WO2014174647A1 - 水処理方法及び水処理システム - Google Patents

水処理方法及び水処理システム Download PDF

Info

Publication number
WO2014174647A1
WO2014174647A1 PCT/JP2013/062283 JP2013062283W WO2014174647A1 WO 2014174647 A1 WO2014174647 A1 WO 2014174647A1 JP 2013062283 W JP2013062283 W JP 2013062283W WO 2014174647 A1 WO2014174647 A1 WO 2014174647A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gypsum
treated
concentrated water
demineralizer
Prior art date
Application number
PCT/JP2013/062283
Other languages
English (en)
French (fr)
Inventor
隆士 吉山
進 沖野
佐藤 淳
櫻井 秀明
英夫 鈴木
裕 中小路
茂 吉岡
鵜飼 展行
昌之 江田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2013/062283 priority Critical patent/WO2014174647A1/ja
Priority to JP2015513442A priority patent/JP5968524B2/ja
Priority to US14/363,992 priority patent/US20150068982A1/en
Priority to CA2909222A priority patent/CA2909222A1/en
Publication of WO2014174647A1 publication Critical patent/WO2014174647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment system for regenerating treated water containing Ca ions (Ca 2+ ), sulfate ions (SO 4 2 ⁇ ), and carbonate ions.
  • the mine wastewater contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2 ⁇ .
  • Inexpensive Ca (OH) 2 is used to neutralize mine wastewater. For this reason, mine wastewater is rich in Ca 2+ and SO 4 2 ⁇ .
  • lime soda method sodium carbonate is added to the water to be treated, and Ca 2+ in the water to be treated is precipitated and removed as calcium carbonate.
  • Patent Document 1 discloses a water treatment method and a water treatment apparatus for treating raw water containing Ca 2+ and SO 4 2 ⁇ .
  • Ca 2+ as divalent ions by passing the raw water containing SO 4 2-a nanofiltration membrane device, Ca 2+ and SO 4 2-a monovalent ions (Na +, Cl -, etc.) and Are separated.
  • the monovalent ions are contained in the treated water of the nanofiltration membrane device, the treated water from which the monovalent ions have been removed is obtained by passing through the reverse osmosis membrane device in the subsequent stage.
  • the lime soda method has a high processing cost because it is necessary to add sodium carbonate for the processing.
  • a desalting apparatus such as a reverse osmosis membrane apparatus to further remove ions
  • Na + in the treated water increases and SO 4 2
  • SO 4 2 Since ⁇ could not be removed and SO 4 2 ⁇ remained, there was a problem that the osmotic pressure was increased.
  • Patent Document 1 Since Ca 2+ and SO 4 2 ⁇ are concentrated, gypsum precipitates as a scale in the nanofiltration membrane apparatus, and there is a possibility that the processing capacity may be lowered.
  • CO 3 2 ⁇ derived from air or the like is included in the water to be treated.
  • the technique of Patent Document 1 does not separate calcium carbonate and gypsum. Therefore, the purity of gypsum recovered by the apparatus of Patent Document 1 is low. In order to use the recovered gypsum for other purposes, it is necessary to purify it, leading to an increase in cost. For this reason, utilization of the gypsum recovered from mine wastewater to other uses has been hindered.
  • the present invention provides a water treatment method and a water treatment system capable of recovering treated water by treating salt-containing water with a high ion removal rate and a high water recovery rate, and capable of recovering high-quality gypsum. With the goal.
  • One aspect of the present invention is a scale inhibitor supply step in which a scale inhibitor is supplied to water to be treated containing Ca ions, SO 4 ions, and carbonate ions, and in the first desalting apparatus, the Ca ions and The upstream separation step in which the SO 4 ions are separated into the concentrated water and the treated water is recovered, and the concentrated water of the first desalinator is capable of dissolving calcium carbonate, and A first pH adjusting step in which the scale preventing function of the scale inhibitor is reduced to adjust the pH so that gypsum can be precipitated from the concentrated water of the first desalting device; and the first desalting device in which the pH is adjusted.
  • It is a water treatment method including a crystallization process in which crystals of the gypsum crystallize from concentrated water, and a recovery process in which the crystals are separated and recovered from the concentrated water of the first desalting apparatus.
  • Another aspect of the present invention includes a scale inhibitor supply unit that supplies a scale inhibitor to water to be treated containing Ca ions, SO 4 ions, and carbonate ions, and a downstream side of the scale inhibitor supply unit.
  • a first demineralizer that is installed and separates the treated water into treated water containing the CO 2 and concentrated water enriched in the Ca ions and SO 4 ions; and downstream of the first demineralizer
  • the pH adjusting agent is supplied to the concentrated water of the first desalting apparatus, and the concentrated water of the first desalting apparatus is capable of dissolving calcium carbonate, and scale prevention of the scale inhibitor
  • a first pH adjusting unit that adjusts the pH so that gypsum can be precipitated with reduced functions, a crystallization tank that crystallizes the gypsum from the concentrated water of the first demineralizer with adjusted pH, and the crystallization Separation of gypsum and concentrated water from the first desalting unit It is a water treatment system provided with the separation part to perform.
  • the water to be treated is separated into the concentrated water containing Ca 2+ and SO 4 2 ⁇ and the treated water by the first desalting apparatus.
  • the concentrated water of the first desalting apparatus is adjusted to a pH at which calcium carbonate can be dissolved and the function of the scale inhibitor is reduced.
  • “calcium carbonate is soluble” means that the amount of calcium carbonate precipitated in water is small and does not affect the purity of gypsum.
  • calcium carbonate is known to be acidic and soluble. Accordingly, the pH of the concentrated water is adjusted to the acidic region. For this reason, precipitation of calcium carbonate is greatly suppressed from the concentrated water.
  • the concentrated water adjusted to the above pH is fed to the crystallization tank. Since the function is reduced even if the scale inhibitor is present in the concentrated water, if the gypsum exceeds the saturation concentration, crystals of the gypsum precipitate.
  • water to be treated containing Ca ions, SO 4 ions and carbonate ions can be treated at a high water recovery rate, and high-purity gypsum can be recovered in the course of water treatment.
  • the water to be treated on the upstream side of the first demineralizer, can dissolve the calcium carbonate, and the scale inhibitor can suppress the precipitation of scale containing Ca. It is preferable to further include a second pH adjustment step that is adjusted to a pH that is.
  • the water treatment system is installed on the upstream side of the first desalting apparatus, a pH adjuster is supplied to the water to be treated, the calcium carbonate is soluble, and the scale inhibitor is It is preferable to further include a second pH adjusting unit that adjusts to a pH at which precipitation of scales containing Ca can be suppressed.
  • the gypsum seed crystal is supplied to the concentrated water of the first desalting apparatus.
  • gypsum grows using the seed crystals as nuclei and large gypsum can be precipitated, the water content of the gypsum decreases, and the salts contained in the water content can be reduced, resulting in high-purity gypsum.
  • the classifier and dehydrator of the separation unit can be made smaller.
  • the separated and recovered gypsum may be supplied as concentrated seed water of the first demineralizer as the seed crystal.
  • the water treatment system of the above aspect may further include a seed crystal circulation unit that supplies the gypsum separated and recovered by the separation unit to the seed crystal supply unit as the seed crystal.
  • the recovery step it is preferable that gypsum having a predetermined size is separated and recovered from the gypsum precipitated in the crystallization step.
  • the separation unit includes a classifier that collects gypsum having a predetermined size out of the gypsum deposited in the crystallization tank.
  • gypsum The larger the particle size of gypsum, the lower the water content of gypsum.
  • gypsum having a predetermined particle diameter or more is easily crystallized, so that the water content is lowered and the salts contained in the gypsum water can be reduced. For this reason, it becomes possible to collect
  • the concentrated water of the first demineralizer after the crystallization step is separated into concentrated water and treated water in the second demineralizer, and the downstream side from which the treated water is recovered And a separation step.
  • the solid is recovered by evaporating water from the concentrated water of the second demineralizer on the downstream side of the concentrated water of the second demineralizer.
  • the water treatment system further includes a second demineralizer that is installed on the downstream side of the separation unit and separates the concentrated water of the first demineralizer into concentrated water and treated water.
  • a second demineralizer that is installed on the downstream side of the separation unit and separates the concentrated water of the first demineralizer into concentrated water and treated water.
  • the water recovery rate can be further improved by providing the second desalting apparatus. Moreover, in the invention, since the ion concentration in the water to be treated is significantly reduced by the crystallization part, the inflow amount of salts to the second demineralizer can be reduced. For this reason, the motive power of a 2nd desalination apparatus can be reduced.
  • calcium carbonate can be dissolved by adding a scale inhibitor and adjusting the pH, while preventing the generation of calcium carbonate and gypsum scales in the desalinator by expressing the function of the scale inhibitor.
  • the treated water can be regenerated with a high water recovery rate.
  • high-purity gypsum can be separated and recovered in crystallization as a situation where gypsum tends to precipitate by reducing the function of the scale inhibitor by adjusting the pH of concentrated water containing Ca 2+ and SO 4 2 ⁇ .
  • the collected gypsum can be reused.
  • the water to be treated (treated water) of the present invention contains Ca 2+ and SO 4 2 ⁇ , and is a water quality in which gypsum exceeds the saturation solubility or water quality in which gypsum exceeds the saturation solubility by water treatment.
  • the water to be treated is mine wastewater, brine, sewage, factory wastewater, cooling tower blowdown water, and the like.
  • the treated water contains carbonate ions (CO 3 2 ⁇ ) derived from air or the like.
  • FIG. 1 is a schematic diagram of a water treatment system according to the first embodiment of the present invention.
  • the water treatment system 1 of the first embodiment includes a crystallization unit 11.
  • a first desalting apparatus 10 is installed on the upstream side of the crystallization unit 11, and a second desalting apparatus 12 is installed on the downstream side.
  • the concentration side of the first demineralizer 10 and the crystallization tank 13 are connected.
  • FIG. 1 only one first desalting apparatus 10 and two second desalting apparatuses 12 are shown, but a plurality of desalting apparatuses are connected in parallel or in series in the flow direction of the water to be treated. May be.
  • the first desalting apparatus 10 and the second desalting apparatus 12 are reverse osmosis membrane apparatuses.
  • an electrodialysis apparatus (ED) a polarity switching electrodialysis apparatus (EDR), an electric regeneration type pure water apparatus (EDI), ion exchange resin apparatus, electrostatic desalting apparatus (CDI), nanofilter (NF), evaporator and the like are also applicable.
  • ED electrodialysis apparatus
  • EDR polarity switching electrodialysis apparatus
  • EDI electric regeneration type pure water apparatus
  • CDI electrostatic desalting apparatus
  • NF nanofilter
  • the crystallization unit 11 includes a crystallization tank 13 and a separation unit 14 in order from the upstream side of the water to be treated.
  • the separation unit 14 includes a classifier 15 and a dehydrator 16.
  • the classifier 15 is, for example, a liquid cyclone.
  • the dehydrator 16 is, for example, a belt filter 16.
  • the classifier can be omitted. In this case, the bottom of the crystallization tank 13 and the dehydrator 16 are directly connected.
  • the scale inhibitor supply unit 20 includes a tank 21, a valve V1, and a control unit 22.
  • the control unit 22 is connected to the valve V1.
  • a scale inhibitor is stored in the tank 21.
  • a scale inhibitor suppresses the formation of crystal nuclei in the water to be treated, and is adsorbed on the surface of crystal nuclei (seed crystals, small-diameter scales that exceed the saturation concentration) contained in the water to be treated. It has a function of suppressing growth.
  • the scale inhibitor also has a function of dispersing (preventing aggregation) particles in the water to be treated such as precipitated crystals.
  • Scale inhibitors include phosphonic acid scale inhibitors, polycarboxylic acid scale inhibitors, and mixtures thereof.
  • An example of the scale inhibitor is FLOCON260 (trade name, manufactured by BWA).
  • the scale inhibitor supply unit 20 and the second pH adjustment unit 30 are connected to the upstream flow path of the first desalting apparatus 10.
  • a first pH adjusting unit 40 is connected to a flow path between the first desalting apparatus 10 and the crystallization unit 11.
  • the first pH adjusting unit 40 may be configured to be connected to the crystallization tank 13.
  • a precipitation unit 71 and a filtration device 72 may be installed upstream of the scale inhibitor supply unit 20 and the second pH adjustment unit 30.
  • the oxidation part 73 may be installed upstream of the precipitation part 71, as shown in FIG.
  • a precipitation unit 81 and a filtration device 82 are installed between the separation unit 14 and the second demineralizer 12.
  • the precipitation part 81 and the filtration apparatus 82 are the same structures as the precipitation part 71 and the filtration apparatus 72, respectively.
  • a third pH adjusting unit 50 is installed in the flow path between the filtration device 82 and the second desalting device 12.
  • PH meters 70a to 70c are installed at the inlet of the first desalting apparatus 10, the crystallization tank 13, and the inlet of the second desalting apparatus 12, respectively.
  • the second pH adjusting unit 30 includes a tank 31, a valve V2, and a control unit 32, and an acid is stored in the tank 31 as a pH adjusting agent.
  • the control unit 32 is connected to the valve V2 and the pH meter 70a.
  • the first pH adjusting unit 40 includes a tank 41, a valve V3, and a control unit 42, and an acid is stored in the tank 41 as a pH adjusting agent.
  • the controller 42 is connected to the valve V3 and the pH meter 70b.
  • the second pH adjusting unit can be omitted, and only the first pH adjusting unit 40 may be provided between the first desalting apparatus 10 and the crystallization unit 11.
  • the second pH adjusting unit is omitted, and the first pH adjusting unit 40 is located on the upstream side of the first desalting apparatus 10 (the position where the second pH adjusting unit is provided in FIG. 1).
  • the example of a structure installed in () may be sufficient.
  • the control unit 42 of the first pH adjusting unit 40 is connected to the pH meters 70a and 70b. In this modification, no pH adjusting unit is provided between the first desalting apparatus 10 and the crystallization unit 11.
  • the kind of acid as a pH adjuster stored in the second pH adjusting unit 30 and the first pH adjusting unit 40 is not particularly limited, it is preferably sulfuric acid. This is because SO 4 2 ⁇ derived from sulfuric acid is removed by the subsequent crystallization unit 11 to suppress an increase in power in the second desalting apparatus 12.
  • the third pH adjusting unit 50 includes a tank 51, a valve V5, and a control unit 52, and an acid is stored in the tank as a pH adjusting agent.
  • the kind of acid stored in the tank 51 is not particularly limited.
  • the controller 52 is connected to the valve V5 and the pH meter 70c.
  • a seed crystal supply unit 60 is connected to the crystallization tank 13.
  • the seed crystal supply unit 60 includes a seed crystal tank 61, a valve V4, and a control unit 62.
  • the control unit 62 is connected to the valve V4.
  • the seed crystal tank 61 stores gypsum particles as seed crystals. If no seed crystal is added, the seed crystal supply unit 60 can be omitted.
  • a method for treating the water to be treated using the water treatment system 1 of the first embodiment will be described below.
  • ⁇ Pretreatment> When the water to be treated is mine wastewater, air is introduced into the water to be treated in the oxidation unit 73. By this step, pyrite (FeS 2 ) in the water to be treated is oxidized, and Fe ions (Fe 3+ ) and SO 4 2 ⁇ ions are generated.
  • a step of removing oil or suspended particles or a step of removing organic substances by biological treatment or chemical oxidation treatment is performed. .
  • metal ions in the water to be treated are roughly removed as metal hydroxides.
  • Mine wastewater is highly acidic.
  • Ca (OH) 2 and an anionic polymer (manufactured by Mitsubishi Heavy Industries Mechatronics Systems Co., Ltd., trade name: Hishiflock H305) are introduced into the water to be treated in the precipitation part 71, and the pH in the precipitation part 71 is alkaline (8.5 to 11).
  • the solubility of calcium carbonate and metal hydroxide is low.
  • the calcium carbonate and the metal hydroxide are supersaturated, the calcium carbonate and the metal hydroxide are precipitated and are deposited at the bottom of the precipitation portion 71.
  • the solubility of the metal hydroxide depends on the pH.
  • the solubility of metal ions in water increases with acidity. Since the solubility of many metal hydroxides is low in the above pH range, the metal contained in the water to be treated precipitates as a metal hydroxide at the bottom of the precipitation part 71.
  • the water to be treated which is the supernatant liquid in the precipitation unit 71, is discharged from the precipitation unit 71.
  • FeCl 3 is added to the discharged water to be treated, and solids such as calcium carbonate and metal hydroxide in the water to be treated are aggregated with Fe (OH) 3 .
  • the treated water is supplied to the filtration device 72.
  • the solid content obtained by aggregating Fe (OH) 3 is removed by the filtration device 72.
  • Fe is acidic among metals and tends to precipitate as a hydroxide.
  • a scale containing Fe is generated in the first desalting apparatus 10
  • iron hydroxide is generated in the crystallization tank 13. Etc. precipitate.
  • the Fe ion concentration in the for-treatment water after pretreatment and before flowing into the first desalting apparatus 10 is 0.05 ppm.
  • the processing conditions in the precipitation unit 71, the amount of FeCl 3 added, and the like are appropriately set so as to be as follows. Note that the pretreatment can be omitted depending on the quality of the water to be treated.
  • the controller 22 of the scale inhibitor supply unit 20 opens the valve V1 and supplies a predetermined amount of scale inhibitor from the tank 21 to the water to be treated.
  • the control unit 22 adjusts the opening degree of the valve V1 so that the concentration of the scale inhibitor becomes a predetermined value set according to the property of the water to be treated.
  • the control part 32 of the 2nd pH adjustment part 30 manages pH of the to-be-processed water in the 1st desalination apparatus 10 entrance to the value by which precipitation of the scale (gypsum, calcium carbonate) containing Ca is suppressed with a scale inhibitor. To do.
  • the pH meter 70a measures the pH of the water to be treated at the inlet of the first desalting apparatus 10.
  • the control unit 32 adjusts the opening degree of the valve V2 so that the measured value of the pH meter 70a becomes a predetermined pH management value. In the modification in which the second pH adjusting unit is not provided, the second pH adjusting step is omitted.
  • the to-be-processed water in which pH was adjusted is processed.
  • the water that has passed through the reverse osmosis membrane of the first desalting apparatus 10 is recovered as treated water. Ions and scale inhibitors contained in the water to be treated cannot pass through the reverse osmosis membrane. Therefore, the non-permeate side of the reverse osmosis membrane is concentrated water having a high ion concentration.
  • the concentrated water of the first desalting apparatus 10 is fed toward the crystallization tank 13. For example, when other desalting apparatuses such as an electrostatic desalting apparatus are used, the water to be treated is separated into treated water and concentrated water having a high ion concentration.
  • the control unit 42 manages the pH of the concentrated water of the first demineralizer in the crystallization tank 13 so that the function of the scale inhibitor is reduced and the gypsum in the concentrated water can be precipitated.
  • the pH meter 70 b measures the pH of the concentrated water of the first desalting apparatus in the crystallization tank 13.
  • the control unit 42 adjusts the opening degree of the valve V3 so that the measured value of the pH meter 70b becomes a predetermined pH management value.
  • ⁇ Crystal crystallization process> The concentrated water whose pH has been adjusted by the first pH adjusting step is stored in the crystallization tank 13.
  • the seed crystal supply unit 60 adds the seed crystal to the concentrated water in the crystallization tank 13.
  • the function of the scale inhibitor is reduced by the first pH adjustment step. For this reason, the supersaturated gypsum crystallizes.
  • gypsum grows using the seed crystals as nuclei.
  • FIG. 2 is a graph for explaining the pH dependence of the solubility of calcium carbonate.
  • Stiff & Davis Stability Index S & DSI
  • the horizontal axis represents pH and the vertical axis represents S & DSI.
  • the reverse osmosis membrane apparatus is mentioned in FIG. 2 as an example, the same result is obtained with the other desalting apparatuses listed above.
  • FIG. 3 shows simulation results of changes in the amount of precipitated calcium carbonate due to pH changes using simulation software manufactured by OLI.
  • the horizontal axis represents pH
  • the vertical axis represents calcium carbonate precipitation (mol). According to FIG. 3, it can be understood that calcium carbonate starts to precipitate between pH 5.8 and 5.9, and the amount of precipitation rapidly increases between pH 6.0 and 6.5.
  • FIGS. 2 and 3 are simulation results using different water sources, the precipitation conditions of calcium carbonate in water are affected by not only the calcium ion concentration but also the carbonate ion component, resulting in a shift in pH.
  • the pH is 6.5 or less, preferably pH 6.0 or less, and more preferably pH 5.5 or less, the solubility of calcium carbonate is high, and the calcium carbonate can be sufficiently dissolved in water.
  • FIG. 4 shows that the pH of the simulated water was changed when a scale inhibitor (FLOCON260) was added to the simulated water (including Ca 2+ , SO 4 2 ⁇ , Na + , Cl ⁇ ) in which the gypsum is supersaturated. It is the result of conducting a gypsum precipitation experiment.
  • the experimental conditions are as follows. Simulated water gypsum supersaturation (25 ° C): 460%, Scale inhibitor addition amount: 2.1 mg / L, pH: 6.5 (condition 1), 5.5 (condition 2), 4.0 (condition 3), 3.0 (condition 4), Seed crystal addition amount: 0 g / L.
  • the Ca concentration in the simulated water treated under each condition was measured using an atomic absorption analyzer (manufactured by Shimadzu Corporation, AA-7000). 4 shows. In the figure, the vertical axis represents the degree of supersaturation (%).
  • condition 1 the degree of supersaturation is 460%, and there is no change from the initial degree of supersaturation even after 6 hours.
  • condition 1 the scale inhibitor exhibits a function and the precipitation of gypsum is suppressed.
  • conditions 2 to 4 the degree of supersaturation is reduced. That is, even if no seed crystal was added, it was confirmed that when the pH was reduced, the function of the scale inhibitor was reduced and the gypsum precipitated. Moreover, the result that the precipitation rate was so large that pH was low was obtained.
  • FIG. 5 shows the results of a gypsum precipitation experiment in which the amount of seed crystals added was changed when a scale inhibitor (FLOCON 260) was added to simulated water.
  • the experimental conditions were the same as those in FIG. 4 except that the pH was 4.0 and CaSO 4 .2H 2 O was added as a seed crystal in the following amounts.
  • Seed crystal addition amount 0 g / L (condition 3), 3 g / L (conditions 5 and 7), 6 g / L (condition 6).
  • Under conditions 5 and 6 seed crystals and sulfuric acid for pH adjustment were added to the simulated water to which the scale inhibitor was added.
  • Condition 7 seed crystals previously immersed in the scale inhibitor were added to the simulated water to which the scale inhibitor was added, and sulfuric acid was added for pH adjustment.
  • the Ca concentration in the simulated water treated under each condition was measured by the same method as in FIG. In FIG. 5, the vertical axis represents the degree of supersaturation (%).
  • the supersaturation degree was 215% in condition 3 where no seed crystal was added, but the supersaturation degree was 199% (condition 5) and 176% (condition 6) as the seed crystal concentration increased. It was shown that the rate of gypsum deposition increased.
  • Conditions 5 and 7 are the same test conditions except that a seed crystal not immersed in the scale inhibitor and a seed crystal immersed therein are used. The supersaturation degree was 199% even under condition 7 in which the scale inhibitor was previously attached to the seed crystal, and it was confirmed that gypsum of the same degree as that in condition 5 was precipitated. That is, from the results of Conditions 5 and 7, it was shown that the function of the scale inhibitor is reduced by reducing the pH to 4.0.
  • the pH at which the salt containing Ca (gypsum, calcium carbonate) can be dissolved and the function of the scale inhibitor is exhibited (FIGS. 2 to 5).
  • the water to be treated is adjusted to pH 6.5 or less, preferably 6.0 or less, and more preferably 5.5 or less.
  • Carbonate in the water to be treated is in the following equilibrium state depending on the pH of the water to be treated.
  • the pH is as low as 6.5 or lower, carbonic acid is present mainly in the form of HCO 3 ⁇ and CO 2 in the water to be treated.
  • the water to be treated is adjusted to the above pH, carbonic acid in the water to be treated exists as HCO 3 ⁇ and CO 2 , and the treated water containing CO 2 is recovered by the first desalting apparatus 10. Since the concentration of carbonate ions in the concentrated water of the first desalting apparatus 10 is reduced, the calcium carbonate is kept at a concentration sufficiently lower than the saturation solubility. The gypsum concentration in the concentrated water exceeds the saturation concentration, but the scale formation in the concentrated water is suppressed by the dispersion scale inhibitor.
  • the pH of the concentrated water in the first desalting apparatus 10 is 6.0 or less, preferably It is adjusted to 5.5 or less, more preferably 4.0 or less.
  • the function of the scale inhibitor can be significantly reduced.
  • the pH lower limit value in the second pH adjustment step and the pH upper limit value in the first pH adjustment step are appropriately set.
  • FIG. 6 and 7 are photomicrographs of gypsum obtained by crystallization.
  • FIG. 6 shows the result of Condition 5 (with seed crystal addition)
  • FIG. 7 shows the result of Condition 3 (without seed crystal addition).
  • gypsum larger than condition 3 was deposited.
  • the larger the precipitated gypsum the lower the water content.
  • the “average particle diameter” in the present invention is a particle diameter measured by a method (laser diffraction method) defined in JIS Z 8825.
  • high-purity gypsum having a low water content can be precipitated by adjusting the pH to a predetermined value in the first pH adjustment step and adding a seed crystal in the crystallization step.
  • the larger the amount of seed crystals added (the higher the seed crystal concentration in the crystallization tank 13), the higher the rate of precipitation of gypsum.
  • the addition amount of the seed crystal is appropriately set based on the residence time in the crystallization tank 13 and the concentration and pH of the scale inhibitor.
  • the water to be treated and the concentrated water come into contact with the air and carbonate ions dissolve in the water.
  • the water to be treated and the concentrated water are adjusted to a pH at which the solubility of calcium carbonate is high in the first pH adjusting step and the second pH adjusting step.
  • Carbonate ions in the concentrated water are reduced in the previous stage of the crystallization tank 13 or in the crystallization tank 13, and the calcium carbonate is below the saturation solubility.
  • the pH is in a low region, the environment in which the carbonate ion concentration is low is obtained from the equilibrium equation (1). For this reason, in the crystallization tank 13, calcium carbonate is maintained at a concentration sufficiently lower than the saturation concentration, and calcium carbonate does not crystallize. For this reason, the recovered gypsum contains almost no calcium carbonate.
  • the solubility of the salt containing a metal is high in an acidic region. Even if it is a case where a metal remains in to-be-processed water even if it passes through pre-processing (precipitation part 71), if the pH of the concentrated water of the 1st desalination apparatus 10 is reduced as mentioned above by the 1st pH adjustment process. In the crystallization step, the metal-containing hydroxide does not precipitate. Further, when the water to be treated has a property containing a large amount of Fe ions, since the Fe concentration is reduced through the above-described pretreatment, the hydroxide containing Fe (OH) 3 in the crystallization tank 13 is reduced. Almost no precipitation.
  • the crystallization speed When crystallizing a large gypsum having an average particle size of 10 ⁇ m or more, preferably 20 ⁇ m or more, the crystallization speed generally decreases, so the residence time in the crystallization tank 13 becomes longer.
  • the pH is adjusted so as to reduce the function of the scale inhibitor, and the seed crystal concentration is increased to ensure an appropriate crystallization rate.
  • ⁇ Recovery process> Concentrated water containing gypsum is discharged from the crystallization tank 13 and fed to the separation unit 14.
  • the classifier 15 separates gypsum from the concentrated water of the first demineralizer discharged from the crystallization tank 13. Gypsum having an average particle size of 10 ⁇ m or more settles at the bottom of the classifier 15, and gypsum having a small particle size remains in the supernatant.
  • the gypsum settled on the bottom of the classifier 15 is further dehydrated by the dehydrator 16 and collected.
  • the recovery process gypsum having a low water content and no impurities can be separated and recovered at a high recovery rate.
  • seed crystals are added for crystallization, gypsum having an average particle size of 10 ⁇ m or more is mainly precipitated, and the proportion of small-diameter gypsum is reduced.
  • the concentrated water in the crystallization tank 13 is discharged from the bottom. Crystallized large gypsum settles in the concentrated water at the bottom of the crystallization tank 13. If the concentrated water mainly containing large gypsum is dehydrated by the dehydrator 16, high-purity gypsum can be recovered. Further, since the water content of gypsum is low, it is not necessary to increase the volume of the dehydrator 16.
  • the concentrated water discharged from the separation unit 14 is fed to the precipitation unit 81 and the filtration device 82.
  • the gypsum and calcium carbonate remaining in the concentrated water after the separation step and the metal hydroxide remaining in the concentrated water are removed in the same process as the precipitation unit 71 and the filtration device 72.
  • the concentrated water of the first demineralizer discharged from the filtration device 82 is supplied to the second demineralizer 12. Before flowing into the second desalinator 12, an additional scale inhibitor may be added to the concentrated water of the first desalter.
  • the pH meter 70c measures the pH of the concentrated water of the first desalting device at the inlet of the second desalting device 12.
  • the control unit 52 of the third pH adjusting unit 50 adjusts the opening degree of the valve V5 so that the measured value by the pH meter 70c is pH 6.0 or less, preferably 5.5 or less, and Supply acid to concentrated water.
  • the concentrated water from the first desalting apparatus is processed.
  • the water that has passed through the reverse osmosis membrane of the second desalting apparatus 12 is recovered as treated water.
  • the concentrated water of the second desalting apparatus 12 is discharged out of the system.
  • the 2nd desalination apparatus 12 If the 2nd desalination apparatus 12 is installed, since a treated water can be further collect
  • the concentrated water from the first desalting apparatus 10 has a low ion concentration because gypsum has been removed by the treatment in the crystallization unit 11. For this reason, since the 2nd desalination apparatus 12 can make an osmotic pressure low compared with the case where gypsum is not removed, required motive power is reduced.
  • An evaporator (not shown in FIG. 1) may be installed downstream of the second desalting apparatus 12 on the concentrated water side.
  • water is evaporated from the concentrated water, and ions contained in the concentrated water are precipitated as a solid and recovered as a solid. Since water is collected on the upstream side of the evaporator and the amount of concentrated water is significantly reduced, the evaporator can be made smaller and the energy required for evaporation can be reduced.
  • FIG. 8 shows a water treatment system according to the second embodiment of the present invention.
  • a plurality of first desalting apparatuses (10a and 10b in FIG. 8) and crystallization units (11a and 11b in FIG. 8) are alternately arranged in series in the flow direction of the water to be treated.
  • the second desalting apparatus 12 is installed downstream of the most downstream crystallization part 11b.
  • the scale inhibitor supply unit 20 is provided only in the upstream channel of the first desalter 10a as shown in FIG. Can be installed.
  • the scale inhibitor supply part is installed in the flow path near the upstream side of the plurality of first demineralizers 10a and 10b, respectively, and a configuration capable of securing an effective scale inhibitor amount before reaching the second desalter 12 It is also good.
  • 2nd pH adjustment part 30a, 30b is installed in the upstream flow path of each 1st desalination apparatus 10a, 10b.
  • the first pH adjusting units 40a and 40b are respectively installed in the flow paths between the first desalting apparatus and the crystallization unit.
  • the second pH adjusting unit can be omitted.
  • the classifier may be omitted, and the bottom of the crystallization tank 13 and the dehydrator 16 may be directly connected.
  • the pH meters are respectively installed at the inlets of the first desalting apparatuses 10 a and 10 b, the crystallization units 11 a and 11 b, and the second desalting apparatus 12.
  • a precipitation part 71b and a filtration device 72b similar to those in FIG. 1 may be installed. Further, an evaporator or a crystallizer may be provided on the downstream side of the concentrated water of the second desalting apparatus 12.
  • FIG. 9 is a schematic view of a water treatment system according to the third embodiment of the present invention.
  • the water treatment system 200 of the third embodiment is the same as that of the first embodiment except that it includes a seed crystal circulation unit 210 that connects the classifier 15 and the dehydrator 16 and the tank 61 of the seed crystal supply unit 60.
  • the second pH adjusting unit can be omitted.
  • Gypsum having an average particle size of 10 ⁇ m or more, preferably 20 ⁇ m or more is separated from the concentrated water by the classifier 15.
  • Part of the gypsum recovered by the classifier 15 and the dehydrator 16 of the separation unit 14 is supplied to the seed crystal tank 61 via the seed crystal circulation unit 210 and stored in the seed crystal tank 61.
  • the recovered gypsum is supplied from the seed crystal tank 61 to the crystallization tank 13.
  • the stored gypsum is subjected to acid treatment.
  • the function of the adhesion scale inhibitor is reduced by acid treatment.
  • the type of acid used here is not particularly limited, but sulfuric acid is optimal in consideration of power reduction in the second desalinator 12.
  • the gypsum crystallized in the crystallization tank 13 has a wide particle size distribution, but since the gypsum of 10 ⁇ m or more is separated and recovered from the concentrated water by the classifier 15, a large gypsum can be used as a seed crystal. If a large seed crystal is added, a large amount of large gypsum can be crystallized. That is, it is possible to obtain high-quality gypsum with a high recovery rate.
  • the large gypsum can be easily separated by the classifier 15, and the classifier 15 can be miniaturized, and the power can be reduced. Large gypsum can be easily dehydrated by the dehydrator 16, thereby reducing the size of the dehydrator 16 and reducing power.

Abstract

 高イオン除去率かつ高水回収率で塩類を含む水を処理して処理水を回収するとともに、高品質の石膏を回収することができる水処理方法及び水処理システムを提供する。水処理システム(1)において、Ca2+及びSO 2-を含む被処理水が、第1脱塩装置(10)においてCa2+及びSO 2-が濃縮された濃縮水とCOを含む処理水とに分離され、処理水が回収される。第1脱塩装置(10)の濃縮水は、炭酸カルシウムが溶解可能であり、かつ、スケール防止剤のスケール防止機能が低減されるpHに調整されて晶析槽(13)に送給される。晶析槽(13)で第1脱塩装置(10)の濃縮水から石膏が晶析する。石膏は分離部(14)で分離回収される。

Description

水処理方法及び水処理システム
 本発明は、Caイオン(Ca2+)、硫酸イオン(SO 2-)及び炭酸イオンを含む被処理水を再生させる水処理方法及び水処理システムに関する。
 鉱山廃水にはパイライト(FeS)が含まれており、このパイライトが酸化されてSO 2-が生成する。鉱山廃水を中和するために安価なCa(OH)が用いられる。このため、鉱山廃水にはCa2+及びSO 2-が豊富に含まれている。
 かん水、下水、工場廃水にもCa2+及びSO 2-が豊富に含まれていることが知られている。また、冷却塔においては、ボイラなどから排出された高温の排ガスと冷却水との間で熱交換が行われる。この熱交換により冷却水の一部が蒸気となるため、冷却水中イオンが濃縮される。従って、冷却塔から排出された冷却水(ブローダウン水)は、Ca2+やSO 2-などのイオン濃度が高い状態となっている。
 イオンを多量に含む水は、脱塩処理が施されてから環境中に放出される。Ca2+を除去する方法として、ライムソーダ法がある。ライムソーダ法では、被処理水に炭酸ナトリウムが添加され、被処理水中のCa2+が炭酸カルシウムとして沈殿除去される。
 特許文献1は、Ca2+及びSO 2-を含む原水を処理するための水処理方法及び水処理装置を開示する。特許文献1では、2価イオンとしてCa2+、SO 2-を含む原水をナノろ過膜装置に通過させることによって、Ca2+及びSO 2-と1価イオン(Na、Clなど)とを分離している。ナノろ過膜装置の処理水には1価イオンが含まれるが、後段の逆浸透膜装置に通過させることにより1価イオンが除去された処理水を得ている。ナノろ過膜装置の濃縮水の一部をナノろ過膜装置に循環させる構成として、2価イオンを飽和濃度以上まで濃縮した後、濃縮液中に種結晶を添加してCa2+及びSO 2-を石膏として晶析させることにより、Ca2+及びSO 2-を除去している。
特開2011-200788号公報
 ライムソーダ法は処理のために炭酸ナトリウムを添加する必要があるために処理コストが高い。
 例えばライムソーダ法によりCa2+が除去された後の水を逆浸透膜装置などの脱塩装置と組み合わせて更にイオン分を除去する処理を行う場合、処理水中のNa+が増加する及びSO 2-が除去できず、SO 2-が残留するため、浸透圧が高くなることが問題となっていた。また、水の回収率が低下するという問題もあった。
 特許文献1の装置ではCa2+及びSO 2-が濃縮されるためにナノろ過膜装置で石膏がスケールとして析出し処理能力が低下する恐れがある。
 また、特許文献1の処理では被処理水中に空気等由来のCO 2-が含まれる。晶析により炭酸カルシウムと石膏とが共沈するが、特許文献1の技術では炭酸カルシウムと石膏とが分離されていない。従って、特許文献1の装置で回収される石膏の純度は低い。回収される石膏を他用途に利用するためには精製する必要があり、コスト増加に繋がる。このため、鉱山廃水等から回収される石膏の他用途への利用は阻害されていた。
 本発明は、高イオン除去率かつ高水回収率で塩類を含む水を処理して処理水を回収するとともに、高品質の石膏を回収することができる水処理方法及び水処理システムを提供することを目的とする。
 本発明の一態様は、Caイオン、SOイオン及び炭酸イオンを含む被処理水に対して、スケール防止剤が供給されるスケール防止剤供給工程と、第1脱塩装置において、前記Caイオン及び前記SOイオンが濃縮された濃縮水とに分離され、前記処理水が回収される上流側分離工程と、前記第1脱塩装置の濃縮水が、炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤のスケール防止機能が低減されて前記第1脱塩装置の濃縮水から石膏が析出可能であるpHに調整される第1pH調整工程と、前記pHが調整された第1脱塩装置の濃縮水から前記石膏の結晶が晶析する晶析工程と、前記結晶が前記第1脱塩装置の濃縮水から分離回収される回収工程とを含む水処理方法である。
 本発明の別の一態様は、 Caイオン、SOイオン及び炭酸イオンを含む被処理水に対して、スケール防止剤を供給するスケール防止剤供給部と、前記スケール防止剤供給部の下流側に設置され、前記被処理水を前記COを含む処理水と前記Caイオン及び前記SOイオンが濃縮された濃縮水とに分離する第1脱塩装置と、前記第1脱塩装置の下流側に設けられ、前記第1脱塩装置の濃縮水にpH調整剤を供給して、前記第1脱塩装置の濃縮水を、炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤のスケール防止機能が低減されて石膏が析出可能なpHに調整する第1pH調整部と、前記pHが調整された第1脱塩装置の濃縮水から前記石膏を晶析させる晶析槽と、前記晶析した石膏と前記第1脱塩装置の濃縮水とを分離する分離部とを備える水処理システムである。
 本発明では、第1脱塩装置で被処理水が、Ca2+及びSO 2-を含む濃縮水と処理水とに分離される。第1脱塩装置の濃縮水は、炭酸カルシウムが溶解可能であり、スケール防止剤の機能が低減されるpHに調整される。本発明における「炭酸カルシウムが溶解可能」とは、炭酸カルシウムが水中で析出する量が少なく、石膏の純度に影響を与えないことを指す。
 一般に炭酸カルシウムは酸性で溶解することが知られている。従って、濃縮水のpHは酸性領域に調整される。このため、濃縮水から炭酸カルシウムの析出が大幅に抑制される。
 上述のpHに調整された濃縮水が晶析槽に送給される。スケール防止剤が濃縮水中に存在していても機能が低減されているために、石膏が飽和濃度を超えていると石膏の結晶が析出する。
 本発明に依れば、Caイオン、SOイオン及び炭酸イオンを含む被処理水を高い水回収率で処理できるとともに、水処理の過程で高純度の石膏を回収することができる。
 上記態様の水処理方法において、前記第1脱塩装置の上流側で、前記被処理水が、前記炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤がCaを含むスケールの析出を抑制可能であるpHに調整される第2pH調整工程を更に備えることが好ましい。
 上記態様の水処理システムにおいて、前記第1脱塩装置の上流側に設置され、前記被処理水にpH調整剤を供給して、前記炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤がCaを含むスケールの析出を抑制可能であるpHに調整する第2pH調整部を更に備えることが好ましい。
 第1脱塩装置の上流側で被処理水のpHを上述のように調整すれば、被処理水中の炭酸を、HCO -、COとしてから第1脱塩装置で脱塩処理することになる。第1脱塩装置の濃縮水中の炭酸カルシウム濃度が低減することになり、更には、スケール防止剤の効果によって第1脱塩装置での炭酸カルシウムの析出が抑制される。また、第1脱塩装置での石膏の析出も抑制される。
 上記態様の水処理方法において、前記第1脱塩装置の濃縮水に前記石膏の種結晶が供給されることが好ましい。
 上記態様の水処理システムにおいて、前記晶析槽に前記石膏の種結晶を供給する種結晶供給部を更に供えることが好ましい。
 種結晶を添加すると、種結晶を核として石膏が成長し、大きい石膏を析出させることができ、石膏の含水率が低下して含水中に含まれる塩類が低減でき高純度の石膏が得られる。また、分離部の分級機と脱水機を小さくできる。
 上記態様の水処理方法では、前記晶析工程において、前記分離回収された石膏が、前記種結晶として前記第1脱塩装置の濃縮水中に供給されても良い。
 上記態様の水処理システムにおいて、前記分離部で分離され回収された前記石膏を、前記種結晶として前記種結晶供給部に供給する種結晶循環部を更に備えることができる。
 上記構成とすれば、高品質の石膏を、運転費用を抑えて低コストで回収することができる。
 上記態様の水処理方法において、前記回収工程において、前記晶析工程で析出した前記石膏のうち所定の大きさの石膏が分離回収されることが好ましい。
 上記態様の水処理システムにおいて、前記分離部が、前記晶析槽で析出した前記石膏のうち所定の大きさの石膏を回収する分級機を備えることが好ましい。
 石膏の粒径が大きいほど、石膏の含水率が低下する。種結晶を用いて晶析させることにより、所定粒径以上の石膏が晶析しやすくなるので、含水率が低くなって石膏の含水中に含まれる塩類が低減できる。このため、高純度の石膏を回収することが可能となる。
 上記態様の水処理方法において、前記晶析工程後の前記第1脱塩装置の濃縮水が、第2脱塩装置において濃縮水と処理水とに分離され、前記処理水が回収される下流側分離工程とを含むことが好ましい。この場合、前記第2脱塩装置の濃縮水の下流側において、前記第2脱塩装置の濃縮水から水を蒸発させて固体が回収されることが好ましい。
 上記態様の水処理システムにおいて、前記分離部の下流側に設置され、前記第1脱塩装置の濃縮水を、濃縮水と処理水とに分離する第2脱塩装置とを備えることが好ましい。この場合、前記第2脱塩装置の濃縮水側の下流に、前記第2脱塩装置の濃縮水から水を蒸発させて固体を回収する蒸発器を更に備えることが好ましい。
 第2脱塩装置を設けることにより、水回収率を更に向上させることができる。また、発明では、晶析部によって被処理水中のイオン濃度が大幅に低減されるため、第2脱塩装置への塩類の流入量を低減することができる。このため、第2脱塩装置の動力を低減することができる。
 本発明によれば、スケール防止剤を添加し、pH調整により炭酸カルシウムが溶解可能であり、スケール防止剤の機能を発現させることにより脱塩装置での炭酸カルシウム、石膏のスケール発生を防止しながら高い水回収率で被処理水を再生させることができる。
 本発明は、Ca2+及びSO 2-を含む濃縮水をpH調整によりスケール防止剤の機能を低減させることにより石膏が析出しやすい状況として、晶析において高純度の石膏を分離回収できる。回収された石膏は再利用することが可能となる。
 また、被処理水中のCa2+及びSO 2-を晶析部で除去するために、第2脱塩装置への塩類の流入量を下げることができる。
第1実施形態に係る水処理システムの概略図である。 炭酸カルシウムのStiff&Davis Stability IndexのpH依存性を説明するグラフである。 pH変化による炭酸カルシウム析出量変化のシミュレーション結果である。 石膏が過飽和状態にある模擬水を用いて、模擬水のpHを変えて石膏析出実験を行った結果である。 石膏が過飽和状態にある模擬水を用いて、種結晶の濃度を変えて石膏析出実験を行った結果である。 条件5で晶析した石膏の顕微鏡写真である。 条件3で晶析した石膏の顕微鏡写真である。 第2実施形態に係る水処理システムの概略図である。 第3実施形態に係る水処理システムの概略図である。
 本発明の処理対象となる水(被処理水)はCa2+及びSO 2-を含み、石膏が飽和溶解度を超える水質、もしくは水処理により石膏が飽和溶解度を超える水質である。例えば、被処理水は鉱山廃水、かん水、下水、工場廃水、冷却塔のブローダウン水などである。
 被処理水は空気等に由来する炭酸イオン(CO 2-)を含んでいる。
[第1実施形態]
 図1は、本発明の第1実施形態に係る水処理システムの概略図である。第1実施形態の水処理システム1は、晶析部11を備える。晶析部11の上流側に第1脱塩装置10が設置され、下流側に第2脱塩装置12が設置される。本実施形態の水処理システム1では、第1脱塩装置10の濃縮側と晶析槽13とが接続されている。
 図1では、第1脱塩装置10及び第2脱塩装置12を1つのみ示しているが、それぞれ複数の脱塩装置が被処理水の流通方向に並列または直列に連結される構成とされても良い。
 図1では第1脱塩装置10及び第2脱塩装置12は逆浸透膜装置であるが、例えば電気透析装置(ED)、極性転換式電気透析装置(EDR)、電気再生式純水装置(EDI)、イオン交換樹脂装置、静電脱塩装置(CDI)、ナノフィルター(NF)、蒸発器なども適用可能である。
 晶析部11は、被処理水の上流側から順に晶析槽13及び分離部14で構成されている。図1では、分離部14は分級機15と脱水機16とで構成される。分級機15は、例えば液体サイクロンとされる。脱水機16は例えばベルトフィルタ16とされる。
 なお、本実施形態の変形例として、分級機は省略可能である。この場合、晶析槽13の底部と脱水機16とが直接接続される構成とされる。
 スケール防止剤供給部20は、タンク21、バルブV1、及び、制御部22で構成されている。制御部22はバルブV1に接続する。タンク21内にはスケール防止剤が貯蔵されている。スケール防止剤とは、被処理水中で結晶核生成を抑制するとともに、被処理水中に含まれる結晶核(種結晶や飽和濃度を超えて析出した小径のスケールなど)の表面に吸着して、結晶成長を抑制する機能を有するものである。また、スケール防止剤は、析出した結晶などの被処理水中の粒子を分散させる(凝集を防止する)機能も有する。スケール防止剤は、ホスホン酸系スケール防止剤、ポリカルボン酸系スケール防止剤、及びこれらの混合物等である。スケール防止剤の例として、FLOCON260(商品名、BWA社製)が挙げられる。
 第1脱塩装置10の上流側の流路にスケール防止剤供給部20及び第2pH調整部30が接続されている。第1脱塩装置10と晶析部11との間の流路に第1pH調整部40が接続されている。第1pH調整部40は、晶析槽13に接続される構成としても良い。
 本実施形態の水処理システム1において、スケール防止剤供給部20及び第2pH調整部30の上流において、沈殿部71及びろ過装置72が設置されても良い。例えば鉱山廃水を処理する場合は、図1に示すように沈殿部71の上流に酸化部73が設置されていても良い。
 分離部14と第2脱塩装置12との間に、沈殿部81及びろ過装置82が設置される。沈殿部81及びろ過装置82は、それぞれ沈殿部71及びろ過装置72と同じ構成である。ろ過装置82と第2脱塩装置12との間の流路に、第3pH調整部50が設置される。
 第1脱塩装置10の入口、晶析槽13、及び、第2脱塩装置12の入口に、それぞれpH計70a~70cが設置される。
 第2pH調整部30は、タンク31、バルブV2、及び、制御部32で構成されており、タンク31内にはpH調整剤として酸が貯蔵されている。制御部32はバルブV2及びpH計70aに接続する。
 第1pH調整部40は、タンク41、バルブV3、及び、制御部42で構成されており、タンク41内にはpH調整剤として酸が貯蔵されている。制御部42はバルブV3及びpH計70bに接続する。
 本実施形態の変形例として、第2pH調整部は省略可能であり、第1pH調整部40のみが第1脱塩装置10と晶析部11との間に設けられていても良い。
 本実施形態の別の変形例として、第2pH調整部は省略され、第1pH調整部40が第1脱塩装置10の上流側の流路(図1で第2pH調整部が設けられている位置)に設置される構成例であっても良い。この場合、第1pH調整部40の制御部42はpH計70a,70bに接続される。なお、この変形例では、第1脱塩装置10と晶析部11との間にはpH調整部は設けられない。
 第2pH調整部30及び第1pH調整部40に貯蔵されるpH調整剤としての酸の種類は特に限定されないが、硫酸であることが好ましい。これは、硫酸由来のSO 2-が後段の晶析部11で除去されて、第2脱塩装置12での動力増大を抑制するためである。
 第3pH調整部50は、タンク51、バルブV5、及び、制御部52で構成されており、タンク内にはpH調整剤として酸が貯蔵されている。タンク51に貯蔵される酸の種類は特に限定されない。制御部52はバルブV5及びpH計70cに接続する。
 晶析槽13に種結晶供給部60が接続される。種結晶供給部60は、種結晶タンク61、バルブV4、及び、制御部62を有する。制御部62はバルブV4に接続する。種結晶タンク61は、種結晶として石膏粒子を貯蔵する。なお、種結晶を投入しない場合は、種結晶供給部60を省略することができる。
 第1実施形態の水処理システム1を用いて、被処理水を処理する方法を以下で説明する。
<前処理>
 被処理水が鉱山廃水である場合、酸化部73において被処理水中に空気が導入される。この工程により、被処理水中のパイライト(FeS)が酸化され、Feイオン(Fe3+)、SO 2-イオンが生じる。
 被処理水が工業排水などである場合は、酸化部73での酸化処理に代えて、油分や浮遊粒子等を除去する工程や、生物処理あるいは化学酸化処理により有機物を除去する工程が実施される。
 沈殿部71及びろ過装置72において、被処理水中の金属イオンが金属水酸化物として粗除去される。
 鉱山廃水は、強い酸性を示す。沈殿部71で被処理水にCa(OH)及びアニオン系ポリマー(三菱重工メカトロシステムズ(株)製、商品名:ヒシフロックH305)が投入され、沈殿部71内のpHはアルカリ性(8.5~11)に管理される。
 このpH領域では炭酸カルシウム及び金属水酸化物の溶解度は低い。炭酸カルシウム及び金属水酸化物が過飽和となると、炭酸カルシウム及び金属水酸化物が析出して沈殿部71の底部に沈殿する。
 また、金属水酸化物の溶解度はpHに依存する。金属イオンの水への溶解度は酸性になるほど高くなる。上記のpH領域では多くの金属水酸化物の溶解度が低いため、被処理水に含有される金属は沈殿部71の底部に金属水酸化物として沈殿する。
 沈殿部71内の上澄み液である被処理水が沈殿部71から排出される。排出された被処理水に対しFeClが添加され、被処理水中の炭酸カルシウムや金属水酸化物等の固形分がFe(OH)と凝集する。
 被処理水はろ過装置72に送給される。ろ過装置72によりFe(OH)を凝集した固形分が除去される。
 Feは金属類の中で酸性で水酸化物として析出しやすい。多量のFeイオンを含む被処理水を第1脱塩装置10より下流に流入させると、第1脱塩装置10内でFeを含むスケールが発生し、また、晶析槽13で鉄水酸化物等が沈殿する。本実施形態では、第1脱塩装置10内でのスケール発生防止を考慮して、前処理後であって第1脱塩装置10に流入する前の被処理水中のFeイオン濃度が0.05ppm以下になるように、沈殿部71での処理条件及びFeCl添加量などが適宜設定される。
 なお、被処理水の水質によっては、上記前処理を省略することができる。
<スケール防止剤供給工程>
 スケール防止剤供給部20の制御部22はバルブV1を開放し、タンク21から所定量のスケール防止剤を被処理水に供給する。制御部22は、スケール防止剤の濃度が被処理水の性状に応じて設定された所定値となるようにバルブV1の開度を調整する。
<第2pH調整工程>
 第2pH調整部30の制御部32は、第1脱塩装置10入口での被処理水のpHを、スケール防止剤によりCaを含むスケール(石膏、炭酸カルシウム)の析出が抑制される値に管理する。
 pH計70aは、第1脱塩装置10入口での被処理水のpHを計測する。制御部32は、pH計70aでの計測値が所定のpH管理値になるようにバルブV2の開度を調整する。
 第2pH調整部を設けない変形例では、第2pH調整工程は省略される。
<上流側分離工程>
 第1脱塩装置10において、pHが調整された被処理水が処理される。第1脱塩装置10の逆浸透膜を通過した水は、処理水として回収される。被処理水に含まれるイオン及びスケール防止剤は逆浸透膜を透過することができない。従って、逆浸透膜の非透過側はイオン濃度が高い濃縮水となる。第1脱塩装置10の濃縮水は、晶析槽13に向かって送給される。
 例えば静電脱塩装置など他の脱塩装置を用いた場合も、被処理水は処理水と、イオン濃度が高い濃縮水とに分離される。
<第1pH調整工程>
 制御部42は、晶析槽13内の第1脱塩装置の濃縮水のpHを、スケール防止剤の機能が低減されて、濃縮水中の石膏が析出可能な値に管理する。
 pH計70bは、晶析槽13内の第1脱塩装置の濃縮水のpHを計測する。制御部42はpH計70bでの計測値が所定のpH管理値になるように、バルブV3の開度を調整する。
<晶析工程>
 第1pH調整工程によりpHが調整された濃縮水が、晶析槽13に貯留される。種結晶供給部60を設置する場合は、種結晶供給部60は晶析槽13内の濃縮水に種結晶を添加する。
 第1pH調整工程によりスケール防止剤の機能が低減される。このため、過飽和になっている石膏が晶析する。晶析工程で種結晶を投入する場合は、種結晶を核として石膏が結晶成長する。
 第1pH調整工程、第2pH調整工程、及び、晶析工程での条件設定について以下で説明する。
 図2は、炭酸カルシウムの溶解性のpH依存性を説明するグラフであり、鉱山廃水を原水性状とした場合に脱塩装置としての逆浸透膜装置の濃縮水中でのStiff&Davis Stability Index(S&DSI)を試算した例である。同図において、横軸はpH、縦軸はS&DSIである。なお、図2では逆浸透膜装置を例に挙げているが、上記で列挙した他の脱塩装置でも同様の結果となる。
 図2に依れば、pH5.7以下の領域ではS&DSIが0以上であり炭酸カルシウムが溶解傾向にあることが分かる。すなわち、被処理水または濃縮水のpHが5.7以下に調整されれば、炭酸カルシウムが溶解状態となり、炭酸カルシウムの析出を防止できる。被処理水のCa2+濃度の変動を考慮すれば、pH5.5以下であることが好ましい。
 図3は、OLI社製シミュレーションソフトを用いた、pH変化による炭酸カルシウム析出量変化のシミュレーション結果である。同図において、横軸はpH、縦軸は炭酸カルシウム析出量(mol)である。図3によると、pH5.8~5.9の間で炭酸カルシウムが析出し始め、pH6.0~6.5の間で急激に析出量が増加することが理解できる。
 図2,3はそれぞれ異なる水源を用いたシミュレーション結果であるので、水中の炭酸カルシウムの析出条件として、カルシウムイオン濃度だけでなく炭酸イオン成分にも影響されるため、pHにずれが生じる。実際の溶液系では、pH6.5以下、好ましくはpH6.0以下、より好ましくはpH5.5以下であれば炭酸カルシウムの溶解度が高く、炭酸カルシウムが十分に水に溶解可能である。
 図4は、石膏が過飽和状態にある模擬水(Ca2+,SO 2-,Na,Clを含む)に、スケール防止剤(FLOCON260)を添加した場合において、模擬水のpHを変えて石膏析出実験を行った結果である。実験条件は以下のとおりである。
  模擬水の石膏過飽和度(25℃):460%、
  スケール防止剤添加量:2.1mg/L、
  pH:6.5(条件1)、5.5(条件2)、4.0(条件3)、3.0(条件4)、
  種結晶添加量:0g/L。
 pH調整直後から2時間及び6時間経過後に、各条件で処理した模擬水中のCa濃度を原子吸光分析装置(島津製作所製、AA-7000)を用いて計測し、過飽和度を算出した結果を図4に示す。同図において、縦軸は過飽和度(%)である。
 条件1(pH6.5)では過飽和度が460%であり、6時間経過後でも初期の過飽和度からの変化がない。条件1では、スケール防止剤が機能を発現して石膏の析出が抑制されている。
 一方、条件2~4では過飽和度が低減している。すなわち、種結晶を投入していなくても、pHを低減させるとスケール防止剤の機能が低減されて石膏が析出することが確認できた。また、pHが低い程析出速度が大きいとの結果が得られた。
 図5は、模擬水にスケール防止剤(FLOCON260)を添加した場合において、種結晶の添加量を変えて石膏析出実験を行った結果である。pHを4.0として、種結晶としてCaSO4・2HOを以下の添加量とした以外は、図4の実験条件と同じとした。
  種結晶添加量:0g/L(条件3)、3g/L(条件5,7)、6g/L(条件6)。
 条件5,6では、スケール防止剤が添加された模擬水に、種結晶とpH調整のための硫酸とを添加した。条件7では、スケール防止剤が添加された模擬水に予め上記スケール防止剤に浸漬した種結晶を添加し、pH調整のため硫酸を添加した。
 pH調整直後から2時間経過後に、各条件で処理した模擬水中のCa濃度を図4と同様の手法で計測した。図5において、縦軸は過飽和度(%)である。
 図5の結果より、種結晶を添加していない条件3では過飽和度が215%であったが、種結晶濃度が増大するに従って、過飽和度が199%(条件5)、176%(条件6)と低下しており、石膏析出速度が増大していることが示された。
 条件5と条件7とは、スケール防止剤に浸漬していない種結晶と浸漬した種結晶を使用している以外は同じ試験条件である。予め種結晶にスケール防止剤を付着させた条件7でも過飽和度が199%となっており、条件5と同程度の石膏が析出することが確認できた。すなわち、条件5,7の結果から、pH4.0と低下させることによってスケール防止剤の機能が低減されることが示された。
 図2~5の結果から、第2pH調整工程を行う場合は、Caを含む塩(石膏、炭酸カルシウム)が溶解可能であり、かつ、スケール防止剤の機能が発現するpH(図2~5の結果ではpH6.5以下、好ましくは6.0以下、より好ましくは5.5以下)に被処理水が調整される。被処理水中の炭酸は、被処理水のpHに応じて以下の平衡状態となる。pHが6.5以下と低い場合には、被処理水中で炭酸は主としてHCO 及びCOの状態で存在する。
Figure JPOXMLDOC01-appb-C000001
 このため、この上記pHに被処理水が調整されれば、被処理水中の炭酸がHCO 及びCOとして存在し、第1脱塩装置10でCOを含む処理水が回収される。第1脱塩装置10の濃縮水は、炭酸イオン濃度が低減されているので、炭酸カルシウムは飽和溶解度よりも十分に低い濃度で保たれている。濃縮水中の石膏濃度は飽和濃度を超えているが、分散スケール防止剤により濃縮水中でのスケール生成が抑制される。
 第1pH調整工程では、スケール防止剤の機能が低減するpHに第1脱塩装置10の濃縮水が調整されると、晶析工程で石膏が析出する。図2,3の炭酸カルシウムが確実に溶解できる条件と、図4,5の結果から得られるスケール防止効果を考えて、第1脱塩装置10の濃縮水のpHは6.0以下、好ましくは5.5以下、より好ましくは4.0以下に調整される。特に、第1脱塩装置10の濃縮水をpH4.0以下に調整すると、スケール防止剤の機能を著しく低下させることができる。
 スケール防止剤の種類に応じて、第2pH調整工程でのpH下限値及び第1pH調整工程でのpH上限値が適宜設定される。
 図6,7は、晶析で得られた石膏の顕微鏡写真である。図6は条件5(種結晶添加有り)、図7は条件3(種結晶添加なし)の結果である。条件5では、条件3よりも大きい石膏が析出した。一般に、析出した石膏が大きい程含水率が低くなる。平均粒径が10μm以上、好ましくは20μm以上であれば、十分に含水率が低下した石膏が得られる。本発明における「平均粒径」とは、JIS Z 8825で規定される方法(レーザ回折法)により計測される粒径である。
 図6,7の結果から、第1pH調整工程でpHを所定値に調整して晶析工程で種結晶を添加することにより、含水率が低い高純度の石膏を析出させることができる。種結晶の添加量が多い(晶析槽13内での種結晶濃度が高い)ほど、石膏の析出速度が増大する。種結晶の添加量は、晶析槽13内での滞留時間及びスケール防止剤の濃度、pHに基づいて適宜設定される。
 図1の水処理システムでは逆浸透膜装置以外は開放系であるため、被処理水や濃縮水が空気と接触して水中に炭酸イオンが溶解する。しかし、上述のように、第1pH調整工程や第2pH調整工程で炭酸カルシウムの溶解度が高いpHに被処理水や濃縮水が調整されている。晶析槽13の前段階、もしくは晶析槽13で濃縮水中の炭酸イオンは低減されており、炭酸カルシウムは飽和溶解度以下となっている。更に、pHが低い領域であるので(1)の平衡式から炭酸イオン濃度が低い環境となっている。このため晶析槽13内では炭酸カルシウムは飽和濃度よりも十分に低い濃度で維持され、炭酸カルシウムは晶析しない。このため、回収される石膏には炭酸カルシウムがほとんど含有されない。
 また、酸性領域では金属を含む塩の溶解度が高い。前処理(沈殿部71)を経ても被処理水に金属が残留した場合であっても、第1pH調整工程で第1脱塩装置10の濃縮水のpHが上記のように低減されていれば、晶析工程で金属を含む水酸化物は析出することはない。また、被処理水が多量のFeイオンを含む性状である場合は、上述の前処理を経てFe濃度が低減されているため、晶析槽13でのFe(OH)を含む水酸化物がほとんど沈殿しない。
 このように、本実施形態の水処理方法及び水処理システムを用いれば、炭酸カルシウムや金属水酸化物と言った不純物をほとんど含まない高純度の石膏を分離回収することができる。
 平均粒径が10μm以上、好ましくは20μm以上と大きい石膏を晶析させる場合、一般的には晶析速度が低下するので晶析槽13内での滞留時間が長くなる。本実施形態では、スケール防止剤の機能を低減させるようにpHを調整するとともに、種結晶濃度を上げて、適切な晶析速度が確保される。
<回収工程>
 石膏を含む濃縮水が晶析槽13から排出され、分離部14に送給される。分級機15は、晶析槽13から排出された第1脱塩装置の濃縮水から石膏を分離する。平均粒径10μm以上の石膏は分級機15底部に沈降し、小さい粒径の石膏は上澄液に残留する。分級機15底部に沈降した石膏は、脱水機16で更に脱水されて回収される。
 回収工程により、含水率が低く不純物を含まず高純度である石膏を高い回収率で分離回収することができる。
 本実施形態では種結晶を添加して晶析させているため、平均粒径10μm以上の石膏が主として析出し、小径の石膏の割合は少なくなる。
 本実施形態の変形例として分級機15を省略する場合、晶析槽13中の濃縮水が底部から濃縮水が排出される。晶析槽13底部の濃縮水中には、晶析した大きい石膏が沈降している。主として大きい石膏を含む濃縮水を脱水機16で脱水すれば、高純度の石膏が回収できる。また、石膏の含水率が低いために脱水機16の容積を大きくする必要はない。
<下流側分離工程>
 分離部14から排出された濃縮水は、沈殿部81及びろ過装置82に送給される。沈殿部71及びろ過装置72と同様の工程で、分離工程後の濃縮水中に残留する石膏及び炭酸カルシウム、及び、濃縮水に残留していた金属水酸化物が除去される。
 ろ過装置82から排出された第1脱塩装置の濃縮水は、第2脱塩装置12に送給される。第2脱塩装置12に流入する前に、第1脱塩装置の濃縮水にスケール防止剤が追加添加されても良い。
 pH計70cは、第2脱塩装置12入口での第1脱塩装置の濃縮水のpHを計測する。第3pH調整部50の制御部52は、pH計70cでの計測値がpH6.0以下、好ましくは5.5以下になるようにバルブV5の開度を調整して、第1脱塩装置の濃縮水に酸を供給する。
 第2脱塩装置12において、第1脱塩装置からの濃縮水が処理される。第2脱塩装置12の逆浸透膜を通過した水は、処理水として回収される。第2脱塩装置12の濃縮水は系外に排出される。
 第2脱塩装置12が設置されると、石膏を晶析させた後の水から更に処理水を回収することができるので、水回収率が向上する。
 第1脱塩装置10からの濃縮水は、晶析部11での処理により石膏が除去されているのでイオン濃度が低くなっている。このため、第2脱塩装置12は石膏を除去しない場合に比べて浸透圧が低くできるため、必要な動力が低減される。
 第2脱塩装置12の濃縮水側の下流に、蒸発器(図1では不図示)が設置されても良い。蒸発器において濃縮水から水が蒸発され、濃縮水に含まれていたイオンが固体として析出し、固体として回収される。蒸発器の上流側で水が回収され濃縮水量が著しく減量されるため、蒸発器を小さくすることが出来、蒸発に必要なエネルギーを小さくすることができる。
[第2実施形態]
 図8は、本発明の第2実施形態の水処理システムである。図8の水処理システム100は、複数の第1脱塩装置(図8では10a,10b)及び晶析部(図8では11a,11b)が被処理水の流通方向に直列に交互に配列され、最下流の晶析部11bの下流に第2脱塩装置12が設置される構成となっている。
 第2脱塩装置12に至るまでにスケール防止剤が有効な量で存在する場合は、図8のように、スケール防止剤供給部20は第1脱塩装置10aの上流側の流路のみに設置されることができる。あるいは、複数の第1脱塩装置10a,10bの上流側近傍の流路にそれぞれスケール防止剤供給部が設置され、第2脱塩装置12に至るまでに有効なスケール防止剤量を確保できる構成としても良い。
 第2pH調整部30a,30bは、各第1脱塩装置10a,10bの上流側流路に設置される。第1pH調整部40a,40bは第1脱塩装置と晶析部との間の流路にそれぞれ設置される。
 第2実施形態においても、第2pH調整部は省略可能である。また、第1実施形態と同様に、分級機が省略され、晶析槽13の底部と脱水機16とが直接接続される構成とされても良い。
 なお、図8ではpH計は省略したが、第1脱塩装置10a,10bの入口、晶析部11a,11b、及び、第2脱塩装置12の入口にそれぞれ設置されている。
 晶析部11aと第1脱塩装置10bとの間に、図1と同様の沈殿部71b及びろ過装置72bが設置されていても良い。また、第2脱塩装置12の濃縮水の下流側に蒸発器や晶析器が設けられていても良い。
 図8のように複数の第1脱塩装置10a,10b及び晶析部11a,11bを設置すると、第2脱塩装置12に流入する水中のイオンが大幅に低減されるため、水回収率が向上する。また、分離部14a,14bで回収される石膏量が増加する。さらに、第2脱塩装置12の動力が大幅に低減される。
[第3実施形態]
 図9は、本発明の第3実施形態に係る水処理システムの概略図である。図9では、図1と同じ構成には同符号を付している。第3実施形態の水処理システム200は、分級機15及び脱水機16と種結晶供給部60のタンク61とを連結する種結晶循環部210を備える点以外は、第1実施形態と同じである。本実施形態において、第2pH調整部は省略可能である。
 分級機15で平均粒径10μm以上好ましくは20μm以上の石膏が濃縮水から分離される。分離部14の分級機15及び脱水機16で回収された石膏の一部が、種結晶循環部210を経由して種結晶タンク61に送給され、種結晶タンク61に貯留される。回収された石膏は、種結晶タンク61から晶析槽13に供給される。
 種結晶タンク61において、貯留された石膏に酸処理が施される。分離部14で分離された石膏にはスケール防止剤が付着している場合には、酸処理により付着スケール防止剤の機能が低減される。ここで用いられる酸の種類は特に限定されないが、第2脱塩装置12での動力低減を考慮すると硫酸が最適である。
 晶析槽13で晶析する石膏は幅広い粒径分布を有するが、分級機15で10μm以上の石膏を濃縮水から分離回収するので、大きい石膏を種結晶として利用できる。大きい種結晶を入れれば、大きい石膏を多く晶析させることができる。つまり、高品質の石膏を高い回収率で得ることが可能となる。また、大きい石膏は分級機15での分離が容易となり、分級機15を小型化できるとともに、動力を低減させることにも繋がる。大きい石膏は脱水機16での脱水が容易となり脱水機16を小型化できるとともに、動力を低減させることにも繋がる。
 
1,100,200 水処理システム
10,10a,10b 第1脱塩装置
11,11a,11b 晶析部
12 第2脱塩装置
13,13a,13b 晶析槽
14,14a,14b 分離部
15 分級機
16 脱水機
20 スケール防止剤供給部
30,30a,30b 第2pH調整部
40,40a,40b 第1pH調整部
50 第3pH調整部
60,60a,60b 種結晶供給部
70a,70b,70c pH計
71,71a,71b,81 沈殿部
72,72a,72b,82 ろ過装置
73 酸化部
210 種結晶循環部

Claims (14)

  1.  Caイオン、SOイオン及び炭酸イオンを含む被処理水に対して、スケール防止剤が供給されるスケール防止剤供給工程と、
     第1脱塩装置において、前記Caイオン及び前記SOイオンが濃縮された濃縮水とに分離され、前記処理水が回収される上流側分離工程と、
     前記第1脱塩装置の濃縮水が、炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤のスケール防止機能が低減されて前記第1脱塩装置の濃縮水から石膏が析出可能であるpHに調整される第1pH調整工程と、
     前記pHが調整された第1脱塩装置の濃縮水から前記石膏の結晶が晶析する晶析工程と、
     前記結晶が前記第1脱塩装置の濃縮水から分離回収される回収工程とを含む水処理方法。
  2.  前記第1脱塩装置の上流側で、前記被処理水が、前記炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤がCaを含むスケールの析出を抑制可能であるpHに調整される第2pH調整工程を更に備える請求項1に記載の水処理方法。
  3.  前記晶析工程において、前記第1脱塩装置の濃縮水に前記石膏の種結晶が供給される請求項1または請求項2に記載の水処理方法。
  4.  前記晶析工程において、前記分離回収された石膏が、前記種結晶として前記第1脱塩装置の濃縮水中に供給される請求項3に記載の水処理方法。
  5.  前記回収工程において、前記晶析工程で析出した前記石膏のうち所定の大きさの石膏が分離回収される請求項1乃至請求項4のいずれかに記載の水処理方法。
  6.  前記晶析工程後の前記第1脱塩装置の濃縮水が、第2脱塩装置において濃縮水と処理水とに分離され、前記処理水が回収される下流側分離工程とを含む請求項1乃至請求項5のいずれかに記載の水処理方法。
  7.  前記第2脱塩装置の濃縮水の下流側において、前記第2脱塩装置の濃縮水から水を蒸発させて固体が回収される請求項6に記載の水処理方法。
  8.  Caイオン、SOイオン及び炭酸イオンを含む被処理水に対して、スケール防止剤を供給するスケール防止剤供給部と、
     前記スケール防止剤供給部の下流側に設置され、前記被処理水を前記COを含む処理水と前記Caイオン及び前記SOイオンが濃縮された濃縮水とに分離する第1脱塩装置と、
     前記第1脱塩装置の下流側に設けられ、前記第1脱塩装置の濃縮水にpH調整剤を供給して、前記第1脱塩装置の濃縮水を、炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤のスケール防止機能が低減されて石膏が析出可能なpHに調整する第1pH調整部と、
     前記pHが調整された第1脱塩装置の濃縮水から前記石膏を晶析させる晶析槽と、
     前記晶析した石膏と前記第1脱塩装置の濃縮水とを分離する分離部とを備える水処理システム。
  9.  前記第1脱塩装置の上流側に設置され、前記被処理水にpH調整剤を供給して、前記炭酸カルシウムが溶解可能であり、かつ、前記スケール防止剤がCaを含むスケールの析出を抑制可能であるpHに調整する第2pH調整部を更に備える請求項8に記載の水処理システム。
  10.  前記晶析槽に前記石膏の種結晶を供給する種結晶供給部を更に供える請求項8または請求項9に記載の水処理システム。
  11.  前記分離部で分離され回収された前記石膏を、前記種結晶として前記種結晶供給部に供給する循環部を更に備える請求項10に記載の水処理システム。
  12.  前記分離部が、前記晶析槽で析出した前記石膏のうち所定の大きさの石膏を回収する分級機を備える請求項8乃至請求項11のいずれかに記載の水処理システム。
  13.  前記分離部の下流側に設置され、前記第1脱塩装置の濃縮水を、濃縮水と処理水とに分離する第2脱塩装置とを備える請求項8乃至請求項12のいずれかに記載の水処理システム。
  14.  前記第2脱塩装置の濃縮水側の下流に、前記第2脱塩装置の濃縮水から水を蒸発させて固体を回収する蒸発器を更に備える請求項13に記載の水処理システム。
PCT/JP2013/062283 2013-04-25 2013-04-25 水処理方法及び水処理システム WO2014174647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/062283 WO2014174647A1 (ja) 2013-04-25 2013-04-25 水処理方法及び水処理システム
JP2015513442A JP5968524B2 (ja) 2013-04-25 2013-04-25 水処理方法及び水処理システム
US14/363,992 US20150068982A1 (en) 2013-04-25 2013-04-25 Water treatment process and water treatment system
CA2909222A CA2909222A1 (en) 2013-04-25 2013-04-25 Water treatment process and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062283 WO2014174647A1 (ja) 2013-04-25 2013-04-25 水処理方法及び水処理システム

Publications (1)

Publication Number Publication Date
WO2014174647A1 true WO2014174647A1 (ja) 2014-10-30

Family

ID=51791253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062283 WO2014174647A1 (ja) 2013-04-25 2013-04-25 水処理方法及び水処理システム

Country Status (4)

Country Link
US (1) US20150068982A1 (ja)
JP (1) JP5968524B2 (ja)
CA (1) CA2909222A1 (ja)
WO (1) WO2014174647A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002258A4 (en) * 2013-07-05 2016-08-03 WATER PROCESSING METHOD AND WATER PROCESSING SYSTEM
JP2017043503A (ja) * 2015-08-25 2017-03-02 住友大阪セメント株式会社 石膏の製造方法およびセメント組成物の製造方法
WO2021261410A1 (ja) * 2020-06-22 2021-12-30 学校法人早稲田大学 二酸化炭素の固定化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399878B2 (en) 2015-03-19 2019-09-03 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment system and power generation facility
WO2017022113A1 (ja) * 2015-08-05 2017-02-09 三菱重工業株式会社 水処理システム、発電プラント及び水処理システムの制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633024A (en) * 1979-08-28 1981-04-03 Mitsubishi Heavy Ind Ltd Wet process exhaust gas desulfurizing method
JPH10113660A (ja) * 1996-10-14 1998-05-06 Shinko Pantec Co Ltd 水処理方法及び水処理装置
JPH11123312A (ja) * 1997-10-21 1999-05-11 Mitsubishi Heavy Ind Ltd 排煙脱硫排水の処理方法
JP2004016996A (ja) * 2002-06-19 2004-01-22 Kurita Water Ind Ltd 硫酸イオン及びカルシウムイオン含有水の処理方法及び処理装置
JP2006305541A (ja) * 2005-03-30 2006-11-09 Sasakura Engineering Co Ltd カルシウム及び硫酸を含む廃水の処理方法及びその装置
JP2011200788A (ja) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd 水処理方法及び水処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944939B2 (ja) * 1996-09-12 1999-09-06 川崎重工業株式会社 脱硫排水の処理方法及び装置
JP2000015257A (ja) * 1998-07-06 2000-01-18 Kurita Water Ind Ltd 高純度水の製造装置および方法
JP2001200788A (ja) * 2000-01-18 2001-07-27 Matsushita Refrig Co Ltd 振動式圧縮機
JP3640379B2 (ja) * 2000-06-29 2005-04-20 株式会社神鋼環境ソリューション 水処理方法
WO2009152148A1 (en) * 2008-06-11 2009-12-17 The Regents Of The University Of California Method and system for high recovery water desalting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633024A (en) * 1979-08-28 1981-04-03 Mitsubishi Heavy Ind Ltd Wet process exhaust gas desulfurizing method
JPH10113660A (ja) * 1996-10-14 1998-05-06 Shinko Pantec Co Ltd 水処理方法及び水処理装置
JPH11123312A (ja) * 1997-10-21 1999-05-11 Mitsubishi Heavy Ind Ltd 排煙脱硫排水の処理方法
JP2004016996A (ja) * 2002-06-19 2004-01-22 Kurita Water Ind Ltd 硫酸イオン及びカルシウムイオン含有水の処理方法及び処理装置
JP2006305541A (ja) * 2005-03-30 2006-11-09 Sasakura Engineering Co Ltd カルシウム及び硫酸を含む廃水の処理方法及びその装置
JP2011200788A (ja) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd 水処理方法及び水処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002258A4 (en) * 2013-07-05 2016-08-03 WATER PROCESSING METHOD AND WATER PROCESSING SYSTEM
EP3006409A4 (en) * 2013-07-05 2016-08-10 Mitsubishi Heavy Ind Ltd WATER TREATMENT METHOD AND WATER TREATMENT SYSTEM
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system
JP2017043503A (ja) * 2015-08-25 2017-03-02 住友大阪セメント株式会社 石膏の製造方法およびセメント組成物の製造方法
WO2021261410A1 (ja) * 2020-06-22 2021-12-30 学校法人早稲田大学 二酸化炭素の固定化方法

Also Published As

Publication number Publication date
US20150068982A1 (en) 2015-03-12
CA2909222A1 (en) 2014-10-30
JP5968524B2 (ja) 2016-08-10
JPWO2014174647A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6091033B2 (ja) 水処理方法及び水処理システム
JP5968524B2 (ja) 水処理方法及び水処理システム
WO2014163094A1 (ja) 水処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14363992

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513442

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2909222

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883136

Country of ref document: EP

Kind code of ref document: A1