JP5632887B2 - Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board - Google Patents

Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board Download PDF

Info

Publication number
JP5632887B2
JP5632887B2 JP2012204812A JP2012204812A JP5632887B2 JP 5632887 B2 JP5632887 B2 JP 5632887B2 JP 2012204812 A JP2012204812 A JP 2012204812A JP 2012204812 A JP2012204812 A JP 2012204812A JP 5632887 B2 JP5632887 B2 JP 5632887B2
Authority
JP
Japan
Prior art keywords
resin
printed wiring
multilayer printed
wiring board
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012204812A
Other languages
Japanese (ja)
Other versions
JP2013036042A (en
Inventor
亮 林
亮 林
中居 弘進
弘進 中居
邑田 勝人
勝人 邑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Holdings Co Ltd filed Critical Taiyo Holdings Co Ltd
Priority to JP2012204812A priority Critical patent/JP5632887B2/en
Publication of JP2013036042A publication Critical patent/JP2013036042A/en
Application granted granted Critical
Publication of JP5632887B2 publication Critical patent/JP5632887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導体回路層と絶縁層とを交互に積み上げたビルドアップ方式の多層プリント配線板において、基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を示すと共に、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、高耐熱性と粗化処理による粗化性を併せ有する層間絶縁材用の熱硬化性樹脂組成物、それを用いたドライフィルム並びにそれらを用いて層間絶縁層が形成された多層プリント配線板に関する。   The present invention is a build-up multilayer printed wiring board in which conductor circuit layers and insulating layers are alternately stacked, and exhibits excellent adhesion to a substrate and a conductor, and the cured film has a relatively low coefficient of thermal expansion. A thermosetting resin composition for an interlayer insulating material having a high peel strength (peeling strength) of a conductor layer formed by plating and having both high heat resistance and roughening properties by roughening treatment, The present invention relates to a dry film used and a multilayer printed wiring board in which an interlayer insulating layer is formed by using them.

近年、多層プリント配線板の製造方法として、内層回路板の導体層上に有機絶縁層と導体層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。例えば、回路形成された内層回路板にエポキシ樹脂組成物を塗布し、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献1及び特許文献2参照)。また、回路形成された内層回路板にエポキシ樹脂組成物の接着シートをラミネートし、加熱硬化した後、粗化剤により表面に凸凹状の粗化面を形成し、導体層をめっきにより形成する多層プリント配線板の製造法が提案されている(特許文献3参照)。   In recent years, as a method for producing a multilayer printed wiring board, a build-up production technique in which an organic insulating layer and a conductor layer are alternately stacked on a conductor layer of an inner circuit board has attracted attention. For example, a multilayer printed wiring board in which an epoxy resin composition is applied to a circuit-formed inner layer circuit board, heat-cured, a roughened surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating Has been proposed (see Patent Document 1 and Patent Document 2). Also, after laminating an adhesive sheet of an epoxy resin composition on a circuit-formed inner layer circuit board and heat-curing it, a roughening surface is formed on the surface with a roughening agent, and a conductor layer is formed by plating A method for manufacturing a printed wiring board has been proposed (see Patent Document 3).

従来のビルドアップ法による多層プリント配線板の製造方法の一例について、図1を参照しながら説明すると、まず、絶縁基板1の両面に予め内層導体パターン3と樹脂絶縁層4が形成された積層基板Xの両面に外層導体パターン8を形成し、その上に、スクリーン印刷法やスプレーコーティング法、カーテンコーティング法等の適当な方法によりエポキシ樹脂組成物を塗布した後、加熱硬化させ、樹脂絶縁層9を形成する。(ドライフィルム又はプリプレグを用いる場合には、ラミネートもしくは熱板プレスして加熱硬化させ、樹脂絶縁層9を形成する。)   An example of a conventional method for producing a multilayer printed wiring board by a build-up method will be described with reference to FIG. 1. First, a multilayer substrate in which an inner layer conductor pattern 3 and a resin insulating layer 4 are formed in advance on both surfaces of an insulating substrate 1. The outer conductor pattern 8 is formed on both sides of X, and an epoxy resin composition is applied thereon by an appropriate method such as a screen printing method, a spray coating method, or a curtain coating method, and then cured by heating to form a resin insulating layer 9 Form. (When using a dry film or a prepreg, the resin insulation layer 9 is formed by laminating or hot plate pressing and heat curing.)

次いで、樹脂絶縁層9及び積層基板Xを貫通するようなスルーホール孔21や、各導体層のコネクション部間を電気的に接続するためのバイアホール(図示せず)を形成する。孔明けはドリル、金型パンチ、レーザー光など適当な手段によって行なうことができる。その後、粗化剤を用いて各樹脂絶縁層9の粗面化及び孔部のデスミヤを行なう。一般に、内層回路板上のエポキシ樹脂組成物の硬化皮膜の粗面化処理は、硬化した組成物の表面全体を、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、メトキシプロパノール等の有機溶剤、又は苛性ソーダ、苛性カリ等のアルカリ性水溶液等で膨潤させ、重クロム酸塩、過マンガン酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤を用いて粗化することにより行われる。   Next, a through-hole hole 21 that penetrates the resin insulating layer 9 and the laminated substrate X and a via hole (not shown) for electrically connecting the connection portions of the conductor layers are formed. Drilling can be performed by a suitable means such as a drill, a die punch, or a laser beam. Thereafter, the surface of each resin insulating layer 9 is roughened and the holes are desmeared using a roughening agent. In general, the roughening treatment of the cured film of the epoxy resin composition on the inner layer circuit board is performed by treating the entire surface of the cured composition with an organic material such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, or methoxypropanol. It is carried out by swelling with a solvent or an alkaline aqueous solution such as caustic soda or caustic potash, and roughening using an oxidizing agent such as dichromate, permanganate, ozone, hydrogen peroxide / sulfuric acid, nitric acid.

次に、樹脂絶縁層9の表面に無電解めっきや電解めっき、無電解めっきと電解めっきの組合せ等により導体層を形成する。無電解めっきにより導体層を形成する工程は、硬化した組成物の表面全体をめっき用触媒を含む水溶液に浸漬し、触媒の吸着を行った後、めっき液に浸漬してめっきを析出させるという工程である。このとき導体層は、樹脂絶縁層9の表面だけでなく、スルーホール孔21やブラインド孔内の全面に被覆される。次いで、常法(サブトラクティブ法、セミアデティブ法等)に従って、樹脂絶縁層9の表面の導体層に所定の回路パターンを形成し、図1に示すように、両側に最外層導体パターン10を形成する。この時、上記のようにスルーホール孔21にもめっき層が形成されており、その結果、上記多層プリント配線板の最外層導体パターン10のコネクション部22と内層導体パターン3のコネクション部3aとの間は電気的に接続されることになり、スルーホール20が形成される。さらに多層のプリント配線板を製造する場合には、上記樹脂絶縁層と導体層をさらに交互にビルドアップすればよい。なお、上記ビルドアップにおいては、積層基板上に樹脂絶縁層及び導体層を形成する例について説明したが、積層基板の代わりに片面基板、あるいは両面基板を用いてもよい。   Next, a conductor layer is formed on the surface of the resin insulating layer 9 by electroless plating, electrolytic plating, a combination of electroless plating and electrolytic plating, or the like. The step of forming the conductor layer by electroless plating is a step of immersing the entire surface of the cured composition in an aqueous solution containing a catalyst for plating, adsorbing the catalyst, and then immersing in a plating solution to deposit the plating. It is. At this time, the conductor layer is covered not only on the surface of the resin insulating layer 9 but also on the entire surface of the through hole 21 and the blind hole. Next, a predetermined circuit pattern is formed on the conductor layer on the surface of the resin insulating layer 9 according to a conventional method (subtractive method, semi-additive method, etc.), and outermost layer conductor patterns 10 are formed on both sides as shown in FIG. . At this time, the plated layer is also formed in the through-hole 21 as described above. As a result, the connection portion 22 of the outermost layer conductor pattern 10 and the connection portion 3a of the inner layer conductor pattern 3 of the multilayer printed wiring board are formed. They are electrically connected to each other, and a through hole 20 is formed. In the case of manufacturing a multilayer printed wiring board, the resin insulating layer and the conductor layer may be built up alternately. In the above build-up, an example in which the resin insulating layer and the conductor layer are formed on the multilayer substrate has been described. However, a single-sided substrate or a double-sided substrate may be used instead of the multilayer substrate.

前記したように、多層プリント配線板の層間絶縁層を形成するために用いる組成物としては、一般にエポキシ樹脂組成物が用いられている。しかしながら、従来のエポキシ樹脂組成物の硬化皮膜では、粗化処理により良好な凸凹状の粗化面を形成し難いため、導体層との密着強度が低いという問題があった。
また、電子機器の小型化、高性能化の進展に伴い、多層プリント配線板のビルドアップ層が複層化され、ビアホールが複数のビルドアップ絶縁層にまたがって接続されたスタッガードビア、スタックトビアと呼ばれる多段ビア構造を有する多層プリント配線板の需要が高まっている。このような多段ビア構造を有する多層プリント配線板では、ビアホールを接続する銅配線と絶縁層との熱膨張係数が大きく異なるため、サーマルサイクル等の信頼性試験を行うと、銅配線又は絶縁層にクラックが入る等の問題が発生していた。
As described above, an epoxy resin composition is generally used as a composition used for forming an interlayer insulating layer of a multilayer printed wiring board. However, the conventional cured film of the epoxy resin composition has a problem that the adhesion strength with the conductor layer is low because it is difficult to form a good uneven surface by roughening treatment.
In addition, with the progress of miniaturization and higher performance of electronic equipment, the build-up layer of multilayer printed wiring boards has become multi-layered, and staggered vias and stacked vias in which via holes are connected across multiple build-up insulating layers There is an increasing demand for multilayer printed wiring boards having a multi-stage via structure called “A”. In the multilayer printed wiring board having such a multi-stage via structure, the thermal expansion coefficient of the copper wiring connecting the via hole and the insulating layer is greatly different. Therefore, when a reliability test such as a thermal cycle is performed, the copper wiring or the insulating layer Problems such as cracks occurred.

そこで、絶縁層を構成する樹脂組成物の熱膨張率を低く抑え、めっきにより形成される導体層のピール強度(引き剥がし強度)を高めるために、(a)1分子中に2以上のエポキシ基を有し、温度20℃で液状であるエポキシ樹脂、(b)1分子中に3以上のエポキシ基を有し、エポキシ当量が200以下である芳香族系の固形エポキシ樹脂、(c)フェノール系硬化剤、(d)ガラス転移温度が100℃以上である、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂及びポリアミドイミド樹脂からなる群より選ばれる一種以上の樹脂を含み、成分(a)と成分(b)のエポキシ樹脂の割合が重量比で1:0.3〜1:2であり、樹脂組成物中のエポキシ基と成分(c)のフェノール系硬化剤のフェノール性水酸基の割合が1:0.5〜1:1.5であり、成分(d)の樹脂の含有割合が樹脂組成物の2乃至20重量%である多層プリント配線板の層間絶縁用樹脂組成物が提案されている(特許文献4参照)。   Therefore, in order to suppress the thermal expansion coefficient of the resin composition constituting the insulating layer and increase the peel strength (peeling strength) of the conductor layer formed by plating, (a) two or more epoxy groups in one molecule An epoxy resin which is liquid at a temperature of 20 ° C., (b) an aromatic solid epoxy resin having 3 or more epoxy groups in one molecule and an epoxy equivalent of 200 or less, and (c) a phenolic resin A curing agent, (d) one or more resins selected from the group consisting of a phenoxy resin, a polyvinyl acetal resin, a polyamide resin and a polyamideimide resin, having a glass transition temperature of 100 ° C. or higher, and comprising component (a) and component (b ) Epoxy resin in a weight ratio of 1: 0.3 to 1: 2, and the ratio of the epoxy group in the resin composition to the phenolic hydroxyl group of the phenolic curing agent in component (c) is 1: A resin composition for interlayer insulation of a multilayer printed wiring board in which the content ratio of the resin of component (d) is 2 to 20% by weight of the resin composition is proposed (patent) Reference 4).

上記層間絶縁用樹脂組成物のように、液状エポキシ樹脂と固形エポキシ樹脂の2種類のエポキシ樹脂を含有し、またガラス転移温度が100℃以上であるフェノキシ樹脂等を含有することにより、得られる熱硬化性樹脂組成物の熱膨張率を低く抑えることができる。しかしながら、硬化前の状態(乾燥塗膜やドライフィルムやプレプレグ)において、エリクセン試験機による測定値が試験速度が遅い場合には比較的高い値を示すが、固形エポキシ樹脂の配合割合が低いため、試験速度が速い場合には低い値を示し、基板加工時のハンドリング面で未だ改善すべき点が残されていた。   Heat obtained by containing two types of epoxy resins, a liquid epoxy resin and a solid epoxy resin, and a phenoxy resin having a glass transition temperature of 100 ° C. or higher, as in the resin composition for interlayer insulation. The coefficient of thermal expansion of the curable resin composition can be kept low. However, in the state before curing (dry coating film or dry film or prepreg), the measured value by the Erichsen tester shows a relatively high value when the test speed is slow, but the blending ratio of the solid epoxy resin is low, When the test speed was high, it showed a low value, and there were still points to be improved in the handling surface when processing the substrate.

特開平7−304931号公報(特許請求の範囲)JP-A-7-304931 (Claims) 特開平7−304933号公報(特許請求の範囲)JP-A-7-304933 (Claims) 特開平11−87927号公報(特許請求の範囲)JP-A-11-87927 (Claims) 特開2005−154727号公報(特許請求の範囲)JP 2005-154727 A (Claims)

従って、本発明の目的は、基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を示すと共に、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、絶縁信頼性に優れた多層プリント配線板の層間絶縁層を形成でき、更にハンドリング面で優れた熱硬化性樹脂組成物、及びそれを用いたドライフィルムを提供することにある。
本発明の他の目的は、これらを用いることにより、導体回路層と絶縁層とを交互に積み上げたビルドアップ方式の多層プリント配線板において、めっき導体層のピール強度が高く、サーマルサイクル等の信頼性試験でクラックが生じることもなく、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を提供することにある。
Therefore, the object of the present invention is to show excellent adhesion to the substrate and the conductor, the cured film exhibits a relatively low coefficient of thermal expansion, and the peel strength (peeling strength) of the conductor layer formed by plating. It is an object of the present invention to provide a thermosetting resin composition that can form an interlayer insulating layer of a multilayer printed wiring board having high insulation reliability and that is excellent in handling reliability, and a dry film using the same.
Another object of the present invention is to use these to build up a multilayer printed wiring board in which conductor circuit layers and insulating layers are alternately stacked, in which the peel strength of the plated conductor layer is high and reliability such as thermal cycle is reliable. It is an object of the present invention to provide a multilayer printed wiring board in which an interlayer insulating layer having excellent heat resistance and electrical insulation properties is formed without causing cracks in the property test.

前記目的を達成するために、本発明によれば、(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ、(C)樹脂1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂、(D)エポキシ硬化剤、及び(E)フィラーを必須成分として含有し、上記3種のエポキシ樹脂を、質量比で(A):(B+C)=1:1〜1:10、(B):(C)=1:0.5〜1:2の割合で含有することを特徴とする多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物が提供される。   In order to achieve the above object, according to the present invention, (A) an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C., (B) three or more epoxies in one molecule A solid epoxy having a group and solid at 40 ° C., (C) a semi-solid epoxy resin having two or more epoxy groups in one molecule of resin, solid at 20 ° C. and liquid at 40 ° C. , (D) an epoxy curing agent, and (E) a filler as essential components, and the above three types of epoxy resins in a mass ratio of (A) :( B + C) = 1: 1 to 1:10, (B) : (C) = 1: 0.5-1: 2 The thermosetting resin composition for interlayer insulation materials of a multilayer printed wiring board characterized by the above-mentioned is provided.

好適な態様においては、前記液状エポキシ樹脂(A)と固形エポキシ樹脂(B)を、質量比で(A):(B)=1:0.5〜1:5の割合で含有する。さらに別の好適な態様においては、さらに(F)ガラス転移温度が100℃以上の熱可塑性樹脂、好ましくはフルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂を含有する。   In a preferred embodiment, the liquid epoxy resin (A) and the solid epoxy resin (B) are contained in a mass ratio of (A) :( B) = 1: 0.5 to 1: 5. In still another preferred embodiment, (F) a thermoplastic resin having a glass transition temperature of 100 ° C. or higher, preferably a thermoplastic polyhydroxy polyether resin having a fluorene skeleton is contained.

さらに本発明によれば、前記熱硬化性樹脂組成物の薄膜を支持ベースフィルム上に形成してなることを特徴とするドライフィルムも提供される。
さらにまた、本発明によれば、内層回路基板上に樹脂絶縁層及び回路パターンの導体層が順次形成されてなる多層プリント配線板において、上記樹脂絶縁層が、前記熱硬化性樹脂組成物の硬化皮膜又はドライフィルムから成り、かつその表面の導体層との界面が粗化処理によって微細凹凸状の粗化面に形成されており、上記導体層は該粗化面を介して樹脂絶縁層と接合されてなることを特徴とする多層プリント配線板が提供される。
Furthermore, according to this invention, the dry film formed by forming the thin film of the said thermosetting resin composition on a support base film is also provided.
Furthermore, according to the present invention, in the multilayer printed wiring board in which the resin insulating layer and the conductor layer of the circuit pattern are sequentially formed on the inner circuit board, the resin insulating layer is a cured resin of the thermosetting resin composition. It consists of a film or a dry film, and the interface with the conductor layer on the surface is formed on a rough surface with fine irregularities by roughening treatment, and the conductor layer is bonded to the resin insulating layer via the roughened surface. Thus, a multilayer printed wiring board is provided.

本発明の熱硬化性樹脂組成物は、(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂、(C)1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂を、前記した特定の配合比率で組み合わせて含有するため、基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を示し、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、絶縁信頼性に優れた層間絶縁層を形成できる。そのため、多層プリント配線板の層間絶縁層として最適である。
従って、本発明の熱硬化性樹脂組成物又はそのドライフィルムを、導体回路層と絶縁層とを交互に積み上げるビルドアップ方式に用いることにより、めっき導体層のピール強度が高く、サーマルサイクル等の信頼性試験でクラックが生じることもなく、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。
The thermosetting resin composition of the present invention has (A) an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C., and (B) having three or more epoxy groups in one molecule. A solid epoxy resin that is solid at 40 ° C., (C) a semi-solid epoxy resin that has two or more epoxy groups in one molecule, is solid at 20 ° C., and is liquid at 40 ° C. Since it is contained in combination at a specific blending ratio, it exhibits excellent adhesion to the substrate and the conductor, its cured film exhibits a relatively low coefficient of thermal expansion, and the peel strength of the conductor layer formed by plating ( It is possible to form an interlayer insulating layer having high peel strength and excellent insulation reliability. Therefore, it is optimal as an interlayer insulating layer of a multilayer printed wiring board.
Therefore, by using the thermosetting resin composition of the present invention or a dry film thereof in a build-up method in which conductor circuit layers and insulating layers are alternately stacked, the peel strength of the plated conductor layer is high, and reliability such as thermal cycle is ensured. It is possible to produce a multilayer printed wiring board on which an interlayer insulating layer having excellent heat resistance and electrical insulation properties is formed without causing cracks in the property test.

従来のビルドアップ法により作製した多層プリント配線板の概略構成を示す部分断面図である。It is a fragmentary sectional view which shows schematic structure of the multilayer printed wiring board produced by the conventional buildup method. エポキシ樹脂の液状判定に用いた2本の試験管を示す概略側面図である。It is a schematic side view which shows the two test tubes used for the liquid determination of the epoxy resin.

本発明者らは、前記した課題を解決すべく鋭意研究した結果、(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂、(C)1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂を、前記した特定の配合比率で組み合わせて含有する場合、基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を示し、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、高耐熱性と粗化処理による粗化性を併せ有する多層プリント配線板の層間絶縁層として最適であることを見出し、本発明を完成するに至ったものである。即ち、2官能の液状エポキシ樹脂(A)と3官能以上の固形エポキシ樹脂(B)の組み合わせの場合、液状エポキシ樹脂(A)の配合割合が高いと、樹脂組成物を基材に塗布する際の粘着性が高くなり、またドライフィルムとして基材にラミネートする際に樹脂の滲み出しが多くなる。逆に固形エポキシ樹脂(B)の配合割合が高いと、乾燥皮膜の充分な可撓性が得られなくなり、乾燥皮膜にクラックや粉落ちが発生したり、エリクセン試験による密着強度測定の際に剥がれや割れを生じてしまう。また、回路基板へのラミネートの際に、ビアホールやスルーホール内を充填するだけの樹脂組成物の充分な流動性が得られない傾向にある。本発明者らの研究によれば、これら2官能の液状エポキシ樹脂(A)と3官能以上の固形エポキシ樹脂(B)に、さらに1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂(C)を前記した特定の配合比率で組み合わせて用いれば、上記のような問題もなく、得られる熱硬化性樹脂組成物は基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を維持し、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、絶縁信頼性に優れた層間絶縁層を形成できることが見出された。また、熱可塑性樹脂(F)が混在することにより、粗面化処理の際のフィラーの脱離が容易となり、安定した粗化面を形成できると共に、そのアンカー効果によりめっき導体層のピール強度が高く、耐熱性や電気絶縁性等に優れた層間絶縁層が形成された多層プリント配線板を製造することができる。   As a result of diligent research to solve the above problems, the present inventors have (A) an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C., and (B) in one molecule. Solid epoxy resin having 3 or more epoxy groups and solid at 40 ° C., (C) 2 or more epoxy groups in one molecule, solid at 20 ° C. and liquid at 40 ° C. When a semi-solid epoxy resin is contained in combination with the above-mentioned specific blending ratio, it exhibits excellent adhesion to the substrate and conductor, and its cured film exhibits a relatively low coefficient of thermal expansion and is formed by plating. In order to complete the present invention, it is found that the conductor layer has a high peel strength (peeling strength) and is optimal as an interlayer insulating layer of a multilayer printed wiring board having both high heat resistance and roughening properties by roughening treatment. It has come. That is, in the case of a combination of a bifunctional liquid epoxy resin (A) and a trifunctional or higher functional solid epoxy resin (B), when the blending ratio of the liquid epoxy resin (A) is high, the resin composition is applied to the substrate. The adhesiveness of the resin becomes high, and the resin oozes out more when it is laminated on a substrate as a dry film. Conversely, if the blending ratio of the solid epoxy resin (B) is high, sufficient flexibility of the dried film cannot be obtained, and cracks and powder fall off in the dried film, or peeling off when measuring the adhesion strength by the Eriksen test. Or cracks. In addition, when laminating to a circuit board, sufficient fluidity of the resin composition sufficient to fill the via hole or the through hole tends not to be obtained. According to the study by the present inventors, these bifunctional liquid epoxy resin (A) and trifunctional or higher solid epoxy resin (B) have two or more epoxy groups in one molecule, and at 20 ° C. If the semi-solid epoxy resin (C) that is solid and is liquid at 40 ° C. is used in combination at the above-described specific blending ratio, the obtained thermosetting resin composition is a base material without the above-mentioned problems. Excellent adhesion to the conductor, the cured film maintains a relatively low coefficient of thermal expansion, the peel strength of the conductor layer formed by plating is high, and the insulation reliability is excellent It has been found that an interlayer insulating layer can be formed. In addition, the inclusion of the thermoplastic resin (F) facilitates the removal of the filler during the roughening treatment, can form a stable roughened surface, and the anchor effect increases the peel strength of the plated conductor layer. A multilayer printed wiring board on which an interlayer insulating layer that is high and excellent in heat resistance, electrical insulation and the like is formed can be manufactured.

以下、本発明の熱硬化性樹脂組成物の各構成成分について詳細に説明する。
まず、エポキシ樹脂としては、前記したように、(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂、(C)1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂を、組み合わせて用いる必要がある。ここで、本明細書でいう「液状」の判定方法について説明する。
Hereinafter, each component of the thermosetting resin composition of the present invention will be described in detail.
First, as described above, as an epoxy resin, (A) an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C., and (B) three or more epoxy groups in one molecule. A solid epoxy resin that is solid at 40 ° C., (C) a semi-solid epoxy resin that has two or more epoxy groups in one molecule, is solid at 20 ° C., and is liquid at 40 ° C. Must be used in combination. Here, the “liquid” determination method referred to in this specification will be described.

液状の判定は、危険物の試験及び性状に関する省令(平成元年自治省令第1号)の別紙第2の「液状の確認方法」に準じて行う。
(1)装置
恒温水槽:攪拌機、ヒーター、温度計、自動温度調節器(±0.1℃で温度制御が可能なもの)を備えたもので深さ150mm以上のものを用いる。
尚、後述する実施例で用いたエポキシ樹脂の判定では、いずれもヤマト科学(株)製の低温恒温水槽(型式BU300)と投入式恒温装置サーモメイト(型式BF500)の組み合わせを用い、水道水約22リットルを低温恒温水槽(型式BU300)に入れ、これに組み付けられたサーモメイト(型式BF500)の電源を入れて設定温度(20℃又は40℃)に設定し、水温を設定温度±0.1℃にサーモメイト(型式BF500)で微調整したが、同様の調整が可能な装置であればいずれも使用できる。
Judgment of liquid state shall be made in accordance with the second “Liquid Confirmation Method” of the Ministerial Ordinance on Dangerous Goods Testing and Properties (Ministry of Local Government Ordinance No. 1 of 1989).
(1) Apparatus Constant-temperature water bath: A device equipped with a stirrer, a heater, a thermometer, and an automatic temperature controller (with temperature control at ± 0.1 ° C.) having a depth of 150 mm or more.
In the determination of the epoxy resin used in the examples to be described later, a combination of a low temperature thermostatic water tank (model BU300) manufactured by Yamato Scientific Co., Ltd. and a thermostat (model BF500) of the input type thermostatic apparatus (model BF500) is used. Put 22 liters in a low temperature constant temperature water bath (model BU300), turn on the thermomate (model BF500) assembled to it and set it to the set temperature (20 ° C or 40 ° C), and set the water temperature to the set temperature ± 0.1 Although fine adjustment was performed with a thermomate (model BF500) at 0 ° C., any apparatus capable of the same adjustment can be used.

試験管:
試験官としては、図2に示すように、内径30mm、高さ120mmの平底円筒型透明ガラス製のもので、管底から55mm及び85mmの高さのところにそれぞれ標線31,32が付され、試験管の口をゴム栓33aで密閉した液状判定用試験管30aと、同じサイズで同様に標線が付され、中央に温度計を挿入・支持するための孔があけられたゴム栓33bで試験管の口を密閉し、ゴム栓33bに温度計34を挿入した温度測定用試験管30bを用いる。以下、管底から55mmの高さの標線を「A線」、管底から85mmの高さの標線を「B線」という。
温度計34としては、JIS B7410(1982)「石油類試験用ガラス製温度計」に規定する凝固点測定用のもの(SOP−58目盛範囲20〜50℃)を用いるが、0〜50℃の温度範囲が測定できるものであればよい。
Test tube:
As shown in FIG. 2, the examiner is made of a flat bottom cylindrical transparent glass having an inner diameter of 30 mm and a height of 120 mm, and marked lines 31 and 32 are respectively provided at heights of 55 mm and 85 mm from the tube bottom. The test tube 30a for liquid judgment with the test tube 30a sealed with a rubber plug 33a is the same size as that of the test tube 30a. The rubber plug 33b is similarly provided with a marked line and a hole for inserting and supporting a thermometer in the center. A test tube 30b for temperature measurement in which the mouth of the test tube is sealed and a thermometer 34 is inserted into the rubber plug 33b is used. Hereinafter, a marked line having a height of 55 mm from the tube bottom is referred to as “A line”, and a marked line having a height of 85 mm from the tube bottom is referred to as “B line”.
As the thermometer 34, the one for freezing point measurement (SOP-58 scale range 20-50 ° C) specified in JIS B7410 (1982) "Petroleum test glass thermometer" is used, but the temperature is 0-50 ° C. It is sufficient if the range can be measured.

(2)試験の実施手順
温度20±5℃の大気圧下で24時間以上放置した試料を、図2(a)に示す液状判定用試験管30aと図2(b)に示す温度測定用試験管30bにそれぞれA線まで入れる。2本の試験管30a,30bを低温恒温水槽にB線が水面下になるように直立させて静置する。温度計は、その下端がA線よりも30mm下となるようにする。
試料温度が設定温度±0.1℃に達してから10分間そのままの状態を保持する。10分後、液状判断用試験管30aを低温恒温水槽から取り出し、直ちに水平な試験台の上に水平に倒し、試験管内の液面の先端がA線からB線まで移動した時間をストップウォッチで測定し、記録する。試料は、設定温度において、測定された時聞が90秒以内のものを液状、90秒を超えるものを固体状と判定する。
(2) Test procedure The liquid test tube 30a shown in FIG. 2 (a) and the temperature measurement test shown in FIG. 2 (b) were prepared for 24 hours or more at atmospheric pressure of 20 ± 5 ° C. Insert up to line A in each tube 30b. The two test tubes 30a and 30b are left standing in a low temperature constant temperature water bath so that the line B is below the water surface. The thermometer has its lower end 30 mm below the A line.
The sample temperature is maintained for 10 minutes after the sample temperature reaches the set temperature ± 0.1 ° C. Ten minutes later, the test tube 30a for liquid judgment is taken out of the low-temperature water bath and immediately tilted horizontally on a horizontal test stand, and the time when the tip of the liquid level in the test tube has moved from the A line to the B line is measured with a stopwatch. Measure and record. A sample is determined to be liquid when the measured temperature is 90 seconds or less at a set temperature, and solid when it exceeds 90 seconds.

前記1分子中に2以上のエポキシ基を有し、温度20℃で液状であるエポキシ樹脂(A)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。尚、成分(A)のエポキシ樹脂は温度20℃未満で液状であってもよいことは勿論である。また、エポキシ樹脂としては硬化物の好ましい物性等の観点から芳香族系エポキシ樹脂が好ましい。尚、本明細書において、芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。従って成分(A)としては「1分子中に2以上のエポキシ基を有し、温度20℃で液状である芳香族系エポキシ樹脂」がより好ましい。これらのエポキシ樹脂は、単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。   The epoxy resin (A) having two or more epoxy groups in one molecule and being liquid at a temperature of 20 ° C. includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, tert-butyl. -A catechol type epoxy resin, a glycidyl amine type epoxy resin, an aminophenol type epoxy resin, an alicyclic epoxy resin, etc. are mentioned. Of course, the epoxy resin of component (A) may be liquid at a temperature of less than 20 ° C. The epoxy resin is preferably an aromatic epoxy resin from the viewpoint of preferable physical properties of the cured product. In the present specification, the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in the molecule. Therefore, as the component (A), “an aromatic epoxy resin having two or more epoxy groups in one molecule and being liquid at a temperature of 20 ° C.” is more preferable. These epoxy resins may be used alone or in combination of two or more.

前記1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂(B)としては、DIC(株)製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬(株)製NC−7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬(株)EPPN−502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC(株)製エピクロンHP−7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬(株)製NC−3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;DIC(株)製エピクロンN660、エピクロンN690、日本化薬(株)製EOCN−104S等のノボラック型エポキシ樹脂;日産化学工業(株)製TEPIC等のトリス(2,3−エポキシプロピル)イソシアヌレートなどが挙げられる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて用いてもよい。特に低い熱膨張性を付与するためには、ナフタレン骨格を含有するエポキシ樹脂を用いることが好ましい。   As the solid epoxy resin (B) having 3 or more epoxy groups in one molecule and solid at 40 ° C., EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC Corporation, Nippon Kayaku Co., Ltd. ) NC-7000 (Naphthalene skeleton-containing polyfunctional solid epoxy resin) and other naphthalene type epoxy resins; Nippon Kayaku Co., Ltd. EPPN-502H (trisphenol epoxy resin) and other phenols and aromatic aldehydes having a phenolic hydroxyl group Condensate epoxidized product (trisphenol type epoxy resin); Dicyclopentadiene aralkyl type epoxy resin such as Epiklon HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC Corporation; Nippon Kayaku ( NC-3000H (polyfunctional solid epoxy resin containing biphenyl skeleton), etc. Biphenyl aralkyl type epoxy resins; DIC Corporation Epicron N660, Epicron N690, Nippon Kayaku Co., Ltd. EOCN-104S and other novolak type epoxy resins; Nissan Chemical Industries, Ltd. TEPIC etc. Tris (2,3- And epoxypropyl) isocyanurate. These epoxy resins may be used alone or in combination of two or more. In order to impart particularly low thermal expansion properties, it is preferable to use an epoxy resin containing a naphthalene skeleton.

前記1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂(C)としては、DIC(株)製エピクロン860、エピクロン900−IM、エピクロンEXA―4816、エピクロンEXA−4822、旭チバ(株)製アラルダイトAER280、東都化成(株)製エポトートYD−134、ジャパンエポキシレジン(株)製JER834、JER872、住友化学工業(株)製ELA−134等のビスフェノールA型エポキシ樹脂;DIC(株)製エピクロンHP−4032等のナフタレン型エポキシ樹脂;DIC(株)製エピクロンN−740等のフェノールノボラック型エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the semi-solid epoxy resin (C) having two or more epoxy groups in one molecule, solid at 20 ° C. and liquid at 40 ° C., DIC Corporation Epicron 860, Epicron 900-IM , Epicron EXA-4816, Epicron EXA-4822, Araldite AER280 manufactured by Asahi Ciba Co., Ltd., Epototo YD-134 manufactured by Tohto Kasei Co., Ltd. JER834, JER872 manufactured by Japan Epoxy Resin Co., Ltd., ELA manufactured by Sumitomo Chemical Co., Ltd. Bisphenol A type epoxy resins such as -134; naphthalene type epoxy resins such as Epicron HP-4032 manufactured by DIC Corporation; and phenol novolac epoxy resins such as Epicron N-740 manufactured by DIC Corporation. These epoxy resins may be used alone or in combination of two or more.

本発明に用いる前記した(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂、及び(C)1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂の3種のエポキシ樹脂の組成物中の配合割合は、質量比で(A):(B+C)=1:1〜1:10、好ましくは1:2〜1:10、(B):(C)=1:0.5〜1:2の割合が望ましい。また、前記液状エポキシ樹脂(A)と固形エポキシ樹脂(B)の配合割合は、質量比で(A):(B)=1:0.5〜1:5の割合が望ましい。液状エポキシ樹脂(A)が上記割合を超えて多すぎると、樹脂組成物の粘着性が高くなり、またドライフィルムとして基材にラミネートする際に樹脂の滲み出しが多くなる。一方、固形エポキシ樹脂(B)が上記割合超えて多すぎると、乾燥皮膜の充分な可撓性が得られなくなり、乾燥皮膜にクラックや粉落ちが発生したり、エリクセン試験による密着強度測定の際に剥がれや割れを生じてしまう。また、半固形エポキシ樹脂(C)が上記割合を外れると、液状エポキシ樹脂(A)や固形エポキシ樹脂(B)使用による問題が生じやすくなる。尚、液状エポキシ樹脂(A)は、得られる硬化皮膜の密着性向上に寄与し、固形エポキシ樹脂(B)は、ガラス転移点を上昇させるのに寄与するので、これらの比率を調整することにより上記特性のバランスを調整することが可能となる。   (A) The epoxy resin which has two or more epoxy groups in one molecule and is liquid at 20 ° C., and (B) has three or more epoxy groups in one molecule and is used at 40 ° C. Solid epoxy resin that is solid, and (C) three types of epoxy resins that have two or more epoxy groups in one molecule, are solid at 20 ° C., and are liquid at 40 ° C. The blending ratio in the composition is (A) :( B + C) = 1: 1 to 1:10, preferably 1: 2 to 1:10, (B) :( C) = 1: 0.5 by mass ratio. A ratio of ˜1: 2 is desirable. The blending ratio of the liquid epoxy resin (A) and the solid epoxy resin (B) is preferably a ratio of (A) :( B) = 1: 0.5 to 1: 5 in terms of mass ratio. If the amount of the liquid epoxy resin (A) exceeds the above ratio, the adhesiveness of the resin composition becomes high, and the resin oozes out when laminated as a dry film on a substrate. On the other hand, if the amount of the solid epoxy resin (B) is too much in excess of the above ratio, sufficient flexibility of the dry film cannot be obtained, and cracks and powder fall off may occur in the dry film, or when measuring the adhesion strength by the Eriksen test. Will cause peeling or cracking. Moreover, when a semi-solid epoxy resin (C) remove | deviates from the said ratio, the problem by liquid epoxy resin (A) or solid epoxy resin (B) use will arise easily. In addition, since a liquid epoxy resin (A) contributes to the adhesive improvement of the cured film obtained, and a solid epoxy resin (B) contributes to raising a glass transition point, adjusting these ratios. It becomes possible to adjust the balance of the above characteristics.

前記エポキシ硬化剤(D)としては、従来公知の各種エポキシ樹脂硬化剤もしくはエポキシ樹脂硬化促進剤を配合することができる。例えば、フェノール樹脂、イミダゾール化合物、酸無水物、脂肪族アミン、脂環族ポリアミン、芳香族ポリアミン、第3級アミン、ジシアンジアミド、グアニジン類、又はこれらのエポキシアダクトやマイクロカプセル化したもののほか、トリフェニルホスフィン、テトラフェニルホスフォニウム、テトラフェニルボレート等の有機ホスフィン系化合物、DBUもしくはその誘導体など、硬化剤もしくは硬化促進剤の如何に拘らず、公知慣用のものを単独であるいは2種以上組み合わせて使用することができる。これらのエポキシ硬化剤は、前記エポキシ樹脂(A)〜(C)の合計量100質量部に対して、0.1〜50質量部の範囲で配合することが好ましい。その配合量が上記範囲よりも少ないと硬化不足となり、一方、上記範囲を超えて多量に配合しても硬化促進効果を増大させることはなく、却って耐熱性や機械強度を損なう問題が生じ易いので好ましくない。   As said epoxy hardening | curing agent (D), conventionally well-known various epoxy resin hardening | curing agents or an epoxy resin hardening accelerator can be mix | blended. For example, phenol resins, imidazole compounds, acid anhydrides, aliphatic amines, alicyclic polyamines, aromatic polyamines, tertiary amines, dicyandiamide, guanidines, or epoxy adducts or microencapsulated products thereof, triphenyl Regardless of the curing agent or curing accelerator, such as organic phosphine compounds such as phosphine, tetraphenylphosphonium, tetraphenylborate, DBU or its derivatives, etc., any known and commonly used ones may be used alone or in combination of two or more. can do. These epoxy curing agents are preferably blended in the range of 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resins (A) to (C). If the blending amount is less than the above range, curing will be insufficient.On the other hand, even if blended in a large amount exceeding the above range, the curing acceleration effect will not be increased, and on the contrary, the problem of impairing heat resistance and mechanical strength is likely to occur. It is not preferable.

前記したエポキシ硬化剤の中でも、フェノール樹脂やイミダゾール化合物が好ましい。フェノール樹脂としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類など公知慣用のものを、単独であるいは2種以上組み合わせて使用することができる。   Of the above-described epoxy curing agents, phenol resins and imidazole compounds are preferable. As the phenolic resin, known or commonly used phenolic novolac resins, alkylphenolic volac resins, bisphenol A novolac resins, dicyclopentadiene type phenolic resins, Xylok type phenolic resins, terpene modified phenolic resins, polyvinylphenols, alone or 2 It can be used in combination of more than one species.

また、イミダゾール化合物は、組成物中の溶剤を乾燥するときの温度域(80℃〜130℃)では反応が緩やかで、硬化時の温度域(150℃〜200℃)では充分に反応を進めることができ、硬化物の物性を充分発現させる点で好ましい。また、イミダゾール化合物は、銅回路及び銅箔との密着性に優れている点でも好ましい。特に好ましいものの具体例としては、2−エチル4−メチルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、ビス(2−エチル−4−メチル−イミダゾール)、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、トリアジン付加型イミダゾール等が挙げられ、単独であるいは2種以上組み合わせて使用することができる。   In addition, the reaction of the imidazole compound is slow in the temperature range (80 ° C. to 130 ° C.) when drying the solvent in the composition, and sufficiently proceeds in the temperature range during curing (150 ° C. to 200 ° C.). This is preferable in that the physical properties of the cured product can be sufficiently expressed. Moreover, an imidazole compound is preferable also at the point which is excellent in adhesiveness with a copper circuit and copper foil. Specific examples of particularly preferable ones include 2-ethyl 4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, bis (2-ethyl-4-methyl-imidazole), 2- Examples include phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, triazine addition type imidazole, and the like. These can be used alone or in combination of two or more.

次に、前記フィラー(E)としては従来公知の全ての無機充填剤及び有機充填剤が使用でき、特定のものに限定されないが、粗化処理により硬化皮膜表面に微細凹凸状の粗化面を形成する作用は、主として粗化液が硬化皮膜とフィラーの界面に浸透し、硬化皮膜表面のフィラーが抜け落ちることによるものであるため、粗化液との親和性が良好な無機フィラーが好ましい。無機フィラーとしては、例えば、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の体質顔料や、銅、錫、亜鉛、ニッケル、銀、パラジウム、アルミニウム、鉄、コバルト、金、白金等の金属粉体が挙げられる。これらの無機フィラーは、粗化処理による微細凹凸状の粗化面の形成作用の他に、塗膜の硬化収縮を抑制し、密着性、硬度などの特性を向上させるのにも寄与する。これらの無機フィラーの中でも、粗化液により侵され難いシリカや硫酸バリウムが好ましく、特に組成物中に高い割合で配合可能な点から、球状シリカが好ましい。フィラーの平均粒径は3μm以下であることが好ましく、更に好ましくは1μm以下が望ましい。   Next, as the filler (E), all conventionally known inorganic fillers and organic fillers can be used, and the filler (E) is not limited to specific ones. The action to be formed is mainly due to the roughening liquid penetrating into the interface between the cured film and the filler and the filler on the surface of the cured film falling off, so that an inorganic filler having good affinity with the roughening liquid is preferable. Examples of inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride. And extender pigments such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum. These inorganic fillers contribute to the improvement of properties such as adhesion and hardness by suppressing the curing shrinkage of the coating film in addition to the action of forming a rough surface with fine irregularities by the roughening treatment. Among these inorganic fillers, silica and barium sulfate which are not easily attacked by the roughening liquid are preferable, and spherical silica is particularly preferable because it can be blended in a high ratio in the composition. The average particle size of the filler is preferably 3 μm or less, more preferably 1 μm or less.

フィラー(E)の配合量は、前記エポキシ樹脂(A)〜(C)の合計量100質量部に対して、40〜200質量部、好ましくは50〜150質量部の割合が適当である。フィラーの配合量が上記範囲よりも少なくなると、良好な微細凹凸状の粗化面の形成が困難となり、一方、上記範囲を超えると、組成物の流動性が悪くなるので好ましくない。   The proportion of the filler (E) is 40 to 200 parts by mass, preferably 50 to 150 parts by mass, with respect to 100 parts by mass of the total amount of the epoxy resins (A) to (C). When the blending amount of the filler is less than the above range, it is difficult to form a good rough surface having a rough surface, and when it exceeds the above range, the fluidity of the composition is deteriorated.

本発明の熱硬化性樹脂組成物は、得られる硬化皮膜の機械的強度を向上させるために、さらにガラス転移温度が100℃以上の熱可塑性樹脂(F)、例えば後述する熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂等を単独で、又は2種以上を組み合わせて含有することができる。熱可塑性樹脂(F)のガラス転移温度が100℃未満であると、硬化物の機械強度が充分でなく、粗化後の硬化物表面に無機充填材が析出しやすく、充分なめっき導体層のピール強度を得ることが困難となる。ガラス転移温度は、JIS(日本工業規格) K7197に記載の方法に従って決定される。なお、ガラス転移温度が分解温度よりも高いため、実際にはガラス転移温度が観測されない場合も本発明に言う「ガラス転移温度が100℃以上である」の定義内に含まれる。なお、分解温度とは、JIS K7120に記載の方法に従って測定したときの質量減少率が5%となる温度で定義される。   The thermosetting resin composition of the present invention is a thermoplastic resin (F) having a glass transition temperature of 100 ° C. or higher, for example, a thermoplastic polyhydroxy polyether described later, in order to improve the mechanical strength of the resulting cured film. Resin, phenoxy resin which is a condensate of epichlorohydrin and various bifunctional phenol compounds, or phenoxy resin obtained by esterifying the hydroxyl group of the hydroxy ether moiety in the skeleton using various acid anhydrides or acid chlorides, polyvinyl acetal resin, Polyamide resins, polyamideimide resins and the like can be contained alone or in combination of two or more. When the glass transition temperature of the thermoplastic resin (F) is less than 100 ° C., the mechanical strength of the cured product is not sufficient, and the inorganic filler tends to precipitate on the surface of the cured product after roughening, and a sufficient plated conductor layer It becomes difficult to obtain peel strength. The glass transition temperature is determined according to the method described in JIS (Japanese Industrial Standard) K7197. In addition, since the glass transition temperature is higher than the decomposition temperature, the case where the glass transition temperature is not actually observed is also included in the definition of “the glass transition temperature is 100 ° C. or higher” in the present invention. The decomposition temperature is defined as a temperature at which the mass reduction rate is 5% when measured according to the method described in JIS K7120.

フェノキシ樹脂の具体例としては東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YX8100、YL6954、YL6974等が挙げられる。ポリビニルアセタール樹脂の具体例としては、積水化学工業(株)製エスレックKSシリーズ、ポリアミド樹脂としては日立化成工業(株)製KS5000シリーズ、日本化薬(株)製BPシリーズ、さらにポリアミドイミド樹脂としては日立化成工業(株)製KS9000シリーズ等が挙げられる。   Specific examples of the phenoxy resin include FX280, FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YL6954, YL6974 manufactured by Japan Epoxy Resin Co., Ltd., and the like. Specific examples of the polyvinyl acetal resin include SLECK KS series manufactured by Sekisui Chemical Co., Ltd., as the polyamide resin, KS5000 series manufactured by Hitachi Chemical Co., Ltd., BP series manufactured by Nippon Kayaku Co., Ltd., and further as polyamideimide resin Examples include KS9000 series manufactured by Hitachi Chemical Co., Ltd.

前記した熱可塑性樹脂の中でも、フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂が好ましい。熱可塑性ポリヒドロキシポリエーテル樹脂は、フルオレン骨格を有することにより高いガラス転移点を有し、耐熱性に優れるため、エポキシ樹脂(A)〜(C)による低い熱膨張率を維持すると共にそのガラス転移点を維持し、得られる硬化皮膜は低い熱膨張率と高いガラス転移点をバランス良く併せ有するものとなる。また、熱可塑性ポリヒドロキシポリエーテル樹脂は水酸基を有するため、基材及び導体に対して良好な密着性を示すと共に、得られる硬化皮膜は粗化剤により侵され難いが、水溶液の形態の粗化液は硬化皮膜とフィラーの界面に浸透し易いので、粗化処理により硬化皮膜表面のフィラーが抜け落ち易くなり、良好な粗化面を形成し易くなる。   Among the above-described thermoplastic resins, a thermoplastic polyhydroxy polyether resin having a fluorene skeleton is preferable. The thermoplastic polyhydroxy polyether resin has a high glass transition point due to having a fluorene skeleton, and is excellent in heat resistance. Therefore, while maintaining a low coefficient of thermal expansion due to the epoxy resins (A) to (C), its glass transition. The cured film obtained by maintaining the point has a low thermal expansion coefficient and a high glass transition point in a well-balanced manner. In addition, since the thermoplastic polyhydroxypolyether resin has a hydroxyl group, it exhibits good adhesion to the substrate and the conductor, and the cured film obtained is not easily affected by the roughening agent, but the aqueous solution is roughened. Since the liquid easily penetrates into the interface between the cured film and the filler, the roughening treatment makes it easy for the filler on the surface of the cured film to come off, and it becomes easy to form a good roughened surface.

前記フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂としては、例えば下記一般式(1)で示される熱可塑性ポリヒドロキシポリエーテル樹脂を好適に用いることができる。

Figure 0005632887
上記一般式(1)において、Xは下記一般式(2)又は(3)で示されるものであり、一般式(1)における全Xに対する一般式(3)の割合は8%以上であり、Zは水素原子又はグリシジル基であり、nは21以上の整数である。 As the thermoplastic polyhydroxy polyether resin having the fluorene skeleton, for example, a thermoplastic polyhydroxy polyether resin represented by the following general formula (1) can be suitably used.
Figure 0005632887
In the general formula (1), X is represented by the following general formula (2) or (3), the ratio of the general formula (3) to the total X in the general formula (1) is 8% or more, Z is a hydrogen atom or a glycidyl group, and n is an integer of 21 or more.

Figure 0005632887
上記一般式(2)において、R、Rは水素原子、炭素数1〜5のアルキル基、ハロゲン原子から選ばれるものであり、Yは−SO−、−CH−、−C(CH−、又は−O−のいずれかであり、mは0又は1である。RとRは同一であってもよいし、異なっていてもよい。
Figure 0005632887
In the general formula (2), R 1 and R 2 are selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and a halogen atom, and Y is —SO 2 —, —CH 2 —, —C ( CH 3 ) 2 — or —O—, and m is 0 or 1. R 1 and R 2 may be the same or different.

Figure 0005632887
Figure 0005632887

前記フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂の分子量は、5,000〜100,000(ゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算による重量平均分子量である。)の範囲内にあることが好ましい。分子量が5,000未満では、熱可塑性が失われ、一方、分子量が100,000を超えると、溶剤で溶解したときの溶液粘度が高過ぎ、またフィラーを多量に添加することが困難になるので好ましくない。   The molecular weight of the thermoplastic polyhydroxy polyether resin having the fluorene skeleton is in the range of 5,000 to 100,000 (weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC)). Preferably there is. If the molecular weight is less than 5,000, the thermoplasticity is lost. On the other hand, if the molecular weight exceeds 100,000, the solution viscosity when dissolved in a solvent is too high, and it becomes difficult to add a large amount of filler. It is not preferable.

前記フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂には、難燃性の付与のためにハロゲンを導入しても良い。ハロゲンにより難燃性を付与する場合、ハロゲン含有量が5質量%未満では充分な難燃性を付与することは困難であり、一方、40質量%を超える濃度にしても難燃性の更なる向上は認められないことから、ハロゲン含有量は5〜40質量%の範囲に制御するのが実用的である。ハロゲン元素の種類はいずれのものでもよいが、商業生産の観点からは市販されている臭素化合物、塩素化合物、フッ素化合物を利用するのがよい。   A halogen may be introduced into the thermoplastic polyhydroxy polyether resin having a fluorene skeleton in order to impart flame retardancy. When flame retardancy is imparted by halogen, it is difficult to impart sufficient flame retardancy if the halogen content is less than 5% by mass. On the other hand, even if the concentration exceeds 40% by mass, further flame retardancy is achieved. Since no improvement is observed, it is practical to control the halogen content in the range of 5 to 40% by mass. Any type of halogen element may be used, but from the viewpoint of commercial production, commercially available bromine compounds, chlorine compounds, and fluorine compounds are preferably used.

前記フルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂の製造方法としては、二価フェノール類とエピクロルヒドリンの直接反応による方法、二価フェノール類のジグリシジルエーテルと二価フェノール類の付加重合反応による方法が知られているが、いずれの製法により得られるものであってもよい。尚、前記熱可塑性ポリヒドロキシポリエーテル樹脂の製造方法については、特開平11−269264号公報に詳しく記載されているので参照されたい。   As a method for producing the thermoplastic polyhydroxy polyether resin having the fluorene skeleton, there are a method by a direct reaction of a dihydric phenol and epichlorohydrin, and a method by an addition polymerization reaction of a diglycidyl ether of a dihydric phenol and a dihydric phenol. Although known, it may be obtained by any manufacturing method. In addition, since the manufacturing method of the said thermoplastic polyhydroxy polyether resin is described in detail in Unexamined-Japanese-Patent No. 11-269264, please refer to it.

本発明の熱硬化性樹脂組成物中の前記熱可塑性樹脂(F)の配合量は、前記エポキシ樹脂(A)〜(C)の合計量100質量部に対して、5〜50質量部、好ましくは10〜40質量部の割合が好ましい。熱可塑性樹脂(F)の配合量が上記範囲外になると、均一な粗化面状態を得られ難くなる。   The amount of the thermoplastic resin (F) in the thermosetting resin composition of the present invention is 5 to 50 parts by mass, preferably 100 parts by mass of the total amount of the epoxy resins (A) to (C). Is preferably 10 to 40 parts by mass. If the blending amount of the thermoplastic resin (F) is out of the above range, it becomes difficult to obtain a uniform roughened surface state.

また、本発明の熱硬化性樹脂組成物には、本発明の効果を損なわない量的割合で、ポリイミド樹脂、ポリフェノール樹脂、ポリシアネート樹脂、ポリエステル樹脂、熱硬化型ポリフェニレンエーテル樹脂などを添加することもできる。   In addition, polyimide resin, polyphenol resin, polycyanate resin, polyester resin, thermosetting polyphenylene ether resin, etc. should be added to the thermosetting resin composition of the present invention in a quantitative ratio that does not impair the effects of the present invention. You can also.

さらに、本発明の熱硬化性樹脂組成物は、必要に応じて、有機溶剤を含有することができる。有機溶剤としては、通常溶剤、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素の他、ジメチルホルムアミド、ジメチルアセトアミドなどを、単独で又は2種以上組み合わせて使用することができる。   Furthermore, the thermosetting resin composition of this invention can contain an organic solvent as needed. The organic solvent is usually a solvent, for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, cellosolves such as cellosolve, butylcellosolve, etc. In addition to carbitols such as carbitol and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide and the like can be used alone or in combination of two or more.

本発明の熱硬化性樹脂組成物は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知慣用の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤及び/又はレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、チタネート系、アルミニウム系の公知慣用の添加剤類を用いることができる。   The thermosetting resin composition of the present invention may further include a known and commonly used colorant such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc. , Known and commonly used thickeners such as asbestos, olben, benton, fine silica, etc., defoamers and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles, silane coupling agents, etc. Adhesiveness imparting agents, titanate-based, and aluminum-based commonly used additives can be used.

本発明の熱硬化性樹脂組成物は、フィラー(E)を含有させることにより粗化面を形成し易くしているが、その反面、表面平滑性等の劣化が発生し易くなる。この点、本発明では、上記添加剤のなかでも特に消泡剤及び/又はレベリング剤(G)を配合することにより、表面平滑性の劣化を防止し、ボイドやピンホールによる層間絶縁性の劣化も防止することができる。
消泡剤及び/又はレベリング剤(G)の具体例としては、市販されている非シリコーン系の破泡性ポリマー溶液からなる消泡剤としてビックケミー・ジャパン(株)製のBYK(登録商標)−054、−055、−057、−1790などが挙げられ、シリコーン系の消泡剤としてはビックケミー・ジャパン(株)製のBYK(登録商標)−063、−065、−066N、−067A、−077及び信越化学(株)製のKS−66(商品名)などが挙げられる。
このような消泡剤及び/又はレベリング剤(G)の配合量は、前記エポキシ樹脂(A)〜(C)と熱可塑性樹脂(F)の合計100質量部に対して、5重量部以下、好ましくは0.01〜5重量部が適当である。
The thermosetting resin composition of the present invention is easy to form a roughened surface by containing the filler (E), but on the other hand, deterioration such as surface smoothness easily occurs. In this regard, in the present invention, by blending the antifoaming agent and / or leveling agent (G) among the above additives, the surface smoothness is prevented from being deteriorated, and the interlayer insulation is deteriorated due to voids or pinholes. Can also be prevented.
As a specific example of the antifoaming agent and / or the leveling agent (G), BYK (registered trademark) − manufactured by BYK Japan Japan Co., Ltd. as an antifoaming agent comprising a commercially available non-silicone-based antifoaming polymer solution is used. 054, -055, -057, -1790, and the like. Examples of silicone-based antifoaming agents are BYK (registered trademark) -063, -065, -066N, -067A, and -077 manufactured by BYK Japan KK. And KS-66 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.
The blending amount of such an antifoaming agent and / or leveling agent (G) is 5 parts by weight or less with respect to a total of 100 parts by weight of the epoxy resins (A) to (C) and the thermoplastic resin (F). 0.01 to 5 parts by weight is preferable.

本発明の熱硬化性樹脂組成物の形態は、適度に粘度調整されたコーティング材料として提供されてもよいし、支持ベースフィルム上に熱硬化性樹脂組成物を塗布し、溶剤を乾燥させたドライフィルムとしてもよい。さらにはガラスクロス、ガラス及びアラミド不織布等のシート状繊維質基材に塗工及び/叉は含浸させて半硬化させたプリプレグシートとしてもよい。支持ベースフィルムとしては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリイミド、さらには離型紙や銅箔、アルミニウム箔の如き金属箔などが挙げられる。尚、支持ベースフィルムにはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The form of the thermosetting resin composition of the present invention may be provided as a coating material having an appropriately adjusted viscosity, or may be a dry material obtained by applying the thermosetting resin composition on a supporting base film and drying the solvent. It is good also as a film. Furthermore, it may be a prepreg sheet which is semi-cured by coating and / or impregnating a sheet-like fibrous base material such as glass cloth, glass and aramid nonwoven fabric. Examples of the supporting base film include polyolefins such as polyethylene and polyvinyl chloride, polyesters such as polyethylene terephthalate, polycarbonates and polyimides, and metal foils such as release paper, copper foil, and aluminum foil. Note that the support base film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

前記熱硬化性樹脂組成物を用いたコーティング材料、ドライフィルム、又はプリプレグは、回路が形成された内層回路基板に直接コーティングし、乾燥、硬化を行なうか、又はドライフィルムを加熱ラミネートして一体成形し、その後オーブン中で硬化、もしくは熱板プレスで硬化させてもよい。プリプレグの場合には、内層回路基板に重ね、離型フィルムを介して金属板で挟み、加圧・加熱してプレスする。   The coating material, dry film, or prepreg using the thermosetting resin composition is directly coated on the inner circuit board on which the circuit is formed, and then dried or cured, or the dry film is laminated by heating to be integrally formed. Then, it may be cured in an oven or cured by a hot plate press. In the case of a prepreg, it is placed on an inner circuit board, sandwiched between metal plates through a release film, and pressed by pressing and heating.

上記工程のうち、ラミネートもしくは熱板プレスする方法は、内層回路による微細凹凸が加熱溶融する際に解消され、そのまま硬化するので、最終的にはフラットな表面状態の多層板が得られるので好ましい。また、内層回路が形成された基材と本発明の熱硬化性樹脂組成物のフィルム又はプリプレグをラミネートもしくは熱板プレスする際に、銅箔もしくは回路形成された基材を同時に積層することもできる。   Among the above steps, the method of laminating or hot plate pressing is preferable because the fine unevenness caused by the inner layer circuit is eliminated when heated and melted and is cured as it is, so that a multilayer plate having a flat surface state can be finally obtained. Further, when laminating or hot plate pressing the base material on which the inner layer circuit is formed and the film or prepreg of the thermosetting resin composition of the present invention, the copper foil or the base material on which the circuit is formed can be laminated simultaneously. .

このようにして得られた基板に、COレーザーやUV−YAGレーザー等の半導体レーザー又はドリルにて穴をあける。穴は、基板の表と裏を導通させることを目的とする貫通穴(スルーホール)でも、内層の回路と層間絶縁層表面の回路を導通させることを目的とする部分穴(コンフォーマルビア)のどちらでもよい。 A hole is made in the substrate thus obtained with a semiconductor laser such as a CO 2 laser or a UV-YAG laser or a drill. The hole is a through hole (through hole) that is intended to connect the front and back of the substrate, but it is also a partial hole (conformal via) that is intended to connect the inner layer circuit and the circuit on the surface of the interlayer insulating layer. either will do.

穴明け後、穴の内壁や底部に存在する残渣(スミヤ)を除去することと、導体層(その後に形成する金属めっき層)とのアンカー効果を発現させるために、表面に微細凹凸状の粗化面を形成することを目的として、市販のデスミヤ液(粗化剤)又は過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤を含有する粗化液で同時に行なう。   After drilling, in order to remove the residue (smear) present on the inner wall and bottom of the hole and to develop an anchor effect with the conductor layer (the metal plating layer to be formed thereafter), a rough surface with fine irregularities For the purpose of forming a chemical surface, a commercially available desmear liquid (roughening agent) or a roughening liquid containing an oxidizing agent such as permanganate, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, etc. Do it at the same time.

次に、デスミヤ液で残渣を除去した穴や、微細凹凸状粗化面を生じた皮膜表面を形成後に、サブトラクティブ法やセミアディティブ法等により回路を形成する。いずれの方法においても、無電解めっき又は電解めっき後、あるいは両方のめっきを施した後に、金属のストレス除去、強度向上の目的で、約80〜180℃で10〜60分程度のアニールと呼ばれる熱処理を施してもよい。   Next, a circuit is formed by a subtractive method, a semi-additive method, or the like after forming a hole from which a residue has been removed with a desmear liquid or a film surface having a fine uneven rough surface. In either method, after electroless plating or electrolytic plating, or after both plating, a heat treatment called annealing at about 80 to 180 ° C. for about 10 to 60 minutes for the purpose of removing stress from the metal and improving the strength. May be applied.

ここで用いる金属めっきとしては、銅、スズ、はんだ、ニッケル等、特に制限は無く、複数組み合わせて使用することもできる。また、ここで用いるめっきの代りに金属のスパッタ等で代用することも可能である。   As metal plating used here, there is no restriction | limiting in particular, such as copper, tin, solder, nickel, etc., It can also be used in multiple combination. Further, instead of the plating used here, metal sputtering or the like can be used instead.

以下、本発明の実施例、比較例及び試験例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, although an Example, a comparative example, and a test example of this invention are shown and this invention is demonstrated concretely, it cannot be overemphasized that this invention is not limited to the following Example. In the following, “parts” and “%” are based on mass unless otherwise specified.

実施例1〜6及び比較例1〜3
下記表1に示す処方にて各成分を配合し、3本ロールミルにて混練分散し、粘度20dPa・s±10dPa・s(回転粘度計5rpm、25℃)に調整した熱硬化性樹脂組成物を得た。
Examples 1-6 and Comparative Examples 1-3
A thermosetting resin composition prepared by blending each component in the formulation shown in Table 1 below, kneading and dispersing with a three-roll mill, and adjusting the viscosity to 20 dPa · s ± 10 dPa · s (rotary viscometer 5 rpm, 25 ° C.) Obtained.

接着フィルムの作製:
前記のようにして得られた熱硬化性樹脂組成物をそれぞれ、バーコーターを用いて、フィルムの膜厚が乾燥後63μmになるようにPETフィルム(東レ株式会社製、ルミラー38R75:38μm)に塗布し、110℃で15分間乾燥して接着フィルムを得た。
Production of adhesive film:
Each of the thermosetting resin compositions obtained as described above was applied to a PET film (manufactured by Toray Industries, Inc., Lumirror 38R75: 38 μm) using a bar coater so that the film thickness of the film became 63 μm after drying. And dried at 110 ° C. for 15 minutes to obtain an adhesive film.

試験例:
前記接着フィルムを、バフ研磨した0.8mm厚の銅板に真空ラミネーター(MEIKI社製、MVLP−500)を用いて5kgf/cm、120℃、1分、1Torrの条件にて加熱ラミネートし、次いで熱板プレス機で10kgf/cm、130℃、1分の条件にてレベリングした後、熱風循環式乾燥機で150℃×30分の条件で硬化させた。
得られたサンプルについて、密着強度を測定し、以下の基準で判定した。また、得られたサンプルについて、樹脂の滲み出しについて観察し、以下の基準で判定した。その結果を、表1に併せて示す。
Test example:
The adhesive film was heat-laminated on a buffed 0.8 mm thick copper plate using a vacuum laminator (MELPI, MVLP-500) at 5 kgf / cm 2 , 120 ° C., 1 minute, 1 Torr, After leveling with a hot plate press at 10 kgf / cm 2 , 130 ° C. for 1 minute, it was cured with a hot air circulation dryer at 150 ° C. for 30 minutes.
The obtained samples were measured for adhesion strength and judged according to the following criteria. Moreover, about the obtained sample, it observed about the oozing-out of resin, and determined with the following references | standards. The results are also shown in Table 1.

密着強度:
エリクセン試験機(エリクセン社製、型式202−C)を用い、試験速度7mm/分で試験した時に、剥離もしくは割れを生じる際の押出ピンの押出長さが3mm以下のものを×、それを超えるものを○とした。
樹脂の滲み出し:
滲み出しが5mm未満のものを○、それ以上のものを×とした。
Adhesion strength:
When using an Erichsen tester (Model 202-C, manufactured by Eriksen) at a test speed of 7 mm / min, the extruding length of the extruding pin when peeling or cracking is 3 mm or less x exceeds it The thing was made into (circle).
Resin oozing:
A sample with a bleeding of less than 5 mm was marked with ◯, and a sample with more than 5 mm was marked with ×.

Figure 0005632887
Figure 0005632887

上記表1に示される結果から明らかなように、本発明の熱可塑性樹脂組成物を用いた各実施例では、樹脂の滲み出しもなく、高い密着強度を示した。これに対して、半固形エポキシ樹脂を含有しない熱硬化性樹脂組成物を用いた比較例1の場合、密着強度に劣っていた。また、固形エポキシ樹脂と半固形エポキシ樹脂の配合比率が本発明で規定する範囲を外れている熱硬化性樹脂組成物を用いた比較例2の場合、及び液状エポキシ樹脂に対する固形エポキシ樹脂+半固形エポキシ樹脂の配合比率及び液状エポキシ樹脂に対する固形エポキシ樹脂の配合比率が本発明で規定する範囲を外れている熱硬化性樹脂組成物を用いた比較例3の場合、いずれも半固形エポキシ樹脂を含有するため密着強度の点ではそれほど問題はなかったが、液状エポキシ樹脂の配合割合が高いために、樹脂の滲み出しが生じた。   As is clear from the results shown in Table 1 above, in each of the examples using the thermoplastic resin composition of the present invention, the resin did not ooze and showed high adhesion strength. On the other hand, in the case of the comparative example 1 using the thermosetting resin composition which does not contain a semi-solid epoxy resin, it was inferior to adhesive strength. Moreover, in the case of the comparative example 2 which used the thermosetting resin composition in which the compounding ratio of a solid epoxy resin and a semi-solid epoxy resin is outside the range prescribed | regulated by this invention, and solid epoxy resin + semi-solid with respect to a liquid epoxy resin In the case of Comparative Example 3 using the thermosetting resin composition in which the blending ratio of the epoxy resin and the blending ratio of the solid epoxy resin to the liquid epoxy resin are out of the range specified in the present invention, both contain a semi-solid epoxy resin. Therefore, although there was not much problem in terms of adhesion strength, since the blending ratio of the liquid epoxy resin was high, the resin oozed out.

本発明の熱硬化性樹脂組成物は、基材及び導体に対して優れた密着性を示し、その硬化皮膜は比較的低い熱膨張率を示すと共に、めっきにより形成される導体層のピール強度(引き剥がし強度)が高く、高耐熱性と粗化処理による粗化性を併せ有するため、導体回路層と絶縁層とを交互に積み上げたビルドアップ方式の多層プリント配線板の層間絶縁層の形成に有用であると共に、層間絶縁材用のドライフィルムやプリプレグの作製に有用である。   The thermosetting resin composition of the present invention exhibits excellent adhesion to the base material and the conductor, and the cured film exhibits a relatively low coefficient of thermal expansion, and the peel strength of the conductor layer formed by plating ( High peel resistance), high heat resistance, and roughening by roughening treatment, so that it can be used to form an interlayer insulating layer in a multilayer printed wiring board of build-up system in which conductor circuit layers and insulating layers are stacked alternately In addition to being useful, it is useful for producing dry films and prepregs for interlayer insulating materials.

1 絶縁基板
3 内層導体パターン
4,9 樹脂絶縁層
8 外層導体パターン
10 最外層導体パターン
20 スルーホール
30a 液状判定用試験管
30b 温度測定用試験管
31 標線(A線)
32 標線(B線)
33a,33b ゴム栓
34 温度計
X 積層基板
DESCRIPTION OF SYMBOLS 1 Insulating board 3 Inner layer conductor pattern 4,9 Resin insulating layer 8 Outer layer conductor pattern 10 Outermost layer conductor pattern 20 Through hole 30a Test tube for liquid determination 30b Test tube for temperature measurement 31 Mark (A line)
32 Mark (B line)
33a, 33b Rubber stopper 34 Thermometer X Multilayer substrate

Claims (7)

(A)1分子中に2以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂、(B)1分子中に3以上のエポキシ基を有し、40℃で固体状である固形エポキシ樹脂、(C)1分子中に2以上のエポキシ基を有し、20℃で固体状であり、40℃で液状である半固形エポキシ樹脂、(D)エポキシ硬化剤、及び(E)フィラーを必須成分として含有し、上記3種のエポキシ樹脂を、質量比で(A):(B+C)=1:1〜1:10、(B):(C)=1:0.5〜1:2の割合で含有することを特徴とする多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物。   (A) Epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. (B) Solid epoxy having three or more epoxy groups in one molecule and being solid at 40 ° C. A resin, (C) a semi-solid epoxy resin having two or more epoxy groups in one molecule, solid at 20 ° C. and liquid at 40 ° C., (D) an epoxy curing agent, and (E) a filler. It is contained as an essential component, and the above three kinds of epoxy resins are (A) :( B + C) = 1: 1 to 1:10, (B) :( C) = 1: 0.5 to 1: 2 by mass ratio. A thermosetting resin composition for an interlayer insulating material of a multilayer printed wiring board, characterized by comprising: 前記液状エポキシ樹脂(A)と固形エポキシ樹脂(B)を、質量比で(A):(B)=1:0.5〜1:5の割合で含有することを特徴とする請求項1に記載の多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物。   The liquid epoxy resin (A) and the solid epoxy resin (B) are contained in a mass ratio of (A) :( B) = 1: 0.5 to 1: 5. The thermosetting resin composition for interlayer insulation materials of the multilayer printed wiring board as described. さらに(F)ガラス転移温度が100℃以上の熱可塑性樹脂を含有することを特徴とする請求項1に記載の多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物。   The thermosetting resin composition for interlayer insulating materials for multilayer printed wiring boards according to claim 1, further comprising (F) a thermoplastic resin having a glass transition temperature of 100 ° C or higher. 前記熱可塑性樹脂(F)がフルオレン骨格を有する熱可塑性ポリヒドロキシポリエーテル樹脂であることを特徴とする請求項3に記載の多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物。   The thermosetting resin composition for an interlayer insulating material of a multilayer printed wiring board according to claim 3, wherein the thermoplastic resin (F) is a thermoplastic polyhydroxy polyether resin having a fluorene skeleton. 前記請求項1乃至4のいずれか一項に記載の多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物の薄膜を支持ベースフィルム上に形成してなることを特徴とするドライフィルム。   A dry film comprising a thin film of a thermosetting resin composition for an interlayer insulating material for a multilayer printed wiring board according to any one of claims 1 to 4 formed on a support base film. 内層回路基板上に樹脂絶縁層及び回路パターンの導体層が順次形成されてなる多層プリント配線板において、上記樹脂絶縁層が、請求項1乃至4のいずれか一項に記載の多層プリント配線板の層間絶縁材用熱硬化性樹脂組成物の硬化塗膜から成り、かつその表面の導体層との界面が粗化処理によって微細凹凸状の粗化面に形成されており、上記導体層は該粗化面を介して樹脂絶縁層と接合されてなることを特徴とする多層プリント配線板。   The multilayer printed wiring board by which the resin insulating layer and the conductor layer of a circuit pattern are formed in order on an inner layer circuit board, The said resin insulating layer is a multilayer printed wiring board as described in any one of Claims 1 thru | or 4. It is composed of a cured coating film of a thermosetting resin composition for interlayer insulating materials, and the interface with the conductor layer on the surface thereof is formed on a rough surface with fine irregularities by roughening treatment, and the conductor layer is formed of the roughened film. A multilayer printed wiring board characterized by being bonded to a resin insulating layer through a conversion surface. 内層回路基板上に樹脂絶縁層及び回路パターンの導体層が順次形成されてなる多層プリント配線板において、上記樹脂絶縁層が、請求項5に記載のドライフィルムから成り、かつその表面の導体層との界面が粗化処理によって微細凹凸状の粗化面に形成されており、上記導体層は該粗化面を介して樹脂絶縁層と接合されてなることを特徴とする多層プリント配線板。   In a multilayer printed wiring board in which a resin insulating layer and a conductor layer of a circuit pattern are sequentially formed on an inner layer circuit board, the resin insulating layer is made of the dry film according to claim 5 and has a conductor layer on the surface thereof. The multilayer printed wiring board is characterized in that the interface is formed on a rough surface with fine irregularities by a roughening treatment, and the conductor layer is bonded to the resin insulating layer through the roughened surface.
JP2012204812A 2012-09-18 2012-09-18 Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board Active JP5632887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204812A JP5632887B2 (en) 2012-09-18 2012-09-18 Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204812A JP5632887B2 (en) 2012-09-18 2012-09-18 Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008162215A Division JP5150381B2 (en) 2008-06-20 2008-06-20 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JP2013036042A JP2013036042A (en) 2013-02-21
JP5632887B2 true JP5632887B2 (en) 2014-11-26

Family

ID=47885926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204812A Active JP5632887B2 (en) 2012-09-18 2012-09-18 Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP5632887B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122953B (en) 2013-04-23 2018-07-03 太阳控股株式会社 Printed circuit board material and the printed circuit board for having used the material
WO2014175315A1 (en) 2013-04-23 2014-10-30 太陽ホールディングス株式会社 Printed-circuit-board material and printed circuit board using same
JP6928908B2 (en) * 2017-04-07 2021-09-01 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board and flex rigid printed wiring board
JP7101513B2 (en) 2018-03-28 2022-07-15 太陽インキ製造株式会社 Curable resin compositions, dry films, cured products, and electronic components
JP2021156951A (en) 2020-03-25 2021-10-07 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725704B2 (en) * 2003-05-27 2011-07-13 味の素株式会社 Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP2006022195A (en) * 2004-07-07 2006-01-26 Sekisui Chem Co Ltd Curable resin composition, adhesive epoxy resin sheet an circuit board joint product
JP2009144072A (en) * 2007-12-14 2009-07-02 Sekisui Chem Co Ltd Insulation sheet and laminated structure

Also Published As

Publication number Publication date
JP2013036042A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5150381B2 (en) Thermosetting resin composition
JP4725704B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5605259B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP6268310B2 (en) Insulating thermosetting resin composition, dry film, cured product, and printed wiring board
TWI737649B (en) Resin composition
JPWO2008087890A1 (en) Thermosetting resin composition
JPWO2003047324A1 (en) Adhesive film for multilayer printed wiring board and method for producing multilayer printed wiring board
JP2006037083A (en) Thermosetting resin composition containing modified polyimide resin
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP5632887B2 (en) Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board
JP2002194282A (en) Polyamide resin-containing varnish and its use
WO2017170521A1 (en) Resin composition and multilayer substrate
KR101864110B1 (en) Thermosetting resin composition
US9796810B2 (en) Heat-curable composition, dry film, and printed wiring board
JP2002241590A (en) Flame-retardant epoxy resin composition
JP6269401B2 (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP3669663B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
KR101203156B1 (en) Epoxy resin composition, an adhesive film and a multi-layered printed circuit board prepared by using the same
JP2008143971A (en) Insulation resin composition, insulation resin sheet with substrate, multi-layer printed wiring board and semiconductor device
JP2006176795A (en) Interlaminar insulating resin composition for multilayer printed wiring board
TW201127900A (en) Resin composition
JP2005082742A (en) Thermosetting resin composition, multilayer printed wiring board, and thermosensitive dry film
JP5970521B2 (en) Thermosetting composition, dry film and printed wiring board
JP6191659B2 (en) Resin composition
JP3703143B2 (en) Interlayer insulating adhesive for multilayer printed wiring board and copper foil with interlayer insulating adhesive for multilayer printed wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R150 Certificate of patent or registration of utility model

Ref document number: 5632887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250