WO2013058244A1 - Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof - Google Patents

Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof Download PDF

Info

Publication number
WO2013058244A1
WO2013058244A1 PCT/JP2012/076725 JP2012076725W WO2013058244A1 WO 2013058244 A1 WO2013058244 A1 WO 2013058244A1 JP 2012076725 W JP2012076725 W JP 2012076725W WO 2013058244 A1 WO2013058244 A1 WO 2013058244A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
nonwoven fabric
chemically modified
cellulose nonwoven
modified cellulose
Prior art date
Application number
PCT/JP2012/076725
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 澤田
尚秀 荻田
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2013058244A1 publication Critical patent/WO2013058244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/188Monocarboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a method for producing a chemically modified cellulose nonwoven fabric and a cellulose fiber composite material using the chemically modified cellulose nonwoven fabric. More specifically, the present invention relates to a cellulose fiber nonwoven fabric having a number average fiber diameter of 2 to 400 nm. The present invention also relates to a technique for chemically modifying cellulose of this cellulose nonwoven fabric in a gas phase by bringing a reactive gas into contact therewith. Further, the present invention relates to a technique for realizing high strength, high transparency, non-coloring property, and low linear expansion coefficient when a cellulose fiber composite material is formed using the chemically modified cellulose nonwoven fabric.
  • Patent Document 1 discloses a method of chemically modifying cellulose by immersing a cellulose non-woven fabric in an acetic acid / acetic anhydride solution and causing an acetylation reaction at room temperature.
  • the reaction rate of the chemical modification is very low, and there is a problem that the composite material obtained using this nonwoven fabric is colored when heated.
  • Patent Document 2 a cellulose nonwoven fabric is immersed in an acetic anhydride solution and subjected to acetylation reaction at 110 ° C. for 7 hours to obtain a cellulose nonwoven fabric having a desired chemical modification rate. Realizes high transparency and non-coloring.
  • this method has a problem that, when chemically modifying, a large amount of drug is required to immerse the cellulose nonwoven fabric, and a process of removing and washing excess drug after the reaction is required.
  • the reaction time is long, the degree of polymerization of cellulose is reduced during the reaction, and the strength is lowered when a composite material is formed.
  • the present invention performs a chemical modification of cellulose by an industrially advantageous method to produce a chemically modified cellulose nonwoven fabric having no problem of coloring or strength reduction when used as a composite material with high productivity. It is an object to provide a manufacturing method. Furthermore, this invention makes it a subject to provide the cellulose fiber composite material of high intensity
  • the inventors of the present invention can shorten the reaction time by chemically modifying the cellulose of the cellulose nonwoven fabric in the gas phase using a reactive gas. It has been found that a chemically modified cellulose non-woven fabric can be produced with good productivity without using an extra drug such as a diluent, and further a decrease in the degree of polymerization of cellulose can be suppressed.
  • the gist of the present invention is a method for producing a chemically modified cellulose nonwoven fabric characterized by chemically modifying cellulose in the cellulose nonwoven fabric using a reactive gas, and a chemically modified cellulose nonwoven fabric produced by the production method. It exists in the cellulose fiber resin composite material containing matrix materials, such as resin.
  • the present invention is characterized by the following (1) to (9).
  • (1) A method for producing a chemically modified cellulose nonwoven fabric, Using a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm, The manufacturing method of chemically modifying the cellulose in the said cellulose nonwoven fabric using reactive gas.
  • the said reactive gas is a manufacturing method of the cellulose nonwoven fabric as described in said (1) which is an acid or acid anhydride of a gaseous state.
  • the manufacturing method of the chemically modified cellulose nonwoven fabric as described in said (1) or (2) which makes the said reactive gas contact with a roll-shaped cellulose nonwoven fabric.
  • (9) After chemically modifying cellulose in a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm using a reactive gas, A method for producing a cellulose fiber resin composite material, wherein a chemically modified cellulose nonwoven fabric and a resin are combined.
  • the reaction time can be shortened as compared with the conventional method, the amount of extra chemicals can be reduced, and the process such as the washing step can be simplified.
  • a chemically modified cellulose nonwoven fabric can be produced with good productivity.
  • reaction time can be shortened, the fall of the polymerization degree of the cellulose during chemical modification reaction can be suppressed, and the strength reduction at the time of using a composite material can be suppressed.
  • the reaction since the reaction is performed in the gas phase, the diffusion of the reaction solvent is faster than the reaction in the liquid phase, the uniformity of the reaction is improved, and a more uniform chemically modified cellulose nonwoven fabric can be provided. .
  • the reaction time is shortened by improving the reaction efficiency, and the polymerization time of cellulose is reduced by shortening the reaction time.
  • Decrease in strength and resulting reduction in strength can be suppressed, and a chemically modified cellulose nonwoven fabric that is uniformly chemically modified can be provided.
  • this chemically modified cellulose nonwoven fabric high strength, high transparency, non-coloring property, low line A cellulose fiber composite material having an expansion coefficient can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention.
  • 4 is a cross-sectional view of a block-like cellulose nonwoven fabric produced in Example 8.
  • FIG. FIG. 5 is a cross-sectional view of a cellulose nonwoven fabric wound in a roll shape.
  • the method for producing a chemically modified cellulose nonwoven fabric of the present invention is characterized by chemically modifying cellulose in the cellulose nonwoven fabric using a reactive gas.
  • the cellulose nonwoven fabric in the present invention is a sheet of fine cellulose fibers, and is usually produced by filtering or applying a dispersion containing cellulose fibers to a suitable substrate. It is a shape.
  • Cellulose fibers may be any of cellulose-containing materials, cellulose fiber materials purified from cellulose-containing materials, and fine cellulose fibers defibrated from cellulose fiber materials as long as the number average fiber diameter is 2 to 400 nm. . In order to apply to the use described in detail below, it is preferable to use fine cellulose fibers for the cellulose nonwoven fabric.
  • cellulose fiber only cellulose itself may be used or cellulose partially containing impurities may be used.
  • cellulose-containing materials include woods such as conifers and hardwoods (wood flour, etc.), cotton such as cotton linter and cotton lint, pomace such as sugar cane and sugar radish, bast fibers such as flax, ramie, jute, kenaf, etc.
  • Vegetal vein fibers such as sisal and pineapple, petiole fibers such as abaca and banana, fruit fibers such as coconut palm, stem stem fibers such as bamboo, bacterial cellulose produced by bacteria, seaweed and squirts such as valonia and falcon
  • Natural cellulose such as encapsulates. These natural celluloses are preferable because of their high crystallinity and low linear expansion and high elastic modulus.
  • cellulose fibers obtained from plant-derived materials are preferred.
  • Bacterial cellulose is preferred in that it can be easily obtained with a fine fiber diameter.
  • Cotton is also preferable in that it is easy to obtain a fine fiber diameter, and more preferable in terms of easy acquisition of raw materials.
  • wood of conifers and hardwoods with fine fiber diameters can be obtained, and it is the largest amount of biological resources on the planet. It is a sustainable resource that produces about 70 billion tons per year. Therefore, it contributes greatly to the reduction of carbon dioxide that affects global warming, which is advantageous from an economic point of view.
  • wood is used as the cellulose fiber of the present invention, it is preferably used after being crushed into a state of wood chips or wood flour.
  • the cellulose fiber raw material is obtained by purifying the cellulose-containing material by a usual method. For example, it can be obtained by degreasing the above cellulose-containing material with benzene-ethanol or an aqueous sodium carbonate solution, then subjecting it to delignification treatment with chlorite (Wise method) and subjecting it to dehemicellulose treatment with alkali.
  • Wise method a method using peracetic acid (pa method), a method using a peracetic acid persulfuric acid mixture (pxa method), and the like are also used as purification methods.
  • you may perform a bleaching process etc. further suitably. This crushing may be performed at any timing before, after or after the purification treatment described later.
  • water As a dispersion medium used for the purification treatment, water is generally used, but an aqueous solution of an acid or base or other treatment agent may be used, and in this case, it may be finally washed with water. .
  • the degree of purification of the cellulose fiber raw material obtained by refining the cellulose-containing material is not particularly defined, but it is preferable that the fat content of the cellulose fiber raw material is less because the fat and oil and lignin are less and the cellulose component content is higher.
  • the cellulose fiber raw material may be obtained by a general method for producing chemical pulp, for example, a method for producing kraft pulp, salified pulp, alkali pulp, or nitrate pulp. That is, as a cellulose fiber raw material, you may use hardwood kraft pulp, softwood kraft pulp, hardwood sulfite pulp, softwood sulfite pulp, hardwood bleached kraft pulp, softwood bleached kraft pulp, linter pulp and the like.
  • the content of the cellulose component in the cellulose fiber raw material is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.
  • the cellulose component of the cellulose fiber raw material can be classified into a crystalline ⁇ -cellulose component and an amorphous hemicellulose component. It is preferable that the content of crystalline ⁇ -cellulose is large because the effects of low linear expansion coefficient, high elastic modulus, and high strength are easily obtained when a cellulose fiber composite material is obtained. Therefore, the ⁇ -cellulose content of the cellulose fiber raw material is preferably 90% by weight or more, more preferably 95% by weight or more, and still more preferably 97% by weight or more.
  • the fiber diameter of the cellulose fiber raw material is not particularly limited, but is usually 1 ⁇ m to 1 mm as the number average fiber diameter.
  • purification is about 50 micrometers normally.
  • the fine cellulose fiber is usually obtained by defibrating a cellulose fiber raw material, and its number average fiber diameter is preferably 400 nm or less, more preferably 150 nm or less, and 100 nm or less. Is more preferably 80 nm or less, most preferably 50 nm or less, and further preferably 30 nm or less.
  • the number average fiber diameter of the fine cellulose fibers is preferably as small as possible. However, in order to develop a low linear expansion coefficient and a high elastic modulus, it is important to maintain the crystallinity of cellulose. Is 4 nm or more which is the fiber diameter of the cellulose crystal unit.
  • the fiber diameter of the fine cellulose fiber can be determined by measuring the cellulose nonwoven fabric obtained by drying and removing the dispersion medium in the fine cellulose fiber dispersion described in detail below by observing with SEM, TEM or the like. . Specifically, it is usually observed with SEM, TEM, etc., a line is drawn on the diagonal line of the photograph, 12 points of fibers in the vicinity are randomly extracted, and 10 points obtained by removing the thickest fiber and the thinnest fiber are extracted. The number average fiber diameter is measured and averaged.
  • the cellulose fiber raw material is normally defibrated in a cellulose fiber raw material dispersion (cellulose fiber raw material dispersion).
  • the solid content concentration as the cellulose fiber raw material is 0.1% by weight or more, preferably 0.2% by weight or more, particularly 0.3% by weight or more, and 10% by weight or less, particularly 6% by weight or less.
  • the cellulose fiber raw material dispersion is preferably used. If the solid content concentration in the cellulose fiber raw material dispersion used in this defibrating process is too low, the amount of liquid will increase with respect to the amount of cellulose to be treated, resulting in poor efficiency, and if the solid content concentration is too high, the fluidity will be poor.
  • the concentration of the cellulose fiber raw material dispersion to be subjected to the defibration treatment is preferably adjusted by adding water as appropriate.
  • an organic solvent, water, or a mixed solution of an organic solvent and water can be used.
  • Organic solvents include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, ethylene glycol, ethylene glycol mono-t-butyl ether and other alcohols, acetone and methyl ethyl ketone ketones, and other water-soluble organics.
  • One kind or two or more kinds of solvents can be used.
  • the dispersion medium is preferably a mixed liquid of an organic solvent and water or water, and particularly preferably water.
  • a method of defibrating the cellulose fiber raw material there are no particular restrictions on the method of defibrating the cellulose fiber raw material, but for example, ceramic beads having a diameter of about 1 mm are placed in the cellulose fiber raw material dispersion, and vibration is applied using a paint shaker or bead mill.
  • Cellulosic fiber raw material is defibrated, blended with a blender-type disperser or a high-speed rotating slit, using a cellulose fiber raw material dispersion to apply shearing force (high-speed rotating homogenizer method), By depressurizing the cellulose fiber to generate shear force between cellulose fibers (high pressure homogenizer method), a method using a counter collision type disperser (Masuko Sangyo) such as “Masscomizer X”, etc. Can be mentioned.
  • the high-speed rotating homogenizer and the high-pressure homogenizer treatment improve the efficiency of defibration.
  • the frequency of the ultrasonic wave is 15 kHz to 1 MHz, preferably 20 kHz to 500 kHz, more preferably 20 kHz to 100 kHz. If the frequency of the ultrasonic wave to be irradiated is too small, cavitation described later is difficult to occur, and if it is too large, the generated cavitation disappears without growing until it causes a physical action. I can't.
  • an output of an ultrasonic wave it is 1 W / cm ⁇ 2 > or more as an execution output density, Preferably it is 10 W / cm ⁇ 2 > or more, More preferably, it is 20 W / cm ⁇ 2 > or more.
  • the upper limit of the effective output density of the ultrasonic wave is 500 W / cm 2 or less from the viewpoint of durability of the vibrator and the horn.
  • the ultrasonic irradiation method is not particularly limited, and various methods can be used. For example, by directly inserting a horn that transmits the vibration of an ultrasonic vibrator into the cellulose fiber raw material dispersion, a method for directly refining cellulose fibers, or a floor or wall of a container containing a cellulose fiber raw material dispersion. Place ultrasonic transducers on the part to make cellulose fibers fine, or put a liquid such as water in a vessel equipped with ultrasonic transducers, and immerse the vessel containing the cellulose fiber raw material dispersion in it. Thus, a method of applying ultrasonic vibration indirectly to the cellulose fiber raw material dispersion liquid through a liquid such as water can be employed.
  • the ultrasonic wave may be irradiated continuously or intermittently at a predetermined interval.
  • centrifugation By centrifuging, a supernatant of a more uniform and fine fine cellulose fiber dispersion can be obtained.
  • the conditions for the centrifugation are not particularly limited because they depend on the miniaturization process used, but it is preferable to apply a centrifugal force of, for example, 3000 G or more, preferably 10,000 G or more.
  • the time is preferably 1 minute or longer, preferably 5 minutes or longer. If the centrifugal force is too small or the time is too short, separation / removal of poorly defibrated cellulose fibers becomes insufficient, which is not preferable.
  • the fine cellulose fiber dispersion has a high viscosity because the separation efficiency is lowered.
  • the viscosity of the fine cellulose fiber dispersion the viscosity at a shear rate of 10 s ⁇ 1 measured at 25 ° C. is 500 mPa ⁇ s or less, preferably 100 mPa ⁇ s or less.
  • a cellulose nonwoven fabric is normally manufactured using the fine cellulose fiber obtained as mentioned above.
  • a cellulose non-woven fabric can be produced with a high transparency, a low linear expansion coefficient, and a high elastic modulus when it is produced using fine cellulose fibers rather than using a cellulose fiber raw material before defibration.
  • the cellulose nonwoven fabric is obtained by filtering a dispersion containing fine cellulose fibers (fine cellulose fiber dispersion) obtained by performing the above-described defibrating treatment, or by applying to a suitable substrate. Manufactured as a sheet.
  • the fine cellulose fiber concentration of the dispersion subjected to filtration is usually 0.01% by weight or more, preferably 0.05% by weight or more. Preferably it is 0.1 weight% or more. If the concentration of the fine cellulose fibers is too low, it takes a long time for filtration, which is not preferable.
  • the concentration of fine cellulose fibers is usually 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 1.5% by weight or less, and particularly preferably 1.2% by weight or less. Preferably it is 1.0 weight% or less. If the concentration of fine cellulose fibers is too high, a uniform sheet cannot be obtained, which is not preferable.
  • the organic polymer is preferably a non-cellulose organic polymer such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) or the like.
  • a porous film of polytetrafluoroethylene having a pore diameter of 0.1 to 20 ⁇ m, for example, 1 ⁇ m, polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 to 20 ⁇ m, for example, 1 ⁇ m, and the like can be mentioned.
  • the paper base material which consists of cellulose which is a natural fiber can be used as a filter medium.
  • the paper substrate is very preferable because it can easily produce a wide or long paper material, and can control the amount of water passing through the paper by changing the type of pulp as the raw material or the beating degree of the pulp. It is also possible to easily impart water resistance to the base with a water-proofing agent or a hydrophobizing agent.
  • the cellulose nonwoven fabric obtained by the filtration is then dried, but in some cases, it may proceed to the next step without drying. That is, for example, when the heat-treated fine cellulose fiber dispersion is filtered, it can be directly used for the next step without passing through the drying step. Moreover, also when filtering the fine cellulose fiber dispersion liquid and heat-processing the obtained cellulose nonwoven fabric, it can also carry out without passing through a drying process. However, it is preferable to perform drying also in the sense of controlling the porosity, film thickness, and strengthening the structure of the nonwoven fabric. This drying may be air drying, vacuum drying, pressure drying, or freeze drying. Moreover, you may heat-dry.
  • the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. If the heating temperature is too low, drying may take time or drying may be insufficient, and if the heating temperature is too high, the cellulose nonwoven fabric may be colored or cellulose may be decomposed. Moreover, when pressurizing, 0.01 MPa or more is preferable, 0.1 MPa or more is more preferable, 5 MPa or less is preferable, and 1 MPa or less is more preferable. If the pressure is too low, drying may be insufficient, and if the pressure is too high, the cellulose nonwoven fabric may be crushed or cellulose may be decomposed.
  • a cellulose nonwoven fabric as a sheet-like material by apply
  • the dispersion is applied onto a predetermined substrate, and the dispersion medium is evaporated to a specific amount and removed.
  • the coating method is not particularly limited, and examples thereof include spin coating, blade coating, wire bar coating, spray coating, and slit coating.
  • the spin coating method is preferable in that a thin film having a uniform thickness can be obtained.
  • the cellulose nonwoven fabric can have various porosity depending on the production method.
  • the cellulose nonwoven fabric When a cellulose nonwoven fabric is impregnated with a resin to obtain a cellulose fiber composite material, it is preferable that the cellulose nonwoven fabric has a certain degree of porosity because the resin is difficult to be impregnated if the porosity of the cellulose nonwoven fabric is small.
  • the porosity in this case is usually 10% by volume or more, preferably 20% by volume or more.
  • the porosity of the cellulose nonwoven fabric is preferably 60% by volume or less.
  • the porosity of a cellulose nonwoven fabric here can be calculated
  • Porosity (volume%) ⁇ (1 ⁇ B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
  • A is the area (cm 2 ) of the cellulose nonwoven fabric
  • t is the thickness (cm)
  • B is the weight (g) of the cellulose nonwoven fabric
  • M is the density of cellulose
  • M 1.5 g / cm 3
  • the film thickness of the cellulose nonwoven fabric is measured at 10 points at various positions of the cellulose nonwoven fabric using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value is adopted.
  • Examples of a method for obtaining a cellulose nonwoven fabric having a large porosity include a method in which water in the cellulose nonwoven fabric is finally replaced with an organic solvent such as alcohol in a film forming process by filtration.
  • an organic solvent such as alcohol is added when the cellulose content reaches 5 to 99% by weight.
  • the organic cellulose solvent such as alcohol can be replaced with the organic solvent such as alcohol at the end of the filtration by putting the fine cellulose fiber dispersion into the filtration device and then gently pouring the organic solvent such as alcohol into the upper part of the dispersion.
  • the organic solvent such as alcohol used here is not particularly limited, and examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, ethylene glycol mono-t-butyl ether and the like.
  • one or more organic solvents such as acetone, methyl ethyl ketone, tetrahydrofuran, cyclohexane, toluene, carbon tetrachloride and the like can be mentioned.
  • a water-insoluble organic solvent it is preferable to use a water-soluble organic solvent or a mixed solvent with the water-soluble organic solvent, and then replace with a water-insoluble organic solvent.
  • a method for controlling the porosity a method in which a solvent having a boiling point higher than that of the above-described alcohol is mixed and dried at a temperature lower than the boiling point of the solvent can be mentioned. In this case, if necessary, the solvent having a high boiling point remaining after drying is immersed in another solvent to be replaced and then dried.
  • the thickness of the cellulose nonwoven fabric is preferably not less than the above lower limit from the viewpoint of production stability and strength, and is preferably not more than the above upper limit from the viewpoint of productivity, uniformity, and resin impregnation.
  • a film thickness can also be controlled by controlling the porosity of a cellulose nonwoven fabric by the above-mentioned method.
  • the cellulose fibers in the cellulose nonwoven fabric preferably have a cellulose I-type crystal structure.
  • Cellulose I-type crystals have a higher crystal elastic modulus than those of other crystal structures, and are therefore preferred as a cellulose nonwoven fabric having a high elastic modulus, high strength, and low linear expansion coefficient.
  • the fiber diameter of the cellulose fibers in the cellulose nonwoven fabric is preferably 400 nm or less in terms of number average fiber diameter, more preferably 150 nm or less, further preferably 100 nm or less, and particularly preferably 80 nm or less. 50 nm or less is most preferable, and 30 nm or less is more preferable. Usually, it is 2 nm or more, and substantially 4 nm or more which is the fiber diameter of the cellulose crystal unit. Exceeding the upper limit is not preferable because the transparency decreases when the cellulose fiber composite material is formed.
  • this number average fiber diameter is usually observed with SEM, TEM, etc., and a diagonal line is drawn on the photograph, and 12 points are randomly extracted in the vicinity thereof, and the thickest fiber and the thinnest fiber are extracted. The 10 points from which the mark is removed are measured, and the measured values are averaged.
  • degree of polymerization of the cellulose fibers in the cellulose nonwoven fabric the higher the elastic modulus and the higher strength the cellulose nonwoven fabric becomes, and this is preferable in terms of strength properties.
  • the degree of polymerization of the cellulose fiber depends on the raw material used, but is 300 or more, preferably 1000 or more, more preferably 2000 or more.
  • the degree of polymerization of cellulose fibers in the cellulose nonwoven fabric can be calculated by measuring by the viscosity method described in TAPPI T230, as shown in the Examples section below.
  • the cellulose in the cellulose nonwoven fabric is chemically modified using a reactive gas.
  • the reactive gas in the present invention is a gas-state chemical modifier that reacts with a hydroxyl group in the cellulose nonwoven fabric to be chemically modified. Therefore, any solid, liquid, or gas may be used at room temperature as long as it is in a gaseous state at the reaction temperature for chemical modification.
  • Examples of chemical modifiers include cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies).
  • cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies).
  • Examples of the acid include acetic acid, acrylic acid, methacrylic acid, propanoic acid, butanoic acid, 2-butanoic acid, and pentanoic acid.
  • acid anhydrides include acetic anhydride, acrylic anhydride, methacrylic anhydride, propanoic anhydride, butanoic anhydride, 2-butanoic anhydride, pentanoic anhydride, benzoic anhydride, maleic anhydride, succinic anhydride, and fumaric anhydride.
  • An acid, phthalic anhydride, glutaric anhydride, etc. are mentioned.
  • halogenating reagent examples include acetyl halide, acryloyl halide, methacryloyl halide, propanoyl halide, butanoyl halide, 2-butanoyl halide, pentanoyl halide, benzoyl halide, naphthoyl halide, and benzyl chloride.
  • alcohol examples include methanol, ethanol, propanol, 2-propanol and the like.
  • isocyanate examples include methyl isocyanate, ethyl isocyanate, propyl isocyanate and the like.
  • alkoxysilane examples include methoxysilane and ethoxysilane.
  • cyclic ethers such as oxirane (epoxy) include ethyl oxirane and ethyl oxetane.
  • acids or acid anhydrides are preferable, and particularly in terms of reactivity and easy industrial application, acetic anhydride, propanoic acid anhydride, butanoic acid anhydride, acrylic acid anhydride, methacrylic acid anhydride, maleic anhydride, etc.
  • An acid anhydride is preferably used.
  • These chemical modifiers may be used alone or in combination of two or more, and may be diluted with a solvent or the like as necessary.
  • the cellulose nonwoven fabric Prior to chemical modification of the cellulose nonwoven fabric, if necessary, the cellulose nonwoven fabric can be pretreated and then chemically modified using a reactive gas.
  • the pretreatment method include a method of impregnating and immersing in a catalyst or a solvent, a method of immersing in an alkali such as sodium hydroxide, and converting a hydroxyl group of cellulose to a metal salt.
  • the reaction temperature during the chemical modification is preferably 250 ° C. or less from the viewpoint of the thermal decomposition temperature of cellulose. If the reaction temperature is too high, there is concern about yellowing or a decrease in the degree of polymerization, and if it is too low, the reaction rate may decrease. In particular, it is preferably 200 ° C. or lower, preferably 170 ° C. or lower, more preferably 150 ° C. or lower, and usually 10 ° C. or higher, preferably 80 ° C. or higher. As in the present invention, for fibers having a small number average fiber diameter, controlling the reaction temperature is very important in obtaining a desired chemical modification rate and suppressing a decrease in the degree of polymerization of cellulose.
  • the reaction temperature is the temperature in the reaction system.
  • the reaction pressure is not particularly limited as long as it reaches a vapor pressure at which the chemical modifier can be gasified at the reaction temperature. From the economical point of view, it is preferably normal pressure, but when the boiling point of the chemical modifier is equal to or higher than the reaction temperature, for example, the pressure is reduced to gasify the chemical modifier and the amount of steam is controlled. For this reason, it can be appropriately pressurized and depressurized.
  • the reaction time is usually 1 second or longer, preferably 1 minute or longer, more preferably 5 minutes or longer and 3 hours or shorter, preferably 2 hours or shorter, more preferably 90 minutes or shorter, even more preferably 1 hour or shorter. It can be appropriately changed depending on the type of chemical modifier (reactive gas) used and the required chemical modification rate.
  • the reaction time refers to the time during which the gasified chemical modifier is in contact with the cellulose nonwoven fabric while the temperature in the reaction system has reached the required reaction temperature.
  • the non-reacted chemical modifier attached to the cellulose nonwoven fabric is usually washed with water or warm water, and then the nonwoven fabric is dried. If the unreacted chemical modifier remains, it is not preferable because it causes coloring later or becomes a problem when it is combined with the resin.
  • the amount of chemical modifier used is greatly reduced compared to the conventional chemical modification method in the liquid phase. be able to. Therefore, the amount of the chemical modifier remaining in the cellulose nonwoven fabric is also small, and the amount of water required for cleaning can be reduced. Further, since the amount of the remaining chemical modifier is small, it is possible to dry the chemically modified cellulose nonwoven fabric directly without passing through a process such as washing, and to simultaneously remove the chemical modifier and dry the nonwoven fabric.
  • the drying method is not particularly limited, but may be air drying, vacuum drying, or pressure drying. Moreover, you may heat-dry. When heating, the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. If the heating temperature is too low, drying takes time and drying may be insufficient. If the heating temperature is too high, the chemically modified cellulose nonwoven fabric may be colored or decomposed. Moreover, when pressurizing, 0.01 MPa or more is preferable, 0.1 MPa or more is more preferable, 5 MPa or less is preferable, and 1 MPa or less is more preferable. If the pressure is too low, drying may be insufficient, and if the pressure is too high, the chemically modified cellulose nonwoven fabric may be crushed and decomposed.
  • ⁇ Processing device> As a processing apparatus used for chemical modification of a cellulose nonwoven fabric, it is preferable that the chemical modification of the cellulose in a cellulose nonwoven fabric can be implemented continuously or in large quantities from a viewpoint of industrial productivity.
  • a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 102 from the pipes 106a and 106b. Also in the reaction apparatus 102, the reactive gas is controlled to a predetermined temperature.
  • the cellulose nonwoven fabric 101 is supplied into the reaction apparatus 102 by the supply rollers 103a and 103b. Furthermore, the cellulose nonwoven fabric 101 is conveyed along the conveyance roller 104 in the reaction apparatus 102, and the cellulose in the cellulose nonwoven fabric 101 is chemically modified by the reactive gas in the meantime. Thereafter, the chemically modified cellulose nonwoven fabric discharged from the discharge rollers 105a and 105b is heated by the heater 108, and the remaining reactive gas is removed.
  • the residual reactive gas may be removed by treating the chemically modified cellulose nonwoven fabric with superheated steam having a temperature equal to or higher than the boiling point of the reactive gas using the heater 108 as a superheated steam generator. Excess reactive gas in the reactor 102 is discharged from the pipe 107, cooled, recovered, separated, and recycled as reactive gas.
  • a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 202 from a pipe 206a. Also in the reaction device 202, the reactive gas is controlled to a predetermined temperature.
  • the cellulose nonwoven fabric 201 is supplied into the reaction apparatus 202 by the supply rollers 203a and 203b. Furthermore, the cellulose nonwoven fabric 201 is conveyed in the reaction apparatus 202 along the conveyance roller 204, and the cellulose in the cellulose nonwoven fabric 201 is chemically modified by reactive gas in the meantime. Thereafter, the chemically modified cellulose nonwoven fabric discharged from the discharge rollers 205a and 205b is heated by the heater 208 to remove the remaining reactive gas.
  • the residual reactive gas may be removed by treating the chemically modified cellulose nonwoven fabric with superheated steam at a temperature equal to or higher than the boiling point of the reactive gas using the heater 208 as a superheated steam generator. Excess reactive gas in the reactor 202 is discharged from the pipe 207, cooled, recovered, separated and recycled as reactive gas.
  • a roll-shaped cellular roll nonwoven fabric 301 is put into a reaction apparatus 302, and then a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 302 from a pipe 303. .
  • the reactive gas is also controlled to a predetermined temperature in the reactor 302.
  • the cellulose in the cellulose nonwoven fabric 301 is chemically modified by treating the roll-shaped cellulose nonwoven fabric 301 with a reactive gas controlled to a predetermined temperature for a predetermined time.
  • the surplus reactive gas in the reaction apparatus 302 is discharged
  • Functional groups introduced into cellulose by chemical modification include acetyl, acryloyl, methacryloyl, propionyl, propioyl, butyryl, 2-butyryl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl , Decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group, stearoyl group, pivaloyl group, benzoyl group, naphthoyl group, nicotinoyl group, isonicotinoyl group, furoyl group, cinnamoyl group and other acyl groups, 2-methacryloyloxyethyl isocyanate Isocyanate group such as noyl group, methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-
  • acyl groups having 2 to 12 carbon atoms such as acetyl group, acryloyl group, methacryloyl group, benzoyl group and naphthoyl group, and alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group are particularly preferable.
  • the chemical modification rate of the chemically modified cellulose nonwoven fabric is preferably 5 mol% or more, more preferably 9 mol% or more, further preferably 10 mol% or more, particularly preferably 20 mol% or more, and 65 mol. % Or less, more preferably 50 mol% or less, still more preferably 40 mol% or less, and particularly preferably 30 mol% or less.
  • the chemical modification rate is too high, the cellulose structure is destroyed and the crystallinity is lowered. There is a problem that the linear expansion coefficient of the composite material becomes large, which is not preferable.
  • the chemical modification rate is too low, the hydrophilicity of the non-woven fabric increases and the water content increases, which is not preferable.
  • wood is used as the cellulose fiber raw material, if the chemical modification rate is low, it will be colored when heated by post-processing of the composite, or even if the chemical modification rate is high, the nonwoven fabric will be colored after the chemical modification reaction. It is not preferable because it is lost.
  • the chemical modification rate refers to the proportion of all hydroxyl groups in cellulose that have been chemically modified, and the chemical modification rate can be measured by the following titration method.
  • ⁇ Measuring method> 0.05 g of chemically modified cellulose nonwoven fabric is precisely weighed, and 0.5 ml of distilled water and 1.5 ml of ethanol are added thereto. This is allowed to stand for 30 minutes in a hot water bath at 60 to 70 ° C., and then 2 ml of 0.5 M aqueous sodium hydroxide solution is added. This is left to stand in a hot water bath at 60 to 70 ° C. for 3 hours, and then shaken with an ultrasonic cleaner for 30 minutes. This is titrated with 0.1 M hydrochloric acid standard solution using an automatic titrator (Mitsubishi Chemical Corporation: GT-100).
  • the number of moles Q (mol) of the substituent introduced by chemical modification is determined by the following formula.
  • Q (mol) 0.5 (N) ⁇ 2 (ml) / 1000 -0.1 (N) x Z (ml) / 1000
  • T is the molecular weight of the substituent.
  • the cellulose fibers in the chemically modified cellulose nonwoven fabric preferably have a cellulose I-type crystal structure.
  • Cellulose I-type crystals are preferable because they have higher crystal elastic modulus than other crystal structures, and thus have high elastic modulus, high strength, and low linear expansion coefficient.
  • ⁇ Viscosity average degree of polymerization (degree of polymerization)> The larger the degree of polymerization of the cellulose fibers in the chemically modified cellulose nonwoven fabric, the higher the elastic modulus and the higher the strength, which is preferable in terms of strength properties.
  • the degree of polymerization depends on the raw materials used, but is 300 or more, preferably 1000 or more, more preferably 2000 or more.
  • the rate of decrease in the degree of polymerization of cellulose in the chemically modified cellulose nonwoven fabric after chemical modification relative to the degree of polymerization of cellulose in the cellulose nonwoven fabric before chemical modification is: It can be suppressed to 10% or less.
  • the polymerization degree of the cellulose fiber in the chemically modified cellulose nonwoven fabric can be calculated by measuring by the viscosity method described in TAPPI T230, as shown in the Examples section described later.
  • the chemically modified cellulose nonwoven fabric produced as described above can be used in combination with a matrix material as described in detail below, or only the chemically modified cellulose nonwoven fabric itself.
  • separators for power storage devices, medical separation membranes, packaging materials, various filters, and the like can be given.
  • the cellulose fiber composite material of the present invention contains a chemically modified cellulose nonwoven fabric obtained by the production method of the present invention and a matrix material.
  • the cellulose fiber composite material is useful for various display substrate materials, solar cell substrates, window materials and the like by taking advantage of its high transparency, low linear expansion coefficient, and non-coloring properties. Utilizing characteristics such as elastic modulus, low linear expansion coefficient, and surface smoothness, it is useful for various structural materials, particularly for automobile panels having excellent surface design and for building outer wall panels.
  • the matrix material refers to a polymer material or a precursor thereof (for example, a monomer) that is bonded to a chemically modified cellulose nonwoven fabric or that fills voids.
  • Suitable as the matrix material is a thermoplastic resin that becomes a fluid liquid by heating, a thermosetting resin that polymerizes by heating, and is cured by irradiation with active energy rays such as ultraviolet rays and electron beams.
  • a cellulose fiber resin composite material can be obtained by combining chemically modified cellulose and a resin.
  • the precursor of the resin (polymer material) is a so-called monomer or oligomer.
  • the cellulose fiber composite material of the present invention is usually obtained by compositing a chemically modified cellulose nonwoven fabric obtained by the production method of the present invention and a matrix material, and examples of the composite method include the following methods.
  • a method in which a chemically modified cellulose nonwoven fabric is impregnated with a liquid thermoplastic resin precursor and polymerized (b) A chemically modified cellulose nonwoven fabric is impregnated with a thermosetting resin precursor or a photocurable resin precursor and polymerized.
  • the matrix material used in the present invention is not limited to the following materials.
  • the thermoplastic resin, thermosetting resin, and light (active energy ray) curable resin in the present invention can be used in combination of two or more.
  • the polymer in the case of a polymer material or precursor, is an amorphous compound having a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • a polymer is preferable for obtaining a highly durable cellulose fiber composite material having excellent transparency.
  • the degree of amorphousness is 10% or less, particularly 5% or less in terms of crystallinity.
  • the Tg is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 130 ° C. or higher. If Tg is low, there is a risk of deformation when touched with hot water, for example, which causes a practical problem.
  • a polymer material having few hydrophilic functional groups such as a hydroxyl group, a carboxyl group, and an amino group.
  • the polymer Tg can be determined by a general method. For example, it is obtained by measurement by the DSC method.
  • the degree of crystallinity of the polymer can be calculated from the density of the amorphous part and the crystalline part, and can also be calculated from the tan ⁇ , which is the ratio of the elastic modulus to the viscosity, by dynamic viscoelasticity measurement. .
  • thermoplastic resin Although it does not specifically limit as a thermoplastic resin, Styrenic resin, acrylic resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin Resin, cyclic olefin resin, polyamide resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, amorphous fluorine resin and the like.
  • thermosetting resin is not particularly limited, but includes epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, polyurethane resin, diallyl phthalate resin, etc. A precursor is mentioned.
  • Photocurable resin Although it does not specifically limit as photocurable resin, Precursors, such as an epoxy resin illustrated in the description of the above-mentioned thermosetting resin, an acrylic resin, an oxetane resin, are mentioned.
  • thermoplastic resin thermosetting resin
  • photocurable resin examples include those described in Japanese Patent Application Laid-Open No. 2009-299043.
  • thermosetting resin and the photocurable resin are appropriately used as a curable composition blended with a chain transfer agent, an ultraviolet absorber, a filler, a silane coupling agent and the like.
  • the cellulose fiber composite material of the present invention may be a laminated structure of a layer of the chemically modified cellulose nonwoven fabric of the present invention and a planar structure layer made of a polymer other than cellulose, and the chemically modified cellulose of the present invention.
  • a laminated structure of the nonwoven fabric layer and the cellulose fiber composite material layer of the present invention may be used, and the number of laminated layers and the laminated structure are not particularly limited.
  • the cellulose fiber composite material of the present invention may be obtained by further laminating an inorganic film on the cellulose fiber composite material layer according to its use, and further laminating an inorganic film on the above laminated structure. There may be.
  • the inorganic film used here is appropriately determined according to the use of the cellulose fiber composite material, for example, metal such as platinum, silver, aluminum, gold, copper, silicon, ITO, SiO 2 , SiN, SiOxNy, ZnO, etc. A TFT etc. are mentioned, The combination and film thickness can be designed arbitrarily.
  • the cellulose content (cellulose fiber content) in the cellulose fiber composite material of the present invention is usually 1% by weight to 99% by weight, and the content of the matrix material other than cellulose is 1% by weight to 99% by weight. It is. In order to develop low linear expansion, it is necessary that the content of cellulose is 1% by weight or more and the content of a matrix material other than cellulose is 99% by weight or less. In order to express transparency, it is necessary that the content of cellulose is 99% by weight or less and the content of a matrix material other than cellulose is 1% by weight or more.
  • a preferred range is 5% to 90% by weight of cellulose, a matrix material other than cellulose is 10% to 95% by weight, and a more preferred range is 10% to 80% by weight of cellulose,
  • the matrix material other than cellulose is 20% by weight or more and 90% by weight or less.
  • the content of cellulose is preferably 30% by weight or more and 70% by weight or less, and the content of matrix materials other than cellulose is preferably 30% by weight or more and 70% by weight or less.
  • the content of cellulose and a matrix material other than cellulose in the cellulose fiber composite material can be determined, for example, from the weight of the cellulose nonwoven fabric before composite and the weight of the cellulose fiber composite material after composite.
  • the cellulose fiber composite material can be immersed in a solvent in which the matrix material is soluble to remove only the matrix material, and the weight can be determined from the weight of the remaining cellulose fibers.
  • the functional group of the resin or cellulose can also be quantified and determined using the specific gravity of the resin that is the matrix material, NMR, or IR.
  • the thickness of the cellulose fiber composite material of the present invention is preferably 10 ⁇ m or more and 10 cm or less, and by using such a thickness, the strength as a structural material can be maintained.
  • the thickness of the cellulose fiber composite material is more preferably 50 ⁇ m or more and 1 cm or less, and further preferably 80 ⁇ m or more and 250 ⁇ m or less.
  • the cellulose fiber composite material of the present invention is, for example, a film shape (film shape) or a plate shape having such a thickness, but is not limited to a flat film or a flat plate, and is a film shape or a plate shape having a curved surface. You can also Other irregular shapes may also be used. Further, the thickness is not necessarily uniform and may be partially different.
  • the cellulose fiber composite material of the present invention is characterized in that coloring by heating is small.
  • Cellulose is sometimes yellowish by using raw materials derived from wood. This may be the case where the cellulose itself is colored or the remaining substance other than cellulose depending on the degree of purification.
  • the cellulose fiber composite material of the present invention is small in color even when a heating step is performed, and can withstand heat treatment in an actual device forming step such as a transparent substrate of various devices.
  • the degree of coloring of the cellulose fiber is preferably 15 or less, more preferably 10 or less, as the YI of the cellulose fiber composite material measured in the section of the examples described later. It is preferable that the YI does not increase even after the heat treatment, and it is preferable that the YI is maintained at 15 or less, particularly 10 or less after the heat treatment.
  • the cellulose fiber composite material of the present invention can be a cellulose fiber composite material having high transparency, that is, low haze.
  • the haze of the cellulose fiber composite material is preferably 5.0 or less, more preferably 3.0 or less, and this value is particularly preferably 2.0 or less.
  • the haze is larger than 5.0, it becomes difficult to apply to a transparent substrate of various devices.
  • the haze can be measured, for example, for a cellulose fiber composite material having a thickness of 10 to 100 ⁇ m using a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
  • the cellulose fiber composite material of the present invention can be a cellulose fiber composite material having high transparency, that is, low haze.
  • the cellulose fiber composite material has a total light transmittance of 60% or more, further 70% or more, particularly 80% or more, particularly 90%, as measured in the thickness direction in accordance with JIS K7105. % Or more is preferable. If this total light transmittance is less than 60%, it becomes translucent or opaque, and it may be difficult to use it in applications requiring transparency.
  • the total light transmittance can be measured, for example, for a cellulose fiber composite material having a thickness of 10 to 100 ⁇ m using a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
  • the cellulose fiber composite material of the present invention can be made into a cellulose fiber composite material having a low linear expansion coefficient by using cellulose having a low linear expansion coefficient (elongation rate per 1K).
  • the linear expansion coefficient of the cellulose fiber composite material is preferably 1 to 50 ppm / K, more preferably 1 to 40 ppm / K, although it depends on the type of matrix material and the cellulose fiber content. Particularly preferred is / K. That is, for example, in the substrate application, since the linear expansion coefficient of the inorganic thin film transistor is about 15 ppm / K, when the linear expansion coefficient of the cellulose fiber composite material exceeds 50 ppm / K, the laminated composite with the inorganic film is formed.
  • the linear expansion coefficient of the cellulose fiber composite material is particularly preferably 1 to 30 ppm / K.
  • a linear expansion coefficient is measured by the method described in the term of the below-mentioned Example.
  • the tensile strength of the cellulose fiber composite material of the present invention is preferably 40 MPa or more, more preferably 100 MPa or more. If the tensile strength is lower than 40 MPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
  • the tensile elastic modulus of the cellulose fiber composite material of the present invention depends on the type and use of the matrix material to be composited, but is preferably 0.2 to 100 GPa, more preferably 1 to 50 GPa, still more preferably 5.0 to 30 GPa. It is. When the tensile elastic modulus is lower than 0.2 GPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
  • the chemically modified cellulose nonwoven fabric and the cellulose fiber composite material obtained by reducing the reaction time of the chemical modification and preventing the degradation of the polymerization degree of cellulose during the reaction are obtained. It is possible to maintain a high tensile elastic modulus.
  • the cellulose fiber composite material of the present invention has high transparency, high strength, low water absorption, high transparency, low coloration, small haze, and excellent optical properties, so that it can be used for liquid crystal displays, plasma displays, organic EL displays, field emission displays. It is suitably used as an optical member such as substrates for various display devices such as rear projection televisions, panels, polarizing films, antireflection films, hard coat films, and retardation films. Moreover, it is also suitable as a base material for lighting such as organic EL lighting. Moreover, it is suitable for substrates for solar cells such as silicon-based solar cells and dye-sensitized solar cells. The substrate may be laminated with a barrier film, ITO, TFT or the like.
  • the cellulose fiber composite material of the present invention is small in color even when heated, and can withstand heat treatment in actual device forming steps such as transparent substrates of various devices.
  • the cellulose fiber composite material of the present invention can also be suitably used for window materials for automobiles, window materials for railway vehicles, window materials for houses, window materials for offices and factories, and the like.
  • a film such as a fluorine film or a hard coat film or a material having impact resistance or light resistance may be laminated as necessary.
  • the cellulose fiber composite material of the present invention can be used as a structure other than the use of a transparent material by taking advantage of characteristics such as a low linear expansion coefficient, high elasticity, and high strength.
  • automobile materials such as interior materials, outer plates, bumpers, etc., personal computer casings, home appliance parts, packaging materials, building materials, civil engineering materials, marine materials, and other industrial materials.
  • ⁇ Tensile modulus of chemically modified cellulose nonwoven fabric The composite material was cut into 8 mm width ⁇ 40 mm length. This was subjected to a tensile test using a STA-1225 manufactured by Orientec Co., Ltd. at a distance between chucks of 15 mm and a test speed of 2 mm / min to obtain a tensile elastic modulus.
  • ⁇ Cellulose content in cellulose fiber composite material The cellulose content (% by weight) was determined from the weight of the chemically modified cellulose nonwoven fabric used for the composite and the weight of the obtained cellulose fiber composite material.
  • YI value of cellulose fiber composite material was measured using a color computer manufactured by Suga Test Instruments.
  • ⁇ Linear expansion coefficient of cellulose fiber composite material The composite material was cut into 3 mm width ⁇ 40 mm length with a laser cutter. This was pulled using a TMA6100 made by SII in a pulling mode at a chucking distance of 20 mm, a load of 10 g and a nitrogen atmosphere from room temperature to 180 ° C. at 5 ° C./min. And then from 180 ° C. to 25 ° C. at 5 ° C./min. At 25 ° C. and then from 25 ° C. to 180 ° C. The linear expansion coefficient was determined from the measured value from 60 ° C. to 100 ° C. during the second temperature increase.
  • ⁇ Tensile elastic modulus of cellulose fiber composite material The composite material was cut into a 10 mm width ⁇ 40 mm length by a laser cutter. This was subjected to DMA (dynamic viscoelasticity) measurement in tensile mode using DMS6100 manufactured by SII, and storage elastic modulus E ′ (unit: GPa) at a frequency of 10 Hz and 23 ° C. was measured.
  • DMA dynamic viscoelasticity
  • ⁇ Production Example 3 Production of Cellulose Nonwoven Fabric 1>
  • Cellulose fiber raw material 1 obtained in Production Example 1 was diluted with water to a concentration of 0.5% by weight and dissolved using a high-speed rotating homogenizer (M Technique Co., Ltd .: CLM0.8S) at a rotational speed of 2000 rpm for 60 minutes.
  • Fiber processing was performed to obtain a fine cellulose fiber dispersion.
  • the obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by weight, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 ⁇ m, and when the solid content became about 5 wt%, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and the white cellulose nonwoven fabric 1 was obtained.
  • the number average fiber diameter of the cellulose fibers of this cellulose nonwoven fabric 1 was 18 nm.
  • the cellulose fiber raw material dispersion was cooled with cold water at 5 ° C. from the outside of the processing vessel, and was processed while stirring with a magnetic stirrer. This ultrasonically treated cellulose fiber raw material dispersion was centrifuged to obtain a supernatant.
  • a centrifuge (manufactured by Hitachi Koki Co., Ltd .: himacCR22G) was used, and R20A2 was used as an angle rotor.
  • Eight 50 ml centrifuge tubes were installed at an angle of 34 degrees from the rotation axis.
  • the amount of the cellulose fiber raw material dispersion placed in one centrifuge tube was 30 ml. Centrifugation was performed at 18000 rpm for 30 minutes, and the supernatant was collected.
  • the obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by weight, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 ⁇ m, and when the solid content became about 5 wt%, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and the white cellulose nonwoven fabric 2 was obtained.
  • the number average fiber diameter of the cellulose fibers of the cellulose nonwoven fabric 2 was 14 nm.
  • Example 1 Cellulose nonwoven fabric 1 was placed in a container containing 100 mL of acetic anhydride so as not to come into contact with the liquid and sealed. The vessel was heated to 135 ° C., the vapor temperature in the vessel (reaction system temperature) was raised to 130 ° C., and acetic anhydride vapor was brought into contact with the cellulose nonwoven fabric for 10 minutes (treatment time) to carry out the reaction. After the reaction, the cellulose nonwoven fabric was taken out, washed thoroughly with distilled water, immersed in acetone for 10 minutes, and then press dried at 120 ° C. and 0.14 MPa for 3 minutes to obtain an acetylated cellulose nonwoven fabric. The resulting nonwoven fabric had a chemical modification rate of 20.0 mol%.
  • Example 2 An acetylated cellulose nonwoven fabric was obtained in the same manner as in Example 1 except that the reaction time (treatment time) for chemically modifying the cellulose nonwoven fabric 1 was 30 minutes. The chemical modification rate of the obtained nonwoven fabric was 44.3 mol%.
  • Example 3 Acetylated cellulose nonwoven fabric in the same manner as in Example 1 except that the vapor temperature (temperature in the reaction system) in the container when chemically modifying the cellulose nonwoven fabric 1 is 140 ° C. and the reaction time (treatment time) is 10 minutes. Got. The chemical modification rate of the obtained nonwoven fabric was 38.7 mol%.
  • Example 4 Example 1 except that the cellulose nonwoven fabric 2 is used in place of the cellulose nonwoven fabric 1 and the vapor temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 20 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 28.7 mol%.
  • Example 5 Example 1 except that the cellulose nonwoven fabric 3 is used in place of the cellulose nonwoven fabric 1 and the vapor temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 20 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 33.0 mol%.
  • ⁇ Comparative Example 1 Cellulose nonwoven fabric 1 was immersed in a container containing 700 mL of acetic anhydride and sealed. The container was heated to 135 ° C. and reacted at a liquid temperature (temperature in the reaction system) in the container of 130 ° C. for 30 minutes (treatment time). After the reaction, the cellulose nonwoven fabric was taken out and washed well with 2-propanol to remove excess acetic anhydride. Thereafter, it was thoroughly washed with distilled water, immersed in 2-propanol for 10 minutes, and then press-dried at 120 ° C. and 0.14 MPa for 5 minutes to obtain an acetylated cellulose nonwoven fabric. The chemical modification rate of the obtained nonwoven fabric was 4.3 mol%.
  • Comparative Example 3 Comparative Example 1 except that the cellulose nonwoven fabric 2 is used instead of the cellulose nonwoven fabric 1 and the liquid temperature (reaction system temperature) in the container for chemical modification is 110 ° C. and the reaction time (treatment time) is 420 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 27.3 mol%.
  • Comparative Example 4 Comparative Example 1 except that the cellulose nonwoven fabric 3 is used in place of the cellulose nonwoven fabric 1, and the liquid temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 120 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 27.0 mol%.
  • the reaction time for chemical modification is shortened compared to the conventional reaction method in which the reaction solution is immersed. Moreover, the washing
  • Example 6 The degree of polymerization, the degree of polymerization degree reduction, and the tensile modulus of the chemically modified cellulose nonwoven fabric obtained in Example 4 were measured. The degree of polymerization was 1097, the rate of decrease in the degree of polymerization was 6.1%, and the tensile modulus was 3.0 GPa. Next, a cellulose fiber composite material was produced using this chemically modified cellulose nonwoven fabric.
  • the irradiation dose at this time was 0.12 J / cm 2 . This operation was performed twice by inverting the glass surface. The temperature of the glass surface after ultraviolet irradiation was 25 ° C. Next, irradiation was performed under an irradiance of 1900 mW / cm 2 at a line speed of 2 m / min. The irradiation dose at this time was 2.7 J / cm 2 . This operation was performed 4 times by inverting the glass surface. The temperature of the glass surface after ultraviolet irradiation was 50 ° C. The irradiation dose was 21.8 J / cm 2 .
  • the glass plate was removed and heated in an oven (nitrogen gas atmosphere) at 200 ° C. for 4 hours to obtain a composite material.
  • the irradiance of ultraviolet rays was measured at 23 ° C. by using an ultraviolet illuminance meter “UV-M02” manufactured by Oak Seisakusho and using an attachment “UV-35”.
  • the obtained composite material has a cellulose content of 53.0% by weight, a thickness of 90 ⁇ m, a haze of 3.1, a total light transmittance of 89.2%, a YI of 7.7, and a linear expansion coefficient of 20.4 ppm. / K, the tensile modulus was 4.6 GPa.
  • ⁇ Comparative Example 5> The degree of polymerization, the degree of polymerization degree reduction, and the tensile modulus of the chemically modified cellulose nonwoven fabric obtained in Comparative Example 3 were measured. The degree of polymerization was 930, the rate of decrease in the degree of polymerization was 20.4%, and the tensile modulus was 2.2 GPa. Next, a cellulose fiber composite material was produced in the same manner as in Example 6 using this chemically modified cellulose nonwoven fabric. The obtained composite material has a cellulose content of 45.1% by weight, a thickness of 96 ⁇ m, a haze of 3.1, a total light transmittance of 90.6%, a YI of 5.4, and a linear expansion coefficient of 24.2 ppm. / K, the tensile elastic modulus was 2.8 GPa.
  • Example 6 The results obtained in Example 6 and Comparative Example 5 are summarized in Table 2.
  • the physical properties of the chemically modified cellulose nonwoven fabric obtained by the production method of the chemically modified cellulose nonwoven fabric of the present invention using reactive gas are more polymerized than the chemically modified cellulose nonwoven fabric obtained by the reaction method immersed in the conventional reaction solution.
  • a chemically modified cellulose nonwoven fabric having a high tensile elastic modulus can be obtained.
  • the physical properties of the cellulose fiber composite material a composite material excellent in transparency, non-coloring property, low linear expansion coefficient, and tensile elastic modulus was obtained as in the past. The tensile modulus was improved as compared with the conventional method, and the linear expansion coefficient was also decreased as compared with the conventional method. That is, according to the present invention, it can be seen that a highly transparent, non-colorable, high heat resistant, low linear expansion coefficient, high strength composite material is produced with high productivity.
  • the obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.2% by weight and ethylene glycol mono-tert-butyl ether (24 times the amount of dry fine cellulose fibers (g)) was A4.
  • the paper was put into a size paper machine (manufactured by Oji Paper Co., Ltd.), paper-dried, and dried with a cylinder dryer heated to 120 ° C. to obtain a cellulose nonwoven fabric 4 having a basis weight of 35 g / m 2 and A4 size.
  • the number average fiber diameter of the cellulose fibers of this cellulose nonwoven fabric 4 was 28 nm.
  • Example 7 In a container containing 20 mL of acetic anhydride, 12 pieces of the cellulose nonwoven fabric 4 obtained in Production Example 6 were rolled up into a cylinder and sealed in a container so as not to come into contact with the liquid. The container was heated to 145 ° C., the temperature in the container was raised to 140 ° C., and the vapor of acetic anhydride was brought into contact with the cellulose nonwoven fabric 4 for 60 minutes (treatment time) to carry out the reaction. After the reaction, the residue was dried with a hot air dryer at 140 ° C. to remove residual gas. The chemical modification rate of the obtained cellulose nonwoven fabric was 9.7 mol% for the outermost cellulose nonwoven fabric rolled into a cylindrical shape, and 10.0 mol% for the innermost cellulose nonwoven fabric.
  • Example 8 93 sheets of A4 size cellulose nonwoven fabric 4 obtained in Production Example 6 were cut into a size of 4 cm ⁇ 4 cm. As shown in FIG. 4, this cellulose nonwoven fabric 401 (cellulose nonwoven fabric obtained in Production Example 6) was prepared. 4) was layered, and Kapton tape 402 was wound around it to obtain a block-shaped cellulose nonwoven fabric 405. As shown in FIG. 5, this is a reproduction of a part of a cellulose nonwoven fabric 401 wound into a 30-m roll.
  • the paper thickness D becomes 6.5 mm.
  • the block-shaped cellulose nonwoven fabric was placed in a container in a container containing 20 mL of acetic anhydride and sealed so as not to come into contact with the liquid.
  • the container was heated to 145 ° C., the temperature in the container was raised to 140 ° C., and acetic anhydride vapor was brought into contact with the block-shaped cellulose nonwoven fabric for 90 minutes (treatment time) to carry out the reaction. After the reaction, the residue was dried with a hot air dryer at 140 ° C.
  • the chemical modification rate of the obtained cellulose nonwoven fabric was 11.7 mol% at 0 m equivalent (top), 11.3 mol% at 10 m, 10.3 mol% at 15 m, 10.0 mol% at 20 m , 30 m equivalent (lowermost part) was 11.3 mol%.

Abstract

The purpose of the present invention is to provide a method for producing a chemically modified cellulose non-woven fabric which does not undergo the problem of discoloration or deterioration in strength when prepared into a composite material with high productivity by performing the chemical modification of cellulose in an industrially advantageous manner. The present invention is a method for producing a chemically modified cellulose non-woven fabric, comprising chemically modifying cellulose in a cellulose non-woven fabric using a reactive gas. The production method enables the reduction in reaction time, and also enables the high-productivity production of a chemically modified cellulose non-woven fabric without requiring the use of any extra chemical substance such as a catalyst, a solvent and a diluting agent.

Description

化学修飾セルロース不織布の製造方法および化学修飾セルロース不織布、並びに、これを用いたセルロース繊維樹脂複合材料およびその製造方法Method for producing chemically modified cellulose nonwoven fabric, chemically modified cellulose nonwoven fabric, cellulose fiber resin composite material using the same, and method for producing the same
 本発明は、化学修飾されたセルロース不織布の製造方法および該化学修飾セルロース不織布を用いたセルロース繊維複合材料に関するものであり、より詳細には、数平均繊維径が2~400nmのセルロース繊維の不織布に対して反応性ガスを接触させることにより、このセルロース不織布のセルロースを気相中で化学修飾する技術に関する。また、該化学修飾セルロース不織布を用いて、セルロース繊維複合材料とした際の、高強度、高透明、非着色性、低線膨張係数化を実現する技術に関する。 The present invention relates to a method for producing a chemically modified cellulose nonwoven fabric and a cellulose fiber composite material using the chemically modified cellulose nonwoven fabric. More specifically, the present invention relates to a cellulose fiber nonwoven fabric having a number average fiber diameter of 2 to 400 nm. The present invention also relates to a technique for chemically modifying cellulose of this cellulose nonwoven fabric in a gas phase by bringing a reactive gas into contact therewith. Further, the present invention relates to a technique for realizing high strength, high transparency, non-coloring property, and low linear expansion coefficient when a cellulose fiber composite material is formed using the chemically modified cellulose nonwoven fabric.
 近年、バクテリアセルロースをはじめとするセルロースの微細繊維を用いた複合材料が盛んに研究されている。セルロースは伸びきり鎖結晶を有することから、低線膨張率、高弾性率、高強度を発現することが知られている。また、微細化することにより太さが数nmから200nmの範囲にある微小かつ高結晶性のセルロースナノファイバーが得られ、その繊維の隙間をマトリックス材料で埋めることで、高い透明性と低線膨張率を有する複合材料が得られることが報告されている。 In recent years, composite materials using fine cellulose fibers such as bacterial cellulose have been actively studied. Since cellulose has an extended chain crystal, it is known to exhibit a low linear expansion coefficient, a high elastic modulus, and a high strength. Finer and finer cellulose nanofibers with a thickness in the range of several nm to 200 nm are obtained by miniaturization, and high transparency and low linear expansion are achieved by filling the gaps between the fibers with a matrix material. It has been reported that composite materials having a rate can be obtained.
 しかしながら、セルロースはこのような優れた特性をもつ反面、加熱によって重合度が低下し、それに伴う着色や寸法変化が生じたり、耐水・耐湿性が他の材料よりも劣ったりするといった欠点を有する。このようなセルロースの欠点を補うため、セルロースを変性または改質する検討が試みられている。 However, while cellulose has such excellent characteristics, it has the disadvantages that the degree of polymerization is lowered by heating, coloration and dimensional change associated with it occur, and water resistance and moisture resistance are inferior to other materials. In order to make up for the drawbacks of cellulose, attempts have been made to modify or modify cellulose.
 例えば、特許文献1では、セルロース不織布を酢酸/無水酢酸溶液中に浸漬し、室温でアセチル化反応させてセルロースを化学修飾する方法が開示されている。しかしながら、この手法でセルロース不織布を化学修飾すると、化学修飾の反応率が非常に低く、この不織布を用いて得られる複合材料は加熱した際に着色してしまうという問題があった。 For example, Patent Document 1 discloses a method of chemically modifying cellulose by immersing a cellulose non-woven fabric in an acetic acid / acetic anhydride solution and causing an acetylation reaction at room temperature. However, when the cellulose nonwoven fabric is chemically modified by this method, the reaction rate of the chemical modification is very low, and there is a problem that the composite material obtained using this nonwoven fabric is colored when heated.
 また、特許文献2には、セルロース不織布を無水酢酸溶液中に浸漬し、110℃で7時間アセチル化反応させて所望の化学修飾率のセルロース不織布を得ており、それを複合材料にした際の、高透明性、非着色性を実現している。しかしながら、この手法では、化学修飾する際に、セルロース不織布を浸漬させるために大量の薬剤が必要であることや、反応後に余剰の薬剤を除去、洗浄する工程が必要となるという問題がある。また、反応時間が長いことから、反応中にセルロースの重合度が低下し、複合材料にした際に強度が低下するといった問題点もあった。 Further, in Patent Document 2, a cellulose nonwoven fabric is immersed in an acetic anhydride solution and subjected to acetylation reaction at 110 ° C. for 7 hours to obtain a cellulose nonwoven fabric having a desired chemical modification rate. Realizes high transparency and non-coloring. However, this method has a problem that, when chemically modifying, a large amount of drug is required to immerse the cellulose nonwoven fabric, and a process of removing and washing excess drug after the reaction is required. In addition, since the reaction time is long, the degree of polymerization of cellulose is reduced during the reaction, and the strength is lowered when a composite material is formed.
日本国特開2007-51266号公報Japanese Unexamined Patent Publication No. 2007-51266 日本国特開2009-161896号公報Japanese Unexamined Patent Publication No. 2009-161896
 従来のセルロース不織布の化学修飾方法は、反応時間が長い、大量の薬剤が必要、工程が複雑である等の理由により、生産性が悪く、商業的な規模で実施することが困難であったり、また、得られたセルロース不織布を用いて製造されるセルロース繊維複合材料が、加熱した際に着色してしまったりという問題や、セルロースの重合度の低下で複合材料の強度が低下するという問題があった。 Conventional cellulose non-woven fabric chemical modification methods have long reaction times, require a large amount of chemicals, have complicated processes, etc., and have poor productivity and are difficult to implement on a commercial scale. In addition, there are problems that the cellulose fiber composite material produced using the obtained cellulose nonwoven fabric is colored when heated, and that the strength of the composite material is reduced due to a decrease in the degree of polymerization of cellulose. It was.
 本発明は、上記従来の実状を鑑みて、セルロースの化学修飾を、工業的に有利な方法で行って、複合材料とした際の着色や強度低下の問題のない化学修飾セルロース不織布を生産性よく製造する方法を提供することを課題とする。
 さらに、本発明は、該製造方法によって得られた化学修飾セルロース不織布を用いて、高強度、高透明、非着色性、低線膨張係数のセルロース繊維複合材料を提供することを課題とする。
In view of the above-described conventional situation, the present invention performs a chemical modification of cellulose by an industrially advantageous method to produce a chemically modified cellulose nonwoven fabric having no problem of coloring or strength reduction when used as a composite material with high productivity. It is an object to provide a manufacturing method.
Furthermore, this invention makes it a subject to provide the cellulose fiber composite material of high intensity | strength, high transparency, a non-coloring property, and a low linear expansion coefficient using the chemically modified cellulose nonwoven fabric obtained by this manufacturing method.
 本発明者らは、上記課題について鋭意検討した結果、反応性ガスを用いてセルロース不織布のセルロースを気相中で化学修飾することにより、反応時間を短縮することができ、また、触媒、溶媒および希釈剤などの余分な薬剤を使用せずに、生産性よく化学修飾セルロース不織布を製造することができる上に、さらにセルロースの重合度の低下が抑えられることを見出した。 As a result of intensive studies on the above problems, the inventors of the present invention can shorten the reaction time by chemically modifying the cellulose of the cellulose nonwoven fabric in the gas phase using a reactive gas. It has been found that a chemically modified cellulose non-woven fabric can be produced with good productivity without using an extra drug such as a diluent, and further a decrease in the degree of polymerization of cellulose can be suppressed.
 すなわち、本発明の要旨は、反応性ガスを用いて、セルロース不織布中のセルロースを化学修飾することを特徴とする化学修飾セルロース不織布の製造方法と、該製造方法により製造された化学修飾セルロース不織布と樹脂などのマトリックス材料とを含有するセルロース繊維樹脂複合材料に存する。 That is, the gist of the present invention is a method for producing a chemically modified cellulose nonwoven fabric characterized by chemically modifying cellulose in the cellulose nonwoven fabric using a reactive gas, and a chemically modified cellulose nonwoven fabric produced by the production method. It exists in the cellulose fiber resin composite material containing matrix materials, such as resin.
 本発明は、下記(1)~(9)を特徴としている。
(1)化学修飾セルロース不織布の製造方法であって、
 数平均繊維径が2~400nmのセルロース繊維のセルロース不織布を用い、
 反応性ガスを用いて、前記セルロース不織布中のセルロースを化学修飾する、製造方法。
(2)前記反応性ガスは、気体状態の酸または酸無水物である、上記(1)に記載のセルロース不織布の製造方法。
(3)ロール状のセルロース不織布に対し、前記反応性ガスを接触させる、上記(1)または(2)に記載の化学修飾セルロース不織布の製造方法。
(4)前記反応性ガスを用いて化学修飾する際の、反応系内の温度が250℃以下である、上記(1)~(3)のいずれか一項に記載の化学修飾セルロース不織布の製造方法。
(5)前記反応性ガスを用いて化学修飾する際の、反応時間が3時間以下である、上記(1)~(4)のいずれか一項に記載の化学修飾セルロース不織布の製造方法。
(6)得られる化学修飾セルロース不織布の化学修飾率が5~65mol%である、上記(1)~(5)のいずれか一項に記載の化学修飾セルロース不織布の製造方法。
(7)上記(1)~(6)のいずれか一項に記載の製造方法により製造された、化学修飾セルロース不織布。
(8)上記(7)に記載の化学修飾セルロース不織布と樹脂とを含有する、セルロース繊維樹脂複合材料。
(9)反応性ガスを用いて、数平均繊維径が2~400nmのセルロース繊維のセルロース不織布中のセルロースを化学修飾した後、
 化学修飾されたセルロース不織布と樹脂とを複合化させる、セルロース繊維樹脂複合材料の製造方法。
The present invention is characterized by the following (1) to (9).
(1) A method for producing a chemically modified cellulose nonwoven fabric,
Using a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm,
The manufacturing method of chemically modifying the cellulose in the said cellulose nonwoven fabric using reactive gas.
(2) The said reactive gas is a manufacturing method of the cellulose nonwoven fabric as described in said (1) which is an acid or acid anhydride of a gaseous state.
(3) The manufacturing method of the chemically modified cellulose nonwoven fabric as described in said (1) or (2) which makes the said reactive gas contact with a roll-shaped cellulose nonwoven fabric.
(4) Production of chemically modified cellulose nonwoven fabric according to any one of (1) to (3) above, wherein the temperature in the reaction system when chemically modified using the reactive gas is 250 ° C. or lower Method.
(5) The method for producing a chemically modified cellulose nonwoven fabric according to any one of (1) to (4) above, wherein the reaction time when chemically modifying using the reactive gas is 3 hours or less.
(6) The method for producing a chemically modified cellulose nonwoven fabric according to any one of (1) to (5) above, wherein the chemically modified cellulose nonwoven fabric obtained has a chemical modification rate of 5 to 65 mol%.
(7) A chemically modified cellulose nonwoven fabric produced by the production method according to any one of (1) to (6) above.
(8) A cellulose fiber resin composite material containing the chemically modified cellulose nonwoven fabric and resin according to (7) above.
(9) After chemically modifying cellulose in a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm using a reactive gas,
A method for producing a cellulose fiber resin composite material, wherein a chemically modified cellulose nonwoven fabric and a resin are combined.
 本発明によれば、セルロース不織布の化学修飾において、従来法と比べて反応時間を短縮することができ、また、余分な薬剤量を削減できると共に、洗浄工程などのプロセスの簡略化が可能になり、生産性よく化学修飾セルロース不織布を製造することができる。また、反応時間が短縮できることから、化学修飾反応中のセルロースの重合度の低下を抑制し、複合材料にした際の強度低下を抑制することができる。さらに、気相中で反応を行うことから、液相で反応させるよりも反応溶剤の拡散が速くなり、反応の均一性が向上し、より均一な化学修飾セルロース不織布を提供することが可能となる。 According to the present invention, in chemical modification of cellulose nonwoven fabric, the reaction time can be shortened as compared with the conventional method, the amount of extra chemicals can be reduced, and the process such as the washing step can be simplified. A chemically modified cellulose nonwoven fabric can be produced with good productivity. Moreover, since reaction time can be shortened, the fall of the polymerization degree of the cellulose during chemical modification reaction can be suppressed, and the strength reduction at the time of using a composite material can be suppressed. Furthermore, since the reaction is performed in the gas phase, the diffusion of the reaction solvent is faster than the reaction in the liquid phase, the uniformity of the reaction is improved, and a more uniform chemically modified cellulose nonwoven fabric can be provided. .
 このように、本発明によれば、反応性ガスと接触させることにより、工程が簡略化されるのみならず、反応効率の向上により反応時間が短縮され、反応時間の短縮でセルロースの重合度の低下及びそれによる強度低下が抑制され、また、均一に化学修飾された化学修飾セルロース不織布を提供することができ、この化学修飾セルロース不織布を用いて、高強度、高透明、非着色性、低線膨張係数のセルロース繊維複合材料を提供することができる。 Thus, according to the present invention, not only the process is simplified by contacting with the reactive gas, but also the reaction time is shortened by improving the reaction efficiency, and the polymerization time of cellulose is reduced by shortening the reaction time. Decrease in strength and resulting reduction in strength can be suppressed, and a chemically modified cellulose nonwoven fabric that is uniformly chemically modified can be provided. Using this chemically modified cellulose nonwoven fabric, high strength, high transparency, non-coloring property, low line A cellulose fiber composite material having an expansion coefficient can be provided.
図1は、本発明の化学修飾セルロース不織布の製造方法において、セルロース不織布の化学修飾に採用し得る変性装置の一例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention. 図2は、本発明の化学修飾セルロース不織布の製造方法において、セルロース不織布の化学修飾に採用し得る変性装置の他の例を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing another example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention. 図3は、本発明の化学修飾セルロース不織布の製造方法において、セルロース不織布の化学修飾に採用し得る変性装置の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a denaturing apparatus that can be used for chemical modification of a cellulose nonwoven fabric in the method for producing a chemically modified cellulose nonwoven fabric of the present invention. 図4は、実施例8において製造した、ブロック状セルロース不織布の断面図である。4 is a cross-sectional view of a block-like cellulose nonwoven fabric produced in Example 8. FIG. 図5は、セルロース不織布をロール状に巻いたものの断面図である。FIG. 5 is a cross-sectional view of a cellulose nonwoven fabric wound in a roll shape.
 以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
〔セルロース不織布の製造方法〕
 本発明の化学修飾セルロース不織布の製造方法は、反応性ガスを用いて、セルロース不織布中のセルロースを化学修飾することを特徴とする。
[Method for producing cellulose nonwoven fabric]
The method for producing a chemically modified cellulose nonwoven fabric of the present invention is characterized by chemically modifying cellulose in the cellulose nonwoven fabric using a reactive gas.
[セルロース不織布]
 まず、本発明において、化学修飾を行うセルロース不織布について説明する。
[Cellulose nonwoven fabric]
First, the cellulose nonwoven fabric which performs chemical modification in this invention is demonstrated.
 本発明におけるセルロース不織布は、微細なセルロース繊維をシート状としたものであり、通常は、セルロース繊維を含有する分散液を濾過や適当な基材に塗布することによって製造される、セルロース繊維のシート状物である。 The cellulose nonwoven fabric in the present invention is a sheet of fine cellulose fibers, and is usually produced by filtering or applying a dispersion containing cellulose fibers to a suitable substrate. It is a shape.
{セルロース繊維}
 最初に、セルロース不織布に用いられるセルロース繊維について説明する。
 セルロース繊維としては、数平均繊維径が2~400nmであれば、以下に詳述するセルロース含有物、セルロース含有物を精製したセルロース繊維原料、セルロース繊維原料を解繊した微細セルロース繊維のいずれでもよい。下記詳述する用途に適用させるためには、微細セルロース繊維をセルロース不織布に用いることが好ましい。
{Cellulose fiber}
Initially, the cellulose fiber used for a cellulose nonwoven fabric is demonstrated.
Cellulose fibers may be any of cellulose-containing materials, cellulose fiber materials purified from cellulose-containing materials, and fine cellulose fibers defibrated from cellulose fiber materials as long as the number average fiber diameter is 2 to 400 nm. . In order to apply to the use described in detail below, it is preferable to use fine cellulose fibers for the cellulose nonwoven fabric.
 セルロース繊維としては、セルロースそのもののみを使用してもよいし、不純物を一部含むセルロースを使用してもよい。 As the cellulose fiber, only cellulose itself may be used or cellulose partially containing impurities may be used.
<セルロース含有物>
 セルロース含有物としては、例えば、針葉樹や広葉樹等の木質(木粉等)、コットンリンターやコットンリント等のコットン、さとうきびや砂糖大根等の絞りかす、亜麻、ラミー、ジュート、ケナフ等の靭皮繊維、サイザル、パイナップル等の葉脈繊維、アバカ、バナナ等の葉柄繊維、ココナツヤシ等の果実繊維、竹等の茎幹繊維などの植物由来原料、バクテリアが産生するバクテリアセルロース、バロニアやシオグサ等の海草やホヤの被嚢等の天然セルロースが挙げられる。これらの天然セルロースは、結晶性が高いので低線膨張率、高弾性率になり好ましい。特に、植物由来原料から得られるセルロース繊維が好ましい。
<Cellulose-containing material>
Examples of cellulose-containing materials include woods such as conifers and hardwoods (wood flour, etc.), cotton such as cotton linter and cotton lint, pomace such as sugar cane and sugar radish, bast fibers such as flax, ramie, jute, kenaf, etc. Vegetal vein fibers such as sisal and pineapple, petiole fibers such as abaca and banana, fruit fibers such as coconut palm, stem stem fibers such as bamboo, bacterial cellulose produced by bacteria, seaweed and squirts such as valonia and falcon Natural cellulose such as encapsulates. These natural celluloses are preferable because of their high crystallinity and low linear expansion and high elastic modulus. In particular, cellulose fibers obtained from plant-derived materials are preferred.
 バクテリアセルロースは微細な繊維径のものが得やすい点で好ましい。また、コットンも微細な繊維径なものが得やすい点で好ましく、さらに原料が得やすい点で好ましい。
 さらには針葉樹や広葉樹等の木質も微細な繊維径のものが得られ、かつ地球上で最大量の生物資源であり、年間約700億トン以上ともいわれる量が生産されている持続型資源であることから、地球温暖化に影響する二酸化炭素削減への寄与も大きく、経済的な点から優位である。木質を本発明のセルロース繊維として使用する場合は、木材チップや木粉などの状態に破砕して用いることが好ましい。
Bacterial cellulose is preferred in that it can be easily obtained with a fine fiber diameter. Cotton is also preferable in that it is easy to obtain a fine fiber diameter, and more preferable in terms of easy acquisition of raw materials.
In addition, wood of conifers and hardwoods with fine fiber diameters can be obtained, and it is the largest amount of biological resources on the planet. It is a sustainable resource that produces about 70 billion tons per year. Therefore, it contributes greatly to the reduction of carbon dioxide that affects global warming, which is advantageous from an economic point of view. When wood is used as the cellulose fiber of the present invention, it is preferably used after being crushed into a state of wood chips or wood flour.
<セルロース繊維原料>
 セルロース繊維原料は上記セルロース含有物を通常の方法で精製処理して得られる。
 例えば、上記セルロース含有物をベンゼン-エタノールや炭酸ナトリウム水溶液で脱脂した後、亜塩素酸塩で脱リグニン処理を行い(ワイズ法)、アルカリで脱ヘミセルロース処理をすることにより得られる。また、ワイズ法の他に、過酢酸を用いる方法(pa法)、過酢酸過硫酸混合物を用いる方法(pxa法)なども精製方法として利用される。また、適宜、更に漂白処理等を行ってもよい。この破砕は、後述する精製処理前、処理の途中、処理後、いずれのタイミングで行ってもかまわない。
<Cellulose fiber raw material>
The cellulose fiber raw material is obtained by purifying the cellulose-containing material by a usual method.
For example, it can be obtained by degreasing the above cellulose-containing material with benzene-ethanol or an aqueous sodium carbonate solution, then subjecting it to delignification treatment with chlorite (Wise method) and subjecting it to dehemicellulose treatment with alkali. In addition to the Wise method, a method using peracetic acid (pa method), a method using a peracetic acid persulfuric acid mixture (pxa method), and the like are also used as purification methods. Moreover, you may perform a bleaching process etc. further suitably. This crushing may be performed at any timing before, after or after the purification treatment described later.
 精製処理に用いる分散媒としては、一般的に水が用いられるが、酸または塩基、その他の処理剤の水溶液であってもよく、この場合には、最終的に水で洗浄処理してもよい。 As a dispersion medium used for the purification treatment, water is generally used, but an aqueous solution of an acid or base or other treatment agent may be used, and in this case, it may be finally washed with water. .
 セルロース含有物を精製して得られるセルロース繊維原料の精製度合いは特に定めはないが、油脂、リグニンが少なく、セルロース成分の含有率が高い方がセルロース繊維原料の着色が少なく好ましい。また、セルロース繊維原料は、一般的な化学パルプの製造方法、例えばクラフトパルプ、サリファイドパルプ、アルカリパルプ、硝酸パルプの製造方法によって得られるものであってもよい。
 すなわち、セルロース繊維原料としては、広葉樹クラフトパルプ、針葉樹クラフトパルプ、広葉樹亜硫酸パルプ、針葉樹亜硫酸パルプ、広葉樹漂白クラフトパルプ、針葉樹漂白クラフトパルプ、リンターパルプなどを用いてもよい。
The degree of purification of the cellulose fiber raw material obtained by refining the cellulose-containing material is not particularly defined, but it is preferable that the fat content of the cellulose fiber raw material is less because the fat and oil and lignin are less and the cellulose component content is higher. The cellulose fiber raw material may be obtained by a general method for producing chemical pulp, for example, a method for producing kraft pulp, salified pulp, alkali pulp, or nitrate pulp.
That is, as a cellulose fiber raw material, you may use hardwood kraft pulp, softwood kraft pulp, hardwood sulfite pulp, softwood sulfite pulp, hardwood bleached kraft pulp, softwood bleached kraft pulp, linter pulp and the like.
 セルロース繊維原料中のセルロース成分の含有率は好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。 The content of the cellulose component in the cellulose fiber raw material is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.
 セルロース繊維原料のセルロース成分は、結晶性のα-セルロース成分と非結晶性のヘミセルロース成分に分類できる。結晶性のα-セルロース含有率が多い方が、セルロース繊維複合材料とした際に低線膨張係数、高弾性率、高強度の効果が得られやすいため好ましい。このため、セルロース繊維原料のα-セルロース含有率は好ましくは90重量%以上、さらに好ましくは95重量%以上、さらに好ましくは97重量%以上である。 The cellulose component of the cellulose fiber raw material can be classified into a crystalline α-cellulose component and an amorphous hemicellulose component. It is preferable that the content of crystalline α-cellulose is large because the effects of low linear expansion coefficient, high elastic modulus, and high strength are easily obtained when a cellulose fiber composite material is obtained. Therefore, the α-cellulose content of the cellulose fiber raw material is preferably 90% by weight or more, more preferably 95% by weight or more, and still more preferably 97% by weight or more.
 セルロース繊維原料の繊維径は特に制限されるものではないが、通常、数平均繊維径として1μmから1mmである。
 なお、一般的な精製を経たセルロース繊維原料の数平均繊維径は通常50μm程度である。
The fiber diameter of the cellulose fiber raw material is not particularly limited, but is usually 1 μm to 1 mm as the number average fiber diameter.
In addition, the number average fiber diameter of the cellulose fiber raw material which passed through general refinement | purification is about 50 micrometers normally.
<微細セルロース繊維>
 微細セルロース繊維は、通常、セルロース繊維原料を解繊処理することにより得られるものであり、その数平均繊維径は400nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましく、80nm以下であることが特に好ましく、50nm以下であることが最も好ましく、さらには30nm以下であることが好ましい。微細セルロース繊維の数平均繊維径は、小さい程好ましいが、低線膨張係数、高弾性率を発現するためには、セルロースの結晶性を維持することが重要であり、通常2nm以上、実質的にはセルロース結晶単位の繊維径である4nm以上である。
<Fine cellulose fiber>
The fine cellulose fiber is usually obtained by defibrating a cellulose fiber raw material, and its number average fiber diameter is preferably 400 nm or less, more preferably 150 nm or less, and 100 nm or less. Is more preferably 80 nm or less, most preferably 50 nm or less, and further preferably 30 nm or less. The number average fiber diameter of the fine cellulose fibers is preferably as small as possible. However, in order to develop a low linear expansion coefficient and a high elastic modulus, it is important to maintain the crystallinity of cellulose. Is 4 nm or more which is the fiber diameter of the cellulose crystal unit.
 尚、微細セルロース繊維の繊維径は、以下詳述する微細セルロース繊維分散液中の分散媒を乾燥除去して得られるセルロース不織布を、SEMやTEM等で観察することにより計測して求めることができる。具体的には、通常、SEMやTEM等で観察して、写真の対角線に線を引き、その近傍にある繊維をランダムに12点抽出し、最も太い繊維と最も細い繊維を除去した10点を測定して、平均した値を数平均繊維径とする。 In addition, the fiber diameter of the fine cellulose fiber can be determined by measuring the cellulose nonwoven fabric obtained by drying and removing the dispersion medium in the fine cellulose fiber dispersion described in detail below by observing with SEM, TEM or the like. . Specifically, it is usually observed with SEM, TEM, etc., a line is drawn on the diagonal line of the photograph, 12 points of fibers in the vicinity are randomly extracted, and 10 points obtained by removing the thickest fiber and the thinnest fiber are extracted. The number average fiber diameter is measured and averaged.
 セルロース繊維原料の解繊処理は通常セルロース繊維原料の分散液(セルロース繊維原料分散液)中で行う。該分散液中において、セルロース繊維原料としての固形分濃度が0.1重量%以上、好ましくは0.2重量%以上、特に0.3重量%以上、また10重量%以下、特に6重量%以下のセルロース繊維原料分散液であることが好ましい。この解繊工程に供するセルロース繊維原料分散液中の固形分濃度が低過ぎると処理するセルロース量に対して液量が多くなり過ぎ効率が悪く、固形分濃度が高過ぎると流動性が悪くなるため、解繊処理に供するセルロース繊維原料分散液は適宜水を添加するなどして濃度調整することが好ましい。 The cellulose fiber raw material is normally defibrated in a cellulose fiber raw material dispersion (cellulose fiber raw material dispersion). In the dispersion, the solid content concentration as the cellulose fiber raw material is 0.1% by weight or more, preferably 0.2% by weight or more, particularly 0.3% by weight or more, and 10% by weight or less, particularly 6% by weight or less. The cellulose fiber raw material dispersion is preferably used. If the solid content concentration in the cellulose fiber raw material dispersion used in this defibrating process is too low, the amount of liquid will increase with respect to the amount of cellulose to be treated, resulting in poor efficiency, and if the solid content concentration is too high, the fluidity will be poor. The concentration of the cellulose fiber raw material dispersion to be subjected to the defibration treatment is preferably adjusted by adding water as appropriate.
 なお、分散媒としては、有機溶媒、水、有機溶媒と水との混合液を使用することができる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、n-ブタノール、エチレングリコール、エチレングリコール-モノ-t-ブチルエーテル等のアルコール類、アセトンやメチルエチルケトン等のケトン類、その他水溶性の有機溶媒の1種又は2種以上を用いることができる。分散媒は、有機溶媒と水との混合液又は水であることが好ましく、特に水であることが好ましい。 As the dispersion medium, an organic solvent, water, or a mixed solution of an organic solvent and water can be used. Organic solvents include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, n-butanol, ethylene glycol, ethylene glycol mono-t-butyl ether and other alcohols, acetone and methyl ethyl ketone ketones, and other water-soluble organics. One kind or two or more kinds of solvents can be used. The dispersion medium is preferably a mixed liquid of an organic solvent and water or water, and particularly preferably water.
 セルロース繊維原料の解繊処理の具体的な方法としては、特に制限はないが、例えば、直径1mm程度のセラミック製ビーズをセルロース繊維原料分散液に入れ、ペイントシェーカーやビーズミル等を用いて振動を与えセルロース繊維原料を解繊する方法、ブレンダータイプの分散機や高速回転するスリットの間に、セルロース繊維原料分散液を通して剪断力を働かせて解繊する方法(高速回転式ホモジナイザー法)や、高圧から急に減圧することによって、セルロース繊維間に剪断力を発生させて解繊する方法(高圧ホモジナイザー法)、「マスコマイザーX」のような対向衝突型の分散機(増幸産業)等を用いる方法などが挙げられる。特に、高速回転式ホモジナイザーや高圧ホモジナイザー処理は、解繊の効率が向上する。 There are no particular restrictions on the method of defibrating the cellulose fiber raw material, but for example, ceramic beads having a diameter of about 1 mm are placed in the cellulose fiber raw material dispersion, and vibration is applied using a paint shaker or bead mill. Cellulosic fiber raw material is defibrated, blended with a blender-type disperser or a high-speed rotating slit, using a cellulose fiber raw material dispersion to apply shearing force (high-speed rotating homogenizer method), By depressurizing the cellulose fiber to generate shear force between cellulose fibers (high pressure homogenizer method), a method using a counter collision type disperser (Masuko Sangyo) such as “Masscomizer X”, etc. Can be mentioned. In particular, the high-speed rotating homogenizer and the high-pressure homogenizer treatment improve the efficiency of defibration.
 なお、上記のような処理の後に、超音波処理を組み合わせた微細化処理を行ってもよい。 In addition, you may perform the refinement | miniaturization process which combined the ultrasonic process after the above processes.
 この場合、超音波の周波数は15kHz~1MHz、好ましくは20kHz~500kHz、更に好ましくは20kHz~100kHzである。照射する超音波の周波数が小さ過ぎると後述のキャビテーションが発生しにくく、大き過ぎると発生したキャビテーションが物理的な作用を発生させるまでに大きく成長することなく消滅してしまうため、微細化効果が得られない。また、超音波の出力としては、実行出力密度として1W/cm以上であり、好ましくは10W/cm以上、更に好ましくは20W/cm以上である。超音波の出力が小さ過ぎると微細化効率が低下して、十分な微細化を行うために長時間の照射が必要であり、実用的ではない。なお、超音波の実行出力密度の上限は振動子やホーン等の耐久性の点から500W/cm以下である。 In this case, the frequency of the ultrasonic wave is 15 kHz to 1 MHz, preferably 20 kHz to 500 kHz, more preferably 20 kHz to 100 kHz. If the frequency of the ultrasonic wave to be irradiated is too small, cavitation described later is difficult to occur, and if it is too large, the generated cavitation disappears without growing until it causes a physical action. I can't. Moreover, as an output of an ultrasonic wave, it is 1 W / cm < 2 > or more as an execution output density, Preferably it is 10 W / cm < 2 > or more, More preferably, it is 20 W / cm < 2 > or more. If the output of the ultrasonic wave is too small, the miniaturization efficiency is lowered, and a long time irradiation is necessary for sufficient miniaturization, which is not practical. In addition, the upper limit of the effective output density of the ultrasonic wave is 500 W / cm 2 or less from the viewpoint of durability of the vibrator and the horn.
 超音波の照射方法には特に制限はなく、各種の方法が利用できる。例えば、超音波振動子の振動を伝えるホーンを直接上記のセルロース繊維原料分散液に挿入することにより、直接セルロース繊維を微細化する方法や、セルロース繊維原料分散液を入れた容器の床や壁の一部に超音波振動子を設置してセルロース繊維を微細化する方法や、超音波振動子を装着した容器に水等の液体を入れ、その中にセルロース繊維原料分散液を入れた容器を漬すことにより、水等の液体を介して間接的に超音波振動をセルロース繊維原料分散液に与えて微細化する方法が採用できる。 The ultrasonic irradiation method is not particularly limited, and various methods can be used. For example, by directly inserting a horn that transmits the vibration of an ultrasonic vibrator into the cellulose fiber raw material dispersion, a method for directly refining cellulose fibers, or a floor or wall of a container containing a cellulose fiber raw material dispersion. Place ultrasonic transducers on the part to make cellulose fibers fine, or put a liquid such as water in a vessel equipped with ultrasonic transducers, and immerse the vessel containing the cellulose fiber raw material dispersion in it. Thus, a method of applying ultrasonic vibration indirectly to the cellulose fiber raw material dispersion liquid through a liquid such as water can be employed.
 また、超音波は連続的に照射してもよく、所定の間隔で間欠的に照射してもよい。 Further, the ultrasonic wave may be irradiated continuously or intermittently at a predetermined interval.
 なお、解繊処理した後は、遠心分離を用いて微細セルロース繊維分散液中の解繊不良のセルロース繊維を分離、除去することが好ましい。遠心分離後することで、より均一で細かい微細セルロース繊維分散液の上澄み液が得られる。遠心分離の条件については、用いる微細化処理によるので特に限定されるものではないが、例えば3000G以上、好ましくは10000G以上の遠心力をかけることが好ましい。また、時間は例えば1分以上、好ましくは5分以上かけることが好ましい。遠心力が小さすぎたり、時間が短すぎたりすると、解繊不良のセルロース繊維の分離・除去が不十分になり、好ましくない。 In addition, after the defibrating treatment, it is preferable to separate and remove the defibrated cellulose fibers in the fine cellulose fiber dispersion using centrifugation. By centrifuging, a supernatant of a more uniform and fine fine cellulose fiber dispersion can be obtained. The conditions for the centrifugation are not particularly limited because they depend on the miniaturization process used, but it is preferable to apply a centrifugal force of, for example, 3000 G or more, preferably 10,000 G or more. The time is preferably 1 minute or longer, preferably 5 minutes or longer. If the centrifugal force is too small or the time is too short, separation / removal of poorly defibrated cellulose fibers becomes insufficient, which is not preferable.
 また、遠心分離を行う際、微細セルロース繊維分散液の粘度が高いと、分離効率が落ちるため好ましくない。微細セルロース繊維分散液の粘度としては、25℃において測定されるずり速度10s-1における粘度が500mPa・s以下、好ましくは100mPa・s以下であることが好ましい。 Further, when the centrifugal separation is performed, it is not preferable that the fine cellulose fiber dispersion has a high viscosity because the separation efficiency is lowered. As the viscosity of the fine cellulose fiber dispersion, the viscosity at a shear rate of 10 s −1 measured at 25 ° C. is 500 mPa · s or less, preferably 100 mPa · s or less.
{セルロース不織布の製造方法}
 セルロース不織布は、通常、上述のようにして得られた微細セルロース繊維を用いて製造される。セルロース不織布は、解繊前のセルロース繊維原料を用いるよりも、微細セルロース繊維を用いて製造したものの方が、高透明性、低線膨張係数、高弾性率のものが得られる。具体的には、セルロース不織布は、前述の解繊処理を施すことにより得られる微細セルロース繊維を含む分散液(微細セルロース繊維分散液)を濾過することにより、或いは適当な基材に塗布することによりシート状物として製造される。
{Method for producing cellulose nonwoven fabric}
A cellulose nonwoven fabric is normally manufactured using the fine cellulose fiber obtained as mentioned above. A cellulose non-woven fabric can be produced with a high transparency, a low linear expansion coefficient, and a high elastic modulus when it is produced using fine cellulose fibers rather than using a cellulose fiber raw material before defibration. Specifically, the cellulose nonwoven fabric is obtained by filtering a dispersion containing fine cellulose fibers (fine cellulose fiber dispersion) obtained by performing the above-described defibrating treatment, or by applying to a suitable substrate. Manufactured as a sheet.
 セルロース不織布を、微細セルロース繊維分散液を濾過することによって製造する場合、濾過に供される分散液の微細セルロース繊維濃度は、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。微細セルロース繊維の濃度が低すぎると濾過に膨大な時間がかかるため好ましくない。また、微細セルロース繊維の濃度は通常10重量%以下、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1.5重量%以下、特に好ましくは1.2重量%以下、最も好ましくは1.0重量%以下である。微細セルロース繊維の濃度が高すぎると均一なシートが得られないため好ましくない。 When a cellulose nonwoven fabric is produced by filtering a fine cellulose fiber dispersion, the fine cellulose fiber concentration of the dispersion subjected to filtration is usually 0.01% by weight or more, preferably 0.05% by weight or more. Preferably it is 0.1 weight% or more. If the concentration of the fine cellulose fibers is too low, it takes a long time for filtration, which is not preferable. The concentration of fine cellulose fibers is usually 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 1.5% by weight or less, and particularly preferably 1.2% by weight or less. Preferably it is 1.0 weight% or less. If the concentration of fine cellulose fibers is too high, a uniform sheet cannot be obtained, which is not preferable.
 微細セルロース繊維分散液を濾過する場合、濾過時の濾布としては、微細セルロース繊維は通過せずかつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては、有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしてはポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。より具体的には孔径0.1~20μm、例えば1μmのポリテトラフルオロエチレンの多孔膜、孔径0.1~20μm、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。また、天然繊維であるセルロースからなる紙基材をろ過材として用いることができる。紙基材は幅広や長尺物のものが簡単に製造できる上に、原料であるパルプの種類やパルプの叩解度を変えることなどで、紙の通水量を制御できるため非常に好ましい。また耐水化剤や疎水化剤などで容易に基剤に耐水性を付与することも可能である。 When filtering the fine cellulose fiber dispersion, it is important that the fine cellulose fibers do not pass through and the filtration speed is not too slow as a filter cloth at the time of filtration. As such a filter cloth, a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable. The organic polymer is preferably a non-cellulose organic polymer such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) or the like. More specifically, a porous film of polytetrafluoroethylene having a pore diameter of 0.1 to 20 μm, for example, 1 μm, polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 to 20 μm, for example, 1 μm, and the like can be mentioned. Moreover, the paper base material which consists of cellulose which is a natural fiber can be used as a filter medium. The paper substrate is very preferable because it can easily produce a wide or long paper material, and can control the amount of water passing through the paper by changing the type of pulp as the raw material or the beating degree of the pulp. It is also possible to easily impart water resistance to the base with a water-proofing agent or a hydrophobizing agent.
 上記濾過によって得られたセルロース不織布は、その後、乾燥を行うが、場合によっては乾燥を行わずに次の工程に進んでも構わない。
 すなわち、例えば、加熱処理した微細セルロース繊維分散液を濾過した場合、乾燥工程を経ずそのまま次工程に供することもできる。
 また、微細セルロース繊維分散液を濾過して、得られたセルロース不織布を加熱処理する場合にも、乾燥工程を経ずに行うこともできる。
 しかし、空隙率、膜厚の制御、不織布の構造をより強固にする意味でも、乾燥を行った方が好ましい。この乾燥は、送風乾燥であってもよく、減圧乾燥であってもよく、また、加圧乾燥、凍結乾燥であってもよい。
 また、加熱乾燥しても構わない。加熱する場合、温度は50℃以上が好ましく、80℃以上がより好ましく、また、250℃以下が好ましく、150℃以下がより好ましい。加熱温度が低すぎると乾燥に時間がかかったり、乾燥が不十分になる可能性があり、加熱温度が高すぎるとセルロース不織布が着色したり、セルロースが分解したりする可能性がある。また、加圧する場合は0.01MPa以上が好ましく、0.1MPa以上がより好ましく、また、5MPa以下が好ましく、1MPa以下がより好ましい。圧力が低すぎると乾燥が不十分になる可能性がり、圧力が高すぎるとセルロース不織布がつぶれたりセルロースが分解したりする可能性がある。
 また、セルロース不織布を、微細セルロース繊維分散液を適当な基材に塗布することによりシート状物として製造してもよい。この場合、通常、上記分散液を所定の基板上に塗布して、分散媒を特定量まで蒸発させて除去する。塗布の方法としては、特に限定されず、スピンコート法、ブレードコート法、ワイヤーバーコート法、スプレーコート法、スリットコート法などが挙げられる。特に、均一な膜厚の薄膜が得られる点で、スピンコート法が好ましい。
 なお、基板としては、特に限定されず、ガラス基板、プラスチック基板などが挙げられる。
The cellulose nonwoven fabric obtained by the filtration is then dried, but in some cases, it may proceed to the next step without drying.
That is, for example, when the heat-treated fine cellulose fiber dispersion is filtered, it can be directly used for the next step without passing through the drying step.
Moreover, also when filtering the fine cellulose fiber dispersion liquid and heat-processing the obtained cellulose nonwoven fabric, it can also carry out without passing through a drying process.
However, it is preferable to perform drying also in the sense of controlling the porosity, film thickness, and strengthening the structure of the nonwoven fabric. This drying may be air drying, vacuum drying, pressure drying, or freeze drying.
Moreover, you may heat-dry. When heating, the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. If the heating temperature is too low, drying may take time or drying may be insufficient, and if the heating temperature is too high, the cellulose nonwoven fabric may be colored or cellulose may be decomposed. Moreover, when pressurizing, 0.01 MPa or more is preferable, 0.1 MPa or more is more preferable, 5 MPa or less is preferable, and 1 MPa or less is more preferable. If the pressure is too low, drying may be insufficient, and if the pressure is too high, the cellulose nonwoven fabric may be crushed or cellulose may be decomposed.
Moreover, you may manufacture a cellulose nonwoven fabric as a sheet-like material by apply | coating a fine cellulose fiber dispersion liquid to a suitable base material. In this case, usually, the dispersion is applied onto a predetermined substrate, and the dispersion medium is evaporated to a specific amount and removed. The coating method is not particularly limited, and examples thereof include spin coating, blade coating, wire bar coating, spray coating, and slit coating. In particular, the spin coating method is preferable in that a thin film having a uniform thickness can be obtained.
In addition, it does not specifically limit as a board | substrate, A glass substrate, a plastic substrate, etc. are mentioned.
{セルロース不織布の物性}
<空隙率>
 セルロース不織布はその製造方法により、様々な空隙率を有することができる。
{Physical properties of cellulose nonwoven fabric}
<Porosity>
The cellulose nonwoven fabric can have various porosity depending on the production method.
 セルロース不織布に樹脂を含浸させてセルロース繊維複合材料を得る場合には、セルロース不織布の空隙率が小さいと樹脂が含浸されにくくなるため、ある程度の空隙率があることが好ましい。この場合の空隙率は、通常10体積%以上、好ましくは20体積%以上である。ただし、空隙率が過度に大きいとセルロース繊維複合材料としたときに線膨張係数が大きくなるので好ましくないことから、セルロース不織布の空隙率は60体積%以下であることが好ましい。 When a cellulose nonwoven fabric is impregnated with a resin to obtain a cellulose fiber composite material, it is preferable that the cellulose nonwoven fabric has a certain degree of porosity because the resin is difficult to be impregnated if the porosity of the cellulose nonwoven fabric is small. The porosity in this case is usually 10% by volume or more, preferably 20% by volume or more. However, when the porosity is excessively large, the coefficient of linear expansion increases when the cellulose fiber composite material is obtained, and therefore, the porosity of the cellulose nonwoven fabric is preferably 60% by volume or less.
 ここでいうセルロース不織布の空隙率は簡易的に下記式により求めることができる。
  空隙率(体積%)={(1-B/(M×A×t)}×100
 ここで、Aはセルロース不織布の面積(cm)、tは厚み(cm)、Bはセルロース不織布の重量(g)、Mはセルロースの密度であり、本発明ではM=1.5g/cmと仮定する。セルロース不織布の膜厚は、膜厚計(PEACOK製のPDN-20)を用いて、セルロース不織布の種々な位置について10点の測定を行い、その平均値を採用する。
The porosity of a cellulose nonwoven fabric here can be calculated | required easily by a following formula.
Porosity (volume%) = {(1−B / (M × A × t)} × 100
Here, A is the area (cm 2 ) of the cellulose nonwoven fabric, t is the thickness (cm), B is the weight (g) of the cellulose nonwoven fabric, M is the density of cellulose, and in the present invention, M = 1.5 g / cm 3 Assume that The film thickness of the cellulose nonwoven fabric is measured at 10 points at various positions of the cellulose nonwoven fabric using a film thickness meter (PDN-20 manufactured by PEACOK), and the average value is adopted.
 空隙率の大きなセルロース不織布を得る方法としては、濾過による製膜工程において、セルロース不織布中の水を最後にアルコール等の有機溶媒に置換する方法を挙げることができる。これは、濾過により水を除去し、セルロース含量が5~99重量%になったところでアルコール等の有機溶媒を加えるものである。又は、微細セルロース繊維分散液を濾過装置に投入した後、アルコール等の有機溶媒を分散液の上部に静かに投入することによっても濾過の最後にアルコール等の有機溶媒と置換することができる。 Examples of a method for obtaining a cellulose nonwoven fabric having a large porosity include a method in which water in the cellulose nonwoven fabric is finally replaced with an organic solvent such as alcohol in a film forming process by filtration. In this method, water is removed by filtration, and an organic solvent such as alcohol is added when the cellulose content reaches 5 to 99% by weight. Alternatively, the organic cellulose solvent such as alcohol can be replaced with the organic solvent such as alcohol at the end of the filtration by putting the fine cellulose fiber dispersion into the filtration device and then gently pouring the organic solvent such as alcohol into the upper part of the dispersion.
 ここで用いるアルコール等の有機溶媒としては、特に限定されるものではないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール、エチレングリコール-モノ-t-ブチルエーテル等のアルコール類の他、アセトン、メチルエチルケトン、テトラヒドロフラン、シクロヘキサン、トルエン、四塩化炭素等の1種又は2種以上の有機溶媒が挙げられる。非水溶性有機溶媒を用いる場合は、水溶性有機溶媒との混合溶媒にするか水溶性有機溶媒で置換した後、非水溶性有機溶媒で置換することが好ましい。 The organic solvent such as alcohol used here is not particularly limited, and examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, ethylene glycol mono-t-butyl ether and the like. In addition to alcohols, one or more organic solvents such as acetone, methyl ethyl ketone, tetrahydrofuran, cyclohexane, toluene, carbon tetrachloride and the like can be mentioned. When using a water-insoluble organic solvent, it is preferable to use a water-soluble organic solvent or a mixed solvent with the water-soluble organic solvent, and then replace with a water-insoluble organic solvent.
 また、空隙率を制御する方法として、上記のアルコール等より沸点の高い溶媒を混合し、その溶媒の沸点より低い温度で乾燥させる方法が挙げられる。この場合は、必要に応じて、乾燥後に残っている高い沸点の溶媒を、他の溶媒に浸漬して置換させた後に乾燥させる。 Further, as a method for controlling the porosity, a method in which a solvent having a boiling point higher than that of the above-described alcohol is mixed and dried at a temperature lower than the boiling point of the solvent can be mentioned. In this case, if necessary, the solvent having a high boiling point remaining after drying is immersed in another solvent to be replaced and then dried.
<膜厚>
 セルロース不織布の厚みには特に限定はないが、好ましくは1μm以上、さらに好ましくは5μm以上である。又、通常1000μm以下、好ましくは250μm以下である。セルロース不織布の厚みは、製造の安定性、強度の点から上記下限以上であることが好ましく、生産性、均一性、樹脂の含浸性の点から上記上限以下であることが好ましい。なお、前述の方法でセルロース不織布の空隙率を制御することで膜厚も制御することもできる。
<Film thickness>
Although there is no limitation in particular in the thickness of a cellulose nonwoven fabric, Preferably it is 1 micrometer or more, More preferably, it is 5 micrometers or more. Moreover, it is 1000 micrometers or less normally, Preferably it is 250 micrometers or less. The thickness of the cellulose nonwoven fabric is preferably not less than the above lower limit from the viewpoint of production stability and strength, and is preferably not more than the above upper limit from the viewpoint of productivity, uniformity, and resin impregnation. In addition, a film thickness can also be controlled by controlling the porosity of a cellulose nonwoven fabric by the above-mentioned method.
<結晶構造>
 セルロース不織布中のセルロース繊維は、セルロースI型結晶構造を有することが好ましい。セルロースI型結晶は、他の結晶構造のものより結晶弾性率が高いため、高弾性率、高強度、低線膨張係数のセルロース不織布となり、好ましい。
<Crystal structure>
The cellulose fibers in the cellulose nonwoven fabric preferably have a cellulose I-type crystal structure. Cellulose I-type crystals have a higher crystal elastic modulus than those of other crystal structures, and are therefore preferred as a cellulose nonwoven fabric having a high elastic modulus, high strength, and low linear expansion coefficient.
 セルロース繊維がI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークをもつことから同定することができる。 The fact that the cellulose fiber has the I-type crystal structure is a typical peak at two positions near 2θ = 14 to 17 ° and 2θ = 22 to 23 ° in the diffraction profile obtained by wide-angle X-ray diffraction image measurement. Can be identified.
<数平均繊維径>
 セルロース不織布中のセルロース繊維の繊維径は、数平均繊維径で400nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましく、80nm以下であることが特に好ましく、50nm以下であることが最も好ましく、さらには30nm以下であることが好ましい。通常2nm以上、実質的にはセルロース結晶単位の繊維径である4nm以上である。上限を超えると、セルロース繊維複合材料にした際に透明性が低下するので好ましくない。
 この数平均繊維径は、前述の如く、通常、SEMやTEM等で観察して、写真の対角線に線を引き、その近傍にある繊維をランダムに12点抽出し、最も太い繊維と最も細い繊維を除去した10点を測定し、測定値を平均した値で求められる。
<Number average fiber diameter>
The fiber diameter of the cellulose fibers in the cellulose nonwoven fabric is preferably 400 nm or less in terms of number average fiber diameter, more preferably 150 nm or less, further preferably 100 nm or less, and particularly preferably 80 nm or less. 50 nm or less is most preferable, and 30 nm or less is more preferable. Usually, it is 2 nm or more, and substantially 4 nm or more which is the fiber diameter of the cellulose crystal unit. Exceeding the upper limit is not preferable because the transparency decreases when the cellulose fiber composite material is formed.
As described above, this number average fiber diameter is usually observed with SEM, TEM, etc., and a diagonal line is drawn on the photograph, and 12 points are randomly extracted in the vicinity thereof, and the thickest fiber and the thinnest fiber are extracted. The 10 points from which the mark is removed are measured, and the measured values are averaged.
<粘度平均重合度(重合度)>
 一般的に、セルロース不織布中のセルロース繊維の重合度は大きいほど高弾性率、高強度のセルロース不織布となり、強度物性の点で好ましい。セルロース繊維の重合度は用いる原料によるが、300以上、好ましくは1000以上、より好ましくは2000以上である。
 セルロース不織布中のセルロース繊維の重合度は、後述の実施例の項に示されるように、TAPPI T230に記載の粘度法により測定して、算出することができる。
<Viscosity average degree of polymerization (degree of polymerization)>
In general, the higher the degree of polymerization of the cellulose fibers in the cellulose nonwoven fabric, the higher the elastic modulus and the higher strength the cellulose nonwoven fabric becomes, and this is preferable in terms of strength properties. The degree of polymerization of the cellulose fiber depends on the raw material used, but is 300 or more, preferably 1000 or more, more preferably 2000 or more.
The degree of polymerization of cellulose fibers in the cellulose nonwoven fabric can be calculated by measuring by the viscosity method described in TAPPI T230, as shown in the Examples section below.
[化学修飾セルロース不織布の製造方法]
 本発明においては、反応性ガスを用いて、セルロース不織布中のセルロースを化学修飾する。
[Method for producing chemically modified cellulose nonwoven fabric]
In the present invention, the cellulose in the cellulose nonwoven fabric is chemically modified using a reactive gas.
<反応性ガス>
 本発明における反応性ガスとは、セルロース不織布中の水酸基と反応して化学修飾させる気体状態の化学修飾剤である。
 したがって、化学修飾させる反応温度において気体状態であれば常温において固体、液体、気体のいずれであってもよい。
<Reactive gas>
The reactive gas in the present invention is a gas-state chemical modifier that reacts with a hydroxyl group in the cellulose nonwoven fabric to be chemically modified.
Therefore, any solid, liquid, or gas may be used at room temperature as long as it is in a gaseous state at the reaction temperature for chemical modification.
 化学修飾剤の種類としては、酸、酸無水物、アルコール、ハロゲン化試薬、イソシアナート、アルコキシシラン、オキシラン(エポキシ)などの環状エーテルなどが挙げられる。 Examples of chemical modifiers include cyclic ethers such as acids, acid anhydrides, alcohols, halogenating reagents, isocyanates, alkoxysilanes, and oxiranes (epoxies).
 酸としては、例えば酢酸、アクリル酸、メタクリル酸、プロパン酸、ブタン酸、2-ブタン酸、ペンタン酸等が挙げられる。 Examples of the acid include acetic acid, acrylic acid, methacrylic acid, propanoic acid, butanoic acid, 2-butanoic acid, and pentanoic acid.
 酸無水物としては、例えば無水酢酸、無水アクリル酸、無水メタクリル酸、無水プロパン酸、無水ブタン酸、無水2-ブタン酸、無水ペンタン酸、無水安息香酸、無水マレイン酸、無水コハク酸、無水フマル酸、無水フタル酸、無水グルタル酸等が挙げられる。 Examples of acid anhydrides include acetic anhydride, acrylic anhydride, methacrylic anhydride, propanoic anhydride, butanoic anhydride, 2-butanoic anhydride, pentanoic anhydride, benzoic anhydride, maleic anhydride, succinic anhydride, and fumaric anhydride. An acid, phthalic anhydride, glutaric anhydride, etc. are mentioned.
 ハロゲン化試薬としては、例えばアセチルハライド、アクリロイルハライド、メタクロイルハライド、プロパノイルハライド、ブタノイルハライド、2-ブタノイルハライド、ペンタノイルハライド、ベンゾイルハライド、ナフトイルハライド、塩化ベンジル等が挙げられる。 Examples of the halogenating reagent include acetyl halide, acryloyl halide, methacryloyl halide, propanoyl halide, butanoyl halide, 2-butanoyl halide, pentanoyl halide, benzoyl halide, naphthoyl halide, and benzyl chloride.
 アルコールとしては、例えばメタノール、エタノール、プロパノール、2-プロパノール等が挙げられる。 Examples of alcohol include methanol, ethanol, propanol, 2-propanol and the like.
 イソシアナートとしては、例えばメチルイソシアナート、エチルイソシアナート、プロピルイソシアナート等が挙げられる。 Examples of the isocyanate include methyl isocyanate, ethyl isocyanate, propyl isocyanate and the like.
 アルコキシシランとしては、例えばメトキシシラン、エトキシシラン等が挙げられる。 Examples of the alkoxysilane include methoxysilane and ethoxysilane.
 オキシラン(エポキシ)等の環状エーテルとしては、例えばエチルオキシラン、エチルオキセタンが挙げられる。 Examples of cyclic ethers such as oxirane (epoxy) include ethyl oxirane and ethyl oxetane.
 これらの中では、酸または酸無水物が好ましく、特に反応性と工業的に適用しやすい点で、無水酢酸、無水プロパン酸、無水ブタン酸、無水アクリル酸、無水メタクリル酸、無水マレイン酸等の酸無水物が好ましく用いられる。 Among these, acids or acid anhydrides are preferable, and particularly in terms of reactivity and easy industrial application, acetic anhydride, propanoic acid anhydride, butanoic acid anhydride, acrylic acid anhydride, methacrylic acid anhydride, maleic anhydride, etc. An acid anhydride is preferably used.
 これらの化学修飾剤は1種のみを用いてもよく、2種以上を混合して反応に供してもよいし、必要に応じて溶媒などで希釈してもよい。 These chemical modifiers may be used alone or in combination of two or more, and may be diluted with a solvent or the like as necessary.
<前処理>
 セルロース不織布の化学修飾に先立ち、必要に応じてセルロース不織布を予め前処理した後に反応性ガスを用いて化学修飾を行うこともできる。前処理の方法としては、触媒や溶媒などに含浸、浸漬させる方法や、水酸化ナトリウムなどのアルカリ中に浸漬し、セルロースの水酸基を金属塩にする方法などが挙げられる。
<Pretreatment>
Prior to chemical modification of the cellulose nonwoven fabric, if necessary, the cellulose nonwoven fabric can be pretreated and then chemically modified using a reactive gas. Examples of the pretreatment method include a method of impregnating and immersing in a catalyst or a solvent, a method of immersing in an alkali such as sodium hydroxide, and converting a hydroxyl group of cellulose to a metal salt.
<処理条件>
 化学修飾の際の反応温度は、セルロースの熱分解温度の点から、250℃以下であることが好ましい。反応温度が高すぎると黄変や重合度の低下などが懸念され、低すぎると反応速度が低下する恐れがある。
 特に、200℃以下であることが好ましく、170℃以下であることが好ましく、150℃以下であることがより好ましく、通常10℃以上、好ましくは80℃以上である。
 本発明のように、数平均繊維径の小さい繊維に対しては、反応温度を制御することが所望の化学修飾率を得て、なおかつセルロースの重合度低下を抑えることにおいて非常に重要である。
 ここで反応温度とは、反応系内の温度である。
<Processing conditions>
The reaction temperature during the chemical modification is preferably 250 ° C. or less from the viewpoint of the thermal decomposition temperature of cellulose. If the reaction temperature is too high, there is concern about yellowing or a decrease in the degree of polymerization, and if it is too low, the reaction rate may decrease.
In particular, it is preferably 200 ° C. or lower, preferably 170 ° C. or lower, more preferably 150 ° C. or lower, and usually 10 ° C. or higher, preferably 80 ° C. or higher.
As in the present invention, for fibers having a small number average fiber diameter, controlling the reaction temperature is very important in obtaining a desired chemical modification rate and suppressing a decrease in the degree of polymerization of cellulose.
Here, the reaction temperature is the temperature in the reaction system.
 反応圧力は、特に制限されず、反応させる温度において化学修飾剤がガス化可能な蒸気圧に達していればよい。経済性の点からは常圧であることが好ましいが、例えば化学修飾剤の沸点が反応温度以上である場合には、化学修飾剤をガス化するために減圧したり、また蒸気量を制御するため等で適宜加圧・減圧したりすることができる。 The reaction pressure is not particularly limited as long as it reaches a vapor pressure at which the chemical modifier can be gasified at the reaction temperature. From the economical point of view, it is preferably normal pressure, but when the boiling point of the chemical modifier is equal to or higher than the reaction temperature, for example, the pressure is reduced to gasify the chemical modifier and the amount of steam is controlled. For this reason, it can be appropriately pressurized and depressurized.
 反応時間は、通常は1秒以上、好ましくは1分以上、より好ましくは5分以上、3時間以下、好ましくは2時間以下、より好ましくは90分以下、さらに好ましくは1時間以下である。使用する化学修飾剤(反応性ガス)の種類や要求される化学修飾率によって適宜変更することができる。
 ここで、反応時間とは、反応系内の温度が必要な反応温度に達している状態でガス化した化学修飾剤がセルロース不織布に接触している時間を言う。
The reaction time is usually 1 second or longer, preferably 1 minute or longer, more preferably 5 minutes or longer and 3 hours or shorter, preferably 2 hours or shorter, more preferably 90 minutes or shorter, even more preferably 1 hour or shorter. It can be appropriately changed depending on the type of chemical modifier (reactive gas) used and the required chemical modification rate.
Here, the reaction time refers to the time during which the gasified chemical modifier is in contact with the cellulose nonwoven fabric while the temperature in the reaction system has reached the required reaction temperature.
 このようにして化学修飾を行った後は、通常水または温水でセルロース不織布に付着した未反応の化学修飾剤を洗浄した後に、不織布を乾燥させる。未反応の化学修飾剤が残留していると、後で着色の原因になったり、樹脂と複合化する際に問題になったりするので好ましくない。 After the chemical modification is performed in this manner, the non-reacted chemical modifier attached to the cellulose nonwoven fabric is usually washed with water or warm water, and then the nonwoven fabric is dried. If the unreacted chemical modifier remains, it is not preferable because it causes coloring later or becomes a problem when it is combined with the resin.
 本発明においては、反応性ガスを用いて気相中でセルロース不織布中のセルロースを化学修飾するため、従来の液相中での化学修飾法と比べ、化学修飾剤の使用量を大幅に低減することができる。そのため、セルロース不織布中に残留する化学修飾剤の量も少量となり、洗浄に要する水の量を削減することができる。また、残留する化学修飾剤が少量であることから、水洗などの工程を経ずに、直接化学修飾セルロース不織布を乾燥させ、化学修飾剤の除去と不織布の乾燥を同時に行うことも可能である。 In the present invention, since the cellulose in the cellulose nonwoven fabric is chemically modified in the gas phase using a reactive gas, the amount of chemical modifier used is greatly reduced compared to the conventional chemical modification method in the liquid phase. be able to. Therefore, the amount of the chemical modifier remaining in the cellulose nonwoven fabric is also small, and the amount of water required for cleaning can be reduced. Further, since the amount of the remaining chemical modifier is small, it is possible to dry the chemically modified cellulose nonwoven fabric directly without passing through a process such as washing, and to simultaneously remove the chemical modifier and dry the nonwoven fabric.
 乾燥方法は、特に制限されないが、送風乾燥又は減圧乾燥してもよいし、加圧乾燥してもよい。また、加熱乾燥しても構わない。加熱する場合、温度は50℃以上が好ましく、80℃以上がより好ましく、また、250℃以下が好ましく、150℃以下がより好ましい。加熱温度が低すぎると乾燥に時間がかかり、乾燥が不十分になる可能性があり、加熱温度が高すぎると化学修飾セルロース不織布が着色したり、分解したりする可能性がある。また、加圧する場合は0.01MPa以上が好ましく、0.1MPa以上がより好ましく、また、5MPa以下が好ましく、1MPa以下がより好ましい。圧力が低すぎると乾燥が不十分になる可能性があり、圧力が高すぎると化学修飾セルロース不織布がつぶれて分解する可能性がある。 The drying method is not particularly limited, but may be air drying, vacuum drying, or pressure drying. Moreover, you may heat-dry. When heating, the temperature is preferably 50 ° C or higher, more preferably 80 ° C or higher, 250 ° C or lower is more preferable, and 150 ° C or lower is more preferable. If the heating temperature is too low, drying takes time and drying may be insufficient. If the heating temperature is too high, the chemically modified cellulose nonwoven fabric may be colored or decomposed. Moreover, when pressurizing, 0.01 MPa or more is preferable, 0.1 MPa or more is more preferable, 5 MPa or less is preferable, and 1 MPa or less is more preferable. If the pressure is too low, drying may be insufficient, and if the pressure is too high, the chemically modified cellulose nonwoven fabric may be crushed and decomposed.
<処理装置>
 セルロース不織布の化学修飾に用いる処理装置としては、工業的な生産性の観点からは、セルロース不織布中のセルロースの化学修飾を連続的または大量に実施出来るものであることが好ましい。
<Processing device>
As a processing apparatus used for chemical modification of a cellulose nonwoven fabric, it is preferable that the chemical modification of the cellulose in a cellulose nonwoven fabric can be implemented continuously or in large quantities from a viewpoint of industrial productivity.
 以下に、図面を参照して、連続的または大量にセルロース不織布中のセルロースの化学修飾を実施し得る装置について説明する。ただし、本発明はその要旨を超えない限り、以下の変性装置を用いるものに何ら限定されるものではない。 Hereinafter, an apparatus capable of performing chemical modification of cellulose in a cellulose nonwoven fabric continuously or in large quantities will be described with reference to the drawings. However, the present invention is not limited to the one using the following denaturing device unless it exceeds the gist.
 図1に示す連続セルロース変性装置100では、まず反応装置102内に配管106a、106bより所定の温度にコントロールされた反応性ガスが供給される。反応装置102内においても反応性ガスは所定の温度にコントロールされる。次にセルロース不織布101が供給ローラー103a、103bによって反応装置102内に供給される。更に、セルロース不織布101は、反応装置102内を搬送ローラー104に沿って搬送され、その間にセルロース不織布101中のセルロースが反応性ガスにより化学修飾される。その後、排出ローラー105a、105bより排出された化学修飾セルロース不織布はヒーター108によって加熱され、残存反応性ガスが除去される。尚、ヒーター108を過熱水蒸気発生装置として、反応性ガスの沸点以上の温度の過熱水蒸気で化学修飾セルロース不織布を処理することにより、残存反応性ガスを除去してもよい。反応装置102内の余剰な反応性ガスは配管107より排出され、冷却、回収、分離されて、反応性ガスとしてリサイクルされる。 In the continuous cellulose denaturing apparatus 100 shown in FIG. 1, first, a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 102 from the pipes 106a and 106b. Also in the reaction apparatus 102, the reactive gas is controlled to a predetermined temperature. Next, the cellulose nonwoven fabric 101 is supplied into the reaction apparatus 102 by the supply rollers 103a and 103b. Furthermore, the cellulose nonwoven fabric 101 is conveyed along the conveyance roller 104 in the reaction apparatus 102, and the cellulose in the cellulose nonwoven fabric 101 is chemically modified by the reactive gas in the meantime. Thereafter, the chemically modified cellulose nonwoven fabric discharged from the discharge rollers 105a and 105b is heated by the heater 108, and the remaining reactive gas is removed. The residual reactive gas may be removed by treating the chemically modified cellulose nonwoven fabric with superheated steam having a temperature equal to or higher than the boiling point of the reactive gas using the heater 108 as a superheated steam generator. Excess reactive gas in the reactor 102 is discharged from the pipe 107, cooled, recovered, separated, and recycled as reactive gas.
 図2に示す連続変性装置200では、まず反応装置202内に配管206aより所定の温度にコントロールされた反応性ガスが供給される。反応装置202内においても反応性ガスは所定の温度にコントロールされる。次にセルロース不織布201が供給ローラー203a、203bによって反応装置202内に供給される。更にセルロース不織布201は反応装置202内を搬送ローラー204に沿って搬送され、その間にセルロース不織布201中のセルロースが反応性ガスにより化学修飾される。その後、排出ローラー205a、205bより排出された化学修飾セルロース不織布はヒーター208によって加熱され、残存反応性ガスが除去される。尚、ヒーター208を過熱水蒸気発生装置として、反応性ガスの沸点以上の温度の過熱水蒸気で化学修飾セルロース不織布を処理することにより、残存反応性ガスを除去してもよい。反応装置202内の余剰な反応性ガスは配管207より排出され、冷却、回収、分離されて、反応性ガスとしてリサイクルされる。 In the continuous denaturing apparatus 200 shown in FIG. 2, first, a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 202 from a pipe 206a. Also in the reaction device 202, the reactive gas is controlled to a predetermined temperature. Next, the cellulose nonwoven fabric 201 is supplied into the reaction apparatus 202 by the supply rollers 203a and 203b. Furthermore, the cellulose nonwoven fabric 201 is conveyed in the reaction apparatus 202 along the conveyance roller 204, and the cellulose in the cellulose nonwoven fabric 201 is chemically modified by reactive gas in the meantime. Thereafter, the chemically modified cellulose nonwoven fabric discharged from the discharge rollers 205a and 205b is heated by the heater 208 to remove the remaining reactive gas. The residual reactive gas may be removed by treating the chemically modified cellulose nonwoven fabric with superheated steam at a temperature equal to or higher than the boiling point of the reactive gas using the heater 208 as a superheated steam generator. Excess reactive gas in the reactor 202 is discharged from the pipe 207, cooled, recovered, separated and recycled as reactive gas.
 図3に示すバッチ式大量変性装置300では、まずロール状のセルロール不織布301を反応装置302内に入れ、次に反応装置302内に配管303より所定の温度にコントロールされた反応性ガスを供給する。反応性ガスは反応装置302内においても所定の温度にコントロールされる。所定温度にコントロールされた反応性ガスによって所定時間、ロール状のセルロール不織布301を処理することにより、セルロース不織布301中のセルロースが化学修飾される。尚、反応装置302内の余剰な反応性ガスは配管304より排出され、冷却、回収、分離されて、反応性ガスとしてリサイクルされる。 In the batch-type mass denaturing apparatus 300 shown in FIG. 3, first, a roll-shaped cellular roll nonwoven fabric 301 is put into a reaction apparatus 302, and then a reactive gas controlled to a predetermined temperature is supplied into the reaction apparatus 302 from a pipe 303. . The reactive gas is also controlled to a predetermined temperature in the reactor 302. The cellulose in the cellulose nonwoven fabric 301 is chemically modified by treating the roll-shaped cellulose nonwoven fabric 301 with a reactive gas controlled to a predetermined temperature for a predetermined time. In addition, the surplus reactive gas in the reaction apparatus 302 is discharged | emitted from the piping 304, is cooled, collect | recovered, isolate | separated, and is recycled as reactive gas.
[化学修飾セルロース不織布の特徴]
 上記方法によって得られた本発明の化学修飾セルロース不織布の特徴について説明する。
[Characteristics of chemically modified cellulose nonwoven fabric]
The characteristics of the chemically modified cellulose nonwoven fabric of the present invention obtained by the above method will be described.
<置換基の種類>
 化学修飾によってセルロースに導入される官能基としては、アセチル基、アクリロイル基、メタクリロイル基、プロピオニル基、プロピオロイル基、ブチリル基、2-ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ウンデカノイル基、ドデカノイル基、ミリストイル基、パルミトイル基、ステアロイル基、ピバロイル基、ベンゾイル基、ナフトイル基、ニコチノイル基、イソニコチノイル基、フロイル基、シンナモイル基等のアシル基、2-メタクリロイルオキシエチルイソシアノイル基等のイソシアネート基、メチル基、エチル基、プロピル基、2-プロピル基、ブチル基、2-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等のアルキル基、オキシラン基、オキセタン基、チイラン基、チエタン基等が挙げられる。これらの中では特にアセチル基、アクリロイル基、メタクリロイル基、ベンゾイル基、ナフトイル基等の炭素数2~12のアシル基、メチル基、エチル基、プロピル基等の炭素数1~12のアルキル基が好ましい。
<Type of substituent>
Functional groups introduced into cellulose by chemical modification include acetyl, acryloyl, methacryloyl, propionyl, propioyl, butyryl, 2-butyryl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl , Decanoyl group, undecanoyl group, dodecanoyl group, myristoyl group, palmitoyl group, stearoyl group, pivaloyl group, benzoyl group, naphthoyl group, nicotinoyl group, isonicotinoyl group, furoyl group, cinnamoyl group and other acyl groups, 2-methacryloyloxyethyl isocyanate Isocyanate group such as noyl group, methyl group, ethyl group, propyl group, 2-propyl group, butyl group, 2-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, noni Group, decyl group, undecyl group, dodecyl group, myristyl group, palmityl group, an alkyl group such as a stearyl group, an oxirane group, an oxetane group, a thiirane group, or the like thietane group. Of these, acyl groups having 2 to 12 carbon atoms such as acetyl group, acryloyl group, methacryloyl group, benzoyl group and naphthoyl group, and alkyl groups having 1 to 12 carbon atoms such as methyl group, ethyl group and propyl group are particularly preferable. .
<化学修飾率>
 化学修飾セルロース不織布の化学修飾率は、5mol%以上であることが好ましく、9mol%以上であることがより好ましく、10mol%以上であることがさらに好ましく、20mol%以上であることが特に好ましく、65mol%以下であることが好ましく、50mol%以下であることがより好ましく、40mol%以下であることがさらに好ましく、30mol%以下であることが特に好ましい。
 セルロースを化学修飾することにより、セルロースの分解温度が上昇し、耐熱性が高くなるが、本発明のように、数平均繊維径の小さい繊維の不織布においては、この化学修飾率が低すぎると、耐熱性の改善効果が不足し、複合化の後処理で加熱した際に、着色してしまうことがあり、化学修飾率が高すぎると、セルロース構造が破壊され結晶性が低下するため、得られる複合材料の線膨張係数が大きくなってしまうという問題点があり好ましくない。また、化学修飾率が低すぎると、不織布の親水性が高くなり、含水率が高くなり好ましくない。特に、セルロース繊維原料として木質を用いる場合、化学修飾率が低いと複合化の後処理で加熱した際に、着色してしまったり、化学修飾率が高くても化学修飾反応後に不織布が着色してしまったりするので好ましくない。
<Chemical modification rate>
The chemical modification rate of the chemically modified cellulose nonwoven fabric is preferably 5 mol% or more, more preferably 9 mol% or more, further preferably 10 mol% or more, particularly preferably 20 mol% or more, and 65 mol. % Or less, more preferably 50 mol% or less, still more preferably 40 mol% or less, and particularly preferably 30 mol% or less.
By chemically modifying the cellulose, the decomposition temperature of the cellulose increases and the heat resistance increases, but in the nonwoven fabric of the fiber having a small number average fiber diameter as in the present invention, if this chemical modification rate is too low, Insufficient heat resistance improvement effect, and may be colored when heated by post-combination. If the chemical modification rate is too high, the cellulose structure is destroyed and the crystallinity is lowered. There is a problem that the linear expansion coefficient of the composite material becomes large, which is not preferable. On the other hand, when the chemical modification rate is too low, the hydrophilicity of the non-woven fabric increases and the water content increases, which is not preferable. In particular, when wood is used as the cellulose fiber raw material, if the chemical modification rate is low, it will be colored when heated by post-processing of the composite, or even if the chemical modification rate is high, the nonwoven fabric will be colored after the chemical modification reaction. It is not preferable because it is lost.
 ここでいう化学修飾率とは、セルロース中の全水酸基のうちの化学修飾されたものの割合を示し、化学修飾率は下記の滴定法によって測定することができる。 Here, the chemical modification rate refers to the proportion of all hydroxyl groups in cellulose that have been chemically modified, and the chemical modification rate can be measured by the following titration method.
〈測定方法〉
 化学修飾セルロース不織布0.05gを精秤し、これに蒸留水0.5ml、エタノール1.5mlを添加する。これを60~70℃の湯浴中で30分静置した後、0.5M水酸化ナトリウム水溶液2mlを添加する。これを60~70℃の湯浴中で3時間静置した後、超音波洗浄器にて30分間超音波振とうする。これを、自動滴定装置(三菱化学社製:GT-100)を用いて、0.1M塩酸標準溶液で滴定する。
 ここで、滴定に要した0.1M塩酸水溶液の量Z(ml)から、下記式によって、化学修飾により導入された置換基のモル数Q(mol)が求められる。
 Q(mol)=0.5(N)×2(ml)/1000
            -0.1(N)×Z(ml)/1000
 この置換基のモル数Qと、化学修飾率X(mol%)との関係は、以下の式で算出される(セルロース=(C10=(162.14),繰り返し単位1個当たりの水酸基数=3,OHの分子量=17)。なお、以下において、Tは置換基の分子量である。
<Measuring method>
0.05 g of chemically modified cellulose nonwoven fabric is precisely weighed, and 0.5 ml of distilled water and 1.5 ml of ethanol are added thereto. This is allowed to stand for 30 minutes in a hot water bath at 60 to 70 ° C., and then 2 ml of 0.5 M aqueous sodium hydroxide solution is added. This is left to stand in a hot water bath at 60 to 70 ° C. for 3 hours, and then shaken with an ultrasonic cleaner for 30 minutes. This is titrated with 0.1 M hydrochloric acid standard solution using an automatic titrator (Mitsubishi Chemical Corporation: GT-100).
Here, from the amount Z (ml) of the 0.1 M aqueous hydrochloric acid solution required for the titration, the number of moles Q (mol) of the substituent introduced by chemical modification is determined by the following formula.
Q (mol) = 0.5 (N) × 2 (ml) / 1000
-0.1 (N) x Z (ml) / 1000
The relationship between the number of moles Q of the substituent and the chemical modification rate X (mol%) is calculated by the following formula (cellulose = (C 6 O 5 H 10 ) n = (162.14) n , repetition Number of hydroxyl groups per unit = 3, molecular weight of OH = 17). In the following, T is the molecular weight of the substituent.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 これを解いていくと、以下の通りとなる。 When solving this, it becomes as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
<結晶構造>
 化学修飾セルロース不織布中のセルロース繊維は、セルロースI型結晶構造を有することが好ましい。セルロースI型結晶は、他の結晶構造より結晶弾性率が高いため、高弾性率、高強度、低線膨張係数であり好ましい。
 セルロース繊維がI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークをもつことから同定することができる。
<Crystal structure>
The cellulose fibers in the chemically modified cellulose nonwoven fabric preferably have a cellulose I-type crystal structure. Cellulose I-type crystals are preferable because they have higher crystal elastic modulus than other crystal structures, and thus have high elastic modulus, high strength, and low linear expansion coefficient.
The fact that the cellulose fiber has the I-type crystal structure is a typical peak at two positions near 2θ = 14 to 17 ° and 2θ = 22 to 23 ° in the diffraction profile obtained by wide-angle X-ray diffraction image measurement. Can be identified.
<粘度平均重合度(重合度)>
 化学修飾セルロース不織布中のセルロース繊維の重合度は、大きいほど高弾性率、高強度となり、強度物性の点で好ましい。重合度は用いる原料によるが、300以上、好ましくは1000以上、より好ましくは2000以上である。
<Viscosity average degree of polymerization (degree of polymerization)>
The larger the degree of polymerization of the cellulose fibers in the chemically modified cellulose nonwoven fabric, the higher the elastic modulus and the higher the strength, which is preferable in terms of strength properties. The degree of polymerization depends on the raw materials used, but is 300 or more, preferably 1000 or more, more preferably 2000 or more.
 後掲の実施例にも示されるように、本発明によれば、化学修飾前のセルロース不織布中のセルロースの重合度に対する化学修飾後の化学修飾セルロース不織布中のセルロースの重合度の低下率は、10%以下に抑えることができる。
 化学修飾セルロース不織布中のセルロース繊維の重合度は、後述の実施例の項に示されるように、TAPPI T230に記載の粘度法により測定して、算出することができる。
As shown in the examples below, according to the present invention, the rate of decrease in the degree of polymerization of cellulose in the chemically modified cellulose nonwoven fabric after chemical modification relative to the degree of polymerization of cellulose in the cellulose nonwoven fabric before chemical modification is: It can be suppressed to 10% or less.
The polymerization degree of the cellulose fiber in the chemically modified cellulose nonwoven fabric can be calculated by measuring by the viscosity method described in TAPPI T230, as shown in the Examples section described later.
<用途>
 上記の様にして製造された化学修飾セルロース不織布は、下記詳述するようにマトリックス材料と複合化させる他、化学修飾セルロース不織布そのもののみでも使用することができる。例えば、蓄電デバイス用セパレータ、医療用分離膜、包装材料、各種フィルターなどが挙げられる。
<Application>
The chemically modified cellulose nonwoven fabric produced as described above can be used in combination with a matrix material as described in detail below, or only the chemically modified cellulose nonwoven fabric itself. For example, separators for power storage devices, medical separation membranes, packaging materials, various filters, and the like can be given.
〔セルロース繊維複合材料〕
 本発明のセルロース繊維複合材料は、上記本発明の製造方法により得られた化学修飾セルロース不織布とマトリックス材料とを含有する。該セルロース繊維複合材料は、その高透明性、低線膨張率、非着色性といった特性を生かして、各種ディスプレイ基板材料、太陽電池用基板、窓材等の用途に有用であり、また、その高弾性率、低線膨張率、表面平滑性といった特性を生かして、各種の構造材、特に表面の意匠性に優れた自動車用パネルや建築物の外壁パネル等に有用である。
[Cellulose fiber composite material]
The cellulose fiber composite material of the present invention contains a chemically modified cellulose nonwoven fabric obtained by the production method of the present invention and a matrix material. The cellulose fiber composite material is useful for various display substrate materials, solar cell substrates, window materials and the like by taking advantage of its high transparency, low linear expansion coefficient, and non-coloring properties. Utilizing characteristics such as elastic modulus, low linear expansion coefficient, and surface smoothness, it is useful for various structural materials, particularly for automobile panels having excellent surface design and for building outer wall panels.
 ここでマトリクス材料とは、化学修飾セルロース不織布と貼り合わせたり、空隙を埋めたりする高分子材料またはその前駆体(例えばモノマー)のことをいう。 Here, the matrix material refers to a polymer material or a precursor thereof (for example, a monomer) that is bonded to a chemically modified cellulose nonwoven fabric or that fills voids.
 このマトリクス材料として好適なものは、加熱することにより流動性のある液体になる熱可塑性樹脂、加熱により重合する熱硬化性樹脂、紫外線や電子線などの活性エネルギー線を照射することにより重合硬化する、活性エネルギー線硬化性樹脂等から選ばれる少なくとも1種の樹脂(高分子材料)またはその前駆体である。本発明において、化学修飾セルロースと樹脂とを複合化させてセルロース繊維樹脂複合材料を得ることができる。
 なお、本発明において樹脂(高分子材料)の前駆体とは、いわゆるモノマー、オリゴマーである。
Suitable as the matrix material is a thermoplastic resin that becomes a fluid liquid by heating, a thermosetting resin that polymerizes by heating, and is cured by irradiation with active energy rays such as ultraviolet rays and electron beams. , At least one resin (polymer material) selected from active energy ray-curable resins and the like, or a precursor thereof. In the present invention, a cellulose fiber resin composite material can be obtained by combining chemically modified cellulose and a resin.
In the present invention, the precursor of the resin (polymer material) is a so-called monomer or oligomer.
 本発明のセルロース繊維複合材料は、上記本発明の製造方法により得られた化学修飾セルロース不織布とマトリックス材料とを複合化することにより通常得られるが、複合化方法としては以下の方法が挙げられる。
(a) 化学修飾セルロース不織布に、液状の熱可塑性樹脂前駆体を含浸させて重合する方法
(b) 化学修飾セルロース不織布に、熱硬化性樹脂前駆体又は光硬化性樹脂前駆体を含浸させて重合硬化させる方法
(c) 化学修飾セルロース不織布に、樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、および光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を含浸させて乾燥した後、加熱プレス等で密着させ、必要に応じて重合硬化する方法
(d) 化学修飾セルロース不織布に、熱可塑性樹脂の溶融体を含浸させ、加熱プレス等で密着させる方法
(e) 熱可塑性樹脂シートと化学修飾セルロース不織布とを交互に配置し、加熱プレス等で密着させる方法
(f) 化学修飾セルロース不織布の片面もしくは両面に液状の熱可塑性樹脂前駆体や熱硬化性樹脂前駆体もしくは光硬化性樹脂前駆体を塗布して重合硬化させる方法
(g) 化学修飾セルロース不織布の片面もしくは両面に樹脂溶液(熱可塑性樹脂、熱可塑性樹脂前駆体、熱硬化性樹脂前駆体、および光硬化性樹脂前駆体から選ばれる1以上の溶質を含む溶液)を塗布して、溶媒を除去後、必要に応じて重合硬化することにより複合化する方法
The cellulose fiber composite material of the present invention is usually obtained by compositing a chemically modified cellulose nonwoven fabric obtained by the production method of the present invention and a matrix material, and examples of the composite method include the following methods.
(A) A method in which a chemically modified cellulose nonwoven fabric is impregnated with a liquid thermoplastic resin precursor and polymerized (b) A chemically modified cellulose nonwoven fabric is impregnated with a thermosetting resin precursor or a photocurable resin precursor and polymerized. Method of curing (c) Resin solution (solution containing one or more solutes selected from thermoplastic resins, thermoplastic resin precursors, thermosetting resin precursors, and photocurable resin precursors) on chemically modified cellulose nonwoven fabric (D) Method of impregnating a chemically modified cellulose non-woven fabric with a thermoplastic resin melt and adhering it with a heating press or the like ( e) A method in which thermoplastic resin sheets and chemically modified cellulose nonwoven fabrics are alternately arranged and adhered with a hot press or the like (f) Liquid on one side or both sides of the chemically modified cellulose nonwoven fabric (G) A resin solution (thermoplastic resin, thermoplastic resin) on one or both sides of a chemically modified cellulose nonwoven fabric by applying a thermoplastic resin precursor, a thermosetting resin precursor, or a photocurable resin precursor to polymerize and cure A solution containing one or more solutes selected from a precursor, a thermosetting resin precursor, and a photocurable resin precursor) is applied, and after removing the solvent, it is combined by polymerizing and curing as necessary. Method
 セルロース以外のマトリックス材料を以下に例示するが、本発明で用いるマトリックス材料は何ら以下のものに限定されるものではない。また、本発明における熱可塑性樹脂、熱硬化性樹脂、光(活性エネルギー線)硬化性樹脂は2種以上混合して用いることができる。 Although matrix materials other than cellulose are exemplified below, the matrix material used in the present invention is not limited to the following materials. In addition, the thermoplastic resin, thermosetting resin, and light (active energy ray) curable resin in the present invention can be used in combination of two or more.
 本発明においては、以下のマトリックス材料(高分子材料またはその前駆体)のうち、高分子材料、または前駆体の場合にはその重合体が、非晶質でガラス転移温度(Tg)の高い合成高分子であるものが、透明性に優れた高耐久性のセルロース繊維複合材料を得る上で好ましく、このうち非晶質の程度としては、結晶化度で10%以下、特に5%以下であるものが好ましく、また、Tgは110℃以上、特に120℃以上、とりわけ130℃以上のものが好ましい。Tgが低いと例えば熱水等に触れた際に変形する恐れがあり、実用上問題が生じる。また、低吸水性のセルロース繊維複合材料を得るためには、ヒドロキシル基、カルボキシル基、アミノ基などの親水性の官能基が少ない高分子材料を選定することが好ましい。なお、高分子のTgは一般的な方法で求めることができる。例えば、DSC法による測定で求められる。高分子の結晶化度は、非晶質部と結晶質部の密度から算定することができ、また、動的粘弾性測定により、弾性率と粘性率の比であるtanδから算出することもできる。 In the present invention, among the following matrix materials (polymer materials or precursors thereof), in the case of a polymer material or precursor, the polymer is an amorphous compound having a high glass transition temperature (Tg). A polymer is preferable for obtaining a highly durable cellulose fiber composite material having excellent transparency. Among these, the degree of amorphousness is 10% or less, particularly 5% or less in terms of crystallinity. The Tg is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 130 ° C. or higher. If Tg is low, there is a risk of deformation when touched with hot water, for example, which causes a practical problem. Moreover, in order to obtain a low water-absorbing cellulose fiber composite material, it is preferable to select a polymer material having few hydrophilic functional groups such as a hydroxyl group, a carboxyl group, and an amino group. The polymer Tg can be determined by a general method. For example, it is obtained by measurement by the DSC method. The degree of crystallinity of the polymer can be calculated from the density of the amorphous part and the crystalline part, and can also be calculated from the tan δ, which is the ratio of the elastic modulus to the viscosity, by dynamic viscoelasticity measurement. .
<熱可塑性樹脂>
 熱可塑性樹脂としては、特に限定されるものではないが、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、非晶性フッ素系樹脂等が挙げられる。
<Thermoplastic resin>
Although it does not specifically limit as a thermoplastic resin, Styrenic resin, acrylic resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin Resin, cyclic olefin resin, polyamide resin, polyphenylene ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, amorphous fluorine resin and the like.
<熱硬化性樹脂>
 熱硬化性樹脂としては、特に限定されるものではないが、エポキシ樹脂、アクリル樹脂、オキセタン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂等の前駆体が挙げられる。
<Thermosetting resin>
The thermosetting resin is not particularly limited, but includes epoxy resin, acrylic resin, oxetane resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, polyurethane resin, diallyl phthalate resin, etc. A precursor is mentioned.
<光硬化性樹脂>
 光硬化性樹脂としては、特に限定されるものではないが、上述の熱硬化性樹脂の説明において例示したエポキシ樹脂、アクリル樹脂、オキセタン樹脂等の前駆体が挙げられる。
<Photocurable resin>
Although it does not specifically limit as photocurable resin, Precursors, such as an epoxy resin illustrated in the description of the above-mentioned thermosetting resin, an acrylic resin, an oxetane resin, are mentioned.
 熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂の具体例は、日本国特開2009-299043号公報に記載のものが挙げられる。 Specific examples of the thermoplastic resin, thermosetting resin, and photocurable resin include those described in Japanese Patent Application Laid-Open No. 2009-299043.
<その他の成分>
 熱硬化性樹脂及び光硬化性樹脂は、適宜、連鎖移動剤、紫外線吸収剤、充填剤、シランカップリング剤等と配合した硬化性組成物として用いられる。
<Other ingredients>
The thermosetting resin and the photocurable resin are appropriately used as a curable composition blended with a chain transfer agent, an ultraviolet absorber, a filler, a silane coupling agent and the like.
<積層構造体>
 本発明のセルロース繊維複合材料は、本発明の化学修飾セルロース不織布の層と、セルロース以外の高分子よりなる平面構造体層との積層構造体であってもよく、また、本発明の化学修飾セルロース不織布の層と、本発明のセルロース繊維複合材料の層との積層構造であってもよく、その積層数や積層構成には特に制限はない。
<Laminated structure>
The cellulose fiber composite material of the present invention may be a laminated structure of a layer of the chemically modified cellulose nonwoven fabric of the present invention and a planar structure layer made of a polymer other than cellulose, and the chemically modified cellulose of the present invention. A laminated structure of the nonwoven fabric layer and the cellulose fiber composite material layer of the present invention may be used, and the number of laminated layers and the laminated structure are not particularly limited.
<無機膜>
 本発明のセルロース繊維複合材料は、その用途に応じて、セルロース繊維複合材料層に更に無機膜が積層されたものであってもよく、上述の積層構造体に更に無機膜が積層されたものであってもよい。
 ここで用いられる無機膜は、セルロース繊維複合材料の用途に応じて適宜決定され、例えば、白金、銀、アルミニウム、金、銅等の金属、シリコン、ITO、SiO、SiN、SiOxNy、ZnO等、TFT等が挙げられ、その組み合わせや膜厚は任意に設計することができる。
<Inorganic membrane>
The cellulose fiber composite material of the present invention may be obtained by further laminating an inorganic film on the cellulose fiber composite material layer according to its use, and further laminating an inorganic film on the above laminated structure. There may be.
The inorganic film used here is appropriately determined according to the use of the cellulose fiber composite material, for example, metal such as platinum, silver, aluminum, gold, copper, silicon, ITO, SiO 2 , SiN, SiOxNy, ZnO, etc. A TFT etc. are mentioned, The combination and film thickness can be designed arbitrarily.
<セルロース繊維複合材料の特性ないし物性>
 以下に本発明のセルロース繊維複合材料の好適な特性ないし物性について説明する。
<Characteristics and physical properties of cellulose fiber composite material>
Hereinafter, suitable characteristics or physical properties of the cellulose fiber composite material of the present invention will be described.
(セルロース含有量)
 本発明のセルロース繊維複合材料中のセルロースの含有量(セルロース繊維の含有量)は通常1重量%以上99重量%以下であり、セルロース以外のマトリックス材料の含有量が1重量%以上99重量%以下である。低線膨張性を発現するには、セルロースの含有量が1重量%以上、セルロース以外のマトリックス材料の含有量が99重量%以下であること必要である。透明性を発現するにはセルロースの含有量が99重量%以下、セルロース以外のマトリックス材料の含有量が1重量%以上であることが必要である。好ましい範囲はセルロースが5重量%以上90重量%以下であり、セルロース以外のマトリックス材料が10重量%以上95重量%以下であり、さらに好ましい範囲はセルロースが10重量%以上80重量%以下であり、セルロース以外のマトリックス材料が20重量%以上90重量%以下である。特に、セルロースの含有量が30重量%以上70重量%以下で、セルロース以外のマトリックス材料の含有量が30重量%以上70重量%以下であることが好ましい。
(Cellulose content)
The cellulose content (cellulose fiber content) in the cellulose fiber composite material of the present invention is usually 1% by weight to 99% by weight, and the content of the matrix material other than cellulose is 1% by weight to 99% by weight. It is. In order to develop low linear expansion, it is necessary that the content of cellulose is 1% by weight or more and the content of a matrix material other than cellulose is 99% by weight or less. In order to express transparency, it is necessary that the content of cellulose is 99% by weight or less and the content of a matrix material other than cellulose is 1% by weight or more. A preferred range is 5% to 90% by weight of cellulose, a matrix material other than cellulose is 10% to 95% by weight, and a more preferred range is 10% to 80% by weight of cellulose, The matrix material other than cellulose is 20% by weight or more and 90% by weight or less. In particular, the content of cellulose is preferably 30% by weight or more and 70% by weight or less, and the content of matrix materials other than cellulose is preferably 30% by weight or more and 70% by weight or less.
 セルロース繊維複合材料中のセルロースおよびセルロース以外のマトリックス材料の含有量は、例えば、複合化前のセルロース不織布の重量と複合化後のセルロース繊維複合材料の重量より求めることができる。また、マトリックス材料が可溶な溶媒にセルロース繊維複合材料を浸漬してマトリックス材料のみを取り除き、残ったセルロース繊維の重量から求めることもできる。その他、マトリックス材料である樹脂の比重から求める方法や、NMR、IRを用いて樹脂やセルロースの官能基を定量して求めることもできる。 The content of cellulose and a matrix material other than cellulose in the cellulose fiber composite material can be determined, for example, from the weight of the cellulose nonwoven fabric before composite and the weight of the cellulose fiber composite material after composite. Alternatively, the cellulose fiber composite material can be immersed in a solvent in which the matrix material is soluble to remove only the matrix material, and the weight can be determined from the weight of the remaining cellulose fibers. In addition, the functional group of the resin or cellulose can also be quantified and determined using the specific gravity of the resin that is the matrix material, NMR, or IR.
(厚み)
 本発明のセルロース繊維複合材料の厚みは、好ましくは10μm以上10cm以下であり、このような厚みとすることにより、構造材としての強度を保つことができる。セルロース繊維複合材料の厚さはより好ましくは50μm以上1cm以下であり、さらに好ましくは80μm以上250μm以下である。
 なお、本発明のセルロース繊維複合材料は、例えば、このような厚さの膜状(フィルム状)または板状であるが、平膜または平板に限らず、曲面を有する膜状または板状とすることもできる。また、その他の異形形状であってもよい。また、厚さは必ずしも均一である必要はなく、部分的に異なっていてもよい。
(Thickness)
The thickness of the cellulose fiber composite material of the present invention is preferably 10 μm or more and 10 cm or less, and by using such a thickness, the strength as a structural material can be maintained. The thickness of the cellulose fiber composite material is more preferably 50 μm or more and 1 cm or less, and further preferably 80 μm or more and 250 μm or less.
The cellulose fiber composite material of the present invention is, for example, a film shape (film shape) or a plate shape having such a thickness, but is not limited to a flat film or a flat plate, and is a film shape or a plate shape having a curved surface. You can also Other irregular shapes may also be used. Further, the thickness is not necessarily uniform and may be partially different.
(着色)
 本発明のセルロース繊維複合材料は、加熱による着色が小さいことを特徴とする。
 セルロースは、特に木質由来の原料を用いることで黄色味がつく場合がある。これは、セルロース自体の着色の場合と、精製度合いによって残ったセルロース以外の物質が着色する場合がある。本発明のセルロース繊維複合材料は、加熱の工程が入っても着色が小さく、各種デバイスの透明基板等の実際のデバイス化工程における、加熱処理に耐えうるものである。
 各種透明材料として本発明のセルロース繊維複合材料を用いる場合、セルロース繊維の着色の程度は、後述の実施例の項で測定されるセルロース繊維複合材料のYIとして好ましくは15以下、より好ましくは10以下であり、加熱処理後もこのYIの上昇がないことが好ましく、加熱後もまた、YIが15以下、特に10以下を維持することが好ましい。
(Coloring)
The cellulose fiber composite material of the present invention is characterized in that coloring by heating is small.
Cellulose is sometimes yellowish by using raw materials derived from wood. This may be the case where the cellulose itself is colored or the remaining substance other than cellulose depending on the degree of purification. The cellulose fiber composite material of the present invention is small in color even when a heating step is performed, and can withstand heat treatment in an actual device forming step such as a transparent substrate of various devices.
When the cellulose fiber composite material of the present invention is used as various transparent materials, the degree of coloring of the cellulose fiber is preferably 15 or less, more preferably 10 or less, as the YI of the cellulose fiber composite material measured in the section of the examples described later. It is preferable that the YI does not increase even after the heat treatment, and it is preferable that the YI is maintained at 15 or less, particularly 10 or less after the heat treatment.
(ヘーズ)
 本発明のセルロース繊維複合材料は、透明性の高い、すなわちヘーズの小さいセルロース繊維複合材料とすることができる。
 各種透明材料として用いる場合、このセルロース繊維複合材料のヘーズは、好ましくは5.0以下、より好ましくは3.0以下であり、特にこの値は2.0以下であることが好ましい。ヘーズが5.0より大きくなると実質的に各種デバイスの透明基板等に適用することは困難となる。
 ヘーズは例えば厚み10~100μmのセルロース繊維複合材料について、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。
(Haze)
The cellulose fiber composite material of the present invention can be a cellulose fiber composite material having high transparency, that is, low haze.
When used as various transparent materials, the haze of the cellulose fiber composite material is preferably 5.0 or less, more preferably 3.0 or less, and this value is particularly preferably 2.0 or less. When the haze is larger than 5.0, it becomes difficult to apply to a transparent substrate of various devices.
The haze can be measured, for example, for a cellulose fiber composite material having a thickness of 10 to 100 μm using a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
(全光線透過率)
 本発明のセルロース繊維複合材料は、透明性の高い、すなわちヘーズの小さいセルロース繊維複合材料とすることができる。各種透明材料として用いる場合、このセルロース繊維複合材料は、JIS規格K7105に準拠してその厚み方向に測定された全光線透過率が60%以上、更には70%以上、特に80%以上、とりわけ90%以上であることが好ましい。この全光線透過率が60%未満であると半透明または不透明となり、透明性が要求される用途への使用が困難となる場合がある。
 全光線透過率は例えば、厚み10~100μmのセルロース繊維複合材料について、スガ試験機製ヘーズメータを用いて測定することができ、C光の値を用いる。
(Total light transmittance)
The cellulose fiber composite material of the present invention can be a cellulose fiber composite material having high transparency, that is, low haze. When used as various transparent materials, the cellulose fiber composite material has a total light transmittance of 60% or more, further 70% or more, particularly 80% or more, particularly 90%, as measured in the thickness direction in accordance with JIS K7105. % Or more is preferable. If this total light transmittance is less than 60%, it becomes translucent or opaque, and it may be difficult to use it in applications requiring transparency.
The total light transmittance can be measured, for example, for a cellulose fiber composite material having a thickness of 10 to 100 μm using a haze meter manufactured by Suga Test Instruments, and the value of C light is used.
(線膨張係数)
 本発明のセルロース繊維複合材料は、線膨張係数(1Kあたりの伸び率)の低いセルロースを用いることにより線膨張係数の低いセルロース繊維複合材料とすることができる。このセルロース繊維複合材料の線膨張係数は、マトリックス材料の種類やセルロース繊維の含有率によるが、1~50ppm/Kであることが好ましく、1~40ppm/Kであることがより好ましく、1~30ppm/Kであることが特に好ましい。
 即ち、例えば、基板用途においては、無機の薄膜トランジスタの線膨張係数が15ppm/K程度であるため、セルロース繊維複合材料の線膨張係数が50ppm/Kを超えると無機膜との積層複合化の際に、二層の線膨張率差が大きくなり、クラック等が発生する。従って、セルロース繊維複合材料の線膨張係数は、特に1~30ppm/Kであることが好ましい。
 なお、線膨張係数は、後述の実施例の項に記載される方法により測定される。
(Linear expansion coefficient)
The cellulose fiber composite material of the present invention can be made into a cellulose fiber composite material having a low linear expansion coefficient by using cellulose having a low linear expansion coefficient (elongation rate per 1K). The linear expansion coefficient of the cellulose fiber composite material is preferably 1 to 50 ppm / K, more preferably 1 to 40 ppm / K, although it depends on the type of matrix material and the cellulose fiber content. Particularly preferred is / K.
That is, for example, in the substrate application, since the linear expansion coefficient of the inorganic thin film transistor is about 15 ppm / K, when the linear expansion coefficient of the cellulose fiber composite material exceeds 50 ppm / K, the laminated composite with the inorganic film is formed. The difference in linear expansion coefficient between the two layers becomes large, and cracks and the like are generated. Accordingly, the linear expansion coefficient of the cellulose fiber composite material is particularly preferably 1 to 30 ppm / K.
In addition, a linear expansion coefficient is measured by the method described in the term of the below-mentioned Example.
(引張強度)
 本発明のセルロース繊維複合材料の引張強度は、好ましくは40MPa以上であり、より好ましくは100MPa以上である。引張強度が40MPaより低いと、十分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。
(Tensile strength)
The tensile strength of the cellulose fiber composite material of the present invention is preferably 40 MPa or more, more preferably 100 MPa or more. If the tensile strength is lower than 40 MPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
(引張弾性率)
 本発明のセルロース繊維複合材料の引張弾性率は、複合化させるマトリックス材料の種類や用途によるが、好ましくは0.2~100GPaであり、より好ましくは1~50GPa、さらに好ましくは5.0~30GPaである。引張弾性率が0.2GPaより低いと、十分な強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。
 特に、本発明の化学修飾セルロース不織布の製造方法によれば、化学修飾の反応時間の短縮で、反応中のセルロースの重合度の低下を防止して、得られる化学修飾セルロース不織布及びセルロース繊維複合材料の引張弾性率を高く維持することができる。
(Tensile modulus)
The tensile elastic modulus of the cellulose fiber composite material of the present invention depends on the type and use of the matrix material to be composited, but is preferably 0.2 to 100 GPa, more preferably 1 to 50 GPa, still more preferably 5.0 to 30 GPa. It is. When the tensile elastic modulus is lower than 0.2 GPa, sufficient strength cannot be obtained, which may affect the use of a structural material or the like to which a force is applied.
In particular, according to the method for producing a chemically modified cellulose nonwoven fabric of the present invention, the chemically modified cellulose nonwoven fabric and the cellulose fiber composite material obtained by reducing the reaction time of the chemical modification and preventing the degradation of the polymerization degree of cellulose during the reaction are obtained. It is possible to maintain a high tensile elastic modulus.
<用途>
 本発明のセルロース繊維複合材料は、透明性が高く、高強度、低吸水性、高透明性、低着色でヘーズが小さく光学特性に優れるため、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等の各種表示デバイス用の基板、パネル、偏光フィルムや反射防止フィルム、ハードコートフィルム、位相差フィルムなどの光学部材として好適に用いられる。また、有機EL照明などの照明用基材としても好適である。
 また、シリコン系太陽電池、色素増感太陽電池などの太陽電池用基板に好適である。基板としては、バリア膜、ITO、TFT等と積層してもよい。特に、本発明のセルロース繊維複合材料は加熱によっても着色が小さく、各種デバイスの透明基板等の実際のデバイス化工程における、加熱処理に耐え得るものである。
 また、本発明のセルロース繊維複合材料は、自動車用の窓材、鉄道車両用の窓材、住宅用の窓材、オフィスや工場などの窓材などにも好適に用いることができる。窓材としては、必要に応じてフッ素皮膜、ハードコート膜等の膜や耐衝撃性、耐光性の素材を積層して用いてもよい。
 また、本発明のセルロース繊維複合材料は、その低線膨張係数、高弾性、高強度等の特性を生かして透明材料用途以外の構造体としても用いることができる。特に、内装材、外板、バンパー等の自動車材料やパソコンの筐体、家電部品、包装用資材、建築資材、土木資材、水産資材、その他、工業用資材等として好適に用いられる。
<Application>
The cellulose fiber composite material of the present invention has high transparency, high strength, low water absorption, high transparency, low coloration, small haze, and excellent optical properties, so that it can be used for liquid crystal displays, plasma displays, organic EL displays, field emission displays. It is suitably used as an optical member such as substrates for various display devices such as rear projection televisions, panels, polarizing films, antireflection films, hard coat films, and retardation films. Moreover, it is also suitable as a base material for lighting such as organic EL lighting.
Moreover, it is suitable for substrates for solar cells such as silicon-based solar cells and dye-sensitized solar cells. The substrate may be laminated with a barrier film, ITO, TFT or the like. In particular, the cellulose fiber composite material of the present invention is small in color even when heated, and can withstand heat treatment in actual device forming steps such as transparent substrates of various devices.
The cellulose fiber composite material of the present invention can also be suitably used for window materials for automobiles, window materials for railway vehicles, window materials for houses, window materials for offices and factories, and the like. As the window material, a film such as a fluorine film or a hard coat film or a material having impact resistance or light resistance may be laminated as necessary.
In addition, the cellulose fiber composite material of the present invention can be used as a structure other than the use of a transparent material by taking advantage of characteristics such as a low linear expansion coefficient, high elasticity, and high strength. In particular, it is suitably used as automobile materials such as interior materials, outer plates, bumpers, etc., personal computer casings, home appliance parts, packaging materials, building materials, civil engineering materials, marine materials, and other industrial materials.
 以下、製造例、実施例および比較例によって、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to production examples, examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[評価方法]
 本発明の化学修飾セルロース不織布の化学修飾率、重合度、化学修飾セルロース不織布を用いた複合材料のセルロース含有量、ヘーズ、全光線透過率、YI及び線膨張係数の測定方法は以下の通りである。
[Evaluation methods]
The chemical modification rate of the chemically modified cellulose nonwoven fabric of the present invention, the degree of polymerization, the cellulose content of the composite material using the chemically modified cellulose nonwoven fabric, haze, total light transmittance, YI and the method of measuring the linear expansion coefficient are as follows. .
<化学修飾率>
 上記詳述した方法により、測定した。
<Chemical modification rate>
It was measured by the method described in detail above.
<重合度および重合度低下率>
 TAPPI T230に記載の粘度法により重合度を測定した。
 セルロース不織布0.04gを精秤し、これに水10mLと1M銅エチレンジアミン水溶液10mLを加え、5分間程攪拌してセルロースを溶解する。溶解させた溶液をウベローデ型粘度管に入れ、25℃下で流下速度を測定する。水10mLと1M銅エチレンジアミン水溶液の混合液をブランクとし、固有粘度[η]を求める。これを用い、木質科学実験マニュアルに記載の以下の式に従って粘度平均重合度を算出した。
  粘度平均重合度=175×[η]
 また、化学修飾前のセルロース不織布の重合度と化学修飾後のセルロース不織布の重合度を測定し、化学修飾前に対する化学修飾後の重合度低下率は以下の式に従って算出した。
<Degree of polymerization and rate of decrease in degree of polymerization>
The degree of polymerization was measured by the viscosity method described in TAPPI T230.
0.04 g of cellulose nonwoven fabric is precisely weighed, 10 mL of water and 10 mL of 1M copper ethylenediamine aqueous solution are added thereto, and stirred for about 5 minutes to dissolve the cellulose. The dissolved solution is put into an Ubbelohde type viscosity tube, and the flow rate is measured at 25 ° C. Using a mixed solution of 10 mL of water and 1M copper ethylenediamine aqueous solution as a blank, the intrinsic viscosity [η] is determined. Using this, the viscosity average degree of polymerization was calculated according to the following formula described in the wood science experiment manual.
Viscosity average degree of polymerization = 175 × [η]
Moreover, the polymerization degree of the cellulose nonwoven fabric before chemical modification and the polymerization degree of the cellulose nonwoven fabric after chemical modification were measured, and the degree of polymerization degree reduction after chemical modification with respect to before chemical modification was calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
<化学修飾セルロース不織布の引張弾性率>
 複合材料を8mm幅×40mm長にカットした。これを、オリエンテック社製STA-1225を用いてチャック間距離15mm、試験速度2mm/minにて引張試験を行い、引張弾性率を求めた。
<Tensile modulus of chemically modified cellulose nonwoven fabric>
The composite material was cut into 8 mm width × 40 mm length. This was subjected to a tensile test using a STA-1225 manufactured by Orientec Co., Ltd. at a distance between chucks of 15 mm and a test speed of 2 mm / min to obtain a tensile elastic modulus.
<セルロース繊維複合材料中のセルロース含有量>
 複合化に用いた化学修飾セルロース不織布の重量と、得られたセルロース繊維複合材料の重量からセルロース含有量(重量%)を求めた。
<Cellulose content in cellulose fiber composite material>
The cellulose content (% by weight) was determined from the weight of the chemically modified cellulose nonwoven fabric used for the composite and the weight of the obtained cellulose fiber composite material.
<セルロース繊維複合材料のヘーズ>
 スガ試験機製ヘーズメータを用いてC光によるヘーズ値を測定した。
<Haze of cellulose fiber composite material>
The haze value by C light was measured using a Suga Test Instruments haze meter.
<セルロース繊維複合材料のYI値>
 スガ試験機製カラーコンピュータを用いてYI値を測定した。
<YI value of cellulose fiber composite material>
The YI value was measured using a color computer manufactured by Suga Test Instruments.
<セルロース繊維複合材料の線膨張係数>
 複合材料をレーザーカッターにより、3mm幅×40mm長にカットした。これをSII製TMA6100を用いて引っ張りモードでチャック間20mm、荷重10g、窒素雰囲気下、室温から180℃まで5℃/min.で昇温し、次いで180℃から25℃まで5℃/min.で降温し、更に25℃から180℃まで5℃/min.で昇温した際の2度目の昇温時の60℃から100℃の測定値から線膨張係数を求めた。
<Linear expansion coefficient of cellulose fiber composite material>
The composite material was cut into 3 mm width × 40 mm length with a laser cutter. This was pulled using a TMA6100 made by SII in a pulling mode at a chucking distance of 20 mm, a load of 10 g and a nitrogen atmosphere from room temperature to 180 ° C. at 5 ° C./min. And then from 180 ° C. to 25 ° C. at 5 ° C./min. At 25 ° C. and then from 25 ° C. to 180 ° C. The linear expansion coefficient was determined from the measured value from 60 ° C. to 100 ° C. during the second temperature increase.
<セルロース繊維複合材料の引張弾性率>
 複合材料をレーザーカッターにより、10mm幅×40mm長にカットした。これを、SII社製DMS6100を用いて引張モードでDMA(動的粘弾性)測定を行い、周波数10Hz、23℃における貯蔵弾性率E’(単位;GPa)を測定した。
<Tensile elastic modulus of cellulose fiber composite material>
The composite material was cut into a 10 mm width × 40 mm length by a laser cutter. This was subjected to DMA (dynamic viscoelasticity) measurement in tensile mode using DMS6100 manufactured by SII, and storage elastic modulus E ′ (unit: GPa) at a frequency of 10 Hz and 23 ° C. was measured.
<製造例1:セルロース繊維原料1の製造>
 木粉(宮下木材社製、米松)を2重量%炭酸ナトリウム水溶液中で攪拌しながら90℃で5時間脱脂処理した。これを脱塩水で洗浄した後、無水酢酸と30重量%過酸化水素水を液量で1:1に混合した過酸水溶液を加え、90℃で1時間脱リグニン処理した。脱塩水洗浄した後にさらに5重量%水酸化カリウム水溶液に24時間浸漬して脱ヘミセルロースし、脱塩水で洗浄してセルロース繊維原料1を得た。
<Production Example 1: Production of Cellulose Fiber Raw Material 1>
Wood flour (Miyashita Wood Co., Ltd., Yonematsu) was degreased at 90 ° C. for 5 hours with stirring in a 2 wt% sodium carbonate aqueous solution. After washing this with demineralized water, an aqueous peracid solution in which acetic anhydride and 30% by weight of hydrogen peroxide were mixed at a volume ratio of 1: 1 was added, followed by delignification at 90 ° C. for 1 hour. After washing with demineralized water, the cellulose fiber raw material 1 was obtained by further immersing in a 5 wt% aqueous potassium hydroxide solution for 24 hours to dehemicellulose, and washing with demineralized water.
<製造例2:セルロース繊維原料2の製造>
 木粉(宮下木材社製、米松)を2重量%炭酸ナトリウム水溶液で80℃にて6時間脱脂した。これを脱塩水で洗浄した後、亜塩素酸ナトリウムを用いて酢酸酸性下、80℃にて5.5時間脱リグニン処理した。脱塩水洗浄した後にさらに5重量%水酸化カリウム水溶液に16時間浸漬して脱ヘミセルロースし、脱塩水で洗浄してセルロース繊維原料2を得た。
<Production Example 2: Production of Cellulose Fiber Raw Material 2>
Wood flour (Miyashita Wood Co., Ltd., Yonematsu) was degreased with a 2 wt% aqueous sodium carbonate solution at 80 ° C. for 6 hours. This was washed with demineralized water, and then subjected to delignification treatment with sodium chlorite under acetic acid acidity at 80 ° C. for 5.5 hours. After washing with demineralized water, the cellulose fiber raw material 2 was obtained by further immersing in a 5 wt% aqueous potassium hydroxide solution for 16 hours to dehemicellulose and washing with demineralized water.
<製造例3:セルロース不織布1の製造>
 製造例1で得られたセルロース繊維原料1を0.5重量%濃度に水で希釈し、高速回転式ホモジナイザー(エム・テクニック社製:CLM0.8S)を用いて、回転数2000rpm、60分間解繊処理を行い、微細セルロース繊維分散液を得た。
 得られた微細セルロース繊維分散液を0.13重量%濃度に水で希釈し、孔径1μmのPTFEを用いた90mm径の濾過器に150g投入し、固形分が約5重量%になったところで2-プロパノール30mlを投入して置換した。その後、120℃、0.14MPaで5分間プレス乾燥して白色のセルロース不織布1を得た。このセルロース不織布1のセルロース繊維の数平均繊維径は18nmであった。
<Production Example 3: Production of Cellulose Nonwoven Fabric 1>
Cellulose fiber raw material 1 obtained in Production Example 1 was diluted with water to a concentration of 0.5% by weight and dissolved using a high-speed rotating homogenizer (M Technique Co., Ltd .: CLM0.8S) at a rotational speed of 2000 rpm for 60 minutes. Fiber processing was performed to obtain a fine cellulose fiber dispersion.
The obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by weight, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 μm, and when the solid content became about 5 wt%, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and the white cellulose nonwoven fabric 1 was obtained. The number average fiber diameter of the cellulose fibers of this cellulose nonwoven fabric 1 was 18 nm.
<製造例4:セルロース不織布2の製造>
 製造例1で得られたセルロース繊維原料1を0.5重量%濃度に水で希釈し、高速回転式ホモジナイザー(エム・テクニック社製:CLM0.8S)を用いて、回転数2000rpm、60分間解繊処理を行い、微細セルロース繊維分散液を得た。
 更に超音波ホモジナイザー(SMT社製:UH-600S、周波数20kHz、実効出力密度22W/cm)を用いて超音波処理を行った。36mmφのストレート型チップ(チタン合金製)を用い、アウトプットボリウム8でチューニングを行い、最適なチューニング位置で30分間超音波処理を行った。セルロース繊維原料分散液は処理容器の外側から5℃の冷水で冷却し、また、マグネティックスターラーにて撹拌しながら処理を行った。
 この超音波処理したセルロース繊維原料分散液の遠心分離を行い、上澄みを得た。遠心分離機(日立工機社製:himacCR22G)を用い、アングルローターとしてR20A2を用いた。50ml遠沈管8本を、回転軸から34度の角度で設置した。1本の遠沈管に入れるセルロース繊維原料分散液の量は30mlとした。18000rpmにて30分間遠心分離作業を行いその上澄み液を採取した。
 得られた微細セルロース繊維分散液を0.13重量%濃度に水で希釈し、孔径1μmのPTFEを用いた90mm径の濾過器に150g投入し、固形分が約5重量%になったところで2-プロパノール30mlを投入して置換した。その後、120℃、0.14MPaで5分間プレス乾燥して白色のセルロース不織布2を得た。このセルロース不織布2のセルロース繊維の数平均繊維径は14nmであった。
<Production Example 4: Production of Cellulose Nonwoven Fabric 2>
Cellulose fiber raw material 1 obtained in Production Example 1 was diluted with water to a concentration of 0.5% by weight and dissolved using a high-speed rotating homogenizer (M Technique Co., Ltd .: CLM0.8S) at a rotational speed of 2000 rpm for 60 minutes. Fiber processing was performed to obtain a fine cellulose fiber dispersion.
Furthermore, ultrasonic treatment was performed using an ultrasonic homogenizer (manufactured by SMT: UH-600S, frequency 20 kHz, effective output density 22 W / cm 2 ). Using a 36 mmφ straight tip (made of titanium alloy), tuning was performed with the output volume 8, and ultrasonic treatment was performed for 30 minutes at the optimum tuning position. The cellulose fiber raw material dispersion was cooled with cold water at 5 ° C. from the outside of the processing vessel, and was processed while stirring with a magnetic stirrer.
This ultrasonically treated cellulose fiber raw material dispersion was centrifuged to obtain a supernatant. A centrifuge (manufactured by Hitachi Koki Co., Ltd .: himacCR22G) was used, and R20A2 was used as an angle rotor. Eight 50 ml centrifuge tubes were installed at an angle of 34 degrees from the rotation axis. The amount of the cellulose fiber raw material dispersion placed in one centrifuge tube was 30 ml. Centrifugation was performed at 18000 rpm for 30 minutes, and the supernatant was collected.
The obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.13% by weight, and 150 g was put into a 90 mm diameter filter using PTFE having a pore diameter of 1 μm, and when the solid content became about 5 wt%, 2 -Replaced with 30 ml of propanol. Then, it press-dried at 120 degreeC and 0.14 MPa for 5 minutes, and the white cellulose nonwoven fabric 2 was obtained. The number average fiber diameter of the cellulose fibers of the cellulose nonwoven fabric 2 was 14 nm.
<製造例5:セルロース不織布3の製造>
 製造例3において、セルロース繊維原料1の代りに製造例2で得られたセルロース繊維原料2を用いたこと以外は同様の処理を行い、セルロース不織布3を得た。このセルロース不織布3のセルロース繊維の数平均繊維径は18nmであった。
<Production Example 5: Production of cellulose nonwoven fabric 3>
In Production Example 3, the same treatment was performed except that the cellulose fiber raw material 2 obtained in Production Example 2 was used in place of the cellulose fiber raw material 1, and a cellulose nonwoven fabric 3 was obtained. The number average fiber diameter of the cellulose fibers of this cellulose nonwoven fabric 3 was 18 nm.
<実施例1>
 100mLの無水酢酸を入れた容器にセルロース不織布1を液と接触しないように設置し、密閉した。容器を135℃に加熱し、容器内の蒸気温度(反応系内温度)を130℃まで昇温させ、無水酢酸蒸気をセルロース不織布に10分間(処理時間)接触させ、反応を行った。反応後、セルロース不織布を取り出し、蒸留水でよく洗浄し、アセトンに10分浸漬した後、120℃、0.14MPaにて3分間プレス乾燥してアセチル化セルロース不織布を得た。得られた不織布の化学修飾率は20.0mol%であった。
<Example 1>
Cellulose nonwoven fabric 1 was placed in a container containing 100 mL of acetic anhydride so as not to come into contact with the liquid and sealed. The vessel was heated to 135 ° C., the vapor temperature in the vessel (reaction system temperature) was raised to 130 ° C., and acetic anhydride vapor was brought into contact with the cellulose nonwoven fabric for 10 minutes (treatment time) to carry out the reaction. After the reaction, the cellulose nonwoven fabric was taken out, washed thoroughly with distilled water, immersed in acetone for 10 minutes, and then press dried at 120 ° C. and 0.14 MPa for 3 minutes to obtain an acetylated cellulose nonwoven fabric. The resulting nonwoven fabric had a chemical modification rate of 20.0 mol%.
<実施例2>
 セルロース不織布1を化学修飾させる際の反応時間(処理時間)を30分間にすること以外は実施例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は44.3mol%であった。
<Example 2>
An acetylated cellulose nonwoven fabric was obtained in the same manner as in Example 1 except that the reaction time (treatment time) for chemically modifying the cellulose nonwoven fabric 1 was 30 minutes. The chemical modification rate of the obtained nonwoven fabric was 44.3 mol%.
<実施例3>
 セルロース不織布1を化学修飾させる際の容器内の蒸気温度(反応系内温度)を140℃、反応時間(処理時間)を10分間にすること以外は実施例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は38.7mol%であった。
<Example 3>
Acetylated cellulose nonwoven fabric in the same manner as in Example 1 except that the vapor temperature (temperature in the reaction system) in the container when chemically modifying the cellulose nonwoven fabric 1 is 140 ° C. and the reaction time (treatment time) is 10 minutes. Got. The chemical modification rate of the obtained nonwoven fabric was 38.7 mol%.
<実施例4>
 セルロース不織布1の代りにセルロース不織布2を用い、化学修飾させる際の容器内の蒸気温度(反応系内温度)を130℃、反応時間(処理時間)を20分間にすること以外は実施例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は28.7mol%であった。
<Example 4>
Example 1 except that the cellulose nonwoven fabric 2 is used in place of the cellulose nonwoven fabric 1 and the vapor temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 20 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 28.7 mol%.
<実施例5>
 セルロース不織布1の代りにセルロース不織布3を用い、化学修飾させる際の容器内の蒸気温度(反応系内温度)を130℃、反応時間(処理時間)を20分間にすること以外は実施例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は33.0mol%であった。
<Example 5>
Example 1 except that the cellulose nonwoven fabric 3 is used in place of the cellulose nonwoven fabric 1 and the vapor temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 20 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 33.0 mol%.
<比較例1>
 700mLの無水酢酸を入れた容器にセルロース不織布1を浸漬し、密閉した。容器を135℃に加熱し、容器内の液温(反応系内温度)が130℃にて30分間(処理時間)反応させた。反応後、セルロース不織布を取り出し、2-プロパノールでよく洗浄し、余剰の無水酢酸を除去した。その後、蒸留水でよく洗浄し、2-プロパノールに10分浸漬した後、120℃、0.14MPaにて5分間プレス乾燥してアセチル化セルロース不織布を得た。得られた不織布の化学修飾率は4.3mol%であった。
<Comparative Example 1>
Cellulose nonwoven fabric 1 was immersed in a container containing 700 mL of acetic anhydride and sealed. The container was heated to 135 ° C. and reacted at a liquid temperature (temperature in the reaction system) in the container of 130 ° C. for 30 minutes (treatment time). After the reaction, the cellulose nonwoven fabric was taken out and washed well with 2-propanol to remove excess acetic anhydride. Thereafter, it was thoroughly washed with distilled water, immersed in 2-propanol for 10 minutes, and then press-dried at 120 ° C. and 0.14 MPa for 5 minutes to obtain an acetylated cellulose nonwoven fabric. The chemical modification rate of the obtained nonwoven fabric was 4.3 mol%.
<比較例2>
 セルロース不織布1を化学修飾させる際の容器内の液温(反応系内温度)を110℃、反応時間(処理時間)を420分間にすること以外は比較例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は24.3mol%であった。
<Comparative example 2>
Acetylated cellulose nonwoven fabric in the same manner as in Comparative Example 1 except that the liquid temperature (reaction system temperature) in the container when chemically modifying the cellulose nonwoven fabric 1 is 110 ° C. and the reaction time (treatment time) is 420 minutes. Got. The chemical modification rate of the obtained nonwoven fabric was 24.3 mol%.
<比較例3>
 セルロース不織布1の代りにセルロース不織布2を用い、化学修飾させる際の容器内の液温(反応系内温度)を110℃、反応時間(処理時間)を420分間にすること以外は比較例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は27.3mol%であった。
<Comparative Example 3>
Comparative Example 1 except that the cellulose nonwoven fabric 2 is used instead of the cellulose nonwoven fabric 1 and the liquid temperature (reaction system temperature) in the container for chemical modification is 110 ° C. and the reaction time (treatment time) is 420 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 27.3 mol%.
<比較例4>
 セルロース不織布1の代りにセルロース不織布3を用い、化学修飾させる際の容器内の液温(反応系内温度)を130℃、反応時間(処理時間)を120分間にすること以外は比較例1と同様にして、アセチル化セルロース不織布を得た。得られた不織布の化学修飾率は27.0mol%であった。
<Comparative Example 4>
Comparative Example 1 except that the cellulose nonwoven fabric 3 is used in place of the cellulose nonwoven fabric 1, and the liquid temperature (reaction system temperature) in the container for chemical modification is 130 ° C. and the reaction time (treatment time) is 120 minutes. Similarly, an acetylated cellulose nonwoven fabric was obtained. The chemical modification rate of the obtained nonwoven fabric was 27.0 mol%.
 上記実施例1~5、比較例1~4により得られた結果を表1にまとめて示す。 The results obtained in Examples 1 to 5 and Comparative Examples 1 to 4 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より明らかなように、反応性ガスによる本発明の化学修飾セルロース不織布の製造方法によれば、反応液に浸漬させる従来の反応方法よりも、化学修飾する際の反応時間が短縮される。また、反応後に余剰の反応液を除去する洗浄工程を省略でき、工程が簡略化できるだけでなく、使用する溶剤量を削減できる。 As is clear from Table 1, according to the method for producing a chemically modified cellulose nonwoven fabric of the present invention using a reactive gas, the reaction time for chemical modification is shortened compared to the conventional reaction method in which the reaction solution is immersed. Moreover, the washing | cleaning process which removes an excess reaction liquid after reaction can be skipped, and not only the process can be simplified, but the amount of solvent used can be reduced.
<実施例6>
 実施例4で得られた化学修飾セルロース不織布の重合度、重合度低下率および引張弾性率を測定した。重合度は1097で、重合度低下率は6.1%、引張弾性率は3.0GPaであった。
 次に、この化学修飾セルロース不織布を用いてセルロース繊維複合材料を作製した。
 化学修飾セルロース不織布を、1,10-デカンジオールジアクリレート100重量部、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASF社製ルシリンTPO)0.2重量部、ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ社製Irgacure184)0.1重量部を混合した溶液に含浸させ、減圧下に1時間おいた。これを2枚のガラス板にはさみ、無電極水銀ランプ(フュージョンUVシステムズ社製「Dバルブ」)を用いて、放射照度400mW/cmの下を、ライン速度7m/minで照射した。このときの放射照射量は0.12J/cmであった。この操作を、ガラス面を反転して2回行った。紫外線照射後のガラス面の温度は25℃であった。次いで、放射照度1900mW/cmの下をライン速度2m/minで照射した。このときの放射照射量は2.7J/cmであった。この操作をガラス面を反転して4回行った。紫外線照射後のガラス面の温度は50℃であった。放射照射量は21.8J/cmであった。紫外線照射終了後、ガラス板よりはずし、200℃のオーブン(窒素ガス雰囲気)中で4時間加熱して複合材料を得た。なお、紫外線の放射照度は、オーク製作所製紫外線照度計「UV-M02」で、アタッチメント「UV-35」を用いて、320~390nmの紫外線の照度を23℃で測定した。
 得られた複合材料のセルロース含有量は53.0重量%で、厚みは90μm、ヘーズは3.1、全光線透過率は89.2%、YIは7.7、線膨張係数は20.4ppm/K、引張弾性率は4.6GPaであった。
<Example 6>
The degree of polymerization, the degree of polymerization degree reduction, and the tensile modulus of the chemically modified cellulose nonwoven fabric obtained in Example 4 were measured. The degree of polymerization was 1097, the rate of decrease in the degree of polymerization was 6.1%, and the tensile modulus was 3.0 GPa.
Next, a cellulose fiber composite material was produced using this chemically modified cellulose nonwoven fabric.
100 parts by weight of 1,10-decanediol diacrylate, 0.24 parts by weight of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (BASF's Lucillin TPO), hydroxycyclohexyl phenyl ketone (Ciba The mixed solution was impregnated with 0.1 part by weight of Irgacure 184 manufactured by Specialty Chemicals, and placed under reduced pressure for 1 hour. This was sandwiched between two glass plates and irradiated under an irradiance of 400 mW / cm 2 at a line speed of 7 m / min using an electrodeless mercury lamp (“D bulb” manufactured by Fusion UV Systems). The irradiation dose at this time was 0.12 J / cm 2 . This operation was performed twice by inverting the glass surface. The temperature of the glass surface after ultraviolet irradiation was 25 ° C. Next, irradiation was performed under an irradiance of 1900 mW / cm 2 at a line speed of 2 m / min. The irradiation dose at this time was 2.7 J / cm 2 . This operation was performed 4 times by inverting the glass surface. The temperature of the glass surface after ultraviolet irradiation was 50 ° C. The irradiation dose was 21.8 J / cm 2 . After the ultraviolet irradiation was completed, the glass plate was removed and heated in an oven (nitrogen gas atmosphere) at 200 ° C. for 4 hours to obtain a composite material. The irradiance of ultraviolet rays was measured at 23 ° C. by using an ultraviolet illuminance meter “UV-M02” manufactured by Oak Seisakusho and using an attachment “UV-35”.
The obtained composite material has a cellulose content of 53.0% by weight, a thickness of 90 μm, a haze of 3.1, a total light transmittance of 89.2%, a YI of 7.7, and a linear expansion coefficient of 20.4 ppm. / K, the tensile modulus was 4.6 GPa.
<比較例5>
 比較例3で得られた化学修飾セルロース不織布の重合度、重合度低下率および引張弾性率を測定した。重合度は930で、重合度低下率は20.4%、引張弾性率は2.2GPaであった。
 次に、この化学修飾セルロース不織布を用いて実施例6と同様にして、セルロース繊維複合材料を作製した。得られた複合材料のセルロース含有量は45.1重量%で、厚みは96μm、ヘーズは3.1、全光線透過率は90.6%、YIは5.4、線膨張係数は24.2ppm/K、引張弾性率は2.8GPaであった。
<Comparative Example 5>
The degree of polymerization, the degree of polymerization degree reduction, and the tensile modulus of the chemically modified cellulose nonwoven fabric obtained in Comparative Example 3 were measured. The degree of polymerization was 930, the rate of decrease in the degree of polymerization was 20.4%, and the tensile modulus was 2.2 GPa.
Next, a cellulose fiber composite material was produced in the same manner as in Example 6 using this chemically modified cellulose nonwoven fabric. The obtained composite material has a cellulose content of 45.1% by weight, a thickness of 96 μm, a haze of 3.1, a total light transmittance of 90.6%, a YI of 5.4, and a linear expansion coefficient of 24.2 ppm. / K, the tensile elastic modulus was 2.8 GPa.
 上記実施例6および比較例5により得られた結果を表2にまとめて示す。 The results obtained in Example 6 and Comparative Example 5 are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2より、反応性ガスを用いる本発明の化学修飾セルロース不織布の製造方法により得られる化学修飾セルロース不織布の物性は、従来の反応液に浸漬させる反応方法により得られる化学修飾セルロース不織布よりも、重合度の低下を抑制でき、その結果、引張弾性率が高い化学修飾セルロース不織布が得られる。また、セルロース繊維複合材料の物性においては、従来と同様に透明性、非着色性、低線膨張係数、引張弾性率に優れた複合材料が得られた。引張弾性率については、従来法によるものよりも向上し、また、線膨張係数についても従来法によるものよりも低下した。すなわち、本発明によれば、高透明、非着色性、高耐熱性、低線膨張係数、高強度の複合材料を高い生産性で製造することが分かる。 From Table 2, the physical properties of the chemically modified cellulose nonwoven fabric obtained by the production method of the chemically modified cellulose nonwoven fabric of the present invention using reactive gas are more polymerized than the chemically modified cellulose nonwoven fabric obtained by the reaction method immersed in the conventional reaction solution. As a result, a chemically modified cellulose nonwoven fabric having a high tensile elastic modulus can be obtained. As for the physical properties of the cellulose fiber composite material, a composite material excellent in transparency, non-coloring property, low linear expansion coefficient, and tensile elastic modulus was obtained as in the past. The tensile modulus was improved as compared with the conventional method, and the linear expansion coefficient was also decreased as compared with the conventional method. That is, according to the present invention, it can be seen that a highly transparent, non-colorable, high heat resistant, low linear expansion coefficient, high strength composite material is produced with high productivity.
<製造例6:セルロース不織布4の製造>
 針葉樹晒クラフトパルプ(王子製紙社製)を、ディスクリファイナー(熊谷理化工業製)を用い叩解した。叩解した上記パルプを2重量%濃度に水で希釈し、高速回転式ホモジナイザー(エム・テクニック社製:CLM11S)を用いて、回転数6500rpm、2時間解繊処理を行い、微細セルロース繊維分散液を得た。
 得られた微細セルロース繊維分散液を0.2重量%濃度に水で希釈したものと、エチレングリコールモノ-tert-ブチルエーテル(乾燥状態の微細セルロース繊維(g)に対して24倍量)をそれぞれA4サイズ抄紙装置(王子製紙製)に投入し抄紙し、120℃に加熱したシリンダードライヤーで乾燥させ、坪量35g/m、A4サイズのセルロース不織布4を得た。このセルロース不織布4のセルロース繊維の数平均繊維径は28nmであった。
<Production Example 6: Production of cellulose nonwoven fabric 4>
Softwood bleached kraft pulp (manufactured by Oji Paper Co., Ltd.) was beaten using a disc refiner (manufactured by Kumagai Rika Kogyo). The above beaten pulp is diluted with water to a concentration of 2% by weight and subjected to a defibration treatment at a rotational speed of 6500 rpm for 2 hours using a high-speed rotating homogenizer (M Technique Co., Ltd .: CLM11S) to obtain a fine cellulose fiber dispersion. Obtained.
The obtained fine cellulose fiber dispersion was diluted with water to a concentration of 0.2% by weight and ethylene glycol mono-tert-butyl ether (24 times the amount of dry fine cellulose fibers (g)) was A4. The paper was put into a size paper machine (manufactured by Oji Paper Co., Ltd.), paper-dried, and dried with a cylinder dryer heated to 120 ° C. to obtain a cellulose nonwoven fabric 4 having a basis weight of 35 g / m 2 and A4 size. The number average fiber diameter of the cellulose fibers of this cellulose nonwoven fabric 4 was 28 nm.
<実施例7>
 20mLの無水酢酸を入れた容器に、製造例6で得られたセルロース不織布4を12枚重ねで丸めて筒状にして、液と接触しないように容器の中に設置し密閉した。容器を145℃に加熱し、容器内の温度を140℃まで昇温させ、無水酢酸の蒸気をセルロース不織布4に60分間(処理時間)接触させ、反応を行った。反応後、140℃の熱風乾燥機で乾燥させ、残留ガスを除去した。得られたセルロース不織布の化学修飾率は、筒状に丸めた一番外側のセルロース不織布で9.7mol%、一番内側のセルロース不織布で10.0mol%あった。
<Example 7>
In a container containing 20 mL of acetic anhydride, 12 pieces of the cellulose nonwoven fabric 4 obtained in Production Example 6 were rolled up into a cylinder and sealed in a container so as not to come into contact with the liquid. The container was heated to 145 ° C., the temperature in the container was raised to 140 ° C., and the vapor of acetic anhydride was brought into contact with the cellulose nonwoven fabric 4 for 60 minutes (treatment time) to carry out the reaction. After the reaction, the residue was dried with a hot air dryer at 140 ° C. to remove residual gas. The chemical modification rate of the obtained cellulose nonwoven fabric was 9.7 mol% for the outermost cellulose nonwoven fabric rolled into a cylindrical shape, and 10.0 mol% for the innermost cellulose nonwoven fabric.
<実施例8>
 製造例6で得られたA4サイズのセルロース不織布4を4cm×4cmの大きさに裁断したものを93枚用意し、図4に示すように、このセルロース不織布401(製造例6で得たセルロース不織布4)を重ねて周囲にカプトンテープ402を巻き、ブロック状のセルロース不織布405を得た。これは図5に示すように、セルロース不織布401を30mのロール状に巻いたものの一部を再現したものである。
 尚、セルロース不織布401の厚みが70μm程度で、巻き芯の外径が96.2mmとしたとき、セルロース不織布401を30mのロール状に巻くと、紙厚Dは6.5mmとなる。
 20mLの無水酢酸を入れた容器に、このブロック状のセルロース不織布を、液と接触しないように容器内に設置し密閉した。容器を145℃に加熱し、容器内の温度を140℃まで昇温させ、無水酢酸蒸気をブロック状のセルロース不織布に90分間(処理時間)接触させ、反応を行った。反応後、140℃の熱風乾燥機で乾燥させ、残留ガスを除去した。得られたセルロース不織布の化学修飾率は、0m相当部(最上部)で11.7mol%、10m相当部で11.3mol%、15m相当部で10.3mol%、20m相当部で10.0mol%、30m相当部(最下部)で11.3mol%であった。
<Example 8>
93 sheets of A4 size cellulose nonwoven fabric 4 obtained in Production Example 6 were cut into a size of 4 cm × 4 cm. As shown in FIG. 4, this cellulose nonwoven fabric 401 (cellulose nonwoven fabric obtained in Production Example 6) was prepared. 4) was layered, and Kapton tape 402 was wound around it to obtain a block-shaped cellulose nonwoven fabric 405. As shown in FIG. 5, this is a reproduction of a part of a cellulose nonwoven fabric 401 wound into a 30-m roll.
In addition, when the thickness of the cellulose nonwoven fabric 401 is about 70 μm and the outer diameter of the winding core is 96.2 mm, when the cellulose nonwoven fabric 401 is wound into a 30-m roll, the paper thickness D becomes 6.5 mm.
The block-shaped cellulose nonwoven fabric was placed in a container in a container containing 20 mL of acetic anhydride and sealed so as not to come into contact with the liquid. The container was heated to 145 ° C., the temperature in the container was raised to 140 ° C., and acetic anhydride vapor was brought into contact with the block-shaped cellulose nonwoven fabric for 90 minutes (treatment time) to carry out the reaction. After the reaction, the residue was dried with a hot air dryer at 140 ° C. to remove residual gas. The chemical modification rate of the obtained cellulose nonwoven fabric was 11.7 mol% at 0 m equivalent (top), 11.3 mol% at 10 m, 10.3 mol% at 15 m, 10.0 mol% at 20 m , 30 m equivalent (lowermost part) was 11.3 mol%.
 以上の結果から、本発明の化学修飾セルロース不織布の製造方法によれば、セルロース不織布をロール状にして化学修飾を行っても、不織布全体にわたり、均一に所望の化学修飾率を有するセルロース不織布を得られることがわかった。
 これにより、生産性よく、化学修飾セルロース不織布を製造することが可能になる。
From the above results, according to the method for producing a chemically modified cellulose nonwoven fabric of the present invention, even if the cellulose nonwoven fabric is rolled and chemically modified, a cellulose nonwoven fabric having a desired chemical modification rate is obtained uniformly throughout the nonwoven fabric. I found out that
Thereby, it becomes possible to manufacture a chemically modified cellulose nonwoven fabric with high productivity.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年10月17日出願の日本特許出願(特願2011-228102)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on Oct. 17, 2011 (Japanese Patent Application No. 2011-228102), the contents of which are incorporated herein by reference.
 100,200,300 変性装置
 101,201,301,401 セルロース不織布
 102,202,302 反応装置
 108,208 ヒーター
 402 カプトンテープ
 405 ブロック状のセルロース不織布
 D 紙厚
100, 200, 300 Modification device 101, 201, 301, 401 Cellulose nonwoven fabric 102, 202, 302 Reactor 108, 208 Heater 402 Kapton tape 405 Block-like cellulose nonwoven fabric D Paper thickness

Claims (9)

  1.  化学修飾セルロース不織布の製造方法であって、
     数平均繊維径が2~400nmのセルロース繊維のセルロース不織布を用い、
     反応性ガスを用いて、前記セルロース不織布中のセルロースを化学修飾する、製造方法。
    A method for producing a chemically modified cellulose nonwoven fabric,
    Using a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm,
    The manufacturing method of chemically modifying the cellulose in the said cellulose nonwoven fabric using reactive gas.
  2.  前記反応性ガスは、気体状態の酸または酸無水物である、請求項1に記載の化学修飾セルロース不織布の製造方法。 The method for producing a chemically modified cellulose nonwoven fabric according to claim 1, wherein the reactive gas is a gaseous acid or acid anhydride.
  3.  ロール状のセルロース不織布に対し、前記反応性ガスを接触させる、請求項1または請求項2に記載の化学修飾セルロース不織布の製造方法。 The manufacturing method of the chemically modified cellulose nonwoven fabric of Claim 1 or Claim 2 which makes the said reactive gas contact with a roll-shaped cellulose nonwoven fabric.
  4.  前記反応性ガスを用いて化学修飾する際の、反応系内の温度が250℃以下である、請求項1~請求項3のいずれか一項に記載の化学修飾セルロース不織布の製造方法。 The method for producing a chemically modified cellulose nonwoven fabric according to any one of claims 1 to 3, wherein a temperature in the reaction system when chemically modifying with the reactive gas is 250 ° C or lower.
  5.  前記反応性ガスを用いて化学修飾する際の、反応時間が3時間以下である、請求項1~請求項4のいずれか一項に記載の化学修飾セルロース不織布の製造方法。 The method for producing a chemically modified cellulose nonwoven fabric according to any one of claims 1 to 4, wherein the reaction time when chemically modifying with the reactive gas is 3 hours or less.
  6.  得られる化学修飾セルロース不織布の化学修飾率が5~65mol%である、請求項1~請求項5のいずれか一項に記載の化学修飾セルロース不織布の製造方法。 The method for producing a chemically modified cellulose nonwoven fabric according to any one of claims 1 to 5, wherein the chemically modified cellulose nonwoven fabric obtained has a chemical modification rate of 5 to 65 mol%.
  7.  請求項1~請求項6のいずれか一項に記載の製造方法により製造された、化学修飾セルロース不織布。 A chemically modified cellulose nonwoven fabric produced by the production method according to any one of claims 1 to 6.
  8.  請求項7に記載の化学修飾セルロース不織布と樹脂とを含有する、セルロース繊維樹脂複合材料。 A cellulose fiber resin composite material comprising the chemically modified cellulose nonwoven fabric according to claim 7 and a resin.
  9.  反応性ガスを用いて、数平均繊維径が2~400nmのセルロース繊維のセルロース不織布中のセルロースを化学修飾した後、
     化学修飾されたセルロース不織布と樹脂とを複合化させる、セルロース繊維樹脂複合材料の製造方法。
    After chemically modifying cellulose in a cellulose nonwoven fabric of cellulose fibers having a number average fiber diameter of 2 to 400 nm using a reactive gas,
    A method for producing a cellulose fiber resin composite material, wherein a chemically modified cellulose nonwoven fabric and a resin are combined.
PCT/JP2012/076725 2011-10-17 2012-10-16 Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof WO2013058244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228102 2011-10-17
JP2011228102 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058244A1 true WO2013058244A1 (en) 2013-04-25

Family

ID=48140891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076725 WO2013058244A1 (en) 2011-10-17 2012-10-16 Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2013058244A1 (en)
WO (1) WO2013058244A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354746A (en) * 2017-07-27 2017-11-17 东华大学 A kind of device for producing bacteria cellulose composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299407A (en) * 1993-04-14 1994-10-25 Teijin Ltd Biodegradable cellulose acetate fiber sheet
WO1996018764A1 (en) * 1994-12-15 1996-06-20 Daikin Industries, Ltd. Method of antisoiling finish of cellulosic fiber and product of antisoiling finish
JPH09256271A (en) * 1996-03-22 1997-09-30 Toyobo Co Ltd Fiber product containing cotton fiber and its production
JP2009161896A (en) * 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp Cellulose nonwoven fabric, process for manufacturing the same and composite material
JP2010007010A (en) * 2008-06-30 2010-01-14 Kyoto Univ Nanofiber sheet and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299407A (en) * 1993-04-14 1994-10-25 Teijin Ltd Biodegradable cellulose acetate fiber sheet
WO1996018764A1 (en) * 1994-12-15 1996-06-20 Daikin Industries, Ltd. Method of antisoiling finish of cellulosic fiber and product of antisoiling finish
JPH09256271A (en) * 1996-03-22 1997-09-30 Toyobo Co Ltd Fiber product containing cotton fiber and its production
JP2009161896A (en) * 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp Cellulose nonwoven fabric, process for manufacturing the same and composite material
JP2010007010A (en) * 2008-06-30 2010-01-14 Kyoto Univ Nanofiber sheet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354746A (en) * 2017-07-27 2017-11-17 东华大学 A kind of device for producing bacteria cellulose composite material

Also Published As

Publication number Publication date
JPWO2013058244A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
EP2441885B1 (en) Modified cellulose fiber and cellulose composite thereof
JP6787442B2 (en) A method for producing fine fibers and a sheet containing fine fibers, a sheet obtained thereby, and a resin composite in which a resin is laminated.
US9309385B2 (en) Cellulose fibers and process for producing the same, cellulose fiber assembly, and cellulose-fiber composite material
JP5828288B2 (en) Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, fine fibrous cellulose-containing slurry, nonwoven fabric, and composite
JP5642094B2 (en) Method for producing cellulose fiber planar structure
JP5798504B2 (en) Method for producing fine fibrous cellulose, method for producing nonwoven fabric, fine fibrous cellulose, fine fibrous cellulose-containing slurry, nonwoven fabric, and composite
US8771463B2 (en) Cellulose fiber assembly and method for preparing the same, fibrillated cellulose fibers and method for preparing the same, and cellulose fiber composite
JP4985573B2 (en) Polycarbonate resin / cellulose fiber laminate and method for producing the same
JP5978822B2 (en) Method for producing fine cellulose fiber dispersion
JP6107297B2 (en) Fiber resin composite material
JP5653792B2 (en) Optical film
JP5412912B2 (en) Method for producing cellulose and polymer cellulose composite
JP2012180602A (en) Cellulose fiber dispersion liquid, method for manufacturing cellulose fiber dispersion liquid and method for manufacturing micro cellulose fiber
JP6714808B2 (en) Film for polarizing film, polarizing film using the same, and method for producing the same
Gapsari et al. Modification of palm fiber with chitosan-AESO blend coating
JP6079341B2 (en) Manufacturing method of fiber resin molding
WO2013058244A1 (en) Method for production of chemically modified cellulose non-woven fabric and chemically modified cellulose non-woven fabric, and cellulose fiber resin composite material produced using said chemically modified cellulose non-woven fabric and method for production thereof
JP7040592B2 (en) Moisture resistant composite sheet containing a base sheet layer containing fine fibers and an inorganic layer
JP2014181255A (en) Cellulose fiber dispersion
JP6197300B2 (en) Fiber resin composite material
JP2010155427A (en) Polymer film having cellulose coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841588

Country of ref document: EP

Kind code of ref document: A1