fabric 3c. You can also. In this case, two or more sheets may be laminated and cured.
 さらに、微細繊維状セルロース含有スラリー3aは、セルロース凝結剤を配合することができる。前記セルロース凝結剤としては、水溶性無機塩やカチオン性官能基を含む水溶性有機化合物が挙げられる。
 水溶性無機塩としては塩化ナトリウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、塩化マグネシウム、塩化アルミニウム、硫酸ナトリウム、硫酸カリウム、硫酸アルミニウム、硫酸マグネシウム、硝酸ナトリウム、硝酸カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムリン酸ナトリウム、又はリン酸アンモニウムなどが挙げられる。
 カチオン性官能基を含む水溶性有機化合物としてはポリアクリルアミド、ポリビニルアミン、尿素樹脂、メラミン樹脂、メラミン-ホルムアルデヒド樹脂、又は第四級アンモニウム塩を含有するモノマーを重合あるいは共重合したポリマーなどが挙げられる。
Furthermore, the fine fibrous cellulose-containing slurry 3a can contain a cellulose coagulant. Examples of the cellulose coagulant include a water-soluble inorganic compound and a water-soluble organic compound containing a cationic functional group.
Water-soluble inorganic salts include sodium chloride, calcium chloride, potassium chloride, ammonium chloride, magnesium chloride, aluminum chloride, sodium sulfate, potassium sulfate, aluminum sulfate, magnesium sulfate, sodium nitrate, calcium nitrate, sodium carbonate, potassium carbonate, ammonium carbonate Examples thereof include sodium phosphate and ammonium phosphate.
Examples of the water-soluble organic compound containing a cationic functional group include polyacrylamide, polyvinylamine, urea resin, melamine resin, melamine-formaldehyde resin, or a polymer obtained by polymerizing or copolymerizing a monomer containing a quaternary ammonium salt. .
 さらに、微細繊維状セルロース含有スラリー3aは、水溶性有機高分子、無機高分子、又は有機高分子と無機高分子とのハイブリッド高分子等の材料を1種類以上含有することができる。
 ここで、水溶性高分子としては、ポリビニルアルコール、ビニルアルコール/エチレン共重合体やビニルアルコールとブチラール等その他のモノマー類との共重合体構造を有するもの;ポリエチレンオキサイドあるいはその末端をアルキル修飾したもの;ポリプロピレンオキサイド若しくはポリブチラール系樹脂(水溶性のグレード)のようなノニオン性の水溶性高分子;ポリ(メタ)アクリル酸及びポリ(メタ)アクリル酸塩;ポリ(メタ)アクリル酸の有機アミノ誘導体エステル;ポリエチレンイミンとその誘導体;ポリアミン;ポリアクリルアミド;アクリルアミド・アクリル酸ソーダ共重合物;澱粉;カチオン化澱粉;リン酸化澱粉;カルボキシメチルセルロース;又はアルギン酸及びアルギン酸塩等が挙げられる。
 無機高分子としてはガラス、シリケート材料、又はチタネート材料などのセラミックス等が挙げられ、これらは例えばアルコラートの脱水縮合反応により形成することができる。
Furthermore, the fine fibrous cellulose-containing slurry 3a can contain one or more materials such as a water-soluble organic polymer, an inorganic polymer, or a hybrid polymer of an organic polymer and an inorganic polymer.
Here, water-soluble polymers include polyvinyl alcohol, vinyl alcohol / ethylene copolymers, and those having a copolymer structure of vinyl alcohol and other monomers such as butyral; polyethylene oxide or alkyl-terminated ends thereof Nonionic water-soluble polymers such as polypropylene oxide or polybutyral resin (water-soluble grade); poly (meth) acrylic acid and poly (meth) acrylate; organic amino derivatives of poly (meth) acrylic acid Polyester; Polyethylene; Polyacrylamide; Acrylamide / sodium acrylate copolymer; Starch; Cationized starch; Phosphorylated starch; Carboxymethylcellulose; or Alginic acid and Alginate.
Examples of the inorganic polymer include ceramics such as glass, silicate material, and titanate material, and these can be formed, for example, by dehydration condensation reaction of alcoholate.
 さらに、得られる不織布3cの多孔性を向上させるためには、微細繊維状セルロース含有スラリー3aに有機溶媒を含有させる、あるいは脱水後の湿紙の水分を有機溶媒で置換することが好ましい。有機溶媒を混合する場合、水と有機溶媒との質量比率(水:有機溶媒)を100:10~10:100にすることが好ましく、100:30~30:100にすることがより好ましく、100:50~50:100にすることがさらに好ましい。
 有機溶媒の混合量が前記下限値以上であれば、不織布3cの多孔性を充分に向上させることができ、前記上限値以下であれば、微細繊維状セルロース含有スラリー3aの高粘度化を抑制できる。
 脱水後の湿紙の水分を有機溶媒で置換する場合には、微細繊維状セルロース含有スラリー3aを脱水の後、固形分5質量%以上30質量%以下に調製した湿紙を有機溶媒あるいは水と有機溶媒の混合溶液に含浸あるいは混合溶液を塗布し、吸引脱水するなどによって処理し、乾燥させることにより本発明の不織布を得ることができる。
Furthermore, in order to improve the porosity of the resulting nonwoven fabric 3c, it is preferable to contain an organic solvent in the fine fibrous cellulose-containing slurry 3a, or to replace the moisture of the wet paper after dehydration with an organic solvent. When mixing the organic solvent, the mass ratio of water to the organic solvent (water: organic solvent) is preferably 100: 10 to 10: 100, more preferably 100: 30 to 30: 100, : 50 to 50: 100 is more preferable.
If the mixing amount of the organic solvent is not less than the lower limit, the porosity of the nonwoven fabric 3c can be sufficiently improved, and if it is not more than the upper limit, the increase in viscosity of the fine fibrous cellulose-containing slurry 3a can be suppressed. .
When the water content of the wet paper after the dehydration is replaced with an organic solvent, after the fine fibrous cellulose-containing slurry 3a is dehydrated, the wet paper prepared to have a solid content of 5% by mass to 30% by mass is combined with an organic solvent or water. The nonwoven fabric of the present invention can be obtained by impregnating a mixed solution of an organic solvent or applying the mixed solution, treating it by suction dehydration, and drying.
 有機溶媒としては、例えば、アルコール、ケトン、エーテル、エステル、芳香族化合物、炭化水素、環状炭化水素、又は環状炭化水素誘導体が挙げられる。
 アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、t-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、若しくはフェノールなどの1価アルコール類;1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリエチレングリコール、1,2-ヘキサンジオール、若しくは1,2-オクタンジオールなどの2価アルコール類;ジプロピレングリコールメチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、若しくはジエチレングリコールモノエチルエーテルなどのグリコールエーテル類;ジエチレングリコールモノエチルエーテルアセテート;エチレングリコールモノメチルエーテルアセテート;ポリエチレングリコール、;ポリプロピレングリコール;又はグリセリンなどが挙げられる。
 エーテルとしては、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、若しくはジエチレングリコールイソプロピルメチルエーテルなどのグライム類、1,4-ジオキサン、テトラヒドロフラン、又はアニソール等が挙げられる。
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、t-ブチルメチルケトン、ジイソプロピルケトン、ブチルイソプロピルケトン、イソブチルイソプロピルケトン、ジイソブチルケトン、3-メチル-2-ペンタノン、4-メチル-2-ペンタノン、3-メチル-2-ヘキサノン、5-メチル-3-ヘプタノン、2-デカノン、3-デカノン、4-デカノン、又は5-デカノン等が挙げられる。
 エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸ブチル、酢酸アミル、アセト酢酸アミル、酢酸ヘキシル、アセト酢酸ヘキシル、酢酸ヘプチル、アセト酢酸ヘプチル、酢酸オクチル、アセト酢酸オクチル、プロピオン酸メチル、プロピオン酸エチル、2-ヒドロキシプロピオン酸エチル、酪酸メチル、酪酸エチル、吉草酸メチル、吉草酸エチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘプタン酸メチル、ヘプタン酸エチル、オクタン酸メチル、オクタン酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、シュウ酸ジメチル、シュウ酸ジエチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、マレイン酸ジメチル、若しくはマレイン酸ジエチルなどの脂肪酸エステル、又は安息香酸メチル、若しくは安息香酸エチルなどの芳香族エステルが挙げられる。
 芳香族化合物としてはベンゼン、トルエン、キシレン、又はエチルベンゼン等が挙げられる。
 炭化水素としては、n-ヘキサン、n-ヘプタン、又はn-オクタン等が挙げられる。
 環状炭化水素としては、シクロペンタン、シクロヘキサン、又はテルペン等が挙げられる。
 環状炭化水素誘導体としては、シクロペンタノール、シクロペンタノン、シクロペンチルメチルエーテル、シクロヘキサノール、シクロヘキサノン、シクロヘキサノンジメチルアセタール、テルピノレン、又はテルピネオール等が挙げられる。
Examples of the organic solvent include alcohols, ketones, ethers, esters, aromatic compounds, hydrocarbons, cyclic hydrocarbons, and cyclic hydrocarbon derivatives.
Alcohols include methanol, ethanol, propanol, isopropanol, n-butanol, t-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, 2-ethyl-1-hexanol, benzyl alcohol, or phenol Monohydric alcohols such as 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,5-pentanediol, 1,6-hexanediol, tri Dihydric alcohols such as ethylene glycol, 1,2-hexanediol, or 1,2-octanediol; dipropylene glycol methyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, or die Examples include glycol ethers such as tylene glycol monoethyl ether; diethylene glycol monoethyl ether acetate; ethylene glycol monomethyl ether acetate; polyethylene glycol; polypropylene glycol;
Examples of ethers include diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol diethyl ether, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, or glymes such as diethylene glycol isopropyl methyl ether, 1,4-dioxane, Tetrahydrofuran, anisole, etc. are mentioned.
As ketones, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, t-butyl methyl ketone, diisopropyl ketone, butyl isopropyl ketone, isobutyl isopropyl ketone, diisobutyl ketone, 3-methyl-2-pentanone, 4-methyl-2- Examples include pentanone, 3-methyl-2-hexanone, 5-methyl-3-heptanone, 2-decanone, 3-decanone, 4-decanone, and 5-decanone.
Esters include methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, butyl acetoacetate, amyl acetate, amyl acetoacetate, hexyl acetate, hexyl acetoacetate, heptyl acetate, aceto Heptyl acetate, octyl acetate, octyl acetoacetate, methyl propionate, ethyl propionate, ethyl 2-hydroxypropionate, methyl butyrate, ethyl butyrate, methyl valerate, ethyl valerate, methyl hexanoate, ethyl hexanoate, methyl heptanoate , Ethyl heptanoate, methyl octanoate, ethyl octanoate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, oxalic acid Dimethyl, oxalic acid Ethyl, dimethyl malonate, diethyl malonate, dimethyl succinate, diethyl succinate, fatty acid esters such as dimethyl maleate or diethyl maleate, or methyl benzoate, or include an aromatic ester such as ethyl benzoate.
Examples of the aromatic compound include benzene, toluene, xylene, and ethylbenzene.
Examples of the hydrocarbon include n-hexane, n-heptane, and n-octane.
Examples of the cyclic hydrocarbon include cyclopentane, cyclohexane, and terpene.
Examples of the cyclic hydrocarbon derivative include cyclopentanol, cyclopentanone, cyclopentyl methyl ether, cyclohexanol, cyclohexanone, cyclohexanone dimethyl acetal, terpinolene, and terpineol.
 上記の有機溶媒は2種以上を混合し、併用することができる。また、水と混合して使用する場合、混合溶液中に占める有機溶媒の割合は、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。有機溶媒の割合の上限は特に制限はない。混合溶液における有機溶媒は2種以上のものを使用することができる。さらに、前記有機溶媒は水に溶解していることが好ましいが、水に溶解しない有機溶媒を乳化させてエマルジョンとして使用することができる。 The above organic solvents can be used in combination of two or more. Moreover, when mixing and using it, the ratio of the organic solvent which occupies in a mixed solution becomes like this. Preferably it is 40 mass% or more, More preferably, it is 60 mass% or more, More preferably, it is 70 mass% or more. The upper limit of the ratio of the organic solvent is not particularly limited. Two or more kinds of organic solvents can be used in the mixed solution. Furthermore, the organic solvent is preferably dissolved in water, but an organic solvent that does not dissolve in water can be emulsified and used as an emulsion.
 微細繊維状セルロース含有スラリー3aの固形分濃度は0.05~1.5質量%であることが好ましく、0.1~0.8質量%であることがより好ましい。微細繊維状セルロース含有スラリー3aの濃度が前記下限値以上であれば、脱水工程にて充分な生産効率を確保でき、前記上限値以下であれば、高粘度化を防ぎ、取り扱い性を向上させることができる。 The solid content concentration of the fine fibrous cellulose-containing slurry 3a is preferably 0.05 to 1.5% by mass, and more preferably 0.1 to 0.8% by mass. If the concentration of the fine fibrous cellulose-containing slurry 3a is equal to or higher than the lower limit value, sufficient production efficiency can be secured in the dehydration step, and if it is equal to or lower than the upper limit value, increase in viscosity is prevented and handling properties are improved. Can do.
 脱水工程では、得られる不織布3cの坪量が、好ましくは10~900g/m、より好ましくは20~300g/mとなるように微細繊維状セルロース含有スラリー3aを供給する。坪量が前記下限値以上であると、得られた不織布3cを抄紙用ワイヤー10から容易に剥離でき、連続生産に適する。一方、坪量が前記上限値以下であると、脱水時間をより短縮でき、生産性をより高くできる。 In the dehydration step, the fine fibrous cellulose-containing slurry 3a is supplied so that the basis weight of the obtained nonwoven fabric 3c is preferably 10 to 900 g / m 2 , more preferably 20 to 300 g / m 2 . When the basis weight is equal to or more than the lower limit, the obtained nonwoven fabric 3c can be easily peeled from the papermaking wire 10 and is suitable for continuous production. On the other hand, when the basis weight is not more than the above upper limit value, the dehydration time can be further shortened, and the productivity can be further increased.
[乾燥工程]
 乾燥工程では、まず、抄紙用ワイヤー10の上面に載置した含水ウェブ3bを、加熱した第1ドライヤー42の外周面の約半周に、第1ドライヤー42の外周面に塗布面Aが接するように巻き掛けて、含水ウェブ3bに残留していた分散媒を蒸発させる。蒸発した分散媒は、抄紙用ワイヤー10の細孔を通ってフェルト布44から蒸発する。
 次いで、含水ウェブ3bを、加熱した第2ドライヤー52の外周面の約3/4周に、第2ドライヤー52の外周面に塗布面Aが接するように巻き掛けて、含水ウェブ3bに残留していた分散媒を蒸発させる。
 このように含水ウェブ3bを乾燥させて不織布3cを得る。
[Drying process]
In the drying step, first, the coated surface A is in contact with the outer peripheral surface of the first dryer 42, with the water-containing web 3b placed on the upper surface of the paper making wire 10 being approximately half the outer periphery of the heated first dryer 42. It winds and the dispersion medium which remained in the water-containing web 3b is evaporated. The evaporated dispersion medium evaporates from the felt cloth 44 through the pores of the papermaking wire 10.
Next, the water-containing web 3b is wound around about 3/4 of the outer peripheral surface of the heated second dryer 52 so that the coating surface A is in contact with the outer peripheral surface of the second dryer 52, and remains on the water-containing web 3b. Evaporate the dispersion medium.
In this way, the water-containing web 3b is dried to obtain the nonwoven fabric 3c.
[巻取工程]
 巻取工程では、抄紙用ワイヤー10及び不織布3cを一対の分離ローラ62a,62bで挟み込むことにより、不織布3cを抄紙用ワイヤー10から分離させて一方の分離ローラ62aの表面に転移する。その後、分離ローラ62aの表面から不織布3cを引き離して、巻取りリール64により巻き取る。それと共に、使用した抄紙用ワイヤー10を回収リール66により巻き取る。
[Winding process]
In the winding process, the papermaking wire 10 and the nonwoven fabric 3c are sandwiched between a pair of separation rollers 62a and 62b, whereby the nonwoven fabric 3c is separated from the papermaking wire 10 and transferred to the surface of one separation roller 62a. Thereafter, the nonwoven fabric 3 c is pulled away from the surface of the separation roller 62 a and is taken up by the take-up reel 64. At the same time, the used paper making wire 10 is taken up by the collection reel 66.
(他の実施形態)
 本発明の不織布の製造方法では、上記製造装置1を使用しなくてもよい。例えば、抄紙用ワイヤー10を無端又は有端のベルトの上に載せて移送してもよい。
 また、本発明の不織布の製造方法では、一般の紙を製造する際に使用する抄紙機を容易に適用することができる。抄紙機としては、長網式、円網式、又は傾斜式等の連続抄紙機のほか、これらを組み合わせた多層抄き合わせ抄紙機を適用できる。
(Other embodiments)
In the manufacturing method of the nonwoven fabric of this invention, the said manufacturing apparatus 1 does not need to be used. For example, the papermaking wire 10 may be transported on an endless or endless belt.
Moreover, in the manufacturing method of the nonwoven fabric of this invention, the paper machine used when manufacturing a general paper can be applied easily. As the paper machine, in addition to a continuous paper machine such as a long-mesh type, a circular net type, or an inclined type, a multi-layered paper machine combining these can be applied.
(作用効果)
 上記不織布の製造方法は、上記製造方法により製造した微細繊維状セルロース含有スラリー3aを濾材上で脱水し、乾燥させて不織布を製造する方法であるため、繊維原料に対する不織布の収率を向上させることができる。
(Function and effect)
The method for producing the nonwoven fabric is a method for producing a nonwoven fabric by dehydrating the fine fibrous cellulose-containing slurry 3a produced by the production method above and drying it to improve the yield of the nonwoven fabric relative to the fiber raw material. Can do.
 また、上記不織布の製造方法で得られた不織布は、適度な空隙を有することから、マトリックス材料との複合体を得る際の、マトリックス材料の樹脂含浸性が良好である。さらに、本発明の不織布を用いると、得られる複合体の黄色味が低くなり、かつ充分な補強効果が発現し、線熱膨張が低くなる。
 また、本発明の不織布は、単体で使用することもできる。例えば、微細繊維特有の緻密な構造を活かして、フィルター部材や電池用セパレータ等に好適に用いることができる。
Moreover, since the nonwoven fabric obtained by the said nonwoven fabric manufacturing method has a moderate space | gap, the resin impregnation property of a matrix material when obtaining a composite_body | complex with a matrix material is favorable. Furthermore, when the nonwoven fabric of this invention is used, the yellowishness of the composite obtained will become low, sufficient reinforcement effect will be expressed, and linear thermal expansion will become low.
Moreover, the nonwoven fabric of this invention can also be used alone. For example, it can be suitably used for filter members, battery separators, and the like by taking advantage of the fine structure unique to fine fibers.
<複合体>
 本発明の複合体は、微細繊維状セルロースとマトリックス材料とを含むものである。
(マトリックス材料)
 本発明において、マトリックス材料とは、微細繊維状セルロース同士の空隙、又は微細繊維状セルロースが不織布を形成している場合には不織布の空隙を埋める材料であり、好ましくは高分子材料である。
 マトリックス材料として好適な高分子材料としては、熱可塑性樹脂、熱硬化性樹脂(熱硬化性樹脂の前駆体が加熱により重合硬化した硬化物)、又は光硬化性樹脂(光硬化性樹脂の前駆体が放射線(紫外線や電子線等)の照射により重合硬化した硬化物)が挙げられる。
 これらは1種であってもよいし、2種以上であってもよい。
<Composite>
The composite of the present invention contains fine fibrous cellulose and a matrix material.
(Matrix material)
In the present invention, the matrix material is a material that fills voids between fine fibrous celluloses or, when fine fibrous cellulose forms a nonwoven fabric, preferably a polymer material.
Polymer materials suitable as the matrix material include thermoplastic resins, thermosetting resins (cured products obtained by polymerization and curing of thermosetting resin precursors by heating), or photocurable resins (precursors of photocurable resins). Is a cured product obtained by polymerization and curing upon irradiation with radiation (such as ultraviolet rays or electron beams).
These may be one kind or two or more kinds.
 熱可塑性樹脂としては、特に限定されるものではないが、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、又は非晶性フッ素系樹脂等が挙げられる。 Although it does not specifically limit as a thermoplastic resin, Styrenic resin, acrylic resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin Resin, cyclic olefin resin, polyamide resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, or amorphous fluorine resin.
 熱硬化性樹脂としては、特に限定されるものではないが、エポキシ樹脂、アクリル樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂、ポリウレタン樹脂、又はジアリルフタレート樹脂等が挙げられる。 The thermosetting resin is not particularly limited, but epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, polyurethane resin, diallyl phthalate resin, etc. Is mentioned.
 光硬化性樹脂としては、特に限定されるものではないが、上述の熱硬化性樹脂として例示したエポキシ樹脂、アクリル樹脂、又はオキセタン樹脂等が挙げられる。 The photocurable resin is not particularly limited, and examples thereof include the epoxy resin, acrylic resin, or oxetane resin exemplified as the above-described thermosetting resin.
 さらに、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂の具体例としては、特開2009-299043号公報に記載のものが挙げられる。 Furthermore, specific examples of the thermoplastic resin, thermosetting resin, or photocurable resin include those described in JP-A-2009-299043.
 上記マトリックス材料としては、透明性に優れ且つ高耐久性の複合体を得る点では、非晶質でガラス転移温度(Tg)の高い合成高分子が好ましい。非晶質の程度としては、結晶化度で10%以下が好ましく、特に5%以下であるものが好ましい。また、Tgは110℃以上、特に120℃以上、とりわけ130℃以上のものが好ましい。Tgが低いと例えば熱水等に触れた際に変形する恐れがあり、実用上問題が生じる。マトリックス材料のTgはDSC法による測定で求められ、結晶化度は、非晶質部と結晶質部の密度から算定することができる。 The matrix material is preferably an amorphous synthetic polymer having a high glass transition temperature (Tg) from the viewpoint of obtaining a composite having excellent transparency and high durability. The degree of amorphousness is preferably 10% or less, and particularly preferably 5% or less in terms of crystallinity. Further, Tg is preferably 110 ° C. or higher, particularly 120 ° C. or higher, particularly 130 ° C. or higher. If Tg is low, there is a risk of deformation when touched with hot water, for example, which causes a practical problem. The Tg of the matrix material is obtained by measurement by the DSC method, and the crystallinity can be calculated from the density of the amorphous part and the crystalline part.
 また、本発明の複合体を光学材料等の透明用途に用いる場合には、マトリックス材料として、アクリル系樹脂、芳香族ポリカーボネート系樹脂、又は脂肪族ポリカーボネート系樹脂等の透明樹脂を用いることが好ましい。
 また、低吸水性の複合体を得るためには、マトリックス材料は、ヒドロキシ基、カルボキシ基、又はアミノ基などの親水性の官能基が少ないことが好ましい。
When the composite of the present invention is used for transparent applications such as optical materials, it is preferable to use a transparent resin such as an acrylic resin, an aromatic polycarbonate resin, or an aliphatic polycarbonate resin as the matrix material.
In order to obtain a low water-absorbing composite, the matrix material preferably has few hydrophilic functional groups such as a hydroxy group, a carboxy group, or an amino group.
 本発明の複合体中の微細繊維状セルロースの含有量は、複合体の全固形分に対して1質量%以上99質量%以下であり、マトリックス材料の含有量が複合体の全固形分に対して1質量%以上99質量%以下であることが好ましい。
 低線熱膨張性を発現するには、微細繊維状セルロースの含有量が複合体の全固形分に対して1質量%以上、マトリックス材料の含有量が複合体の全固形分に対して99質量%以下であることが、また、透明性を発現するには微細繊維状セルロースの含有量が複合体の全固形分に対して99質量%以下、マトリックス材料の含有量が複合体の全固形分に対して1質量%以上であることが好ましい。
 より好ましい範囲は、微細繊維状セルロースの含有量が複合体の全固形分に対して2質量%以上90質量%以下であり、マトリックス材料が複合体の全固形分に対して10質量%以上98質量%以下であり、さらに好ましい範囲は、微細繊維状セルロースの含有量が5質量%以上80質量%以下であり、マトリックス材料の含有量が20質量%以上95質量%以下である。特に、本発明の複合体では、微細繊維状セルロースの含有量が複合体の全固形分に対して70質量%以下でマトリックス材料の含有量が複合体の全固形分に対して30質量%以上、さらには、微細繊維状セルロースの含有量が60質量%以下で、マトリックス材料の含有量が40質量%以上であることが好ましい。また、微細繊維状セルロースの含有量が10質量%以上でマトリックス材料の含有量が90質量%以下、さらには微細繊維状セルロースの含有量が15質量%以上でマトリックス材料の含有量が85質量%以下、さらには微細繊維状セルロース繊維の含有量が20質量%以上でマトリックス材料の含有量が80質量%以下であることが好ましい。
The content of fine fibrous cellulose in the composite of the present invention is 1% by mass or more and 99% by mass or less based on the total solid content of the composite, and the content of the matrix material is based on the total solid content of the composite. It is preferable that it is 1 mass% or more and 99 mass% or less.
In order to exhibit low linear thermal expansibility, the content of fine fibrous cellulose is 1% by mass or more with respect to the total solid content of the composite, and the content of the matrix material is 99% with respect to the total solid content of the composite. In order to express transparency, the content of fine fibrous cellulose is 99% by mass or less with respect to the total solid content of the composite, and the content of the matrix material is the total solid content of the composite. It is preferable that it is 1 mass% or more with respect to.
More preferably, the content of fine fibrous cellulose is 2% by mass or more and 90% by mass or less with respect to the total solid content of the composite, and the matrix material is 10% by mass or more and 98% by mass or more with respect to the total solid content of the composite. More preferably, the content of the fine fibrous cellulose is 5% by mass or more and 80% by mass or less, and the content of the matrix material is 20% by mass or more and 95% by mass or less. In particular, in the composite of the present invention, the content of fine fibrous cellulose is 70% by mass or less with respect to the total solid content of the composite and the content of the matrix material is 30% by mass or more with respect to the total solid content of the composite. Furthermore, it is preferable that the content of the fine fibrous cellulose is 60% by mass or less and the content of the matrix material is 40% by mass or more. Further, the content of the fine fibrous cellulose is 10% by mass or more and the content of the matrix material is 90% by mass or less. Furthermore, the content of the fine fibrous cellulose is 15% by mass or more and the content of the matrix material is 85% by mass. Hereinafter, it is preferable that the content of the fine fibrous cellulose fiber is 20% by mass or more and the content of the matrix material is 80% by mass or less.
 複合体中の微細繊維状セルロース及びマトリックス材料の含有量は、例えば、複合体とする前の不織布の質量と複合体の質量より求めることができる。また、複合体をマトリックス材料が可溶な溶媒に浸漬してマトリックス材料のみを取り除き、残った繊維の質量から求めることもできる。その他、マトリックス材料の比重から求める方法や、NMR、又はIRを用いてマトリックス材料やセルロース繊維由来の官能基を定量して求めることもできる。 The contents of the fine fibrous cellulose and the matrix material in the composite can be determined, for example, from the mass of the nonwoven fabric before the composite and the mass of the composite. Alternatively, the composite can be immersed in a solvent in which the matrix material is soluble to remove only the matrix material, and can be determined from the mass of the remaining fibers. In addition, the functional group derived from a matrix material or a cellulose fiber can also be quantified and determined by using a specific gravity of the matrix material, NMR, or IR.
 本発明の複合体は、平膜状(フィルム状)又は平板状であってもよいし、曲面を有する膜状又は板状であってもよいし、その他の立体的な形状であってもよい。
 本発明の複合体が膜状又は平板状である場合には、厚みが10μm以上、10cm以下であることが好ましい。このような厚みの複合体にすることで強度を保つことができる。
 複合体の厚みは、より好ましくは50μm以上、1cm以下であり、さらに好ましくは80μm以上、250μm以下である。また、厚みは必ずしも均一である必要はなく、部分的に異なっていてもよい。
The composite of the present invention may be a flat film (film) or a flat plate, a film having a curved surface or a plate, or other three-dimensional shape. .
When the composite of the present invention is a film or a plate, the thickness is preferably 10 μm or more and 10 cm or less. Strength can be maintained by using a composite having such a thickness.
The thickness of the composite is more preferably 50 μm or more and 1 cm or less, and further preferably 80 μm or more and 250 μm or less. Further, the thickness is not necessarily uniform, and may be partially different.
 また、本発明の複合体が膜状又は平板状である場合、2枚以上重ねて積層体としてもよい。また、セルロース繊維を含む複合体とセルロースを含まない樹脂シートを積層してもよい。積層体に加熱プレス処理を加えることで厚膜化することができる。厚膜の複合材はグレージングや構造材料として好適に用いることができる。 Further, when the composite of the present invention is in the form of a film or a plate, two or more sheets may be stacked to form a laminate. Moreover, you may laminate | stack the composite sheet containing a cellulose fiber, and the resin sheet which does not contain a cellulose. A thick film can be formed by applying a heat press treatment to the laminate. A thick film composite can be suitably used as a glazing or structural material.
 本発明の複合体は、その用途に応じて、その表面に無機膜が積層されてもよい。無機膜を構成する無機材料としては、例えば、白金、銀、アルミニウム、金、若しくは銅等の金属、シリコン、ITO、SiO、SiN、SiOxNy、ZnO等、又はTFT等が挙げられる。これらの組み合わせや膜厚は任意に設計することができる。 The composite of the present invention may be laminated with an inorganic film on the surface according to the application. Examples of the inorganic material constituting the inorganic film include metals such as platinum, silver, aluminum, gold, and copper, silicon, ITO, SiO 2 , SiN, SiOxNy, ZnO, and the like, or TFT. These combinations and film thicknesses can be designed arbitrarily.
(複合体の製造方法)
 複合体を製造する方法としては、特に制限はなく、例えば、以下の方法により複合体を得ることができる。
(Production method of composite)
There is no restriction | limiting in particular as a method of manufacturing a composite_body | complex, For example, a composite_body | complex can be obtained with the following method.
(a) 不織布に可塑性樹脂前駆体を含浸させて重合させる方法。
(b) 不織布に熱硬化性樹脂前駆体又は光硬化性樹脂前駆体を含浸させて重合硬化させる方法。
(c) 不織布に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を含浸させて乾燥した後、加熱プレス等で密着させ、所望により重合硬化させる方法。
(d) 不織布に熱可塑性樹脂の溶融体を含浸させ、加熱プレス等で密着させる方法。
(e) 熱可塑性樹脂シートと不織布とを交互に配置し、加熱プレス等で密着させる方法。
(f) 不織布の片面若しくは両面に液状の熱可塑性樹脂前駆体や熱硬化性樹脂前駆体若しくは光硬化性樹脂前駆体を塗布して重合硬化させる方法。
(g) 不織布の片面若しくは両面に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を塗布して、溶媒を除去後、所望により重合硬化させる方法。
(h) 微細繊維状セルロース含有スラリーとモノマー溶液又は分散液(熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質又は分散質を含む溶液又は分散液)とを混合した後、溶媒除去、及び重合硬化させる方法。
(i) 微細繊維状セルロース含有スラリーと高分子溶液又は分散液(熱可塑性樹脂溶液又は分散液)を混合した後、溶媒を除去する方法。
(A) A method in which a nonwoven fabric is impregnated with a plastic resin precursor and polymerized.
(B) A method in which a non-woven fabric is impregnated with a thermosetting resin precursor or a photocurable resin precursor and polymerized and cured.
(C) After impregnating a nonwoven fabric with a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) and drying , A method of adhering with a heating press or the like and polymerizing and curing as desired.
(D) A method in which a nonwoven fabric is impregnated with a melt of a thermoplastic resin and adhered by a hot press or the like.
(E) A method in which thermoplastic resin sheets and non-woven fabrics are alternately arranged and adhered with a hot press or the like.
(F) A method in which a liquid thermoplastic resin precursor, a thermosetting resin precursor, or a photocurable resin precursor is applied to one side or both sides of a non-woven fabric and polymerized and cured.
(G) Applying a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) to one side or both sides of a nonwoven fabric Then, after removing the solvent, a method of polymerizing and curing as desired.
(H) a fine fibrous cellulose-containing slurry and a monomer solution or dispersion (a solution containing one or more solutes or dispersoids selected from a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor, or (Dispersion liquid) and then solvent removal and polymerization curing.
(I) A method of removing the solvent after mixing the fine fibrous cellulose-containing slurry and the polymer solution or dispersion (thermoplastic resin solution or dispersion).
 (a)不織布に液状の熱可塑性樹脂前駆体を含浸させて重合させる方法としては、重合可能なモノマーやオリゴマーを不織布に含浸させ、熱処理等により上記モノマーを重合させることによりセルロース繊維複合体を得る方法が挙げられる。一般的には、モノマーの重合に用いられる重合触媒を重合開始剤として用いることができる。 (A) The nonwoven fabric is impregnated with a liquid thermoplastic resin precursor and polymerized. The nonwoven fabric is impregnated with a polymerizable monomer or oligomer, and the monomer is polymerized by heat treatment or the like to obtain a cellulose fiber composite. A method is mentioned. Generally, a polymerization catalyst used for polymerization of monomers can be used as a polymerization initiator.
 (b)不織布に熱硬化性樹脂前駆体又は光硬化性樹脂前駆体を含浸させて重合硬化させる方法としては、エポキシ樹脂モノマー等の熱硬化性樹脂前駆体、又はアクリル樹脂モノマー等の光硬化性樹脂前駆体と硬化剤の混合物を、不織布に含浸させ、熱又は放射線等により上記熱硬化性樹脂前躯体又は光硬化性樹脂前躯体を硬化させることによりセルロース繊維複合体を得る方法が挙げられる。 (B) As a method of polymerizing and curing a nonwoven fabric by impregnating a thermosetting resin precursor or a photocurable resin precursor, a thermosetting resin precursor such as an epoxy resin monomer, or a photocurable resin such as an acrylic resin monomer. A method of obtaining a cellulose fiber composite by impregnating a non-woven fabric with a mixture of a resin precursor and a curing agent and curing the thermosetting resin precursor or the photocurable resin precursor with heat or radiation or the like.
 (c)不織布に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を含浸させて乾燥した後、加熱プレス等で密着させ、所望により重合硬化させる方法としては、樹脂が溶解する溶媒に樹脂を溶解させ、その溶液を不織布に含浸させ、乾燥させることでセルロース繊維複合体を得る方法が挙げられる。この場合、乾燥後加熱プレス等で溶媒が乾燥した空隙を密着させることでより高性能なセルロース繊維複合体を得る方法が挙げられる。光硬化性樹脂の場合にはさらに、所望により放射線等による重合硬化を行う。
 ここで樹脂を溶解させる溶媒としては、樹脂の溶解性に応じて選択すればよい。
(C) After impregnating a nonwoven fabric with a resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) and drying Examples of the method of causing the resin to adhere by heating press or the like and polymerizing and curing as desired include a method in which the resin is dissolved in a solvent in which the resin is dissolved, the nonwoven fabric is impregnated with the solution, and dried to obtain a cellulose fiber composite. . In this case, there is a method of obtaining a higher-performance cellulose fiber composite by adhering the voids in which the solvent is dried by a heating press after drying. In the case of a photo-curing resin, polymerization curing by radiation or the like is further performed as desired.
Here, the solvent for dissolving the resin may be selected according to the solubility of the resin.
 (d)不織布に熱可塑性樹脂の溶融体を含浸させ、加熱プレス等で密着させる方法としては、熱可塑性樹脂をガラス転移温度以上又は融点以上で熱処理することにより溶解させて、不織布に含浸させ、加熱プレス等で密着することによりセルロース繊維複合体を得る方法が挙げられる。熱処理は加圧下で行うことが好ましく、真空加熱プレス機能を有する設備の使用が有効である。 (D) As a method of impregnating a nonwoven fabric with a melt of a thermoplastic resin and closely adhering with a heating press or the like, the thermoplastic resin is dissolved by heat treatment at a glass transition temperature or higher or a melting point or higher, and impregnated into the nonwoven fabric. The method of obtaining a cellulose fiber composite by sticking with a heating press etc. is mentioned. The heat treatment is preferably performed under pressure, and the use of equipment having a vacuum heating press function is effective.
 (e)熱可塑性樹脂シートと不織布を交互に配置し、加熱プレス等で密着させる方法としては、不織布の片面若しくは両面に熱可塑性樹脂のフィルム若しくはシートを配置し、所望により加熱やプレスすることにより、熱可塑性樹脂と不織布を貼り合わせる方法が挙げられる。この場合、不織布の表面に接着剤やプライマーなどを塗布して貼り合わせてもよい。貼り合わせる際に気泡を抱き込まないように、加圧された2本のロールの間を通す方法や、真空状態でプレスする方法を用いることができる。 (E) As a method of alternately arranging the thermoplastic resin sheet and the nonwoven fabric and closely adhering them with a heating press or the like, placing a thermoplastic resin film or sheet on one side or both sides of the nonwoven fabric, and heating or pressing as desired And a method of laminating a thermoplastic resin and a nonwoven fabric. In this case, an adhesive or a primer may be applied to the surface of the nonwoven fabric and bonded together. A method of passing between two pressurized rolls or a method of pressing in a vacuum state can be used so that bubbles are not embraced at the time of bonding.
 (f)不織布の片面若しくは両面に液状の熱可塑性樹脂前駆体や熱硬化性樹脂前駆体若しくは光硬化性樹脂前駆体を塗布して硬化させる方法としては、不織布の片面若しくは両面に熱重合開始剤を処方した熱硬化性樹脂前駆体を塗布して加熱することにより硬化させて両者を密着させる方法や、不織布の片面若しくは両面に光重合開始剤を処方した光硬化性樹脂前駆体を塗布した後、紫外線等の放射線を照射して硬化させる方法が挙げられる。
 また、不織布に熱若しくは光硬化性樹脂前駆体を塗布した後、さらに不織布を重ねるなど、多層構造にしてから、硬化させてもよい。
(F) As a method of applying and curing a liquid thermoplastic resin precursor, a thermosetting resin precursor or a photocurable resin precursor on one side or both sides of the nonwoven fabric, a thermal polymerization initiator is applied to one side or both sides of the nonwoven fabric. After applying a thermosetting resin precursor formulated with a photocuring resin precursor formulated with a photopolymerization initiator on one side or both sides of a nonwoven fabric, by curing by heating and curing both And a method of curing by irradiating with radiation such as ultraviolet rays.
Alternatively, after applying a heat or photo-curing resin precursor to the nonwoven fabric, the nonwoven fabric may be further laminated and then cured.
 (g)不織布の片面若しくは両面に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を塗布して、溶媒を除去後、所望により重合硬化させることにより複合化する方法としては、溶媒に可溶な樹脂を溶解させた樹脂溶液を用意し、不織布の片面若しくは両面に塗布し、加熱により溶媒を除去する方法が挙げられる。光硬化性樹脂の場合にはさらに、所望により放射線等による重合硬化を行う。
 樹脂を溶解させる溶媒としては、樹脂の溶解性に応じて選択すればよい。
(G) A resin solution (a solution containing one or more solutes selected from a thermoplastic resin, a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor) is applied to one side or both sides of the nonwoven fabric. Then, after removing the solvent, as a method of compounding by polymerizing and curing as desired, a resin solution in which a resin soluble in the solvent is dissolved is prepared, applied to one or both sides of the nonwoven fabric, and the solvent is removed by heating. The method of removing is mentioned. In the case of a photo-curing resin, polymerization curing by radiation or the like is further performed as desired.
A solvent for dissolving the resin may be selected according to the solubility of the resin.
 (h)微細繊維状セルロース含有スラリーとモノマー溶液又は分散液(熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体から選ばれる1以上の溶質又は分散質を含む溶液又は分散液)とを混合した後、溶媒除去と重合硬化の工程を経ることにより複合化する方法としては、溶媒に可溶なモノマーを溶解させた溶液、若しくは分散液を用意し、微細繊維状セルローススラリーを混合する。この際、所望によりセルロース繊維の解繊は分散媒(溶媒)としてあらかじめ有機溶媒を用いるか、水中で解繊した場合は水から有機溶媒に置換することが好ましい。この混合液中でモノマーを重合硬化若しくは、溶媒を除去した後にモノマーを重合硬化させることでセルロース繊維複合体を得ることができる。 (H) a fine fibrous cellulose-containing slurry and a monomer solution or dispersion (a solution containing one or more solutes or dispersoids selected from a thermoplastic resin precursor, a thermosetting resin precursor, and a photocurable resin precursor, or As a method of compounding by mixing the dispersion liquid) and then passing through the steps of solvent removal and polymerization and curing, a solution in which a monomer soluble in the solvent or a dispersion liquid is prepared, and fine fibrous cellulose is prepared. Mix the slurry. At this time, the cellulose fibers are preferably defibrated by using an organic solvent in advance as a dispersion medium (solvent), or when defibrated in water, the water is preferably replaced with an organic solvent. A cellulose fiber composite can be obtained by polymerizing and curing the monomer in this mixed solution or polymerizing and curing the monomer after removing the solvent.
 (i)微細繊維状セルロース含有スラリーと高分子溶液又は分散液(熱可塑性樹脂溶液又は分散液)を混合した後、溶媒を除去して複合化する方法としては、溶媒に可溶な高分子溶液又は分散液を用意し、微細繊維状セルローススラリーと混合する。この際、所望によりセルロース繊維の解繊は分散媒(溶媒)としてあらかじめ有機溶媒を用いるか、水中で解繊した場合は水から有機溶媒に置換することが好ましい。この混合液の溶媒を除去することでセルロース繊維複合体を得ることができる。 (I) After mixing the fine fibrous cellulose-containing slurry and the polymer solution or dispersion (thermoplastic resin solution or dispersion), the solvent is removed to form a composite. Alternatively, a dispersion is prepared and mixed with the fine fibrous cellulose slurry. At this time, the cellulose fibers are preferably defibrated by using an organic solvent in advance as a dispersion medium (solvent), or when defibrated in water, the water is preferably replaced with an organic solvent. A cellulose fiber composite can be obtained by removing the solvent of the mixed solution.
 上記の熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、及び光硬化性樹脂前駆体には、適宜、連鎖移動剤、紫外線吸収剤、セルロース以外の充填剤、又はシランカップリング剤等を配合して、組成物(以下、「硬化性組成物」という。)としてもよい。 In the above thermoplastic resin precursor, thermosetting resin precursor, and photocurable resin precursor, a chain transfer agent, an ultraviolet absorber, a filler other than cellulose, or a silane coupling agent is appropriately blended. Or a composition (hereinafter referred to as “curable composition”).
 硬化性組成物が連鎖移動剤を含むと、反応を均一に進行させることができる。連鎖移動剤としては、例えば、分子内に2個以上のチオール基を有する多官能メルカプタン化合物を用いることができる。多官能メルカプタン化合物を用いることにより硬化物に適度な靱性を付与することができる。
 メルカプタン化合物としては、例えばペンタエリスリトールテトラキス(β-チオプロピオネート)、トリメチロールプロパントリス(β-チオプロピオネート)、又はトリス[2-(β-チオプロピオニルオキシエトキシ)エチル]トリイソシアヌレートなどの1種又は2種以上を用いることが好ましい。
 硬化性組成物に連鎖移動剤を含有させる場合、連鎖移動剤は硬化性組成物中のラジカル重合可能な化合物の合計に対して、通常30質量%以下の割合で含有させる。
When the curable composition contains a chain transfer agent, the reaction can proceed uniformly. As the chain transfer agent, for example, a polyfunctional mercaptan compound having two or more thiol groups in the molecule can be used. By using a polyfunctional mercaptan compound, moderate toughness can be imparted to the cured product.
Examples of mercaptan compounds include pentaerythritol tetrakis (β-thiopropionate), trimethylolpropane tris (β-thiopropionate), or tris [2- (β-thiopropionyloxyethoxy) ethyl] triisocyanurate. It is preferable to use 1 type (s) or 2 or more types.
When a chain transfer agent is contained in the curable composition, the chain transfer agent is usually contained in a proportion of 30% by mass or less with respect to the total of radically polymerizable compounds in the curable composition.
 硬化性組成物が紫外線吸収剤を含むと、着色を防止できる。紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤及びベンゾトリアゾール系紫外線吸収剤から選ばれ、その紫外線吸収剤は1種類を用いてもよいし、2種類以上を併用してもよい。
 硬化性組成物に紫外線吸収剤を含有させる場合、紫外線吸収剤は硬化性組成物中のラジカル重合な可能化合物の合計100質量部に対して、通常0.01~1質量部の割合で含有させる。
When the curable composition contains an ultraviolet absorber, coloring can be prevented. As an ultraviolet absorber, it selects from a benzophenone series ultraviolet absorber and a benzotriazole type ultraviolet absorber, for example, The ultraviolet absorber may use 1 type and may use 2 or more types together.
When an ultraviolet absorber is contained in the curable composition, the ultraviolet absorber is usually contained at a ratio of 0.01 to 1 part by mass with respect to a total of 100 parts by mass of radically polymerizable compounds in the curable composition. .
 充填剤としては、例えば、無機粒子や有機高分子などが挙げられる。具体的には、シリカ粒子、チタニア粒子、若しくはアルミナ粒子などの無機粒子、ゼオネックス(日本ゼオン社)やアートン(JSR社)などの透明シクロオレフィンポリマーの粒子、又はポリカーボネートやポリメチルメタアクリレートなどの汎用熱可塑性ポリマーの粒子などが挙げられる。中でも、ナノサイズのシリカ粒子を用いると透明性を維持することができ好適である。また、紫外線硬化性モノマーと構造の似たポリマーの粒子を充填剤として用いると、高濃度までポリマーを溶解させることが可能であり、好適である。 Examples of the filler include inorganic particles and organic polymers. Specifically, inorganic particles such as silica particles, titania particles, or alumina particles, transparent cycloolefin polymer particles such as Zeonex (Nippon Zeon) and Arton (JSR), or general-purpose such as polycarbonate and polymethyl methacrylate Examples include thermoplastic polymer particles. Among these, use of nano-sized silica particles is preferable because transparency can be maintained. In addition, when polymer particles having a structure similar to that of the ultraviolet curable monomer are used as the filler, the polymer can be dissolved to a high concentration, which is preferable.
 シランカップリング剤としては、例えば、γ-((メタ)アクリロキシプロピル)トリメトキシシラン、γ-((メタ)アクリロキシプロピル)メチルジメトキシシラン、γ-((メタ)アクリロキシプロピル)メチルジエトキシシラン、γ-((メタ)アクリロキシプロピル)トリエトキシシラン、又はγ-(アクリロキシプロピル)トリメトキシシラン等が挙げられる。これらは分子中に(メタ)アクリル基を有しており、他のモノマーと共重合することができるので好ましい。
 硬化性組成物にシランカップリング剤を含有させる場合、シランカップリング剤は、硬化性組成物中のラジカル重合な可能化合物の合計に対して通常0.1~50質量%、好ましくは1~20質量%となるように含有させる。この配合量が少な過ぎると、これを含有させる効果が充分に得られず、また、多過ぎると、硬化物の透明性などの光学特性が損なわれる恐れがある。
Examples of the silane coupling agent include γ-((meth) acryloxypropyl) trimethoxysilane, γ-((meth) acryloxypropyl) methyldimethoxysilane, and γ-((meth) acryloxypropyl) methyldiethoxy. Examples include silane, γ-((meth) acryloxypropyl) triethoxysilane, and γ- (acryloxypropyl) trimethoxysilane. These have a (meth) acryl group in the molecule and are preferable because they can be copolymerized with other monomers.
When the curable composition contains a silane coupling agent, the silane coupling agent is usually 0.1 to 50% by mass, preferably 1 to 20%, based on the total of radically polymerizable compounds in the curable composition. It is made to contain so that it may become mass%. If the blending amount is too small, the effect of containing it is not sufficiently obtained, and if it is too large, optical properties such as transparency of the cured product may be impaired.
 硬化性組成物は、公知の硬化方法で重合硬化させて、硬化物とすることができる。
 硬化方法としては、例えば、熱硬化、又は放射線硬化等が挙げられ、好ましくは放射線硬化である。放射線としては、赤外線、可視光線、紫外線、又は電子線等が挙げられるが、好ましくは波長1~1000nmの電磁波である光である。より好ましくは波長が200nm~450nm程度の電磁波であり、さらに好ましくは波長が300~400nmの紫外線である。
The curable composition can be polymerized and cured by a known curing method to obtain a cured product.
Examples of the curing method include thermal curing and radiation curing, and radiation curing is preferable. Examples of the radiation include infrared rays, visible rays, ultraviolet rays, electron beams, and the like, but light that is an electromagnetic wave having a wavelength of 1 to 1000 nm is preferable. More preferred is an electromagnetic wave having a wavelength of about 200 nm to 450 nm, and still more preferred is an ultraviolet ray having a wavelength of 300 to 400 nm.
 具体的な硬化性組成物の硬化方法としては、予め硬化性組成物に加熱によりラジカルや酸を発生する熱重合開始剤を添加しておき、加熱して重合させる方法(以下「熱重合」という場合がある。)、予め硬化性組成物に紫外線等の放射線によりラジカルや酸を発生する光重合開始剤を添加しておき、放射線(好ましくは光)を照射して重合させる方法(以下「光重合」という場合がある。)、又は予め熱重合開始剤と光重合開始剤の両方を添加しておき、熱と光の組み合わせにより重合させる方法が挙げられる。 As a specific curing method of the curable composition, a method in which a thermal polymerization initiator that generates radicals and acids by heating is added to the curable composition in advance and polymerized by heating (hereinafter referred to as “thermal polymerization”). In some cases, a photopolymerization initiator that generates radicals and acids by radiation such as ultraviolet rays is added to the curable composition in advance and polymerized by irradiation with radiation (preferably light) (hereinafter referred to as “light”). There may be referred to as “polymerization”.), Or a method in which both a thermal polymerization initiator and a photopolymerization initiator are added in advance and polymerized by a combination of heat and light.
 放射線照射により重合硬化する場合、照射する放射線の量は、光重合開始剤がラジカルを発生させる範囲であれば任意である。しかし、極端に少ない場合は重合が不完全となるため硬化物の耐熱性、又は機械特性が充分に発現されず、一方、極端に過剰な場合は硬化物の黄変等の光による劣化を生じる。そのため、モノマーの組成及び光重合開始剤の種類、量に応じて、300~450nmの紫外線を、好ましくは0.1~200J/cmの範囲で、より好ましくは1~20J/cmの範囲で照射する。
 また、放射線を2回以上に分割して照射すると、さらに好ましい。すなわち1回目に全照射量の1/20~1/3程度を照射し、2回目以降に必要残量を照射すると、複屈折のより小さな硬化物が得られる。
 放射線照射に使用するランプの具体例としては、メタルハライドランプ、高圧水銀灯ランプ、紫外線LEDランプ、又は無電極水銀ランプ等を挙げることができる。
In the case of polymerization and curing by irradiation, the amount of radiation to be irradiated is arbitrary as long as the photopolymerization initiator is in a range that generates radicals. However, when the amount is extremely small, the polymerization becomes incomplete, so that the heat resistance or mechanical properties of the cured product are not fully expressed. . Therefore, depending on the composition of the monomer and the type and amount of the photopolymerization initiator, UV of 300 to 450 nm is preferably in the range of 0.1 to 200 J / cm 2 , more preferably in the range of 1 to 20 J / cm 2 . Irradiate with.
Further, it is more preferable to irradiate the radiation in two or more times. That is, when the first irradiation is performed for about 1/20 to 1/3 of the total irradiation amount and the necessary remaining amount is irradiated for the second and subsequent times, a cured product having smaller birefringence can be obtained.
Specific examples of the lamp used for radiation irradiation include a metal halide lamp, a high pressure mercury lamp lamp, an ultraviolet LED lamp, and an electrodeless mercury lamp.
 重合硬化をすみやかに完了させるために、光重合と熱重合を同時に行ってもよい。この場合には、放射線照射と同時に硬化性組成物を30~300℃の範囲で加熱して硬化を行う。また、硬化性組成物には、重合を完結するために熱重合開始剤を添加してもよいが、大量に添加すると硬化物の複屈折の増大と色相の悪化をもたらす。そのため、熱重合開始剤の添加量は、硬化性モノマー成分の合計に対して0.1~2質量%であることが好ましく、0.3~1質量%であることがより好ましい。 Photopolymerization and thermal polymerization may be performed at the same time in order to quickly complete the polymerization and curing. In this case, the curable composition is heated at a temperature in the range of 30 to 300 ° C. at the same time as the irradiation with radiation to be cured. In addition, a thermal polymerization initiator may be added to the curable composition in order to complete the polymerization, but when added in a large amount, the birefringence of the cured product is increased and the hue is deteriorated. Therefore, the addition amount of the thermal polymerization initiator is preferably 0.1 to 2% by mass, and more preferably 0.3 to 1% by mass with respect to the total of the curable monomer components.
 熱重合に使用する熱重合開始剤としては、例えば、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシカーボネート、パーオキシケタール、又はケトンパーオキサイド等が挙げられる。具体的にはベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシ(2-エチルヘキサノエート)ジクミルパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルハイドロパーキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、又は1,1,3,3-テトラメチルブチルハイドロパーオキサイド等を用いることができる。これらの重合開始剤は単独で用いても、2種以上を併用してもよい。
 光照射時に熱重合が開始されると、重合を制御することが難しくなるので、熱重合開始剤は好ましくは1分半減期温度が120℃以上であることがよい。
Examples of the thermal polymerization initiator used for thermal polymerization include hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxycarbonate, peroxyketal, and ketone peroxide. Specifically, benzoyl peroxide, diisopropyl peroxy carbonate, t-butyl peroxy (2-ethylhexanoate) dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide Side, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, or the like can be used. These polymerization initiators may be used alone or in combination of two or more.
When thermal polymerization is initiated at the time of light irradiation, it becomes difficult to control the polymerization. Therefore, the thermal polymerization initiator preferably has a 1 minute half-life temperature of 120 ° C. or higher.
 光重合に使用する光重合開始剤としては、通常、光ラジカル発生剤又は光カチオン重合開始剤が用いられる。光重合開始剤は単独で用いても、2種以上を併用してもよい。 As the photopolymerization initiator used for photopolymerization, a photoradical generator or a photocationic polymerization initiator is usually used. A photoinitiator may be used independently or may use 2 or more types together.
 光ラジカル発生剤としては、この用途に用い得ることが知られている公知の化合物を用いることができる。例えば、ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、又は2,4,6-トリメチルベンゾイルジフェニルホシフィンオキシド等が挙げられる。これらの中でも、ベンゾフェノン、又は2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドが好ましい。 As the photoradical generator, known compounds that can be used for this purpose can be used. Examples include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, or 2,4,6-trimethylbenzoyldiphenylphosphine oxide. . Among these, benzophenone or 2,4,6-trimethylbenzoyldiphenylphosphine oxide is preferable.
 光カチオン重合開始剤とは、紫外線や電子線などの放射線の照射によりカチオン重合を開始させる化合物であり、次のようなものが挙げられる。 The photocationic polymerization initiator is a compound that initiates cationic polymerization by irradiation with radiation such as ultraviolet rays or electron beams, and includes the following.
 例えば、芳香族スルホニウム塩として、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルフォニウムヘキサフルオロ、ジフェニル-4-(フェニルチオ)フェニルスルフォニウムヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルフォニウムテトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルフォニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロホスフェート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドテトラフルオロボレート、又はビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルフォニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 For example, aromatic sulfonium salts include bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate, bis [4- (diphenylsulfone). Nio) phenyl] sulfide bishexafluoroborate, bis [4- (diphenylsulfonio) phenyl] sulfide tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluoro, diphenyl-4- (phenylthio) ) Phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) phenyl Rufonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis [4- (di ( 4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimony Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonylio) phenyl] sulfide tetrafluoroborate, or bis [4- (di (4 (2-hydroxyethoxy)) phenylsulfonyl O) phenyl] sulfide tetrakis (pentafluorophenyl) borate, and the like.
 芳香族ヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムヘキサフルオロボレート、又は4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Aromatic iodonium salts include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecyl) Phenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluorophosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluorovolley , Or 4-methylphenyl-4- (1-methylethyl) phenyl iodonium tetrakis (pentafluorophenyl) borate, and the like.
 芳香族ジアゾニウム塩としては、フェニルジアゾニウムヘキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、又はジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the aromatic diazonium salt include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, and the like.
 芳香族アンモニウム塩としては、1-ベンジル-2-シアノピリジニウムヘキサフルオロホスフェート、1-ベンジル-2-シアノピリジニウムヘキサフルオロアンチモネート、1-ベンジル-2-シアノピリジニウムテトラフルオロボレート、1-ベンジル-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロホスフェート、1-(ナフチルメチル)-2-シアノピリジニウムヘキサフルオロアンチモネート、1-(ナフチルメチル)-2-シアノピリジニウムテトラフルオロボレート、1-(ナフチルメチル)-2-シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-鉄塩としては、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-鉄(II)ヘキサフルオロホスフェート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-鉄(II)ヘキサフルオロアンチモネート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-鉄(II)テトラフルオロボレート、(2,4-シクロペンタジエン-1-イル)[(1-メチルエチル)ベンゼン]-鉄(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Aromatic ammonium salts include 1-benzyl-2-cyanopyridinium hexafluorophosphate, 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl-2- Cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) -2- Examples thereof include cyanopyridinium tetrafluoroborate and 1- (naphthylmethyl) -2-cyanopyridinium tetrakis (pentafluorophenyl) borate. (2,4-Cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron salt includes (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron. (II) hexafluorophosphate, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron (II) hexafluoroantimonate, (2,4-cyclopentadien-1-yl) [(1-Methylethyl) benzene] -iron (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -iron (II) tetrakis (pentafluorophenyl) Examples include borate.
 これらの光カチオン重合開始剤の市販品としては、例えば、ユニオンカーバイド社製のUVI6990、UVI6979、ADEKA社製のSP-150、SP-170、若しくはSP-172、チバガイギー社製のイルガキュア261、若しくはイルガキュア250、ローディア社製のRHODORSILPI2074、若しくはJMF-2456、又は三新化学工業社製のサンエイドSI-60L、SI-80L、SI-100L、SI-110L、SI-180L、若しくはSI-100L等が挙げられる。 Commercially available products of these cationic photopolymerization initiators include, for example, UVI6990, UVI6979 manufactured by Union Carbide, SP-150, SP-170, or SP-172 manufactured by ADEKA, Irgacure 261 manufactured by Ciba Geigy, or Irgacure 250, Rhodia SILPI 2074 or JMF-2456 manufactured by Rhodia, or Sun-Aid SI-60L, SI-80L, SI-100L, SI-110L, SI-180L, or SI-100L manufactured by Sanshin Chemical Industry Co., Ltd. .
 さらに、光カチオン重合開始剤の他にも、カチオン重合性モノマーを硬化させるための硬化剤を添加してもよい。硬化剤としては、例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物等の化合物、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、又はジシアンアミド及びその誘導体等が挙げられる。これらの硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。これらのうち、熱潜在性カチオン重合触媒としては、アデカオプトンCP-66、若しくはCP-77((株)ADEKA社製)、又はサンエイドSI-15、SI-20、SI-25、SI-40、SI-45、SI-47、SI-60、SI-80、SI-100、SI-100L、SI-110L、SI-145、SI-150、SI-160、若しくはSI-180L(三新化学工業(株)社製)などが挙げられる。 Furthermore, in addition to the cationic photopolymerization initiator, a curing agent for curing the cationic polymerizable monomer may be added. Examples of the curing agent include amine compounds, compounds such as polyaminoamide compounds synthesized from amine compounds, tertiary amine compounds, imidazole compounds, hydrazide compounds, melamine compounds, acid anhydrides, phenolic compounds, thermal latent cationic polymerization catalysts. Or dicyanamide and derivatives thereof. These hardening | curing agents may be used independently and 2 or more types may be used together. Among these, as the heat latent cationic polymerization catalyst, Adeka Opton CP-66 or CP-77 (manufactured by ADEKA Co., Ltd.) or Sun-Aid SI-15, SI-20, SI-25, SI-40, SI -45, SI-47, SI-60, SI-80, SI-100, SI-100L, SI-110L, SI-145, SI-150, SI-160, or SI-180L (Sanshin Chemical Industry Co., Ltd. )).
 また、光増感剤を添加することもできる。具体的にはピレン、ペリレン、アクリジンオレンジ、チオキサントン、2-クロロチオキサントン及びベンゾフラビン等が挙げられる。市販の光増感剤としては、アデカイプトマーSP-100((株)ADEKA社製)などが挙げられる。 Also, a photosensitizer can be added. Specific examples include pyrene, perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, and benzoflavin. Examples of commercially available photosensitizers include Adekapitomer SP-100 (manufactured by ADEKA Corporation).
 光重合開始剤の成分量は、硬化性組成物中の重合可能な化合物の合計を100質量部としたとき、0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。また、光重合開始剤の成分量は、5質量部以下であることが好ましく、2質量部以下であることがより好ましく、0.1質量部以下であることがさらに好ましい。
 すなわち、光重合開始剤の成分量の範囲は、硬化性組成物中の重合可能な化合物の合計を100質量部としたとき、0.001~5質量部が好ましく、0.01~2質量部がより好ましく、0.05~0.1質量部がさらに好ましい。
 ただし、光重合開始剤が光カチオン重合開始剤である場合には、カチオン重合性モノマーの総量100質量部に対して、0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは0.5質量部以上であり、通常10質量部以下、好ましくは5質量部以下、さらに好ましくは1質量部以下である。
 すなわち、光重合開始剤が光カチオン重合開始剤である場合には、光重合開始剤の成分量の範囲は、カチオン重合性モノマーの総量100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましく、0.5~1質量部がさらに好ましい。 光重合開始剤の添加量が多すぎると、重合が急激に進行し、得られる硬化物の複屈折を大きくするだけでなく色相を悪化させる。例えば、光重合開始剤の濃度を5質量部とした場合、光重合開始剤の吸収により、紫外線の照射と反対側に光が到達できずに未硬化の部分が生ずる。また、黄色く着色し色相の劣化が著しい。一方、少なすぎると紫外線照射を行っても重合が充分に進行しないおそれがある。
The component amount of the photopolymerization initiator is preferably 0.001 part by mass or more and 0.01 part by mass or more when the total amount of polymerizable compounds in the curable composition is 100 parts by mass. Is more preferably 0.05 parts by mass or more. Further, the amount of the component of the photopolymerization initiator is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, and further preferably 0.1 parts by mass or less.
That is, the range of the component amount of the photopolymerization initiator is preferably 0.001 to 5 parts by mass, and 0.01 to 2 parts by mass when the total amount of polymerizable compounds in the curable composition is 100 parts by mass. Is more preferable, and 0.05 to 0.1 parts by mass is even more preferable.
However, when the photopolymerization initiator is a photocationic polymerization initiator, it is 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably, with respect to 100 parts by mass of the total amount of the cationic polymerizable monomer. 0.5 parts by mass or more, usually 10 parts by mass or less, preferably 5 parts by mass or less, and more preferably 1 part by mass or less.
That is, when the photopolymerization initiator is a photocationic polymerization initiator, the component amount of the photopolymerization initiator ranges from 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the cation polymerizable monomer. Preferably, 0.1 to 5 parts by mass is more preferable, and 0.5 to 1 part by mass is further preferable. When the addition amount of the photopolymerization initiator is too large, the polymerization proceeds rapidly, not only increasing the birefringence of the resulting cured product but also deteriorating the hue. For example, when the concentration of the photopolymerization initiator is 5 parts by mass, absorption of the photopolymerization initiator causes light to not reach the side opposite to the irradiation of ultraviolet rays, resulting in an uncured part. Further, it is colored yellow and the hue is markedly deteriorated. On the other hand, if the amount is too small, the polymerization may not proceed sufficiently even if ultraviolet irradiation is performed.
 複合体の製造において、本発明の不織布とマトリックス材料とを複合化する場合には、マトリックス材料の複合化の前に、不織布に対して、上述した化学修飾処理を施すことが好ましい。
 不織布の微細繊維状セルロースに化学修飾を施す場合には、不織布をアルコール等の有機溶媒で置換し、乾燥した後に化学修飾を行ってもよいし、乾燥せずに化学修飾を行ってもよいが、乾燥後の方が化学修飾の反応速度が速くなるため好ましい。乾燥は送風乾燥でもよいし、減圧乾燥でもよいし、加圧乾燥でもよい。また、加熱することもできる。
In the production of the composite, when the nonwoven fabric of the present invention and the matrix material are composited, it is preferable to perform the above-described chemical modification treatment on the nonwoven fabric before the composite of the matrix material.
When chemically modifying the fine fibrous cellulose of the nonwoven fabric, the nonwoven fabric may be substituted with an organic solvent such as alcohol and dried, and then the chemical modification may be performed, or the chemical modification may be performed without drying. Since the reaction rate of chemical modification becomes faster after drying, it is preferable. Drying may be air drying, vacuum drying, or pressure drying. It can also be heated.
 不織布に化学修飾を行った場合、化学修飾後、反応を終結させるために充分に洗浄することが好ましい。未反応の化学修飾剤が残留していると、後で着色の原因になったり、樹脂と複合化する際に問題になったりするので好ましくない。また、充分に洗浄した後、さらにアルコール等の有機溶媒で置換することが好ましい。この場合、不織布をアルコール等の有機溶媒に浸漬しておくことで容易に置換することができる。 When the nonwoven fabric is chemically modified, it is preferable to thoroughly wash after the chemical modification in order to terminate the reaction. If the unreacted chemical modifier remains, it is not preferable because it causes coloring later or becomes a problem when it is combined with the resin. In addition, after washing sufficiently, it is preferable to further replace with an organic solvent such as alcohol. In this case, the nonwoven fabric can be easily replaced by immersing it in an organic solvent such as alcohol.
 また、不織布に化学修飾を行った場合、通常は、化学修飾後に不織布を乾燥する。この乾燥は送風乾燥であってもよいし、減圧乾燥であってもよいし、加圧乾燥であってもよいし、加熱乾燥であってもよい。
 乾燥の際に加熱する場合、温度は50℃以上が好ましく、80℃以上がより好ましく、また、250℃以下が好ましく、150℃以下がより好ましい。
 すなわち、乾燥の際に加熱する場合の温度の範囲は、50~250℃が好ましく、80~150℃がより好ましい。
 加熱温度が低すぎると乾燥に時間がかかったり、乾燥が不充分になる可能性があり、加熱温度が高すぎると不織布が着色したり、分解したりする可能性がある。
 また、加圧する場合、圧力(ゲージ圧)は0.01MPa以上が好ましく、0.1MPa以上がより好ましく、また、5MPa以下が好ましく、1MPa以下がより好ましい。
 すなわち、加圧する場合の圧力(ゲージ圧)の範囲は、0.01~5MPaが好ましく、0.1~15MPaがより好ましい。
 圧力が低すぎると乾燥が不充分になる可能性があり、圧力が高すぎると不織布がつぶれたり分解したりする可能性がある。
Moreover, when chemically modifying a nonwoven fabric, the nonwoven fabric is normally dried after chemical modification. This drying may be air drying, vacuum drying, pressure drying, or heat drying.
When heating at the time of drying, the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable.
That is, the temperature range when heating during drying is preferably 50 to 250 ° C, more preferably 80 to 150 ° C.
If the heating temperature is too low, drying may take time or drying may be insufficient. If the heating temperature is too high, the nonwoven fabric may be colored or decomposed.
In addition, when pressurizing, the pressure (gauge pressure) is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, and preferably 5 MPa or less, more preferably 1 MPa or less.
That is, the range of pressure (gauge pressure) when pressurizing is preferably 0.01 to 5 MPa, and more preferably 0.1 to 15 MPa.
If the pressure is too low, drying may be insufficient, and if the pressure is too high, the nonwoven fabric may be crushed or decomposed.
(複合体の物性)
 次に、本発明の複合体の物性について説明する。
(Physical properties of the composite)
Next, the physical properties of the composite of the present invention will be described.
 本発明の複合体は、厚み100μmの繊維複合体について、190℃で酸素分圧0.006MPa以下で1時間加熱した後に、JIS規格K7105に準拠して測定した黄色度(YI値)が30以下であることが好ましい。この黄色度は25以下であることがより好ましい。
 複合体の黄色度は例えば、スガ試験機製カラーコンピューターを用いて測定することができる。
 複合体の黄色度は、セルロース繊維を化学修飾したり、透明性の高いマトリックス材料を用いたりすることにより、小さくすることができる。
The composite of the present invention is a fiber composite having a thickness of 100 μm, heated at 190 ° C. with an oxygen partial pressure of 0.006 MPa or less for 1 hour, and then the yellowness (YI value) measured according to JIS standard K7105 is 30 or less. It is preferable that The yellowness is more preferably 25 or less.
The yellowness of the composite can be measured, for example, using a color computer manufactured by Suga Test Instruments.
The yellowness of the composite can be reduced by chemically modifying the cellulose fibers or using a highly transparent matrix material.
 本発明の複合体では、可視光の波長よりも細い繊維径の繊維を用いているから、マトリックス材料に透明性の高いものを用いれば、透明性の高い、すなわちヘーズの小さい複合体とすることができる。複合体のヘーズ値は、厚み100μmの複合体について、JIS規格K7136に従って測定した値において、5以下であることが好ましく、3以下であることがより好ましく、2以下であることがより好ましく、1以下であることが特に好ましい。
 複合体のヘーズは、例えばスガ試験機製ヘーズメータで測定することができ、C光の値を用いる。
In the composite of the present invention, fibers having a fiber diameter thinner than the wavelength of visible light are used. Therefore, if a highly transparent material is used for the matrix material, a composite having high transparency, that is, having a low haze is obtained. Can do. The haze value of the composite is preferably 5 or less, more preferably 3 or less, and even more preferably 2 or less, as measured according to JIS standard K7136 for a 100 μm thick composite. The following is particularly preferable.
The haze of the composite can be measured, for example, with a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
 本発明の複合体は、吸水率が低いものとなるが、厚み100μmのものにおいて、JIS規格K7209(D法)に準拠して測定した吸水率が1%以下であることが好ましく、0.8%以下であることがより好ましく、0.5%以下であることがさらに好ましく、0.3%以下であることが特に好ましい。
 吸水率が1%を超えると、加工プロセス上で脱水した複合体が空気中に放置された際、空気中の水分を吸収して伸び、寸法変形を起こすため、好ましくない。
The composite of the present invention has a low water absorption, but in a 100 μm thickness, the water absorption measured according to JIS standard K7209 (D method) is preferably 1% or less, 0.8 % Or less is more preferable, 0.5% or less is further preferable, and 0.3% or less is particularly preferable.
When the water absorption rate exceeds 1%, the composite dehydrated in the processing process is undesirably stretched by absorbing moisture in the air when left in the air and causing dimensional deformation.
 本発明の複合体は、厚み100μmのものにおいて、その厚み方向にJIS規格K7105に準拠して測定された全光線透過率が好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは82%以上、より好ましくは84%以上、さらに好ましくは86%以上、特に好ましくは88%以上、とりわけ好ましくは90%以上である。この全光線透過率が60%未満であると半透明又は不透明となり、透明性が要求される用途への使用が困難となる場合がある。全光線透過率は例えば、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。 The composite of the present invention has a thickness of 100 μm, and the total light transmittance measured in accordance with JIS standard K7105 in the thickness direction is preferably 60% or more, more preferably 70% or more, more preferably 80%. More preferably, it is 82% or more, more preferably 84% or more, still more preferably 86% or more, particularly preferably 88% or more, and particularly preferably 90% or more. If this total light transmittance is less than 60%, it becomes translucent or opaque, and it may be difficult to use it in applications requiring transparency. The total light transmittance can be measured, for example, using a Suga Test Instruments haze meter, and the value of C light is used.
 本発明の複合体は、厚み100μmのものにおいて、その厚み方向にJIS規格K7105に準拠して測定された平行光線透過率が57%以上、さらには70%以上、特に80%以上、とりわけ89%以上であることが好ましい。この平行光線透過率が57%未満であると散乱光が多く、ヘーズが大きくなり、例えば有機EL素子用途等において、画素が不明瞭となり、色がぼやけたりにじんだりする。平行光線透過率は例えば、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。 In the composite of the present invention having a thickness of 100 μm, the parallel light transmittance measured in accordance with JIS standard K7105 in the thickness direction is 57% or more, further 70% or more, particularly 80% or more, especially 89%. The above is preferable. If the parallel light transmittance is less than 57%, the amount of scattered light is increased and haze is increased. For example, in an organic EL device application, the pixel becomes unclear and the color is blurred or blurred. The parallel light transmittance can be measured, for example, using a Suga Test Instruments haze meter, and the value of C light is used.
 本発明の複合体は、線熱膨張率を容易に低くできるが、複合体線熱膨張率が1~50ppm/Kであることが好ましい。本発明の複合体の線熱膨張率は30ppm/K以下であることがさらに好ましく、20ppm/K以下であることが特に好ましい。また、線熱膨張率は1ppm/K以上であることが好ましく、5ppm/K以上であることがより好ましい。
 すなわち、前記線熱膨張率の範囲は、1~50ppm/Kが好ましく、5~30ppm/Kがより好ましく、5~20ppm/Kがさらに好ましい。
 例えば、基板用途においては、無機の薄膜トランジスタの線熱膨張率が15ppm/K程度であるため、複合体の線熱膨張率が50ppm/Kを超えると無機膜との積層複合化の際に、二層の線熱膨張率差が大きくなり、クラック等が発生する。線熱膨張率は、後述の実施例の項に記載される方法により測定される。
The composite of the present invention can easily have a low coefficient of linear thermal expansion, but preferably has a coefficient of linear thermal expansion of 1 to 50 ppm / K. The linear thermal expansion coefficient of the composite of the present invention is more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, the linear thermal expansion coefficient is preferably 1 ppm / K or more, and more preferably 5 ppm / K or more.
That is, the range of the linear thermal expansion coefficient is preferably 1 to 50 ppm / K, more preferably 5 to 30 ppm / K, and still more preferably 5 to 20 ppm / K.
For example, in a substrate application, since the linear thermal expansion coefficient of an inorganic thin film transistor is about 15 ppm / K, when the linear thermal expansion coefficient of the composite exceeds 50 ppm / K, two layers are combined in an inorganic film. The difference in coefficient of linear thermal expansion between layers becomes large, and cracks and the like are generated. The linear thermal expansion coefficient is measured by the method described in the section of Examples described later.
 本発明の複合体においては、微細繊維状セルロース同士の空隙にマトリックス材料が充填されているが、不織布を用いた場合には、不織布の空隙にマトリックス材料が充填されている。よって、マトリックス材料充填部の体積割合は不織布の空隙率と略同等となる。 In the composite of the present invention, the matrix material is filled in the gaps between the fine fibrous celluloses, but when the nonwoven fabric is used, the matrix material is filled in the gaps in the nonwoven fabric. Therefore, the volume ratio of the matrix material filling portion is substantially equal to the porosity of the nonwoven fabric.
 本発明の複合体は、引張強度が、好ましくは40MPa以上であり、より好ましくは100MPa以上である。引張強度が40MPaより低いと、充分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。 The tensile strength of the composite of the present invention is preferably 40 MPa or more, more preferably 100 MPa or more. If the tensile strength is lower than 40 MPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
 本発明の複合体は、引張弾性率が、好ましくは0.2~100GPaであり、より好ましくは、1~100GPaである。引張弾性率が0.2GPaより低いと、充分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。
 特に、ディスプレイ用基板用途において、基板の引張弾性率には好適範囲が存在し、基板の引張弾性率が低いと基板は自重で曲がってしまい、平滑な面を形成することが難しくなる。そのため、トランジスタやその他の素子を精度よく形成することができなくなる。
 一方、引張弾性率が高すぎると硬く脆くなり、基板自体が割れるなど不都合が生じる。
The composite of the present invention has a tensile modulus of preferably 0.2 to 100 GPa, more preferably 1 to 100 GPa. When the tensile elastic modulus is lower than 0.2 GPa, sufficient strength cannot be obtained, which may affect the use in applications where force is applied such as structural materials.
In particular, in a display substrate application, there is a suitable range for the tensile elastic modulus of the substrate. If the tensile elastic modulus of the substrate is low, the substrate is bent by its own weight, and it becomes difficult to form a smooth surface. For this reason, transistors and other elements cannot be formed with high accuracy.
On the other hand, if the tensile elastic modulus is too high, it becomes hard and brittle, causing problems such as cracking of the substrate itself.
 本発明の複合体は、低線熱膨張率、高弾性、高強度のものとなる。その特性を活かして本発明の複合体を構造材としても用いることができる。特に、グレージング、内装材、外板、又はバンパー等の自動車材料やパソコンの筐体、家電部品、包装用資材、建築資材、土木資材、水産資材、又はその他工業用資材等として好適に用いられる。
 本発明の複合体において、微細繊維状セルロースとして繊維幅が30nm以下、特に好ましくは20nm以下を用い、マトリックス材料として透明樹脂を用いた場合には、複合体の透明性も高くなり、ヘーズが小さくなる。また、本発明の複合体においては、マトリックス材料を適宜選択することによって、吸水性を低下させることもできる。本発明の複合体のうち、透明性が高く、ヘーズが小さく、高強度、低吸水性のものは光学特性に優れるため、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、又はリアプロジェクションテレビ等のディスプレイや基板やパネルとして好適である。また、シリコン系太陽電池、又は色素増感太陽電池などの太陽電池用基板に好適である。基板としての用途において、バリア膜、ITO、又はTFT等と積層してもよい。また、自動車用の窓材、鉄道車両用の窓材、住宅用の窓材、又はオフィスや工場などの窓材などに好適に使われる。窓材としては、所望によりフッ素皮膜、又はハードコート膜等の膜や耐衝撃性、又は耐光性の素材を積層してもよい。
The composite of the present invention has a low linear thermal expansion coefficient, high elasticity, and high strength. Taking advantage of the characteristics, the composite of the present invention can be used as a structural material. In particular, it is suitably used as automobile materials such as glazing, interior materials, outer plates, or bumpers, personal computer casings, home appliance parts, packaging materials, building materials, civil engineering materials, marine products, or other industrial materials.
In the composite of the present invention, when a fiber width of 30 nm or less, particularly preferably 20 nm or less is used as the fine fibrous cellulose, and the transparent resin is used as the matrix material, the transparency of the composite is increased and haze is reduced. Become. In the composite of the present invention, the water absorption can be lowered by appropriately selecting a matrix material. Among the composites of the present invention, those having high transparency, small haze, high strength, and low water absorption are excellent in optical characteristics. It is suitable as a display, a substrate or a panel. Moreover, it is suitable for substrates for solar cells such as silicon-based solar cells or dye-sensitized solar cells. For use as a substrate, it may be laminated with a barrier film, ITO, TFT or the like. Moreover, it is suitably used for window materials for automobiles, window materials for railway vehicles, window materials for houses, window materials for offices, factories and the like. As the window material, a film such as a fluorine film or a hard coat film, or an impact-resistant or light-resistant material may be laminated as desired.
 本発明の別の側面の微細繊維状セルロースの製造方法は、
 セルロースを含む繊維原料を乾燥させることにより、前記繊維原料の水分が繊維原料絶乾重量に対して10%以下の乾燥パルプを得る工程と、無水マレイン酸、無水コハク酸、及び無水フタル酸あるいはこれらの誘導体からなる群より選ばれる少なくとも一種のカルボン酸系化合物により、前記乾燥パルプを処理して、セルロースにカルボキシ基を導入するカルボキシ基導入工程と、前記カルボキシ基導入工程終了後にカルボキシ基を導入したセルロースを、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、テトラメチルアンモニウムヒドロキシド水溶液、テトラエチルアンモニウムヒドロキシド水溶液、テトラプロピルアンモニウムヒドロキシド水溶液、及びテトラブチルアンモニウムヒドロキシド水溶液からなる群より選ばれる少なくとも1種のアルカリ溶液で処理するアルカリ処理工程と、前記アルカリ処理した後のセルロースを解繊処理する解繊処理工程とを有することが好ましい。
The method for producing fine fibrous cellulose according to another aspect of the present invention includes:
Drying the fiber raw material containing cellulose to obtain a dry pulp having a moisture content of 10% or less based on the dry weight of the fiber raw material, and maleic anhydride, succinic anhydride, and phthalic anhydride, or these The dried pulp is treated with at least one carboxylic acid compound selected from the group consisting of derivatives of carboxy group to introduce a carboxy group into cellulose, and a carboxy group is introduced after completion of the carboxy group introduction step. A group consisting of cellulose aqueous solution, aqueous solution of potassium hydroxide, aqueous solution of ammonia, aqueous solution of tetramethylammonium hydroxide, aqueous solution of tetraethylammonium hydroxide, aqueous solution of tetrapropylammonium hydroxide, and aqueous solution of tetrabutylammonium hydroxide. Ri and alkali treatment step of treating at least one alkali solution selected preferably has a fibrillation treatment step of fibrillation treatment the cellulose after the alkali treatment.
 本発明のまた別の側面の微細繊維状セルロースの製造方法は、無水マレイン酸、無水コハク酸、及び無水フタル酸あるいはこれらの誘導体からなる群より選ばれる少なくとも一種のカルボン酸系化合物により、セルロースを含む、水分が繊維原料絶乾重量に対して10質量%以下である繊維原料を処理して、セルロースにカルボキシ基を導入するカルボキシ基導入工程と、前記カルボキシ基導入工程終了後にカルボキシ基を導入したセルロースを、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、テトラメチルアンモニウムヒドロキシド水溶液、テトラエチルアンモニウムヒドロキシド水溶液、テトラプロピルアンモニウムヒドロキシド水溶液、及びテトラブチルアンモニウムヒドロキシド水溶液からなる群より選ばれる少なくとも1種のアルカリ溶液で処理するアルカリ処理工程と、前記アルカリ処理した後のセルロースを解繊処理する解繊処理工程とを有することが好ましい。 According to still another aspect of the present invention, there is provided a method for producing fine fibrous cellulose comprising at least one carboxylic acid compound selected from the group consisting of maleic anhydride, succinic anhydride, phthalic anhydride or derivatives thereof. Including the carboxy group introduction step of introducing a carboxy group into cellulose by treating a fiber raw material containing 10% by mass or less of the moisture content of the fiber raw material, and introducing the carboxy group after completion of the carboxy group introduction step. Cellulose is selected from the group consisting of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, tetramethylammonium hydroxide aqueous solution, tetraethylammonium hydroxide aqueous solution, tetrapropylammonium hydroxide aqueous solution, and tetrabutylammonium hydroxide aqueous solution. And alkali treatment step of treating at least one alkali solution that preferably has a fibrillation treatment step of fibrillation treatment the cellulose after the alkali treatment.
(実施例1)
 広葉樹クラフトパルプ(LBKP)を105℃で3時間乾燥させて水分3質量%以下の乾燥パルプを得た。次いで、乾燥パルプ4gと無水マレイン酸4g(乾燥パルプ100質量部に対して100質量部)とをオートクレーブに充填し、150℃で2時間処理した。
 次いで、無水マレイン酸で処理されたパルプを500mLの水で3回洗浄した後、イオン交換水を添加して490mLのスラリーを調製した。
 次いで、スラリーを攪拌しながら、4Nの水酸化ナトリウム水溶液10mLを少しずつ添加し、スラリーのpHを12~13として、パルプをアルカリ処理した。その後、pHが8以下になるまで、アルカリ処理後のパルプを水で洗浄した。
 次いで、アルカリ処理後のパルプにイオン交換水を添加し、固形分濃度0.5質量%のスラリーを調製した。そのスラリーを、解繊処理装置(エムテクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、最後に冷却/高速遠心機(コクサン社製、H-2000B)を用いて12000Gで10分間遠心分離してから上澄みを回収し、解繊パルプスラリーを得た。
 解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された(図1参照)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、結晶化度は84%であった。FT-IRによる赤外線吸収スペクトルの測定により、1580及び1720cm-1付近にカルボキシ基に基づく吸収が見られ、マレイン酸の付加が確認された。
(Example 1)
Hardwood kraft pulp (LBKP) was dried at 105 ° C. for 3 hours to obtain a dry pulp having a water content of 3% by mass or less. Next, 4 g of dried pulp and 4 g of maleic anhydride (100 parts by mass with respect to 100 parts by mass of dried pulp) were filled in an autoclave and treated at 150 ° C. for 2 hours.
Next, the pulp treated with maleic anhydride was washed with 500 mL of water three times, and then ion-exchanged water was added to prepare 490 mL of slurry.
Next, while stirring the slurry, 10 mL of 4N aqueous sodium hydroxide solution was added little by little to adjust the pH of the slurry to 12 to 13, and the pulp was alkali treated. Thereafter, the pulp after alkali treatment was washed with water until the pH became 8 or less.
Subsequently, ion-exchanged water was added to the pulp after the alkali treatment to prepare a slurry having a solid content concentration of 0.5% by mass. The slurry was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by MTechnic Co., Ltd.) at 21500 rpm, and finally a cooling / high-speed centrifuge (Kokusan Co., Ltd.). Manufactured by H-2000B) and centrifuged at 12000 G for 10 minutes, and the supernatant was recovered to obtain a defibrated pulp slurry.
When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 1). Moreover, the cellulose maintained the cellulose I type crystal | crystallization by X-ray diffraction, and the crystallinity was 84%. Measurement of an infrared absorption spectrum by FT-IR showed absorption based on a carboxy group in the vicinity of 1580 and 1720 cm −1 , confirming the addition of maleic acid.
(実施例2)
 無水マレイン酸の代わりに無水コハク酸を用いた以外は実施例1と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された(図2参照)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、結晶化度は82%であった。FT-IRによる赤外線吸収スペクトルの測定により、コハク酸の付加が確認された。
(Example 2)
A defibrated pulp slurry was obtained in the same manner as in Example 1 except that succinic anhydride was used instead of maleic anhydride. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 2). Moreover, by X-ray diffraction, the cellulose maintained the cellulose I type crystal | crystallization and the crystallinity was 82%. The addition of succinic acid was confirmed by measurement of the infrared absorption spectrum by FT-IR.
(実施例3)
 無水マレイン酸の添加量を12g(乾燥パルプ100質量部に対して300質量部)に、無水マレイン酸による処理時間を1時間に、洗浄媒をアセトンに変更した以外は実施例1と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された(図3参照)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 3)
Example 1 except that the amount of maleic anhydride added was changed to 12 g (300 parts by mass with respect to 100 parts by mass of dried pulp), the treatment time with maleic anhydride was changed to 1 hour, and the washing medium was changed to acetone. A defibrated pulp slurry was obtained. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 3). Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例4)
 広葉樹クラフトパルプを乾燥せず、無水マレイン酸による処理時間を1時間に変更した以外は実施例3と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された(図4参照)。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 4)
A defibrated pulp slurry was obtained in the same manner as in Example 3 except that the hardwood kraft pulp was not dried and the treatment time with maleic anhydride was changed to 1 hour. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed that the cellulose was a fine fibrous cellulose having a width of about 4 nm (see FIG. 4). Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例5)
 広葉樹クラフトパルプの代わりに針葉樹クラフトパルプ(NBKP)を用い、無水マレイン酸の添加量を2g(乾燥パルプ100質量部に対して50質量部)に変更した以外は実施例1と同様にして解繊パルプスラリーを得た。
 解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 5)
Defibering in the same manner as in Example 1 except that softwood kraft pulp (NBKP) was used instead of hardwood kraft pulp and the amount of maleic anhydride added was changed to 2 g (50 parts by weight with respect to 100 parts by weight of dry pulp). A pulp slurry was obtained.
When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例6)
 広葉樹クラフトパルプの代わりに麻パルプを用い、無水マレイン酸の添加量を2gに変更した以外は実施例1と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 6)
A defibrated pulp slurry was obtained in the same manner as in Example 1 except that hemp pulp was used in place of hardwood kraft pulp and the amount of maleic anhydride added was changed to 2 g. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例7)
 無水マレイン酸4gを無水マレイン酸2g(乾燥パルプ100質量部に対して50質量部)に変更した以外は実施例1と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 7)
A defibrated pulp slurry was obtained in the same manner as in Example 1 except that 4 g of maleic anhydride was changed to 2 g of maleic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp). When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例8)
 無水マレイン酸4gを無水フタル酸2g(乾燥パルプ100質量部に対して50質量部)に変更した以外は実施例1と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、フタル酸の付加が確認された。
(Example 8)
A defibrated pulp slurry was obtained in the same manner as in Example 1 except that 4 g of maleic anhydride was changed to 2 g of phthalic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp). When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained a cellulose I-type crystal, and addition of phthalic acid was confirmed by measurement of an infrared absorption spectrum by FT-IR.
(実施例9)
 広葉樹クラフトパルプを105℃で3時間乾燥させて水分3質量%以下の乾燥パルプを得た。次いで、乾燥パルプ4gと無水マレイン酸2g(乾燥パルプ100質量部に対して50質量部)とをオートクレーブに充填し、150℃で2時間処理した。
 次いで、水による洗浄をせずに、0.8質量%の水酸化ナトリウム水溶液250mLに乾燥パルプを分散し、スラリーを攪拌しながらパルプをアルカリ処理した。パルプスラリーのpHは12.5程度であった。その後、pHが8以下になるまで、アルカリ処理後のパルプを水で洗浄した。
 次いで、アルカリ処理後のパルプにイオン交換水を添加し、固形分濃度0.5質量%のスラリーを調製した。そのスラリーを、解繊処理装置(エムテクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、最後に冷却/高速遠心機(コクサン社製、H-2000B)を用いて12000Gで10分間遠心分離してから上澄みを回収し、解繊パルプスラリーを得た。
 解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、結晶化度は84%であった。FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
Example 9
The hardwood kraft pulp was dried at 105 ° C. for 3 hours to obtain a dry pulp having a moisture content of 3% by mass or less. Next, 4 g of dried pulp and 2 g of maleic anhydride (50 parts by mass with respect to 100 parts by mass of dried pulp) were filled in an autoclave and treated at 150 ° C. for 2 hours.
Next, without washing with water, the dried pulp was dispersed in 250 mL of a 0.8 mass% aqueous sodium hydroxide solution, and the pulp was alkali-treated while stirring the slurry. The pH of the pulp slurry was about 12.5. Thereafter, the pulp after alkali treatment was washed with water until the pH became 8 or less.
Subsequently, ion-exchanged water was added to the pulp after the alkali treatment to prepare a slurry having a solid content concentration of 0.5% by mass. The slurry was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by MTechnic Co., Ltd.) at 21500 rpm, and finally a cooling / high-speed centrifuge (Kokusan Co., Ltd.). Manufactured by H-2000B) and centrifuged at 12000 G for 10 minutes, and the supernatant was recovered to obtain a defibrated pulp slurry.
When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Moreover, the cellulose maintained the cellulose I type crystal | crystallization by X-ray diffraction, and the crystallinity was 84%. Addition of maleic acid was confirmed by measurement of an infrared absorption spectrum by FT-IR.
(実施例10)
 無水マレイン酸2gを無水コハク酸2g(乾燥パルプ100質量部に対して50質量部)に変更した以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、コハク酸の付加が確認された。
(Example 10)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 2 g of maleic anhydride was changed to 2 g of succinic anhydride (50 parts by mass with respect to 100 parts by mass of the dried pulp). When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose type I crystal, and addition of succinic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例11)
 無水マレイン酸2gを無水フタル酸2g(乾燥パルプ100質量部に対して50質量部)に変更した以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、フタル酸の付加が確認された。
(Example 11)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 2 g of maleic anhydride was changed to 2 g of phthalic anhydride (50 parts by mass with respect to 100 parts by mass of dry pulp). When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained a cellulose I-type crystal, and addition of phthalic acid was confirmed by measurement of an infrared absorption spectrum by FT-IR.
(実施例12)
 未晒広葉樹クラフトパルプ(LUKP、漂白処理をしていないクラフトパルプ)を用いたこと以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
Example 12
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that unbleached hardwood kraft pulp (LUKP, unbleached kraft pulp) was used. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例13)
 酸素晒広葉樹クラフトパルプ(LOKP、酸素漂白処理したクラフトパルプ)を用いたこと以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 13)
A defibrated pulp slurry was obtained in the same manner as in Example 9, except that oxygen-bleached hardwood kraft pulp (LOKP, oxygen-bleached kraft pulp) was used. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例14)
 0.8質量%水酸化ナトリウムの代わりに12.5質量%アンモニア水溶液を用いた以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 14)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that 12.5 mass% aqueous ammonia solution was used instead of 0.8 mass% sodium hydroxide. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例15)
 0.8質量%水酸化ナトリウムの代わりに2.0質量%テトラメチルアンモニウムヒドロキシド水溶液を用いた以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 15)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 2.0 mass% tetramethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例16)
 0.8質量%水酸化ナトリウムの代わりに2.5質量%テトラエチルアンモニウムヒドロキシド水溶液を用いた以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 16)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 2.5 mass% tetraethylammonium hydroxide aqueous solution was used instead of 0.8 mass% sodium hydroxide. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例17)
 0.8質量%水酸化ナトリウムの代わりに3.0質量%テトラプロピルアンモニウムヒドロキシド水溶液を用いた以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 17)
A defibrated pulp slurry was obtained in the same manner as in Example 9 except that a 3.0% by mass tetrapropylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例18)
 0.8質量%水酸化ナトリウムの代わりに3.5質量%テトラブチルアンモニウムヒドロキシド水溶液を用いた以外は実施例9と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 18)
A defibrated pulp slurry was obtained in the same manner as in Example 9, except that a 3.5% by mass tetrabutylammonium hydroxide aqueous solution was used instead of 0.8% by mass sodium hydroxide. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例19)
 オートクレーブ中で130℃、2時間反応させた以外は実施例7と同様にして解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 19)
A defibrated pulp slurry was obtained in the same manner as in Example 7 except that the reaction was performed at 130 ° C. for 2 hours in an autoclave. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例20)
 広葉樹クラフトパルプを、105℃で3時間乾燥させて水分3%以下の乾燥パルプを得た。次いで、2gの無水マレイン酸をアセトン4gに溶解させて得た無水マレイン酸溶液を前記乾燥パルプ4gに滴下し、攪拌して、乾燥パルプに無水マレイン酸溶液を染み込ませた。次いで、40℃で30分間乾燥させることによりアセトンを揮発させた後に、オートクレーブに充填し、100℃のオーブンにオートクレーブごと入れて、2時間処理した。これにより、セルロースにカルボキシ基を導入した。
 次いで、0.8%の水酸化ナトリウム水溶液250mLに、無水マレイン酸で処理した乾燥パルプを分散してスラリー状とし、得られたスラリーを攪拌して、パルプをアルカリ処理した。スラリーのpHは12.5程度であった。その後、pHが8以下になるまで、アルカリ処理後のパルプを水で洗浄した。
 次いで、水で洗浄後のパルプにイオン交換水を添加し、固形分濃度0.5%のスラリーを調製した。そのスラリーを、解繊処理装置(エム・テクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理した。そして、冷却高速遠心分離機(コクサン社製、H-2000B)を用いて12000Gで10分間遠心分離してから上澄みを回収して、微細繊維状セルロース分散液を得た。
 解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 20)
The hardwood kraft pulp was dried at 105 ° C. for 3 hours to obtain a dry pulp having a water content of 3% or less. Next, a maleic anhydride solution obtained by dissolving 2 g of maleic anhydride in 4 g of acetone was added dropwise to 4 g of the dried pulp and stirred to soak the maleic anhydride solution in the dried pulp. Next, acetone was volatilized by drying at 40 ° C. for 30 minutes, and then the autoclave was filled. The autoclave was placed in an oven at 100 ° C. and treated for 2 hours. This introduced a carboxy group into the cellulose.
Next, the dried pulp treated with maleic anhydride was dispersed in 250 mL of 0.8% aqueous sodium hydroxide solution to form a slurry, and the resulting slurry was stirred to alkali-treat the pulp. The pH of the slurry was about 12.5. Thereafter, the pulp after alkali treatment was washed with water until the pH became 8 or less.
Next, ion-exchanged water was added to the pulp after washing with water to prepare a slurry having a solid content concentration of 0.5%. The slurry was defibrated for 30 minutes at 21500 rpm using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.). Then, the mixture was centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (manufactured by Kokusan Co., Ltd., H-2000B), and the supernatant was collected to obtain a fine fibrous cellulose dispersion.
When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(実施例21)
 アルカリ洗浄工程において0.8%水酸化ナトリウムの代わりに0.8%水酸化カルシウムを使用した以外は実施例20と同様に行い、微細繊維状セルロース分散液を得た。アルカリ洗浄時のスラリーのpHは12.8程度であった。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持しており、FT-IRによる赤外線吸収スペクトルの測定により、マレイン酸の付加が確認された。
(Example 21)
A fine fibrous cellulose dispersion was obtained in the same manner as in Example 20 except that 0.8% calcium hydroxide was used instead of 0.8% sodium hydroxide in the alkali washing step. The pH of the slurry during alkali washing was about 12.8. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Further, by X-ray diffraction, the cellulose maintained the cellulose I type crystal, and addition of maleic acid was confirmed by measurement of infrared absorption spectrum by FT-IR.
(比較例1)
 実施例3におけるアルカリ処理を省略し、無水マレイン酸処理後のスラリーを解繊処理しようとしたが、スラリーにパルプの塊が多く含まれているため、解繊処理することができなかった。
(Comparative Example 1)
The alkali treatment in Example 3 was omitted, and an attempt was made to defibrate the slurry after the maleic anhydride treatment. However, since the slurry contained many lumps of pulp, it could not be defibrated.
(比較例2)
 乾燥パルプの無水マレイン酸による処理を省略し、乾燥パルプをアルカリ処理した後に解繊処理した以外は実施例3と同様にして、解繊パルプスラリーを得た。解繊パルプスラリーに含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nm程度の微細繊維状セルロースになっていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持していることが確認された。
(Comparative Example 2)
The treatment with the maleic anhydride of the dried pulp was omitted, and a defibrated pulp slurry was obtained in the same manner as in Example 3 except that the dried pulp was alkali-treated and then defibrated. When the cellulose contained in the defibrated pulp slurry was observed with a transmission electron microscope, it was confirmed to be a fine fibrous cellulose having a width of about 4 nm. Moreover, it was confirmed by X-ray diffraction that the cellulose maintained the cellulose I type crystal.
(比較例3)
 無水マレイン酸処理及びアルカリ処理を省略した以外は実施例3と同様にして、解繊パルプスラリーを得た。
(Comparative Example 3)
A defibrated pulp slurry was obtained in the same manner as in Example 3 except that maleic anhydride treatment and alkali treatment were omitted.
(比較例4)
 無水マレイン酸処理及びアルカリ処理を省略した以外は実施例12と同様にして、解繊パルプスラリーを得た。
(Comparative Example 4)
A defibrated pulp slurry was obtained in the same manner as in Example 12 except that maleic anhydride treatment and alkali treatment were omitted.
(比較例5)
 パルプを乾燥せず、無水マレイン酸処理及びアルカリ処理を省略した以外は実施例3と同様にして、解繊パルプスラリーを得た。
(Comparative Example 5)
The pulp was not dried, and a defibrated pulp slurry was obtained in the same manner as in Example 3 except that maleic anhydride treatment and alkali treatment were omitted.
(評価)
 上記実施例1~21及び比較例2~5の解繊パルプスラリーについて、遠心分離した後の上澄み収率を以下に記載の方法により測定した。測定結果を表1に示す。遠心分離後の上澄み収率は、微細繊維状セルロースの収率の指標となり、上澄み収率が高い程、微細繊維状セルロースの収率が高い。比較例1については、塊状の粒が多く、解繊処理ができなかったため、上澄み収率を測定することはできなかった。
(Evaluation)
For the defibrated pulp slurries of Examples 1 to 21 and Comparative Examples 2 to 5, the supernatant yield after centrifugation was measured by the method described below. The measurement results are shown in Table 1. The supernatant yield after centrifugation is an indicator of the yield of fine fibrous cellulose, and the higher the supernatant yield, the higher the yield of fine fibrous cellulose. About Comparative Example 1, since there were many block-shaped grains and defibration processing could not be performed, the supernatant yield could not be measured.
[遠心分離後の上澄み収率の測定]
 解繊パルプスラリーにイオン交換水を添加してスラリー固形分濃度0.2質量%に調整し、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000G×10分間の条件で遠心分離し、得られた上澄み液を回収し、上澄み液の固形分濃度を測定した。
 測定後、上澄み液の固形分濃度/0.2質量%の式より、上澄み液の収率を求めた。
 遠心分離後の上澄み収率は、微細繊維状セルロースが凝集した凝集物及び繊維幅が太い非微細繊維状のものを排除して求めた微細繊維状セルロースの収率であり、上澄み収率が高い程、より微細な微細繊維状セルロースの収率が高い。
[Measurement of supernatant yield after centrifugation]
Add deionized water to the defibrated pulp slurry to adjust the slurry solids concentration to 0.2% by mass, and centrifuge at 12000G for 10 minutes using a cooled high-speed centrifuge (Kokusan, H-2000B). Then, the obtained supernatant was collected, and the solid content concentration of the supernatant was measured.
After the measurement, the yield of the supernatant was obtained from the formula of the solid content concentration of the supernatant / 0.2% by mass.
The supernatant yield after centrifugation is the yield of fine fibrous cellulose obtained by excluding the aggregates of fine fibrous cellulose and non-fine fibrous materials having a large fiber width, and the supernatant yield is high. The yield of finer fine fibrous cellulose is higher.
[透過型電子顕微鏡観察]
 上澄み液を水で希釈し、親水化処理したカーボングリッド膜に滴下した。乾燥後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL JEM-2000EX)により観察した。
[Transmission electron microscope observation]
The supernatant was diluted with water and dropped onto a carbon grid membrane that had been subjected to a hydrophilic treatment. After drying, it was stained with uranyl acetate and observed with a transmission electron microscope (JEOL JEM-2000EX, manufactured by JEOL Ltd.).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 繊維原料をジカルボン酸の無水物で処理した後にアルカリ処理を施した実施例1~21では、遠心分離後の上澄み収率が高く、微細繊維状セルロース収率が高かった。
 ジカルボン酸の無水物による処理を省略した比較例2では、遠心分離後の上澄み収率が低く、微細繊維状セルロース収率が低かった。
 また、実施例1~3と実施例4との対比より、パルプを乾燥した実施例1~3では、得られる微細繊維状セルロースの繊維長が、パルプを乾燥しなかった実施例4で得た微細繊維状よりも長くなっていた。実施例1~4で微細繊維状セルロースの繊維幅は同じであるため、軸比は、実施例1~3で得た微細繊維状セルロースが、実施例4で得た微細繊維状セルロースよりも大きくなっていた(図1~4参照)。
 未漂白のクラフトパルプを用いた実施例12及び13は比較例4に比べて遠心分離後の上澄み収率が高く、微細繊維状セルロース収率が高かった。アセトンであらかじめ無水マレイン酸を溶解させ、パルプに均一に染込ませた実施例20は実施例9と比べて遠心分離後の上澄み収率が高かった。
In Examples 1 to 21, in which the fiber raw material was treated with an anhydride of dicarboxylic acid and then subjected to alkali treatment, the supernatant yield after centrifugation was high and the yield of fine fibrous cellulose was high.
In Comparative Example 2 in which the treatment with the dicarboxylic acid anhydride was omitted, the supernatant yield after centrifugation was low, and the yield of fine fibrous cellulose was low.
Further, in comparison with Examples 1 to 3 and Example 4, in Examples 1 to 3 in which the pulp was dried, the fiber length of the obtained fine fibrous cellulose was obtained in Example 4 in which the pulp was not dried. It was longer than fine fibers. Since the fiber width of the fine fibrous cellulose in Examples 1 to 4 is the same, the axial ratio of the fine fibrous cellulose obtained in Examples 1 to 3 is larger than that of the fine fibrous cellulose obtained in Example 4. (See Figures 1-4).
In Examples 12 and 13 using unbleached kraft pulp, the supernatant yield after centrifugation was higher than that in Comparative Example 4, and the yield of fine fibrous cellulose was high. Example 20 in which maleic anhydride was dissolved in advance with acetone and uniformly impregnated into the pulp had a higher supernatant yield after centrifugation than Example 9.
(実施例22)
<不織布の製造>
 実施例8で得られた微細繊維状セルロース含有スラリーをセルロース濃度0.127質量%になるように水で希釈して、150mlに調整し、液の上方から30mlのイソプロピルアルコールを静かに加え、減圧濾過を行った。濾過器としてはアドバンテック社製KG-90を用い、ガラスフィルターの上にアドバンテック社製の1.0μm孔径のPTFE製メンブランフィルターを載せた。有効濾過面積は48cmであった。減圧度-0.09MPa(絶対真空度10kPa)にて減圧濾過したところ、PTFE製メンブランフィルターの上にセルロース繊維の堆積物が得られた。このセルロース堆積物を120℃に加熱したプレス機にて0.15MPaの圧力で5分間プレス乾燥して多孔性の不織布を得た。
(Example 22)
<Manufacture of non-woven fabric>
The slurry containing fine fibrous cellulose obtained in Example 8 was diluted with water so that the cellulose concentration became 0.127% by mass, adjusted to 150 ml, and 30 ml of isopropyl alcohol was gently added from above the liquid, and the pressure was reduced. Filtration was performed. As a filter, KG-90 made by Advantech was used, and a PTFE membrane filter made by Advantech having a pore size of 1.0 μm was placed on the glass filter. The effective filtration area was 48 cm 2 . Filtration under reduced pressure at a reduced pressure of -0.09 MPa (absolute vacuum of 10 kPa) yielded a cellulose fiber deposit on the PTFE membrane filter. This cellulose deposit was press-dried at a pressure of 0.15 MPa for 5 minutes with a press machine heated to 120 ° C. to obtain a porous nonwoven fabric.
(実施例23)
<アセチル化不織布の製造>
 実施例8の方法でフタル酸を付加したセルロースを115℃、5時間、無水酢酸中でアセチル化した。その後、蒸留水でよく洗浄し、実施例1と同様に解繊し、微細繊維状セルロース含有スラリーを得た。この微細繊維状セルロース含有スラリーを用い、実施例22と同様にして不織布化して、アセチル化不織布を得た。
(Example 23)
<Manufacture of acetylated nonwoven fabric>
The cellulose to which phthalic acid was added by the method of Example 8 was acetylated in acetic anhydride at 115 ° C. for 5 hours. Thereafter, it was thoroughly washed with distilled water and defibrated in the same manner as in Example 1 to obtain a fine fibrous cellulose-containing slurry. Using this fine fibrous cellulose-containing slurry, a nonwoven fabric was formed in the same manner as in Example 22 to obtain an acetylated nonwoven fabric.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(評価)
 上記実施例22及び23の不織布について、セルロースの化学修飾率及び空隙率を以下に記載の方法により測定した。測定結果を表2に示す。
(Evaluation)
About the nonwoven fabric of the said Examples 22 and 23, the chemical modification rate and the porosity of the cellulose were measured by the method as described below. The measurement results are shown in Table 2.
[セルロースの化学修飾率]
 上述した方法により化学修飾率を求めた。
[Chemical modification rate of cellulose]
The chemical modification rate was determined by the method described above.
[不織布の空隙率]
 不織布の面積、厚み、質量から、下記式によって求めた。
 空隙率(vol%)={1-B/(M×A×t)}×100
 ここで、Aは不織布の面積(cm)、t(cm)は厚み、Bは不織布の質量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cmと仮定した。不織布の膜厚は、膜厚計(Mitutoyo(株)製IP65)を用いて、不織布の種々な位置について10点の測定を行い、その平均値を採用した。
[Porosity of nonwoven fabric]
It calculated | required by the following formula from the area, thickness, and mass of the nonwoven fabric.
Porosity (vol%) = {1-B / (M × A × t)} × 100
Here, A is the area (cm 2 ) of the nonwoven fabric, t (cm) is the thickness, B is the mass (g) of the nonwoven fabric, M is the density of cellulose, and M = 1.5 g / cm 3 is assumed in the present invention. did. The film thickness of the nonwoven fabric was measured at 10 points for various positions of the nonwoven fabric using a film thickness meter (IP65 manufactured by Mitutoyo Co., Ltd.), and the average value was adopted.
 実施例22及び23の不織布はいずれも、適度な空隙率を有していた。 The nonwoven fabrics of Examples 22 and 23 both had an appropriate porosity.
(実施例24)
<樹脂マトリックス材料との複合化>
 実施例23で得られたアセチル化セルロース不織布を、1,10-デカンジオールジメタクリレート80質量部、ペンタエリスリトールテトラキス(3-メルカプトブチレート)20質量部、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASF社製「ルシリンTPO」)0.02質量部、及びイルガノックス184を0.02質量部を混合した溶液に含浸させ、減圧下で一晩放置した。得られた樹脂溶液を含浸させたセルロース繊維集合体を2枚のガラス板に挟み、無電極水銀灯ランプ(フュージョンUVシステムズ社製「Dバルブ」)を用いて、紫外線硬化させた。紫外線硬化の条件は、波長365nmでの照射強度400mW/cm、ライン速度7m/minに表裏計10回通して半硬化させ、次いで、波長365nmでの照射強度1900mW/cm、ライン速度2m/minで表裏各10回(計20回)通して完全硬化させる条件で行った。
 紫外線照射終了後、ガラス板よりはずし、190℃で酸素分圧0.006MPa以下で1時間加熱して厚み75μmのセルロース繊維複合体を得た。得られた複合体の23℃における引張弾性率は7.0Paであった。
 紫外線の放射照度は、オーク製作所製紫外線照度計「UV-M02」で、アタッチメント「UV-35」を用いて、320~390nmの紫外線の照度を23℃で測定した。
(Example 24)
<Composite with resin matrix material>
The acetylated cellulose nonwoven fabric obtained in Example 23 was mixed with 80 parts by mass of 1,10-decandiol dimethacrylate, 20 parts by mass of pentaerythritol tetrakis (3-mercaptobutyrate), 2,4,6-trimethylbenzoyldiphenylphosphine. A solution prepared by mixing 0.02 parts by mass of oxide ("Lucirin TPO" manufactured by BASF) and 0.02 parts by mass of Irganox 184 was impregnated and left overnight under reduced pressure. The obtained cellulose fiber aggregate impregnated with the resin solution was sandwiched between two glass plates, and was cured with an ultraviolet ray using an electrodeless mercury lamp lamp (“D bulb” manufactured by Fusion UV Systems). Conditions of UV curing, irradiation intensity 400 mW / cm 2 at a wavelength 365 nm, is semi-cured through the front and back ten times the line speed of 7m / min, then the irradiation intensity at a wavelength of 365nm 1900mW / cm 2, line speed 2m / The test was carried out under conditions of complete curing by passing 10 times each on the front and back sides (total 20 times).
After the ultraviolet irradiation, the glass plate was removed and heated at 190 ° C. under an oxygen partial pressure of 0.006 MPa or less for 1 hour to obtain a cellulose fiber composite having a thickness of 75 μm. The resulting composite had a tensile modulus of elasticity at 23 ° C. of 7.0 Pa.
The ultraviolet irradiance was measured with an ultraviolet illuminance meter “UV-M02” manufactured by Oak Seisakusho using an attachment “UV-35”, and the illuminance of ultraviolet rays of 320 to 390 nm was measured at 23 ° C.
(実施例25)
(エポキシエマルション抄紙)
 固形分濃度0.2質量%に希釈した実施例9で得られた微細繊維状セルロース含有スラリー50質量部と、固形分濃度0.2質量%に希釈したエポキシ樹脂エマルションW2821R70(ジャパンエポキシレジン社製)スラリーを50質量部と、固形分濃度0.2質量%に希釈したイミダゾール系硬化剤EMI24(ジャパンエポキシレジン社製)5質量部を混合した後、固形分濃度0.2質量%のカチオン性凝結剤(FS-614、栗田工業社製)水溶液を1質量部加えて1分間攪拌した。得られた混合液を坪量50g/mになるように0.5μm孔径のポリテトラフルオロエチレン製メンブランフィルター上で吸引脱水して堆積物を得た。その堆積物を120℃のシリンダードライヤーで乾燥し、微細繊維状セルロース-マトリックス複合体を得た。
 得られた複合体を4枚積層してから170℃に加熱したプレス機により10kgf/cmの圧力で1時間プレス処理した。プレス後の複合体は厚み150μmであった。得られた複合体の23℃における引張弾性率は6.2GPaであった。
(Example 25)
(Epoxy emulsion papermaking)
50 parts by mass of the fine fibrous cellulose-containing slurry obtained in Example 9 diluted to a solid content concentration of 0.2% by mass and an epoxy resin emulsion W2821R70 diluted to a solid content concentration of 0.2% by mass (manufactured by Japan Epoxy Resin Co., Ltd.) ) After mixing 50 parts by mass of slurry and 5 parts by mass of imidazole-based curing agent EMI24 (manufactured by Japan Epoxy Resin Co., Ltd.) diluted to a solids concentration of 0.2% by mass, the slurry has a solids concentration of 0.2% by mass. 1 part by mass of a coagulant (FS-614, Kurita Kogyo) aqueous solution was added and stirred for 1 minute. The obtained mixed liquid was sucked and dehydrated on a polytetrafluoroethylene membrane filter having a pore diameter of 0.5 μm so as to have a basis weight of 50 g / m 2 to obtain a deposit. The deposit was dried with a cylinder dryer at 120 ° C. to obtain a fine fibrous cellulose-matrix composite.
Four obtained composites were stacked and then pressed for 1 hour at a pressure of 10 kgf / cm 2 using a press machine heated to 170 ° C. The composite after pressing had a thickness of 150 μm. The resulting composite had a tensile elastic modulus at 23 ° C. of 6.2 GPa.
[複合体の引張弾性率]
 得られた複合体をレーザーカッターにより、10mm幅×40mm長に切断した。これを、SII社製DMS6100を用いて引っ張りモードでチャック間20mm、周波数10Hz、2℃/min.で-100℃から250℃まで測定し、23℃における貯蔵弾性率E’(単位:GPa)より引張弾性率を求めた。
[Tensile modulus of composite]
The obtained composite was cut into a length of 10 mm × 40 mm with a laser cutter. Using a DMS6100 manufactured by SII, the chuck was 20 mm in chuck mode, the frequency was 10 Hz, and 2 ° C./min. The tensile elastic modulus was determined from the storage elastic modulus E ′ (unit: GPa) at 23 ° C. from −100 ° C. to 250 ° C.
[複合体の黄色度]
 得られた複合体を190℃で酸素分圧0.006MPa以下で1時間加熱した後、JIS規格K7105に準拠し、スガ試験機製カラーコンピューターを用いて黄色度を測定した。
[Yellowness of complex]
The obtained composite was heated at 190 ° C. at an oxygen partial pressure of 0.006 MPa or less for 1 hour, and then yellowness was measured using a color computer manufactured by Suga Test Instruments in accordance with JIS standard K7105.
[複合体の全光線透過率]
 JIS規格K7105に準拠し、スガ試験機製ヘーズメータを用いてC光による全光線透過率を測定した。
[Total light transmittance of composite]
Based on JIS standard K7105, the total light transmittance by C light was measured using the haze meter by Suga Test Instruments.
[複合体の線熱膨張率]
 得られた複合体をレーザーカッターにより、3mm幅×30mm長に切断した。これを、SII製TMA120を用いて引っ張りモードでチャック間20mm、荷重10g、窒素雰囲気下、室温から180℃まで5℃/min.で昇温、180℃から25℃まで5℃/min.で降温、25℃から180℃まで5℃/min.で昇温した際の2度目の昇温時の60℃から100℃の測定値から線熱膨張率を求めた。
[Linear thermal expansion coefficient of composite]
The obtained composite was cut into 3 mm width × 30 mm length with a laser cutter. This was pulled at 5 ° C./min. From room temperature to 180 ° C. in a pulling mode using TMA120 manufactured by SII in a pulling mode with a chuck distance of 20 mm, a load of 10 g, and a nitrogen atmosphere. At 180 ° C. to 25 ° C. at 5 ° C./min. At 25 ° C to 180 ° C, 5 ° C / min. The linear thermal expansion coefficient was determined from the measured value from 60 ° C. to 100 ° C. at the time of the second temperature increase.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例24の複合体は、高弾性率、及び低線熱膨張係数で黄色度の低いものであった。実施例25の複合体は、高弾性率、及び低線熱膨張係数のものであった。 The composite of Example 24 had a low yellowness with a high elastic modulus and a low linear thermal expansion coefficient. The composite of Example 25 had a high elastic modulus and a low linear thermal expansion coefficient.
 本発明の微細繊維状セルロースの製造方法によれば、繊維原料を充分に微細化でき、微細繊維状セルロースの収率が高いため、繊維原料からの微細繊維状セルロースの製造効率が高い。また、本発明の微細繊維状セルロースの製造方法は、コストが低く、環境負荷が小さい。また、本発明の不織布の製造方法によれば、繊維原料に対する不織布の製造効率を向上させることができる。さらに、本発明の微細繊維状セルロースは繊維幅が小さくて、軸比(繊維長/繊維幅)が大きいため、微細繊維状セルロースのスラリー安定性が高く、得られた不織布は強度が高い。また、本発明の微細繊維状セルロースと、マトリックス樹脂の複合体は高強度を有し、線熱膨張率が低いので、産業上の利用可能性がある。 According to the method for producing fine fibrous cellulose of the present invention, the fiber raw material can be sufficiently refined, and the yield of fine fibrous cellulose is high, so that the production efficiency of fine fibrous cellulose from the fiber raw material is high. Moreover, the manufacturing method of the fine fibrous cellulose of this invention is low cost, and its environmental impact is small. Moreover, according to the manufacturing method of the nonwoven fabric of this invention, the manufacturing efficiency of the nonwoven fabric with respect to a fiber raw material can be improved. Furthermore, since the fine fibrous cellulose of the present invention has a small fiber width and a large axial ratio (fiber length / fiber width), the slurry stability of the fine fibrous cellulose is high, and the resulting nonwoven fabric has high strength. Moreover, since the composite of the fine fibrous cellulose and the matrix resin of the present invention has high strength and a low coefficient of linear thermal expansion, it has industrial applicability.
 1 製造装置
 3a 微細繊維状セルロース含有スラリー
 3b 含水ウェブ
 3c 不織布
 10 抄紙用ワイヤー
 20 脱水セクション
 40 乾燥セクション
 60 巻取セクション
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 3a Slurry containing fine fibrous cellulose 3b Hydrous web 3c Non-woven fabric 10 Paper making wire 20 Dehydration section 40 Drying section 60 Winding section

Claims (12)

  1.  2つ以上のカルボキシ基を有する化合物、2つ以上のカルボキシ基を有する化合物の酸無水物、及びそれらの誘導体よりなる群から選ばれる少なくとも1種のカルボン酸系化合物により、セルロースを含む繊維原料を処理して、セルロースにカルボキシ基を導入するカルボキシ基導入工程と、
     前記カルボキシ基導入工程終了後に、カルボキシ基を導入したセルロースをアルカリ溶液で処理するアルカリ処理工程と、
     前記アルカリ処理した後のセルロースを解繊処理する解繊処理工程とを有する微細繊維状セルロースの製造方法。
    A fiber raw material containing cellulose is obtained by at least one carboxylic acid compound selected from the group consisting of a compound having two or more carboxy groups, an acid anhydride of a compound having two or more carboxy groups, and derivatives thereof. A carboxy group introduction step of treating and introducing a carboxy group into cellulose;
    After the completion of the carboxy group introduction step, an alkali treatment step of treating the cellulose introduced with the carboxy group with an alkaline solution;
    A method for producing fine fibrous cellulose, comprising a defibrating treatment step of defibrating cellulose after the alkali treatment.
  2.  前記カルボキシ基導入工程が、セルロースのヒドロキシ基に前記カルボン酸系化合物を付加する工程である、請求項1に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to claim 1, wherein the carboxy group introduction step is a step of adding the carboxylic acid compound to a hydroxy group of cellulose.
  3.  前記カルボン酸系化合物は、マレイン酸、コハク酸、フタル酸と、マレイン酸、コハク酸、フタル酸の酸無水物、及びそれらの誘導体からなる群より選ばれる化合物である請求項1又は2に記載の微細繊維状セルロースの製造方法。 3. The compound according to claim 1, wherein the carboxylic acid compound is a compound selected from the group consisting of maleic acid, succinic acid, phthalic acid, maleic acid, succinic acid, acid anhydrides of phthalic acid, and derivatives thereof. Of producing fine fibrous cellulose.
  4.  前記カルボン酸系化合物は酸無水物である請求項1~3のいずれか1項に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to any one of claims 1 to 3, wherein the carboxylic acid compound is an acid anhydride.
  5.  前記カルボキシ基導入工程が、ガス化した前記カルボン酸系化合物によりセルロースを処理する工程である、請求項1~4のいずれか1項に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to any one of claims 1 to 4, wherein the carboxy group introduction step is a step of treating cellulose with the gasified carboxylic acid compound.
  6.  前記繊維原料の水分を予め繊維原料絶乾重量に対して10質量%以下にすることをさらに含む、請求項1~5のいずれか1項に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to any one of claims 1 to 5, further comprising preliminarily setting the moisture of the fiber raw material to 10% by mass or less based on the absolute dry weight of the fiber raw material.
  7.  請求項1~6のいずれか1項に記載の微細繊維状セルロースの製造方法により製造した微細繊維状セルロースを含むスラリーを濾材上で脱水して湿紙を得る脱水工程と、前記湿紙を乾燥させる乾燥工程とを有する不織布の製造方法。 A dehydration step of dehydrating a slurry containing fine fibrous cellulose produced by the method for producing fine fibrous cellulose according to any one of claims 1 to 6 on a filter medium to obtain a wet paper, and drying the wet paper The manufacturing method of the nonwoven fabric which has a drying process to make.
  8.  1~1000nmの繊維幅を有し、かつ繊維を構成するセルロースのヒドロキシ基の一部が、下記構造式(1)に示す官能基で置換されたヒドロキシ基である、微細繊維状セルロース。
    Figure JPOXMLDOC01-appb-C000001
    (構造式(1)において、Rは、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及び単結合のいずれかであり、Mはカチオン性基である。)
    A fine fibrous cellulose having a fiber width of 1 to 1000 nm, wherein some of the hydroxy groups of cellulose constituting the fibers are hydroxy groups substituted with a functional group represented by the following structural formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the structural formula (1), R represents a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched group. Any of a chain hydrocarbon group, an aromatic group, and a single bond, and M is a cationic group.)
  9.  請求項8に記載の微細繊維状セルロースが分散媒中に分散されてなる微細繊維状セルロース含有スラリー。 A fine fibrous cellulose-containing slurry obtained by dispersing the fine fibrous cellulose according to claim 8 in a dispersion medium.
  10.  請求項8に記載の微細繊維状セルロースを含有する不織布。 A nonwoven fabric containing the fine fibrous cellulose according to claim 8.
  11.  請求項8に記載の微細繊維状セルロースと、マトリックス材料とを含有する複合体。 A composite containing the fine fibrous cellulose according to claim 8 and a matrix material.
  12.  請求項10に記載の不織布と、マトリックス材料とを含有する複合体。 A composite containing the nonwoven fabric according to claim 10 and a matrix material.
PCT/JP2012/070208 2011-08-08 2012-08-08 Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite WO2013022025A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011173194 2011-08-08
JP2011-173194 2011-08-08
JP2011258674 2011-11-28
JP2011-258674 2011-11-28
JP2012024457A JP5828288B2 (en) 2011-08-08 2012-02-07 Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, fine fibrous cellulose-containing slurry, nonwoven fabric, and composite
JP2012-024457 2012-02-07

Publications (1)

Publication Number Publication Date
WO2013022025A1 true WO2013022025A1 (en) 2013-02-14

Family

ID=47668531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070208 WO2013022025A1 (en) 2011-08-08 2012-08-08 Process for producing microfibrous cellulose, process for producing nonwoven fabric, microfibrous cellulose, slurry containing microfibrous cellulose, nonwoven fabric, and composite

Country Status (2)

Country Link
JP (1) JP5828288B2 (en)
WO (1) WO2013022025A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087053A1 (en) * 2012-12-04 2014-06-12 Teknologian Tutkimuskeskus Vtt Method of manufacturing a nanocellulose composite
JP2014175232A (en) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd Cell separator
WO2014175315A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Printed-circuit-board material and printed circuit board using same
WO2014175196A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Solder-resist composition and printed circuit board using same
WO2014175244A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Printed-circuit-board material and printed circuit board using same
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015000935A (en) * 2013-06-14 2015-01-05 花王株式会社 Method for producing resin composition containing cellulose nanofiber
EP2993035A1 (en) * 2014-09-05 2016-03-09 UPM-Kymmene Corporation Composite material
WO2016072334A1 (en) * 2014-11-04 2016-05-12 太陽ホールディングス株式会社 Resin-containing sheet, and structure and wiring board using same
CN105713097A (en) * 2016-04-19 2016-06-29 常州市蓝勖化工有限公司 Preparation method of natural cellulose ether
US9908982B2 (en) 2014-09-05 2018-03-06 Upm-Kymmene Corporation Composite material
JP2018150546A (en) * 2018-05-01 2018-09-27 太陽ホールディングス株式会社 Composition and cured product using the same
WO2020127658A1 (en) * 2018-12-20 2020-06-25 Borregaard As Process and system for increasing the solids content of microfibrillated cellulose
CN111534924A (en) * 2020-04-30 2020-08-14 广州市浪奇实业股份有限公司 Non-woven fabric material and application thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006622B1 (en) 2013-06-03 2019-06-26 Oji Holdings Corporation Production method for fine-fibre-containing sheet
JP6138667B2 (en) * 2013-11-14 2017-05-31 株式会社ブリヂストン Adhesive composition coated fiber cord, rubber article, pneumatic tire and run flat tire
JP6225760B2 (en) * 2014-03-11 2017-11-08 王子ホールディングス株式会社 Method for producing fine fibrous cellulose composite sheet
WO2016002688A1 (en) 2014-06-30 2016-01-07 王子ホールディングス株式会社 Underground layer processing composition containing minute cellulose fibers
WO2016002689A1 (en) 2014-06-30 2016-01-07 王子ホールディングス株式会社 Composition containing minute cellulose fibers
JP6384498B2 (en) * 2016-02-10 2018-09-05 王子ホールディングス株式会社 Fibrous cellulose, resin composition and cellulose suspension
JP6872396B2 (en) * 2016-04-13 2021-05-19 関東電化工業株式会社 Cellulose nanofiber dispersion liquid and its manufacturing method
JP6792501B2 (en) * 2017-03-31 2020-11-25 大王製紙株式会社 Cleaning sheet and manufacturing method of the cleaning sheet
JP7220512B2 (en) * 2018-02-06 2023-02-10 大王製紙株式会社 Resin composition and its manufacturing method
JPWO2020145354A1 (en) * 2019-01-09 2021-09-27 旭化成株式会社 Porous fine cellulose fiber composite sheet
EP3748072A1 (en) * 2019-06-04 2020-12-09 Lenzing Aktiengesellschaft Method for continuously producing a cellulose-comprising prepared material
JP2020204112A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Chemically-modified cellulose fiber
JP7393268B2 (en) * 2020-03-25 2023-12-06 第一工業製薬株式会社 insulating paste

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137901A (en) * 1983-12-27 1985-07-22 Okura Ind Co Ltd Production of cellulosic material containing carboxyl group
JPH06503595A (en) * 1990-12-04 1994-04-21 イーストマン コダック カンパニー Improved cellulose esters and their salts
JPH0940701A (en) * 1995-07-26 1997-02-10 Rengo Co Ltd Cellulose ester compound
JPH0952903A (en) * 1995-08-10 1997-02-25 Wolff Walsrode Ag Thermoplastic biodegradable polysaccharide ester/polysaccharide ether ester having maleic acid adduct group
JP2005513292A (en) * 2001-12-20 2005-05-12 ザ プロクター アンド ギャンブル カンパニー Treatment of fabric articles using restructuring agents
JP2005526148A (en) * 2001-08-03 2005-09-02 レイヨニアー プロダクツ アンド フィナンシァル サービシズ カンパニー Highly carboxylated cellulose fiber and method for producing the same
JP2008024788A (en) * 2006-07-19 2008-02-07 Kyoto Univ Nanofiber sheet, method for producing the same, and fiber-reinforced composite material reinforced therewith
JP2008179667A (en) * 2007-01-23 2008-08-07 Asahi Kasei Fibers Corp Modified polysaccharide and its manufacturing method
JP2008308802A (en) * 2007-06-18 2008-12-25 Univ Of Tokyo Method for producing cellulose nanofibers
JP2009293167A (en) * 2008-06-09 2009-12-17 Nobuo Shiraishi Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137901A (en) * 1983-12-27 1985-07-22 Okura Ind Co Ltd Production of cellulosic material containing carboxyl group
JPH06503595A (en) * 1990-12-04 1994-04-21 イーストマン コダック カンパニー Improved cellulose esters and their salts
JPH0940701A (en) * 1995-07-26 1997-02-10 Rengo Co Ltd Cellulose ester compound
JPH0952903A (en) * 1995-08-10 1997-02-25 Wolff Walsrode Ag Thermoplastic biodegradable polysaccharide ester/polysaccharide ether ester having maleic acid adduct group
JP2005526148A (en) * 2001-08-03 2005-09-02 レイヨニアー プロダクツ アンド フィナンシァル サービシズ カンパニー Highly carboxylated cellulose fiber and method for producing the same
JP2005513292A (en) * 2001-12-20 2005-05-12 ザ プロクター アンド ギャンブル カンパニー Treatment of fabric articles using restructuring agents
JP2008024788A (en) * 2006-07-19 2008-02-07 Kyoto Univ Nanofiber sheet, method for producing the same, and fiber-reinforced composite material reinforced therewith
JP2008179667A (en) * 2007-01-23 2008-08-07 Asahi Kasei Fibers Corp Modified polysaccharide and its manufacturing method
JP2008308802A (en) * 2007-06-18 2008-12-25 Univ Of Tokyo Method for producing cellulose nanofibers
JP2009293167A (en) * 2008-06-09 2009-12-17 Nobuo Shiraishi Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087053A1 (en) * 2012-12-04 2014-06-12 Teknologian Tutkimuskeskus Vtt Method of manufacturing a nanocellulose composite
JP2014175232A (en) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd Cell separator
TWI621380B (en) * 2013-04-23 2018-04-11 Taiyo Holdings Co Ltd Printed wiring board material and printed wiring board using the same
WO2014175315A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Printed-circuit-board material and printed circuit board using same
WO2014175196A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Solder-resist composition and printed circuit board using same
WO2014175244A1 (en) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Printed-circuit-board material and printed circuit board using same
TWI662867B (en) * 2013-04-23 2019-06-11 日商太陽控股股份有限公司 Printed wiring board material and printed wiring board using the same
CN105075403A (en) * 2013-04-23 2015-11-18 太阳控股株式会社 Printed-circuit-board material and printed circuit board using same
CN105075409A (en) * 2013-04-23 2015-11-18 太阳控股株式会社 Solder-resist composition and printed circuit board using same
CN105122953A (en) * 2013-04-23 2015-12-02 太阳控股株式会社 Printed-circuit-board material and printed circuit board using same
TWI637991B (en) * 2013-04-23 2018-10-11 太陽控股股份有限公司 Solder resist composition and printed wiring board using the same
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015000935A (en) * 2013-06-14 2015-01-05 花王株式会社 Method for producing resin composition containing cellulose nanofiber
US9908982B2 (en) 2014-09-05 2018-03-06 Upm-Kymmene Corporation Composite material
EP2993035A1 (en) * 2014-09-05 2016-03-09 UPM-Kymmene Corporation Composite material
JP2016089022A (en) * 2014-11-04 2016-05-23 太陽ホールディングス株式会社 Resin-containing sheet, and structure and wiring board using the same
WO2016072334A1 (en) * 2014-11-04 2016-05-12 太陽ホールディングス株式会社 Resin-containing sheet, and structure and wiring board using same
US10047202B2 (en) 2014-11-04 2018-08-14 Asahi Kasei Kabushiki Kaisha Resin-containing sheet, and structure and wiring board using same
CN105713097A (en) * 2016-04-19 2016-06-29 常州市蓝勖化工有限公司 Preparation method of natural cellulose ether
JP2018150546A (en) * 2018-05-01 2018-09-27 太陽ホールディングス株式会社 Composition and cured product using the same
WO2020127658A1 (en) * 2018-12-20 2020-06-25 Borregaard As Process and system for increasing the solids content of microfibrillated cellulose
CN111534924A (en) * 2020-04-30 2020-08-14 广州市浪奇实业股份有限公司 Non-woven fabric material and application thereof
CN111534924B (en) * 2020-04-30 2021-10-08 广州市浪奇实业股份有限公司 Non-woven fabric material and application thereof

Also Published As

Publication number Publication date
JP2013136859A (en) 2013-07-11
JP5828288B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5828288B2 (en) Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, fine fibrous cellulose-containing slurry, nonwoven fabric, and composite
JP5798504B2 (en) Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, fine fibrous cellulose-containing slurry, nonwoven fabric, and composite
JP7396976B2 (en) Method for producing fine fibers and sheets containing fine fibers, sheets obtained thereby, and resin composites in which resins are laminated
JP6206529B2 (en) Cellulose fiber aggregate and cellulose fiber composite
JP6003080B2 (en) Cellulose fiber and method for producing cellulose fiber
JP5577622B2 (en) Fine cellulose fiber dispersion, polymer cellulose composite, and cellulose fiber defibrating method
JP5614402B2 (en) Modified cellulose fiber and its cellulose composite
JP5708835B2 (en) Fiber composite
WO2009081881A1 (en) Fiber composite
JP6107297B2 (en) Fiber resin composite material
JP6229440B2 (en) Manufacturing method of fiber resin composite material
JP2012180602A (en) Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP7040592B2 (en) Moisture resistant composite sheet containing a base sheet layer containing fine fibers and an inorganic layer
JP2010150541A (en) Cellulosic fiber composite material and method for producing the same
JP2019116108A (en) Moisture-resistant composite sheet including base material sheet layer containing fine fiber and inorganic layer
JP2015086266A (en) Method for producing fiber-resin composite
WO2013058244A1 (en) Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof
JP6520011B2 (en) Moisture resistant composite sheet comprising a base sheet layer containing fine fibers and an inorganic layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822773

Country of ref document: EP

Kind code of ref document: A1