WO2014174941A1 - コネクタ、データ送信装置、データ受信装置及びデータ送受信システム - Google Patents

コネクタ、データ送信装置、データ受信装置及びデータ送受信システム Download PDF

Info

Publication number
WO2014174941A1
WO2014174941A1 PCT/JP2014/057415 JP2014057415W WO2014174941A1 WO 2014174941 A1 WO2014174941 A1 WO 2014174941A1 JP 2014057415 W JP2014057415 W JP 2014057415W WO 2014174941 A1 WO2014174941 A1 WO 2014174941A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
connector
pin
shell
signal pin
Prior art date
Application number
PCT/JP2014/057415
Other languages
English (en)
French (fr)
Inventor
一彰 鳥羽
昂 松田
太一 平野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201480022081.3A priority Critical patent/CN105122560B/zh
Priority to JP2015513619A priority patent/JPWO2014174941A1/ja
Priority to EP14787761.7A priority patent/EP2991171B1/en
Priority to US14/785,135 priority patent/US9698539B2/en
Priority to KR1020157029511A priority patent/KR102148054B1/ko
Publication of WO2014174941A1 publication Critical patent/WO2014174941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6585Shielding material individually surrounding or interposed between mutually spaced contacts
    • H01R13/6586Shielding material individually surrounding or interposed between mutually spaced contacts for separating multiple connector modules
    • H01R13/6587Shielding material individually surrounding or interposed between mutually spaced contacts for separating multiple connector modules for mounting on PCBs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6594Specific features or arrangements of connection of shield to conductive members the shield being mounted on a PCB and connected to conductive members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/66Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with pins, blades or analogous contacts and secured to apparatus or structure, e.g. to a wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/60Contacts spaced along planar side wall transverse to longitudinal axis of engagement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0256Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms
    • H05K5/026Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms having standardized interfaces
    • H05K5/0265Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms having standardized interfaces of PCMCIA type
    • H05K5/0269Card housings therefor, e.g. covers, frames, PCB

Definitions

  • This disclosure relates to a connector, a data transmission device, a data reception device, and a data transmission / reception system.
  • Patent Document 1 discloses a connector corresponding to the HDMI (High Definition Multimedia Interface) (registered trademark) standard for transmitting a digital signal, in the connector mounting portion of the substrate to which the connector is connected.
  • HDMI High Definition Multimedia Interface
  • a technique for suppressing deterioration in signal quality by adjusting the characteristic impedance of the connector mounting part by a change or the like is disclosed.
  • the present disclosure proposes a new and improved connector, data reception device, data transmission device, and data transmission / reception system that can further suppress degradation of signal quality.
  • one end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin that transmits a signal to the inside and the outside of the device, and the signal pin faces the mounting substrate.
  • a shell that is formed of a conductor so as to cover the signal pin and is grounded to a ground potential on the mounting substrate.
  • one end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin that transmits a signal to the inside and the outside of the device, and the signal pin is the mounting board And a shell formed of a conductor so as to cover the signal pin over a region extending toward the ground and grounded to a ground potential on the mounting substrate, and through the connector
  • a data transmission apparatus is provided that transmits a signal to an arbitrary apparatus.
  • one end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin that transmits a signal to the inside and the outside of the device, and the signal pin is the mounting board And a shell formed of a conductor so as to cover the signal pin over a region extending toward the ground and grounded to a ground potential on the mounting substrate, and through the connector
  • a data receiving apparatus is provided that receives a signal transmitted from an arbitrary apparatus.
  • one end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin that transmits a signal to the inside and the outside of the device, and the signal pin is the mounting board
  • a connector formed by a conductor so as to cover the signal pin over a region extending toward the ground and grounded to a ground potential on the mounting substrate.
  • a data transmission / reception system is provided that includes a data transmission device that transmits a signal to and a data reception device that receives a signal transmitted from an arbitrary device via the connector.
  • the shell is formed so as to cover the signal pin over a region where the signal pin extends toward the mounting substrate in the apparatus, and is grounded to the ground potential on the mounting substrate. Therefore, a shielding effect for the signal pin is provided, and deterioration of signal quality due to disturbance or the like is suppressed for the signal transmitted to the signal pin.
  • a path for releasing the induced current generated in the shell to the mounting board is formed for every part of the shell, so that EMI is suppressed and deterioration of the quality of the signal transmitted to the signal pin can be further suppressed. It becomes.
  • FIG. 2B is a cross-sectional view of a general Type A, Type D receptacle-side HDMI connector defined by the x-axis and the y-axis and corresponding to the II cross section in FIG. 2A. It is the schematic which shows a mode that the receptacle side HDMI connector of the general TypeA and TypeD shown to FIG. 2A was seen from the positive direction of the y-axis.
  • FIG. 6 is a cross-sectional view showing a structural example of the receptacle-side connector according to the present embodiment cut along a yz plane and a plane passing through signal pins.
  • 4B is a cross-sectional view of the receptacle-side connector according to the present embodiment on the xy plane and corresponding to the III-III cross section in FIG. 4A.
  • FIG. It is the schematic which shows a mode that the receptacle side connector which concerns on this embodiment shown to FIG.
  • FIG. 5 is a schematic diagram illustrating an example of pin arrangement in which a high-speed differential data line is newly added in a Type A and Type D HDMI connector. It is the schematic which shows pin arrangement
  • FIG. 3 is a schematic diagram illustrating an example of pin arrangement in which a high-speed differential data line is newly added in a Type C HDMI connector. It is sectional drawing which shows the example of a structure at the time of cut
  • 3B is a cross-sectional view of a general Type C HDMI connector corresponding to the AA cross section in FIG.
  • FIG. 4 is a cross-sectional view of a general Type C HDMI connector corresponding to a CC cross section in FIG. 3B in a cross section constituted by an x-axis and a z-axis. It is sectional drawing which shows the structural example at the time of cut
  • FIG. 4B is a cross-sectional view corresponding to the AA cross section in FIG. 4A in the cross section constituted by the x axis and the y axis of the connector according to the first modification.
  • 5B is a cross-sectional view corresponding to the CC cross section in FIG. 4B in the cross section constituted by the x-axis and the z-axis of the connector according to the first modification. It is explanatory drawing for demonstrating the structure by which the guard line was arrange
  • It is an isoelectric field diagram which shows the mode of the electric field distribution in the HDMI connector structure of a general TypeC. It is an isoelectric field diagram which shows the mode of the electric field distribution in the HDMI connector structure of a general TypeC. It is an isoelectric field diagram which shows the mode of the electric field distribution in the connector structure which concerns on a 1st modification.
  • FIG. 3 is a cross-sectional view showing a structural example of a general Type D HDMI connector cut by a cross section constituted by a y-axis and a z-axis and passing through a signal pin.
  • FIG. 15B is a cross-sectional view of a general Type D HDMI connector corresponding to the AA cross section in FIG. 15A in the cross section constituted by the x-axis and the y-axis.
  • FIG. 16 is a cross-sectional view of a general Type D HDMI connector corresponding to a CC cross section in FIG. 15B in a cross section constituted by an x-axis and a z-axis. It is sectional drawing which shows one structural example at the time of cut
  • FIG. 12B is a cross-sectional view corresponding to the AA cross section in FIG. 11A in the cross section constituted by the x-axis and the y-axis of the connector according to the second modified example.
  • FIG. 12B is a cross-sectional view corresponding to the CC cross section in FIG.
  • FIG. 16B is a schematic view showing a structural example of the connector shown in FIG.
  • FIG. 16A which is a cross section constituted by a y axis and a z axis and cut along a cross section passing through a signal pin.
  • FIG. 16B is a schematic view corresponding to the AA cross section in FIG. 16B in the cross section constituted by the x-axis and the y-axis of the connector shown in FIG. 16A. It is the schematic which shows the modification by which the cross-sectional area of a signal pin is expanded only about the area
  • FIG. 23 is a schematic diagram illustrating an example of a circuit configuration of an AC / DC conversion circuit, which is a specific example of a device according to the modification illustrated in FIG. 22.
  • FIG. 23 is a schematic diagram illustrating an example of a configuration of a register and a communication circuit, which is a specific example of a device according to the modification illustrated in FIG. 22. It is the schematic which shows an example of a structure of the battery which is a specific example of the device which concerns on the modification shown in FIG. It is explanatory drawing for demonstrating the data structural example of each channel transmitted with an HDMI cable between a disk recorder and a television receiver. It is a sequence diagram which shows the example of a sequence of CEC control at the time of connecting a source device and a sink device.
  • FIG. 23 is a schematic diagram illustrating an example of a circuit configuration of an AC / DC conversion circuit, which is a specific example of a device according to the modification illustrated in FIG. 22.
  • FIG. 23 is a schematic diagram illustrating an
  • FIG. 10 is a flowchart showing a CEC compatibility check processing procedure for each device when a device connected by an HDMI cable is detected. It is a functional block diagram which shows the structural example of the communication system comprised from a source device and a sink device in power supply control. It is a sequence diagram which shows the control sequence in power supply control.
  • FIG. 9 is a cross-sectional view illustrating a structural example of a receptacle-side connector according to a second embodiment of the present disclosure cut along a yz plane and a plane passing through signal pins. It is a voltage characteristic view showing an eye pattern in a general Type A HDMI connector structure. It is a voltage characteristic view showing an eye pattern in a general Type A HDMI connector structure.
  • FIG. 9 is a cross-sectional view illustrating a structural example of a receptacle-side connector according to a second embodiment of the present disclosure cut along a yz plane and a plane passing through signal pins. It is a voltage characteristic view showing an eye pattern in
  • FIG. 30 is a voltage characteristic diagram showing an eye pattern in the connector structure according to the second embodiment shown in FIG. 29.
  • FIG. 30 is a voltage characteristic diagram showing an eye pattern in the connector structure according to the second embodiment shown in FIG. 29.
  • FIG. 30 is a voltage characteristic diagram showing an eye pattern in the connector structure according to the second embodiment shown in FIG. 29. It is a graph which shows the result of having simulated the EMI characteristic about the HDMI connector of a general TypeA, and the connector which concerns on 2nd Embodiment.
  • a connector corresponding to the HDMI (High Definition Multimedia Interface) standard hereinafter referred to as an HDMI connector.
  • the data receiving device, the data transmitting device, and the data transmitting / receiving system will be described as examples.
  • the present embodiment is not limited to such an example, and can also be applied to other communication methods, connectors conforming to communication standards, data reception devices, data transmission devices, and data transmission / reception systems.
  • the plug-side connector in the cable is also referred to as “plug-side connector” or “plug-side HDMI connector”, and the receptacle-side connector in the data receiving device and the data transmitting device is referred to as “receptacle side”. Also referred to as “connector” or “receptacle HDMI connector”.
  • connector or “receptacle HDMI connector”.
  • connector at least one of a plug-side connector and a receptacle-side connector is indicated unless otherwise specified.
  • an example in which the plug-side connector has a so-called male terminal shape and the receptacle-side connector has a so-called female terminal shape will be described, but this embodiment is not limited to such an example.
  • the relationship between the terminal shape of the plug-side connector and the terminal shape of the receptacle-side connector may be reversed.
  • HDMI has been widely used as a communication interface for transmitting video signals (video data, audio data, etc.) at high speed between video devices.
  • a device serving as a video signal source such as a disk playback device and a display device (a monitor receiver, a television receiver, etc.) are generally connected via an HDMI cable.
  • a device that outputs a signal such as a video signal is referred to as a source device, an output device, a transmission device, or the like
  • a device that receives a signal such as a video signal is referred to as a sink device, It will be referred to as an input device, a receiving device, or the like.
  • CE Consumer Electronics
  • the number of pins in the HDMI connector is 19.
  • 12 of these pins are used for video signal transmission, and the other pins are CEC (Consumer Electronics Control) control, power supply, hot plug detection (HPD: Hot). Used for applications such as Plug Detector.
  • CEC Consumer Electronics Control
  • HPD Hot plug detection
  • Plug Detector Used for applications such as Plug Detector.
  • HDMI standard including pin arrangement in a general HDMI connector, for example, “HDMI Specification Version 1.4” can be referred to.
  • a pin arrangement of a general HDMI connector will be described by taking a Type A and Type D HDMI connector as an example.
  • the pin arrangement of the Type A HDMI connector and the pin arrangement of the Type D HDMI connector are the same.
  • FIG. 1 is a schematic diagram showing a pin arrangement in a general Type A, Type D HDMI connector.
  • FIG. 1 shows the terminal surface of the HDMI connector on the receptacle side in the receiving device and the transmitting device.
  • 19 signal pins 941 embedded in a dielectric 942 covered with an outer shell 943 are arranged in two rows. They are arranged in a staggered pattern. Also, different types of signals are applied to each of the plurality of signal pins 941, and FIG. 1 shows the types of the signals.
  • “Data2 +”, “Data2 Shield”, and “Data2-” are assigned to the signal pins 941, whose pin numbers are 1, 2, and 3, respectively.
  • “Data1 +”, “Data1 Shield”, and “Data1-” are assigned to the signal pins 941 with pin numbers 4, 5, and 6, respectively.
  • “Data0 +”, “Data0 Shield”, and “Data0 ⁇ ” are assigned to the signal pins 941 with the pin numbers of 7, 8, and 9, respectively.
  • “clock +”, “clock Shield”, and “clock ⁇ ” are assigned to the signal pins 941 with pin numbers 10, 11, and 12, respectively.
  • the HDMI source device uses Data 0/1/2 and serial video data with digital video data (video data) of R (red), G (green), and B (blue) as serial data at a maximum of 3.425 Gbps, respectively. Is transmitted to the HDMI sink device as a clock using a pixel clock (maximum 340.25 MHz) that is divided by 10.
  • the signal pins 941 having the pin numbers 1 to 12 are assigned to control signals, power supplies, and the like.
  • the signal pin 941 with the pin number 13 is assigned to a “CEC (Consumer Electronics Control)” signal that is a signal for controlling the transmission device and the reception device.
  • the signal pin 941 with the pin number 14 is assigned to a “utility” application used for audio signal transmission in the reverse direction.
  • the signal pin 941 having a pin number of 16 is assigned to a read “SDA (Serial Data)” signal such as E-EDID information (Enhanced Displayed Identification Data) which is information on the capability of the transmitting device or the receiving device.
  • SDA Serial Data
  • E-EDID information Enhanced Displayed Identification Data
  • the signal pin 941 having a pin number of 15 is assigned to an “SCL (Serial Clock)” signal that is a clock signal used for synchronization during transmission / reception of the SDA signal.
  • the signal pin 941 with a pin number of 17 is a “DDC (Display Data Channel)” or “above-mentioned” composed of SDA and SCL signals used by the transmitting device to read the E-EDID information and the like from the receiving device. Assigned to “CEC signal ground (CEC GND)”. Further, the signal pin 941 with the pin number 18 is assigned to “+5 V power supply”. Further, the signal pin 941 with the pin number 18 is assigned to “HPD (Hot Plug Detector)” for the transmission device to detect the connection status with the reception device.
  • DDC Display Data Channel
  • HPD Hot Plug Detector
  • a signal pin to which a differential signal is transmitted is a signal having a pin number of 1 to 12, in which the differential signal is transmitted at a higher speed than other signal pins. It means a pin.
  • the coordinate axis is defined and the connector is described.
  • the direction in which the signal pins are arranged on the terminal surface of the connector is defined as the x-axis direction.
  • the direction in which the connectors are fitted when the pair of connectors is fitted is defined as the y-axis direction.
  • a direction perpendicular to the x-axis and the y-axis is defined as a z-axis direction.
  • the y-axis direction is also referred to as the first direction.
  • the direction in which the signal pin number increases according to the HDMI standard is defined as the positive direction of the x-axis.
  • the positive / negative of the y-axis the direction from the plug-side connector toward the receptacle-side connector (in FIG. 1, the direction toward the paper surface perpendicular to the paper surface) is defined as the positive direction of the y-axis.
  • the positive and negative of the z axis the direction in which the signal pin 941 with the pin number 1 is located (the upward direction in the figure in FIG. 1) is defined as the positive direction of the z axis.
  • FIG. 1 shows the pin arrangement on the terminal surface of the receptacle-side connector, but the arrangement of the signal pins 941 is reversed on the terminal surface of the plug-side connector. That is, on the terminal surface of the plug-side connector, a signal pin 941 having a pin number 1 is disposed at the left end in FIG. 1, and a signal pin 941 having a pin number 19 is disposed at the right end.
  • the terminal surface of the receptacle-side connector shown in FIG. 1 (that is, the surface in the negative direction of the y-axis in FIG. 1) is disposed to open to the outside of the device, When the plug-side connector is fitted to the terminal surface from the negative direction of the y-axis, the signal pins 941 having the same pin number come into contact with each other, and various data are transmitted.
  • signal pins 941 extend toward the inside of the apparatus (that is, the positive direction of the y-axis in FIG. 1), and these signal pins 941 are connected to a mounting board inside the apparatus, and the mounting Signals are transmitted from the substrate to various circuits inside the apparatus.
  • FIGS. 2A to 2C the configuration of the receptacle-side connector in the apparatus will be described in more detail.
  • FIG. 2A shows a case where a general Type A, Type D receptacle-side HDMI connector is cut by a plane defined by the y-axis and the z-axis (yz plane) and through a signal pin. It is sectional drawing which shows one structural example.
  • FIG. 2B is a plane (xy plane) defined by the x-axis and the y-axis of a general Type A and Type D receptacle-side HDMI connector, and corresponds to the II cross section in FIG. 2A. It is sectional drawing.
  • FIG. 2C is a schematic diagram illustrating a state where the general Type A and Type D receptacle-side HDMI connectors shown in FIG. 2A are viewed from the positive direction of the y-axis.
  • FIG. 2A to 2C illustrate a mounting board that is disposed in the transmitting device and the receiving device together with the receptacle-side connector and to which the signal pins of the receptacle-side connector are connected.
  • the signal pins are arranged in a staggered manner in two rows in the z-axis direction along the x-axis direction on the terminal surface.
  • FIG. 2A is a cross-sectional view of a cross section passing through a signal pin formed in an upper (upward in the z-axis direction) row and a signal pin formed in a lower (downward in the z-axis direction) row (that is, FIG.
  • FIG. 2C is a sectional view taken along the line II-II shown in FIG. 2C.
  • a dielectric provided between the signal pins formed in the upper row and the signal pins formed in the lower row is shown in a transparent manner, and all the signal pins are shown.
  • a receptacle connector 920 of a typical Type A or Type D HDMI connector includes a signal pin 921, a dielectric 922, and an outer shell (shell) 923.
  • the signal pin 921 extends in the y-axis direction, that is, the first direction, and a part thereof is embedded in the dielectric 922.
  • the signal pin 921 corresponds to the signal pin 941 shown in FIG.
  • the shell 923 is formed so as to cover the signal pin 921 and the dielectric 922, and one surface in the negative direction of the y-axis of the shell 923 is an open surface that is open to the outside.
  • the shell 923 is formed of a conductor, and its potential is fixed to the ground potential.
  • the plug-side connector (not shown) is similarly provided with a shell, and the shell of the plug-side connector is provided with an open surface so as to correspond to the open surface of the shell 923 of the receptacle-side connector 920. Then, one end of the plug-side connector provided with an open surface is inserted into the opening of the open surface of the shell 923 of the receptacle-side connector 920 from the negative direction of the y-axis, whereby the plug-side connector and the receptacle-side connector 920 are inserted. And are fitted. Further, the signal pin 921 has an exposed portion in which a part of the surface of the signal pin 921 is exposed from the dielectric 922 in a predetermined region near the open surface of the shell 923.
  • a mounting substrate 924 to which the signal pin 921 of the receptacle-side connector 920 is connected is disposed in the transmitting device and the receiving device.
  • the signal pin 921 is extended in the positive direction of the y axis in the transmission device and the reception device, and is bent toward the mounting substrate 924 in the transmission device and the reception device. 924 is connected.
  • a plurality of wiring patterns 925 corresponding to the signal pins 921 are provided on the mounting substrate 924, and the signal pins 921 are connected to the wiring patterns 925 on the mounting substrate 924 in the transmission device and the reception device. Is done.
  • the wiring pattern 925 is extended toward various circuits that perform predetermined signal processing formed on the mounting substrate 924 or other substrates, and various signals transmitted through the signal pins 921 The signal is further transmitted to a predetermined circuit by the pattern 925, and signal processing corresponding to each signal is appropriately performed in the circuit.
  • grounding portions 926a to 926d for connecting the shell 923 to the ground potential are provided.
  • the grounding portions 926a to 926d are formed of, for example, the same conductor as the shell 923, and are grounded to a region having a ground potential on the mounting substrate 924. That is, the positions where the grounding portions 926a to 926d are provided represent the grounding positions between the shell 923 and the mounting substrate 924. In FIG. 2B, a region where the grounding portions 926a to 926d are provided is surrounded by a broken line. As shown in FIG. 2B, in a general Type A, Type D receptacle-side HDMI connector, the shell 923 is grounded to the ground potential on the mounting substrate 924 at four corners in the xy plane.
  • the signal pin 921 is exposed in a region where the signal pin 921 extends toward the mounting substrate 924.
  • the shielding effect on the signal pin 921 is not sufficient, the signal transmitted to the signal pin 921 is easily affected by disturbances and the like, and the signal quality is deteriorated. There is a risk of causing.
  • differential signals are transmitted at a relatively high speed by the signal pins 921 and 941 having pin numbers 1 to 12.
  • EMI Electro-Magnetic Interference
  • FIGS. 3A and 3B are explanatory diagrams for explaining EMI in the receptacle-side connector 920 of the general Type A and Type D HDMI connectors.
  • 3A and 3B are the same as the configuration of the receptacle-side connector 920 shown in FIG. 2A, and thus detailed description thereof is omitted.
  • FIG. 3A the state in which signals are transmitted to the signal pins 921 formed in the lower (downward in the z-axis direction) row is indicated by arrows.
  • a signal is transmitted to the signal pin 921 in this way, a current is generated inside the shell 923 due to an electromagnetic wave generated along with the transmission of the signal (so-called electromagnetic induction).
  • electromagnetic induction For example, as shown in FIG. 3A, in the signal transmission at the signal pin 921 formed in the lower row, the comparison is made with the lower part of the shell 923, which is a part relatively close to the signal pin 921 in the shell 923. Large current (inductive current) is considered to occur.
  • the induced current generated in the lower part of the shell 923 is schematically illustrated by a broken line arrow.
  • the shell 923 has the ground potential on the mounting substrate 924 at the four corners in the xy plane. And grounded. Therefore, as indicated by a broken line arrow in FIG. 3A, the induced current generated in the lower portion of the shell 923 flows from the grounding portions 926b and 926c to the ground via the mounting substrate 924, and therefore the noise due to the induced current is It seems to be relatively difficult to occur.
  • FIG. 3B the state in which signals are transmitted to the signal pins 921 formed in the upper (upward in the z-axis direction) row is indicated by arrows.
  • a relatively large induction is generated in the upper portion of the shell 923, which is a portion relatively close to the signal pin 921 in the shell 923. It is thought that current is generated.
  • the induced current generated in the upper portion of the shell 923 is schematically illustrated by a broken line arrow.
  • the shell 923 has the ground potential on the mounting substrate 924 at the four corners in the xy plane.
  • the upper part of the shell 923 is not directly grounded on the mounting board. Therefore, as indicated by a one-dot chain line arrow in FIG. 3B, a part of the induced current generated in the upper portion of the shell 923 is reflected, for example, at the end of the shell 923 and returns to the plug-side HDMI connector as a return current. It is thought that it flows.
  • a return current can be a noise in signal transmission.
  • FIG. 4A is a cross-sectional view showing a structural example of the receptacle-side connector according to the first embodiment cut along a yz plane and a plane passing through signal pins.
  • 4B is a cross-sectional view of the receptacle-side connector according to the first embodiment, taken along the xy plane, corresponding to the III-III cross section in FIG. 4A.
  • FIG. 4C is a schematic diagram illustrating a state in which the receptacle-side connector according to the first embodiment illustrated in FIG. 4A is viewed from the positive direction of the y-axis.
  • 4A to 4C illustrate a mounting substrate that is disposed in the transmitting device and the receiving device together with the receptacle-side connector and to which the signal pins of the receptacle-side connector are connected.
  • the pin arrangement of the receptacle-side connector according to the first embodiment is the same as the pin arrangement of the general Type A and Type D receptacle-side HDMI connectors shown in FIG. Therefore, as shown in FIG. 1, in the receptacle-side connector according to the first embodiment, the signal pins are arranged in a zigzag manner in two rows in the z-axis direction along the x-axis direction on the terminal surface.
  • FIG. 1 in the receptacle-side connector according to the first embodiment, the signal pins are arranged in a zigzag manner in two rows in the z-axis direction along the x-axis direction on the terminal surface.
  • FIG. 4A is a cross-sectional view of a cross section passing through a signal pin formed in an upper (upward direction in the z-axis direction) and a signal pin formed in a lower (lower direction in the z-axis direction) row ( That is, a cross-sectional view taken along the line IV-IV shown in FIG. 4C is shown.
  • FIG. 4B a dielectric provided between the signal pins formed in the upper row and the signal pins formed in the lower row is shown in a transparent manner, and all signal pins are shown.
  • the receptacle-side connector 1 according to the first embodiment includes a signal pin 11, a dielectric 12, an outer shell (shell) 13, and grounding portions 16a to 16g.
  • the functions and configurations of the signal pins 11 and the dielectrics 12 of the receptacle-side connector 1 according to the first embodiment are the same as the general Type A and Type D receptacle-side connectors 920 described with reference to FIGS. 2A to 2C.
  • the function and configuration of the signal pin 921 and the dielectric 922 are not described in detail.
  • the configuration of the region to be fitted with the plug-side connector is the same as the configuration of the region of the general receptacle-side connector 920. Therefore, the functions and configurations of the shell 13 and the grounding portions 16a to 16g, which are different from the general receptacle-side connector 920, will be mainly described below with reference to FIGS. 4A to 4C.
  • the structure of the region of the shell 13 that fits with the plug-side connector is the same as the structure of the shell 923 of the general receptacle-side connector 920. That is, the shell 13 is formed so as to cover the signal pin 11 and the dielectric 12, and one surface in the negative direction of the y-axis of the shell 13 is an open surface that is open to the outside. In correspondence with the open surface of the shell 13, an open surface is also provided on the shell of the plug-side connector (not shown), and one end of the open side of the shell of the plug-side connector (not shown) is provided.
  • the plug-side connector and the receptacle-side connector 1 are fitted together by being inserted into the opening of the open surface of the shell 13 of the receptacle-side connector 1 from the negative direction of the y-axis.
  • the signal pin 11 has an exposed portion in which a part of the surface of the dielectric pin 12 is exposed in a predetermined region near the open surface of the shell 13, and the plug-side connector and the receptacle-side connector 1 are fitted. When mating, the exposed portion of the signal pin 11 contacts the signal pin of the plug-side connector, so that the plug-side connector and the receptacle-side connector 1 are electrically connected.
  • a mounting substrate 14 to which the signal pins 11 of the receptacle-side connector 1 are connected is disposed in the transmission device and the reception device.
  • the signal pin 11 is extended in the positive direction of the y axis in the transmission device and the reception device, and is bent toward the mounting substrate 14 in the transmission device and the reception device.
  • a plurality of wiring patterns 15 corresponding to the signal pins 11 are provided on the mounting board 14, and the signal pins 11 are connected to the wiring patterns 15 on the mounting board 14 in the transmitting device and the receiving device. Is done.
  • the wiring pattern 15 extends toward various circuits that perform predetermined signal processing formed on the mounting substrate 14 or other substrates, and various signals transmitted through the signal pins 11 The signal is further transmitted to a predetermined circuit by the pattern 15, and signal processing corresponding to each signal is appropriately performed in the circuit.
  • the signal pin 11 is connected to the wiring pattern 15 on the mounting substrate 14 disposed in an arbitrary device, and has a function of transmitting a signal to the inside and the outside of the device.
  • the direction in which the wiring pattern 15 is drawn out on the mounting substrate 14 is different from the direction in which the wiring pattern 925 in the general receptacle-side connector 920 shown in FIGS. 2A to 2C is drawn out.
  • the wiring pattern 15 corresponding to the twelve signal pins 11 that transmit the differential signals having the pin numbers 1 to 12 is provided on the mounting substrate 14.
  • the wiring pattern 15 corresponding to the seven signal pins 11 having other pin numbers 13 to 19 is extended in the reverse direction of the direction on the mounting substrate 14, that is, y Stretched in the negative direction of the shaft. This is because, as will be described later, the grounding position between the shell 13 and the mounting substrate 14 is formed in the vicinity of the signal pin 11 for transmitting the differential signal so as to have a larger grounding area.
  • the shell 13 according to the first embodiment is made of a conductor so as to cover the signal pin 11 over a region where the signal pin 11 extends toward the mounting substrate 14. Formed and grounded to the ground potential on the mounting substrate 14. 2A to 2C, in the general receptacle-side connector 920, the signal pin 921 is exposed in a region where the signal pin 921 extends toward the mounting substrate 924.
  • ground portions 16a to 16g for connecting the shell 13 to the ground potential are provided between the shell 13 and the mounting substrate 14.
  • the grounding portions 16a to 16g are formed of, for example, the same conductor as that of the shell 13, and are grounded to a region having a ground potential on the mounting substrate 14. That is, the positions where the grounding portions 16a to 16g are provided represent the grounding positions between the shell 13 and the mounting substrate 14.
  • FIG. 4B a region where the grounding portions 16a to 16g are provided is surrounded by a broken line. In the example illustrated in FIG.
  • the grounding portions 16a, 16b, 16f, and 16g are provided at positions corresponding to the grounding portions 926a, 926b, 926c, and 926d illustrated in FIG. 2B. That is, the shell 13 according to the first embodiment has a configuration in which the general shell 923 is further grounded on the mounting substrate 14 by the grounding portions 16c, 16d, and 16e. Further, as shown in FIGS. 4A to 4C, the grounding portions 16c, 16d, and 16e lead the wiring pattern 15 on the mounting substrate 14 to the region corresponding to the connection position between the signal pin 11 and the wiring pattern 15. Formed in a partial region in the direction (ie, the positive direction of the y-axis in FIGS. 4A to 4C).
  • the ground portions 16a to 16g are partial regions in the direction in which the wiring pattern 15 is drawn on the mounting substrate 14 (that is, the positive direction of the y axis in FIGS. 4A to 4C). And it is arranged so as to include a partial region in a direction opposite to the direction (that is, the negative direction of the y-axis in FIGS. 4A to 4C).
  • FIGS. 5A to 5C the EMI suppression effect in the receptacle-side connector 1 according to the first embodiment will be described.
  • FIG. 5A and FIG. 5B the principle by which the EMI is suppressed and signal degradation can be further suppressed by the receptacle-side connector 1 according to the first embodiment will be described.
  • 5A and 5B are explanatory diagrams for explaining the EMI suppression effect in the receptacle-side connector 1 according to the first embodiment.
  • the configuration of the receptacle-side connector 1 shown in FIGS. 5A and 5B is the same as the configuration of the receptacle-side connector 1 shown in FIG.
  • FIG. 5A is an explanatory diagram for explaining the EMI in the receptacle-side connector 1 according to the first embodiment, corresponding to FIG. 3A in which the EMI in the general receptacle-side connector 920 is explained.
  • FIG. 5A a state in which a differential signal is transmitted to the signal pins 11 formed in the lower row (downward in the z-axis direction) is indicated by arrows.
  • an induced current is generated in the shell 13 by the electromagnetic wave generated along with the transmission of the signal. For example, as shown in FIG.
  • the shell 13 is connected to the ground potential on the mounting substrate 924 with the ground portions 16a to 16g. is doing. Therefore, as indicated by a broken line arrow in FIG. 5A, the induced current generated in the lower portion of the shell 13 flows from the grounding portions 16b and 16f to the ground via the mounting substrate 14, for example. Relatively difficult to occur.
  • FIG. 5B is an explanatory diagram for explaining the EMI in the receptacle-side connector 1 according to the first embodiment, corresponding to FIG. 3B in which the EMI in the general receptacle-side connector 920 is explained.
  • a state in which a differential signal is transmitted to the signal pins 11 formed in the upper is indicated by arrows.
  • a relatively large induction is provided in the upper portion of the shell 13 which is a portion relatively close to the signal pin 11 in the shell 13. It is thought that current is generated.
  • the induced current generated in the upper portion of the shell 13 is schematically illustrated by a broken line arrow.
  • a part of the induced current generated in the upper part of the shell 923 is reflected at, for example, the end of the shell 923, as indicated by a broken line arrow.
  • a return current flows toward the plug-side HDMI connector, it contributes to noise in signal transmission.
  • the shell 13 is mounted on the signal pin 11. It is formed of a conductor so as to cover the signal pins 11 over a region extending toward the substrate 14, and is grounded to the ground potential on the mounting substrate 14.
  • the induced current generated in the upper portion of the shell 13 flows from the grounding portions 16c, 16d, and 16e to the ground via the mounting substrate 14, for example, and thus noise due to the induced current is generated. Is less likely to occur.
  • the shell 13 extends over the region in which the signal pins 11 extend toward the mounting substrate 14.
  • the signal pins 11 By covering the signal pins 11 with each other, not only the lower part of the shell 13 but also any part including the upper part is a path through which the induced current generated in the shell 13 is released to the mounting substrate 14. Therefore, EMI is suppressed, and it is possible to suppress deterioration of the quality of the signal transmitted to the signal pin 11.
  • the grounding position between the shell 13 and the mounting substrate 14, that is, the position where the grounding portions 16a to 16g are provided is as many as possible, and is preferably close to the signal pin 11 and the wiring pattern 15.
  • the grounding portions 16a to 16g need to be provided so as not to contact the signal pins 11 and the wiring pattern 15, in other words, not to prevent the connection between the signal pins 11 and the wiring pattern 15.
  • relatively high-speed differential signals are provided by the signal pins 11 having the pin numbers 1 to 12. Is transmitted.
  • the grounding position between the shell 13 and the mounting substrate 14 is provided closer to the signal pin 11 that transmits a differential signal that is considered to generate a relatively large induced current. The effect of suppressing EMI can be obtained more.
  • the grounding position of the shell 13 is the direction in which the wiring pattern 15 connected to the signal pin 11 that transmits a differential signal on the mounting substrate 14 is drawn out with respect to the connection position of the signal pin 11 and the wiring pattern 15. It may include a partial region (that is, the positive direction of the y axis in FIGS. 4A to 4C) and a partial region in a direction opposite to the direction (that is, the negative direction of the y axis in FIGS. 4A to 4C). .
  • the ground position in a partial region in the direction in which the wiring pattern 15 connected to the signal pin 11 to which the differential signal is transmitted on the mounting substrate 14 is drawn out is the ground portions 16c, 16d, and 16e shown in FIG. 4B.
  • the grounding position is a grounding position in a partial region opposite to the direction, which is a grounding position of the grounding parts 16b and 16f shown in FIG. 4B.
  • the grounding position of the shell 13 is provided so that the region corresponding to the connection position between the signal pin 11 for transmitting the differential signal and the wiring pattern 15 is sandwiched in the y-axis direction. be able to.
  • the grounding area of the grounding position of the shell 13 in the direction in which the wiring pattern 15 is drawn out may be smaller than the grounding area of the grounding position of the shell 13 in the direction opposite to the direction.
  • the ground contact area in the ground contact portion 16b may be larger than the ground contact areas in the other ground contact portions 16c, 16d, and 16e.
  • the grounding portion 16b having a larger grounding area is provided at a position corresponding to the signal pin 11 that transmits a differential signal.
  • the plurality of ground positions of the shell 13 may be positions that sandwich an area corresponding to a connection position between the signal pin 11 that transmits the differential signal and the wiring pattern 15.
  • the ground portions 16c, 16d, and 16e are formed so as to sandwich an area corresponding to the connection position between the signal pin 11 that transmits the differential signal and the wiring pattern 15.
  • FIG. 5C is a graph showing a result of simulating EMI characteristics of a general Type A HDMI connector and the connector according to the first embodiment.
  • the horizontal axis (X axis) is the frequency (MHz) of the signal applied to the signal pin
  • the vertical axis (Y axis) is the far field strength (dB ⁇ V / m)
  • the relationship between the two is plotted. Yes.
  • the value of the far field intensity (dB ⁇ V / m) shown on the vertical axis is larger, the influence of the electromagnetic wave generated by the signal transmitted through the signal pin is larger and EMI is more likely to occur.
  • FIG. 5C a graph showing the relationship between the frequency (MHz) and the far field strength (dB ⁇ V / m) in a general Type A HDMI connector is a curve indicated by P in the drawing (a curve indicated by a broken line).
  • a graph showing the relationship between the frequency (MHz) and the far field strength (dB ⁇ V / m) in the connector according to the embodiment is shown by a curve indicated by Q (a curve indicated by a dotted line) in the drawing.
  • FIG. 3 shows a simulation result when a signal corresponding to three pin arrangements is provided.
  • the value of the far field strength (dB ⁇ V / m) is suppressed more than that of a general Type A HDMI connector over the entire frequency band in which the simulation was performed.
  • the connector according to the first embodiment suppresses EMI and further suppresses signal degradation.
  • the reason why such a result has occurred is that, in the connector according to the first embodiment, the shell 13 is extended toward the mounting substrate 14 by the signal pin 11. This is considered to be because the return current is suppressed by being formed of a conductor so as to cover the signal pin 11 and being grounded to the ground potential on the mounting substrate 14 over the region.
  • FIG. 5C the EMI suppression effect of the receptacle-side connector 1 having the configuration shown in FIGS. 4A to 4C has been described.
  • the shell 13 may be grounded to the ground of the mounting substrate 14 at any position.
  • the grounding portions 16c and 16d are provided so as to sandwich a group of signal pins 11 (12 signal pins 11 having pin numbers 1 to 12) that transmit differential signals.
  • the present embodiment is not limited to such an example.
  • a ground portion may be provided in all or part of the area between the signal pins 11 that transmit differential signals.
  • the grounding portions 16a to 16g may be provided so as not to contact the signal pins 11 and the wiring pattern 15, in other words, so as not to disturb the connection between the signal pins 11 and the wiring pattern 15.
  • the arrangement position and the ground contact area of 16 g may be appropriately adjusted according to the shape of the wiring pattern 15 on the mounting substrate 14. For example, in the example shown in FIGS. 4A to 4C, the wiring pattern 15 connected to the signal pin 11 that transmits the differential signal on the mounting substrate 14 is drawn in one direction (the positive direction of the y axis).
  • the present embodiment is not limited to such an example, and the wiring pattern 15 may be drawn out in any direction on the mounting substrate 14. As described above, even when the shape and the drawing direction of the wiring pattern 15 on the mounting substrate 14 are not constant, the arrangement positions of the grounding portions 16a to 16g and the grounding are determined according to the shape of the wiring pattern 15 and the drawing position. The size of the area may be set as appropriate.
  • the shell 13 is formed so as to cover the signal pin 11 over the region where the signal pin 11 extends toward the mounting substrate 14. Grounded to ground potential. Therefore, not only a shielding effect for the signal pin 11 is brought about, but also a so-called microstrip structure is formed between the signal pin 11 and the shell 13 to bring about an effect of impedance control, so that the signal pin 11 is given. Deterioration of signal quality due to disturbance or the like is suppressed for the transmitted signal.
  • the grounding position between the shell 13 and the mounting substrate 14 may be adjusted as appropriate.
  • the grounding position between the shell 13 and the mounting board 14 is such that the signal on the mounting board 14 is in the direction in which the wiring pattern 15 connected to the signal pin 11 to which the differential signal is transmitted is pulled out and in the opposite direction.
  • An area corresponding to a connection position between the pin 11 and the wiring pattern 15 may be provided so as to sandwich the y-axis direction.
  • the grounding position between the shell 13 and the mounting substrate 14 may be provided at a position sandwiching an area corresponding to the connection position between the signal pin 11 for transmitting the differential signal and the wiring pattern 15 in the x-axis direction.
  • the grounding area may be increased.
  • the grounding position between the shell 13 and the mounting substrate 14 is provided in the vicinity of the signal pin 11 for transmitting the differential signal and the wiring pattern 15, and the grounding area is provided larger, so that the shell 13 is driven by the differential signal. Since the path through which the induced current generated in step 1 is released to the mounting substrate 14 is more reliably secured, it is possible to further suppress the deterioration of signal quality.
  • FIG. 6A is a schematic diagram showing a pin arrangement for transmitting a high-speed differential signal in a general Type A, Type D HDMI connector.
  • the pin arrangement shown in FIG. 6A is the same as the pin arrangement described with reference to FIG. However, in FIG. 6A, only 12 signal pins related to the transmission of the video signal are illustrated, and the other signal pins are not illustrated.
  • FIG. 6A shows the terminal surface of the receptacle HDMI connector in the input device.
  • signal pins 941 embedded in a dielectric 942 covered with an outer shell 943 are arranged in a staggered manner in two rows. ing. Further, different types of signals are applied to each of the plurality of signal pins 941, and FIG. 6A shows the types of signals.
  • “Data2 +”, “Data2 Shield”, and “Data2-” are assigned to the signal pins with pin numbers 1, 2, and 3, respectively.
  • “Data1 +”, “Data1 Shield”, and “Data1-” are assigned to the signal pins with pin numbers 4, 5, and 6, respectively.
  • “Data0 +”, “Data0 Shield”, and “Data0 ⁇ ” are assigned to the signal pins with pin numbers 7, 8, and 9, respectively.
  • “clock +”, “clock Shield”, and “clock ⁇ ” are assigned to the signal pins with pin numbers 10, 11, and 12, respectively.
  • the HDMI source device uses Data 0/1/2 and serial video data with digital video data (video data) of R (red), G (green), and B (blue) as serial data at a maximum of 3.425 Gbps, respectively. Is transmitted to the HDMI sink device as a clock using a pixel clock (maximum 340.25 MHz) that is divided by 10.
  • signal pins used as shields for the differential line (differential data lane) pair that is, “Data2 Shield”, “Data1 Shield”, “Data0 Shield”, and clock signal
  • a method of using “clock +”, “clock ⁇ ” and “clock Shield” which are signal pins for transmission as signal pins corresponding to a new data line is conceivable.
  • FIG. 6B shows an example of a method for changing such signal pin assignment.
  • FIG. 6B is a schematic diagram illustrating an example of a pin arrangement in which a high-speed differential data line is newly added in the Type A and Type D HDMI connectors.
  • the signal pins having pin numbers 2, 5, 8, and 11 used as shields in FIG. 6A are added to the new differential line pairs “Data3 +”, “Data3-”, “Data4 +”. "Data4-" are assigned respectively. Also, new differential line pairs “Data5 +” and “Data5-” are assigned to the signal pins with pin numbers 10 and 12 used as clocks in FIG. 6A, respectively.
  • the drain wire of the STP cable connected as a shield in the general signal pin arrangement shown in FIG. 6A is connected to the shell portion of the plug-side connector, and the shell portion of the receptacle-side connector of the source device and sink device is grounded.
  • the cable can be shielded.
  • the clock a bit clock is extracted from the data of each data lane by the sink device, and the pixel clock is generated by the sink device by dividing it by ten.
  • the data transmission amount can be doubled while maintaining the transmission speed of each line as it is.
  • the pin arrangement as shown in FIG. 6B there is a concern about deterioration of the transmitted signal.
  • Type C and Type D are called a mini HDMI connector and a micro HDMI connector, respectively, and have a smaller connector size than Type A, which is a standard type.
  • the area of the terminal surface of the connector is determined such that Type A is 14 mm ⁇ 4.5 mm, Type C is 10.5 mm ⁇ 2.5 mm, and Type D is 5.8 mm ⁇ 2.0 mm. .
  • the measures against the signal deterioration as described above are effective when the connector size is relatively large and the degree of freedom in changing the shape and arrangement position of the signal pins is high, as in Type A.
  • the degree of freedom in changing the shape and arrangement position of the signal pins is low, so there is a possibility that sufficient effects cannot be obtained for suppressing signal deterioration. There is.
  • the present inventors have come up with a connector, a data reception device, a data transmission device, and a data transmission / reception system that can further suppress signal degradation while increasing the amount of data transmission. It was. Below, the suitable embodiment is explained in full detail.
  • the connector according to the first modification example of the present disclosure corresponds to a connector in which a configuration for further suppressing signal deterioration while increasing the data transmission amount is applied to the Type C HDMI connector.
  • the Type C HDMI connector differs from the Type A HDMI connector shown in FIGS. 6A and 6B in the arrangement of signal pins on the terminal surface.
  • the pin arrangement of the Type C HDMI connector will be described with reference to FIGS. 7A and 7B.
  • FIG. 7A is a schematic diagram showing a pin arrangement for transmitting a high-speed differential signal in a general Type C HDMI connector.
  • FIG. 7B is a schematic diagram illustrating an example of a pin arrangement in which a high-speed differential data line is newly added in a Type C HDMI connector.
  • FIG. 7A and FIG. 7B only the signal pins related to the transmission of the video signal are shown, and the other signal pins are not shown.
  • 7A and 7B show terminal surfaces of the receptacle-side connector.
  • a plurality of signal pins 971 are embedded in a dielectric 972 covered with an outer shell (shell) 973 on a terminal surface of a general Type C HDMI connector.
  • the signal pins 971 are arranged in a line in the x-axis direction on the terminal surface of the general Type C HDMI connector.
  • different types of signals are applied to each of the plurality of signal pins 971, and FIG. 7A shows the types of signals.
  • “Data2 Shield”, “Data2 +”, and “Data2-” are assigned to the signal pins with pin numbers 1, 2, and 3, respectively.
  • “Data1 Shield”, “Data1 +”, and “Data1-” are assigned to the signal pins with pin numbers 4, 5, and 6, respectively.
  • “Data0 Shield”, “Data0 +”, and “Data0-” are assigned to the signal pins with the pin numbers 7, 8, and 9, respectively.
  • “clock Shield”, “clock +”, and “clock ⁇ ” are assigned to the signal pins with pin numbers 10, 11, and 12, respectively.
  • the function of each data line (Data 0/1/2) and the clock (clock) is the same as the pin arrangement of the general Type A HDMI connector shown in FIG. To do.
  • the pin arrangement of the connector according to the first modification example of the present disclosure is assigned to the signal pins as compared with the pin arrangement of the general TypeC HDMI connector shown in FIG. 7A. The number of data lines has been increased.
  • the new differential line pairs “Data3 +”, “Data3-”, “Data4 +” are added to the signal pins with pin numbers 1, 4, 7, and 10 used as shields in FIG. 7A.
  • “Data4-” are assigned respectively.
  • new differential line pairs “Data5 +” and “Data5-” are assigned to the signal pins with the pin numbers 11 and 12 used as clocks in FIG. 7A, respectively.
  • the shield securing method and the clock generation method in the cable are the same as those of the Type A HDMI connector described with reference to FIG. 6B, and thus detailed description thereof is omitted here.
  • the pin arrangement in the Type C HDMI connector has been described above with reference to FIGS. 7A and 7B.
  • a pin arrangement with a newly increased number of data lines as shown in FIG. 7B is applied to a Type C HDMI connector having a general connector structure, the above [3.1. Similar to the Type A HDMI connector described in “Examination of Increase in Transmission Data Amount”, signal degradation occurs.
  • the connector structure according to the first modified example of the present disclosure described below it is possible to suppress signal degradation even for a pin arrangement in which data lines are newly increased as illustrated in FIG. 7B. Is possible.
  • FIG. 8A is a cross-sectional view showing a structural example of a general Type C HDMI connector cut by a cross section constituted by a y-axis and a z-axis and passing through a signal pin.
  • FIG. 8B is a cross-sectional view of the general Type C HDMI connector corresponding to the AA cross section in FIG. 8A in the cross section constituted by the x-axis and the y-axis.
  • FIG. 8C is a cross-sectional view of a general Type C HDMI connector corresponding to the CC cross section in FIG. 8B in the cross section constituted by the x-axis and the z-axis.
  • 8A to 8C show how the plug-side connector and the receptacle-side connector are fitted.
  • a plug connector 810 of a typical TypeC HDMI connector includes a signal pin 811, a dielectric 812, and an outer shell (shell) 813.
  • the signal pin 811 extends in the first direction, that is, the y-axis direction, and a part thereof is embedded in the dielectric 812.
  • the shell 813 is formed so as to cover the signal pin 811 and the dielectric 812, and one surface in the positive direction of the y-axis of the shell 813 is an open surface that is open to the outside. As shown in FIGS. 8A to 8C, the plug-side connector 810 and a receptacle-side connector 820, which will be described later, are connected through the open surface of the shell 813.
  • the shell 813 is formed of a conductor, and its potential is fixed to, for example, a ground potential via a receptacle-side connector 820 described later.
  • the signal pin 811 has a tip portion exposed from the dielectric 812 in a predetermined region near the open surface of the shell 813, and the exposed portion has a protruding portion that protrudes toward the open surface of the shell 813. Constitute. When the plug-side connector 810 and a receptacle-side connector 820 described later are fitted, the protruding portion of the signal pin 811 comes into contact with the signal pin 821 of the receptacle-side connector 820 described later, so that the plug-side connector 810 The receptacle-side connector 820 described later is electrically connected.
  • a contact portion that further protrudes toward the signal pin 821 of the receptacle-side connector 820 may be provided in a partial region of the protruding portion of the signal pin 811. Then, the signal pin 811 of the plug-side connector 810 and the signal pin 821 of the receptacle-side connector 820 may contact with each other through the contact portion.
  • a receptacle connector 820 of a typical Type C HDMI connector includes a signal pin 821, a dielectric 822, and an outer shell (shell) 823.
  • the signal pin 821 extends in the first direction, that is, the y-axis direction, and a part of the signal pin 821 is embedded in the dielectric 822.
  • the shell 823 is formed so as to cover the signal pin 821 and the dielectric 822, and one surface in the negative direction of the y-axis of the shell 823 is an open surface that is open to the outside.
  • the shell 823 is formed of a conductor, and its potential is fixed at, for example, the ground potential.
  • the area of the opening on the open surface of the shell 823 is slightly larger than the cross-sectional area of the open surface of the shell 813 of the plug-side connector 810.
  • the plug-side connector 810 and the receptacle-side connector 820 have one end provided with an open surface on the shell 813 of the plug-side connector 810, and the opening of the shell 823 of the receptacle-side connector 820. It is fitted by being inserted into the opening of the surface.
  • 8A and 8B represents a fitting portion S between the plug-side connector 810 and the receptacle-side connector 820.
  • the signal pin 821 has an exposed portion where a part of the surface of the signal pin 821 is exposed from the dielectric 822 in a predetermined region near the open surface.
  • the exposed portion of the signal pin 821 comes into contact with the protruding portion (contact portion) of the signal pin 811 of the plug-side connector 810 described above.
  • FIG. 9A is a cross-sectional view illustrating a structure example of a connector according to a first modification example of the present disclosure, which is a cross-section configured by a y-axis and a z-axis and is cut by a cross-section passing through a signal pin.
  • FIG. 9B is a cross-sectional view of the connector according to the first modification, corresponding to the AA cross section in FIG. 9A in the cross section constituted by the x-axis and the y-axis.
  • FIG. 9A is a cross-sectional view illustrating a structure example of a connector according to a first modification example of the present disclosure, which is a cross-section configured by a y-axis and a z-axis and is cut by a cross-section passing through a signal pin.
  • FIG. 9B is a cross-sectional view of the connector according to the first modification, corresponding to the AA cross section in FIG. 9A in the cross section constituted by the x-
  • 9C is a cross-sectional view corresponding to the CC cross section in FIG. 9B in the cross section constituted by the x-axis and the z-axis of the connector according to the first modification.
  • 9A to 9C show how the plug-side connector and the receptacle-side connector are fitted together.
  • the plug-side connector 10 includes a signal pin 110, a dielectric 120, a substrate 130, and an outer shell (shell) 140.
  • the signal pin 110 extends in the first direction, that is, the y-axis direction.
  • the signal pins 110 are formed as a wiring pattern on the surface of the substrate 130 formed of a dielectric.
  • the shell 140 is formed so as to cover the signal pins 110 and the substrate 130, and one surface of the shell 140 in the positive direction of the y-axis is an open surface that is open to the outside. As shown in FIGS. 9A to 9C, the plug-side connector 10 and the receptacle-side connector 20 described later are connected via the open surface of the shell 140.
  • the shell 140 is formed of a conductor, and the potential thereof is fixed to, for example, a ground potential via the receptacle-side connector 20 described later.
  • a conductor layer having a ground potential is formed on the back surface of the substrate 130, that is, the surface opposite to the surface on which the signal pins 110 are formed.
  • the surface of the shell 140 facing the back surface of the substrate 130 is formed to be thicker than the other surface and is in contact with the back surface of the substrate 130. That is, the conductor layer formed on the back surface of the substrate 130 and the shell 140 are integrally formed.
  • a conductor layer having a ground potential may be formed on the back surface of the substrate 130, and the structure of the conductor layer is not limited to this example. That is, one surface of the shell 140 does not have to be thickened.
  • the conductor layer formed on the back surface of the substrate 130 and the shell 140 may be electrically connected by a via hole or the like. Good.
  • a dielectric 120 may be laminated on the upper part (positive direction of the z-axis) of the signal pin 110 formed on the substrate 130. However, when the dielectric 120 is formed, the dielectric 120 is not formed so as to cover the entire surface of the signal pin 110, but in a predetermined region near the open surface of the shell 140. It is formed so that the partial area is exposed.
  • the plug-side connector 10 and the receptacle-side connector 20 described later are fitted, the exposed portion of the signal pin 110 of the plug-side connector 10 comes into contact with the signal pin 210 (wiring pattern) of the receptacle-side connector 20. Thus, the plug-side connector 10 and the receptacle-side connector 20 described later are electrically connected.
  • a contact portion that protrudes toward the signal pin 210 of the receptacle-side connector 20 may be provided in a partial region of the exposed portion of the signal pin 110. And the signal pin 110 of the plug side connector 10 and the signal pin 210 of the receptacle side connector 20 may contact via the said contact part.
  • the receptacle-side connector 20 includes a signal pin 210, a dielectric 220, a substrate 230, and an outer shell (shell) 240.
  • the signal pin 210 extends in the first direction, that is, the y-axis direction.
  • the signal pins 210 are formed as a wiring pattern on the surface of the substrate 230 formed of a dielectric.
  • the shell 240 is formed so as to cover the signal pin 210 and the substrate 230, and one surface in the negative direction of the y-axis of the shell 240 is an open surface that is open to the outside.
  • the shell 240 is formed of a conductor, and the potential thereof is fixed to, for example, the ground potential.
  • the area of the opening portion of the open surface of the shell 240 is slightly larger than the cross-sectional area of the open surface of the shell 140 of the plug-side connector 10.
  • the plug-side connector 10 and the receptacle-side connector 20 have one end provided with an open surface on the shell 140 of the plug-side connector 10, and the opening of the shell 240 of the receptacle-side connector 20 is open. It is fitted by being inserted into the opening of the surface.
  • 9A and 9B represents a fitting portion T between the plug-side connector 10 and the receptacle-side connector 20.
  • a conductor layer having a ground potential is formed on the back surface of the substrate 230, that is, the surface opposite to the surface on which the signal pins 210 are formed.
  • the surface of the shell 240 facing the back surface of the substrate 230 is formed thicker than the other surface and is in contact with the back surface of the substrate 230. That is, the conductor layer formed on the back surface of the substrate 230 and the shell 240 are integrally formed.
  • a conductor layer having a ground potential may be formed on the back surface of the substrate 230, and the structure of the conductor layer is not limited to this example. In other words, one surface of the shell 240 may not be thickened.
  • the conductor layer formed on the back surface of the substrate 230 and the shell 240 may be electrically connected by a via hole or the like. Good.
  • a dielectric 220 may be laminated on the upper part (positive direction of the z-axis) of the signal pin 210 formed on the substrate 230. However, when the dielectric 220 is formed, the dielectric 220 is formed such that a partial region of the signal pin 210 is exposed in a predetermined region near the open surface of the shell 240. The exposed portion of the signal pin 210 of the receptacle-side connector 20 comes into contact with the exposed portion and / or contact portion of the signal pin 110 (wiring pattern) of the plug-side connector 10, so that the plug-side connector 10 and the receptacle-side connector 20 are contacted. Are electrically connected.
  • the signal pin 110 of the plug-side connector 10 and the signal pin 210 of the receptacle-side connector 20 transmit differential signals among the signal pins 110 and 210 and extend adjacent to each other.
  • the distance between the pair of signal pins 110 and 210 may be smaller than the distance between the adjacent signal pins 110 and 210.
  • the interval between the signal pins 110 and 210 may be equal in the fitting portion T.
  • the area other than the fitting portion T may be formed such that the distance between the 110 and 210 is smaller than the distance between the other adjacent signal pins 110 and 210.
  • the wiring interval between the signal pins 110 and 210 in the fitting portion T may be the same as the wiring interval between the signal pins 811 and 821 in the fitting portion S shown in FIGS. 8A to 8C. That is, the signal pin of the connector according to the first modification and the signal pin of a general Type C HDMI connector may have the same wiring interval in the fitting portion.
  • the connector according to the first modified example is different from the general Type C connector in the following points. That is, the connector according to the first modification is formed of a dielectric, and a signal layer (a wiring pattern corresponding to the signal pin) is formed on one surface, and a conductor layer having a ground potential is formed on the other surface. Equipped with a substrate. Further, in the connector according to the first modification, among the signal pins, the differential signal is transmitted, and the interval between the pair of adjacent signal pins is larger than the interval between the other adjacent signal pins. Is also formed small. Here, the effect which the connector concerning the 1st modification produced by having these composition has is explained.
  • the signal pins 110 and 210 are formed on the substrates 130 and 230 formed of a dielectric, and the signal pins 110 and 210 of the substrates 130 and 230 are further formed.
  • a conductor layer having a ground potential is formed on the surface opposite to the surface on which 210 is formed. That is, the connector according to the first modified example has a configuration in which a ground plane (conductor layer), a dielectric layer (substrates 130 and 230), and wiring (signal pins 110 and 210) are sequentially stacked.
  • an electromagnetic field caused by a current (signal) flowing through the signal pins 110 and 210 is confined between the substrates 130 and 230 and the conductor, so-called microstrip line (microstrip structure). Is formed. Therefore, in the connector according to the first modified example, the influence of the current (signal) flowing through the signal pins 110 and 210 on the other signal pins 110 and 210 can be suppressed, and signal deterioration can be suppressed. .
  • the differential signal is transmitted and the pair of signal pins 110 that are adjacently extended.
  • the interval 210 may be formed smaller than the interval between the other adjacent signal pins 110 and 210.
  • a so-called differential strip line (differential strip structure) is formed between the pair of signal pins 110 and 210 and between the substrates 130 and 230 and the conductor. Note that a differential coupling return path is secured on the ground plane on the back side of the wiring surface.
  • the coupling is formed between the differential data lines, it is possible to reduce the wiring width and the wiring interval of the signal pins while maintaining the differential impedance. That is, it is possible to increase the interval between adjacent different types of signal wirings, and it is possible to reduce crosstalk and improve signal quality. Therefore, in the connector according to the first modification, the influence of the current (signal) flowing through the signal pins 110 and 210 to which the differential signal to be paired is transmitted on the other signal pins 110 and 210 is further suppressed. And signal deterioration can be further suppressed.
  • the signals are transmitted by the differential strip line, and“ Data3 + ”,“ Data3- ”,“ Data4 + ”, and“ Data4- ”are not formed at positions adjacent to each other.
  • the signal is transmitted by a single-ended microstrip line.
  • the connector according to the first modification example of the present disclosure can obtain more effects in the pin arrangement in which data lines are newly increased as shown in FIG. 7B.
  • the present invention can also be applied to the general pin arrangement shown in FIG. 7A. Even when the connector according to the first modification example of the present disclosure is applied to the general pin arrangement shown in FIG. 7A, a microstrip line or a differential stripline is formed for each signal pin. The influence of the current (signal) flowing through the signal pins 110 and 210 on the other signal pins 110 and 210 can be suppressed, and the deterioration of the signal can be suppressed.
  • the interval between the signal pins 110 and 210 in the fitting portion T is the fitting of a general Type C HDMI connector.
  • the interval between the signal pins 811 and 821 at the joint S may be the same.
  • a guard line having a ground potential may be further extended substantially parallel to the signal pin at a position sandwiching the signal pin. Furthermore, the guard line may be disposed so as to sandwich a signal pin that transmits a signal by a single end.
  • FIG. 10 is an explanatory diagram for explaining a configuration in which guard lines are provided.
  • FIG. 10 shows a state in which guard lines are newly provided in the connector according to the first modification shown in FIG. 9B. That is, FIG. 10 illustrates a configuration in which a guard line is provided in the connector according to the first modification as viewed from the positive direction of the z axis.
  • the guard line 150 is disposed so as to sandwich the signal pin 110 that transmits a signal by single coupling of the plug-side connector 10.
  • the guard line 250 is disposed so as to sandwich the signal pin 210 that transmits a signal by a single end of the receptacle-side connector 20.
  • the potentials of the guard lines 150 and 250 are set to the ground potential.
  • FIGS. 11A and 11B, FIGS. 12A and 12B, FIGS. 13A and 13B, and FIGS. 14A to 14E are signals corresponding to the pin arrangement with the newly increased data lines shown in FIG. 7B. The result when flowing
  • FIGS. 11A and 11B and FIGS. 12A and 12B show the electric field distribution in the vicinity of the signal pins when a predetermined signal at the time of video signal transmission defined by the HDMI standard is applied to the connector.
  • FIG. 11A and FIG. 11B are isoelectric field diagrams showing the state of electric field distribution in a general Type C HDMI connector structure.
  • 12A and 12B are isoelectric field diagrams showing a state of electric field distribution in the connector structure according to the first modification.
  • the intensity of the electric field distribution is schematically shown by shades of hatching, and the state where the electric field is concentrated in the darker shaded region is shown. Yes.
  • FIG. 11A is an isoelectric field diagram in a cross section corresponding to FIG. 8A in a general TypeC HDMI connector structure
  • FIG. 11B is an isoelectric field diagram in a DD cross section shown in FIG. 11A.
  • FIG. 12A is an isoelectric field diagram in a cross section corresponding to FIG. 9A in the connector structure according to the first modified example
  • FIG. 12B is an isoelectric field diagram in a DD cross section shown in FIG. 12A.
  • the isoelectric field diagrams shown in FIGS. 12A and 12B are obtained by calculating the electric field distribution for the structure further including the guard line shown in FIG. 10 in the connector structure according to the first modification.
  • the isoelectric field diagrams shown in FIGS. 11A and 11B and FIGS. 12A and 12B are models in which the dielectric constant corresponding to each region (signal pin, substrate, outer shell, dielectric, etc.) in each of the cross sections is set. And a simulation result of the electric field distribution in the vicinity of the signal pin when a predetermined signal at the time of video signal transmission defined by the HDMI standard is applied.
  • FIG. 11A in a general TypeC HDMI connector structure, the front surfaces (the surfaces positioned in the positive direction of the z-axis among the surfaces extending in the y-axis direction) and the back surfaces (the y-axis) of the signal pins 811 and 821. It can be seen that there is almost no difference in electric field distribution between the surface extending in the direction and the surface positioned in the negative z-axis direction.
  • FIG. 11B in a general Type C HDMI connector structure, as shown in, for example, region E, an electric field is concentrated between some signal pins 110 to form a coupling.
  • the electric field is concentrated between the signal pins 110 and 210 and the substrates 130 and 230, so-called microstrip lines are formed.
  • signal pins of “Data0”, “Data1”, “Data2”, and “Data5” which are adjacent signal pins are arranged. It is shown that the electric field is concentrated between the pair of 110 and 210 and a so-called differential strip line is formed.
  • FIGS. 13A and 13B are voltage characteristic diagrams showing an eye pattern in the general Type C HDMI connector structure shown in FIGS. 8A to 8C.
  • 13A shows an eye pattern for the “Data2” line shown in FIG. 7B
  • FIG. 13B shows an eye pattern for the “Data4” line shown in FIG. 7B.
  • 14A and 14B are voltage characteristic diagrams showing eye patterns in the connector structure according to the first modification shown in FIGS. 9A to 9C.
  • 14A shows an eye pattern for the “Data2” line shown in FIG. 7B
  • FIG. 14B shows an eye pattern for the “Data4” line shown in FIG. 7B.
  • FIG. 14C and 14D are voltage characteristic diagrams showing eye patterns in the connector structure shown in FIG. 10 in which guard lines are further arranged in the connector structure according to the first modification.
  • 14C shows the eye pattern for the “Data2” line shown in FIG. 7B
  • FIG. 14D shows the eye pattern for the “Data4” line shown in FIG. 7B.
  • FIG. 14E is a voltage characteristic diagram showing a crosstalk characteristic in the connector structure shown in FIG. 10 in which guard lines are further arranged in the connector structure according to the first modification.
  • the eye pattern corresponding to “Data2” indicates the transmission characteristics of data lines (existing data lines) that already exist in the general pin arrangement shown in FIG. 7A.
  • the eye pattern corresponding to “Data4” represents the transmission characteristics of a data line (new data line) newly added in the pin arrangement in which the data lines are newly increased as shown in FIG. 7B. Is.
  • both the existing data line “Data2” and the new data line “Data4” have the connector structure according to the first modification.
  • the signal transmission characteristics are improved. That is, signal degradation is suppressed by the connector structure according to the first modification.
  • both the existing data line “Data2” and the new data line “Data4” provide a guard line 150, thereby It can be seen that the transmission characteristics are further improved. That is, by further providing the guard line 150 in the connector structure according to the first modification, signal deterioration is further suppressed. In addition, referring to FIG. 14E, it can be seen that good crosstalk characteristics can be obtained in the connector structure according to the first modification.
  • the connector according to the second modification corresponds to a connector in which a configuration for further suppressing signal deterioration while increasing the data transmission amount is applied to the Type D HDMI connector.
  • the Type D HDMI connector has the pin arrangement shown in FIGS. 6A and 6B.
  • a pin arrangement with a newly increased number of data lines as shown in FIG. 6B is applied to a general Type D HDMI connector, the above [3.1. Similar to the Type A HDMI connector described in “Examination of Increase in Transmission Data Amount”, signal degradation occurs.
  • the connector structure according to the second modified example of the present disclosure described below it is possible to suppress signal degradation even for a pin arrangement in which data lines are newly increased as illustrated in FIG. 6B. Is possible.
  • the signal pins are arranged in a zigzag pattern along the x-axis direction and in two rows in the z-axis direction on the terminal surface.
  • the signal pins formed in the upper (upward direction in the z-axis direction) row and the signal pins formed in the lower (downward direction in the z-axis direction) row are x
  • the structure is vertically symmetrical. Accordingly, in FIGS. 15A to 15C and 16A to 16C shown below, the structure of the lower signal pins in the z-axis direction (signal pins formed in the lower row in FIGS.
  • the upper signal pins in the z-axis direction correspond to the folded back signal pin structure, and thus the description is omitted. To do.
  • FIG. 15A is a cross-sectional view showing a structural example of a general Type D HDMI connector, which is a cross-section constituted by a y-axis and a z-axis and cut by a cross-section passing through a signal pin.
  • FIG. 15B is a cross-sectional view of a general Type D HDMI connector corresponding to the AA cross section in FIG. 15A in the cross section constituted by the x-axis and the y-axis.
  • 15C is a cross-sectional view of a general Type D HDMI connector corresponding to the CC cross section in FIG. 15B in the cross section constituted by the x-axis and the z-axis.
  • 15A to 15C show a state where the plug-side connector and the receptacle-side connector are fitted.
  • a plug connector 910 of a typical Type D HDMI connector includes signal pins 911, a dielectric 912, and an outer shell (shell) 913.
  • the signal pin 911 extends in the first direction, that is, the y-axis direction, and a part of the signal pin 911 is embedded in the dielectric 912.
  • the shell 913 is formed so as to cover the signal pin 911 and the dielectric 912, and one surface in the positive direction of the y-axis of the shell 913 is an open surface that is open to the outside. As shown in FIGS. 15A to 15C, the plug-side connector 910 and a receptacle-side connector 920, which will be described later, are connected through the open surface of the shell 913.
  • the shell 913 is formed of a conductor, and the potential thereof is fixed to, for example, a ground potential via a receptacle-side connector 920 described later.
  • the signal pin 911 has a predetermined region in the vicinity of the open surface of the shell 913, the tip of which is exposed from the dielectric 912, and the exposed portion is a bent portion that is bent in the positive z-axis direction at a predetermined angle.
  • the bent portion of the signal pin 911 comes into contact with the signal pin 921 of the receptacle-side connector 920, which will be described later.
  • a receptacle-side connector 920 which will be described later, is electrically connected.
  • the bent portion is bent in the negative direction of the z-axis at a predetermined angle. It is formed.
  • a receptacle connector 920 of a general Type D HDMI connector includes signal pins 921, a dielectric 922, and an outer shell (shell) 923.
  • the signal pin 921 extends in the first direction, that is, the y-axis direction, and a part thereof is embedded in the dielectric 922.
  • the shell 923 is formed so as to cover the signal pin 921 and the dielectric 922, and one surface in the negative direction of the y-axis of the shell 923 is an open surface that is open to the outside.
  • the shell 923 is formed of a conductor, and the potential thereof is fixed to, for example, the ground potential.
  • the area of the opening portion of the open surface of the shell 923 is slightly larger than the cross-sectional area of the open surface of the shell 913 of the plug-side connector 910.
  • the plug-side connector 910 and the receptacle-side connector 920 have one end provided with an open surface on the shell 913 of the plug-side connector 910, and the opening of the shell 923 of the receptacle-side connector 920. It is fitted by being inserted into the opening of the surface.
  • region shown with a broken line in FIG. 15A and 15B represents the fitting part U of the plug side connector 910 and the receptacle side connector 920.
  • the signal pin 921 has an exposed portion where a part of the surface of the signal pin 921 is exposed from the dielectric 922 in a predetermined region near the open surface of the shell 923.
  • the exposed portion of the signal pin 921 comes into contact with the bent portion of the signal pin 911 of the plug-side connector 910 described above.
  • the structure similar to that of the signal pins 911 and 921 and the dielectrics 912 and 922 described above has a z-axis symmetrically inside the shells 913 and 923. Further provided as upper signal pins 911 and 921 and dielectrics 912 and 922 in the direction.
  • FIG. 16A is a cross-sectional view illustrating a structure example of a connector according to a second modification example of the present disclosure, which is a cross-section configured by a y-axis and a z-axis and is cut by a cross-section passing through a signal pin.
  • FIG. 16B is a cross-sectional view corresponding to the AA cross section in FIG. 16A in the cross section constituted by the x-axis and the y-axis of the connector according to the second modification.
  • FIG. 16C is a cross-sectional view corresponding to the CC cross section in FIG. 16B in the cross section constituted by the x-axis and the z-axis of the connector according to the second modification.
  • the plug-side connector 30 includes a signal pin 310, a dielectric 320, a substrate 330, and an outer shell (shell) 340.
  • the signal pin 310 extends in the first direction, that is, the y-axis direction.
  • the signal pins 310 are formed as a wiring pattern on the surface of the substrate 330 formed of a dielectric.
  • the shell 340 is formed so as to cover the signal pin 310 and the substrate 330, and one surface in the positive direction of the y-axis of the shell 340 is an open surface that is open to the outside. As shown in FIGS. 16A to 16C, the plug-side connector 30 and a receptacle-side connector 40 described later are connected via the open surface of the shell 340.
  • the shell 340 is formed of a conductor, and its potential is fixed to, for example, a ground potential via a receptacle-side connector 40 described later.
  • a conductor layer having a ground potential is formed on the back surface of the substrate 330, that is, the surface opposite to the surface on which the signal pins 310 are formed.
  • the surface of the shell 340 facing the back surface of the substrate 330 is formed thicker than the other surfaces and is in contact with the back surface of the substrate 330. That is, the conductor layer formed on the back surface of the substrate 330 and the shell 340 are integrally formed.
  • a conductor layer having a ground potential may be formed on the back surface of the substrate 330, and the structure of the conductor layer is not limited to this example. That is, one surface of the shell 340 may not be thickened.
  • the conductor layer formed on the back surface of the substrate 330 and the shell 340 may be electrically connected by a via hole or the like. Good.
  • a dielectric 320 may be laminated on the upper part (the positive direction of the z axis) of the signal pin 310 formed on the substrate 330. However, when the dielectric 320 is formed, the dielectric 320 is not formed so as to cover the entire surface of the signal pin 310, but in a predetermined region near the open surface of the shell 340. It is formed so that a part of the region is exposed.
  • the exposed portion of the signal pin 310 of the plug-side connector 30 comes into contact with the signal pin 410 of the receptacle-side connector 40, so that the plug side
  • the connector 30 is electrically connected to a receptacle-side connector 40 described later.
  • a contact portion that protrudes toward the signal pin 410 of the receptacle-side connector 40 may be provided in a partial region of the exposed portion of the signal pin 310.
  • the signal pin 310 of the plug side connector 30 and the signal pin 410 of the receptacle side connector 40 may contact via the said contact part.
  • a receptacle-side connector 40 includes a signal pin 410, a dielectric 420, a substrate 430, and an outer shell (shell) 440.
  • the signal pin 410 extends in the first direction, that is, the y-axis direction.
  • the signal pins 410 are formed as a wiring pattern on the surface of the substrate 430 formed of a dielectric.
  • the shell 440 is formed so as to cover the signal pin 410 and the substrate 430, and one surface in the negative direction of the y-axis of the shell 440 is an open surface that is open to the outside.
  • the shell 440 is formed of a conductor, and the potential thereof is fixed to, for example, the ground potential.
  • the area of the opening of the open surface of the shell 440 is slightly larger than the cross-sectional area of the open surface of the shell 340 of the plug-side connector 30.
  • the plug-side connector 30 and the receptacle-side connector 40 have one end where an open surface is provided on the shell 340 of the plug-side connector 30, and the opening of the shell 440 of the receptacle-side connector 40. It is fitted by being inserted into the opening of the surface.
  • region shown with a broken line in FIG. 16A and 16B represents the fitting part V of the plug side connector 30 and the receptacle side connector 40.
  • a conductor layer having a ground potential is formed on the back surface of the substrate 430, that is, on the surface opposite to the surface on which the signal pins 410 are formed.
  • the surface of the shell 440 that faces the back surface of the substrate 430 is formed to be thicker than the other surfaces and is in contact with the back surface of the substrate 430. That is, the conductor layer formed on the back surface of the substrate 430 and the shell 440 are integrally formed.
  • a conductor layer having a ground potential may be formed on the back surface of the substrate 430, and the structure of the conductor layer is not limited to this example. That is, one surface of the shell 440 does not have to be thickened.
  • the conductor layer formed on the back surface of the substrate 430 and the shell 440 may be electrically connected by a via hole or the like. Good.
  • a dielectric 420 may be laminated on the top of the signal pin 410 formed on the substrate 430 (the positive direction of the z-axis). However, when the dielectric 420 is formed, the dielectric 420 is formed so that a partial region of the surface of the signal pin 410 is exposed in a predetermined region near the open surface of the shell 440. When the exposed portion of the signal pin 410 of the receptacle-side connector 40 comes into contact with the exposed portion and / or contact portion of the signal pin 310 of the plug-side connector 30, the plug-side connector 30 and the receptacle-side connector 40 are electrically connected. Connected to.
  • the connector structure similar to that of the signal pins 310 and 410, the dielectrics 320 and 420, the substrates 330 and 430, and the conductor layer described above is the shell 340,
  • the signal pins 310 and 410, the dielectrics 320 and 420, the substrates 330 and 430, and the conductor layers on the upper side in the z-axis direction are further provided inside the 440 in a vertically symmetrical manner. That is, the connector structure according to the second modification has the structure of the signal pins 110 and 210, the dielectrics 120 and 220, the substrates 130 and 230, and the conductor layer in the connector structure according to the first modification described above. It corresponds to the structure provided with two sets.
  • the signal pin 310 of the plug-side connector 30 and the signal pin 410 of the receptacle-side connector 40 transmit differential signals among the signal pins 310 and 410 and extend adjacent to each other.
  • the distance between the pair of signal pins 310 and 410 may be smaller than the distance between the other adjacent signal pins 310 and 410.
  • the interval between the signal pins 310 and 410 may be equal in the fitting portion V.
  • the region other than the fitting portion V may be formed such that the interval between the 310 and 410 is smaller than the interval between the other adjacent signal pins 310 and 410.
  • the wiring interval between the signal pins 310 and 410 in the fitting portion V may be the same as the wiring interval between the signal pins 911 and 921 in the fitting portion U shown in FIGS. 15A to 15C. That is, the signal pin of the connector according to the second modification and the signal pin of a general Type D HDMI connector may have the same wiring interval in the fitting portion.
  • the structure of the connector according to the second modification is different from the structure of a general Type D connector in the following points. That is, the connector according to the second modification is formed of a dielectric, and a signal pin (wiring pattern corresponding to the signal pin) is formed on one surface, and a conductor layer having a ground potential is formed on the other surface. Equipped with a substrate. Further, in the connector according to the second modification, among the signal pins, the differential signal is transmitted, and the interval between the pair of adjacent signal pins is larger than the interval between the other adjacent signal pins. Is also formed small. Similar to the connector according to the first modification described above, the connector according to the second modification has the following configuration, and thus has the following effects.
  • the signal pins 310 and 410 are formed on the substrates 330 and 430 formed of a dielectric, and the signal pins 310 and 410 of the substrates 330 and 430 are further formed.
  • a conductor layer having a ground potential is formed on the surface opposite to the surface on which 410 is formed. That is, the connector according to the second modification has a configuration in which a ground plane (conductor layer), a dielectric layer (substrates 330 and 430), and wiring (signal pins 310 and 410) are sequentially stacked.
  • the differential signal is transmitted, and the pair of signal pins 310 and adjacently extended.
  • the interval 410 may be formed smaller than the interval between the other adjacent signal pins 310 and 410.
  • a differential coupling return path is secured on the ground plane on the back side of the wiring surface. Accordingly, since the coupling is formed between the differential data lines, it is possible to reduce the wiring width and the wiring interval of the signal pins while maintaining the differential impedance. That is, it is possible to increase the interval between adjacent different types of signal wirings, and it is possible to reduce crosstalk and improve signal quality. Therefore, in the connector according to the second modification, the influence of the current (signal) flowing through the signal pins 310 and 410 to which the differential signal to be paired is transmitted on the other signal pins 310 and 410 is further suppressed. And signal deterioration can be further suppressed.
  • the signals are transmitted by the differential strip line, and“ Data3 + ”,“ Data3- ”,“ Data4 + ”, and“ Data4- ”are not formed at positions adjacent to each other.
  • the signal may be transmitted by a single-ended microstrip line.
  • the connector according to the second modification example of the present disclosure can further obtain the effect in the pin arrangement in which the data line is newly increased as illustrated in FIG. 6B.
  • the present invention can also be applied to the general pin arrangement shown in FIG. 6A. Even when the connector according to the second modification example of the present disclosure is applied to the general pin arrangement shown in FIG. 6A, the microstrip line or the differential strip line is formed for each signal pin. The influence of the current (signal) flowing through the signal pins 310 and 410 on the other signal pins 310 and 410 can be suppressed, and signal deterioration can be suppressed.
  • the interval between the signal pins 310 and 410 in the fitting portion V is the fitting of a general Type D HDMI connector.
  • the interval between the signal pins 911 and 921 at the joint U may be the same.
  • the guard line having the ground potential is substantially parallel to the signal pin at a position sandwiching the signal pin. It may be further extended. Furthermore, the guard line may be disposed so as to sandwich a signal pin that transmits a signal by a single end.
  • the connector according to the second modification shown in FIGS. 16A to 16C has the signal pins, the substrate, and the conductor layer in the connector structure according to the first modification shown in FIGS. 9A to 9C.
  • the structure corresponds to the structure provided with two sets.
  • the configuration of the signal pins (wiring patterns) on the board when the guard line is installed is the same as that of the connector according to the first modification. That is, in the connector according to the second modified example, as shown in FIG. 10, the guard line is arranged so as to sandwich the signal pin for transmitting the signal by single end in both the plug side connector and the receptacle side connector. May be.
  • the guard line potential is set to the ground potential.
  • FIGS. 17A and 17B, and FIGS. 18A and 18B show the electric field distribution in the vicinity of the signal pins when a predetermined signal at the time of video signal transmission defined by the HDMI standard is applied to the connector.
  • FIGS. 17A and 17B are isoelectric field diagrams showing a state of electric field distribution in a general Type D HDMI connector structure.
  • 18A and 18B are isoelectric field diagrams showing the state of electric field distribution in the connector structure according to the second modification.
  • the intensity of the electric field distribution is schematically shown by shades of hatching, and the state where the electric field is concentrated in the region where the hatching is darker is shown. Yes.
  • FIG. 17A is an isoelectric field diagram in a cross section corresponding to FIG. 15A in a general Type D HDMI connector structure
  • FIG. 17B is an isoelectric field diagram in a DD cross section shown in FIG. 17A.
  • FIG. 18A is an isoelectric field diagram in a cross section corresponding to FIG. 16A in the connector structure according to the second modification
  • FIG. 18B is an isoelectric field diagram in a DD cross section shown in FIG. 18A.
  • the isoelectric field diagrams shown in FIGS. 18A and 18B are obtained by determining the electric field distribution for the structure further including the guard line shown in FIG. 10 in the connector structure according to the second modification.
  • the isoelectric field diagrams shown in FIGS. 17A and 17B and FIGS. 18A and 18B are models in which the dielectric constant corresponding to each region (signal pin, substrate, outer shell, dielectric, etc.) in each of the cross sections is set. And a simulation result of the electric field distribution in the vicinity of the signal pin when a predetermined signal at the time of video signal transmission defined by the HDMI standard is applied.
  • the front surfaces (the surfaces positioned in the positive direction of the z-axis among the surfaces extending in the y-axis direction) and the back surfaces (the y-axis) of the signal pins 310 and 410 It can be seen that there is almost no difference in electric field distribution between the surface extending in the direction and the surface positioned in the negative z-axis direction.
  • the electric field is concentrated between the signal pins 310 and 410 and the shells 340 and 440, that is, on the substrates 330 and 430. It can be seen that a strip line is formed.
  • the electric field is concentrated between the pair of operation signals of the “Data1” signal pins 310 and 410 arranged adjacent to each other, A state in which a so-called differential strip line is formed is shown.
  • the electric field is concentrated between the signal pins 310 and 410 and the shells 340 and 440, that is, on the substrates 330 and 430. It can be seen that a distribution is formed. Therefore, it can be seen that the influence of the current (signal) flowing through the signal pins 310 and 410 on the other signal pins 310 and 410 is suppressed.
  • 19A and 19B are voltage characteristic diagrams showing eye patterns in the general Type D HDMI connector structure shown in FIGS. 15A to 15C.
  • 19A shows an eye pattern for the “Data1” line shown in FIG. 6B
  • FIG. 19B shows an eye pattern for the “Data4” line shown in FIG. 6B.
  • 20A and 20B are voltage characteristic diagrams showing eye patterns in a connector structure in which guard lines are further arranged in the connector structure according to the second modification shown in FIG. 10, for example.
  • 20A shows an eye pattern for the “Data1” line shown in FIG. 6B
  • FIG. 20B shows an eye pattern for the “Data4” line shown in FIG. 6B.
  • FIG. 20C is a voltage characteristic diagram showing crosstalk in a connector structure in which a guard line is further arranged in the connector structure according to the second modification shown in FIG. 10, for example.
  • the eye pattern corresponding to “Data 1” indicates the transmission characteristics of the data lines (existing data lines) that already exist in the general pin arrangement shown in FIG. 6A.
  • the eye pattern corresponding to “Data4” represents the transmission characteristics of a data line (new data line) newly added in the pin arrangement in which the number of new data lines is increased as shown in FIG. 6B. Is.
  • both the existing data line “Data1” and the new data line “Data4” have the connector structure according to the second modification.
  • the signal transmission characteristics are improved. That is, signal degradation is suppressed by the connector structure according to the second modification.
  • FIG. 20C it can be seen that a good crosstalk characteristic can be obtained in the connector structure according to the second modification.
  • FIG. 21A is a schematic diagram illustrating an example of pin arrangement of related signals in a modification in which the cross-sectional area of the signal pin is expanded, which is a modification of the present disclosure.
  • FIG. 21A only the signal pins arranged at the extreme end and the vicinity thereof on the terminal surface of the connector, which are necessary for explaining the present modification, are shown, and the other signal pins are not shown. ing.
  • FIG. 21A shows the terminal surface of the plug-side connector.
  • the wiring width of the HPD signal pin located at the endmost portion on the terminal surface is formed wider than the wiring width of the other signal pins 991.
  • the wiring width between the signal pins 991 is increased by extending the wiring width toward the outer shell (shell) 993 in the positive direction of the x axis.
  • the wiring width can be expanded without changing the.
  • the configuration according to the first modification corresponding to the Type C HDMI connector is described as an example, so that the signal pins are arranged in a line in the x-axis direction. Yes. Therefore, in FIG. 21A, the HPD signal pin is shown as a signal pin that is located at the endmost portion on the terminal surface and whose wiring width can be expanded. On the other hand, in the case of another type of connector, the signal pin that is positioned at the endmost portion on the terminal surface and whose cross-sectional area is expanded may be a signal pin to which any type of signal is applied.
  • the signal pins are arranged in a staggered pattern in two rows in the x-axis direction. Therefore, in addition to the HPD signal pins, the power supply signal pins (+ 5V Power pins) Its cross-sectional area may be expanded.
  • FIG. 21B is a schematic view showing a structural example of the connector shown in FIG. 21A, which is a cross-section constituted by the y-axis and the z-axis and cut along a cross-section passing through the signal pin.
  • 21C is a schematic view corresponding to the AA cross section in FIG. 21B in the cross section constituted by the x axis and the y axis of the connector shown in FIG. 21A.
  • 21B and 21C are diagrams corresponding to FIGS. 16A and 16B described for the first modification, and thus detailed description of the configurations already described in FIGS. 16A and 16B is omitted.
  • each component of the connector is schematically shown in order to simplify the description of this modification.
  • the outer shells of the plug-side connector and the receptacle-side connector are not shown in order to simplify the description. Further, in FIG. 21C, for simplicity of explanation, only the signal pin located at the end and extending in cross-sectional area in the connector and the signal pin arranged in the vicinity thereof are illustrated, and the other signal pins are illustrated. The illustration is omitted.
  • the cross-sectional areas of the signal pins 110 and 210 to which the HPD signal is applied are expanded.
  • the direction in which the cross-sectional areas of the signal pins 110 and 210 are expanded may be expanded toward the outer shell in the positive direction of the x-axis as shown in FIGS. 21A and 21C, or as shown in FIG. 21B. In addition, it may be expanded in the z-axis direction.
  • the signal pin 110 of the plug-side connector 10 is extended in the negative direction of the y-axis and connected to the wiring in the cable. Further, the signal pin 210 of the receptacle-side connector 20 extends in the positive direction of the y-axis and is connected to a predetermined board in the apparatus in the receiving apparatus or transmitting apparatus.
  • the cross-sectional area of the signal pin 110 is expanded in the plug-side connector 10 and directly connected to the wiring in the cable.
  • the cross-sectional area of the signal pin 210 is expanded and directly connected to the board in the apparatus.
  • the cross-sectional area of the signal pin 110 is expanded, so that a large current can be passed through the signal pin while suppressing attenuation, and the reliability of the connector is improved.
  • the HPD signal pin and the power supply signal pin are power supply voltage application pins to which a power supply voltage of +5 V is applied.
  • the present modification can be more effective when applied to a power supply voltage application pin to which a relatively high voltage is applied, represented by an HPD signal pin and / or a power supply signal pin. it can.
  • devices connected via the HDMI connector can have a function of supplying power to each other using their signal pins.
  • This modification can be suitably applied to signal pins that serve as power supply paths in power supply between such devices.
  • the cross-sectional area of the signal pin may be expanded only in a region other than the fitting portion between the plug-side connector and the receptacle-side connector.
  • FIG. 21D shows a modified example in which the signal pin wiring width is expanded only in the region other than the fitting portion between the plug-side connector and the receptacle-side connector.
  • FIG. 21D is a schematic diagram illustrating a modification in which the cross-sectional area of the signal pin is expanded only in a region other than the fitting portion of the connector corresponding to FIG. 21C.
  • the cross-sectional areas of the signal pin 110 of the plug-side connector 10 and the signal pin 210 of the receptacle-side connector 20 are not changed in the x-axis direction. That is, in the fitting portion, the size and shape of the signal pin in accordance with the standard to which the connector belongs are secured, and the connection with a general connector conforming to the same standard is guaranteed.
  • the connectors according to the first modification example of the present disclosure and the second modification example of the present disclosure include substrates 130, 230, 330, and 430 in the connector. Have. As described above, the signal pins 110, 210, 310, and 410 are formed on the surfaces of the substrates 130, 230, 330, and 430, but there are empty areas where the signal pins 110, 210, 310, and 410 are not formed. .
  • various types of signals acting on signal transmission in the signal pins are provided in the empty areas on the surfaces of the boards 130, 230, 330, and 430.
  • a device (circuit) may be mounted.
  • the modification shown in this section (3.4.2. Mounting of device on board) can be applied to any structure as long as it has a board in the connector.
  • FIGS. 22 and 23A to 23C A modification in which various devices are mounted on a substrate will be described with reference to FIGS. 22 and 23A to 23C.
  • the connector according to the first modification example of the present disclosure will be described as an example.
  • this modification can also be applied to the connector according to the second modification of the present disclosure and the connector according to the second embodiment of the present disclosure which will be described later.
  • FIG. 22 illustrates a state in which various devices (circuits) are mounted in an empty area on the surface of the substrate in the connector according to the first modification example of the present disclosure.
  • FIG. 22 is a schematic diagram illustrating a configuration example of a modification example in which a device is provided on a substrate, which is a modification example of the present disclosure.
  • the substrate 130 of the plug-side connector 10 is mounted with a device 160 that acts on signal transmission on the signal pin 110 in an area (vacant area) where the signal pin 110 is not formed on the surface. Good.
  • the substrate 230 of the receptacle-side connector 20 is mounted with a device that acts on signal transmission on the signal pin 210 in an area (empty area) where the signal pin 210 is not formed on the surface. Good.
  • FIG. 23A is a schematic diagram illustrating an example of a circuit configuration of an AC / DC conversion circuit, which is a specific example of the device according to the modification illustrated in FIG.
  • a data transmission device 510 that performs AC coupled transmission and a data reception device 520 that performs DC coupled transmission are connected via a cable 530.
  • the data transmission device 510 includes a differential driver 511 and a DC component removal filter (capacitor) 512, and a predetermined DC signal generated by the differential driver 511 is a connection partner via the DC component removal filter 512.
  • the data can be transmitted to the data receiving device 520.
  • the data receiving device 520 includes a differential receiver 521 and a DC bias pull-up resistor 522, and can receive a DC signal transmitted from the data receiving device 520.
  • connectors 10 and 20 are provided between the data transmission device 510 and the cable 530, and further, a common mode voltage generating resistor 531 is provided in an empty area of the boards 130 and 230 of the connectors 10 and 20. And a switch 532 is provided.
  • the common mode voltage generating resistor 531 is a voltage shift resistor for removing a common code component generated in the bias voltage applied by the DC bias pull-up resistor 522 of the receiving device by AC coupled transmission.
  • the switch 532 is for operating the common mode voltage generating resistor 531 as a termination resistor for dropping the output voltage to 0 level while signal transmission is not performed.
  • FIG. 23B is a schematic diagram illustrating an example of a configuration of a register and a communication circuit, which is a specific example of the device according to the modification illustrated in FIG.
  • a capability register 570 and a communication circuit 580 may be provided in an empty area on the surface of the substrates 130 and 230.
  • the capability register 570 holds information regarding the characteristics of the signals transmitted by the signal pins 110 and 210.
  • the information related to the characteristics of the signals transmitted by the signal pins 110 and 210 may be information related to the band of the signals, for example. That is, the capability register 570 can hold information on the capability and characteristics of the connector (cable) on which the capability register 570 is mounted.
  • the communication circuit 580 can notify the information about the characteristics of the signal held in the capability register 570 to the device that is the connection partner via the signal pins 110 and 210.
  • the communication circuit 580 may be an I2C circuit, for example.
  • the type of the communication circuit 580 is not particularly limited, and any other known communication circuit may be used.
  • the communication circuit can notify the connection partner apparatus of information on the capability and characteristics of the connector (cable) held in the register. Therefore, it is possible to determine the data transmission method between the devices connected via the connector in accordance with the characteristics of the cable, thereby realizing more reliable data transmission with less transmission deterioration.
  • the capability register 570 may further hold authentication data for a connector (cable) on which the capability register 570 is mounted. By using the authentication data, it is possible to determine whether the connector and the cable are genuine products between the devices connected via the connector.
  • a memory may be further mounted in an empty area on the surface of the substrates 130 and 230.
  • Various information in data transmission may be temporarily stored in the memory.
  • By mounting a memory on a connector temporary communication using information stored in the memory can be performed between devices connected via the connector.
  • FIG. 23C is a schematic diagram illustrating an example of a configuration of a battery, which is a specific example of the device according to the modification illustrated in FIG. 22.
  • a battery 590 may be mounted in an empty area on the surface of the substrates 130 and 230, and a voltage corresponding to the power supply voltage may be supplied from the battery 590 to at least one of the signal pins 110 and 210.
  • a battery 590 is mounted in an empty area on the surface of the substrates 130 and 230 and power is supplied from the battery 590, for example, in a device connected via a connector on which the battery 590 is mounted, the device When the power supply from the power supply is interrupted, only a minimum function can be executed.
  • the battery 590 may be a rechargeable secondary battery.
  • the battery 590 may be charged by supplying power from a device connected via a connector on which the battery 590 is mounted.
  • an equivalent device in accordance with the characteristics of the connector (cable) may be provided in the empty area on the surface of the boards 130 and 230. By providing an equalizer in a free area on the surface of the substrates 130 and 230, more stable data transmission is realized.
  • the device described above is an example of a device mounted on a substrate, and the present modification is not limited to such an example.
  • Arbitrary devices may be mounted as the device 160 provided on the board in the connector.
  • the HDMI standard transmission line is called a CEC (Consumer Electronics Control) line for control between the source device and the sink device, and a line capable of bidirectional transmission of control data includes a video data transmission line. Is prepared separately. It is possible to control the counterpart device using this CEC line. Whether or not control using the CEC line of the HDMI cable can be executed at the time of executing the CEC control can be automatically performed in the device based on processing at the time of connection authentication using the DDC line.
  • CEC Consumer Electronics Control
  • the source device is a disk recorder and the sink device is a television receiver
  • the disc recorder and the television receiver are connectors of the connectors according to the first embodiment of the present disclosure, the second embodiment to be described later, the first modified example, and the second modified example, as the receptacle-side connector. Any one shall be provided.
  • the HDMI cable that connects the disk recorder and the television receiver has any one of the connectors according to the first and second modified examples of the present disclosure and a general HDMI connector as a plug-side connector. Shall be provided.
  • the pin arrangement in the plug-side connector and the receptacle-side connector is unified to either the general pin arrangement shown in FIGS. 6A and 7A or the pin arrangement with increased data lines shown in FIGS. 6B and 7B. It shall be.
  • each channel transmitted by the HDMI cable 65 between the disk recorder 60 and the television receiver 70 will be described.
  • three channels of channel 0 (Data 0), channel 1 (Data 1), and channel 2 (Data 2) are prepared as channels for transmitting video data, and a clock channel (pixel clock) ( clock).
  • DDC and CEC are prepared as a power transmission line and a control data transmission channel.
  • the DDC Display Data Channel
  • the CEC Consumer Electronics Control
  • channel 0 transmits pixel data of B data (blue data), vertical synchronization data, horizontal synchronization data, and auxiliary data.
  • Channel 1 transmits G data (green data) pixel data, two types of control data (CTL0, CTL1), and auxiliary data.
  • Channel 2 transmits pixel data of R data (red data), two types of control data (CTL2, CTL3), and auxiliary data.
  • CTL0, CTL1 two types of control data
  • CTL2 two types of control data
  • auxiliary data auxiliary data.
  • the CEC as a control data transmission channel is a channel in which data transmission is performed bidirectionally at a clock frequency lower than that of channels (channels 0, 1, and 2) that transmit video data.
  • the data configuration transmitted by channels other than CEC may be the same as the data configuration transmitted by the HDMI system that has already been put into practical use.
  • 6B and 7B the data structure corresponding to the pin arrangement with the increased data lines may be used.
  • the source device 60 and the sink device 70 also include HDMI transmission units 610 and 710 for performing data transmission, and EDID ROMs 610a and 710a as storage units for storing E-EDID information (Enhanced Display Identification Data).
  • E-EDID information stored in the EDID ROMs 610a and 710a is information describing the format of video data handled by the device (that is, displayable or recordable / reproducible). However, in the case of this example, this E-EDID information is expanded to store information on the details of the device, specifically, control function correspondence information. In the case of this example, when the connection with the HDMI cable 65 is detected, the stored information in the EDID ROM 610a or 710a of the partner device is read and the E-EDID information is collated.
  • the source device 60 and the sink device 70 include CPUs 620 and 720 that are control units that control the operation of the entire source device 60 and the entire sink device 70. Furthermore, the source device 60 and the sink device 70 include memories 630 and 730 in which programs executed by the CPUs 620 and 720 and various types of information processed by the CPUs 620 and 720 are temporarily stored. Data transmitted through the DDC line and CEC line of the HDMI cable 65 is transmitted and received under the control of the CPUs 620 and 720.
  • FIG. 25 shows a sequence example of CEC control when the source device and the sink device are connected.
  • a description will be given using “Record TV Screen” which is an optional function in the CEC standard.
  • the disk recorder which is the source device connected by the HDMI cable 65, by the user's operation (step S1), the source device A command of “Record TV Screen” is transmitted to the device through the CEC line and requested (step S2).
  • the sink device In response to the request in step S2, the sink device returns service information of the digital broadcast program currently being displayed (step S3).
  • a program being displayed by the sink device is input from the source device via the HDMI cable 65, a response is sent to the effect that the source device is a video source (step S4).
  • the source device In response to the response in step S3 or S4, the source device returns a status in recording execution (step S5) or a message that cannot perform this function (step S6) to the sink device.
  • the user operation in step S1 may be performed on the sink device (television receiver).
  • FIG. 26 shows a CEC compatibility check processing procedure for each device when a device connected by the HDMI cable 65 is detected.
  • this confirmation process is performed by both the source device and the sink device.
  • a hot plug detect As a function determined by the HDMI standard, there is a function called a hot plug detect. This is because the source device observes the voltage of the HPD terminal pulled up to the + 5V power source sent from the source device in the sink device, and when the source device is connected to the HDMI connector, the voltage becomes the “H” voltage. This is a function for detecting the connection between the source device and the sink device.
  • step S11 it is determined whether or not there is a device connection with the HDMI cable 65 (step S11). If the device connection cannot be detected, this process is terminated. If the device connection is detected, the E-EDID data stored in the EDID ROM of the counterpart device is read using the DDC line (step S12). Then, the read data is compared with the E-EDID database stored in its own device (step S13).
  • step S14 It is determined by the comparison whether there is data of the counterpart device (step S14). If there is no data, it is determined that the device is newly connected, and the newly read E-EDID data is registered in the database (step S17). If the data exists, it is determined whether or not the data match (step S15). If they match, it is determined that the CEC correspondence of the counterpart device has not changed, and this process is terminated. If they are different, new data is overwritten and updated in the database storing the read data (step S16), and this process ends. In this way, the latest CEC-compliant status can be known by reading the E-EDID data of the connected devices.
  • Japanese Patent No. 4182997 can be referred to.
  • a power supply voltage and a current are defined so that power can be supplied to a device connected by an HDMI connector.
  • + 5V power can be supplied from the source device to the sink device by a minimum of 55 mA and a maximum of 500 mA.
  • request information for requesting power supply is transmitted from the transmitting device to the receiving device, and transmitted from the receiving device via the HDMI cable along with the transmission of this request information. It is possible to supply power to the internal circuitry of the device.
  • the source device and the sink device are used as receptacle-side connectors in the first embodiment of the present disclosure, the second embodiment described later, the first modification, and the second modification.
  • One of the connectors according to the example shall be provided.
  • the HDMI cable connecting the source device and the sink device includes any of the connectors according to the first and second modified examples of the present disclosure and a general HDMI connector as a plug-side connector.
  • the pin arrangement in the plug-side connector and the receptacle-side connector is unified to either the general pin arrangement shown in FIGS. 6A and 7A or the pin arrangement with increased data lines shown in FIGS. 6B and 7B. It shall be.
  • FIG. 27 shows a configuration example of a communication system as an embodiment.
  • the communication system includes a source device 80 and a sink device 90.
  • the source device 80 and the sink device 90 are connected via the HDMI cable 500.
  • the source device 80 is not shown in the imaging unit and the recording unit, but is a battery-driven mobile device such as a digital camera recorder or a digital still camera, and the sink device 90 is a television receiver having a sufficient power circuit. Machine.
  • the source device 80 includes a control unit 851, a playback unit 852, an HDMI transmission unit (HDMI source) 853, a power supply circuit 854, a switching circuit 855, and an HDMI connector 856.
  • the control unit 851 controls operations of the reproduction unit 852, the HDMI transmission unit 853, and the switching circuit 855.
  • the reproduction unit 852 reproduces baseband image data (uncompressed video signal) of predetermined content and audio data (audio signal) accompanying the image data from a recording medium (not shown), and an HDMI transmission unit 853 To supply. Selection of playback content in the playback unit 852 is controlled by the control unit 851 based on a user operation.
  • the HDMI transmission unit (HDMI source) 853 transmits the baseband image and audio data supplied from the reproduction unit 852 to the sink device 90 via the HDMI cable 500 from the HDMI connector 852 through HDMI-compliant communication. Send in one direction.
  • the power supply circuit 854 generates power to be supplied to the internal circuit of the source device 80 and the sink device 90.
  • the power supply circuit 854 is, for example, a battery circuit that generates power from a battery.
  • the switching circuit 855 selectively supplies power generated by the power supply circuit 854 to the internal circuit and the sink device 90, and selectively supplies power supplied from the sink device 90 to the internal circuit.
  • the switching circuit 855 constitutes a power supply unit and a power supply switching unit.
  • the sink device 90 includes an HDMI connector 951, a control unit 952, a storage unit 953, an HDMI receiving unit (HDMI sink) 954, a display unit 955, a power supply circuit 956, and a switching circuit 957.
  • the control unit 952 controls operations of the HDMI receiving unit 954, the display unit 955, the power supply circuit 956, and the switching circuit 957.
  • the storage unit 953 is connected to the control unit 952.
  • the storage unit 953 stores information such as E-EDID (Enhanced-Extended Display Identification) necessary for control by the control unit 952.
  • the HDMI receiving unit (HDMI sink) 954 receives baseband image and audio data supplied to the HDMI connector 951 via the HDMI cable 500 by communication conforming to HDMI.
  • the HDMI receiving unit 954 supplies the received image data to the display unit 955.
  • the HDMI receiving unit 954 supplies the received audio data to, for example, a speaker (not shown). Details of the HDMI receiving unit 954 will be described later.
  • the power supply circuit 956 generates power to be supplied to the internal circuit of the sink device 90 and the source device 80.
  • the power supply circuit 956 is a sufficient power supply circuit that generates power (DC power) from AC power, for example.
  • the switching circuit 957 selectively supplies the power generated by the power supply circuit 956 to the internal circuit and the source device 80, and selectively supplies the power supplied from the source device 80 to the sink device 90 to the internal circuit. Supply.
  • the switching circuit 957 constitutes a power supply unit.
  • the switching circuit 855 of the source device 80 is switched to a state in which the power from the power circuit 854 of the source device 80 is supplied to the internal circuit of the source device 80 and the HDMI connector 856.
  • the switching circuit 957 of the sink device 90 is switched to a state in which the power from the power circuit 854 of the source device 80 is supplied to the internal circuit of the sink device 90 via the HDMI cable 500.
  • the sink device 90 is connected to the source device 80 via the HDMI cable 500 in the states shown in (a) and (b)
  • the + 5V power from the power supply circuit 854 of the source device 80 is connected to the HDMI cable 500.
  • the internal circuit of the source device 80 is supplied with + 5V power from the power supply circuit 854 of the source device 80.
  • the source device 80 sends a ⁇ Request Power Supply> command, which is a power supply request, via the CEC line based on the user operation or the remaining amount information of the battery constituting the power supply circuit 854, etc. Transmit to the sink device 90.
  • the sink device 90 determines whether it is possible to supply the voltage value and current value requested by the ⁇ Request Power Supply> command, and (g) a ⁇ Response Power Supply that is a power supply response including the result. > Command is sent to the source device 80 via the CEC line.
  • the sink device 90 changes the voltage value and current value of the power supply from the power supply circuit 956 to the voltage value and current value required by the source device 80.
  • the switching circuit 957 is switched to a state in which the power from the power circuit 956 of the sink device 90 is supplied to the internal circuit of the sink device 90 and the HDMI connector 951.
  • I Thereby, the power from the power supply circuit 956 of the sink device 90 is supplied to the source device 80 via the HDMI cable 500.
  • the source device 80 determines the ⁇ Response Power Supply> command from the sink device 90. Is switched to a state in which the power from is supplied to the internal circuit of the source device 80 via the HDMI cable 500. As a result, the power supplied from the sink device 90 is supplied to the internal circuit of the source device 80.
  • the source device 80 transmits a ⁇ Request Power Supply> command to the sink device 90 indicating that power supply is unnecessary.
  • the sink device 90 detects the ⁇ Request Power Supply> command and returns a ⁇ Response Power Supply> command to the source device 80.
  • the source device 80 returns the switching circuit 855 to the state shown in (a) above, and (p) the sink device 90 returns the switching circuit 957 to the state shown in (b) above. .
  • the power supply state in the source device 80 and the sink device 90 returns to the initial state.
  • the power supply control in communication between apparatuses using the HDMI interface has been described above with reference to FIGS. 27 and 28.
  • the connectors of the source device 80, the sink device 90, and the HDMI cable 500 the connectors according to the first embodiment of the present disclosure, the second embodiment to be described later, the first modified example, or the second modified example are used.
  • signal degradation can be suppressed even when a larger amount of data is transmitted at a higher speed, so that more reliable power supply control can be performed.
  • the modification described in (3.4.1. Expansion of cross-sectional area of signal pin) to the signal pin used as the power supply path in the power supply control, the reliability is further improved. It becomes possible to make it.
  • Second Embodiment> In the second embodiment of the present disclosure, the above ⁇ 2. In the configuration according to the first embodiment of the present disclosure described in the first embodiment, the above ⁇ 3. About Modifications Related to Increase in Transmission Data Amount The configuration according to the first modification example or the second modification example of the present disclosure described in the section> is applied. Below, the structure of the connector which concerns on 2nd Embodiment is demonstrated, and the signal transmission characteristic of the said structure is demonstrated.
  • FIG. 29 is a cross-sectional view illustrating a structural example of a receptacle-side connector according to the second embodiment of the present disclosure cut along a yz plane and a plane passing through signal pins.
  • FIG. 29 illustrates a configuration corresponding to the Type A and Type D receptacle-side HDMI connectors as a configuration example of the connector according to the second embodiment.
  • the configuration according to the second embodiment shown in FIG. 29 relates to the configuration of the receptacle-side connector according to the first embodiment shown in FIG. 4A and the second modification shown in FIGS. 16A to 16C. It corresponds to the configuration combined with the configuration of the receptacle side connector.
  • the second embodiment is not limited to such an example, and may have a configuration corresponding to a Type C receptacle-side HDMI connector.
  • the receptacle-side connector according to the second embodiment includes the configuration according to the first embodiment corresponding to the Type C receptacle-side HDMI connector and the receptacle-side connector according to the second modification shown in FIGS. 9A to 9C.
  • the structure which combined these structures may be sufficient.
  • the second embodiment of the present disclosure can be applied to a connector conforming to another communication standard or communication method.
  • the receptacle-side connector 2 includes a signal pin 21, a dielectric 22, a substrate 23, and a shell 24.
  • the receptacle-side connector 2 shown in FIG. 29 includes the receptacle-side connector according to the present embodiment shown in FIG. 4A and the receptacle-side connector according to the second modification shown in FIGS. 16A to 16C. It corresponds to the configuration combined with the configuration. Therefore, the function and configuration of the signal pin 21, the dielectric 22, the substrate 23, and the shell 24 in the receptacle-side connector 2 are the same as the function and configuration of the signal pin 11, the dielectric 12, and the shell 13 described with reference to FIG. This is a combination of the functions and configurations of the signal pin 410, the dielectric 420, the substrate 430, and the shell 440 described with reference to FIGS. 16A to 16C.
  • the signal pin 21 extends in the first direction, that is, the y-axis direction.
  • the signal pin 21 is formed as a wiring pattern on the surface of the substrate 23 formed of a dielectric.
  • the shell 24 is formed so as to cover the signal pin 21 and the substrate 23, and one surface in the negative direction of the y-axis of the shell 24 is an open surface that is open to the outside.
  • the shell 24 is formed of a conductor, and its potential is fixed at, for example, a ground potential.
  • an open surface is also provided in the shell of the plug-side connector (not shown), and one end of the open side of the shell of the plug-side connector (not shown) is provided.
  • the plug-side connector and the receptacle-side connector 2 are fitted to each other by being inserted into the opening of the open surface of the shell 24 of the receptacle-side connector 2 from the negative direction of the y-axis.
  • a dielectric 22 may be laminated on the top of the signal pin 21 formed on the substrate 23 (in the positive z-axis direction).
  • the dielectric 22 is formed such that a partial region of the surface of the signal pin 21 is exposed in a predetermined region near the open surface of the shell 24.
  • the signal pin 21 has an exposed portion in which a part of the surface of the signal pin 21 is exposed from the dielectric 22 in a predetermined region near the open surface of the shell 24, and the plug-side connector and the receptacle-side connector 2. And the exposed portion of the signal pin 21 comes into contact with the signal pin of the plug-side connector, whereby the plug-side connector and the receptacle-side connector 2 are electrically connected.
  • a conductor layer having a ground potential is formed on the back surface of the substrate 23, that is, on the surface opposite to the surface on which the signal pins 21 are formed.
  • the surface of the shell 24 facing the back surface of the substrate 23 is formed thicker than the other surfaces and is in contact with the back surface of the substrate 23. That is, the conductor layer formed on the back surface of the substrate 23 and the shell 24 are integrally formed.
  • a conductor layer having a ground potential may be formed on the back surface of the substrate 430, and the structure of the conductor layer is not limited to this example. That is, one surface of the shell 24 may not be thickened.
  • the conductor layer formed on the back surface of the substrate 23 and the shell 24 may be electrically connected by a via hole or the like. Good.
  • the receptacle-side connector 2 since the receptacle-side connector 2 according to the second embodiment has a configuration corresponding to the Type A and Type D HDMI connectors, the signal pin 21, the dielectric 22, the substrate 23, and the conductor described above are used.
  • a structure similar to the layer is provided inside the shell 24 in a vertically symmetrical manner on both the upper side and the lower side in the z-axis direction.
  • a mounting board 25 to which the signal pins 21 of the receptacle-side connector 2 are connected is disposed in the transmitting device and the receiving device.
  • the signal pin 21 is extended in the positive direction of the y-axis in the transmitting device and the receiving device, bent toward the mounting substrate 25 in the transmitting device and the receiving device, and connected to the mounting substrate 25. Is done.
  • a plurality of wiring patterns 26 corresponding to the signal pins 21 are provided on the mounting board 25, and the signal pins 21 are connected to the wiring patterns 26 on the mounting board 25 in the transmitting device and the receiving device. Is done.
  • the wiring pattern 26 extends toward various circuits that perform predetermined signal processing formed on the mounting substrate 25 or another substrate, and various signals transmitted through the signal pins 21 are connected to the wiring pattern 26.
  • the signal is further transmitted to a predetermined circuit by the pattern 26, and signal processing corresponding to each signal is appropriately performed in the circuit.
  • the signal pin 21 is connected to the wiring pattern 26 on the mounting substrate 25 disposed in an arbitrary device, and has a function of transmitting a signal to the inside and the outside of the device.
  • the shell 24 is formed of a conductor so as to cover the signal pin 21 over a region where the signal pin 21 extends toward the mounting substrate 25, and is grounded to the ground potential on the mounting substrate 25. Further, as shown in FIG. 29, between the shell 24 and the mounting substrate 25, grounding portions 27a to 27g for connecting the shell 24 to the ground potential are provided.
  • the ground portions 27a to 27g are formed of the same conductor as the shell 24, for example, and are grounded to the ground potential on the mounting substrate 25. That is, the positions where the grounding portions 27a to 27g are provided represent the grounding positions between the shell 24 and the mounting board 25. In the example shown in FIG. 29, the grounding portions 27a to 27g are arranged at the same positions and sizes as the grounding portions 16a to 16g shown by broken lines in FIG. 4B.
  • the configuration of the receptacle-side connector 2 according to the second embodiment of the present disclosure has been described above with reference to FIG. According to the second embodiment, the above ⁇ 2.
  • Both of the effects obtained by the configuration of the receptacle-side connector 40 described in the> regarding the modification relating to the increase in the amount of transmission data can be obtained. That is, in the receptacle-side connector 2 according to the second embodiment, the shell 24 is formed so as to cover the signal pin 21 over a region where the signal pin 21 extends toward the mounting substrate 25. To ground potential.
  • a shielding effect for the signal pin 21 but also a so-called microstrip structure is formed between the signal pin 21 and the shell 24 to provide an impedance-controlled effect. Deterioration of signal quality due to disturbance or the like is suppressed for the transmitted signal. Further, not only the lower part of the shell 24 but also any part is formed with a path for releasing the induced current generated in the shell 24 to the mounting substrate 25, so that EMI is suppressed and transmitted to the signal pin 21. It is possible to suppress deterioration of the signal.
  • the signal pins 21 are formed on the substrate 23 made of a dielectric, and further, the side opposite to the surface on which the signal pins 21 of the substrate 23 are formed.
  • a conductor layer having a ground potential is formed on the surface. That is, the receptacle-side connector 2 according to this modification has a configuration in which a ground plane (conductor layer), a dielectric layer (substrate 23), and wiring (signal pins 21) are stacked in this order.
  • a ground plane conductor layer
  • dielectric layer substrate 23
  • wiring signal pins 21
  • FIGS. 30A and 30B and FIGS. 31A to 31C the difference in signal transmission characteristics typified by an eye pattern between a general Type A HDMI connector and the connector according to the second embodiment is described. explain.
  • FIGS. 30A and 30B are voltage characteristic diagrams showing an eye pattern in the general Type A HDMI connector structure shown in FIGS. 15A to 15C. Note that the results shown in FIGS. 30A and 30B show the voltage characteristics when a signal corresponding to the general pin arrangement shown in FIG. 6A (that is, a pin arrangement in which three sets of data lines for differential signals are provided) is passed. Simulation results are shown. 30A shows the eye pattern for the “Data1” line shown in FIG. 6A, and FIG. 30B shows the eye pattern for the “Data2” line shown in FIG. 6A.
  • FIGS. 31A to 31C are voltage characteristic diagrams showing eye patterns in the connector structure according to the second embodiment shown in FIG.
  • the results shown in FIGS. 31A to 31C show signals corresponding to the pin arrangement in which the differential data lines are newly increased as shown in FIG. 6B (that is, the pin arrangement in which six sets of data lines for differential signals are provided).
  • the simulation result of the voltage characteristic at the time of flowing is shown.
  • FIG. 31A shows an eye pattern for the “Data1” line shown in FIG. 6B
  • FIG. 31B shows an eye pattern for the “Data2” line shown in FIG. 6B
  • FIG. FIG. 6B shows an eye pattern for the “Data4” line shown in FIG. 6B.
  • the eye patterns corresponding to “Data1” and “Data2” are data lines that already exist in the general pin arrangement shown in FIG. 6A (existing data lines).
  • the eye pattern corresponding to “Data 4” is a data line (new data line) newly added in the pin arrangement in which the differential data line is newly increased as shown in FIG. 6B. ) Is representative of the transmission characteristics.
  • 30A and 30B and FIGS. 31A to 31C show simulation results when a differential signal having a frequency of 2 GHz is applied to a signal pin.
  • FIGS. 31A to 31C are compared with FIGS. 31A to 31C, the existing data lines “Data1” and “Data2” and the new data line “Data4” are both connected to the connector according to the second embodiment. It can be seen that the signal transmission characteristics are improved by having the structure. That is, it is shown that signal degradation is suppressed by the connector according to the second embodiment.
  • FIG. 32 is a graph showing a result of simulating EMI characteristics of a general Type A HDMI connector and the connector according to the second embodiment.
  • the horizontal axis (X axis) represents the frequency (MHz) of the signal applied to the signal pin
  • the vertical axis (Y axis) represents the far field intensity (dB ⁇ V / m), and the relationship between the two is plotted. Yes.
  • FIG. 32 shows a result of creating a calculation model of a connector according to the second embodiment having the configuration shown in FIG. 29 and performing a simulation on the calculation model. For reference, FIG. 32 also shows the result of the connector according to the first embodiment shown in FIG. 5C.
  • a graph showing a relationship between a frequency (MHz) and a far electric field strength (dB ⁇ V / m) in a general Type A HDMI connector is a curve indicated by P in the drawing (a curve indicated by a broken line).
  • a graph showing the relationship between the frequency (MHz) and the far electric field strength (dB ⁇ V / m) in the connector according to the embodiment is shown by a curve indicated by R (a curve indicated by a solid line) in the drawing.
  • a graph showing the relationship between the frequency (MHz) and the far field strength (dB ⁇ V / m) in the connector according to the first embodiment shown in FIG. 5C is shown by a curve (curve shown by a dotted line) indicated by Q in the figure.
  • FIG. 6 shows a simulation result when a signal corresponding to the pin arrangement) is flown
  • the simulation result for the connector according to the second embodiment shows a pin arrangement with a newly increased differential data line shown in FIG. That is, a simulation result when a signal corresponding to a pin arrangement in which six pairs of differential signal lines are provided is shown.
  • the connector according to the second embodiment although the number of differential data lines is doubled from 3 to 6, the value of the far electric field strength (dB ⁇ V / m) is It can be seen that it is suppressed more than the general Type A HDMI connector. That is, it is shown that the connector according to the second embodiment suppresses EMI and further suppresses signal degradation.
  • the shell is formed so as to cover the signal pin over a region where the signal pin extends toward the mounting substrate, and is grounded to the ground potential on the mounting substrate. Therefore, not only a shielding effect on the signal pin is brought about but also a signal transmitted to the signal pin is brought about by providing an impedance controlled effect by forming a so-called microstrip structure between the signal pin and the shell. Deterioration of signal quality due to disturbance or the like is suppressed.
  • the lower part of the shell is formed with a path for releasing the induced current generated in the shell to the mounting board, so that EMI is suppressed and transmitted to the signal pin. It is possible to further suppress deterioration of the quality of the signal to be generated.
  • the grounding position between the shell and the mounting board may be adjusted as appropriate.
  • the grounding position between the shell and the mounting board is the connection between the signal pin and the wiring pattern in the direction in which the wiring pattern connected to the signal pin through which the differential signal is transmitted is drawn on the mounting board and in the opposite direction.
  • An area corresponding to the position may be provided so as to be sandwiched in the y-axis direction.
  • the grounding position between the shell and the mounting board may be provided at a position sandwiching an area corresponding to the connection position between the signal pin for transmitting the differential signal and the wiring pattern in the x-axis direction, As long as it does not contact the wiring pattern (unless it prevents the connection between the signal pin and the wiring pattern), the grounding area may be increased.
  • the grounding position between the shell and the mounting board is provided in the vicinity of the signal pin for transmitting the differential signal and the wiring pattern, and by providing a larger grounding area, the induced current generated in the shell by the differential signal is reduced. Since a path for escaping to the mounting board is more reliably ensured, it is possible to further suppress deterioration in signal quality.
  • the configuration of the connector according to the first and second modified examples of the present disclosure has been described as a configuration for further increasing the transmission data amount.
  • the receptacle-side connector according to the second embodiment of the present disclosure is a combination of the configuration according to the first embodiment of the present disclosure and the configurations according to the first and second modifications of the present disclosure. The configuration of was explained.
  • the effects in the first embodiment and the effects in the first and second modifications can be obtained simultaneously. That is, in the second embodiment, the following effects can be obtained in addition to the effects obtained by the first embodiment described above.
  • a signal pin is formed on a substrate formed of a dielectric, and a conductive material having a ground potential is provided on a surface of the substrate opposite to the surface on which the signal pin is formed.
  • a body layer is formed.
  • a differential signal is transmitted, and a distance between a pair of adjacent signal pins is formed smaller than a distance between other adjacent signal pins.
  • a differential strip line (differential strip structure) is formed by a pair of signal pins formed with a small interval, so that a current (signal) flowing through the pair of signal pins affects other signal pins. The influence can be suppressed, and the deterioration of the signal can be suppressed.
  • the distance between the pair of signal pins is formed to be relatively small, the distance between adjacent different types of signal wirings is relatively increased, so that crosstalk is reduced and signal quality is improved.
  • the data line is newly allocated to the signal pin used for the shield and the signal pin used for the clock, the data line is newly increased. Data can be transmitted without degrading the signal.
  • a guard line having a ground potential may be further extended substantially parallel to the signal pin at a position sandwiching the signal pin.
  • the signal pin wiring interval in the fitting portion between the plug-side connector and the receptacle-side connector is the same as the signal pin wiring interval in the fitting portion of a general HDMI connector. Good.
  • compatibility between the connectors according to the first and second modified examples of the present disclosure and the general HDMI connector is ensured, so that the user does not care about the type of the connector.
  • the devices can be connected to improve user convenience.
  • the cross-sectional area of the signal pins may be expanded.
  • the effect can be obtained more by expanding the cross-sectional areas of the HPD signal pin to which the power supply voltage is applied and the power supply signal pin.
  • a substrate is provided inside the connector.
  • Various devices (circuits) that act on signal transmission at the signal pins can be mounted on the substrate.
  • the connector itself can perform various signal processing, so that signal processing in the transmission device and the reception device connected by the connector can be simplified.
  • the connectors according to the first and second embodiments of the present disclosure can be suitably applied to various applications in communication between devices using an HDMI interface.
  • One end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin for transmitting a signal to the inside and the outside of the device, and the signal pin is extended toward the mounting substrate.
  • a shell formed of a conductor so as to cover the signal pins over a region to be grounded to a ground potential on the mounting substrate.
  • the shell is grounded to a ground potential at a plurality of ground positions on the mounting board, and the ground position is located on the mounting board with respect to a region corresponding to a connection position between the signal pin and the wiring pattern.
  • the connector according to (1) including a partial region in a direction in which the wiring pattern is drawn out and a partial region in a direction opposite to the direction.
  • the shell is grounded to a ground potential at a plurality of ground positions on the mounting substrate, and some of the signal pins of the plurality of signal pins transmit a differential signal, and the plurality of shells
  • the said grounding position is a connector as described in said (1) or (2) including the position which pinches
  • the connector according to (3) wherein a grounding area of the grounding position in a direction in which the wiring pattern is drawn out on the mounting substrate is smaller than a grounding area of the grounding position in a direction opposite to the direction. .
  • the plurality of grounding positions of the shell include a position that sandwiches a region corresponding to a connection position between a group of the signal pins that transmit a differential signal and the wiring pattern, according to (3) or (4) The connector described.
  • the signal pin extending in the first direction is formed on one surface, and the substrate is formed on the surface opposite to the surface on which the signal pin is formed.
  • a plurality of the signal pins are provided, and among the plurality of the signal pins, a differential signal is transmitted, and an interval between the pair of the signal pins extending adjacent to each other is the same as the pair of the signal pins.
  • the connector according to (6) which is smaller than an interval between the other adjacent signal pins.
  • the shell is formed so as to cover the signal pin and the substrate, and has an open surface that is open to the outside in the first direction, and the conductor layer has a ground potential.
  • the connector according to (6) or (7) which is electrically connected to the shell.
  • a device acting on signal transmission at the signal pin is mounted on the substrate.
  • the device includes an AC / DC conversion circuit that converts AC transmission and DC transmission of a signal transmitted by the signal pin, a register that holds information regarding characteristics of the signal transmitted by the signal pin, and It is at least one of a communication circuit for notifying information held by the register to an arbitrary device connected via the connector, and a battery for supplying a power supply voltage to at least one of the signal pins.
  • One end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin for transmitting a signal to the inside and outside of the device, and the signal pin is extended toward the mounting substrate. And a shell formed of a conductor so as to cover the signal pin and grounded to a ground potential on the mounting substrate over a region to be connected to any device via the connector.
  • a data transmission device that transmits a signal to the data transmission device.
  • the signal pin extending in the first direction is formed on one surface, and the substrate is formed on a surface opposite to the surface on which the signal pin is formed.
  • One end is connected to a wiring pattern on a mounting board disposed in an arbitrary device, and a signal pin for transmitting a signal to the inside and outside of the device, and the signal pin is extended toward the mounting substrate. And a shell formed of a conductor so as to cover the signal pin and grounded to a ground potential on the mounting substrate over a region, and from any device via the connector A data receiving device that receives a signal to be transmitted.
  • the signal pin extending in the first direction is formed on one surface, and the substrate is formed on a surface opposite to the surface on which the signal pin is formed.
  • a data transmission / reception system comprising: a data transmission device; and a data reception device that receives a signal transmitted from an arbitrary device via the connector.
  • the signal pin extending in the first direction is formed on one surface, and the substrate is formed on a surface opposite to the surface on which the signal pin is formed.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

【課題】信号品質の劣化をより抑えることを可能にする。【解決手段】一端が任意の装置内に配設される実装基板(14)上の配線パターン(15)に接続され、装置の内部及び外部に信号を伝送する信号ピン(11)と、信号ピン(11)が実装基板(14)に向かって延伸される領域に渡って信号ピン(11)を覆うように導電体によって形成され、実装基板(14)上でグラウンド電位に接地されるシェル(13)と、を備えるコネクタを提供する。

Description

コネクタ、データ送信装置、データ受信装置及びデータ送受信システム
 本開示は、コネクタ、データ送信装置、データ受信装置及びデータ送受信システムに関する。
 近年の情報化社会の発展に伴い、PC(Personal Computer)やサーバ等の情報処理装置において扱われる情報量(データ量、信号量)は、爆発的に増加している。このようなデータ量の増加に伴い、装置間でのデータの送受信(伝送)に関して、より多くのデータをより高速に伝送する必要性が増している。
 しかし、データ伝送量の増加及びデータ伝送速度の高速化は、一般的に、データ伝送過程における信号品質の劣化を引き起こす。そのため、装置間でのデータの伝送においては、このような信号品質の劣化を抑える技術が求められている。
 例えば、特許文献1には、デジタル信号を伝送するためのHDMI(High Definition Multimedia Interface)(登録商標)規格に対応したコネクタについて、当該コネクタが接続される基板のコネクタ実装部において基板の厚さの変更等によって当該コネクタ実装部の特性インピーダンスを調整することにより、信号品質の劣化を抑える技術が開示されている。
特開2009-129649号公報
 一方、近年、コネクタ及びケーブルを介した装置間でのデータの伝送においては、データ伝送速度の更なる高速化に伴い、コネクタ内やケーブル内に延設される信号ピンが信号を伝送する際に生じる電磁波の影響が無視できないものとなっている。このような電磁波による電磁妨害(EMI:Electro-Magnetic Interference)は、データ伝送における信号品質を劣化させるだけでなく、装置の他の機能の誤作動を引き起こす可能性がある。例えば、無線通信機能を備える装置においては、電磁波によって当該無線通信機能の正常な動作が妨げられ、通信機能の劣化につながる恐れがある。特許文献1に記載の技術では、EMIについては十分な対策が取られておらず、信号品質の劣化を抑える技術としては不十分である可能性があった。
 そこで、本開示では、信号品質の劣化をより抑えることが可能な、新規かつ改良されたコネクタ、データ受信装置、データ送信装置及びデータ送受信システムを提案する。
 本開示によれば、一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を備える、コネクタが提供される。
 また、本開示によれば、一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を備え、前記コネクタを介して任意の装置に対して信号を送信する、データ送信装置が提供される。
 また、本開示によれば、一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を備え、前記コネクタを介して任意の装置から送信される信号を受信する、データ受信装置が提供される。
 また、本開示によれば、一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を介して任意の装置に対して信号を送信する、データ送信装置と、前記コネクタを介して、任意の装置から送信される信号を受信する、データ受信装置と、を備える、データ送受信システムが提供される。
 本開示によれば、シェルが、信号ピンが装置内の実装基板に向かって延伸される領域に渡って信号ピンを覆うように形成され、実装基板上でグラウンド電位に接地される。従って、信号ピンに対する遮蔽効果がもたらされ、信号ピンに伝送される信号について外乱等による信号品質の劣化が抑制される。また、シェルのあらゆる部位に対して、シェルに生じた誘導電流を実装基板に逃がすパスが形成されるため、EMIが抑制され、信号ピンに伝送される信号の品質の劣化を更に抑えることが可能となる。
 以上説明したように本開示によれば、信号品質の劣化をより抑えることが可能となる。
一般的なTypeA、TypeDのHDMIコネクタにおけるピン配置を示す概略図である。 一般的なTypeA、TypeDのレセプタクル側HDMIコネクタを、y軸とz軸とによって規定される平面であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。 一般的なTypeA、TypeDのレセプタクル側HDMIコネクタの、x軸とy軸とによって規定される平面であって、かつ、図2AにおけるI-I断面に対応する断面図である。 図2Aに示す一般的なTypeA、TypeDのレセプタクル側HDMIコネクタを、y軸の正方向から見た様子を示す概略図である。 一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタにおけるEMIについて説明するための説明図である。 一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタにおけるEMIについて説明するための説明図である。 本実施形態に係るレセプタクル側コネクタを、y-z平面であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。 本実施形態に係るレセプタクル側コネクタの、x-y平面であって、かつ、図4AにおけるIII-III断面に対応する断面図である。 図4Aに示す本実施形態に係るレセプタクル側コネクタを、y軸の正方向から見た様子を示す概略図である。 本実施形態に係るレセプタクル側コネクタ1におけるEMIの抑制効果について説明するための説明図である。 本実施形態に係るレセプタクル側コネクタ1におけるEMIの抑制効果について説明するための説明図である。 一般的なTypeAのHDMIコネクタ及び第1の実施形態に係るレセプタクル側コネクタについて、EMI特性をシミュレーションした結果を示すグラフである。 一般的なTypeA、TypeDのHDMIコネクタにおける高速差動信号を伝送するピン配置を示す概略図である。 TypeA、TypeDのHDMIコネクタにおける、新たに高速差動データラインが増加されたピン配置の一例を示す概略図である。 一般的なTypeCのHDMIコネクタにおける高速差動信号を伝送するピン配置を示す概略図である。 TypeCのHDMIコネクタにおける、新たに高速差動データラインが増加されたピン配置の一例を示す概略図である。 一般的なTypeCのHDMIコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。 一般的なTypeCのHDMIコネクタの、x軸とy軸とによって構成される断面において、図3AにおけるA-A断面に対応する断面図である。 一般的なTypeCのHDMIコネクタの、x軸とz軸とによって構成される断面において、図3BにおけるC-C断面に対応する断面図である。 の第1の変形例に係るコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。 第1の変形例に係るコネクタの、x軸とy軸とによって構成される断面において、図4AにおけるA-A断面に対応する断面図である。 第1の変形例に係るコネクタの、x軸とz軸とによって構成される断面において、図4BにおけるC-C断面に対応する断面図である。 ガードラインが配設された構成を説明するための説明図である。 一般的なTypeCのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。 一般的なTypeCのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。 第1の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。 第1の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。 一般的なTypeCのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 一般的なTypeCのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 第1の変形例に係るコネクタ構造におけるアイパターンを示す電圧特性図である。 第1の変形例に係るコネクタ構造におけるアイパターンを示す電圧特性図である。 第1の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。 第1の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。 第1の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるクロストーク特性を示す電圧特性図である。 一般的なTypeDのHDMIコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。 一般的なTypeDのHDMIコネクタの、x軸とy軸とによって構成される断面において、図15AにおけるA-A断面に対応する断面図である。 一般的なTypeDのHDMIコネクタの、x軸とz軸とによって構成される断面において、図15BにおけるC-C断面に対応する断面図である。 第2の変形例に係るコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。 第2の変形例に係るコネクタの、x軸とy軸とによって構成される断面において、図11AにおけるA-A断面に対応する断面図である。 第2の変形例に係るコネクタの、x軸とz軸とによって構成される断面において、図11BにおけるC-C断面に対応する断面図である。 一般的なTypeDのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。 一般的なTypeDのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。 第2の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。 第2の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。 一般的なTypeDのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 一般的なTypeDのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 第2の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。 第2の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。 第2の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるクロストーク特性を示す電圧特性図である。 本開示の一変形例である、信号ピンの断面積が拡張された変形例における、関係する信号のピン配置の一例を示す概略図である。 図16Aに示すコネクタの、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す概略図である。 図16Aに示すコネクタの、x軸とy軸とによって構成される断面において、図16BにおけるA-A断面に対応する概略図である。 図16Cに対応するコネクタの、嵌合部以外の領域のみ、信号ピンの断面積が拡張される変形例を示す概略図である。 本開示の一変形例である、基板上にデバイスが設けられる変形例の一構成例を示す概略図である。 図22に示す変形例に係るデバイスの具体例である、AC/DC変換回路の回路構成の一例を示す概略図である。 図22に示す変形例に係るデバイスの具体例である、レジスタ及び通信回路の構成の一例を示す概略図である。 図22に示す変形例に係るデバイスの具体例である、バッテリの構成の一例を示す概略図である。 ディスクレコーダとテレビジョン受像機との間で、HDMIケーブルによって伝送される各チャンネルのデータ構成例について説明するための説明図である。 ソース機器とシンク機器とを接続させた場合のCEC制御のシーケンス例を示すシーケンス図である。 HDMIケーブルで接続された機器が検出された場合の、それぞれの機器のCEC対応確認処理手順を示すフロー図である。 電源供給制御における、ソース機器とシンク機器とから構成される通信システムの構成例を示す機能ブロック図である。 電源供給制御における制御シーケンスを示すシーケンス図である。 本開示の第2の実施形態に係るレセプタクル側コネクタを、y-z平面であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。 一般的なTypeAのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 一般的なTypeAのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。 図29に示す第2の実施形態に係るコネクタ構造におけるアイパターンを示す電圧特性図である。 図29に示す第2の実施形態に係るコネクタ構造におけるアイパターンを示す電圧特性図である。 図29に示す第2の実施形態に係るコネクタ構造におけるアイパターンを示す電圧特性図である。 一般的なTypeAのHDMIコネクタ及び第2の実施形態に係るコネクタについて、EMI特性をシミュレーションした結果を示すグラフである。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、以下の説明においては、本開示の一実施例に係るコネクタ、データ受信装置、データ送信装置及びデータ送受信システムの一例として、HDMI(High Definition Multimedia Interface)規格に対応したコネクタ(以下、HDMIコネクタと呼ぶ。)、データ受信装置、データ送信装置及びデータ送受信システムを例に挙げて説明を行う。ただし、本実施形態はかかる例に限定されず、他の通信方式、通信規格に準ずるコネクタ、データ受信装置、データ送信装置及びデータ送受信システムにおいても適用可能である。
 また、以下の説明では、ケーブルにおけるプラグ側コネクタのことを、「プラグ側コネクタ」又は「プラグ側HDMIコネクタ」とも呼称し、データ受信装置及びデータ送信装置におけるレセプタクル側コネクタのことを、「レセプタクル側コネクタ」又は「レセプタクル側HDMIコネクタ」とも呼称することとする。また、単に「コネクタ」と言った場合には、特に記載がない限り、プラグ側コネクタ及びレセプタクル側コネクタの少なくともいずれかを示すものとする。更に、以下の説明では、プラグ側コネクタがいわゆるオス側の端子形状を有し、レセプタクル側コネクタがいわゆるメス側の端子形状を有する一例について説明するが、本実施形態はかかる例に限定されず、プラグ側コネクタの端子形状とレセプタクル側コネクタの端子形状との関係は、逆であってもよい。
 なお、説明は以下の順序で行うものとする。
 1.レセプタクル側コネクタにおけるEMIについての検討
 2.第1の実施形態
 3.伝送データ量増加に係る変形例について
  3.1.伝送データ量増加についての検討
  3.2.第1の変形例
   3.2.1.一般的なTypeCコネクタの構成
   3.2.2.第1の変形例に係るコネクタの構成
   3.2.3.特性比較
  3.3.第2の変形例
   3.3.1.一般的なTypeDコネクタの構成
   3.3.2.第2の変形例に係るコネクタの構成
   3.3.3.特性比較
  3.4.第1及び第2の変形例の更なる変形例
   3.4.1.信号ピンの断面積の拡張
   3.4.2.基板上へのデバイスの実装
  3.5.適用例
   3.5.1.CEC制御
   3.5.2.電源供給制御
 4.第2の実施形態
  4.1.第2の実施形態に係るコネクタの構成
  4.2.特性比較
 5.まとめ
 <1.レセプタクル側コネクタにおけるEMIについての検討>
 まず、本開示をより明確なものとするために、本発明者らが本開示に想到するに至った背景について説明する。なお、本項<1.レセプタクル側コネクタにおけるEMIについての検討>及び下記<2.第1の実施形態>では、コネクタの一例としてTypeA、TypeDのHDMIコネクタを例に挙げて説明を行うが、本項<1.レセプタクル側コネクタにおけるEMIについての検討>及び下記<2.第1の実施形態>で説明する内容は、他のタイプ(例えば、TypeB、TypeC)のHDMIコネクタや、他の通信方式、通信規格に準ずるコネクタに対しても適用することが可能である。
 近年、映像機器間において、映像信号(映像データ、音声データ等)を高速伝送する通信インターフェースとして、HDMIが広く普及している。HDMI規格に基づく通信においては、一般的に、ディスク再生装置等の映像信号源となる機器と、表示装置(モニタ受像機、テレビジョン受像器等)とが、HDMIケーブルを介して接続される。なお、以下の説明においては、映像信号等の信号を出力する機器のことを、ソース機器、出力装置、送信装置等と呼び、映像信号等の信号が入力される機器のことを、シンク機器、入力装置、受信装置等と呼ぶこととする。
 上記のディスク再生装置や表示装置といったCE(Consumer Electronics)機器においては、より高画質、高音質の映像を扱うことに対する需要が増加している。従って、近年、HDMI規格に基づくデータ伝送においては、映像データ、音声データ等の映像信号について、より多くのデータ量を伝送することが求められている。
 HDMI規格によれば、HDMIコネクタにおけるピン数は19本である。一般的なHDMIコネクタにおいては、それらのピンのうちの12本が、映像信号の伝送に関する用途に用いられ、その他のピンは、CEC(Consumer Electronics Control)制御、電源、ホットプラグ検出(HPD:Hot Plug Detector)等の用途に用いられる。なお、一般的なHDMIコネクタにおけるピン配置を含め、HDMI規格の詳細については、例えば「HDMI Specification Version 1.4」等を参照することができる。
 ここで、レセプタクル側コネクタに注目し、その構成についてより詳細に説明する。まず、図1を参照して、TypeA、TypeDのHDMIコネクタを例として、一般的なHDMIコネクタのピン配置について説明する。なお、TypeAのHDMIコネクタのピン配置と、TypeDのHDMIコネクタのピン配置とは同様である。
 図1は、一般的なTypeA、TypeDのHDMIコネクタにおけるピン配置を示す概略図である。また、図1は、受信装置及び送信装置におけるレセプタクル側のHDMIコネクタの端子面を示している。
 図1を参照すると、一般的なTypeA、TypeDのHDMIコネクタの端子面においては、外殻(シェル)943に覆われた誘電体942に埋め込まれた19本の信号ピン941が、2列に、千鳥状に並べられている。また、複数の信号ピン941のそれぞれには、互いに異なる種類の信号が印加されており、図1には、その信号の種類が記載されている。
 具体的には、ピン番号が1、2、3番の信号ピン941には、それぞれ、「Data2+」、「Data2 Shield」、「Data2-」が割り当てられる。また、同様に、ピン番号が4、5、6番の信号ピン941には、それぞれ、「Data1+」、「Data1 Shield」、「Data1-」が割り当てられる。更に、同様に、ピン番号が7、8、9番の信号ピン941には、それぞれ、「Data0+」、「Data0 Shield」、「Data0-」が割り当てられる。また、ピン番号が10、11、12番の信号ピン941には、それぞれ、「clock+」、「clock Shield」、「clock-」が割り当てられる。
 つまり、それぞれのデータライン(Data0/1/2)及びクロック(clock)は、差動ラインDatai+、Datai-、Datai Shieldの3本のラインで構成される(i=0、1、2)。また、差動ラインDatai+及びDatai-は、データ伝送時には、差動信号間でカップリングを形成する(差動結合を形成する)。HDMIソース機器は、Data0/1/2を用いて、それぞれ最大3.425GbpsでR(赤)、G(緑)、B(青)のデジタルビデオデータ(映像データ)をシリアルデータとして、シリアルビデオデータの10分周となるピクセルクロック(最大340.25MHz)をクロックとしてHDMIシンク機器へ伝送する。
 HDMIコネクタにおいては、これらピン番号が1~12番の信号ピン941によって映像データが伝送され、残りのピン番号が13~19番の信号ピン941が、制御用の信号や電源等に割り当てられている。具体的には、ピン番号が13番の信号ピン941は、送信装置及び受信装置を制御するための信号である「CEC(Consumer Electronics Control)」信号に割り当てられる。また、ピン番号が14番の信号ピン941は、逆方向の音声信号伝送等に使用される「ユーティリティ(Utility)」用途に割り当てられている。
 また、ピン番号が16番の信号ピン941は、送信装置又は受信装置の能力に関する情報であるE-EDID情報(Enhanced Extended Display Identification Data)等の読み出し用「SDA(Serial Data)」信号に割り当てられる。また、ピン番号が15番の信号ピン941は、SDA信号の送受信時の同期に用いられるクロック信号である「SCL(Serial Clock)」信号に割り当てられる。
 また、ピン番号が17番の信号ピン941は、送信装置が受信装置から上記E-EDID情報等を読み出すために使用するSDA、SCL信号で構成される「DDC(Display Data Channel)」又は「上記CEC信号のグラウンド(CEC GND)」に割り当てられる。また、ピン番号が18番の信号ピン941は、「+5V電源」に割り当てられる。更に、ピン番号が18番の信号ピン941は、送信装置が受信装置との接続状況を検出するための「HPD(Hot Plug Detector)」に割り当てられる。
 以上、図1を参照して、TypeA、TypeDのHDMIコネクタを例として、一般的なHDMIコネクタのピン配置について説明した。なお、以下の説明では、特に記載のない限り、差動信号が伝送される信号ピンとは、差動信号が他の信号ピンに比べて高速で伝送される、ピン番号が1~12番の信号ピンのことを意味するものとする。
 ここで、以下では、座標軸を定義してコネクタについての説明を行う。具体的には、コネクタの端子面において、信号ピンが並べられている方向をx軸方向と定義する。また、一対のコネクタを嵌合する際にコネクタ同士を嵌め込む方向のことをy軸方向と定義する。更に、x軸及びy軸と互いに直交する方向をz軸方向と定義する。なお、以下の説明では、y軸方向のことを第1の方向とも呼称する。
 なお、x軸の正負について、HDMI規格に則り信号ピンの番号が増加する方向(図1においては図の右から左に向かう方向)をx軸の正方向と定義する。また、y軸の正負について、プラグ側コネクタからレセプタクル側コネクタに向かう方向(図1においては紙面に垂直に紙面に向かう方向)をy軸の正方向と定義する。更に、z軸の正負について、ピン番号が1番の信号ピン941が位置する方向(図1においては図の上方向)をz軸の正方向と定義する。
 図1ではレセプタクル側コネクタの端子面におけるピン配置を示しているが、プラグ側コネクタの端子面においては、信号ピン941の並びが逆になる。すなわち、プラグ側コネクタの端子面においては、図1における左端にピン番号が1の信号ピン941が配設され、右端にピン番号が19の信号ピン941が配設される。そして、受信装置及び送信装置においては、図1に示すレセプタクル側コネクタの端子面(すなわち、図1のy軸の負方向の面)が装置の外に向けて開放されて配設されており、プラグ側コネクタがy軸の負方向から当該端子面に対して嵌合されることにより、同じピン番号を有する信号ピン941同士が接触し、各種のデータが伝送される。
 レセプタクル側コネクタにおいては、装置の内部(すなわち、図1におけるy軸の正方向)に向かって信号ピン941が延伸されており、これらの信号ピン941が装置内部の実装基板に接続され、当該実装基板から装置内部の各種の回路に信号が伝送される。図2A-図2Cを参照して、このようなレセプタクル側コネクタの装置内部における構成についてより詳細に説明する。
 図2Aは、一般的なTypeA、TypeDのレセプタクル側HDMIコネクタを、y軸とz軸とによって規定される平面(y-z平面)であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。図2Bは、一般的なTypeA、TypeDのレセプタクル側HDMIコネクタの、x軸とy軸とによって規定される平面(x-y平面)であって、かつ、図2AにおけるI-I断面に対応する断面図である。図2Cは、図2Aに示す一般的なTypeA、TypeDのレセプタクル側HDMIコネクタを、y軸の正方向から見た様子を示す概略図である。なお、図2A-図2Cは、レセプタクル側コネクタとともに、送信装置及び受信装置内に配設され、レセプタクル側コネクタの信号ピンが接続される実装基板を図示している。また、図1に示すように、TypeA、TypeDのHDMIコネクタのピン配置では、端子面において、信号ピンがx軸方向に沿って、z軸方向に2列に、千鳥状に並べられる。図2Aは、上(z軸方向における上方向)の列に形成される信号ピンと、下(z軸方向における下方向)の列に形成される信号ピンとを通る断面での断面図(すなわち、図2Cに示すII-II断面での断面図)を示している。また、図2Bでは、上の列に形成される信号ピンと下の列に形成される信号ピンとの間に設けられる誘電体を透過して図示し、全ての信号ピンを図示している。
 図2A-図2Cを参照すると、一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタ920は、信号ピン921、誘電体922及び外殻(シェル)923を備える。信号ピン921は、y軸方向、すなわち第1の方向に延設されており誘電体922にその一部が埋め込まれる。なお、信号ピン921は、図1に示す信号ピン941に対応している。
 シェル923は、信号ピン921及び誘電体922を覆うように形成され、シェル923のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル923は、導電体によって形成され、その電位はグラウンド電位に固定される。
 また、プラグ側コネクタ(図示せず。)も同様にシェルを備え、プラグ側コネクタのシェルにも、レセプタクル側コネクタ920のシェル923の開放面に対応するように、開放面が設けられる。そして、プラグ側コネクタのシェルに開放面が設けられる一端が、レセプタクル側コネクタ920のシェル923の開放面の開口部にy軸の負方向から挿入されることによって、プラグ側コネクタとレセプタクル側コネクタ920とが嵌合される。また、信号ピン921は、シェル923の開放面近傍の所定の領域において、誘電体922からその表面の一部領域が露出された露出部を有する。プラグ側コネクタと、レセプタクル側コネクタ920とが嵌合される際には、信号ピン921の露出部が、プラグ側コネクタの信号ピンと接触することにより、プラグ側コネクタとレセプタクル側コネクタ920とが電気的に接続される。なお、一般的なTypeA、TypeDのHDMIコネクタにおけるプラグ側コネクタ及びレセプタクル側コネクタの構成については、下記(3.3.1.一般的なTypeDコネクタの構成)で、図15A-図15Cを参照して改めて詳しく説明する。
 図2A-図2Cを参照すると、送信装置及び受信装置内には、レセプタクル側コネクタ920の信号ピン921が接続される実装基板924が配設される。図2A-図2Cに示すように、信号ピン921は、送信装置及び受信装置内においてy軸の正方向に延伸されて、送信装置及び受信装置内で実装基板924に向かって折り曲げられ、実装基板924と接続される。具体的には、実装基板924上には、信号ピン921に対応した複数の配線パターン925が設けられており、信号ピン921は送信装置及び受信装置内で実装基板924上の配線パターン925に接続される。配線パターン925は、実装基板924上又は他の基板上に形成された、所定の信号処理を行う各種の回路に向かって延伸されており、信号ピン921を伝送されてきた各種の信号は、配線パターン925によって所定の回路に更に伝送され、当該回路において各信号に対応した信号処理が適宜行われる。
 また、シェル923と実装基板924との間には、シェル923をグラウンド電位に接続するための接地部926a~926dが設けられる。接地部926a~926dは、例えばシェル923と同一の導電体で形成され、実装基板924上のグラウンド電位を有する領域に接地される。すなわち、接地部926a~926dが設けられる位置は、シェル923と実装基板924との接地位置を表している。図2Bでは、接地部926a~926dが設けられる領域を破線で囲んで示している。図2Bに示すように、一般的なTypeA、TypeDのレセプタクル側HDMIコネクタにおいては、シェル923は、x-y平面における4隅で実装基板924上のグラウンド電位と接地している。
 以上、図2A-図2Cを参照して、一般的なTypeA、TypeDのレセプタクル側HDMIコネクタの構造について説明した。
 ここで、図2A-図2Cに示すように、一般的なレセプタクル側コネクタ920においては、信号ピン921が実装基板924に向かって延伸される領域では、信号ピン921がむき出しになっている。このような信号ピン921がむき出しになっている領域では、信号ピン921に対する遮蔽(シールド)効果が十分でないため、信号ピン921に伝送される信号が外乱等の影響を受けやすく、信号品質の劣化を引き起こす恐れがある。
 また、図1を参照して説明したように、一般的なTypeA、TypeDのHDMIコネクタ920においては、ピン番号が1~12の信号ピン921、941によって、比較的高速で差動信号が伝送される。このような信号ピン921、941における差動信号の高速な伝送においては、信号の伝送に伴って生じる電磁波が信号品質に及ぼす影響(電磁妨害(EMI:Electro-Magnetic Interference))が無視できないものとなる。
 このような一般的なレセプタクル側コネクタ920におけるEMIについて、図3A及び図3Bを参照してより詳細に説明する。図3A及び図3Bは、一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタ920におけるEMIについて説明するための説明図である。なお、図3A及び図3Bに示すTypeA、TypeDのレセプタクル側コネクタ920の構成は、図2Aに示すレセプタクル側コネクタ920の構成と同様であるため、詳細な説明は省略する。
 まず、図3Aでは、下(z軸方向における下方向)の列に形成される信号ピン921に信号が伝送される様子を矢印で示している。このように信号ピン921に信号が伝送されると、当該信号の伝送に伴って生じる電磁波により、シェル923の内部に電流が生じる(いわゆる電磁誘導)。例えば、図3Aに示すように、下の列に形成される信号ピン921における信号の伝送では、シェル923の中でも当該信号ピン921に比較的近い部位であるシェル923の下側の部位に、比較的大きな電流(誘導電流)が生じると考えられる。図3Aでは、シェル923の下側の部位に生じた誘導電流を破線矢印で模式的に図示している。
 図2A-図2Cを参照して説明したように、一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタ920においては、シェル923が、x-y平面における4隅で実装基板924上のグラウンド電位と接地している。従って、図3Aに破線矢印で示すように、シェル923の下側の部位に生じた誘導電流は、例えば接地部926b、926cから実装基板924を介してグラウンドに流れるため、当該誘導電流によるノイズは比較的生じ難いと考えられる。
 一方、図3Bでは、上(z軸方向における上方向)の列に形成される信号ピン921に信号が伝送される様子を矢印で示している。図3Bに示すように、上の列に形成される信号ピン921における信号の伝送では、シェル923の中でも当該信号ピン921に比較的近い部位であるシェル923の上側の部位に、比較的大きな誘導電流が生じると考えられる。図3Bでは、シェル923の上側の部位に生じた誘導電流を破線矢印で模式的に図示している。
 図2A-図2Cを参照して説明したように、一般的なTypeA、TypeDのHDMIコネクタのレセプタクル側コネクタ920においては、シェル923が、x-y平面における4隅で実装基板924上のグラウンド電位と接地しているが、シェル923の上側の部位は直接は実装基板上に接地していない。従って、図3Bに一点鎖線矢印で示すように、シェル923の上側の部位に生じた誘導電流の一部が、例えばシェル923の端部で反射して、リターン電流としてプラグ側のHDMIコネクタに向かって流れることが考えられる。このようなリターン電流は、信号の伝送においてノイズとなり得る。
 以上、図3A及び図3Bを参照して説明したように、一般的なTypeA、TypeDのHDMIコネクタにおいては、EMIを抑制することが困難であり、信号品質の劣化の原因となっていた。本発明者らは、以上検討した内容に基づいて、EMIを抑制し信号品質の劣化をより抑えることが可能な、本開示に係るコネクタ、データ受信装置、データ送信装置及びデータ送受信システムに想到するに至った。下記<2.第1の実施形態>において、その好適な実施形態について詳述する。
 <2.第1の実施形態>
 図4A-図4Cを参照して、本開示の第1の実施形態に係るコネクタの構造について説明する。なお、図4A-図4Cでは、第1の実施形態に係るコネクタの構成の一例として、TypeA、TypeDのHDMIコネクタの構成について説明を行うが、図4A-図4Cに示す実施形態は、他のタイプのHDMIコネクタ及び他の通信方式、通信規格のコネクタに対しても適用可能である。
 図4Aは、第1の実施形態に係るレセプタクル側コネクタを、y-z平面であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。図4Bは、第1の実施形態に係るレセプタクル側コネクタの、x-y平面であって、かつ、図4AにおけるIII-III断面に対応する断面図である。図4Cは、図4Aに示す第1の実施形態に係るレセプタクル側コネクタを、y軸の正方向から見た様子を示す概略図である。なお、図4A-図4Cは、レセプタクル側コネクタとともに、送信装置及び受信装置内に配設され、レセプタクル側コネクタの信号ピンが接続される実装基板を図示している。
 なお、第1の実施形態に係るレセプタクル側コネクタのピン配置は、図1に示す一般的なTypeA、TypeDのレセプタクル側HDMIコネクタのピン配置と同様である。従って、第1の実施形態に係るレセプタクル側コネクタは、図1に示すように、端子面において、信号ピンがx軸方向に沿って、z軸方向に2列に、千鳥状に並べられる。ここで、図4Aは、上(z軸方向における上方向)の列に形成される信号ピンと、下(z軸方向における下方向)の列に形成される信号ピンとを通る断面での断面図(すなわち、図4Cに示すIV-IV断面での断面図)を示している。また、図4Bでは、上の列に形成される信号ピンと下の列に形成される信号ピンとの間に設けられる誘電体を透過して図示し、全ての信号ピンを図示している。
 図4A-図4Cを参照すると、第1の実施形態に係るレセプタクル側コネクタ1は、信号ピン11、誘電体12、外殻(シェル)13及び接地部16a~16gを備える。ここで、第1の実施形態に係るレセプタクル側コネクタ1の信号ピン11、誘電体12の機能及び構成は、図2A-図2Cを参照して説明した一般的なTypeA、TypeDのレセプタクル側コネクタ920の信号ピン921、誘電体922の機能及び構成と同様であるため、詳細な説明は省略する。すなわち、第1の実施形態に係るレセプタクル側コネクタ1における、プラグ側コネクタと嵌合する領域の構成は、一般的なレセプタクル側コネクタ920の当該領域の構成と同様である。従って、以下では、図4A-図4Cを参照して、一般的なレセプタクル側コネクタ920との相違点である、シェル13及び接地部16a~16gの機能及び構成について主に説明する。
 上述したように、シェル13における、プラグ側コネクタ(図示せず。)と嵌合する領域の構造は、一般的なレセプタクル側コネクタ920のシェル923の構造と同様である。すなわち、シェル13は、信号ピン11及び誘電体12を覆うように形成され、シェル13のy軸の負方向の一面は、外部に対して開放される開放面になっている。そして、シェル13の開放面に対応して、プラグ側コネクタ(図示せず。)のシェルにも開放面が設けられ、プラグ側コネクタ(図示せず。)のシェルの当該開放面が設けられる一端が、レセプタクル側コネクタ1のシェル13の開放面の開口部にy軸の負方向から挿入されることによって、プラグ側コネクタとレセプタクル側コネクタ1とが嵌合される。また、信号ピン11は、シェル13の開放面近傍の所定の領域において、誘電体12からその表面の一部領域が露出された露出部を有し、プラグ側コネクタとレセプタクル側コネクタ1とが嵌合される際には、信号ピン11の当該露出部がプラグ側コネクタの信号ピンと接触することにより、プラグ側コネクタとレセプタクル側コネクタ1とが電気的に接続される。
 図4A-図4Cを参照すると、送信装置及び受信装置内には、レセプタクル側コネクタ1の信号ピン11が接続される実装基板14が配設される。図4A-図4Cに示すように、信号ピン11は、送信装置及び受信装置内においてy軸の正方向に延伸されて、送信装置及び受信装置内で実装基板14に向かって折り曲げられ、実装基板14と接続される。具体的には、実装基板14上には、信号ピン11に対応した複数の配線パターン15が設けられており、信号ピン11は送信装置及び受信装置内で実装基板14上の配線パターン15に接続される。配線パターン15は、実装基板14上又は他の基板上に形成された、所定の信号処理を行う各種の回路に向かって延伸されており、信号ピン11を伝送されてきた各種の信号は、配線パターン15によって所定の回路に更に伝送され、当該回路において各信号に対応した信号処理が適宜行われる。このように、信号ピン11は、一端が任意の装置内に配設される実装基板14上の配線パターン15に接続され、当該装置の内部及び外部に信号を伝送する機能を有する。
 なお、第1の実施形態においては、実装基板14上で配線パターン15が引き出される方向が、図2A-図2Cに示す一般的なレセプタクル側コネクタ920における配線パターン925が引き出される方向とは異なる。第1の実施形態においては、図4A-図4Cに示すように、ピン番号が1~12番の差動信号を伝送する12本の信号ピン11に対応する配線パターン15は、実装基板14上でy軸の正方向に延伸されるが、その他のピン番号が13~19番の7本の信号ピン11に対応する配線パターン15は、実装基板14上で当該方向の逆方向、すなわち、y軸の負方向に延伸される。これは、後述するように、シェル13と実装基板14との接地位置を、差動信号を伝送する信号ピン11の近傍に、より多く、より接地面積が大きくなるように形成するためである。
 また、図4A-図4Cを参照すると、第1の実施形態に係るシェル13は、信号ピン11が実装基板14に向かって延伸される領域に渡って、信号ピン11を覆うように導電体によって形成され、実装基板14上でグラウンド電位に接地される。ここで、図2A-図2Cを参照すると、一般的なレセプタクル側コネクタ920においては、信号ピン921が実装基板924に向かって延伸される領域では、信号ピン921がむき出しになっていた。一方、第1の実施形態においては、図4A-図4Cに示すように、信号ピン11が実装基板14に向かって延伸される領域に渡って、グラウンド電位を有する導電体によって形成されたシェル13によって信号ピン11が覆われる。従って、信号ピン11に対する遮蔽効果がもたらされるだけでなく、信号ピン11とシェル13との間でいわゆるマイクロストリップ構造が構成されることによってインピーダンスコントロールされる効果がもたらされることにより、信号ピン11に伝送される信号について、外乱等による信号品質の劣化が抑制される。
 また、第1の実施形態においては、図4A-図4Cに示すように、シェル13と実装基板14との間には、シェル13をグラウンド電位に接続するための接地部16a~16gが設けられる。接地部16a~16gは、例えばシェル13と同一の導電体で形成され、実装基板14上のグラウンド電位を有する領域に接地される。すなわち、接地部16a~16gが設けられる位置は、シェル13と実装基板14との接地位置を表している。図4Bでは、接地部16a~16gが設けられる領域を破線で囲んで示している。図4Bに示す例では、接地部16a、16b、16f、16gは、図2Bに示す接地部926a、926b、926c、926dと対応する位置に設けられる。すなわち、第1の実施形態に係るシェル13は、一般的なシェル923に対して、接地部16c、16d、16eで更に実装基板14上に接地する構成を有する。また、接地部16c、16d、16eは、図4A-図4Cに示すように、信号ピン11と配線パターン15との接続位置に対応する領域に対して、実装基板14上において配線パターン15が引き出される方向(すなわち、図4A-図4Cにおけるy軸の正方向)の一部領域に形成される。このように、第1の実施形態においては、接地部16a~16gは、実装基板14上において配線パターン15が引き出される方向(すなわち、図4A-図4Cにおけるy軸の正方向)の一部領域及び当該方向とは逆の方向(すなわち、図4A-図4Cにおけるy軸の負方向)の一部領域を含むように配設される。
 ここで、図5A-図5Cを参照して、第1の実施形態に係るレセプタクル側コネクタ1におけるEMI抑制効果について説明する。まず、図5A及び図5Bを参照して、第1の実施形態に係るレセプタクル側コネクタ1によって、EMIが抑制され信号の劣化をより抑えることが可能となる原理について説明する。図5A及び図5Bは、第1の実施形態に係るレセプタクル側コネクタ1におけるEMIの抑制効果について説明するための説明図である。なお、図5A及び図5Bに示すレセプタクル側コネクタ1の構成は、図4Aに示すレセプタクル側コネクタ1の構成と同様であるため、詳細な説明は省略する。
 図5Aは、一般的なレセプタクル側コネクタ920におけるEMIについて説明した図3Aと対応する、第1の実施形態に係るレセプタクル側コネクタ1におけるEMIについて説明するための説明図である。図5Aでは、下(z軸方向における下方向)の列に形成される信号ピン11に差動信号が伝送される様子を矢印で示している。このように信号ピン11を信号が比較的高速で伝送されると、当該信号の伝送に伴って生じる電磁波により、シェル13の内部に誘導電流が生じる。例えば、図5Aに示すように、下の列に形成される信号ピン11における信号の伝送では、シェル13の中でも当該信号ピン11に比較的近い部位であるシェル13の下側の部位に、比較的大きな誘導電流が生じると考えられる。図5Aでは、シェル13の下側の部位に生じた誘導電流を破線矢印で模式的に図示している。
 図4A-図4Cを参照して説明したように、第1の実施形態に係るHDMIコネクタのレセプタクル側コネクタ1においては、シェル13が、接地部16a~16gで実装基板924上のグラウンド電位と接地している。従って、図5Aに破線矢印で示すように、シェル13の下側の部位に生じた誘導電流は、例えば接地部16b、16fから実装基板14を介してグラウンドに流れるため、当該誘導電流によるノイズは比較的生じ難い。
 一方、図5Bは、一般的なレセプタクル側コネクタ920におけるEMIについて説明した図3Bと対応する、第1の実施形態に係るレセプタクル側コネクタ1におけるEMIについて説明するための説明図である。図5Bでは、上(z軸方向における上方向)の列に形成される信号ピン11に差動信号が伝送される様子を矢印で示している。図5Bに示すように、上の列に形成される信号ピン11における信号の伝送では、シェル13の中でも当該信号ピン11に比較的近い部位であるシェル13の上側の部位に、比較的大きな誘導電流が生じると考えられる。図5Bでは、シェル13の上側の部位に生じた誘導電流を破線矢印で模式的に図示している。
 ここで、図3Bを参照すると、一般的なレセプタクル側コネクタ920においては、破線矢印で示すように、シェル923の上側の部位に生じた誘導電流の一部が、例えばシェル923の端部で反射して、リターン電流としてプラグ側のHDMIコネクタに向かって流れることにより、信号の伝送におけるノイズの一因となっていた。一方、図4A-図4Cを参照して説明したように、第1の実施形態に係るレセプタクル側コネクタ1においては、一般的なレセプタクル側コネクタ920とは異なり、シェル13が、信号ピン11が実装基板14に向かって延伸される領域に渡って、信号ピン11を覆うように導電体によって形成され、実装基板14上でグラウンド電位に接地される。従って、図5Bに破線矢印で示すように、シェル13の上側の部位に生じた誘導電流は、例えば接地部16c、16d、16eから実装基板14を介してグラウンドに流れるため、当該誘導電流によるノイズが比較的生じ難くなる。
 以上、図5A及び図5Bを参照して説明したように、第1の実施形態に係るレセプタクル側コネクタ1においては、シェル13が、信号ピン11が実装基板14に向かって延伸される領域に渡って信号ピン11を覆うように形成されることにより、シェル13の下側の部位のみならず、上側の部位を含むあらゆる部位に対して、シェル13に生じた誘導電流を実装基板14に逃がすパスが形成されるため、EMIが抑制され、信号ピン11に伝送される信号の品質の劣化を抑えることが可能となる。
 ここで、シェル13と実装基板14との接地位置、すなわち、接地部16a~16gを設ける位置は、可能な限り多く、また、信号ピン11及び配線パターン15の近くであることが望ましい。しかし、接地部16a~16gは、信号ピン11及び配線パターン15と接触しないように、換言すれば、信号ピン11と配線パターン15との接続を妨げないように設けられる必要がある。一方、図1を参照して上述したように、第1の実施形態に係るレセプタクル側コネクタ1のピン配置においては、ピン番号が1~12番の信号ピン11によって、比較的高速の差動信号が伝送される。そして、信号ピン11を流れる差動信号が高速である(周波数が大きい)ほど、シェル13に生じる誘導電流は生じやすくなる。従って、本実施形態においては、シェル13と実装基板14との接地位置を、比較的大きな誘導電流を生じさせると考えられる差動信号を伝送する信号ピン11のより近くに設けることにより、上記のEMIの抑制効果をより得られるようにしている。
 例えば、シェル13の接地位置は、信号ピン11と配線パターン15との接続位置に対して、実装基板14上において差動信号が伝送される信号ピン11と接続される配線パターン15が引き出される方向(すなわち、図4A-図4Cにおけるy軸の正方向)の一部領域及び当該方向とは逆の方向(すなわち、図4A-図4Cにおけるy軸の負方向)の一部領域を含んでもよい。例えば、実装基板14上において差動信号が伝送される信号ピン11と接続される配線パターン15が引き出される方向の一部領域における接地位置とは、図4Bに示す接地部16c、16d、16eの接地位置であり、当該方向とは逆方向の一部領域における接地位置とは、図4Bに示す接地部16b、16fの接地位置である。このように接地部16a~16gを設けることにより、差動信号を伝送する信号ピン11と配線パターン15との接続位置に対応する領域をy軸方向に挟むように、シェル13の接地位置を設けることができる。
 また、例えば、配線パターン15が引き出される方向におけるシェル13の接地位置の接地面積は、当該方向とは逆の方向におけるシェル13の接地位置の接地面積よりも小さくてもよい。例えば、図4Bに示すように、接地部16bにおける接地面積が、他の接地部16c、16d、16eにおける接地面積よりも大きくてもよい。また、接地面積がより大きい接地部16bは、差動信号を伝送する信号ピン11に対応する位置に設けられる。このように接地部16a~16gを設けることにより、差動信号を伝送する信号ピン11の近傍におけるシェル13の接地面積を広くすることができる。
 また、例えば、シェル13の複数の接地位置は、差動信号を伝送する信号ピン11と配線パターン15との接続位置に対応する領域を挟む位置であってもよい。例えば、図4Bに示すように、接地部16c、16d、16eが、差動信号を伝送する信号ピン11と配線パターン15との接続位置に対応する領域を挟むように形成される。このように接地部16a~16gを設けることにより、差動信号を伝送する信号ピン11と配線パターン15との接続位置に対応する領域をx軸方向に挟むように、シェル13の接地位置を設けることができる。
 以上説明したような、図4A-図4Bに示す構成を有するレセプタクル側コネクタ1の計算モデルを作成し、そのEMI特性についてシミュレーションを行った。図5Cを参照して、一般的なTypeAのHDMIコネクタと、第1の実施形態に係るコネクタ構造を適用したTypeAのHDMIコネクタについて、EMI特性を比較した結果について説明する。図5Cは、一般的なTypeAのHDMIコネクタ及び第1の実施形態に係るコネクタについて、EMI特性をシミュレーションした結果を示すグラフである。図5Cでは、横軸(X軸)に信号ピンに印加する信号の周波数(MHz)を取り、縦軸(Y軸)に遠方電界強度(dBμV/m)を取り、両者の関係をプロットしている。縦軸に示す遠方電界強度(dBμV/m)の値が大きいほど、信号ピンを伝送する信号によって生じる電磁波の影響が大きく、EMIが生じやすいことを示している。
 また、図5Cでは、一般的なTypeAのHDMIコネクタにおける周波数(MHz)と遠方電界強度(dBμV/m)との関係を示すグラフが図中Pで示す曲線(破線で示す曲線)で、第1の実施形態に係るコネクタにおける周波数(MHz)と遠方電界強度(dBμV/m)との関係を示すグラフが図中Qで示す曲線(点線で示す曲線)で図示されている。なお、図5Cに示す、一般的なTypeAのHDMIコネクタについてのシミュレーション結果及び第1の実施形態に係るコネクタについてのシミュレーション結果とも、図1に示す一般的なピン配置(すなわち、差動信号のラインが3組設けられるピン配置)に対応する信号を流した場合のシミュレーション結果を示している。
 図5Cを参照すると、第1の実施形態に係るコネクタでは、遠方電界強度(dBμV/m)の値が、シミュレーションを行った全周波数帯域に渡って、一般的なTypeAのHDMIコネクタよりも抑えられていることが分かる。すなわち、第1の実施形態に係るコネクタによって、EMIが抑制され、信号の劣化がより抑えられることが示されている。このような結果が生じた理由は、図5A及び図5Bを参照して上述したように、第1の実施形態に係るコネクタでは、シェル13が、信号ピン11が実装基板14に向かって延伸される領域に渡って、信号ピン11を覆うように導電体によって形成され、実装基板14上でグラウンド電位に接地されることにより、リターン電流が抑制されるためであると考えられる。
 図5Cでは、図4A-図4Cに示す構成を有するレセプタクル側コネクタ1についてのEMI抑制効果について説明したが、本実施形態に係るレセプタクル側コネクタ1における接地部16a~16gの配設位置及び接地面積は、図4A-図4Cに示す例に限定されず、シェル13は、あらゆる位置で実装基板14のグラウンドに接地されてよい。例えば、図4Bに示す例では、接地部16c、16dが、差動信号を伝送する一群の信号ピン11(ピン番号が1~12の12本の信号ピン11)を挟むように設けられているが、本実施形態はかかる例に限定されない。例えば、差動信号を伝送する各信号ピン11の間の領域の全て又は一部に接地部が設けられてもよい。ただし、接地部16a~16gは、信号ピン11及び配線パターン15と接触しないように、換言すれば、信号ピン11と配線パターン15との接続を妨げないように設けられればよく、接地部16a~16gの配設位置及び接地面積は、実装基板14上における配線パターン15の形状に応じて適宜調整されてよい。例えば、図4A-図4Cに示す例では、実装基板14上で差動信号を伝送する信号ピン11と接続される配線パターン15が一方向(y軸の正方向)に引き出されているため、当該配線パターン15が引き出される方向においては、接地面積が大きな接地部16a~16gを設けることが難しく、配線パターン15が引き出される方向とは逆の方向に位置する接地部16bの面積を大きくしている。しかし、本実施形態はかかる例に限定されず、配線パターン15は実装基板14上であらゆる方向に引き出されてよい。このように、実装基板14上における配線パターン15の形状及び引き出し方向が一定でない場合であっても、当該配線パターン15の形状及び引き出し位置に応じて、接地部16a~16gの配設位置及び接地面積の大きさが適宜設定されてよい。
 以上、図4A-図4C、図5A及び図5Bを参照して、第1の実施形態に係るレセプタクル側コネクタ1の構成について説明した。以上説明したように、第1の実施形態においては、シェル13が、信号ピン11が実装基板14に向かって延伸される領域に渡って信号ピン11を覆うように形成され、実装基板14上でグラウンド電位に接地される。従って、信号ピン11に対する遮蔽効果がもたらされるだけでなく、信号ピン11とシェル13との間でいわゆるマイクロストリップ構造が構成されることによってインピーダンスコントロールされる効果がもたらされることにより、信号ピン11に伝送される信号について外乱等による信号品質の劣化が抑制される。また、シェル13の下側の部位のみならず、上側の部位を含むあらゆる部位に対して、シェル13に生じた誘導電流を実装基板14に逃がすパスが形成されるため、EMIが抑制され、信号ピン11に伝送される信号の品質の劣化を更に抑えることが可能となる。
 更に、第1の実施形態においては、シェル13と実装基板14との接地位置が適宜調整されてよい。例えば、シェル13と実装基板14との接地位置は、実装基板14上において差動信号が伝送される信号ピン11と接続される配線パターン15が引き出される方向及び当該方向と逆の方向に、信号ピン11と配線パターン15との接続位置に対応する領域をy軸方向に挟むように設けられてもよい。また、例えば、シェル13と実装基板14との接地位置は、差動信号を伝送する信号ピン11と配線パターン15との接続位置に対応する領域をx軸方向に挟む位置に設けられてもよいし、信号ピン11及び配線パターン15と接触しない限りにおいて(信号ピン11と配線パターン15との接続を妨げない限りにおいて)接地面積が大きくなるように設けられてもよい。シェル13と実装基板14との接地位置が、差動信号を伝送する信号ピン11と配線パターン15の近傍に設けられ、また、その接地面積がより大きく設けられることにより、差動信号によってシェル13に生じた誘導電流を実装基板14に逃がすパスがより確実に確保されるため、信号品質の劣化をより抑制することが可能となる。
 <3.伝送データ量増加に係る変形例について>
 ここで、HDMIコネクタにおけるデータ伝送において、伝送データ量をより増加させるための構成について検討する。以下では、まず、本項<3.伝送データ量増加に係る変形例について>において、上記<2.第1の実施形態>で説明した本開示の第1の実施形態に係る構成とは別の構成として、伝送データ量をより増加させるための構成、当該構成における信号特性、並びに、当該構成に対する更なる変形例及び適用例について説明する。次いで、下記<4.第2の実施形態>で、上記<2.第1の実施形態>で説明した本開示の第1の実施形態に係る構成に、本項<3.伝送データ量増加に係る変形例について>で説明する構成を適用した本開示の第2の実施形態に係る構成について説明するとともに、その信号伝送特性について説明する。
 [3.1.伝送データ量増加についての検討]
 まず、図6Aを参照して、一般的なTypeAのHDMIコネクタにおけるピン配置について説明する。なお、TypeDのHDMIコネクタのピン配置は、TypeAのHDMIコネクタのピン配置と同様である。図6Aは、一般的なTypeA、TypeDのHDMIコネクタにおける高速差動信号を伝送するピン配置を示す概略図である。なお、図6Aに示すピン配置は、図1を参照して説明したピン配置と同様のものである。ただし、図6Aにおいては、映像信号の伝送に関係する12個の信号ピンのみを図示し、その他の信号ピンについては図示を省略している。また、図6Aでは、入力装置におけるレセプタクル側のHDMIコネクタの端子面を示している。
 図6Aを参照すると、一般的なTypeAのHDMIコネクタの端子面においては、外殻(シェル)943に覆われた誘電体942に埋め込まれた信号ピン941が、2列に、千鳥状に並べられている。また、複数の信号ピン941のそれぞれには、互いに異なる種類の信号が印加されており、図6Aには、その信号の種類が図示されている。
 具体的には、ピン番号が1、2、3番の信号ピンに、それぞれ、「Data2+」、「Data2 Shield」、「Data2-」が割り当てられる。また、同様に、ピン番号が4、5、6番の信号ピンに、それぞれ、「Data1+」、「Data1 Shield」、「Data1-」が割り当てられる。更に、同様に、ピン番号が7、8、9番の信号ピンに、それぞれ、「Data0+」、「Data0 Shield」、「Data0-」が割り当てられる。また、ピン番号が10、11、12番の信号ピンには、それぞれ、「clock+」、「clock Shield」、「clock-」が割り当てられる。
 つまり、それぞれのデータライン(Data0/1/2)及びクロック(clock)は、差動ラインDatai+、Datai-、Datai Shieldの3本のラインで構成される(i=0、1、2)。また、差動ラインDatai+及びDatai-は、データ伝送時には、差動信号間でカップリングを形成する(差動結合を形成する)。HDMIソース機器は、Data0/1/2を用いて、それぞれ最大3.425GbpsでR(赤)、G(緑)、B(青)のデジタルビデオデータ(映像データ)をシリアルデータとして、シリアルビデオデータの10分周となるピクセルクロック(最大340.25MHz)をクロックとしてHDMIシンク機器へ伝送する。
 ここで、より多くの映像信号を伝送するための方法として、信号ピンの割り当てを変更することが考えられる。具体的には、図6Aにおいて、差動ライン(差動データレーン)ペアのシールドとして用いられている信号ピン、すなわち、「Data2 Shield」、「Data1 Shield」及び「Data0 Shield」、並びに、クロック信号伝送用の信号ピンである「clock+」、「clock-」及び「clock Shield」を、新たなデータラインに対応する信号ピンとして用いる方法が考えられる。
 そのような、信号ピンの割り当てを変更する方法の一例について、図6Bに示す。図6Bは、TypeA、TypeDのHDMIコネクタにおける、新たに高速差動データラインが増加されたピン配置の一例を示す概略図である。
 図6Bを参照すると、図6Aにおいてシールドとして用いられていた、ピン番号が2、5、8、11の信号ピンに、新たな差動ラインペアである「Data3+」、「Data3-」、「Data4+」、「Data4-」がそれぞれ割り当てられる。また、図6Aにおいてクロックとして用いられていた、ピン番号が10、12の信号ピンに、新たな差動ラインペアである「Data5+」、「Data5-」がそれぞれ割り当てられる。
 更に、図6Aに示す一般的な信号ピン配置においてシールドとして接続されていたSTPケーブルのドレイン線がプラグ側コネクタのシェル部分に接続され、ソース機器及びシンク機器のレセプタクル側コネクタのシェル部分が接地接続されることにより、ケーブルのシールドが確保される構造を有することができる。また、クロックは、個々のデータレーンのデータからビットクロックをシンク機器で抽出し、それを10分周することにより、シンク機器において自分でピクセルクロックを生成することにする。
 このように、差動ラインペアの数を3から6に拡張することにより、個々のラインの伝送速度はそのまま保ちつつ、データ伝送量を2倍に増加させることができる。しかしながら、図6Bに示すようなピン配置においては、伝送される信号の劣化が懸念される。
 何故ならば、図6Bに示すように、新たに定義した「Data3+」、「Data3-」、「Data4+」及び「Data4-」の信号ピンでは、元から存在する差動ラインペアに比べて、ペアとなる差動ライン間の物理的な距離が離れている。従って、新たに定義した信号ピンにおいては差動信号間でのカップリングが生じにくくなり、インピーダンスの不整合が生じることが考えられる。
 また、各差動ラインペア間に、シールドの機能を果たすラインが存在しないため、隣接するラインからのクロストークの影響を受けやすくなり、信号が劣化する可能性が高い。
 このような信号の劣化に対する対策としては、例えば、コネクタ内における信号ピンの形状及び配設位置を工夫することにより、信号の劣化を抑えることが考えられる。具体的には、例えば、信号ピンの配線幅を小さくすることにより、相対的に、信号ピン間の間隔を広くし、クロストークの影響を抑えることが考えられる。
 また、例えば、信号ピンを、コネクタの外周部を構成する接地導体のより近傍に延伸させ、信号ピンに印加される差動信号をシングルエンドで伝送させることにより、信号の劣化を抑えることが考えられる。
 ここで、HDMIコネクタには、TypeAからTypeEまでの異なるタイプのコネクタが存在する。その中でも、TypeC、TypeDは、それぞれ、ミニHDMIコネクタ、マイクロHDMIコネクタと呼ばれるものであり、標準タイプであるTypeAと比べて、より小さいコネクタサイズを有する。例えば、コネクタの端子面の面積は、TypeAが14mm×4.5mmであるのに対して、TypeCは10.5mm×2.5mmであり、TypeDは5.8mm×2.0mmと定められている。
 従って、上記のような信号劣化に対する対策は、TypeAのように、比較的コネクタサイズが大きく、信号ピンの形状及び配設位置の変更の自由度が高い場合には有効であると考えられるが、TypeCやTypeDのように、比較的コネクタサイズが小さいコネクタにおいては、信号ピンの形状及び配設位置の変更の自由度が低くなるため、信号の劣化の抑制について十分な効果を得られない可能性がある。
 以上、検討した内容をまとめると、データ伝送量を増加させるためには、HDMIコネクタにおける信号ピンの割り当てを変更する方法が考えられる。ただし、信号ピンに割り当てられるデータラインの数を増加させることにより、信号が劣化してしまう可能性がある。信号の劣化を抑えるために、信号ピンの形状及び配設位置を変更する方法も考えられるが、TypeCやTypeDといった、比較的サイズの小さいHDMIコネクタにおいては、当該方法によって十分な効果を得ることは難しい。従って、より広範なタイプのコネクタに適用することが可能な、より汎用的な信号劣化を抑制するための方法が求められている。
 本発明者らは、以上検討した内容に基づいて、データ伝送量を増加させつつ信号の劣化をより抑えることが可能な、コネクタ、データ受信装置、データ送信装置及びデータ送受信システムに想到するに至った。以下では、その好適な実施形態について詳述する。
 [3.2.第1の変形例について]
 まず、本開示の第1の変形例に係るコネクタの構造について説明する。なお、第1の変形例に係るコネクタは、TypeCのHDMIコネクタに対してデータ伝送量を増加させつつ信号の劣化をより抑えるための構成を適用したものに対応している。
 TypeCのHDMIコネクタは、図6A及び図6Bに示したTypeAのHDMIコネクタとは、端子面における信号ピンの配設位置が異なる。ここで、図7A及び図7Bを参照して、TypeCのHDMIコネクタのピン配置について説明する。図7Aは、一般的なTypeCのHDMIコネクタにおける高速差動信号を伝送するピン配置を示す概略図である。図7Bは、TypeCのHDMIコネクタにおける、新たに高速差動データラインが増加されたピン配置の一例を示す概略図である。ただし、図7A及び図7Bにおいては、映像信号の伝送に関係する信号ピンのみを図示し、その他の信号ピンについては図示を省略している。また、図7A及び図7Bでは、レセプタクル側コネクタの端子面を示している。
 なお、TypeCのHDMIコネクタのピン配置についての以下の説明では、図6A及び図6Bを参照して説明したTypeAのHDMIコネクタのピン配置との相違点について主に説明し、重複する構成や機能については詳細な説明を省略する。
 まず、図7Aを参照すると、一般的なTypeCのHDMIコネクタの端子面においては、外殻(シェル)973に覆われた誘電体972に複数の信号ピン971が埋め込まれている。ただし、図6Aに示す一般的なTypeAのHDMIコネクタのピン配置とは異なり、一般的なTypeCのHDMIコネクタの端子面においては、信号ピン971はx軸方向に1列に並べられる。また、複数の信号ピン971のそれぞれには、互いに異なる種類の信号が印加されており、図7Aには、その信号の種類が図示されている。
 具体的には、ピン番号が1、2、3番の信号ピンに、それぞれ、「Data2 Shield」、「Data2+」、「Data2-」が割り当てられる。また、同様に、ピン番号が4、5、6番の信号ピンに、それぞれ、「Data1 Shield」、「Data1+」、「Data1-」が割り当てられる。更に、同様に、ピン番号が7、8、9番の信号ピンに、それぞれ、「Data0 Shield」、「Data0+」、「Data0-」が割り当てられる。また、ピン番号が10、11、12番の信号ピンには、それぞれ、「clock Shield」、「clock+」、「clock-」が割り当てられる。
 つまり、それぞれのデータライン(Data0/1/2)及びクロック(clock)は、差動ラインDatai+、Datai-、Datai Shieldの3本のラインで構成される(i=0、1、2)。また、差動ラインDatai+及びDatai-は、データ伝送時には、差動信号間でカップリングを形成する(差動結合を形成する)。なお、それぞれのデータライン(Data0/1/2)及びクロック(clock)の機能については、図6Aに示す一般的なTypeAのHDMIコネクタのピン配置と同様であるため、ここでは詳細な説明は省略する。
 次に、図7Bを参照すると、本開示の第1の変形例に係るコネクタのピン配置においては、図7Aに示す一般的なTypeCのHDMIコネクタのピン配置と比較して、信号ピンに割り当てられるデータラインの数が増加されている。
 具体的には、図7Aにおいてシールドとして用いられていた、ピン番号が1、4、7、10の信号ピンに、新たな差動ラインペアである「Data3+」、「Data3-」、「Data4+」、「Data4-」がそれぞれ割り当てられる。また、図7Aにおいてクロックとして用いられていた、ピン番号が11、12の信号ピンに、新たな差動ラインペアである「Data5+」、「Data5-」がそれぞれ割り当てられる。このように、差動ラインペアの数を3から6に拡張することにより、個々のラインの伝送速度はそのまま保ちつつ、データ伝送量を2倍に増加させることができる。なお、ケーブルにおけるシールド確保の方法、及びクロックの生成方法については、図6Bを参照して説明した、TypeAのHDMIコネクタと同様であるため、ここでは詳細な説明は省略する。
 以上、図7A及び図7Bを参照して、TypeCのHDMIコネクタにおけるピン配置について説明した。ここで、一般的なコネクタ構造を有するTypeCのHDMIコネクタに、図7Bに示すような、新たにデータラインの数が増加されたピン配置を適用すると、上記[3.1.伝送データ量増加についての検討]で説明したTypeAのHDMIコネクタと同様、信号の劣化が生じる。一方、以下に説明する本開示の第1の変形例に係るコネクタ構造によれば、図7Bに示すような、新たにデータラインが増加されたピン配置に対しても、信号の劣化を抑えることが可能となる。
 以下の説明においては、第1の変形例に係るコネクタの構造について明確にするために、まず、(3.2.1.一般的なTypeCコネクタの構成)で、一般的なTypeCのHDMIコネクタの一構造例について説明する。次に、(3.2.2.第1の変形例に係るコネクタの構成)において、本開示の第1の変形例に係るコネクタの一構造例について説明するとともに、一般的なTypeCのHDMIコネクタとの構造の違いについて説明する。そして、(3.2.3.特性比較)において、両者の構造において伝送される信号の特性について比較することにより、第1の変形例に係るコネクタにおける、信号の劣化を抑制する効果について説明する。
 (3.2.1.一般的なTypeCコネクタの構成)
 まず、図8A-図8Cを参照して、一般的なTypeCのHDMIコネクタの一構造例について説明する。図8Aは、一般的なTypeCのHDMIコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。図8Bは、一般的なTypeCのHDMIコネクタの、x軸とy軸とによって構成される断面において、図8AにおけるA-A断面に対応する断面図である。図8Cは、一般的なTypeCのHDMIコネクタの、x軸とz軸とによって構成される断面において、図8BにおけるC-C断面に対応する断面図である。なお、図8A-図8Cは、プラグ側コネクタとレセプタクル側コネクタとが嵌合している様子を示している。
 まず、プラグ側コネクタの構造について説明する。図8A-図8Cを参照すると、一般的なTypeCのHDMIコネクタのプラグ側コネクタ810は、信号ピン811、誘電体812及び外殻(シェル)813を備える。信号ピン811は、第1の方向、すなわちy軸方向に延設されており誘電体812にその一部が埋め込まれる。
 シェル813は、信号ピン811及び誘電体812を覆うように形成され、シェル813のy軸の正方向の一面は、外部に対して開放される開放面になっている。図8A-図8Cに示すように、プラグ側コネクタ810と、後述するレセプタクル側コネクタ820とは、シェル813の開放面を介して接続される。また、シェル813は、導電体によって形成され、その電位は、後述するレセプタクル側コネクタ820を介して、例えばグラウンド電位に固定される。
 更に、信号ピン811は、シェル813の開放面近傍の所定の領域において、誘電体812からその先端部が露出されており、当該露出部は、シェル813の開放面に向かって突出する突出部を構成する。プラグ側コネクタ810と、後述するレセプタクル側コネクタ820とが嵌合される際に、信号ピン811の突出部が、後述するレセプタクル側コネクタ820の信号ピン821と接触することにより、プラグ側コネクタ810と、後述するレセプタクル側コネクタ820とが電気的に接続される。なお、信号ピン811の突出部の一部領域には、レセプタクル側コネクタ820の信号ピン821に向かって更に突出する接触部が設けられてもよい。そして、プラグ側コネクタ810の信号ピン811とレセプタクル側コネクタ820の信号ピン821とは、当該接触部を介して接触してもよい。
 次に、レセプタクル側コネクタの構造について説明する。図8A-図8Cを参照すると、一般的なTypeCのHDMIコネクタのレセプタクル側コネクタ820は、信号ピン821、誘電体822及び外殻(シェル)823を備える。信号ピン821は、第1の方向、すなわちy軸方向に延設されており誘電体822にその一部が埋め込まれる。
 シェル823は、信号ピン821及び誘電体822を覆うように形成され、シェル823のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル823は、導電体によって形成され、その電位は、例えばグラウンド電位に固定される。
 また、シェル823の開放面の開口部の面積は、プラグ側コネクタ810のシェル813の開放面における断面積よりもわずかに大きく形成されている。そして、図8A-図8Cに示すように、プラグ側コネクタ810と、レセプタクル側コネクタ820とは、プラグ側コネクタ810のシェル813に開放面が設けられる一端が、レセプタクル側コネクタ820のシェル823の開放面の開口部に挿入されることによって、嵌合される。なお、図8A及び図8Bに破線で示す領域は、プラグ側コネクタ810とレセプタクル側コネクタ820との嵌合部Sを表している。
 更に、信号ピン821は、開放面近傍の所定の領域において、誘電体822からその表面の一部領域が露出された露出部を有する。プラグ側コネクタ810と、レセプタクル側コネクタ820とが嵌合される際には、信号ピン821の露出部が、上述したプラグ側コネクタ810の信号ピン811の突出部(接触部)と接触する。
 以上、図8A-図8Cを参照して、一般的なTypeCのHDMIコネクタの構造について説明した。
 (3.2.2.第1の変形例に係るコネクタの構成)
 次に、図9A-図9Cを参照して、本開示の第1の変形例に係るコネクタの一構造例について説明する。図9Aは、本開示の第1の変形例に係るコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。図9Bは、第1の変形例に係るコネクタの、x軸とy軸とによって構成される断面において、図9AにおけるA-A断面に対応する断面図である。図9Cは、第1の変形例に係るコネクタの、x軸とz軸とによって構成される断面において、図9BにおけるC-C断面に対応する断面図である。なお、図9A-図9Cは、プラグ側コネクタとレセプタクル側コネクタとが嵌合している様子を示している。
 まず、プラグ側コネクタの構造について説明する。図9A-図9Cを参照すると、第1の変形例に係るプラグ側コネクタ10は、信号ピン110、誘電体120、基板130及び外殻(シェル)140を備える。
 信号ピン110は、第1の方向、すなわちy軸方向に延設される。また、信号ピン110は、誘電体によって形成される基板130の表面上に、配線パターンとして形成される。
 シェル140は、信号ピン110及び基板130を覆うように形成され、シェル140のy軸の正方向の一面は、外部に対して開放される開放面になっている。図9A-図9Cに示すように、プラグ側コネクタ10と、後述するレセプタクル側コネクタ20とは、シェル140の開放面を介して接続される。また、シェル140は、導電体によって形成され、その電位は、後述するレセプタクル側コネクタ20を介して、例えばグラウンド電位に固定される。
 また、基板130の裏面、すなわち、信号ピン110が形成される面と逆側の面には、グラウンド電位を有する導電体層が形成される。図9A-図9Cを参照すると、本実施形態においては、シェル140の、基板130の裏面と対向する面が、他の面よりも肉厚に形成され、基板130の裏面と接している。つまり、基板130の裏面に形成される導電体層とシェル140とが一体的に形成されている。なお、本実施形態においては、基板130の裏面にグラウンド電位を有する導電体層が形成されればよく、導電体層の構造はかかる例に限定されない。つまり、シェル140の一面が肉厚化されなくてもよく、例えば、基板130の裏面に形成された導電体層と、シェル140とが、ビアホール等によって電気的に接続される構造であってもよい。
 更に、基板130上に形成された信号ピン110の上部(z軸の正方向)には、誘電体120が積層されてもよい。ただし、誘電体120が形成される場合には、誘電体120は、信号ピン110の全面を覆うように形成されるのではなく、シェル140の開放面近傍の所定の領域において信号ピン110の一部領域が露出するように形成される。プラグ側コネクタ10と、後述するレセプタクル側コネクタ20とが嵌合する際に、プラグ側コネクタ10の信号ピン110の当該露出部が、レセプタクル側コネクタ20の信号ピン210(配線パターン)と接触することにより、プラグ側コネクタ10と、後述するレセプタクル側コネクタ20とが電気的に接続される。なお、信号ピン110の露出部の一部領域には、レセプタクル側コネクタ20の信号ピン210に向かって突出する接触部が設けられてもよい。そして、プラグ側コネクタ10の信号ピン110とレセプタクル側コネクタ20の信号ピン210とは、当該接触部を介して接触してもよい。
 次に、レセプタクル側コネクタの構造について説明する。図9A-図9Cを参照すると、第1の変形例に係るレセプタクル側コネクタ20は、信号ピン210、誘電体220、基板230及び外殻(シェル)240を備える。
 信号ピン210は、第1の方向、すなわちy軸方向に延設される。また、信号ピン210は、誘電体によって形成される基板230の表面上に、配線パターンとして形成される。
 シェル240は、信号ピン210及び基板230を覆うように形成され、シェル240のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル240は、導電体によって形成され、その電位は、例えばグラウンド電位に固定される。
 また、シェル240の開放面の開口部の面積は、プラグ側コネクタ10のシェル140の開放面における断面積よりもわずかに大きく形成されている。そして、図9A-図9Cに示すように、プラグ側コネクタ10と、レセプタクル側コネクタ20とは、プラグ側コネクタ10のシェル140に開放面が設けられる一端が、レセプタクル側コネクタ20のシェル240の開放面の開口部に挿入されることによって、嵌合される。なお、図9A及び図9Bに破線で示す領域は、プラグ側コネクタ10とレセプタクル側コネクタ20との嵌合部Tを表している。
 また、基板230の裏面、すなわち、信号ピン210が形成される面と逆側の面には、グラウンド電位を有する導電体層が形成される。図9A-図9Cを参照すると、本実施形態においては、シェル240の、基板230の裏面と対向する面が、他の面よりも肉厚に形成され、基板230の裏面と接している。つまり、基板230の裏面に形成される導電体層とシェル240とが一体的に形成されている。なお、本実施形態においては、基板230の裏面にグラウンド電位を有する導電体層が形成されればよく、導電体層の構造はかかる例に限定されない。つまり、シェル240の一面が肉厚化されなくてもよく、例えば、基板230の裏面に形成された導電体層と、シェル240とが、ビアホール等によって電気的に接続される構造であってもよい。
 更に、基板230上に形成された信号ピン210の上部(z軸の正方向)には、誘電体220が積層されてもよい。ただし、誘電体220が形成される場合には、誘電体220は、シェル240の開放面近傍の所定の領域において信号ピン210の一部領域が露出するように形成される。レセプタクル側コネクタ20の信号ピン210の当該露出部が、プラグ側コネクタ10の信号ピン110(配線パターン)の露出部及び/又は接触部と接触することにより、プラグ側コネクタ10と、レセプタクル側コネクタ20とが電気的に接続される。
 また、図9Bを参照すると、プラグ側コネクタ10の信号ピン110及びレセプタクル側コネクタ20の信号ピン210は、信号ピン110、210のうち、差動信号が伝送され、隣接して延設される1対の信号ピン110、210の間隔が、隣接する他の信号ピン110、210との間隔よりも小さく形成されてよい。なお、信号ピン110、210の間隔は、嵌合部Tでは等しい間隔であってよく、信号ピン110、210のうち、差動信号が伝送され、隣接して延設される1対の信号ピン110、210の間隔が、隣接する他の信号ピン110、210との間隔よりも小さく形成されるのは、嵌合部T以外の領域であってよい。
 更に、嵌合部Tにおける信号ピン110、210の配線間隔は、図8A-図8Cに示す嵌合部Sにおける信号ピン811、821の配線間隔と同様であってもよい。つまり、第1の変形例に係るコネクタの信号ピンと、一般的なTypeCのHDMIコネクタの信号ピンとは、嵌合部においては同一の配線間隔を有していてよい。
 以上、図9A-図9Cを参照して説明したように、第1の変形例に係るコネクタにおいては、一般的なTypeCのコネクタと比べて、以下の点で相違する。すなわち、第1の変形例に係るコネクタは、誘電体によって形成され、一方の面に信号ピン(信号ピンに対応する配線パターン)が、他側の面にグラウンド電位を有する導電体層が形成された基板を備える。また、第1の変形例に係るコネクタにおいては、信号ピンのうち、差動信号が伝送され、隣接して延設される1対の信号ピンの間隔が、隣接する他の信号ピンとの間隔よりも小さく形成される。ここで、これらの構成を有することによって生じる、第1の変形例に係るコネクタが奏する効果について説明する。
 上記のように、第1の変形例に係るコネクタ10、20は、誘電体で形成される基板130、230上に信号ピン110、210が形成され、更に、基板130、230の信号ピン110、210が形成される面とは逆側の面に、グラウンド電位を有する導電体層が形成される。すなわち、第1の変形例に係るコネクタは、グラウンドプレーン(導電体層)、誘電体層(基板130、230)、配線(信号ピン110、210)が、順に積層される構成を有する。このような構成を有することにより、信号ピン110、210を流れる電流(信号)に起因する電磁界が、基板130、230と導電体との間に閉じ込められ、いわゆるマイクロストリップライン(マイクロストリップ構造)が形成される。よって、第1の変形例に係るコネクタにおいては、信号ピン110、210を流れる電流(信号)が、他の信号ピン110、210に及ぼす影響を抑えることができ、信号の劣化を抑えることができる。
 更に、上記のように、第1の変形例に係るコネクタ10、20においては、信号ピン110、210のうち、差動信号が伝送され、隣接して延設される1対の信号ピン110、210の間隔が、隣接する他の信号ピン110、210との間隔よりも小さく形成されてよい。対となる差動信号が伝送される1対の信号ピン110、210の間隔をより狭くすることにより、当該1対の信号ピン110、210を流れる電流(信号)に起因する電磁界が、当該1対の信号ピン110、210の間及び基板130、230と導電体との間に閉じ込められ、いわゆる差動ストリップライン(差動ストリップ構造)が形成される。なお、差動結合のリターンパスは配線面の裏面のグラウンドプレーンに確保される。従って、差動データライン間で結合が形成されるため、差動インピーダンスを維持したまま信号ピンの配線幅と配線間隔を縮小することが可能になる。つまり、隣接する異種信号配線との間隔を拡大することが可能となり、クロストークの低減と信号品質の向上が実現される。よって、第1の変形例に係るコネクタにおいては、対となる差動信号が伝送される信号ピン110、210を流れる電流(信号)が、他の信号ピン110、210に及ぼす影響を更に抑えることができ、信号の劣化をより抑えることができる。
 なお、第1の変形例に係るコネクタに、図7Bに示す、新たにデータラインが増加されたピン配置が適用される場合、新たに追加された差動信号のペアのうち、「Data3+」と「Data3-」及び「Data4+」と「Data4-」の各信号が割り当てられる信号ピンは、それぞれの差動信号のペア同士が、隣り合う位置には配置されていない。従って、第1の変形例に係るコネクタにおいては、互いに隣り合う位置に形成される「Data0+」と「Data0-」、「Data1+」と「Data1-」、「Data2+」と「Data2-」及び「Data5+」と「Data5-」が印加される信号ピンについては、差動ストリップラインによって信号が伝送され、互いに隣り合う位置に形成されない「Data3+」と「Data3-」及び「Data4+」と「Data4-」が印加される信号ピンについては、シングルエンドのマイクロストリップラインによって信号が伝送される。
 また、本開示の第1の変形例に係るコネクタは、以上説明したように、図7Bに示すような、新たにデータラインが増加されたピン配置において、その効果をより得ることができるが、図7Aに示す一般的なピン配置にも適用することができる。本開示の第1の変形例に係るコネクタが、図7Aに示す一般的なピン配置に適用される場合であっても、各信号ピンについてマイクロストリップライン又は差動ストリップラインが形成されることにより、信号ピン110、210を流れる電流(信号)が、他の信号ピン110、210に及ぼす影響を抑えることができ、信号の劣化を抑えることができる。
 なお、本開示の第1の変形例に係るコネクタにおいては、図9Bを参照して説明したように、嵌合部Tにおける信号ピン110、210の間隔は、一般的なTypeCのHDMIコネクタの嵌合部Sにおける信号ピン811、821の間隔と同一であってよい。このような構成を有することにより、第1の変形例に係るコネクタと一般的なTypeCのHDMIコネクタとの互換性が保証される。つまり、第1の変形例に係るコネクタと、一般的なTypeCのHDMIコネクタとを嵌合する際に、HDMI規格によって定められた所定の信号ピン同士が電気的に接続される。従って、図7Aに示す一般的なピン配置に対応する信号の伝送が行われる場合であっても、第1の変形例に係るコネクタを適用することが可能となる。
 ここで、図10を参照して、本開示の第1の変形例に係るコネクタにおける変形例について説明する。本開示の第1の変形例に係るコネクタにおいては、グラウンド電位を有するガードラインが、信号ピンを挟む位置に、信号ピンと略平行に更に延設されてもよい。更に、当該ガードラインは、シングルエンドによって信号を伝送する信号ピンを挟むように配設されてもよい。図10は、ガードラインが配設された構成を説明するための説明図である。
 図10は、図9Bに示す第1の変形例に係るコネクタにおいて、ガードラインが新たに配設された様子を示す。つまり、図10は、第1の変形例に係るコネクタにガードラインが設けられた構成を、z軸の正方向から見た様子を示している。図10を参照すると、例えば、プラグ側コネクタ10の、シングル結合によって信号を伝送する信号ピン110を挟むように、ガードライン150が配設される。また、例えば、同様に、レセプタクル側コネクタ20の、シングルエンドによって信号を伝送する信号ピン210を挟むように、ガードライン250が配設される。また、ガードライン150、250の電位はグラウンド電位に設定されている。ガードライン150、250が設けられることにより、信号ピン110、210を流れる電流(信号)が、他の信号ピン110、210に及ぼす影響を更に抑えることができ、信号の劣化をより抑えることができる。
 (3.2.3.特性比較)
 次に、図8A-図8Cに示す一般的なTypeCのHDMIコネクタ構造と、図9A-図9Cに示す本開示の第1の変形例に係るコネクタ構造とにおいて、信号ピンに流れる信号の特性を比較した結果について説明する。なお、以下に示す、図11A及び図11B、図12A及び図12B、図13A及び図13B、並びに図14A-Eは、図7Bに示す、新たにデータラインが増加されたピン配置に対応する信号を流した場合の結果を示している。
 まず、図11A及び図11B並びに図12A及び図12Bを参照して、一般的なTypeCのHDMIコネクタと、第1の変形例に係るコネクタとの、信号ピン近傍の電界分布の違いについて説明する。
 図11A及び図11B並びに図12A及び図12Bは、コネクタに、HDMI規格によって定められる映像信号伝送時の所定の信号を印加した場合の、信号ピン近傍の電界分布の様子を示している。図11A及び図11Bは、一般的なTypeCのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。また、図12A及び図12Bは、第1の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。なお、図11A及び図11B並びに図12A及び図12Bにおいては、電界分布の強さを、ハッチングの濃淡で模式的に示しており、ハッチングが濃い領域ほど、電界が集中している様子を示している。
 図11Aは、一般的なTypeCのHDMIコネクタ構造における、図8Aに対応する断面における等電界線図であり、図11Bは、図11Aに示すD-D断面における等電界線図である。
 図12Aは、第1の変形例に係るコネクタ構造における、図9Aに対応する断面における等電界線図であり、図12Bは、図12Aに示すD-D断面における等電界線図である。ただし、図12A及び図12Bに示す等電界線図は、第1の変形例に係るコネクタ構造において、図10に示すガードラインを更に備える構造について、電界分布を求めたものである。
 なお、図11A及び図11B並びに図12A及び図12Bに示す等電界線図は、上記の各断面における各領域(信号ピン、基板、外殻、誘電体等)に対応する誘電率を設定したモデルを作成し、HDMI規格によって定められる映像信号伝送時の所定の信号を印加した場合の、信号ピン近傍の電界分布の様子をシミュレーションした結果を示している。
 図11Aを参照すると、一般的なTypeCのHDMIコネクタ構造においては、信号ピン811、821の表面(y軸方向に延伸する面のうち、z軸の正方向に位置する面)と裏面(y軸方向に延伸する面のうち、z軸の負方向に位置する面)とで電界分布にほとんど差がないことが分かる。また、図11Bを参照すると、一般的なTypeCのHDMIコネクタ構造においては、例えば領域Eに示すように、一部の信号ピン110間には、電界が集中し、カップリングが形成されている様子が示されているが、例えば領域F(「Data0-」、「Data4-」、「Data5+」に跨る領域)や領域G(「Data1-」、「Data4+」、「Data0+」に跨る領域)に示すように、差動信号のペア以外の領域にも電界が集中しており、信号ピン811を流れる電流(信号)が、他の信号ピン811に影響を及ぼしてしまっていることが分かる。
 一方、図12Aを参照すると、第1の変形例に係るコネクタ構造においては、信号ピン110、210と基板130、230との間に電界が集中しており、いわゆるマイクロストリップラインが形成されていることが分かる。また、図12Bを参照すると、第1の変形例に係るコネクタ構造においては、隣接して配設されている信号ピンである「Data0」、「Data1」、「Data2」、「Data5」の信号ピン110、210のペアの間には、電界が集中し、いわゆる差動ストリップラインが形成されている様子が示されている。また、「Data3-」、「Data3+」、「Data4-」及び「Data4+」の信号ピン110、210では、信号ピン110、210とGND導体(シェル140)との間の基板内に電界が集中しており、シングルエンドの電界分布が形成されていることが分かる。従って、信号ピン110、210を流れる電流(信号)が、他の信号ピン110、210に及ぼす影響が抑えられていることが分かる。
 次に、図13A及び図13B並びに図14A-図14Eを参照して、一般的なTypeCのHDMIコネクタと、第1の変形例に係るコネクタとの、アイパターン及びクロストークに代表される信号伝送特性の違いについて説明する。
 図13A及び図13Bは、図8A-図8Cに示す、一般的なTypeCのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図13Aは、図7Bに示す「Data2」のラインについてのアイパターンを示しており、図13Bは、図7Bに示す「Data4」のラインについてのアイパターンを示している。
 また、図14A及び図14Bは、図9A-図9Cに示す、第1の変形例に係るコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図14Aは、図7Bに示す「Data2」のラインについてのアイパターンを示しており、図14Bは、図7Bに示す「Data4」のラインについてのアイパターンを示している。
 また、図14C及び図14Dは、図10に示す、第1の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図14Cは、図7Bに示す「Data2」のラインについてのアイパターンを示しており、図14Dは、図7Bに示す「Data4」のラインについてのアイパターンを示している。更に、図14Eは、図10に示す、第1の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるクロストーク特性を示す電圧特性図である。
 なお、図13A及び図13B並びに図14A-図14Eにおいて、「Data2」に対応するアイパターンは、図7Aに示す一般的なピン配置において既に存在するデータライン(既存のデータライン)の伝送特性を代表するものであり、「Data4」に対応するアイパターンは、図7Bに示す新たにデータラインが増加されたピン配置において新たに追加されるデータライン(新規のデータライン)の伝送特性を代表するものである。
 図13A及び図13Bと、図14A及び図14Bとを比較すると、既存のデータラインである「Data2」、新規のデータラインである「Data4」ともに、第1の変形例に係るコネクタ構造を有することで、信号の伝送特性が向上していることが分かる。すなわち、第1の変形例に係るコネクタ構造によって、信号の劣化が抑制されている。
 また、図14A及び図14Bと、図14C及び図14Dとを比較すると、既存のデータラインである「Data2」、新規のデータラインである「Data4」ともに、ガードライン150を設けることにより、信号の伝送特性が更に向上していることが分かる。すなわち、第1の変形例に係るコネクタ構造にガードライン150が更に設けられることによって、信号の劣化がより抑制される。また、図14Eを参照すると、第1の変形例に係るコネクタ構造において、良好なクロストーク特性が得られることが分かる。
 [3.3.第2の変形例]
 次に、本開示の第2の変形例に係るコネクタの構造について説明する。なお、第2の変形例に係るコネクタは、TypeDのHDMIコネクタに対してデータ伝送量を増加させつつ信号の劣化をより抑えるための構成を適用したものに対応している。
 上記説明したように、TypeDのHDMIコネクタは、図6A及び図6Bに示すピン配置を有する。ここで、一般的なTypeDのHDMIコネクタに、図6Bに示すような、新たにデータラインの数が増加されたピン配置を適用すると、上記[3.1.伝送データ量増加についての検討]で説明したTypeAのHDMIコネクタと同様、信号の劣化が生じる。一方、以下に説明する本開示の第2の変形例に係るコネクタ構造によれば、図6Bに示すような、新たにデータラインが増加されたピン配置に対しても、信号の劣化を抑えることが可能となる。
 以下の説明においては、第2の変形例に係るコネクタの構造について明確にするために、まず、(3.3.1.一般的なTypeDコネクタの構成)で、一般的なTypeDのHDMIコネクタの一構造例について説明する。次に、(3.3.2.第2の変形例に係るコネクタの構成)において、本開示の第2の変形例に係るコネクタの一構造例について説明するとともに、一般的なTypeDのHDMIコネクタとの構造の違いについて説明する。そして、(3.3.3.特性比較)において、両者の構造において伝送される信号の特性について比較することにより、第2の変形例に係るコネクタにおける、信号の劣化を抑制する効果について説明する。
 なお、図6A及び図6Bに示すように、TypeDのHDMIコネクタに対応するピン配置では、端子面において、信号ピンがx軸方向に沿って、z軸方向に2列に、千鳥状に並べられる。そして、図6A及び図6Bにおける上下方向において、上(z軸方向における上方向)の列に形成される信号ピンと、下(z軸方向における下方向)の列に形成される信号ピンとは、x軸における配設位置は異なるものの、その構造は上下対称になっている。従って、以下に示す図15A-図15C及び図16A-図16Cにおいては、z軸方向における下側の信号ピン(図6A及び図6Bにおいて下の列に形成される信号ピン)の構造について主に説明し、z軸方向における上側の信号ピン(図6A及び図6Bにおいて上の列に形成される信号ピン)については、下側の信号ピンの構造を折り返したものに対応するため、説明を省略する。
 (3.3.1.一般的なTypeDコネクタの構成)
 まず、図15A-図15Cを参照して、一般的なTypeDのHDMIコネクタの一構造例について説明する。図15Aは、一般的なTypeDのHDMIコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。図15Bは、一般的なTypeDのHDMIコネクタの、x軸とy軸とによって構成される断面において、図15AにおけるA-A断面に対応する断面図である。図15Cは、一般的なTypeDのHDMIコネクタの、x軸とz軸とによって構成される断面において、図15BにおけるC-C断面に対応する断面図である。なお、図15A-図15Cは、プラグ側コネクタとレセプタクル側コネクタとが嵌合している様子を示している。
 まず、プラグ側コネクタの構造について説明する。図15A-図15Cを参照すると、一般的なTypeDのHDMIコネクタのプラグ側コネクタ910は、信号ピン911、誘電体912及び外殻(シェル)913を備える。信号ピン911は、第1の方向、すなわちy軸方向に延設されており誘電体912にその一部が埋め込まれる。
 シェル913は、信号ピン911及び誘電体912を覆うように形成され、シェル913のy軸の正方向の一面は、外部に対して開放される開放面になっている。図15A-図15Cに示すように、プラグ側コネクタ910と、後述するレセプタクル側コネクタ920とは、シェル913の開放面を介して接続される。また、シェル913は、導電体によって形成され、その電位は、後述するレセプタクル側コネクタ920を介して、例えばグラウンド電位に固定される。
 更に、信号ピン911は、シェル913の開放面近傍の所定の領域が誘電体912からその先端部が露出されており、当該露出部は、所定の角度でz軸の正方向に折り曲げられる屈曲部を構成する。プラグ側コネクタ910と、後述するレセプタクル側コネクタ920とが嵌合される際に、信号ピン911の屈曲部が、後述するレセプタクル側コネクタ920の信号ピン921と接触することにより、プラグ側コネクタ910と、後述するレセプタクル側コネクタ920とが電気的に接続される。
 なお、z軸方向における上側の信号ピン921については、上述のように、下側の信号ピンと上下対称な構造を有するため、当該屈曲部は、所定の角度でz軸の負方向に折り曲げられて形成される。
 次に、レセプタクル側コネクタの構造について説明する。図15A-図15Cを参照すると、一般的なTypeDのHDMIコネクタのレセプタクル側コネクタ920は、信号ピン921、誘電体922及び外殻(シェル)923を備える。信号ピン921は、第1の方向、すなわちy軸方向に延設されており誘電体922にその一部が埋め込まれる。
 シェル923は、信号ピン921及び誘電体922を覆うように形成され、シェル923のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル923は、導電体によって形成され、その電位は、例えばグラウンド電位に固定される。
 また、シェル923の開放面の開口部の面積は、プラグ側コネクタ910のシェル913の開放面における断面積よりもわずかに大きく形成されている。そして、図15A-図15Cに示すように、プラグ側コネクタ910と、レセプタクル側コネクタ920とは、プラグ側コネクタ910のシェル913に開放面が設けられる一端が、レセプタクル側コネクタ920のシェル923の開放面の開口部に挿入されることによって、嵌合される。なお、図15A及び図15Bに破線で示す領域は、プラグ側コネクタ910とレセプタクル側コネクタ920との嵌合部Uを表している。
 更に、信号ピン921は、シェル923の開放面近傍の所定の領域において、誘電体922からその表面の一部領域が露出された露出部を有する。プラグ側コネクタ910と、レセプタクル側コネクタ920とが嵌合される際には、信号ピン921の露出部が、上述したプラグ側コネクタ910の信号ピン911の屈曲部と接触する。
 なお、上述したように、一般的なTypeDのコネクタにおいては、以上説明した信号ピン911、921、誘電体912、922と同様の構造が、シェル913、923の内部に、上下対称に、z軸方向における上側の信号ピン911、921、誘電体912、922として更に設けられる。
 以上、図15A-図15Cを参照して、一般的なTypeDのHDMIコネクタの構造について説明した。
 (3.3.2.第2の変形例に係るコネクタの構成)
 次に、図16A-図16Cを参照して、本開示の第2の変形例に係るコネクタの一構造例について説明する。図16Aは、本開示の第2の変形例に係るコネクタを、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す断面図である。図16Bは、第2の変形例に係るコネクタの、x軸とy軸とによって構成される断面において、図16AにおけるA-A断面に対応する断面図である。図16Cは、第2の変形例に係るコネクタの、x軸とz軸とによって構成される断面において、図16BにおけるC-C断面に対応する断面図である。
 まず、プラグ側コネクタの構造について説明する。図16A-図16Cを参照すると、第2の変形例に係るプラグ側コネクタ30は、信号ピン310、誘電体320、基板330及び外殻(シェル)340を備える。
 信号ピン310は、第1の方向、すなわちy軸方向に延設される。また、信号ピン310は、誘電体によって形成される基板330の表面上に、配線パターンとして形成される。
 シェル340は、信号ピン310及び基板330を覆うように形成され、シェル340のy軸の正方向の一面は、外部に対して開放される開放面になっている。図16A-図16Cに示すように、プラグ側コネクタ30と、後述するレセプタクル側コネクタ40とは、シェル340の開放面を介して接続される。また、シェル340は、導電体によって形成され、その電位は、後述するレセプタクル側コネクタ40を介して、例えばグラウンド電位に固定される。
 また、基板330の裏面、すなわち、信号ピン310が形成される面と逆側の面には、グラウンド電位を有する導電体層が形成される。図16A-図16Cを参照すると、本実施形態においては、シェル340の、基板330の裏面と対向する面が、他の面よりも肉厚に形成され、基板330の裏面と接している。つまり、基板330の裏面に形成される導電体層とシェル340とが一体的に形成されている。なお、本実施形態においては、基板330の裏面にグラウンド電位を有する導電体層が形成されればよく、導電体層の構造はかかる例に限定されない。つまり、シェル340の一面が肉厚化されなくてもよく、例えば、基板330の裏面に形成された導電体層と、シェル340とが、ビアホール等によって電気的に接続される構造であってもよい。
 更に、基板330上に形成された信号ピンの310の上部(z軸の正方向)には、誘電体320が積層されてもよい。ただし、誘電体320が形成される場合には、誘電体320は、信号ピン310の全面を覆うように形成されるのではなく、シェル340の開放面近傍の所定の領域において信号ピン310の表面の一部領域が露出するように形成される。プラグ側コネクタ30と、後述するレセプタクル側コネクタ40とが嵌合する際に、プラグ側コネクタ30の信号ピン310の当該露出部が、レセプタクル側コネクタ40の信号ピン410と接触することにより、プラグ側コネクタ30と、後述するレセプタクル側コネクタ40とが電気的に接続される。なお、信号ピン310の露出部の一部領域には、レセプタクル側コネクタ40の信号ピン410に向かって突出する接触部が設けられてもよい。そして、プラグ側コネクタ30の信号ピン310とレセプタクル側コネクタ40の信号ピン410とは、当該接触部を介して接触してもよい。
 次に、レセプタクル側コネクタの構造について説明する。図16A-図16Cを参照すると、第2の変形例に係るレセプタクル側コネクタ40は、信号ピン410、誘電体420、基板430及び外殻(シェル)440を備える。
 信号ピン410は、第1の方向、すなわちy軸方向に延設される。また、信号ピン410は、誘電体によって形成される基板430の表面上に、配線パターンとして形成される。
 シェル440は、信号ピン410及び基板430を覆うように形成され、シェル440のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル440は、導電体によって形成され、その電位は、例えばグラウンド電位に固定される。
 また、シェル440の開放面の開口部の面積は、プラグ側コネクタ30のシェル340の開放面における断面積よりもわずかに大きく形成されている。そして、図16A-図16Cに示すように、プラグ側コネクタ30と、レセプタクル側コネクタ40とは、プラグ側コネクタ30のシェル340に開放面が設けられる一端が、レセプタクル側コネクタ40のシェル440の開放面の開口部に挿入されることによって、嵌合される。なお、図16A及び図16Bに破線で示す領域は、プラグ側コネクタ30とレセプタクル側コネクタ40との嵌合部Vを表している。
 また、基板430の裏面、すなわち、信号ピン410が形成される面と逆側の面には、グラウンド電位を有する導電体層が形成される。図16A-図16Cを参照すると、本実施形態においては、シェル440の、基板430の裏面と対向する面が、他の面よりも肉厚に形成され、基板430の裏面と接している。つまり、基板430の裏面に形成される導電体層とシェル440とが一体的に形成されている。なお、本実施形態においては、基板430の裏面にグラウンド電位を有する導電体層が形成されればよく、導電体層の構造はかかる例に限定されない。つまり、シェル440の一面が肉厚化されなくてもよく、例えば、基板430の裏面に形成された導電体層と、シェル440とが、ビアホール等によって電気的に接続される構造であってもよい。
 更に、基板430上に形成された信号ピン410の上部(z軸の正方向)には、誘電体420が積層されてもよい。ただし、誘電体420が形成される場合には、誘電体420は、シェル440の開放面近傍の所定の領域において信号ピン410の表面の一部領域が露出するように形成される。レセプタクル側コネクタ40の信号ピン410の当該露出部が、プラグ側コネクタ30の信号ピン310の露出部及び/又は接触部と接触することにより、プラグ側コネクタ30と、レセプタクル側コネクタ40とが電気的に接続される。
 なお、上述したように、第2の変形例に係るコネクタにおいては、以上説明した信号ピン310、410、誘電体320、420、基板330、430及び導電体層と同様の構造が、シェル340、440の内部に、上下対称に、z軸方向における上側の信号ピン310、410、誘電体320、420、基板330、430及び導電体層として更に設けられる。つまり、第2の変形例に係るコネクタ構造は、上記説明した第1の変形例に係るコネクタ構造における信号ピン110、210、誘電体120、220、基板130、230及び導電体層の構造が、2組備えられた構造に対応する。
 また、図16Bを参照すると、プラグ側コネクタ30の信号ピン310及びレセプタクル側コネクタ40の信号ピン410は、信号ピン310、410のうち、差動信号が伝送され、隣接して延設される1対の信号ピン310、410の間隔が、隣接する他の信号ピン310、410との間隔よりも小さく形成されてよい。なお、信号ピン310、410の間隔は、嵌合部Vでは等しい間隔であってよく、信号ピン310、410のうち、差動信号が伝送され、隣接して延設される1対の信号ピン310、410の間隔が、隣接する他の信号ピン310、410との間隔よりも小さく形成されるのは、嵌合部V以外の領域であってよい。
 更に、嵌合部Vにおける信号ピン310、410の配線間隔は、図15A-図15Cに示す嵌合部Uにおける信号ピン911、921の配線間隔と同様であってもよい。つまり、第2の変形例に係るコネクタの信号ピンと、一般的なTypeDのHDMIコネクタの信号ピンとは、嵌合部においては同一の配線間隔を有していてよい。
 以上、図16A-図16Cを参照して説明したように、第2の変形例に係るコネクタの構造は、一般的なTypeDのコネクタの構造と比べて、以下の点で相違する。すなわち、第2の変形例に係るコネクタは、誘電体によって形成され、一方の面に信号ピン(信号ピンに対応する配線パターン)が、他側の面にグラウンド電位を有する導電体層が形成された基板を備える。また、第2の変形例に係るコネクタにおいては、信号ピンのうち、差動信号が伝送され、隣接して延設される1対の信号ピンの間隔が、隣接する他の信号ピンとの間隔よりも小さく形成される。第2の変形例に係るコネクタは、上述した第1の変形例に係るコネクタと同様、上記構成を有することにより、以下の効果を奏する。
 上記のように、第2の変形例に係るコネクタ30、40では、誘電体で形成される基板330、430上に信号ピン310、410が形成され、更に、基板330、430の信号ピン310、410が形成される面とは逆側の面に、グラウンド電位を有する導電体層が形成される。すなわち、第2の変形例に係るコネクタは、グラウンドプレーン(導電体層)、誘電体層(基板330、430)、配線(信号ピン310、410)が、順に積層される構成を有する。このような構成を有することにより、信号ピン310、410を流れる電流(信号)に起因する電磁界が、基板330、430に閉じ込められ、いわゆるマイクロストリップライン(マイクロストリップ構造)が形成される。よって、第2の変形例に係るコネクタにおいては、信号ピン310、410を流れる電流(信号)が、他の信号ピン310、410に及ぼす影響を抑えることができ、信号の劣化を抑えることができる。
 更に、上記のように、第2の変形例に係るコネクタ30、40においては、信号ピン310、410のうち、差動信号が伝送され、隣接して延設される1対の信号ピン310、410の間隔が、隣接する他の信号ピン310、410との間隔よりも小さく形成されてよい。対となる差動信号が伝送される1対の信号ピン310、410の間隔をより狭くすることにより、当該1対の信号ピン310、410を流れる電流(信号)に起因する電磁界が、当該1対の信号ピン310、410の間及び基板330、430に閉じ込められ、いわゆる差動ストリップライン(差動ストリップ構造)が形成される。なお、差動結合のリターンパスは配線面の裏面のグラウンドプレーンに確保される。従って、差動データライン間で結合が形成されるため、差動インピーダンスを維持したまま信号ピンの配線幅と配線間隔を縮小することが可能になる。つまり、隣接する異種信号配線との間隔を拡大することが可能となり、クロストークの低減と信号品質の向上が実現される。よって、第2の変形例に係るコネクタにおいては、対となる差動信号が伝送される信号ピン310、410を流れる電流(信号)が、他の信号ピン310、410に及ぼす影響を更に抑えることができ、信号の劣化をより抑えることができる。
 なお、第2の変形例に係るコネクタに、図6Bに示す新たにデータラインが増加されたピン配置が適用される場合、新たに追加された差動信号のペアのうち、「Data3+」と「Data3-」及び「Data4+」と「Data4-」の各信号が割り当てられる信号ピンは、それぞれの差動信号のペア同士が、隣り合う位置には配置されていない。従って、第2の変形例に係るコネクタにおいては、互いに隣り合う位置に形成される「Data0+」と「Data0-」、「Data1+」と「Data1-」、「Data2+」と「Data2-」及び「Data5+」と「Data5-」が印加される信号ピンについては、差動ストリップラインによって信号が伝送され、互いに隣り合う位置に形成されない「Data3+」と「Data3-」及び「Data4+」と「Data4-」が印加される信号ピンについては、シングルエンドのマイクロストリップラインによって信号が伝送されてよい。
 また、本開示の第2の変形例に係るコネクタは、以上説明したように、図6Bに示すような、新たにデータラインが増加されたピン配置において、その効果をより得ることができるが、図6Aに示す一般的なピン配置にも適用することができる。本開示の第2の変形例に係るコネクタが、図6Aに示す一般的なピン配置に適用される場合であっても、各信号ピンについてマイクロストリップライン又は差動ストリップラインが形成されることにより、信号ピン310、410を流れる電流(信号)が、他の信号ピン310、410に及ぼす影響を抑えることができ、信号の劣化を抑えることができる。
 なお、本開示の第2の変形例に係るコネクタにおいては、図16Bを参照して説明したように、嵌合部Vにおける信号ピン310、410の間隔は、一般的なTypeDのHDMIコネクタの嵌合部Uにおける信号ピン911、921の間隔と同一であってよい。このような構成を有することにより、第2の変形例に係るコネクタと一般的なTypeDのHDMIコネクタとの互換性が保証される。つまり、第2の変形例に係るコネクタと、一般的なTypeDのHDMIコネクタとを嵌合する際に、HDMI規格によって定められた所定の信号ピン同士が電気的に接続される。従って、図6Aに示す一般的なピン配置に対応する信号の伝送が行われる場合であっても、第2の変形例に係るコネクタを適用することが可能となる。
 ここで、本開示の第2の変形例に係るコネクタにおいては、第1の変形例に係るコネクタの変形例と同様、グラウンド電位を有するガードラインが、信号ピンを挟む位置に、信号ピンと略平行に更に延設されてもよい。更に、当該ガードラインは、シングルエンドによって信号を伝送する信号ピンを挟むように配設されてもよい。なお、上述のように、図16A-図16Cに示す第2の変形例に係るコネクタは、図9A-図9Cに示す第1の変形例に係るコネクタ構造における信号ピン、基板及び導電体層の構造が、2組備えられた構造に対応する。従って、第2の変形例に係るコネクタにおいて、ガードラインが設置された場合の基板上の信号ピン(配線パターン)の構成は、第1の変形例に係るコネクタと同様である。つまり、第2の変形例に係るコネクタにおいては、図10に示すように、プラグ側コネクタ及びレセプタクル側コネクタの双方において、シングルエンドによって信号を伝送する信号ピンを挟むように、ガードラインが配設されてよい。また、ガードラインの電位はグラウンド電位に設定されている。ガードラインが設けられることにより、信号ピン310、410を流れる電流(信号)が、他の信号ピン310、410に及ぼす影響を更に抑えることができ、信号の劣化をより抑えることができる。
 以上、第2の変形例に係るコネクタが有する効果について説明した。以上説明したように、コネクタ内に、信号ピン、基板及び導電体層の構造(マイクロストリップ構造)が複数組備えられる構成においても、第1の変形例と同様の効果を得ることができる。
 (3.3.3.特性比較)
 次に、図15A-図15Cに示す一般的なTypeDのHDMIコネクタ構造と、図16A-図16Cに示す本開示の第2の変形例に係るコネクタ構造とにおいて、信号ピンに流れる信号の特性を比較した結果について説明する。なお、以下に示す、図17A及び図17B、図18A及び図18B、図19A及び図19B、並びに図20A-図20Cは、図6Bに示す、新たにデータラインが増加されたピン配置に対応する信号を流した場合の結果を示している。
 まず、図17A及び図17B並びに図18A及び図18Bを参照して、一般的なTypeDのHDMIコネクタと、第2の変形例に係るコネクタとの、信号ピン近傍の電界分布の違いについて説明する。
 図17A及び図17B並びに図18A及び図18Bは、コネクタに、HDMI規格によって定められる映像信号伝送時の所定の信号を印加した場合の、信号ピン近傍の電界分布の様子を示している。図17A及び図17Bは、一般的なTypeDのHDMIコネクタ構造における電界分布の様子を示す等電界線図である。また、図18A及び図18Bは、第2の変形例に係るコネクタ構造における電界分布の様子を示す等電界線図である。なお、図17A及び図17B並びに図18A及び図18Bにおいては、電界分布の強さを、ハッチングの濃淡で模式的に示しており、ハッチングが濃い領域ほど、電界が集中している様子を示している。
 図17Aは、一般的なTypeDのHDMIコネクタ構造における、図15Aに対応する断面における等電界線図であり、図17Bは、図17Aに示すD-D断面における等電界線図である。
 図18Aは、第2の変形例に係るコネクタ構造における、図16Aに対応する断面における等電界線図であり、図18Bは、図18Aに示すD-D断面における等電界線図である。ただし、図18A及び図18Bに示す等電界線図は、第2の変形例に係るコネクタ構造において、図10に示すガードラインを更に備える構造について、電界分布を求めたものである。
 また、図17A及び図17B並びに図18A及び図18Bに示す等電界線図は、上記の各断面における各領域(信号ピン、基板、外殻、誘電体等)に対応する誘電率を設定したモデルを作成し、HDMI規格によって定められる映像信号伝送時の所定の信号を印加した場合の、信号ピン近傍の電界分布の様子をシミュレーションした結果を示している。
 図17Aを参照すると、一般的なTypeDのHDMIコネクタ構造においては、信号ピン310、410の表面(y軸方向に延伸する面のうち、z軸の正方向に位置する面)と裏面(y軸方向に延伸する面のうち、z軸の負方向に位置する面)とで電界分布にほとんど差がないことが分かる。また、図17Bを参照すると、一般的なTypeDのHDMIコネクタ構造においては、例えば領域H(「Data1+」、「Data1-」、「Data4+」に跨る領域)や領域I(「Data4-」近傍の領域)に示すように、差動信号のペア以外の領域にも電界が集中しており、信号ピン310を流れる電流(信号)が、他の信号ピン310に影響を及ぼしてしまっていることが分かる。
 一方、図18Aを参照すると、第2の変形例に係るコネクタ構造においては、信号ピン310、410とシェル340、440との間、すなわち、基板330、430に電界が集中しており、いわゆるマイクロストリップラインが形成されていることが分かる。また、図18Bを参照すると、第2の変形例に係るコネクタ構造においては、隣接して配設されている「Data1」の信号ピン310、410の作動信号のペアの間に電界が集中し、いわゆる差動ストリップラインが形成されている様子が示されている。また、「Data4-」及び「Data4+」の信号ピン310、410では、信号ピン310、410とシェル340、440との間、すなわち、基板330、430に電界が集中しており、シングルエンドの電界分布が形成されていることが分かる。従って、信号ピン310、410を流れる電流(信号)が、他の信号ピン310、410に及ぼす影響が抑えられていることが分かる。
 次に、図19A及び図19B並びに図20A-図20Cを参照して、一般的なTypeDのHDMIコネクタと、第2の変形例に係るコネクタとの、アイパターン及びクロストークに代表される信号伝送特性の違いについて説明する。
 図19A及び図19Bは、図15A-図15Cに示す、一般的なTypeDのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図19Aは、図6Bに示す「Data1」のラインについてのアイパターンを示しており、図19Bは、図6Bに示す「Data4」のラインについてのアイパターンを示している。
 また、図20A及び図20Bは、例えば図10に示す、第2の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図20Aは、図6Bに示す「Data1」のラインについてのアイパターンを示しており、図20Bは、図6Bに示す「Data4」のラインについてのアイパターンを示している。更に、図20Cは、例えば図10に示す、第2の変形例に係るコネクタ構造にガードラインが更に配置されたコネクタ構造におけるクロストークを示す電圧特性図である。
 なお、図19A及び図19B並びに図20A-図20Cにおいて、「Data1」に対応するアイパターンは、図6Aに示す一般的なピン配置において既に存在するデータライン(既存のデータライン)の伝送特性を代表するものであり、「Data4」に対応するアイパターンは、図6Bに示す新たにデータラインが増加されたピン配置において新たに追加されるデータライン(新規のデータライン)の伝送特性を代表するものである。
 図19A及び図19Bと、図20A及び図20Bとを比較すると、既存のデータラインである「Data1」、新規のデータラインである「Data4」ともに、第2の変形例に係るコネクタ構造を有することで、信号の伝送特性が向上していることが分かる。すなわち、第2の変形例に係るコネクタ構造によって、信号の劣化が抑制される。また、図20Cを参照すると、第2の変形例に係るコネクタ構造において、良好なクロストーク特性が得られることが分かる。
 [3.4.第1及び第2の変形例の更なる変形例]
 次に、本開示の第1及び第2の変形例に係るコネクタにおける、更なる変形例について説明する。
 (3.4.1.信号ピンの断面積の拡張)
 まず、信号ピンの断面積が拡張された変形例について、図21A-図21Dを参照して説明する。なお、図21A-図21Dを参照する以下の説明においては、TypeCのHDMIコネクタに対応する構成である第1の変形例に係るコネクタの構成を例に挙げて説明を行うが、信号ピンの断面積が拡張された本変形例は、他の構成を有するコネクタに対しても適用可能である。つまり、本項(3.4.1.信号ピンの断面積の拡張)で示す変形例は、上記<2.第1の実施形態>で説明した本開示の第1の実施形態に係る構成、上記[3.2.第1の変形例]及び[3.3.第2の変形例]で説明した本開示の第1及び第2の変形例に係る構成、並びに、下記<4.第2の実施形態>で後述する本開示の第2の実施形態に係る構成の、いずれの構成に対しても適用可能である。
 図21Aは、本開示の一変形例である、信号ピンの断面積が拡張された変形例における、関係する信号のピン配置の一例を示す概略図である。ただし、図21Aにおいては、本変形例について説明するために必要な、コネクタの端子面において最端部及びその近隣に配置される信号ピンのみを図示し、その他の信号ピンについては図示を省略している。また、図21Aは、プラグ側コネクタの端子面を示している。
 図21Aを参照すると、例えば端子面において最端部に位置するHPD信号ピンの配線幅が、他の信号ピン991の配線幅よりも広く形成されている。このように、端子面において最端部に配置される信号ピン991においては、x軸の正方向に外殻(シェル)993に向かって配線幅を拡張することにより、信号ピン991同士の配線間隔を変更することなく、その配線幅を拡張することができる。
 なお、上述したように、図21Aでは、TypeCのHDMIコネクタに対応する第1の変形例に係る構成を例に挙げて説明しているため、信号ピンはx軸方向に1列に並べられている。従って、図21Aでは、端子面において最端部に位置し、配線幅が拡張され得る信号ピンとしてHPD信号ピンを示している。一方、他の種類のコネクタであれば端子面において最端部に位置し、その断面積が拡張される信号ピンは、どのような種類の信号が印加される信号ピンであってもよい。例えば、TypeA、TypeD及びTypeEのHDMIコネクタであれば、信号ピンはx軸方向に2列に、千鳥状に並べられるため、HPD信号ピンに加えて、電源用信号ピン(+5V Powerピン)も、その断面積が拡張されてよい。
 また、図21Bは、図21Aに示すコネクタの、y軸とz軸とによって構成される断面であり、かつ、信号ピンを通る断面で切断した場合の一構造例を示す概略図である。更に、図21Cは、図21Aに示すコネクタの、x軸とy軸とによって構成される断面において、図21BにおけるA-A断面に対応する概略図である。なお、図21B及び図21Cは、第1の変形例について説明した図16A及び図16Bに対応する図であるため、図16A及び図16Bにおいて既に説明した構成については、詳細な説明を省略する。ただし、図21B及び図21Cにおいては、本変形例についての説明を簡略なものとするために、コネクタの各構成部材を模式的に示している。
 また、図21B及び図21Cにおいては、説明を簡略化するために、プラグ側コネクタ及びレセプタクル側コネクタの外殻は図示を省略している。また、図21Cにおいては、説明を簡単にするために、コネクタ内において端部に位置し断面積が拡張される信号ピン及びその近隣に配置される信号ピンのみを図示し、その他の信号ピンについては図示を省略する。
 図21B及び図21Cを参照すると、プラグ側コネクタ10及びレセプタクル側コネクタ20において、HPD信号が印加される信号ピン110、210の断面積が拡張されている。また、信号ピン110、210の断面積が拡張される方向は、図21A及び図21Cに示すように、x軸の正方向に外殻に向かって拡張されてもよいし、図21Bに示すように、z軸方向に拡張されてもよい。
 ただし、図21Bに示すように、プラグ側コネクタ10とレセプタクル側コネクタ20とを嵌合させた際に、プラグ側コネクタ10の信号ピン110とレセプタクル側コネクタ20の信号ピン210との接触を保つために、嵌合部においては、信号ピン110、210のz軸方向の幅(高さ)は変更されない。なお、嵌合部において信号ピン110、210のz軸方向の幅(高さ)が変更されないことにより、本変形例を施したコネクタと、本変形例を施さないコネクタとの間における接続も保証される。
 また、図21Bを参照すると、プラグ側コネクタ10の信号ピン110は、y軸の負方向に延伸され、ケーブル内の配線に接続される。また、レセプタクル側コネクタ20の信号ピン210は、y軸の正方向に延伸され、受信装置又は送信装置内で装置内の所定の基板に接続される。
 つまり、本変形例においては、プラグ側コネクタ10において、信号ピン110の断面積が拡張され、ケーブル内の配線に直接接続される。また、レセプタクル側コネクタ20において、信号ピン210の断面積が拡張され、装置内の基板に直接接続される。
 以上説明したように、本変形例においては、信号ピン110の断面積が拡張されることにより、当該信号ピンにより大きな電流を、減衰をより抑えながら流すことが可能となり、コネクタの信頼性が向上する。ここで、HPD信号ピン及び電源用信号ピンは、+5Vの電源電圧が印加される電源電圧印加ピンである。このように、本変形例は、HPD信号ピン及び/又は電源用信号ピンに代表される、比較的高電圧が印加される電源電圧印加ピンに適用されることにより、その効果をより得ることができる。
 また、下記[3.5.適用例]で後述するように、HDMIコネクタを介して接続される装置間においては、その信号ピンを利用して互いに電源を供給する機能を有することができる。本変形例は、このような装置間の電源供給において電源供給路となる信号ピンに好適に適用することができる。
 更に、本変形例においては、プラグ側コネクタとレセプタクル側コネクタとの嵌合部以外の領域のみ、信号ピンの断面積が拡張されてもよい。プラグ側コネクタとレセプタクル側コネクタとの嵌合部以外の領域のみ、信号ピンの配線幅が拡張される場合の変形例を、図21Dに示す。図21Dは、図21Cに対応するコネクタの、嵌合部以外の領域のみ、信号ピンの断面積が拡張される変形例を示す概略図である。
 図21Dを参照すると、嵌合部においては、プラグ側コネクタ10の信号ピン110及びレセプタクル側コネクタ20の信号ピン210の断面積が、x軸方向にも変更されない。つまり、嵌合部においては、当該コネクタが属する規格に沿った信号ピンの寸法及び形状が確保されており、同じ規格に準じる一般的なコネクタとの接続が保証される。
 (3.4.2.基板上へのデバイスの実装)
 本開示の第1の変形例及び本開示の第2の変形例に係るコネクタは、図9A-図9C及び図16A-図16Cに示すように、コネクタ内に基板130、230、330、430を有する。上述したように、基板130、230、330、430の表面には、信号ピン110、210、310、410が形成されるが、信号ピン110、210、310、410が形成されない空き領域も存在する。本開示の第1の変形例及び本開示の第2の変形例に係るコネクタにおいては、基板130、230、330、430の表面におけるこの空き領域に、信号ピンにおける信号の伝送に作用する各種のデバイス(回路)が実装されてもよい。なお、本項(3.4.2.基板上へのデバイスの実装)で示す変形例は、コネクタ内に基板を有する構成であればあらゆる構成に適用可能である。
 基板上に各種のデバイスが実装される変形例について、図22及び図23A-図23Cを参照して説明する。なお、図22及び図23A-Cを参照する以下の説明においては、本開示の第1の変形例に係るコネクタを例に挙げて説明を行う。ただし、本変形例は、本開示の第2の変形例に係るコネクタ、及び、後述する本開示の第2の実施形態に係るコネクタに対しても適用することが可能である。
 図22に、本開示の第1の変形例に係るコネクタにおいて、基板の表面の空き領域に、各種のデバイス(回路)が実装される様子を示す。図22は、本開示の一変形例である、基板上にデバイスが設けられる変形例の一構成例を示す概略図である。
 図22に示すように、プラグ側コネクタ10の基板130には、その表面のうち信号ピン110が形成されない領域(空き領域)に、信号ピン110における信号の伝送に作用するデバイス160が搭載されてよい。また、図示は省略するが、レセプタクル側コネクタ20の基板230には、その表面のうち信号ピン210が形成されない領域(空き領域)に、信号ピン210における信号の伝送に作用するデバイスが搭載されてよい。
 以下では、本変形例において基板130、230の空き領域に設けられるデバイスの具体的な構成例について、図23A-図23Cを参照して説明する。
 例えば、基板130、230の表面の空き領域には、信号ピンによって伝送される信号のAC伝送とDC伝送とを変換するAC/DC変換回路が設けられてもよい。このようなAC/DC変換回路の回路構成の一例を図23Aに示す。図23Aは、図22に示す変形例に係るデバイスの具体例である、AC/DC変換回路の回路構成の一例を示す概略図である。
 図23Aを参照すると、例えばAC結合伝送を行うデータ送信装置510と、DC結合伝送を行うデータ受信装置520とが、ケーブル530を介して接続されている。データ送信装置510は、差動ドライバ511及びDC成分除去フィルタ(キャパシタ)512を有し、差動ドライバ511によって発生させた所定のDC信号を、DC成分除去フィルタ512を介して、接続相手であるデータ受信装置520に送信することができる。
 データ受信装置520は、差動レシーバー521及びDCバイアス用プルアップ抵抗522を有し、データ受信装置520から送信されたDC信号を受信することができる。
 ここで、データ送信装置510とケーブル530との間には、コネクタ10、20が設けられており、更に、コネクタ10、20の基板130、230の空き領域には、コモンモード電圧生成用抵抗531及びスイッチ532が設けられる。
 コモンモード電圧生成用抵抗531は、AC結合伝送によって、受信装置のDCバイアス用プルアップ抵抗522によって印加されるバイアス電圧に生じるコモンコード成分を除去するための電圧シフト抵抗である。スイッチ532は、信号伝送が行われていない間、コモンモード電圧生成用抵抗531を、出力電圧を0レベルへ落とす終端抵抗として動作させるためのものである。
 このように、コネクタ10、20の基板130、230の空き領域に、レベルシフト抵抗等の回路を設けることにより、ケーブル内において、DC結合インターフェースに対して、AC結合伝送を行うための互換性を確保する機能を実現し、送信装置及び受信装置でのモード変換の必要性を除去し、送信装置と受信装置との接続を容易にする。
 また、例えば、基板130、230の表面の空き領域には、信号ピンによって伝送される信号の特性に関する情報を保持するレジスタ、及び、前記レジスタによって保持される情報を前記コネクタを介して接続される任意の装置に通知するための通信回路が設けられてもよい。このようなレジスタ及び通信回路の構成の一例を図23Bに示す。図23Bは、図22に示す変形例に係るデバイスの具体例である、レジスタ及び通信回路の構成の一例を示す概略図である。
 図23Bを参照すると、基板130、230の表面の空き領域には、ケイパビリティレジスタ570及び通信回路580が設けられてもよい。ケイパビリティレジスタ570は、信号ピン110、210によって伝送される信号の特性に関する情報を保持する。信号ピン110、210によって伝送される信号の特性に関する情報とは、例えば、当該信号の帯域に関する情報であってよい。つまり、ケイパビリティレジスタ570は、自身が搭載されているコネクタ(ケーブル)の能力、特性に関する情報を保持することができる。
 また、通信回路580は、ケイパビリティレジスタ570が保持している信号の特性に関する情報を、信号ピン110、210を介して、接続相手である装置に通知することができる。通信回路580は、例えばI2C回路であってよい。ただし、通信回路580の種類は特に限定されず、他の公知のあらゆる通信回路が用いられてよい。
 このように、コネクタ内にレジスタ及び通信回路が設けられることにより、レジスタに保持されているコネクタ(ケーブル)の能力、特性に関する情報を、通信回路によって接続相手の装置に通知することができる。従って、当該コネクタを介して接続される装置間において、ケーブルの特性に合わせてデータの伝送方式を決定することが可能となり、より伝送劣化の少ない、より確実なデータの伝送が実現される。
 また、ケイパビリティレジスタ570は、自身が搭載されているコネクタ(ケーブル)についての認証用データを更に保持してもよい。当該認証用データを利用することにより、当該コネクタを介して接続される装置間において、当該コネクタ及びケーブルが、正規品であるかどうかを判断することができる。
 更に、基板130、230の表面の空き領域には、メモリが更に実装されてよい。そして、当該メモリに、データ伝送における各種の情報が一時的に記憶されてもよい。コネクタにメモリが搭載されることにより、当該コネクタを介して接続される装置間において、当該メモリに記憶された情報を利用した一時的な通信が可能となる。
 また例えば、基板130、230の表面の空き領域には、電源用信号を供給するバッテリが設けられてもよい。このようなバッテリの構成の一例を図23Cに示す。図23Cは、図22に示す変形例に係るデバイスの具体例である、バッテリの構成の一例を示す概略図である。
 図23Cに示すように、基板130、230の表面の空き領域にバッテリ590が実装され、バッテリ590から信号ピン110、210の少なくともいずれかに、電源電圧に相当する電圧が供給されてもよい。基板130、230の表面の空き領域にバッテリ590が実装され、バッテリ590から電源が供給されることにより、例えば、バッテリ590が搭載されたコネクタを介して接続される装置において、何らかのトラブルにより当該装置からの電源供給が途絶えた場合に、最小限の機能のみを実行させることができる。
 また、バッテリ590は充電可能な二次電池であってもよい。バッテリ590が二次電池である場合、バッテリ590が搭載されたコネクタを介して接続される装置からの電源供給によって、バッテリ590が充電されてもよい。
 なお、基板130、230の表面の空き領域には、コネクタ(ケーブル)の特性に合わせた等価器が設けられてもよい。基板130、230の表面の空き領域に等価器が設けられることにより、より安定したデータ伝送が実現される。
 以上、本開示の一変形例である、基板上に各種のデバイスが実装される変形例について説明した。基板の空き領域に各種のデバイスが実装されることにより、コネクタ自体が各種の信号処理を行うことが可能となるため、当該コネクタによって接続される送信装置及び受信装置における信号処理を簡略化することができる。
 なお、上記で説明したデバイスは、基板上に実装されるデバイスの一例であり、本変形例はかかる例に限定されない。コネクタ内の基板上に設けられるデバイス160としては、任意のデバイスが実装されてよい。
 [3.5.適用例]
 次に、本開示の第1及び第2の変形例に係るコネクタの、データ受信装置及び/又はデータ送信装置への適用例について説明する。なお、以下に説明する適用例に対しては、本開示の第1及び第2の変形例に係るコネクタだけでなく、本開示の第1の実施形態に係るコネクタ及び後述する本開示の第2の実施形態に係るコネクタを適用することも可能である。
 HDMIインターフェースを用いた装置間の通信においては、様々なアプリケーションが考案されている。上記<2.第1の実施形態>で説明した本開示の第1の実施形態に係るコネクタ、上記[3.2.第1の変形例]及び[3.3.第2の変形例]で説明した本開示の第1及び第2の変形例に係るコネクタ、及び、下記<4.第2の実施形態>で後述する本開示の第2の実施形態に係るコネクタは、HDMIインターフェースを用いた装置間の通信における各種のアプリケーションに好適に適用することができる。以下では、HDMIインターフェースを用いた装置間の通信におけるアプリケーションの一例として、「CEC制御」及び「電源供給制御」を例に挙げて説明を行う。なお、本開示の第1及び第2の実施形態並びに第1及び第2の変形例に係るコネクタは、かかる適用例に限定されず、HDMIインターフェースを用いた装置間の通信における他のあらゆるアプリケーションに適用することができる。
 (3.5.1.CEC制御)
 まず、CEC制御について説明する。HDMI規格の伝送ラインには、ソース機器とシンク機器間での制御にはCEC(Consumer Electronics Control)ラインと称される、双方向に制御データの伝送が可能なラインが、映像データの伝送ラインとは別に用意されている。このCECラインを使って相手の機器を制御することが可能である。また、CEC制御実行時に、HDMIケーブルのCECのラインを用いた制御が実行できるかどうかを、DDCのラインを使用した接続認証時の処理に基づいて機器内で自動的に行うことができる。
 以下のCEC制御についての説明では、具体例として、ソース機器がディスクレコーダであり、シンク機器がテレビジョン受像機である場合について説明する。また、当該ディスクレコーダ及び当該テレビジョン受像機は、レセプタクル側コネクタとして、本開示の第1の実施形態、後述する第2の実施形態、第1の変形例及び第2の変形例に係るコネクタのいずれかを備えるものとする。更に、当該ディスクレコーダ及び当該テレビジョン受像機を接続するHDMIケーブルは、プラグ側コネクタとして、本開示の第1の変形例及び第2の変形例に係るコネクタ並びに一般的なHDMIコネクタのいずれかを備えるものとする。ただし、プラグ側コネクタとレセプタクル側コネクタにおけるピン配置は、図6A及び図7Aに示す一般的なピン配置か、図6B及び図7Bに示すデータラインが増加されたピン配置かのいずれかに統一されているものとする。
 まず、図24を参照して、ディスクレコーダ60とテレビジョン受像機70との間で、HDMIケーブル65によって伝送される各チャンネルのデータ構成例について説明する。HDMI規格では、映像データを伝送するチャンネルとして、チャンネル0(Data0)と、チャンネル1(Data1)と、チャンネル2(Data2)の3つのチャンネルが用意されており、さらにピクセルクロックを伝送するクロックチャンネル(clock)が用意されている。また、電源の伝送ラインと、制御データ伝送チャンネルとしての、DDC及びCECが用意してある。DDC(Display Data Channel)は、主として表示制御のためのデータチャンネルであり、CEC(Consumer Electronics Control)は、主としてケーブルで接続された相手の機器を制御するための制御データを伝送するためのデータチャンネルである。
 各チャンネルの構成について説明すると、チャンネル0は、Bデータ(青色データ)のピクセルデータと、垂直同期データと水平同期データと補助データとを伝送する。チャンネル1は、Gデータ(緑色データ)のピクセルデータと、2種類の制御データ(CTL0、CTL1)と、補助データとを伝送する。チャンネル2は、Rデータ(赤色データ)のピクセルデータと、2種類の制御データ(CTL2、CTL3)と、補助データとを伝送する。なお、HDMI方式の規格上では、青色データ、緑色データ赤色データの代わりに、シアン、マゼンタ、黄の減法混色の原色データを伝送することも可能である。
 制御データ伝送チャンネルとしてのCECについては、映像データを伝送するチャンネル(チャンネル0、1、2)よりも低いクロック周波数でデータ伝送が、双方向に行われるチャンネルである。
 CEC以外のチャンネル(チャンネル0,チャンネル1,チャンネル2,クロックチャンネル,DDC)で伝送されるデータ構成については、既に実用化されているHDMI方式で伝送されるデータ構成と同じであってもよいし、図6B及び図7Bに示すようにデータラインが増加されたピン配置に対応するデータ構成であってもよい。
 また、ソース機器60とシンク機器70は、データ伝送を行うためのHDMI伝送部610、710、及び、E-EDID情報(Enhanced Extended Display Identification Data)を記憶する記憶部としてのEDID ROM610a、710aを備える。このEDID ROM610a、710aに記憶されるE-EDID情報は、機器が扱う(即ち表示可能な、又は記録再生可能な)映像データのフォーマットなどを記載した情報である。但し本例の場合には、このE-EDID情報を拡張して、機器の詳細に関する情報、具体的には制御機能対応情報を記憶させるようにしてある。本例の場合には、HDMIケーブル65での接続を検出した場合に、相手の機器のEDID ROM610a又は710aの記憶情報を読み出して、E-EDID情報の照合を行う。
 なお、ソース機器60及びシンク機器70は、ソース機器60全体及びシンク機器70全体の動作制御を行う制御部であるCPU620、720を備える。更に、ソース機器60及びシンク機器70は、CPU620、720によって実行されるプログラムや、CPU620、720によって処理される各種の情報が一時的に格納されるメモリ630、730を備える。HDMIケーブル65のDDCライン及びCECラインによって伝送されるデータは、CPU620、720による制御により送受信される。
 次に、ソース機器とシンク機器とを接続させた場合のCEC制御のシーケンス例を、図25に示す。ここでは、CEC規格でのオプション機能である「レコード TV スクリーン(Record TV Screen)」を使って説明する。
 ユーザの操作により、HDMIケーブル65で接続されたソース機器であるディスクレコーダに、テレビジョン受像機の画面と同じチャンネルの番組録画実行のコンテンツの指示が行われると(ステップS1)、ソース機器はシンク機器に対し、「Record TV Screen」のコマンドをCECラインで伝送して、要求する(ステップS2)。
 シンク機器は、ステップS2の要求に応じて、現在表示中のデジタル放送番組のサービス情報の返答を行う(ステップS3)。もしくは、シンク機器が表示中の番組が、HDMIケーブル65を経由してソース機器から入力されている場合には、ソース機器が映像源である旨の情報の返答を行う(ステップS4)。ソース機器は、ステップS3又はS4の返答に応じて、録画実施におけるステータスの返送(ステップS5)、もしくはこの機能を実施できないメッセージの返送(ステップS6)を、シンク機器に対して行う。なお、ステップS1のユーザ操作は、シンク機器(テレビジョン受像機)に対して行うようにしてもよい。
 次に、HDMIケーブル65で機器接続を行った際の処理例を、図26のフローチャートを参照して説明する。
 図26は、HDMIケーブル65で接続された機器が検出された場合の、それぞれの機器のCEC対応確認処理手順を示す。本例の場合には、この確認処理は、ソース機器とシン
ク機器の双方で行われる。
 図26のフローチャートの処理について説明すると、HDMI規格で決められた機能として、ホットプラグディテクト(Hot Plug Detect)と称される機能がある。これは、ソース機器が、シンク機器内でソース機器から送られる+5V電源にプルアップされたHPD端子の電圧を観測し、HDMIコネクタにソース機器が接続されるとその電圧が「H」電圧となることを利用して、ソース機器とシンク機器との接続を検出する機能である。
 この機能を利用して、HDMIケーブル65で機器接続があるか否か判断し(ステップS11)、機器接続を検出できない場合は本処理を終了する。機器接続が検出された場合は、相手機器のEDID ROMに記憶されたE-EDIDデータを、DDCのラインを使って読み出す(ステップS12)。そして、読み出されたデータと、自らの機器に保存しているE-EDIDデータベースとを比較する(ステップS13)。
 当該比較によって、相手機器のデータがあるかどうかを判断する(ステップS14)。データが無い場合は、新たに接続された機器と判断し、新たに読み出したE-EDIDデータを、データベースに登録する(ステップS17)。データが存在する場合は、引き続きデータが一致するかどうかを判断する(ステップS15)。ここで一致した場合は、相手機器のCEC対応が変化していないと判断し、本処理を終了する。異なる場合は、読み出したデータを記憶したデータベースに、新たなデータを上書きし更新し(ステップS16)、本処理を終了する。この様にして、接続された機器のE-EDIDデータをそれぞれが読み出すことで、最新のCEC対応の状況を知ることができる。
 以上、図24-図26を参照して、HDMIインターフェースを用いた装置間の通信におけるCEC制御の一例について説明した。上記のソース機器60、シンク機器70及びHDMIケーブル65のコネクタに、本開示の第1の実施形態、後述する第2の実施形態、第1の変形例又は第2の変形例に係るコネクタを用いることにより、より高速、より大量のデータ伝送が行われる場合であっても、信号の劣化を抑えることが可能となるため、より信頼性の高いCEC制御を行うことが可能となる。
 なお、上記説明したようなCEC制御の詳細については、例えば特許第4182997号公報を参照することができる。
 (3.5.2.電源供給制御)
 次に、電源供給制御について説明する。HDMI規格では、HDMIコネクタによって接続された機器に対して電源を供給できるように、その電源電圧と電流が規定されている。例えば、HDMI規格では、ソース機器からシンク機器に対して、+5Vの電源を、最小55mA、最大500mAだけ供給できることになっている。また、HDMIコネクタによって接続された受信装置と送信装置について、電源供給を要求する要求情報を送信装置から受信装置に送信し、この要求情報の送信に伴って、受信装置からHDMIケーブルを介して送信装置の内部回路に電源を供給することが可能である。
 なお、以下の電源供給についての説明では、ソース機器及びシンク機器は、レセプタクル側コネクタとして、本開示の第1の実施形態、後述する第2の実施形態、第1の変形例及び第2の変形例に係るコネクタのいずれかを備えるものとする。更に、当該ソース機器及び当該シンク機器を接続するHDMIケーブルは、プラグ側コネクタとして、本開示の第1の変形例及び第2の変形例に係るコネクタ並びに一般的なHDMIコネクタのいずれかを備えるものとする。ただし、プラグ側コネクタとレセプタクル側コネクタにおけるピン配置は、図6A及び図7Aに示す一般的なピン配置か、図6B及び図7Bに示すデータラインが増加されたピン配置かのいずれかに統一されているものとする。
 以下、図27及び図28を参照して、電源供給制御の実施の形態について説明する。図27は、実施の形態としての通信システムの構成例を示している。
 当該通信システムは、ソース機器80と、シンク機器90とを有している。ソース機器80及びシンク機器90は、HDMIケーブル500を介して接続されている。例えば、ソース機器80は、撮像部および記録部の図示は省略しているが、デジタルカメラレコーダ、デジタルスチルカメラ等のバッテリ駆動のモバイル機器であり、シンク機器90は十分な電源回路を持つテレビ受信機である。
 ソース機器80は、制御部851と、再生部852と、HDMI送信部(HDMIソース)853と、電源回路854と、切換回路855と、HDMIコネクタ856とを有している。制御部851は、再生部852、HDMI送信部853及び切換回路855の動作を制御する。再生部852は、図示しない記録媒体から、所定のコンテンツの、ベースバンドの画像データ(非圧縮の映像信号)、及びこの画像データに付随する音声データ(音声信号)を再生し、HDMI送信部853に供給する。再生部852における再生コンテンツの選択は、ユーザの操作に基づき、制御部851によって制御される。
 HDMI送信部(HDMIソース)853は、HDMIに準拠した通信により、再生部852から供給されるベースバンドの画像と音声のデータを、HDMIコネクタ856からHDMIケーブル500を介して、シンク機器90に、一方向に送信する。
 電源回路854は、ソース機器80の内部回路及びシンク機器90に供給する電源を発生する。この電源回路854は、例えば、バッテリから電源を発生するバッテリ回路である。切換回路855は、電源回路854で発生される電源を内部回路及びシンク機器90に選択的に供給し、また、シンク機器90から供給される電源を、選択的に、内部回路に供給する。この切換回路855は、電源供給部及び電源切換部を構成している。
 シンク機器90は、HDMIコネクタ951と、制御部952と、記憶部953と、HDMI受信部(HDMIシンク)954と、表示部955と、電源回路956と、切換回路957とを有している。制御部952は、HDMI受信部954、表示部955、電源回路956及び切換回路957の動作を制御する。記憶部953は、制御部952に接続されている。この記憶部953には、制御部952による制御に必要な、E-EDID(Enhanced-ExtendedDisplay Identification)等の情報が記憶されている。
 HDMI受信部(HDMIシンク)954は、HDMIに準拠した通信により、HDMIケーブル500を介してHDMIコネクタ951に供給されるベースバンドの画像と音声のデータを受信する。HDMI受信部954は、受信した画像データを表示部955に供給する。また、HDMI受信部954は、受信した音声のデータを、例えば、図示しないスピーカに供給する。このHDMI受信部954の詳細については後述する。
 電源回路956は、シンク機器90の内部回路及びソース機器80に供給する電源を発生する。この電源回路956は、例えば、AC電源から電源(直流電源)を発生する十分な電源回路である。切換回路957は、電源回路956で発生される電源を内部回路及びソース機器80に選択的に供給し、また、ソース機器80からシンク機器90に供給される電源を、選択的に、内部回路に供給する。この切換回路957は、電源供給部を構成している。
 次に、図28を参照して、電源供給制御における制御シーケンスについて説明する。
 図28を参照すると、まず、(a)ソース機器80の切換回路855が、ソース機器80の電源回路854からの電源がソース機器80の内部回路及びHDMIコネクタ856に供給される状態に切り換えられる。また、(b)シンク機器90の切換回路957が、ソース機器80の電源回路854からの電源がHDMIケーブル500を介してシンク機器90の内部回路に供給される状態に切り換えられる。当該(a)及び(b)に示す状態で、ソース機器80にHDMIケーブル500を介してシンク機器90が接続されると、(c)ソース機器80の電源回路854からの+5V電源がHDMIケーブル500を介してシンク機器90の内部回路に供給される。なお、ソース機器80の内部回路には、当該ソース機器80の電源回路854からの+5V電源が供給される。
 (d)この場合、シンク機器90のHDMIコネクタ951の19ピン(HPD)の電圧が高くなり、それに伴って、ソース機器80のHDMIコネクタ856の19ピン(HPD)の電圧が高くなる。そのため、ソース機器80の制御部851はシンク機器90が接続されたことを認識できる。
 (e)その後、ユーザ操作、あるいは、電源回路854を構成するバッテリの残量情報等に基づいて、ソース機器80は、電源供給リクエストである<Request Power Supply>コマンドを、CECラインを介して、シンク機器90に送信する。
 (f)シンク機器90は、<Request Power Supply>コマンドで要求される電圧値、電流値の供給が可能か否かを判断し、(g)その結果を含む電源供給レスポンスである<Response Power Supply>コマンドを、CECラインを介して、ソース機器80に送信する。
 (h)シンク機器90は、要求される電圧値、電流値の供給が可能であるとき、電源回路956からの電源の電圧値、電流値を、ソース機器80が要求する電圧値、電流値に対応するように制御し、切換回路957を、シンク機器90の電源回路956からの電源がシンク機器90の内部回路及びHDMIコネクタ951に供給される状態に切り換える。(i)これにより、シンク機器90の電源回路956からの電源がHDMIケーブル500を介してソース機器80に供給される。
 (j)ソース機器80はシンク機器90からの<Response Power Supply>コマンドを判断し、(k)供給が可能であるとのレスポンスであるときは、切換回路855を、シンク機器90の電源回路956からの電源がHDMIケーブル500を介してソース機器80の内部回路に供給される状態に切り換える。これにより、シンク機器90から供給される電源が、ソース機器80の内部回路に供給される状態となる。
 (l)その後、ソース機器80で電源が不要となると、ソース機器80は、シンク機器90に、電源供給が不要である旨を示す<Request Power Supply>コマンドを送信する。(m)シンク機器90は、当該<Request Power Supply>コマンドを検出し、ソース機器80に、<Response Power Supply>コマンドを返信する。(n)これに対応して、ソース機器80は、切換回路855を上記(a)に示す状態に戻すとともに、(p)シンク機器90は、切換回路957を上記(b)に示す状態に戻す。これにより、ソース機器80及びシンク機器90における電源供給の状態は最初の状態に戻る。
 以上、図27及び図28を参照して、HDMIインターフェースを用いた装置間の通信における電源供給制御について説明した。上記のソース機器80、シンク機器90及びHDMIケーブル500のコネクタに、本開示の第1の実施形態、後述する第2の実施形態、第1の変形例又は第2の変形例に係るコネクタを用いることにより、より高速、より大量のデータ伝送が行われる場合であっても、信号の劣化を抑えることが可能となるため、より信頼性の高い電源供給制御を行うことが可能となる。更に、上記(3.4.1.信号ピンの断面積の拡張)で説明した変形例を、上記電源供給制御において電源供給路として用いられる信号ピンに適用することにより、その信頼性を更に向上させることが可能となる。
 なお、上記説明したような、電源供給制御の詳細については、例えば特開2009-44706号公報を参照することができる。
 <4.第2の実施形態>
 本開示の第2の実施形態は、上記<2.第1の実施形態>で説明した本開示の第1の実施形態に係る構成に、上記<3.伝送データ量増加に係る変形例について>で説明した本開示の第1の変形例又は第2の変形例に係る構成を適用した構成を有する。以下では、第2の実施形態に係るコネクタの構成について説明するとともに、当該構成の信号伝送特性について説明する。
 [4.1.第2の実施形態に係るコネクタの構成]
 図29を参照して、本開示の第2の実施形態に係るレセプタクル側コネクタの構成について説明する。図29は、本開示の第2の実施形態に係るレセプタクル側コネクタを、y-z平面であって、かつ、信号ピンを通る平面で切断した場合の一構造例を示す断面図である。
 なお、図29では、第2の実施形態に係るコネクタの一構成例として、TypeA、TypeDのレセプタクル側HDMIコネクタに対応する構成を図示している。このように、図29に示す第2の実施形態に係る構成は、図4Aに示す第1の実施形態に係るレセプタクル側コネクタの構成と、図16A-図16Cに示す第2の変形例に係るレセプタクル側コネクタの構成とを合わせた構成に対応している。ただし、第2の実施形態はかかる例に限定されず、TypeCのレセプタクル側HDMIコネクタに対応する構成を有してもよい。つまり、第2の実施形態に係るレセプタクル側コネクタは、TypeCのレセプタクル側HDMIコネクタに対応する第1の実施形態に係る構成と、図9A-図9Cに示す第2の変形例に係るレセプタクル側コネクタの構成とを合わせた構成であってもよい。また、本開示の第2の実施形態は、他の通信規格、通信方式に準ずるコネクタに対しても適用可能である。
 図29を参照すると、第2の実施形態に係るレセプタクル側コネクタ2は、信号ピン21、誘電体22、基板23及びシェル24を備える。なお、上述したように、図29に示すレセプタクル側コネクタ2は、図4Aに示す本実施形態に係るレセプタクル側コネクタの構成と、図16A-図16Cに示す第2の変形例に係るレセプタクル側コネクタの構成とを合わせた構成に対応している。従って、レセプタクル側コネクタ2における信号ピン21、誘電体22、基板23及びシェル24の機能及び構成は、図4Aを参照して説明した信号ピン11、誘電体12及びシェル13の機能及び構成と、図16A-図16Cを参照して説明した信号ピン410、誘電体420、基板430及びシェル440の機能及び構成とを併せ持ったものである。
 信号ピン21は、第1の方向、すなわちy軸方向に延設される。また、信号ピン21は、誘電体によって形成される基板23の表面上に、配線パターンとして形成される。
 シェル24は、信号ピン21及び基板23を覆うように形成され、シェル24のy軸の負方向の一面は、外部に対して開放される開放面になっている。また、シェル24は、導電体によって形成され、その電位は、例えばグラウンド電位に固定される。
 シェル24の開放面に対応して、プラグ側コネクタ(図示せず。)のシェルにも開放面が設けられ、プラグ側コネクタ(図示せず。)のシェルの当該開放面が設けられる一端が、レセプタクル側コネクタ2のシェル24の開放面の開口部にy軸の負方向から挿入されることによって、プラグ側コネクタとレセプタクル側コネクタ2とが嵌合される。また、基板23上に形成された信号ピン21の上部(z軸の正方向)には、誘電体22が積層されてもよい。ただし、誘電体22が形成される場合には、誘電体22は、シェル24の開放面近傍の所定の領域において信号ピン21の表面の一部領域が露出するように形成される。このように、信号ピン21は、シェル24の開放面近傍の所定の領域において、誘電体22からその表面の一部領域が露出された露出部を有し、プラグ側コネクタと、レセプタクル側コネクタ2とが嵌合される際には、信号ピン21の当該露出部が、プラグ側コネクタの信号ピンと接触することにより、プラグ側コネクタとレセプタクル側コネクタ2とが電気的に接続される。
 また、基板23の裏面、すなわち、信号ピン21が形成される面と逆側の面には、グラウンド電位を有する導電体層が形成される。図29を参照すると、本変形例においては、シェル24の、基板23の裏面と対向する面が、他の面よりも肉厚に形成され、基板23の裏面と接している。つまり、基板23の裏面に形成される導電体層とシェル24とが一体的に形成されている。なお、本変形例においては、基板430の裏面にグラウンド電位を有する導電体層が形成されればよく、導電体層の構造はかかる例に限定されない。つまり、シェル24の一面が肉厚化されなくてもよく、例えば、基板23の裏面に形成された導電体層と、シェル24とが、ビアホール等によって電気的に接続される構造であってもよい。
 なお、上述したように、第2の実施形態に係るレセプタクル側コネクタ2は、TypeA、TypeDのHDMIコネクタに対応する構成を有するため、以上説明した信号ピン21、誘電体22、基板23及び導電体層と同様の構造が、シェル24の内部に、上下対称に、z軸方向における上側と下側の両方に設けられる。
 図29を参照すると、送信装置及び受信装置内には、レセプタクル側コネクタ2の信号ピン21が接続される実装基板25が配設される。図29に示すように、信号ピン21は、送信装置及び受信装置内においてy軸の正方向に延伸されて、送信装置及び受信装置内で実装基板25に向かって折り曲げられ、実装基板25と接続される。具体的には、実装基板25上には、信号ピン21に対応した複数の配線パターン26が設けられており、信号ピン21は送信装置及び受信装置内で実装基板25上の配線パターン26に接続される。配線パターン26は、実装基板25上又は他の基板上に形成された、所定の信号処理を行う各種の回路に向かって延伸されており、信号ピン21を伝送されてきた各種の信号は、配線パターン26によって所定の回路に更に伝送され、当該回路において各信号に対応した信号処理が適宜行われる。このように、信号ピン21は、一端が任意の装置内に配設される実装基板25上の配線パターン26に接続され、当該装置の内部及び外部に信号を伝送する機能を有する。
 また、シェル24は、信号ピン21が実装基板25に向かって延伸される領域に渡って、信号ピン21を覆うように導電体によって形成され、実装基板25上でグラウンド電位に接地される。また、図29に示すように、シェル24と実装基板25との間には、シェル24をグラウンド電位に接続するための接地部27a~27gが設けられる。接地部27a~27gは、例えばシェル24と同一の導電体で形成され、実装基板25上のグラウンド電位に接地される。すなわち、接地部27a~27gが設けられる位置は、シェル24と実装基板25との接地位置を表している。なお、図29に示す例では、接地部27a~27gは、図4Bにおいて破線で示した接地部16a~16gと同様の位置及び大きさで配置されている。
 以上、図29を参照して、本開示の第2の実施形態に係るレセプタクル側コネクタ2の構成について説明した。第2の実施形態によれば、上記<2.第1の実施形態>で説明したレセプタクル側コネクタ1の構成によって得られる効果と、上記<3.伝送データ量増加に係る変形例について>で説明したレセプタクル側コネクタ40の構成によって得られる効果とを、ともに得ることができる。すなわち、第2の実施形態に係るレセプタクル側コネクタ2では、シェル24が、信号ピン21が実装基板25に向かって延伸される領域に渡って信号ピン21を覆うように形成され、実装基板25上でグラウンド電位に接地される。従って、信号ピン21に対する遮蔽効果がもたらされるだけでなく、信号ピン21とシェル24との間でいわゆるマイクロストリップ構造が構成されることによってインピーダンスコントロールされる効果がもたらされることにより、信号ピン21に伝送される信号について外乱等による信号品質の劣化が抑制される。また、シェル24の下側の部位のみならず、あらゆる部位に対して、シェル24に生じた誘導電流を実装基板25に逃がすパスが形成されるため、EMIが抑制され、信号ピン21に伝送される信号の劣化を抑えることが可能となる。更に、第2の実施形態に係るレセプタクル側コネクタ2では、誘電体で形成される基板23上に信号ピン21が形成され、更に、基板23の信号ピン21が形成される面とは逆側の面に、グラウンド電位を有する導電体層が形成される。すなわち、本変形例に係るレセプタクル側コネクタ2は、グラウンドプレーン(導電体層)、誘電体層(基板23)、配線(信号ピン21)が、順に積層される構成を有する。このような構成を有することにより、信号ピン21を流れる電流(信号)に起因する電磁界が、基板23に閉じ込められ、いわゆるマイクロストリップライン(マイクロストリップ構造)が形成される。よって、第2の実施形態においては、信号ピン21を流れる電流(信号)が、他の信号ピン21に及ぼす影響を抑えることができ、信号の劣化を更に抑えることができる。
 [4.2.特性比較]
 次に、図15A-図15Cに示す一般的なTypeAのHDMIコネクタ構造と、図29に示す第2の実施形態に係るコネクタ構造とについて、信号ピンに流れる信号の特性及びEMI特性を比較した結果について説明する。
 まず、図30A及び図30B並びに図31A-図31Cを参照して、一般的なTypeAのHDMIコネクタと、第2の実施形態に係るコネクタとの、アイパターンに代表される信号伝送特性の違いについて説明する。
 図30A及び図30Bは、図15A-図15Cに示す、一般的なTypeAのHDMIコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図30A及び図30Bに示す結果は、図6Aに示す一般的なピン配置(すなわち、差動信号のデータラインが3組設けられるピン配置)に対応する信号を流した場合の電圧特性のシミュレーション結果を示している。また、図30Aは、図6Aに示す「Data1」のラインについてのアイパターンを示しており、図30Bは、図6Aに示す「Data2」のラインについてのアイパターンを示している。
 また、図31A-図31Cは、図29に示す第2の実施形態に係るコネクタ構造におけるアイパターンを示す電圧特性図である。なお、図31A-図31Cに示す結果は、図6Bに示す新たに差動データラインが増加されたピン配置(すなわち、差動信号のデータラインが6組設けられるピン配置)に対応する信号を流した場合の電圧特性のシミュレーション結果を示している。また、図31Aは、図6Bに示す「Data1」のラインについてのアイパターンを示しており、図31Bは、図6Bに示す「Data2」のラインについてのアイパターンを示しており、図31Cは、図6Bに示す「Data4」のラインについてのアイパターンを示している。
 つまり、図30A及び図30B並びに図31A-図31Cにおいては、「Data1」、「Data2」に対応するアイパターンは、図6Aに示す一般的なピン配置において既に存在するデータライン(既存のデータライン)の伝送特性を代表するものであり、「Data4」に対応するアイパターンは、図6Bに示す新たに差動データラインが増加されたピン配置において新たに追加されるデータライン(新規のデータライン)の伝送特性を代表するものである。また、図30A及び図30B並びに図31A-図31Cに示すアイパターンは、周波数2GHzの差動信号を信号ピンに印加した場合のシミュレーション結果を示している。
 図30A及び図30Bと、図31A-図31Cとを比較すると、既存のデータラインである「Data1」及び「Data2」、新規のデータラインである「Data4」ともに、第2の実施形態に係るコネクタ構造を有することで、信号の伝送特性が向上していることが分かる。すなわち、第2の実施形態に係るコネクタによって、信号の劣化が抑制されることが示されている。
 次に、図32を参照して、一般的なTypeAのHDMIコネクタと、第2の実施形態に係るコネクタ構造を適用したTypeAのHDMIコネクタについて、EMI特性を比較した結果について説明する。図32は、一般的なTypeAのHDMIコネクタ及び第2の実施形態に係るコネクタについて、EMI特性をシミュレーションした結果を示すグラフである。図32では、横軸(X軸)に信号ピンに印加する信号の周波数(MHz)を取り、縦軸(Y軸)に遠方電界強度(dBμV/m)を取り、両者の関係をプロットしている。縦軸に示す遠方電界強度(dBμV/m)の値が大きいほど、信号ピンを伝送する信号によって生じる電磁波の影響が大きく、EMIが生じやすいことを示している。なお、図32では、図29に示す構成を有する第2の実施形態に係るコネクタの計算モデルを作成し、当該計算モデルに対してシミュレーションを行った結果を示している。また、参考のため、図32には、図5Cに示した第1の実施形態に係るコネクタの結果も同時に図示している。
 図32では、一般的なTypeAのHDMIコネクタにおける周波数(MHz)と遠方電界強度(dBμV/m)との関係を示すグラフが図中Pで示す曲線(破線で示す曲線)で、第2の実施形態に係るコネクタにおける周波数(MHz)と遠方電界強度(dBμV/m)との関係を示すグラフが図中Rで示す曲線(実線で示す曲線)で図示されている。更に、図5Cに示した第1の実施形態に係るコネクタにおける周波数(MHz)と遠方電界強度(dBμV/m)との関係を示すグラフが図中Qで示す曲線(点線で示す曲線)で図示されている。なお、一般的なTypeAのHDMIコネクタについてのシミュレーション結果及び第1の実施形態に係るコネクタについてのシミュレーション結果は、図6Aに示す一般的なピン配置(すなわち、差動信号のラインが3組設けられるピン配置)に対応する信号を流した場合のシミュレーション結果を示しており、第2の実施形態に係るコネクタについてのシミュレーション結果は、図6Bに示す新たに差動データラインが増加されたピン配置(すなわち、差動信号のラインが6組設けられるピン配置)に対応する信号を流した場合のシミュレーション結果を示している。
 図32を参照すると、第2の実施形態に係るコネクタでは、差動データラインの数が3組から6組に倍増しているにもかかわらず、遠方電界強度(dBμV/m)の値は、一般的なTypeAのHDMIコネクタよりも抑えられていることが分かる。すなわち、第2の実施形態に係るコネクタによって、EMIが抑制され、信号の劣化がより抑えられることが示されている。
 <5.まとめ>
 まず、本開示の第1の実施形態に係るレセプタクル側コネクタの概略構成について説明した。第1の実施形態においては、シェルが、信号ピンが実装基板に向かって延伸される領域に渡って信号ピンを覆うように形成され、実装基板上でグラウンド電位に接地される。従って、信号ピンに対する遮蔽効果がもたらされるだけでなく、信号ピンとシェルとの間でいわゆるマイクロストリップ構造が構成されることによってインピーダンスコントロールされる効果がもたらされることにより、信号ピンに伝送される信号について外乱等による信号品質の劣化が抑制される。また、シェルの下側の部位のみならず、上側の部位を含むあらゆる部位に対して、シェルに生じた誘導電流を実装基板に逃がすパスが形成されるため、EMIが抑制され、信号ピンに伝送される信号の品質の劣化を更に抑えることが可能となる。
 また、第1の実施形態においては、シェルと実装基板との接地位置が適宜調整されてよい。例えば、シェルと実装基板との接地位置は、実装基板上において差動信号が伝送される信号ピンと接続される配線パターンが引き出される方向及び当該方向と逆の方向に、信号ピンと配線パターンとの接続位置に対応する領域をy軸方向に挟むように設けられてもよい。また、例えば、シェルと実装基板との接地位置は、差動信号を伝送する信号ピンと配線パターンとの接続位置に対応する領域をx軸方向に挟む位置に設けられてもよいし、信号ピン及び配線パターンと接触しない限りにおいて(信号ピンと配線パターンとの接続を妨げない限りにおいて)接地面積が大きくなるように設けられてもよい。シェルと実装基板との接地位置が、差動信号を伝送する信号ピンと配線パターンの近傍に設けられ、また、その接地面積がより大きく設けられることにより、差動信号によってシェルに生じた誘導電流を実装基板に逃がすパスがより確実に確保されるため、信号品質の劣化をより抑制することが可能となる。
 次いで、HDMIコネクタにおけるデータ伝送において、伝送データ量をより増加させるための構成として、本開示の第1及び第2の変形例に係るコネクタの構成について説明した。更に、上記の本開示の第1の実施形態に係る構成と本開示の第1及び第2の変形例に係る構成とを合わせた構成として、本開示の第2の実施形態に係るレセプタクル側コネクタの構成について説明した。本開示の第2の実施形態では、第1の実施形態における効果と第1及び第2の変形例における効果とを同時に得ることができる。すなわち、第2の実施形態においては、上述した第1の実施形態によって得られる効果に加えて、以下の効果を得ることができる。
 本開示の第2の実施形態においては、誘電体で形成される基板上に信号ピンが形成され、更に、基板の信号ピンが形成される面とは逆側の面に、グラウンド電位を有する導電体層が形成される。かかる構造により、信号ピン、基板及び導電体層によって、マイクロストリップラインが形成されるため、信号ピンを流れる電流(信号)が、他の信号ピンに及ぼす影響を抑えることができ、信号の劣化を抑えることができる。
 また、第2の実施形態においては、信号ピンのうち、差動信号が伝送され、隣接して延設される1対の信号ピンの間隔が、隣接する他の信号ピンとの間隔よりも小さく形成されてよい。かかる構造により、間隔が小さく形成された信号ピンのペアによって差動ストリップライン(差動ストリップ構造)が形成されるため、当該信号ピンのペアを流れる電流(信号)が、他の信号ピンに及ぼす影響を抑えることができ、信号の劣化を抑えることができる。更に、当該信号ピンのペアの間隔が小さく形成されることにより、相対的に、隣接する異種信号配線との間隔が拡大されるため、クロストークが低減され、信号品質の向上が実現される。
 従って、第2の実施形態においては、シールドに用いられる信号ピン及びクロックに用いられる信号ピンに新たにデータラインが割り当てられたような、新たにデータラインが増加されたピン配置であっても、信号を劣化させることなく、データを伝送することが可能となる。
 また、第2の実施形態においては、グラウンド電位を有するガードラインが、信号ピンを挟む位置に、信号ピンと略平行に更に延設されてもよい。かかる構造により、信号ピンを流れる電流(信号)が、他の信号ピンに及ぼす影響を更に抑えることができ、信号の劣化をより抑えることができる。
 また、第2の実施形態においては、プラグ側コネクタとレセプタクル側コネクタとの嵌合部における信号ピンの配線間隔が、一般的なHDMIコネクタの嵌合部における信号ピンの配線間隔と同一であってよい。かかる構造により、本開示の第1の変形例及び第2の変形例に係るコネクタと、一般的なHDMIコネクタとの互換性が保証されるため、ユーザは、コネクタの種類を気にすることなく装置間を接続することができ、ユーザの利便性が向上する。
 更に、本開示の第1及び第2の実施形態に係るコネクタに対して、以下の更なる変形例について説明した。
 本開示の第1及び第2の実施形態に係るコネクタにおいては、信号ピンの断面積が拡張されてよい。かかる構造により、当該信号ピンにより大きな電流を、減衰をより抑えながら流すことが可能となり、コネクタの信頼性が向上する。HDMIコネクタにおいては、電源電圧が印加されるHPD信号ピン及び電源用信号ピンの断面積を拡張することにより、その効果をより得ることができる。
 また、本開示の第2の実施形態に係るコネクタにおいては、コネクタの内部に基板が設けられる。そして、当該基板上に、信号ピンにおける信号の伝送に作用する各種のデバイス(回路)が実装することができる。かかる構造により、コネクタ自体が各種の信号処理を行うことが可能となるため、コネクタによって接続される送信装置及び受信装置における信号処理を簡略化することができる。
 また、本開示の第1及び第2の実施形態に係るコネクタは、HDMIインターフェースを用いた装置間の通信における、各種のアプリケーションに好適に適用することができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を備える、コネクタ。
(2)前記シェルは、前記実装基板上の複数の接地位置でグラウンド電位に接地し、前記接地位置は、前記信号ピンと前記配線パターンとの接続位置に対応する領域に対して、前記実装基板上において前記配線パターンが引き出される方向の一部領域及び当該方向とは逆の方向の一部領域を含む、前記(1)に記載のコネクタ。
(3)前記シェルは、前記実装基板上の複数の接地位置でグラウンド電位に接地し、複数の前記信号ピンのうちの一部の前記信号ピンは差動信号を伝送し、前記シェルの複数の前記接地位置は、差動信号を伝送する前記信号ピンと前記配線パターンとの接続位置に対応する領域を挟む位置を含む、前記(1)又は(2)に記載のコネクタ。
(4)前記実装基板上において前記配線パターンが引き出される方向における前記接地位置の接地面積は、当該方向とは逆の方向における前記接地位置の接地面積よりも小さい、前記(3)に記載のコネクタ。
(5)前記シェルの複数の前記接地位置は、差動信号を伝送する一群の前記信号ピンと前記配線パターンとの接続位置に対応する領域を挟む位置を含む、前記(3)又は(4)に記載のコネクタ。
(6)前記コネクタ内に、第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、を更に備える、前記(1)~(5)のいずれか1項に記載のコネクタ。
(7)複数の前記信号ピンを備え、複数の前記信号ピンのうち、差動信号が伝送され、隣接して延設される1対の前記信号ピンの間隔は、当該1対の前記信号ピンと隣接する他の前記信号ピンとの間隔よりも小さい、前記(6)に記載のコネクタ。
(8)前記シェルは、前記信号ピン及び前記基板を覆うように形成され、前記第1の方向に、外部に対して開放される開放面を有し、前記導電体層は、グラウンド電位を有する前記シェルと電気的に接続される、前記(6)又は(7)に記載のコネクタ。
(9)前記導電体層は、前記シェルの少なくとも一部を構成する、前記(8)に記載のコネクタ。
(10)前記基板上には、グラウンド電位を有するガードラインが、前記信号ピンを挟む位置に、前記信号ピンと略平行に更に延設される、前記(6)~(9)のいずれか1項に記載のコネクタ。
(11)前記信号ピンは、前記コネクタの、前記コネクタと対となる他のコネクタと嵌合する嵌合部において、略等しい配線間隔を有して延設される、前記(6)~(10)のいずれか1項に記載のコネクタ。
(12)複数の前記信号ピンを備え、複数の前記信号ピンのうち、電源用信号が印加される電源用信号ピンの前記第1の方向と略垂直な切断面における断面積は、前記電源用信号ピン以外の前記信号ピンの断面積よりも大きく形成される、前記(6)~(11)のいずれか1項に記載のコネクタ。
(13)前記基板上には、前記信号ピンにおける信号の伝送に作用するデバイスが搭載される、前記(6)~(12)のいずれか1項に記載のコネクタ。
(14)前記デバイスは、前記信号ピンによって伝送される信号のAC伝送とDC伝送とを変換するAC/DC変換回路、前記信号ピンによって伝送される信号の特性に関する情報を保持するレジスタ、及び、前記レジスタによって保持される情報を前記コネクタを介して接続される任意の装置に通知するための通信回路、並びに、前記信号ピンの少なくともいずれかに電源電圧を供給するバッテリ、の少なくともいずれかである、前記(13)に記載のコネクタ。
(15)一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を備え、前記コネクタを介して任意の装置に対して信号を送信する、データ送信装置。
(16)前記コネクタ内に、第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、を更に有する、前記(15)に記載のデータ送信装置。
(17)一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を備え、前記コネクタを介して任意の装置から送信される信号を受信する、データ受信装置。
(18)前記コネクタ内に、第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、を更に有する、前記(17)に記載のデータ受信装置。
(19)一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、を有する、コネクタ、を介して任意の装置に対して信号を送信する、データ送信装置と、前記コネクタを介して、任意の装置から送信される信号を受信する、データ受信装置と、を備える、データ送受信システム。
(20)前記コネクタ内に、第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、を更に有する、前記(19)に記載のデータ送受信システム。
 1、2  レセプタクル側コネクタ
 11、21  信号ピン
 12、22  誘電体
 13、24  外殻(シェル)
 14、25  実装基板
 15、26  配線パターン
 16a~16d、27a~27g  接地部
 23  基板
 10、20、30、40  コネクタ
 110、210、310、410  信号ピン
 120、220、320、420  誘電体
 130、230、330、430  基板
 140、240、340、440  外殻(シェル)
 150、250  ガードライン
 160  デバイス

Claims (20)

  1.  一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、
     前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、
     を備える、コネクタ。
  2.  前記シェルは、前記実装基板上の複数の接地位置でグラウンド電位に接地し、
     前記接地位置は、前記信号ピンと前記配線パターンとの接続位置に対応する領域に対して、前記実装基板上において前記配線パターンが引き出される方向の一部領域及び当該方向とは逆の方向の一部領域を含む、
     請求項1に記載のコネクタ。
  3.  前記シェルは、前記実装基板上の複数の接地位置でグラウンド電位に接地し、
     複数の前記信号ピンのうちの一部の前記信号ピンは差動信号を伝送し、
     前記シェルの複数の前記接地位置は、差動信号を伝送する前記信号ピンと前記配線パターンとの接続位置に対応する領域を挟む位置を含む、
     請求項2に記載のコネクタ。
  4.  前記実装基板上において前記配線パターンが引き出される方向における前記接地位置の接地面積は、当該方向とは逆の方向における前記接地位置の接地面積よりも小さい、
     請求項3に記載のコネクタ。
  5.  前記シェルの複数の前記接地位置は、差動信号を伝送する一群の前記信号ピンと前記配線パターンとの接続位置に対応する領域を挟む位置を含む、
     請求項4に記載のコネクタ。
  6.  前記コネクタ内に、
     第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、
     前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、
     を更に備える、
     請求項1に記載のコネクタ。
  7.  複数の前記信号ピンを備え、
     複数の前記信号ピンのうち、差動信号が伝送され、隣接して延設される1対の前記信号ピンの間隔は、当該1対の前記信号ピンと隣接する他の前記信号ピンとの間隔よりも小さい、
     請求項6に記載のコネクタ。
  8.  前記シェルは、前記信号ピン及び前記基板を覆うように形成され、前記第1の方向に、外部に対して開放される開放面を有し、
     前記導電体層は、グラウンド電位を有する前記シェルと電気的に接続される、
     請求項6に記載のコネクタ。
  9.  前記導電体層は、前記シェルの少なくとも一部を構成する、
     請求項8に記載のコネクタ。
  10.  前記基板上には、グラウンド電位を有するガードラインが、前記信号ピンを挟む位置に、前記信号ピンと略平行に更に延設される、
     請求項6に記載のコネクタ。
  11.  前記信号ピンは、前記コネクタの、前記コネクタと対となる他のコネクタと嵌合する嵌合部において、略等しい配線間隔を有して延設される、
     請求項1に記載のコネクタ。
  12.  複数の前記信号ピンを備え、
     複数の前記信号ピンのうち、電源用信号が印加される電源用信号ピンの前記第1の方向と略垂直な切断面における断面積は、前記電源用信号ピン以外の前記信号ピンの断面積よりも大きく形成される、
     請求項1に記載のコネクタ。
  13.  前記基板上には、前記信号ピンにおける信号の伝送に作用するデバイスが搭載される、
     請求項6に記載のコネクタ。
  14.  前記デバイスは、
     前記信号ピンによって伝送される信号のAC伝送とDC伝送とを変換するAC/DC変換回路、
     前記信号ピンによって伝送される信号の特性に関する情報を保持するレジスタ、及び、前記レジスタによって保持される情報を前記コネクタを介して接続される任意の装置に通知するための通信回路、並びに、
     前記信号ピンの少なくともいずれかに電源電圧を供給するバッテリ、
     の少なくともいずれかである、
     請求項13に記載のコネクタ。
  15.  一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、
     前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、
     を有する、コネクタ、
     を備え、
     前記コネクタを介して任意の装置に対して信号を送信する、データ送信装置。
  16.  前記コネクタ内に、
     第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、
     前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、
     を更に有する、請求項15に記載のデータ送信装置。
  17.  一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、
     前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、
     を有する、コネクタ、
     を備え、
     前記コネクタを介して任意の装置から送信される信号を受信する、データ受信装置。
  18.  前記コネクタ内に、
     第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、
     前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、
     を更に有する、請求項17に記載のデータ受信装置。
  19.  一端が任意の装置内に配設される実装基板上の配線パターンに接続され、前記装置の内部及び外部に信号を伝送する信号ピンと、
     前記信号ピンが前記実装基板に向かって延伸される領域に渡って、前記信号ピンを覆うように導電体によって形成され、前記実装基板上でグラウンド電位に接地されるシェルと、
     を有する、コネクタ、
     を介して任意の装置に対して信号を送信する、データ送信装置と、
     前記コネクタを介して、任意の装置から送信される信号を受信する、データ受信装置と、
     を備える、データ送受信システム。
  20.  前記コネクタ内に、
     第1の方向に延伸される前記信号ピンが一方の面に形成される基板と、
     前記基板の、前記信号ピンが形成される面とは逆側の面に形成され、グラウンド電位を有する導電体層と、
     を更に有する、請求項19に記載のデータ送受信システム。
PCT/JP2014/057415 2013-04-26 2014-03-18 コネクタ、データ送信装置、データ受信装置及びデータ送受信システム WO2014174941A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480022081.3A CN105122560B (zh) 2013-04-26 2014-03-18 连接器、数据传送设备、数据接收设备、及数据传送和接收系统
JP2015513619A JPWO2014174941A1 (ja) 2013-04-26 2014-03-18 コネクタ、データ送信装置、データ受信装置及びデータ送受信システム
EP14787761.7A EP2991171B1 (en) 2013-04-26 2014-03-18 Connector, data transmission device, data reception device, and data transmission and reception system
US14/785,135 US9698539B2 (en) 2013-04-26 2014-03-18 Connector, data transmitting apparatus, data receiving apparatus, and data transmitting and receiving system
KR1020157029511A KR102148054B1 (ko) 2013-04-26 2014-03-18 커넥터, 데이터 송신 장치, 데이터 수신 장치 및 데이터 송수신 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-093891 2013-04-26
JP2013093891 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014174941A1 true WO2014174941A1 (ja) 2014-10-30

Family

ID=51791526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057415 WO2014174941A1 (ja) 2013-04-26 2014-03-18 コネクタ、データ送信装置、データ受信装置及びデータ送受信システム

Country Status (7)

Country Link
US (1) US9698539B2 (ja)
EP (1) EP2991171B1 (ja)
JP (1) JPWO2014174941A1 (ja)
KR (1) KR102148054B1 (ja)
CN (1) CN105122560B (ja)
TW (1) TWI602360B (ja)
WO (1) WO2014174941A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140659A1 (en) * 2015-03-04 2016-09-09 Hewlett Packard Enterprise Development Lp Multiple pins of different lengths corresponding to different data signaling rates
US10862233B2 (en) * 2016-07-27 2020-12-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power interface, mobile terminal, and power adapter
CN110176697B (zh) 2019-03-27 2021-04-23 番禺得意精密电子工业有限公司 电连接器
KR20210036478A (ko) 2019-09-26 2021-04-05 김형섭 맹수 배설물향 야생동물 퇴치제

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227233A (ja) * 2006-02-24 2007-09-06 Fujitsu Ltd 電源プラグ
JP4182997B2 (ja) 2006-08-15 2008-11-19 ソニー株式会社 伝送システム及び送受信装置
JP2009044706A (ja) 2007-07-19 2009-02-26 Sony Corp 送信装置、送信装置の電源切換方法、受信装置および受信装置の電源供給方法
JP2009515317A (ja) * 2005-11-09 2009-04-09 モレックス インコーポレイテド シールド電気コネクタ
JP2009129649A (ja) 2007-11-21 2009-06-11 Murata Mfg Co Ltd 基板のコネクタ実装部構造
JP2010129540A (ja) * 2008-11-25 2010-06-10 Hon Hai Precision Industry Co Ltd 電気コネクタ
WO2011052105A1 (ja) * 2009-10-30 2011-05-05 パナソニック株式会社 レセプタクル及び電子機器
JP2011096381A (ja) * 2009-10-27 2011-05-12 Hosiden Corp シールドケース及びこれを備えたコネクタ
JP2012069353A (ja) * 2010-09-22 2012-04-05 Hosiden Corp シールドケース、コネクタ及び電子機器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244584A (ja) * 1993-02-17 1994-09-02 Nec Corp プリント基板のシールド機構
JPH10106699A (ja) * 1996-09-30 1998-04-24 Mitsumi Electric Co Ltd 電気コネクタ
US6979215B2 (en) * 2001-11-28 2005-12-27 Molex Incorporated High-density connector assembly with flexural capabilities
JP4162525B2 (ja) * 2003-03-28 2008-10-08 日本圧着端子製造株式会社 高周波無線用コネクタユニット
US6997748B1 (en) * 2005-03-07 2006-02-14 Cheng Uei Precision Industry Co., Ltd. Shielded shell for electronic connector
JP5001740B2 (ja) * 2007-07-20 2012-08-15 ホシデン株式会社 電気コネクタ
JP4522454B2 (ja) 2008-02-04 2010-08-11 日本航空電子工業株式会社 コネクタ
CN201360060Y (zh) 2008-12-22 2009-12-09 上海莫仕连接器有限公司 电连接器
US20100203751A1 (en) * 2009-02-10 2010-08-12 Chou Hsien Tsai Socket structure
JP5521558B2 (ja) * 2010-01-06 2014-06-18 株式会社オートネットワーク技術研究所 ワイヤハーネス付き基板収容コネクタ
JP5634095B2 (ja) * 2010-03-31 2014-12-03 ホシデン株式会社 コネクタ、及びコネクタ用プリント基板フットパターン
US8267718B2 (en) * 2010-04-07 2012-09-18 Panduit Corp. High data rate electrical connector and cable assembly
JP2011258478A (ja) * 2010-06-10 2011-12-22 Opto Design Inc コネクタ
JP5622306B2 (ja) * 2010-07-05 2014-11-12 矢崎総業株式会社 基板搭載型コネクタ
US8251746B2 (en) 2010-08-23 2012-08-28 Hon Hai Precision Ind. Co., Ltd. Shielded electrical connector
CN202111260U (zh) * 2011-03-08 2012-01-11 富士康(昆山)电脑接插件有限公司 电连接器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515317A (ja) * 2005-11-09 2009-04-09 モレックス インコーポレイテド シールド電気コネクタ
JP2007227233A (ja) * 2006-02-24 2007-09-06 Fujitsu Ltd 電源プラグ
JP4182997B2 (ja) 2006-08-15 2008-11-19 ソニー株式会社 伝送システム及び送受信装置
JP2009044706A (ja) 2007-07-19 2009-02-26 Sony Corp 送信装置、送信装置の電源切換方法、受信装置および受信装置の電源供給方法
JP2009129649A (ja) 2007-11-21 2009-06-11 Murata Mfg Co Ltd 基板のコネクタ実装部構造
JP2010129540A (ja) * 2008-11-25 2010-06-10 Hon Hai Precision Industry Co Ltd 電気コネクタ
JP2011096381A (ja) * 2009-10-27 2011-05-12 Hosiden Corp シールドケース及びこれを備えたコネクタ
WO2011052105A1 (ja) * 2009-10-30 2011-05-05 パナソニック株式会社 レセプタクル及び電子機器
JP2012069353A (ja) * 2010-09-22 2012-04-05 Hosiden Corp シールドケース、コネクタ及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2991171A4

Also Published As

Publication number Publication date
KR102148054B1 (ko) 2020-08-25
CN105122560A (zh) 2015-12-02
KR20160003661A (ko) 2016-01-11
CN105122560B (zh) 2018-10-02
JPWO2014174941A1 (ja) 2017-02-23
EP2991171A1 (en) 2016-03-02
US9698539B2 (en) 2017-07-04
EP2991171A4 (en) 2016-11-30
EP2991171B1 (en) 2018-11-21
TWI602360B (zh) 2017-10-11
TW201507295A (zh) 2015-02-16
US20160087377A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
US9466934B2 (en) Electronic apparatus, category determination method for transmission cable and transmission cable
RU2581645C2 (ru) Разъем, кабель, устройство передачи, устройство приема и способ производства разъема
JP6308135B2 (ja) コネクタ、データ受信装置、データ送信装置及びデータ送受信システム
US7728223B2 (en) Flat cable for mounted display devices
WO2014174941A1 (ja) コネクタ、データ送信装置、データ受信装置及びデータ送受信システム
US9356402B2 (en) Multimedia link having a plug and a receptacle with a power line configured as a signal return path
WO2011052105A1 (ja) レセプタクル及び電子機器
US8021194B2 (en) Controlled impedance display adapter
JP2022550087A (ja) コネクタ、電子デバイス及びオープンプラガブル仕様(ops)デバイス
US10455700B2 (en) Electronic device and display unit
CN103531977A (zh) 数据传输线
TWI763001B (zh) 可傳輸複數組資料流之訊號傳輸裝置
US20220350562A1 (en) Receiving Card and Display Control Card Component
WO2021228188A1 (zh) 数据传输电缆及相关设备
US20230402793A1 (en) Electronic device with cable interface and manufacturing method thereof
CN106793738A (zh) 显示设备接口的电磁干扰辐射调整的方法及装置
KR200402664Y1 (ko) 노이즈 제거 기능을 구비한 dvi 커넥터
TW202350062A (zh) 具有纜線介面的電子裝置及其製造方法
CN111223600A (zh) 一种复合线材及线材电路保护方法
TWM462469U (zh) 結合抑制電磁干擾元件之電連接器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022081.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513619

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014787761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157029511

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14785135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE