WO2014173136A1 - 托盘及等离子体加工设备 - Google Patents

托盘及等离子体加工设备 Download PDF

Info

Publication number
WO2014173136A1
WO2014173136A1 PCT/CN2013/088980 CN2013088980W WO2014173136A1 WO 2014173136 A1 WO2014173136 A1 WO 2014173136A1 CN 2013088980 W CN2013088980 W CN 2013088980W WO 2014173136 A1 WO2014173136 A1 WO 2014173136A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
processed
recess
heat exchange
pallet
Prior art date
Application number
PCT/CN2013/088980
Other languages
English (en)
French (fr)
Inventor
刘利坚
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Publication of WO2014173136A1 publication Critical patent/WO2014173136A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to the field of microelectronic processing technology, and in particular to a tray and plasma processing equipment. Background technique
  • Plasma processing equipment is a common equipment for processing semiconductor devices.
  • processes such as etching, sputtering, and chemical vapor deposition
  • a large-sized one is used.
  • the tray carries a plurality of wafers and simultaneously transports them into the reaction chamber, thereby enabling simultaneous processing of a plurality of wafers.
  • the conventional method of temperature control is to blow a heat exchange gas such as helium gas on the back side of the wafer (i.e., the other side opposite to the wafer processing surface) to adjust the temperature of the wafer by means of the heat exchange gas.
  • a heat exchange gas such as helium gas
  • a plurality of air inlet holes are disposed on the bearing surface of the tray, and the air source supplies the heat exchange gas to the gap between the back surface of the wafer and the bearing surface of the tray through the air inlet hole, thereby realizing heat exchange gas and Heat exchange between wafers.
  • the air pressure between the back surface of the wafer and the bearing surface of the tray is much higher than the air pressure in the reaction chamber, resulting in a gap.
  • the heat exchange gas leaks into the reaction chamber, and the heat exchange efficiency and the process result are adversely affected when the leakage amount of the heat exchange gas reaches a certain level.
  • the first method is to reduce the roughness of the bearing surface of the tray (generally less than ⁇ ) to enable the back side of the wafer to be loaded with the tray.
  • the faces are more closely attached together, thereby reducing the amount of heat exchange gas leakage.
  • the body is mainly concentrated near the air inlet hole, and is difficult to diffuse to the edge of the wafer, thereby causing poor heat exchange between the heat exchange gas and the edge region of the wafer, thereby causing a difference in temperature between the edge region of the wafer and the temperature in the central region.
  • the temperature uniformity of the workpiece to be processed is poor.
  • the second method is to reduce the degree of diffusion of the heat exchange gas flowing out from the inlet hole to the edge of the wafer by increasing the distance between the inlet hole of the heat exchange gas and the edge of the wafer in the radial direction of the tray, thereby lowering the heat exchange gas.
  • the amount of leakage This also causes a poor heat exchange between the heat exchange gas and the edge region of the wafer, resulting in a difference in temperature between the edge region of the wafer and the temperature in the central region, and the temperature of the workpiece to be processed is poor.
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes a tray and a plasma processing apparatus which can not only improve the efficiency and uniformity of heat exchange between the heat exchange gas and the workpiece to be processed, but also Reduce the amount of leakage of heat exchange gas.
  • a tray for carrying a workpiece to be processed and adjusting the temperature of the workpiece to be processed by means of a heat exchange gas is provided.
  • the non-edge region in the load-bearing region is formed with at least one recess recessed toward the lower surface of the tray, and for each of the recesses, the maximum diameter of the recess is smaller than the supported surface of the workpiece to be loaded
  • the smallest diameter, and an air inlet hole is disposed on a bottom surface of the recess, and the air inlet hole communicates with a gas source of the heat exchange gas.
  • the edge region in each of the workpiece carrying regions of the workpiece is set in such a manner that it can be sealed with the bearing surface of the workpiece to be processed when it carries the workpiece to be processed.
  • the roughness of the edge region in each of the processed workpiece bearing regions ranges from 0 ⁇ 1 to 1 ⁇ m.
  • the roughness of the edge region in each of the workpiece loading regions of the workpiece is in a range of 0 ⁇ 4 ⁇ 0 ⁇ 7 ⁇ .
  • the depth of the concave portion ranges from 1 to 100 ⁇ m.
  • the depth of the concave portion is 10 ⁇ to 30 ⁇ .
  • the width of the edge region in each of the workpiece bearing regions in the radial direction of the workpiece bearing region is in the range of 0.5 to 10 mm.
  • the width of the edge region in each of the workpiece bearing regions in the radial direction of the workpiece bearing region is in the range of 4 to 7 mm.
  • the number of the intake holes is plural, and the distance between the intake hole closest to the bottom edge of the recess and the bottom edge of the recess is in the range of 0.5 to 5 mm.
  • the distance between the air inlet hole closest to the bottom edge of the recess and the bottom edge of the recess is 1.2 to 2 mm.
  • the present invention also provides a plasma processing apparatus including a reaction chamber, a clamping device located in the reaction chamber, and a tray placed on the clamping device, the tray being used for The workpiece to be processed is carried, and the temperature of the workpiece to be processed is adjusted by means of a heat exchange gas, and the tray is the above-described tray provided by the present invention.
  • the tray provided by the present invention forms a closed portion between the concave portion on the non-edge region in the workpiece bearing region and the supported surface of the workpiece to be processed when the workpiece to be processed is carried in the workpiece carrying region of the workpiece to be processed.
  • Space, and the heat exchange gas flows into the closed space via the intake holes distributed on the bottom surface of the recess, and since the maximum diameter of the recess of the recess is smaller than the minimum diameter of the supported surface of the workpiece to be carried, this makes only The edge region in the workpiece carrying region of the workpiece is brought into contact with the peripheral region of the surface of the workpiece to be processed near the edge thereof, so that most of the region of the surface to be processed of the workpiece to be processed is located in the closed space.
  • the closed space can have a larger volume to accommodate more heat exchange gas, and the heat exchange gas flowing therein can be diffused to the surroundings without any obstacle until the distribution is uniform, which is compared with the prior art.
  • the edge area in the bearing area of the workpiece being processed and the workpiece The peripheral surface of the bearing surface near the edge thereof is in contact with each other, so that even if the two are closely fitted, the degree of diffusion of the heat exchange gas to the surrounding space is not affected, so that the leakage amount of the heat exchange gas can be reduced, and thus It is possible to avoid adverse effects on heat conduction efficiency and process results due to excessive leakage of heat exchange gas.
  • the plasma processing apparatus provided by the present invention can not only improve the efficiency and uniformity of heat exchange between the heat exchange gas and the workpiece to be processed, but also reduce the leakage amount of the heat exchange gas, thereby avoiding the use of the tray provided by the present invention. Adverse effects on heat transfer efficiency and process results due to excessive leakage of heat exchange gas.
  • FIG. 1 is a partial cross-sectional view of a tray according to an embodiment of the present invention.
  • FIG. 2 is a top view of a tray according to an embodiment of the present invention.
  • Figure 3 is an enlarged view of the area I in Figure 2;
  • FIG. 4A is a schematic structural view of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 4B is a schematic structural diagram of another plasma processing apparatus according to an embodiment of the present invention. detailed description
  • the essence of the invention is to provide a tray on which at least one workpiece bearing area is formed on the upper surface of the tray, and each of the processed workpiece bearing areas has a shape and a size corresponding to the workpiece to be carried, and in each The non-edge region in the workpiece carrying region of the workpiece is formed with at least one recess recessed toward the lower surface of the tray, and for each recess, the maximum diameter of the recess is smaller than the bearing surface of the workpiece to be loaded Minimum diameter and distributed on the bottom surface of the recess There is an air inlet which communicates with a gas source of the heat exchange gas for introducing the heat exchange gas into the recess.
  • FIG. 1 is a partial cross-sectional view of a tray according to an embodiment of the present invention.
  • 2 is a top plan view of a tray according to an embodiment of the present invention.
  • Figure 3 is an enlarged view of the area I in Figure 2.
  • the upper surface of the tray 10 provided by the embodiment of the present invention is provided with a plurality of workpiece loading regions 100 to be processed, and each workpiece bearing region 100 is used to carry a processed workpiece.
  • the workpiece 14, and its shape and size, correspond to the shape and size of the workpiece 14 to be carried.
  • a non-edge region 111 (e.g., a central region) in each of the workpiece bearing regions 100 is formed with a recess 11 recessed toward the lower surface of the tray 10, and for each recess 11, the maximum diameter of the recess The dl is smaller than the minimum diameter d2 of the bearing surface of the workpiece 14 to be carried, and the air inlet 13 is distributed on the bottom surface of the recess 11, and the air inlet 13 communicates with the air source of the heat exchange gas for heat The exchange gas is introduced into the recess 11.
  • the edge region 101 refers to a portion located in the periphery of the workpiece carrying region 100 to be processed and carries the workpiece 14 to be processed; the so-called non-edge region 111 refers to the workpiece in the workpiece bearing region 100 that is not used to carry the workpiece to be processed.
  • the upper surface of the workpiece 14 is the side of the workpiece 14 that is in contact with the tray 10, that is, the lower surface thereof.
  • the concave portion 11 on the non-edge region 111 in each workpiece bearing region 100 and the supported surface of the workpiece 14 to be processed are A closed space 12 is formed therebetween, and heat exchange gases such as helium, argon, and nitrogen gas flow into the closed space 12 via the intake holes 13 distributed on the bottom surface of the recess 11, and since the recess of the recess 11 is the largest
  • the diameter dl is smaller than the minimum diameter d2 of the bearing surface of the workpiece 14 to be carried, which causes only the edge region 101 in the workpiece bearing region 100 to be machined to the peripheral region of the surface of the workpiece 14 to be near its edge.
  • the closed space 12 can have a larger volume to accommodate more heat exchange gas, and can diffuse the heat exchange gas flowing therein into the surroundings without any obstacle until the distribution is uniform, which is related to the prior art.
  • the edge region 101 in each of the workpiece carrying regions 100 to be processed is set in such a manner as to be able to seal with the bearing surface of the workpiece 14 to be processed while carrying the workpiece 14 to be processed.
  • the edge region 101 in the workpiece bearing region 100 is fitted to the peripheral region of the lower surface of the workpiece 14 near the edge thereof so that the recess 11 and the workpiece 14 are processed.
  • the closed space 12 between the surfaces is sealed.
  • the roughness of the edge region 101 in the workpiece carrying region 100 to be processed can be reduced to improve the closeness of the lower surface of the workpiece 14 to be processed near the edge thereof.
  • the roughness can range from 0.1 to 1 ⁇ m.
  • the bottom surface of the concave portion 11 is not in contact with the lower surface of the workpiece 14 to be processed, it is not necessary to define the roughness of the bottom surface of the concave portion 11, and preferably, the roughness may be larger than 0.6 ⁇ m to facilitate processing.
  • the depth H of the recessed portion 11 may range from 1 to 100 ⁇ m; the width D1 of the edge region 101 in the workpiece carrying region 100 to be processed may be in the range of 0.5 to 10 in the radial direction of the workpiece carrying region 100 to be processed.
  • the plurality of intake holes 13 distributed on the bottom surface of the recess 11 are arranged in the form of concentric circles, and one or more intake holes 13 may be provided at the center of the concentric circle, except for the center of the circle
  • Each of the circular turns has a plurality of intake holes 13 evenly distributed along the circumference thereof.
  • the edge region 101 in the workpiece carrying region 100 can be closely fitted to the peripheral region of the lower surface of the workpiece 14 near its edge, in this case, the air inlet hole on the bottom surface of each recess 11 13 can be disposed as close as possible to the edge of the bottom surface of the recess 11 without causing excessive leakage of the heat exchange gas, so that it is possible to increase the amount of leakage of the heat exchange gas to the workpiece to be processed 14
  • the concentration of the heat exchange gas of the lower surface of the lower surface near the edge thereof tends to make the temperature distribution of the workpiece 14 in its radial direction uniform.
  • the range of the distance D2 between the center line of the intake hole 13 closest to the bottom edge of the recess 11 and the bottom edge of the recess 11 may be in the range of 0.5 ⁇ 5mm. It can be understood that, in practical applications, the manner in which the air inlet holes 13 are distributed on the bottom surface of each recess 11 may not be limited to the form in the embodiment, but may be freely set according to specific conditions.
  • the roughness of the edge region 101 in each of the workpiece carrying regions 100 is the roughness of the edge region 101 in each of the workpiece carrying regions 100.
  • the roughness of the bottom surface of the concave portion 11 is 1.6 ⁇ m; the depth ⁇ of the concave portion 11 is 10 ⁇ to 30 ⁇ , so that the heat exchange gas can be ensured in the concave portion 11 Good flow facilitates heat exchange, and is easy to process and does not make the volume of the tray 10 too large; the width D1 of the edge region 101 in the processed workpiece carrying region 100 in the radial direction of the workpiece bearing region 100 is 4-7 mm.
  • the tray provided by the present invention is not necessarily limited to the form described in the foregoing embodiment, but may be provided in other forms: for example, the number of processed workpiece carrying areas on the upper surface of the tray may also be Or one; or, for each workpiece bearing area to be processed, two or more recesses may be formed in the non-edge area thereof, and air inlet holes may be distributed on the bottom surface of each recess; or, the recess The number of air intake holes on the bottom surface can also be 1, and so on.
  • FIG. 4A is a schematic structural diagram of a plasma processing apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a plasma processing apparatus.
  • the reaction chamber 20 includes a holding device located in the reaction chamber 20, and a tray 21 placed on the holding device.
  • the tray 21 is used to carry the workpiece 14 to be processed, and the temperature of the workpiece 14 to be processed by means of the heat exchange gas. Adjustment is made, and the tray 21 is the above-described tray provided by the embodiment of the present invention.
  • a cover plate 23 is further provided on the upper surface of the tray 21, and a plurality of through holes are provided in the cover plate 23, and each workpiece 14 to be processed is placed on the upper surface of the tray 21. And the processed surface is exposed through the corresponding through hole.
  • a plurality of recessed portions are provided on the upper surface of the tray 21, and a plurality of convex portions are correspondingly provided on the lower surface of the cover plate 23, and the cover plate 23 is provided.
  • the convex portion is embedded in the recessed portion of the tray 21.
  • the clamping device includes an electrostatic chuck 22 and a DC power supply, wherein the electrostatic chuck 22 includes a chuck body, the chuck body is made of a conductive material, and the surface of the conductive material is covered with an insulating material, and the conductive material is used as a card.
  • the electrode of the disk body is grounded; the tray 21 is made of a conductive material, and the surface of the conductive material is covered with an insulating material to ensure that the tray 21 should not be etched by plasma in the chamber 20; the conductive material acts as a tray electrode, and
  • the DC power source is electrically connected, and after the DC power source is turned on, there is a voltage difference between the tray 21 and the chuck body and between the tray 21 and the workpiece to be processed, that is, electrostatic attraction is generated between the tray 21 and the chuck body, and An electrostatic attraction force is generated between the tray 21 and the workpiece 14 to be processed, so that the chuck body adsorbs the tray 21 on the upper surface thereof, and the workpiece 14 is attracted to the upper surface of the tray 21.
  • the chuck body may also be made of an insulating material, and a chuck electrode is embedded inside the insulating material.
  • the tray 21 may also be made of an insulating material, and a tray electrode is buried inside the insulating material.
  • FIG. 4B is another embodiment provided by the embodiment of the present invention. Schematic diagram of the structure of the plasma processing equipment.
  • the clamping device includes a mechanical chuck 22, and a DC power source.
  • the mechanical chuck 22 is fixed to the upper surface thereof by mechanical fixing
  • the mechanical chuck 22 may include a base for carrying the workpiece 14 to be processed, and for fixing the workpiece 14 to be processed.
  • a tooling such as a mechanical clamp, a pressure ring or the like on the base
  • the tray 21 is made of a conductive material, and the surface of the conductive material is covered with an insulating material, the conductive material is used as a tray electrode, and is electrically connected to a DC power source; After the DC power source, electrostatic attraction is generated between the tray 21 and the workpiece 14 to be processed, thereby fixing the workpiece 14 to be fixed on the upper surface of the tray 21.
  • the tray 21 can also be made of an insulating material, and a tray electrode is buried inside the insulating material.
  • the tray and the workpiece to be processed may be fixed together by mechanical fixing or the like.
  • there is no need to limit the fixing manner of the tray as long as the tray can fix the workpiece to be processed on the upper surface thereof. Just go up.
  • the plasma processing apparatus provided by the embodiment of the invention can improve the temperature control effect of the edge region of the workpiece to be improved to improve the central region and the edge of the workpiece to be processed by using the tray provided by the embodiment of the invention.
  • the temperature uniformity of the area can also reduce the amount of leakage of the heat exchange gas, thereby avoiding adverse effects on the heat transfer efficiency and the process result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种托盘(10)及等离子体加工设备。托盘(10)用于承载被加工工件(14),并借助热交换气体对被加工工件(14)的温度进行调节,在托盘(10)的上表面形成有至少一个被加工工件承载区,每一个被加工工件承载区的形状和尺寸均与所要承载的被加工工件(14)相对应,每一个被加工工件承载区中的非边缘区域(111)形成有至少一个朝向托盘的下表面凹进的凹部(11),每一个凹部(11)的凹口的最大直径小于所要承载的被加工工件(14)的被承载面的最小直径,在凹部(11)的底面上分布有进气孔(13),进气孔(13)与热交换气体的气源相连通。托盘(10)不仅可以提高热交换气体与被加工工件(14)热交换的效率和均匀性,还可以减少热交换气体的泄漏量。

Description

托盘及等离子体加工设备 技术领域
本发明涉及微电子加工技术领域,具体地, 涉及一种托盘及等离子体加 工设备。 背景技术
等离子体加工设备是加工半导体器件的常用设备, 其在进行诸如刻蚀、 溅射和化学气相沉积等工艺过程中, 为了提高等离子体加工设备的生产效 率, 低生产成本, 一般采用尺寸较大的托盘来承载多个晶片, 并将其同时 运送至反应腔室中, 从而实现对多个晶片同时进行工艺。
在实际工艺过程中,在反应腔室中形成的等离子体容易使晶片的温度超 过工艺所需的温度, 因此需要对晶片的温度进行控制。传统的温度控制方式 是在晶片的背面(即, 与晶片加工面相对的另一面)吹热交换气体,如氦气, 以借助热交换气体对晶片的温度进行调节。 具体地, 在托盘的承载面上设置 有多个进气孔,气源经由该进气孔将热交换气体输送至晶片的背面与托盘的 承载面之间的缝隙中, 从而实现热交换气体与晶片之间的热交换。在实际应 用中, 当热交换气体充满晶片的背面与托盘的承载面之间的缝隙之后, 晶片 的背面与托盘的承载面之间的气压会远远高于反应腔室内的气压,导致缝隙 内的热交换气体泄漏至反应腔室内,在热交换气体的泄漏量达到一定程度时 会给导热效率以及工艺结果带来不良影响。
为此,人们通常采用下述两种方法来控制热交换气体的泄漏量, 第一种 方法是通过降低托盘的承载面的粗糙度(一般小于 Ιμπι ), 来使晶片的背面 能够与托盘的承载面更紧密地贴合在一起, 从而降低了热交换气体的泄漏 量。 而这会产生下述问题: 由于晶片的背面与托盘的承载面紧密地贴合, 导 致晶片的背面与托盘的承载面之间的缝隙过小,这使得该缝隙中的热交换气 体主要集中在进气孔附近, 而很难向晶片的边缘扩散, 从而导致热交换气体 与晶片边缘区域之间的热交换效果较差,进而造成晶片边缘区域的温度与中 心区域的温度产生差异, 被加工工件的温度均匀性较差。
第二种方法是通过增加输送热交换气体的进气孔与晶片边缘在托盘的 径向上的间距, 来降低自进气孔流出的热交换气体向晶片边缘扩散的程度, 从而 低了热交换气体的泄漏量。而这同样会导致热交换气体与晶片边缘区 域之间的热交换效果较差,从而造成晶片边缘区域的温度与中心区域的温度 产生差异, 进而被加工工件的温度均勾性较差。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种托盘 及等离子体加工设备,其不仅可以提高热交换气体与被加工工件热交换的效 率和均匀性, 而且还可以减少热交换气体的泄漏量。
为实现本发明的目的而提供一种托盘,用于承载被加工工件,并借助热 交换气体对被加工工件的温度进行调节。在所述托盘的上表面形成有至少一 个被加工工件承载区,每一个所述被加工工件承载区的形状和尺寸均与所要 承载的被加工工件相对应,并且在每一个所述被加工工件承载区中的非边缘 区域形成有至少一个朝向所述托盘的下表面凹进的凹部,且对于每一个所述 凹部而言,其凹口的最大直径小于所要承载的被加工工件的被承载面的最小 直径, 且在所述凹部的底面上分布有进气孔, 所述进气孔与所述热交换气体 的气源相连通。
其中, 每一个所述被加工工件承载区中的边缘区域被设置成这样的形 式, 即, 在其承载被加工工件时能够与该被加工工件的被承载面实现密封。
其中, 每一个所述被加工工件承载区中的边缘区域的粗糙度的范围为 0·1~1μπι。
其中, 每一个所述被加工工件承载区中的边缘区域的粗糙度的范围为 0·4μπι~0·7μιη。
其中, 所述凹部的深度的范围为 1~100μπι。
其中, 所述凹部的深度为 10μπι~30μιη。
其中,每一个所述被加工工件承载区中的边缘区域在所述被加工工件承 载区的径向上的宽度的范围为 0.5~10mm。
其中,每一个所述被加工工件承载区中的边缘区域在所述被加工工件承 载区的径向上的宽度的范围为 4~7mm。
其中,所述进气孔的数量为多个,并且最靠近所述凹部的底面边缘的进 气孔与所述凹部的底面边缘之间的间距的范围为 0.5~5mm。
其中,, 所述最靠近所述凹部的底面边缘的进气孔与所述凹部的底面边 缘之间的间距的范围为 1.2~2mm。
作为另一个技术方案,本发明还提供一种等离子体加工设备, 包括反应 腔室、 位于所述反应腔室内的夹持装置, 以及置于所述夹持装置上的托盘, 所述托盘用于承载被加工工件,并借助热交换气体对被加工工件的温度进行 调节, 并且所述托盘采用了本发明提供的上述托盘。
本发明具有以下有益效果:
本发明提供的托盘, 当其被加工工件承载区中承载有被加工工件时,在 每一个被加工工件承载区中的非边缘区域上的凹部和被加工工件的被承载 面之间会形成闭合空间,且热交换气体经由分布在凹部底面上的进气孔流入 该闭合空间内, 并且, 由于凹部的凹口的最大直径小于所要承载的被加工工 件的被承载面的最小直径,这使得仅被加工工件承载区中的边缘区域与被加 工工件的被承载面的靠近其边缘的周边区域相接触,从而使被加工工件的被 承载面的绝大部分区域均位于该闭合空间内。 由此, 该闭合空间可以具有较 大的体积来容纳更多的热交换气体,且可以使流入其内的热交换气体能够毫 无障碍地向四周扩散直至分布均匀, 这与现有技术相比, 不仅可以提高热交 换的效率和均匀性,而且由于仅被加工工件承载区中的边缘区域与被加工工 件的被承载面的靠近其边缘的周边区域相接触, 因而即使二者紧密地贴合也 不会影响热交换气体向闭合空间的四周扩散的程度,从而可以减少热交换气 体的泄漏量,进而可以避免因热交换气体的泄漏量过大而对导热效率以及工 艺结果产生不良影响。
本发明提供的等离子体加工设备,其通过采用本发明提供的托盘, 不仅 可以提高热交换气体与被加工工件热交换的效率和均匀性,而且还可以减少 热交换气体的泄漏量,从而可以避免因热交换气体的泄漏量过大而对导热效 率以及工艺结果产生的不良影响。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述 中将变得明显和容易理解, 其中:
图 1为本发明实施例提供的托盘的局部剖视图;
图 2为本发明实施例提供的托盘的俯视图;
图 3为图 2中 I区域的放大图;
图 4A为本发明实施例提供的等离子体加工设备的结构示意图; 以及 图 4B为本发明实施例提供的另一种等离子体加工设备的结构示意图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来 对本发明提供的托盘及等离子体加工设备的具体实施方式进行详细描述。
本发明的实质是提供一托盘,在托盘的上表面形成有至少一个被加工工 件承载区,每一个被加工工件承载区的形状和尺寸均与所要承载的被加工工 件相对应,并且在每一个被加工工件承载区中的非边缘区域形成有至少一个 朝向托盘的下表面凹进的凹部, 且对于每一个凹部而言, 其凹口的最大直径 小于所要承载的被加工工件的被承载面的最小直径,且在凹部的底面上分布 有进气孔, 进气孔与热交换气体的气源相连通, 用于将热交换气体引入到凹 部内。
下面结合图 1至图 3对本发明实施例提供的托盘进行详细描述。 其中, 图 1为本发明实施例提供的托盘的局部剖视图。图 2为本发明实施例提供的 托盘的俯视图。 图 3为图 2中 I区域的放大图。
请一并参阅图 1、 图 2和图 3,本发明实施例提供的托盘 10的上表面设 定有多个被加工工件承载区 100, 每一个被加工工件承载区 100用于承载一 个被加工工件 14, 且其形状和尺寸均与所要承载的被加工工件 14的形状和 尺寸相对应。 在每一个被加工工件承载区 100中的非边缘区域 111 (例如中 心区域)形成有一个朝向托盘 10的下表面凹进的凹部 11 , 且对于每一个凹 部 11而言, 其凹口的最大直径 dl小于所要承载的被加工工件 14的被承载 面的最小直径 d2, 且在凹部 11的底面上分布有进气孔 13, 进气孔 13与热 交换气体的气源相连通, 用于将热交换气体引入到凹部 11 内。 所谓边缘区 域 101指的是位于被加工工件承载区 100 内的周边且用于承载被加工工件 14的部分;所谓非边缘区域 111指的是被加工工件承载区 100中的不用于承 载被加工工件 14的部分, 当被加工工件承载区 100中仅有一个凹部 11时, 该非边缘区域 111通常指自中心区域辐射至边缘区域的部分; 所谓凹口指的 是凹部 11在托盘 10的上表面上的开口; 所谓被加工工件 14的被承载面是 指被加工工件 14的与托盘 10相接触的那一面, 也即其下表面。
在实际工艺中, 当被加工工件承载区 100中承载有被加工工件 14时, 在每一个被加工工件承载区 100中的非边缘区域 111上的凹部 11和被加工 工件 14的被承载面之间会形成闭合空间 12, 且诸如氦气、 氩气和氮气等的 热交换气体经由分布在凹部 11底面上的进气孔 13流入该闭合空间 12内, 并且, 由于凹部 11的凹口的最大直径 dl小于所要承载的被加工工件 14的 被承载面的最小直径 d2,这使得仅被加工工件承载区 100中的边缘区域 101 与被加工工件 14的被承载面的靠近其边缘的周边区域相接触, 从而使被加 工工件 14的被承载面的绝大部分区域均位于该闭合空间 12内。 由此, 该闭 合空间 12可以具有较大的体积来容纳更多的热交换气体, 且可以使流入其 内的热交换气体能够毫无障碍地向四周扩散直至分布均匀,这与现有技术相 比, 不仅可以提高热交换的效率和均匀性, 而且由于仅被加工工件承载区 100中的边缘区域 101与被加工工件的被承载面的靠近其边缘的周边区域相 接触, 因而即使二者紧密地贴合也不会影响热交换气体向闭合空间的四周扩 散的程度, 从而可以减少热交换气体的泄漏量, 进而可以避免因热交换气体 的泄漏量过大而对导热效率以及工艺结果产生不良影响。
在本实施例中,每一个被加工工件承载区 100中的边缘区域 101被设置 成这样的形式, 即, 在其承载被加工工件 14时能够与该被加工工件 14的被 承载面实现密封。 具体地, 在工艺过程中, 该被加工工件承载区 100中的边 缘区域 101与被加工工件 14的下表面的靠近其边缘的周边区域相贴合, 以 使凹部 11和被加工工件 14的下表面之间的闭合空间 12密封。 在实际应用 中, 可以通过降低被加工工件承载区 100中的边缘区域 101的粗糙度, 来提 高其与被加工工件 14的下表面的靠近其边缘的周边区域相贴合的紧密度, 从而实现对闭合空间 12的良好密封, 该粗糙度的范围可以在 0.1~1μπι。 而 由于凹部 11的底面不与被加工工件 14的下表面相接触,因而无需对凹部 11 的底面的粗糙度进行限定,优选地,该粗糙度可以大于 0.6μπι, 以便于加工。 而且, 凹部 11的深度 H的范围可以在 1~100μπι; 被加工工件承载区 100中 的边缘区域 101在该被加工工件承载区 100的径向上的宽度 D1的范围可以 在 0.5~10
在本实施例中,分布在凹部 11的底面上的多个进气孔 13排列成为同心 圆的形式, 并且在同心圆的圆心处可以设置一个或多个进气孔 13 , 在除圆 心之外的每一个圆圏中皆沿其周向均匀分布有多个进气孔 13。 由于被加工 工件承载区 100中的边缘区域 101能够与被加工工件 14的下表面的靠近其 边缘的周边区域紧密地贴合, 在这种情况下, 每个凹部 11底面上的进气孔 13可以尽可能地靠近凹部 11的底面的边缘设置, 而不会造成热交换气体的 泄漏量过大, 从而可以实现在保证热交换气体的泄漏量较小的前提下, 增加 到达被加工工件 14 的下表面的靠近其边缘的周边区域的热交换气体的浓 度, 进而可以使被加工工件 14在其径向上的温度分布趋于均匀。 优选地, 在每个凹部 11的底面上分布的所有进气孔 13中, 最靠近凹部 11的底面边 缘的进气孔 13的中心线与凹部 11的底面边缘之间的间距 D2的范围可以在 0.5~5mm。 可以理解, 在实际应用中, 上述进气孔 13在每个凹部 11的底面 上的分布方式可以不局限于本实施例中的形式,而是也可以根据具体情况自 由设定。
优选地, 每一个被加工工件承载区 100中的边缘区域 101 的粗糙度为
0.4μηι~0.7μιη, 如此既可以保证良好密封, 又便于加工; 凹部 11的底面的粗 糙度为 1.6μπι; 凹部 11的深度 Η为 10μπι~30μιη, 如此, 既可以保证热交换 气体在凹部 11内良好流动而利于热交换,又便于加工且不致于使托盘 10的 体积过大;被加工工件承载区 100中的边缘区域 101在该被加工工件承载区 100的径向上的宽度 D1为 4~7mm, 如此, 既能够保证稳定地承载被加工工 件 14, 又能够保证凹部 11具有较大的体积来容纳较多的热交换气体而利于 热交换; 在凹部 11的底面上分布的所有进气孔 13中, 最靠近凹部 11的底 面边缘的进气孔 13的中心线与凹部 11的底面边缘之间的间距 D2为 1.2mm, 如此, 既能够保证便于加工, 又能够保证凹部 11的边缘具有良好的热交换。
需要指出的是,在实际应用中,本发明提供的托盘并不必局限于前述实 施例所述的形式, 而是也可以设置其他形式: 例如, 托盘上表面的被加工工 件承载区的数量也可以为 1个; 或者, 对于每一个被加工工件承载区而言, 可以在其非边缘区域形成两个或两个以上的凹部,且在每一个凹部的底面上 分布有进气孔; 或者, 凹部的底面上的进气孔的数量也可以为 1 , 等等。
作为另一个技术方案, 图 4A为本发明实施例提供的等离子体加工设备 的结构示意图。请参阅图 4A, 本发明实施例还提供一种等离子体加工设备, 包括反应腔室 20、 位于反应腔室 20内的夹持装置, 以及置于夹持装置上的 托盘 21 , 托盘 21用于承载被加工工件 14, 并借助热交换气体对被加工工件 14的温度进行调节, 而且, 托盘 21采用了本发明实施例提供的上述托盘。 另外, 为了限定被加工工件 14的位置, 在托盘 21 的上表面还设置有盖板 23, 并且在盖板 23上设置有多个通孔, 每个被加工工件 14置于托盘 21的 上表面并经由相应的通孔露出其被加工面。 为了使盖板 23更好地固定在托 盘 21的上表面, 在托盘 21的上表面设置若干凹进部分, 并在盖板 23的下 表面对应地设置若干凸出部分,并使盖板 23的凸出部分嵌入到托盘 21的凹 进部分。
在本实施例中, 在夹持装置与托盘 21之间以及托盘 21与被加工工件
14之间均采用静电引力的方式固定在一起。 具体地, 夹持装置包括静电卡 盘 22和直流电源, 其中, 静电卡盘 22包括卡盘本体, 该卡盘本体采用导电 材料制作, 并在导电材料的表面包覆绝缘材料, 导电材料作为卡盘本体的电 极, 并接地; 托盘 21采用导电材料制作, 并在导电材料的表面包覆绝缘材 料, 以保证托盘 21不 应腔室 20内的等离子体刻蚀; 导电材料作为托盘 电极, 且与直流电源电连接, 在接通直流电源后, 托盘 21和卡盘本体之间 以及托盘 21和被加工工件之间均存在电压差, 即, 在托盘 21和卡盘本体之 间产生静电吸附力以及在托盘 21和被加工工件 14之间产生静电吸附力,从 而实现卡盘本体将托盘 21吸附在其上表面的同时,使被加工工件 14吸附在 托盘 21的上表面。
在实际应用中,卡盘本体也可以采用绝缘材料制作,并在绝缘材料内部 埋设卡盘电极, 类似地, 托盘 21也可以采用绝缘材料制作, 并在绝缘材料 内部埋设托盘电极。
需要说明的是, 虽然在本实施例中, 在夹持装置与托盘 21之间以及托 盘 21与被加工工件 14之间均采用静电引力的方式固定在一起,但是本发明 并不局限于此, 在实际应用中, 也可以仅在托盘 21与被加工工件 14之间采 用静电引力的方式固定在一起, 而在夹持装置与托盘 21之间采用机械固定 的方式的固定在一起, 具体地, 如图 4B所示, 图 4B为本发明实施例提供 的另一种等离子体加工设备的结构示意图。 夹持装置包括机械卡盘 22,和直 流电源。其中,机械卡盘 22,采用机械固定的方式将托盘 21固定在其上表面, 例如,机械卡盘 22,可以包括用于承载被加工工件 14的基座, 以及用于将被 加工工件 14固定在该基座上的诸如机械夹具、压环等的工装; 托盘 21采用 导电材料制作,并在导电材料的表面包覆绝缘材料,导电材料作为托盘电极, 且与直流电源电连接; 在接通直流电源后, 在托盘 21和被加工工件 14之间 会产生静电引力, 从而实现将被加工工件 14固定在托盘 21的上表面。 容易 理解, 托盘 21也可以采用绝缘材料制作, 并在绝缘材料内部埋设托盘电极。
此外,在实际应用中,在托盘与被加工工件之间还可以采用机械固定等 的方式的固定在一起, 事实上, 无需限制托盘的固定方式, 只要托盘能够将 被加工工件固定在其上表面上即可。
本发明实施例提供的等离子体加工设备,其通过采用本发明实施例提供 的上述托盘,不仅可以一定程度地改善被加工工件的边缘区域的温度控制效 果, 以提高被加工工件的中心区域与边缘区域的温度均匀性, 而且还可以减 少热交换气体的泄漏量,从而可以避免对导热效率以及工艺结果产生不良影 响。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示 例性实施方式, 然而本发明并不局限于此。对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种托盘, 用于承载被加工工件, 并借助热交换气体对被加工工件 的温度进行调节, 其特征在于, 在所述托盘的上表面形成有至少一个被加工 工件承载区,每一个所述被加工工件承载区的形状和尺寸均与所要承载的被 加工工件相对应, 并且
在每一个所述被加工工件承载区中的非边缘区域形成有至少一个朝向 所述托盘的下表面凹进的凹部, 且对于每一个所述凹部而言, 其凹口的最大 直径小于所要承载的被加工工件的被承载面的最小直径,且在所述凹部的底 面上分布有进气孔, 所述进气孔与所述热交换气体的气源相连通。
2.根据权利要求 1所述的托盘, 其特征在于, 每一个所述被加工工件 承载区中的边缘区域被设置成这样的形式, 即, 在其承载被加工工件时能够 与该被加工工件的被承载面实现密封。
3.根据权利要求 2所述的托盘, 其特征在于, 每一个所述被加工工件 承载区中的边缘区域的粗糙度的范围为 0.1~1μπι。
4.根据权利要求 3所述的托盘, 其特征在于, 每一个所述被加工工件 承载区中的边缘区域的粗糙度的范围为 0.4μιη~0.7μιη。
5.根据权利要求 2所述的托盘, 其特征在于, 所述凹部的深度的范围 为 1~100μπι。
6. 根据权利要求 5 所述的托盘, 其特征在于, 所述凹部的深度为
Figure imgf000012_0001
7.根据权利要求 2所述的托盘, 其特征在于, 每一个所述被加工工件 承载区中的边缘区域在所述被加工工件承载区的径向上的宽度的范围为 0.5~10mm。
8根据权利要求 7所述的托盘,其特征在于,每一个所述被加工工件承 载区中的边缘区域在所述被加工工件承载区的径向上的宽度的范围为 4~7mm。
9.根据权利要求 2所述的托盘, 其特征在于, 所述进气孔的数量为多 个,并且最靠近所述凹部的底面边缘的进气孔与所述凹部的底面边缘之间的 间距的范围为 0.5~5mm。
10.根据权利要求 9所述的托盘, 其特征在于, 所述最靠近所述凹部的 底面边缘的进气孔与所述凹部的底面边缘之间的间距的范围为 1.2~2mm。
11. 一种等离子体加工设备, 包括反应腔室、 位于所述反应腔室内的夹 持装置, 以及置于所述夹持装置上的托盘, 所述托盘用于承载被加工工件, 并借助热交换气体对被加工工件的温度进行调节, 其特征在于, 所述托盘采 用了权利要求 1所述的托盘。
PCT/CN2013/088980 2013-04-27 2013-12-10 托盘及等离子体加工设备 WO2014173136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310152358.1 2013-04-27
CN201310152358.1A CN104124127A (zh) 2013-04-27 2013-04-27 托盘及等离子体加工设备

Publications (1)

Publication Number Publication Date
WO2014173136A1 true WO2014173136A1 (zh) 2014-10-30

Family

ID=51769499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088980 WO2014173136A1 (zh) 2013-04-27 2013-12-10 托盘及等离子体加工设备

Country Status (3)

Country Link
CN (1) CN104124127A (zh)
TW (1) TW201442139A (zh)
WO (1) WO2014173136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380528B2 (en) 2017-06-14 2022-07-05 Hzo, Inc. Plasma processing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305857B (zh) * 2016-04-20 2020-08-21 北京北方华创微电子装备有限公司 晶片支撑组件、反应腔室及半导体加工设备
CN107768300B (zh) * 2016-08-16 2021-09-17 北京北方华创微电子装备有限公司 卡盘、反应腔室及半导体加工设备
CN108004525B (zh) * 2016-11-01 2020-04-28 北京北方华创微电子装备有限公司 托盘、反应腔室、半导体加工设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161088A1 (en) * 2002-01-28 2003-08-28 Kyocera Corporation Electrostatic chuck for holding wafer
CN1595631A (zh) * 1999-05-25 2005-03-16 东陶机器株式会社 静电吸盘和处理装置
CN101276734A (zh) * 2007-03-30 2008-10-01 东京毅力科创株式会社 等离子体处理装置
JP2010225718A (ja) * 2009-03-23 2010-10-07 Tokyo Electron Ltd 被処理体の離脱方法および被処理体処理装置
JP2012234904A (ja) * 2011-04-28 2012-11-29 Panasonic Corp 静電チャックおよびこれを備えるドライエッチング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057977B2 (ja) * 2003-08-08 2008-03-05 株式会社巴川製紙所 静電チャック装置用電極シート、静電チャック装置および吸着方法
KR101174816B1 (ko) * 2009-12-30 2012-08-17 주식회사 탑 엔지니어링 플라즈마 처리 장치의 포커스 링 및 이를 구비한 플라즈마 처리 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595631A (zh) * 1999-05-25 2005-03-16 东陶机器株式会社 静电吸盘和处理装置
US20030161088A1 (en) * 2002-01-28 2003-08-28 Kyocera Corporation Electrostatic chuck for holding wafer
CN101276734A (zh) * 2007-03-30 2008-10-01 东京毅力科创株式会社 等离子体处理装置
JP2010225718A (ja) * 2009-03-23 2010-10-07 Tokyo Electron Ltd 被処理体の離脱方法および被処理体処理装置
JP2012234904A (ja) * 2011-04-28 2012-11-29 Panasonic Corp 静電チャックおよびこれを備えるドライエッチング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380528B2 (en) 2017-06-14 2022-07-05 Hzo, Inc. Plasma processing apparatus

Also Published As

Publication number Publication date
TW201442139A (zh) 2014-11-01
CN104124127A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
JP7105666B2 (ja) プラズマ処理装置
TWI636153B (zh) 電漿處理裝置
TWI576953B (zh) The method of constructing the table and keeping the focus ring
KR102424818B1 (ko) 플라즈마 처리 장치 및 포커스 링
JPH04211146A (ja) 静電チャック
KR20160047403A (ko) 정전척 및 그 정전척에 사용되는 베이스 부재
JPH10275854A (ja) 半導体ウェハ下の背面ガス圧力を制御する装置
US10586718B2 (en) Cooling base with spiral channels for ESC
JP2006066417A (ja) 静電チャックおよび基板搬送用トレー
WO2014173136A1 (zh) 托盘及等离子体加工设备
WO2008028352A1 (fr) Appareil de régulation de la température et procédé de régulation de la température d'une tranche
TWI619195B (zh) 托盤裝置及等離子體加工設備
WO2018032684A1 (zh) 卡盘、反应腔室及半导体加工设备
JP5777656B2 (ja) 基板支持装置及び基板処理装置
JP2011003913A (ja) 静電チャック
KR102627348B1 (ko) 기판 재치대 및 이를 구비하는 플라즈마 처리 장치 및 플라즈마 처리 방법
TWI827502B (zh) 用於高溫處理腔室的靜電吸座及其形成方法
JP2015076457A (ja) 基板処理装置
JP2011003933A (ja) 真空処理装置
CN108461441B (zh) 承载装置及工艺腔室
KR102370516B1 (ko) 정전 척, 배치대, 플라즈마 처리 장치
KR20110083979A (ko) 플라즈마 처리 장치
KR20080076432A (ko) 플라즈마 처리 장치
JP2021176186A (ja) 載置台アセンブリ、基板処理装置および基板処理方法
TW202107514A (zh) 具有基板邊緣加強處理的處理腔室

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883316

Country of ref document: EP

Kind code of ref document: A1