WO2014174639A1 - 光送信器 - Google Patents

光送信器 Download PDF

Info

Publication number
WO2014174639A1
WO2014174639A1 PCT/JP2013/062258 JP2013062258W WO2014174639A1 WO 2014174639 A1 WO2014174639 A1 WO 2014174639A1 JP 2013062258 W JP2013062258 W JP 2013062258W WO 2014174639 A1 WO2014174639 A1 WO 2014174639A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
clock signal
optical
fiber
clock
Prior art date
Application number
PCT/JP2013/062258
Other languages
English (en)
French (fr)
Inventor
宏彰 新宅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/062258 priority Critical patent/WO2014174639A1/ja
Publication of WO2014174639A1 publication Critical patent/WO2014174639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation

Definitions

  • the present invention relates to an optical transmitter for an optical communication system, and more particularly to an optical transmitter having a configuration in which optical modulators are connected in cascade in multiple stages.
  • Sources of transmission penalties within a single wavelength include amplified spontaneous emission (ASE) noise generated in erbium-doped fiber amplifiers (EDFAs), nonlinear effects caused by the intensity of light propagating in a single fiber, and different optical frequencies. There is chromatic dispersion that proceeds at different group velocities.
  • ASE amplified spontaneous emission
  • EDFAs erbium-doped fiber amplifiers
  • chromatic dispersion that proceeds at different group velocities.
  • crosstalk between wavelengths caused by the nonlinear refractive index of the fiber can also be a transmission penalty.
  • pulse intensities of various known formats synchronized with data symbols such as RZ (Return-to-Zero) format and CS-RZ (Carrier-suppressed Return-to-Zero) format. It is known that it is effective to perform modulation, and it is known to perform this type of modulation by cascading a plurality of optical modulators (see, for example, Patent Documents 1 and 2).
  • the fiber connecting the optical modulators has a temperature characteristic of light propagation time. For this reason, some modulation timing compensation is performed in consideration of changes in propagation delay time due to temperature fluctuations (see, for example, Patent Document 4).
  • a conventional optical transmitter having a cascade connection configuration of optical modulators can independently adjust the phase in order to match the timing of data modulation and clock modulation in a configuration in which optical modulators are cascaded in three stages.
  • a data and clock system was required.
  • the temperature characteristic of the propagation delay time changes according to the difference in the fiber length, There is a problem that it is necessary to hold a phase compensation table.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an optical transmitter that eliminates the need to prepare an independent high-speed clock system and can expand the range of device selection. It is said.
  • An optical transmitter includes a first optical modulator that modulates continuous light according to a modulation data signal, and one or more stages connected in cascade to the first optical modulator, and the continuous light is transmitted to the first clock.
  • a second optical modulator that modulates according to a signal, a third optical modulator that is connected in cascade to the first and second optical modulators, and modulates continuous light according to a second clock signal;
  • a first modulator driver that outputs a data signal to the first optical modulator; a second modulator driver that outputs a first clock signal to the second optical modulator; and a second clock signal.
  • a third modulator driving unit that outputs to the third optical modulator, and the second modulator driving unit includes a first phase shifter that adjusts the phase of the clock signal corresponding to the modulation data signal;
  • the clock signal whose phase is adjusted by the first phase shifter is divided into two clock signals having the same phase, and one of the clock signals is divided.
  • a clock distributor using the signal as a first clock signal and the other clock signal as a clock signal for the second modulator driver or the third modulator driver in the subsequent stage.
  • the unit includes a second phase shifter that adjusts the phase of the clock signal from the clock distributor to obtain a second clock signal.
  • FIG. 1 is an overall configuration diagram of a WDM system to which an optical transmitter according to Embodiment 1 of the present invention is applied. It is a block diagram which shows the structure of the optical transmitter which concerns on Embodiment 1 of this invention. It is a figure which shows the influence on the eye pattern of a clock phase shift, (a) It is a figure which shows when a clock phase is in agreement, (b) It is a figure which shows when a clock signal has shifted
  • FIG. 1 is an overall configuration diagram of a WDM system 1 to which an optical transmitter 2 according to Embodiment 1 of the present invention is applied.
  • the WDM system 1 includes a plurality of optical transmitters (Tx) 2, an optical multiplexing unit 3, an optical demultiplexing unit 4, and a plurality of optical receivers (Rx) 5.
  • the optical multiplexing unit 3 and the optical demultiplexing unit 4 are connected by a transmission path 6.
  • the optical transmitter 2 generates transmission light 52 by performing electrical / optical conversion on the input transmission data 51. Details of the optical transmitter 2 will be described later.
  • the optical multiplexing unit 3 wavelength-multiplexes transmission lights 52 having different wavelengths output from the respective optical transmitters 2.
  • the wavelength-multiplexed transmission light 52 passes through the transmission path 6 and is output to the optical demultiplexing unit 4.
  • the optical demultiplexing unit 4 divides the wavelength of the transmission light 52 output from the optical multiplexing unit 3 through the transmission path 6 to obtain a plurality of reception lights 53.
  • the optical receiver 5 performs optical / electrical conversion on the corresponding received light 53 wavelength-divided by the optical demultiplexing unit 4 and outputs received data 54.
  • the optical transmitter 2 includes a transmission signal generation unit 201, a data driver 202, a light source (LD) 203, an optical modulator (first optical modulator) 204, and a phase shifter (first phase shifter). ) 205, clock distributor 206, driver 207, optical modulator (second optical modulator) 208, phase shifter (second phase shifter) 209, driver 210, optical modulator (third optical modulator) 211 , A fiber information holding unit 212, a temperature sensor 213, a phase compensation table holding unit 214, and a phase compensation table holding unit 215.
  • the data driver 202 corresponds to the “first modulator driver that outputs a modulation data signal to the first optical modulator” of the present invention.
  • the phase shifter 205, the clock distributor 206, and the driver 207 correspond to the “second modulator driver that outputs the first clock signal to the second optical modulator” in the present invention.
  • the phase shifter 209 and the driver 210 correspond to the “third modulator driving unit that outputs the second clock signal to the third optical modulator” of the present invention.
  • the transmission signal generation unit 201 generates a data signal (modulation data signal) 55 and a clock signal 56 corresponding to the data signal based on the input transmission data 51.
  • the data signal 55 generated by the transmission signal generation unit 201 is output to the data driver 202, and the clock signal 56 is output to the phase shifter 205.
  • the data driver 202 amplifies the data signal 55 generated by the transmission signal generation unit 201.
  • the data signal 55 amplified by the data driver 202 is output to the optical modulator 204.
  • the light source 203 outputs predetermined continuous light.
  • the continuous light from the light source 203 passes through the fiber 216 and is output to the optical modulator 204.
  • the light modulator 204 modulates the continuous light from the light source 203 according to the data signal 55 amplified by the data driver 202.
  • the modulation scheme in this optical modulator 204 is a joint modulation scheme NRZ (Non Return to Zero) modulation, or a phase modulation scheme DPSK (Differential Phase Shift Keying), DQPSK (Differential Quadrature Phasing KDP).
  • NRZ Non Return to Zero
  • DPSK Phase Shift Keying
  • DQPSK Differential Quadrature Phasing KDP
  • Polarization Binary Phase Shift Keying and DP-QPSK Dual Polarization-Quadrature Phase Shift Keying
  • the continuous light modulated by the optical modulator 204 passes through the fiber 217 and is output to the optical modulator 208.
  • the phase shifter 205 adjusts the phase of the clock signal 56 generated by the transmission signal generation unit 201.
  • the phase shifter 205 is held in the phase compensation table holding unit 214 based on the fiber information of the fiber 217 held in the fiber information holding unit 212 and the temperature of the fiber 217 detected by the temperature sensor 213.
  • An optimum delay time command value is extracted from the phase compensation table, and the phase is adjusted so as to give a propagation delay time (phase amount) corresponding to the delay time command value.
  • the clock signal 56 whose phase is adjusted by the phase shifter 205 is output to the clock distributor 206.
  • the clock distributor 206 divides the clock signal 56 whose phase is adjusted by the phase shifter 205 into two clock signals 57 and 58 having the same phase.
  • One clock signal (first clock signal) 57 distributed by the clock distributor 206 is output to the driver 207, and the other clock signal (second clock signal) 58 is output to the phase shifter 209.
  • the driver 207 amplifies the clock signal 57 distributed by the clock distributor 206.
  • the clock signal 57 amplified by the driver 207 is output to the optical modulator 208.
  • the optical modulator 208 is connected in cascade to the optical modulator 204 and modulates the continuous light output from the optical modulator 204 through the fiber 217 in accordance with the clock signal 57 amplified by the driver 207. .
  • As a modulation method in the optical modulator 208 RZ pulse modulation, CSRZ (Carrier-suppressed Return-to-Zero) pulse modulation, or the like can be applied.
  • the continuous light modulated by the optical modulator 208 passes through the fiber 218 and is output to the optical modulator 211.
  • the phase shifter 209 adjusts the phase of the clock signal 58 distributed by the clock distributor 206. At this time, the phase shifter 209 is held in the phase compensation table holding unit 215 based on the fiber information of the fiber 218 held in the fiber information holding unit 212 and the temperature of the fiber 218 detected by the temperature sensor 213. An optimum delay time command value is extracted from the phase compensation table, and the phase is adjusted so as to give a propagation delay time (phase amount) corresponding to the delay time command value.
  • the clock signal 58 whose phase is adjusted by the phase shifter 209 is output to the driver 210.
  • the driver 210 amplifies the clock signal 58 whose phase is adjusted by the phase shifter 209.
  • the clock signal 58 amplified by the driver 210 is output to the optical modulator 211.
  • the optical modulator 211 is connected in cascade to the optical modulators 204 and 208, and modulates the continuous light output from the optical modulator 208 through the fiber 218 in accordance with the clock signal 58 amplified by the driver 210. It is. As a modulation method in the optical modulator 211, polarization modulation or phase modulation can be applied. Note that the modulation schemes applied by the optical modulator 208 and the optical modulator 211 can be interchanged.
  • the continuous light modulated by the optical modulator 211 passes through the fiber 219 as the transmission light 52 and is output to the optical multiplexing unit 3.
  • the fiber information holding unit 212 holds information about the lengths of the fibers 217 and 218 (fiber information).
  • the fiber information includes the number of fusion failures of the fibers 217 and 218 or the length of the fibers 217 and 218.
  • the temperature sensor 213 detects the temperature of the fibers 217 and 218.
  • the phase compensation table holding unit 214 holds a phase compensation table indicating the relationship between the temperature of the fiber 217 and the delay time command value to the phase shifter 205 for each number of fusion failures of the fiber 217 or the length of the fiber 217. It is.
  • the phase compensation table holding unit 215 holds a phase compensation table indicating the relationship between the temperature of the fiber 218 and the delay time command value to the phase shifter 209 for each number of fusion failures of the fiber 218 or the length of the fiber 218. It is.
  • the data signal 55 output from the transmission signal generation unit 201 is amplified by the data driver 202 and input to the optical modulator 204.
  • the clock signal 56 output from the transmission signal generation unit 201 can be adjusted in phase with respect to the data signal 55 by passing through the phase shifter 205, and the two clocks having the same phase pass through the clock distributor 206 in the subsequent stage.
  • Signals 57 and 58 are obtained.
  • the clock signal 57 is amplified by the driver 207 and input to the optical modulator 208.
  • the phase of the clock signal 58 can be adjusted by passing through the phase shifter 209, amplified by the driver 210, and input to the optical modulator 211.
  • the continuous light output from the light source 203 passes through the optical modulators 204, 208, and 211, thereby inputting electric signals (data signal 55 and clock signals 57 and 58) to the respective optical modulators 204, 208, and 211. Modulation according to is applied. At this time, the subsequent optical modulator 208 (211) needs to be modulated at a timing synchronized with the modulation symbol added by the preceding optical modulator 204 (208).
  • the light propagation delay time changes due to the change in the optical path length due to the temperature change in the refractive index of the fibers 217 and 218.
  • the modulation timing is adjusted using the phase shifters 205 and 209 under a specific temperature condition, if the fluctuation of the ambient temperature occurs and the fluctuation of the propagation delay time occurs, the modulation timing is shifted.
  • the relationship between the modulation timing and waveform of NRZ data modulation and RZ modulation is shown in FIG.
  • FIG. 3B when the modulation timing is not optimal (when the clock phase is shifted), the transition point of the NRZ waveform appears in the RZ pulse, and the waveform deteriorates.
  • the temperature characteristic of the propagation delay time between the optical modulators 204, 208 and 211 depends on the length of the fibers 217 and 218 between the optical modulators 204, 208 and 211.
  • the connection between the optical modulators 204, 208, and 211 is generally performed by fiber fusion in order to minimize the loss and reflection at the connection portion and at the same time reduce the mounting area.
  • the fibers 217 and 218 near the fusion point are cut and fused again, so the fiber length between the modulators 204, 208, and 211 differs depending on the number of fusion failures. That is, the temperature characteristic of the propagation delay time varies depending on the number of fusion failures.
  • FIG. 4A shows the relationship between the temperature and propagation delay time for each length of the fiber 217 (for example, three patterns of no fusion failure, one failure, and two failures).
  • the optical modulator 211 in the subsequent stage is affected by the temperature characteristics of the propagation delay times of both the fibers 217 and 218 in the previous stage, there is no fusion failure in each of the fibers 217 and 218. Even if there are three patterns, the temperature characteristics are many as shown in FIG.
  • phase compensation table reflecting this characteristic is held by the phase compensation table holding units 214 and 215, and the phase information is detected by the phase information 205 and the temperature sensor 213 in the fiber information holding unit 212.
  • Optimal modulation timing control is performed based on temperature.
  • the phase compensation table holding unit 215 has many patterns of phase compensation as shown in FIG. A table is required.
  • the clock signals 57 and 58 in the first embodiment are clock systems dependent on the clock signal 56. Therefore, by compensating the modulation timing of the optical modulator 208 using the phase compensation table holding unit 214, the phase of the clock signal 58 also changes in conjunction with the compensation. That is, the temperature characteristic of the fiber 217 is automatically compensated for the subsequent clock signal 58, and only the temperature characteristic of the propagation delay time of the fiber 218 needs to be considered. As a result, a phase compensation table having a small number of patterns equivalent to that shown in FIG.
  • one clock system is used for clock modulation, and the configuration in which the clock signal 58 moves in conjunction with the phase adjustment of the clock signal 57 is actively used. Therefore, the independent clock signal output such as the second system from the transmission signal generation unit 201 is not required as in the prior art, and the range of device selection is widened. Further, as a result of the modulation timing adjustment in the upstream optical modulator 208, the modulation timing in the downstream optical modulator 211 is also linked, so that the number of patterns of the phase compensation table held by the downstream phase compensation table holding unit 215 can be reduced. Become.
  • the phase shifters 205 and 209 are based on the fiber information of the fibers 217 and 218 held in the fiber information holding unit 212 and the temperatures of the fibers 217 and 218 detected by the temperature sensor 213.
  • the present invention is not limited to this, and the phase amount may be obtained from only the phase compensation table, only the temperature of the phase compensation table and the fibers 217 and 218, and only the phase compensation table and the fiber information of the fibers 217 and 218. .
  • Embodiment 2 the configuration in which the optical modulator 204 for data modulation is arranged in the first stage and the optical modulators 208 and 211 for clock modulation are connected in the subsequent stage is shown.
  • a DP-QPSK modulator or the like is arranged as an optical modulator for data modulation in the previous stage, the output light is X / Y polarization multiplexed.
  • a polarization-dependent optical modulator for example, an MZ type optical intensity modulator using an LN substrate
  • there is a problem that only a single polarization is modulated. is there.
  • FIG. 5 is a diagram showing the configuration of the optical transmitter 2 according to Embodiment 2 of the present invention.
  • the optical transmitter 2 according to the second embodiment shown in FIG. 5 includes optical modulators 204, 208, and 211 of the optical transmitter 2 according to the first embodiment shown in FIG.
  • Optical modulators) 220, 221, 222 are replaced and their connection order is changed.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the optical modulator 222 modulates the continuous light from the light source 203 according to the clock signal 58 amplified by the driver 210.
  • the continuous light modulated by the optical modulator 220 passes through the fiber 223 and is output to the optical modulator 221.
  • the optical modulator 221 modulates the continuous light output from the optical modulator 222 through the fiber 223 according to the clock signal 57 amplified by the driver 207.
  • the continuous light modulated by the optical modulator 221 passes through the fiber 224 and is output to the optical modulator 220.
  • the optical modulator 220 modulates continuous light output from the optical modulator 221 through the fiber 224 according to the data signal 55 amplified by the data driver 202.
  • the continuous light modulated by the optical modulator 220 passes through the fiber 225 as the transmission light 52 and is output to the optical multiplexing unit 3.
  • the continuous light output from the light source 203 passes through the optical modulators 222, 221, and 220, thereby inputting electric signals (data signal 55 and clock signals 57 and 58) to the respective optical modulators 222, 221, and 220. Modulation according to is applied.
  • the clock signals 57 and 58 are clock systems dependent on the clock signal 56. Therefore, by compensating the modulation timing of the clock signal 57 using the phase compensation table holding unit 214 in order to compensate for the temperature characteristics of the fiber 224, the modulation timing of the clock signal 58 also changes in conjunction.
  • the modulation timing of the optical modulator 222 is taken into consideration, the temperature characteristic of the fiber 224 is automatically compensated. After that, only the temperature characteristic of the propagation delay time of the fiber 223 needs to be considered, and the phase compensation table is maintained.
  • the unit 215 may be provided with a phase compensation table having a small number of patterns equivalent to that shown in FIG.
  • the connection order of the optical modulators 220, 221, and 222 is changed with respect to the configuration of the first embodiment, the same effect as that of the first embodiment is obtained.
  • the range of selection of the type of the optical modulators 220, 221, and 222 to be used is widened.
  • FIG. 6 is a block diagram showing the configuration of the optical transmitter 2 according to Embodiment 3 of the present invention.
  • the optical transmitter 2 according to the third embodiment shown in FIG. 6 is different from the optical transmitter 2 according to the third embodiment shown in FIG. 2 in the n-th phase shifter 205n, the clock distributor 206n, the driver 207n, and the optical modulator. 208n and a phase compensation table holding unit 214n are added. Note that these functional units have the same functions as the second-stage phase shifter 205, clock distributor 206, driver 207, optical modulator 208, and phase compensation table holding unit 214 of the optical transmitter 2.
  • the optical transmitter 2 according to Embodiment 3 the data signal 55 output from the transmission signal generation unit 201 is amplified by the data driver 202 and input to the optical modulator 204.
  • the phase of the clock signal 56 output from the transmission signal generation unit 201 can be adjusted with respect to the data signal 55 by passing through the phase shifter 205.
  • Signals 57 and 58 are obtained.
  • the clock signal 57 is amplified by the driver 207 and input to the optical modulator 208. Up to this point, the operation is the same as that of the optical transmitter 2 according to the first embodiment.
  • the clock signal 58 is further branched by the clock distributor 206n to become two clock signals 59 and 60 having the same phase.
  • the clock signal 59 is amplified by the driver 207n and input to the optical modulator 208n.
  • a plurality of blocks 226 including the phase shifter 205n, the clock distributor 206n, the driver 207n, the optical modulator 208n, and the phase compensation table holding unit 214n after the clock signal 58 are mounted according to the number of cascade connections of the optical modulator 208n. Realize multi-stage connection.
  • the phase of the clock signal 60 distributed from the previous stage is adjusted by the phase shifter 209 so as to optimize the modulation timing, and then amplified by the driver 210 after taking into account the propagation delay time of the fiber 218n. And input to the optical modulator 211.
  • Delay time command values for the phase shifters 205 to 205n and 209 are input from the phase compensation table holding units 214 to 214n and 215 based on the fiber information held in the fiber information holding unit 212 and the temperature detected by the temperature sensor 213. Is done.
  • the amount of phase compensation at each stage is also applied in conjunction with the clock signal distributed to the subsequent stage, so that the clock signal with phase compensation up to the previous stage is supplied at the subsequent stage.
  • the phase compensation table holding units 214 to 214n and 215 at each stage need only consider the propagation delay time of the fiber at the corresponding stage, and may hold the minimum phase compensation table as in the first embodiment.
  • the same effect as in the first embodiment can be obtained even when the number of connections of the optical modulators 204, 208 to 208n, 211 is multi-stage connection larger than three stages.
  • the increase in the phase compensation table when the modulators are connected in multiple stages can be minimized.
  • the optical transmitter according to the present invention eliminates the need for preparing a plurality of independent high-speed clock systems, enables a wider range of device selection, and is used for an optical transmitter or the like in which optical modulators are cascade-connected in multiple stages. Suitable for
  • 1 WDM system 2 optical transmitter (Tx), 3 optical multiplexing unit, 4 optical demultiplexing unit, 5 optical receiver (Rx), 6 transmission path, 51 transmission data, 52 transmission light, 53 reception light, 54 reception data 55 data signal, 56-60 clock signal, 201 transmission signal generator, 202 data driver, 203 light source, 204, 208, 208n, 211, 220-222, optical modulator, 205, 205n, 209 phase shifter, 206, 206n Clock distributor, 207, 207n, 210 driver, 212 fiber information holding unit, 213 temperature sensor, 214, 214n, 215 phase compensation table holding unit, 216-219, 218n, 223-225 fiber, 226 block.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

 縦列接続された光変調器208,211にクロック信号57,58を出力する第2,3の変調器駆動部を備え、第2の変調器駆動部は、データ信号55に対応したクロック信号56の位相を調整する位相器205と、位相が調整されたクロック信号56を同位相の2つのクロック信号に分け、一方のクロック信号をクロック信号57とし、他方のクロック信号を後段の第2の変調器駆動部または第3の変調器駆動部用のクロック信号とするクロック分配器206とを備え、第3の変調器駆動部は、クロック分配器206からのクロック信号の位相を調整してクロック信号58とする位相器209を備えた。

Description

光送信器
 この発明は、光通信システム用の光送信器に関するものであり、特に光変調器が多段に縦列接続された構成を取る光送信器に関するものである。
 近時の急増する情報通信需要の増大に応ずるため、長距離伝送、高速伝送および高密度伝送が可能な光変調器の実用化が求められている。一方、海底ケーブルシステム等の長距離伝送を行う光伝送システムでは、通信路の光ファイバの長さに沿って蓄積する伝送ペナルティによって性能が低下する。
 単一波長内の伝送ペナルティの発生源としては、エルビウムドープファイバ増幅器(EDFA)で発生する増幅自然放出(ASE)雑音、単一ファイバ内を伝搬する光の強度によって生じる非線形効果および異なる光周波数を異なる群速度で進行させる波長分散等がある。
 さらに、いくつかの光波長が同じファイバ内に存在する波長分割多重化(WDM)システムにおいては、ファイバの非線形屈折率によって生じる波長間クロストークも伝送ペナルティとなり得る。
 高速伝送を行う場合、1波長あたりのデータレートを高くすることが有効であるが、データレートの高速化はシンボル間干渉を招き、受信アイパターンの劣化を引き起こす。受信波形の歪は、通信線路の構成によって、また通信パルスの形状によっても、影響を受ける。
 これら伝送ペナルティを低減させる方法として、RZ(Return-to-Zero)フォーマット、CS-RZ(Carrier-Suppressed Return-to-Zero)フォーマットのような、データシンボルに同期した様々な既知のフォーマットのパルス強度変調を行うことが有効であることが知られており、複数の光変調器の縦列接続によってこの種の変調を行うことが公知である(例えば特許文献1,2参照)。
 また、偏波状態にも変調をかける場合には3つの光変調器を縦列接続することでこれを実現できる(例えば特許文献3参照)。
 なお、光変調器の縦列接続を行う場合、光変調器間を接続するファイバには光の伝播時間の温度特性がある。そのため、温度変動による伝播遅延時間の変化を加味した変調タイミングの補償を行っているものもある(例えば特許文献4参照)。
特開2002-023121号公報 特表2003-501685号公報 特表2009-529834号公報 特開2012-100006号公報
 しかしながら、従来の光変調器縦列接続構成の光送信器は、光変調器が3段縦列接続された構成において、データ変調とクロック変調とのタイミングを合わせるために、それぞれ独立に位相調整が可能なデータ、クロック系統が必要となるという課題があった。また、変調器間のファイバの伝播遅延時間の温度特性に合わせて変調タイミングを補償する必要があるが、ファイバの長さの違いに応じて伝播遅延時間の温度特性が変わるため、多くのパターンの位相補償テーブルを保持する必要があるという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、独立な高速クロック系統を用意する必要をなくし、デバイス選択の幅を広げることが可能な光送信器を提供することを目的としている。
 この発明に係る光送信器は、連続光を変調用データ信号に応じて変調する第1の光変調器と、第1の光変調器に1段以上縦列接続され、連続光を第1のクロック信号に応じて変調する第2の光変調器と、第1,2の光変調器に縦列接続され、連続光を第2のクロック信号に応じて変調する第3の光変調器と、変調用データ信号を第1の光変調器に出力する第1の変調器駆動部と、第1のクロック信号を第2の光変調器に出力する第2の変調器駆動部と、第2のクロック信号を第3の光変調器に出力する第3の変調器駆動部とを備え、第2の変調器駆動部は、変調用データ信号に対応したクロック信号の位相を調整する第1の位相器と、第1の位相器により位相が調整されたクロック信号を同位相の2つのクロック信号に分け、一方のクロック信号を第1のクロック信号とし、他方のクロック信号を後段の第2の変調器駆動部または第3の変調器駆動部用のクロック信号とするクロック分配器とを備え、第3の変調器駆動部は、クロック分配器からのクロック信号の位相を調整して第2のクロック信号とする第2の位相器を備えたものである。
 この発明によれば、上記のように複数系統のクロック変調用信号の送信源を同一クロック系統としたことで、独立な高速クロック系統を複数用意する必要がなくなり、デバイス選択の幅が広がる。
この発明の実施の形態1に係る光送信器を適用するWDMシステムの全体構成図である。 この発明の実施の形態1に係る光送信器の構成を示すブロック図である。 クロック位相ずれのアイパターンへの影響を示す図であり、(a)クロック位相が合っているときを示す図であり、(b)クロック信号がずれているときを示す図である。 ファイバの長さごとの温度と伝播遅延時間の関係を示す図である。 この発明の実施の形態2に係る光送信器の構成を示すブロック図である。 この発明の実施の形態3に係る光送信器の構成を示すブロック図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る光送信器2を適用するWDMシステム1の全体構成図である。
 WDMシステム1は、図1に示すように、複数の光送信器(Tx)2、光合波部3、光分波部4および複数の光受信器(Rx)5から構成されている。また、光合波部3と光分波部4とは伝送路6により接続されている。
 光送信器2は、入力した送信データ51を電気/光変換して、送信光52を生成するものである。この光送信器2の詳細については後述する。
 光合波部3は、各光送信器2から出力された波長の異なる送信光52を波長多重するものである。この波長多重された送信光52は、伝送路6を通過して光分波部4に出力される。
 光分波部4は、光合波部3から伝送路6を通過して出力された送信光52を波長分割して複数の受信光53とするものである。
 光受信器5は、光分波部4により波長分割された対応する受信光53を光/電気変換して、受信データ54を出力するものである。
 次に、光送信器2の構成について、図2を参照しながら説明する。
 光送信器2は、図2に示すように、送信信号生成部201、データドライバ202、光源(LD)203、光変調器(第1の光変調器)204、位相器(第1の位相器)205、クロック分配器206、ドライバ207、光変調器(第2の光変調器)208、位相器(第2の位相器)209、ドライバ210、光変調器(第3の光変調器)211、ファイバ情報保持部212、温度センサ213、位相補償テーブル保持部214および位相補償テーブル保持部215から構成されている。
 なお、データドライバ202は、本発明の「変調用データ信号を第1の光変調器に出力する第1の変調器駆動部」に相当する。また、位相器205、クロック分配器206およびドライバ207は、本発明の「第1のクロック信号を第2の光変調器に出力する第2の変調器駆動部」に相当する。また、位相器209およびドライバ210は、本発明の「第2のクロック信号を第3の光変調器に出力する第3の変調器駆動部」に相当する。
 送信信号生成部201は、入力した送信データ51に基づいて、データ信号(変調用データ信号)55、および当該データ信号に対応したクロック信号56を生成するものである。この送信信号生成部201により生成されたデータ信号55はデータドライバ202に出力され、クロック信号56は位相器205に出力される。
 データドライバ202は、送信信号生成部201により生成されたデータ信号55を増幅するものである。このデータドライバ202により増幅されたデータ信号55は光変調器204に出力される。
 光源203は、所定の連続光を出力するものである。この光源203からの連続光はファイバ216を通過して光変調器204に出力される。
 光変調器204は、光源203からの連続光を、データドライバ202により増幅されたデータ信号55に応じて変調するものである。この光変調器204における変調方式は、共同変調方式のNRZ(Non Return to Zero)変調、もしくは位相変調方式のDPSK(Differential Phase Shift Keying)、DQPSK(Differential Quadrature Phase Shift Keying)、DP-BPSK(Dual Polarization Binary Phase Shift Keying)、DP-QPSK(Dual Polarization-Quadrature Phase Shift Keying)等が適用できる。この光変調器204により変調された連続光はファイバ217を通過して光変調器208に出力される。
 位相器205は、送信信号生成部201により生成されたクロック信号56の位相を調整するものである。この際、位相器205は、ファイバ情報保持部212に保持されているファイバ217のファイバ情報および温度センサ213により検出されたファイバ217の温度に基づいて、位相補償テーブル保持部214に保持されている位相補償テーブルから最適な遅延時間指令値を抽出し、この遅延時間指令値に応じた伝播遅延時間(位相量)を与えるよう位相を調整する。この位相器205により位相が調整されたクロック信号56はクロック分配器206に出力される。
 クロック分配器206は、位相器205により位相が調整されたクロック信号56を同位相の2つのクロック信号57,58に分けるものである。このクロック分配器206により分配された一方のクロック信号(第1のクロック信号)57はドライバ207に出力され、他方のクロック信号(第2のクロック信号)58は位相器209に出力される。
 ドライバ207は、クロック分配器206により分配されたクロック信号57を増幅するものである。このドライバ207により増幅されたクロック信号57は光変調器208に出力される。
 光変調器208は、光変調器204に縦列接続され、光変調器204からファイバ217を通過して出力された連続光を、ドライバ207により増幅されたクロック信号57に応じて変調するものである。この光変調器208における変調方式は、RZパルス変調、CSRZ(Carrier-Suppressed Return-to-Zero)パルス変調等が適用できる。この光変調器208により変調された連続光はファイバ218を通過して光変調器211に出力される。
 位相器209は、クロック分配器206により分配されたクロック信号58の位相を調整するものである。この際、位相器209は、ファイバ情報保持部212に保持されているファイバ218のファイバ情報および温度センサ213により検出されたファイバ218の温度に基づいて、位相補償テーブル保持部215に保持されている位相補償テーブルから最適な遅延時間指令値を抽出し、この遅延時間指令値に応じた伝播遅延時間(位相量)を与えるよう位相を調整する。この位相器209により位相が調整されたクロック信号58はドライバ210に出力される。
 ドライバ210は、位相器209により位相が調整されたクロック信号58を増幅するものである。このドライバ210により増幅されたクロック信号58は光変調器211に出力される。
 光変調器211は、光変調器204,208に縦列接続され、光変調器208からファイバ218を通過して出力された連続光を、ドライバ210により増幅されたクロック信号58に応じて変調するものである。この光変調器211における変調方式は、偏波変調や位相変調が適用できる。なお、光変調器208と光変調器211で適用する変調方式は入れ替えることが可能である。この光変調器211により変調された連続光は送信光52としてファイバ219を通過して光合波部3に出力される。
 ファイバ情報保持部212は、ファイバ217,218の長さに関する情報(ファイバ情報)を保持するものである。ここで、ファイバ情報としては、ファイバ217,218の融着失敗回数またはファイバ217,218の長さが挙げられる。
 温度センサ213は、ファイバ217,218の温度を検出するものである。
 位相補償テーブル保持部214は、ファイバ217の融着失敗回数またはファイバ217の長さ毎に、ファイバ217の温度と位相器205への遅延時間指令値との関係を示す位相補償テーブルを保持するものである。
 位相補償テーブル保持部215は、ファイバ218の融着失敗回数またはファイバ218の長さ毎に、ファイバ218の温度と位相器209への遅延時間指令値との関係を示す位相補償テーブルを保持するものである。
 次に、上記のように構成された光送信器2の動作について説明する。
 光送信器2の動作では、送信信号生成部201から出力されたデータ信号55は、データドライバ202により増幅され、光変調器204に入力される。一方、送信信号生成部201から出力されたクロック信号56は、位相器205を通ることでデータ信号55に対する位相が調整可能となっており、後段のクロック分配器206を経て同位相の2つのクロック信号57,58となる。そして、クロック信号57は、ドライバ207で増幅され、光変調器208に入力される。また、クロック信号58は、位相器209を通ることで位相が調整可能となっており、ドライバ210で増幅され、光変調器211に入力される。
 そして、光源203から出力される連続光は、光変調器204,208,211を通ることで、各光変調器204,208,211への入力電気信号(データ信号55、クロック信号57,58)に応じた変調が加えられる。この際、後段の光変調器208(211)では、前段の光変調器204(208)で加えられた変調シンボルと同期したタイミングでの変調が必要となる。
 一方、光変調器204,208,211間のファイバ217,218は、ファイバ217,218の屈折率の温度変化による光路長の変化により光の伝播遅延時間が変化する。そのため、ある特定の温度条件において位相器205,209を用いて変調タイミングを調整したとしても、周囲温度の変動が発生して伝播遅延時間の変動が発生した場合、変調タイミングのずれとなる。
 参考までにNRZデータ変調とRZ変調との変調タイミングと波形の関係を図3に示す。図3(b)に示すように、変調タイミングが最適でない場合(クロック位相がずれているとき)には、NRZ波形の遷移点がRZパルス内に現れ、波形が劣化する。
 また、光変調器204,208,211間の伝播遅延時間の温度特性は、光変調器204,208,211間のファイバ217,218の長さに依存する。光変調器204,208,211間の接続は、接続部分でのロスや反射を最小化すると同時に、実装面積を削減するために、ファイバ融着にて行われることが一般的である。しかしながら、融着に失敗した場合、融着点付近のファイバ217,218を切断して融着しなおすため、融着失敗回数によって変調器204,208,211間のファイバ長が異なる。つまり、融着失敗回数によって伝播遅延時間の温度特性も異なるものになる。
 上記の特性を踏まえ、ファイバ217の長さ(例えば融着失敗なし、1回失敗、2回失敗の3パターン)ごとの温度と伝播遅延時間の関係を図4(a)に示す。
 また、後段の光変調器211では前段のファイバ217とファイバ218の両方の伝播遅延時間の温度特性の影響を受けるため、ファイバ217,218それぞれで融着失敗なし、1回失敗、2回失敗の3パターンずつだとしてもその温度特性は図4(b)に示すように多くのパターンとなる。
 そして、この特性を反映した位相補償テーブルを位相補償テーブル保持部214,215にて保持し、位相器205,209では、ファイバ情報保持部212に保持されたファイバ情報および温度センサ213により検出された温度に基づき最適な変調タイミング制御を行う。
 ここで、従来構成のように、クロック信号57とクロック信号58が独立な別系統のクロック信号の場合、位相補償テーブル保持部215には図4(b)に示すような多くのパターンの位相補償テーブルが必要となる。
 一方、実施の形態1におけるクロック信号57,58は、クロック信号56に従属なクロック系統である。よって、光変調器208の変調タイミングを位相補償テーブル保持部214を使用して補償することにより、連動してクロック信号58の位相も変化する。すなわち、後段のクロック信号58にとってファイバ217の温度特性は自動的に補償されることになり、ファイバ218の伝播遅延時間の温度特性のみを考慮すればよい。その結果、位相補償テーブル保持部215には図4(a)と同等の少ないパターン数の位相補償テーブルを用意すればよいことになる。
 以上のように、この実施の形態1によれば、クロック変調に用いるクロック系統は1つとし、クロック信号57の位相調整によりクロック信号58が連動して動くことを積極的に利用するように構成したので、従来技術のように送信信号生成部201からの2系等の独立なクロック信号出力は不要となり、デバイス選択の幅が広がる。また、前段の光変調器208における変調タイミング調整の結果、後段の光変調器211における変調タイミングも連動するため、後段の位相補償テーブル保持部215が保持する位相補償テーブルのパターン数が削減可能となる。
 また上記では、位相器205,209は、ファイバ情報保持部212に保持されたファイバ217,218のファイバ情報および温度センサ213により検出されたファイバ217,218の温度に基づいて、位相補償テーブル保持部214,215を参照することで、位相量を得る場合について示した。しかしながら、これに限るものではなく、位相補償テーブルのみ、位相補償テーブルおよびファイバ217,218の温度のみ、位相補償テーブルおよびファイバ217,218のファイバ情報のみから位相量を得るように構成してもよい。
実施の形態2.
 実施の形態1では、初段にデータ変調用の光変調器204を配し、後段にクロック変調用の光変調器208,211を接続した構成について示した。しかし、前段にデータ変調用の光変調器としてDP-QPSK変調器等が配置されると、その出力光はX/Y偏波多重される。そのため、クロック変調用の光変調器として偏波依存性のある光変調器(例えばLN基板を適用したMZ型光強度変調器)を用いる場合、単一偏波のみしか変調がなされないという問題がある。その場合、データ変調用の光変調器を後段に接続することで、偏波多重される前にクロック変調が可能となる。そこで、実施の形態2では、上記構成とした場合について示す。
 図5はこの発明の実施の形態2に係る光送信器2の構成を示す図である。この図5に示す実施の形態2に係る光送信器2は、図2に示す実施の形態1に係る光送信器2の光変調器204,208,211を光変調器(第1~3の光変調器)220,221,222に置き換え、その接続順序を変更したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 光変調器222は、光源203からの連続光を、ドライバ210により増幅されたクロック信号58に応じて変調するものである。この光変調器220により変調された連続光はファイバ223を通過して光変調器221に出力される。
 光変調器221は、光変調器222からファイバ223を通過して出力された連続光を、ドライバ207により増幅されたクロック信号57に応じて変調するものである。この光変調器221により変調された連続光はファイバ224を通過して光変調器220に出力される。
 光変調器220は、光変調器221からファイバ224を通過して出力された連続光を、データドライバ202により増幅されたデータ信号55に応じて変調するものである。この光変調器220により変調された連続光は送信光52としてファイバ225を通過して光合波部3に出力される。
 ここで、光源203から出力される連続光は光変調器222,221,220を通ることで、各光変調器222,221,220への入力電気信号(データ信号55、クロック信号57,58)に応じた変調が加えられる。
 一方、クロック信号57,58はクロック信号56に従属なクロック系統である。そのため、ファイバ224の温度特性を補償するためにクロック信号57の変調タイミングを位相補償テーブル保持部214を使用して補償することにより、連動してクロック信号58の変調タイミングも変化する。光変調器222の変調タイミングを考慮する際にファイバ224の温度特性は自動的に補償されることになり、あとはファイバ223の伝播遅延時間の温度特性のみを考慮すればよく、位相補償テーブル保持部215には図4(a)と同等の少ないパターン数の位相補償テーブルを用意すればよい。
 以上のように、この実施の形態2によれば、実施の形態1の構成に対し、光変調器220,221,222の接続順序を変更しても、実施の形態1と同等の効果が得られ、また、使用する光変調器220,221,222の種類の選択の幅が広がる。
実施の形態3.
 実施の形態1,2では、光変調器204,208,211(220,221,222)を3段従属に接続する構成について示した、それに対して、実施の形態3では、3段より多くのn段構成とした場合について示す。
 図6はこの発明の実施の形態3に係る光送信器2の構成を示すブロック図である。図6に示す実施の形態3に係る光送信器2は、図2に示す実施の形態3に係る光送信器2にn段目の位相器205n、クロック分配器206n、ドライバ207n、光変調器208nおよび位相補償テーブル保持部214nを追加したものである。なお、これらの機能部は、光送信器2の2段目の位相器205、クロック分配器206、ドライバ207、光変調器208および位相補償テーブル保持部214と同様の機能を有するものである。
 次に、実施の形態3に係る光送信器2の動作について説明する。
 実施の形態3に係る光送信器2では、送信信号生成部201から出力されたデータ信号55は、データドライバ202により増幅され、光変調器204に入力される。一方、送信信号生成部201から出力されたクロック信号56は、位相器205を通ることでデータ信号55に対する位相が調整可能となっており、後段のクロック分配器206を経て同位相の2つのクロック信号57,58となる。そして、クロック信号57は、ドライバ207で増幅され、光変調器208に入力される。ここまでは実施の形態1に係る光送信器2の動作と同様である。
 一方、クロック信号58は、位相器205nを通った後にクロック分配器206nにてさらに枝分かれし、同位相の2つのクロック信号59,60となる。そして、クロック信号59は、ドライバ207nで増幅され、光変調器208nに入力される。このクロック信号58以降の位相器205n、クロック分配器206n、ドライバ207n、光変調器208nおよび位相補償テーブル保持部214nを含むブロック226は、光変調器208nの縦続接続数に応じて複数個実装され、多段接続を実現する。
 多段接続の最終段においては、前段から分配されたクロック信号60が位相器209にて変調タイミングが最適となるようにファイバ218nの伝播遅延時間を加味した位相調整がなされたのち、ドライバ210で増幅され、光変調器211に入力される。各位相器205~205n,209に対する遅延時間指令値は、ファイバ情報保持部212に保持されたファイバ情報および温度センサ213により検出された温度を基に位相補償テーブル保持部214~214n,215から入力される。このとき各段での位相補償量は後段へと分配されたクロック信号にも連動して適用されるため、後段では前段までの位相補償がなされたクロック信号が供給される。各段の位相補償テーブル保持部214~214n,215は該当段のファイバの伝播遅延時間のみを考慮すればよく、実施の形態1と同様の最小限の位相補償テーブルを保持すればよい。
 以上のように、この実施の形態3によれば、光変調器204,208~208n,211の接続数を3段より多くの多段接続としても実施の形態1と同等の効果が得られるため、変調器の多段接続時の位相補償テーブルの増加を最小限とすることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る光送信器は、独立な高速クロック系統を複数用意する必要がなくなり、デバイス選択の幅を広げることが可能となり、光変調器が多段に縦列接続された光送信器等に用いるのに適している。
 1 WDMシステム、2 光送信器(Tx)、3 光合波部、4 光分波部、5 光受信器(Rx)、6 伝送路、51 送信データ、52 送信光、53 受信光、54 受信データ、55 データ信号、56~60 クロック信号、201 送信信号生成部、202 データドライバ、203 光源、204,208,208n,211,220~222 光変調器、205,205n,209 位相器、206,206n クロック分配器、207,207n,210 ドライバ、212 ファイバ情報保持部、213 温度センサ、214,214n,215 位相補償テーブル保持部、216~219,218n,223~225 ファイバ、226 ブロック。

Claims (5)

  1.  連続光を変調用データ信号に応じて変調する第1の光変調器と、
     前記第1の光変調器に1段以上縦列接続され、前記連続光を第1のクロック信号に応じて変調する第2の光変調器と、
     前記第1,2の光変調器に縦列接続され、前記連続光を第2のクロック信号に応じて変調する第3の光変調器と、
     前記変調用データ信号を前記第1の光変調器に出力する第1の変調器駆動部と、
     前記第1のクロック信号を前記第2の光変調器に出力する第2の変調器駆動部と、
     前記第2のクロック信号を前記第3の光変調器に出力する第3の変調器駆動部とを備え、
     前記第2の変調器駆動部は、
     前記変調用データ信号に対応したクロック信号の位相を調整する第1の位相器と、
     前記第1の位相器により位相が調整されたクロック信号を同位相の2つのクロック信号に分け、一方のクロック信号を前記第1のクロック信号とし、他方のクロック信号を後段の前記第2の変調器駆動部または前記第3の変調器駆動部用のクロック信号とするクロック分配器とを備え、
     前記第3の変調器駆動部は、
     前記クロック分配器からのクロック信号の位相を調整して前記第2のクロック信号とする第2の位相器を備えた
     ことを特徴とする光送信器。
  2.  前記第1,2の位相器における位相量に関する位相補償テーブルを保持する位相補償テーブル保持部を備え、
     前記第1,2の位相器は、前記位相補償テーブル保持部に保持された位相補償テーブルに基づいて、前記クロック信号の位相を調整する
     ことを特徴とする請求項1記載の光送信器。
  3.  前記第1~3の光変調器間に接続されたファイバの温度を検出する温度センサを備え、
     前記位相補償テーブル保持部は、前記位相補償テーブルとして、前記ファイバの温度と前記位相量との関係を示す情報を保持し、
     前記第1,2の位相器は、前記温度センサにより検出された温度を考慮して、前記クロック信号の位相を調整する
     ことを特徴とする請求項2記載の光送信器。
  4.  前記第1~3の光変調器間に接続されたファイバの長さに関する情報を保持するファイバ情報保持部を備え、
     前記位相補償テーブル保持部は、前記位相補償テーブルとして、前記ファイバの長さと前記位相量との関係を示す情報を保持し、
     前記第1,2の位相器は、前記ファイバ情報保持部に保持された情報を考慮して、前記クロック信号の位相を調整する
     ことを特徴とする請求項2記載の光送信器。
  5.  前記第1~3の光変調器間に接続されたファイバの長さに関する情報を保持するファイバ情報保持部を備え、
     前記位相補償テーブル保持部は、前記位相補償テーブルとして、前記ファイバの長さと前記ファイバの温度と前記位相量との関係を示す情報を保持し、
     前記第1,2の位相器は、前記ファイバ情報保持部に保持された情報を考慮して、前記クロック信号の位相を調整する
     ことを特徴とする請求項3記載の光送信器。
PCT/JP2013/062258 2013-04-25 2013-04-25 光送信器 WO2014174639A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062258 WO2014174639A1 (ja) 2013-04-25 2013-04-25 光送信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062258 WO2014174639A1 (ja) 2013-04-25 2013-04-25 光送信器

Publications (1)

Publication Number Publication Date
WO2014174639A1 true WO2014174639A1 (ja) 2014-10-30

Family

ID=51791245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062258 WO2014174639A1 (ja) 2013-04-25 2013-04-25 光送信器

Country Status (1)

Country Link
WO (1) WO2014174639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029773A (zh) * 2018-08-07 2018-12-18 吉林大学 一种用于矿井安全监测的温度传感系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023121A (ja) * 2000-07-06 2002-01-23 Nec Corp 光送信装置及びそれを有する光ファイバ伝送システム
JP2004088250A (ja) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp 光送信装置
JP2004294883A (ja) * 2003-03-27 2004-10-21 Fujitsu Ltd 光変調器の制御装置
JP2005222083A (ja) * 1997-03-31 2005-08-18 Mitsubishi Electric Corp 光パルス発生装置及び光パルス発生方法
JP2009529834A (ja) * 2006-03-06 2009-08-20 タイコ テレコミュニケーションズ (ユーエス) インコーポレーテッド 高ビットレートシステム用通信フォーマット
JP2011223619A (ja) * 2011-06-16 2011-11-04 Fujitsu Ltd 光送信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222083A (ja) * 1997-03-31 2005-08-18 Mitsubishi Electric Corp 光パルス発生装置及び光パルス発生方法
JP2002023121A (ja) * 2000-07-06 2002-01-23 Nec Corp 光送信装置及びそれを有する光ファイバ伝送システム
JP2004088250A (ja) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp 光送信装置
JP2004294883A (ja) * 2003-03-27 2004-10-21 Fujitsu Ltd 光変調器の制御装置
JP2009529834A (ja) * 2006-03-06 2009-08-20 タイコ テレコミュニケーションズ (ユーエス) インコーポレーテッド 高ビットレートシステム用通信フォーマット
JP2011223619A (ja) * 2011-06-16 2011-11-04 Fujitsu Ltd 光送信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029773A (zh) * 2018-08-07 2018-12-18 吉林大学 一种用于矿井安全监测的温度传感系统

Similar Documents

Publication Publication Date Title
EP1793513B1 (en) Optical transmission apparatus
US8086109B2 (en) Polarization multiplexed optical transmitting and receiving apparatus
JP5476697B2 (ja) 光信号送信装置
JP4579086B2 (ja) 離散帯域における異なる変調フォーマットの光信号の伝送
US20080056727A1 (en) Optical transmitter and drive method of same
US8098996B2 (en) Adaptable duobinary generating filters, transmitters, systems and methods
JP4701192B2 (ja) 伝送システムおよび伝送方法
US7796897B2 (en) WDM optical transmission system and WDM optical transmission method
CN101438518A (zh) 用于高比特率系统的传输格式
JP5445132B2 (ja) 光信号処理装置
WO2011119642A2 (en) Optical transmitter supplying optical signals having multiple modulation formats
EP1499044A2 (en) Optical receiving method, optical receiver, and optical transmission system using the same
US9385815B2 (en) Bandwidth efficient dual carrier
US8811827B2 (en) System for generating optical RZ signals based on electrical RZ signals
JP5700965B2 (ja) 光送信器、光送受信器および光伝送システム
US10069589B2 (en) Method and apparatus for increasing a transmission performance of a hybrid wavelength division multiplexing system
JP2011002640A (ja) 光変調装置および光送信器、並びに、光変調装置の制御方法
WO2014174639A1 (ja) 光送信器
JP5691426B2 (ja) 光送信器および偏波ビットインターリーブ信号生成方法
WO2004023693A2 (en) System and method for high bit-rate optical time division multiplexing (otdm)
JP2012100006A (ja) 光送信機、光受信機および光通信システム
Gnauck et al. Optical duobinary format from demodulation of DPSK using athermal delay interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP