WO2014171247A1 - Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device - Google Patents

Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device Download PDF

Info

Publication number
WO2014171247A1
WO2014171247A1 PCT/JP2014/057160 JP2014057160W WO2014171247A1 WO 2014171247 A1 WO2014171247 A1 WO 2014171247A1 JP 2014057160 W JP2014057160 W JP 2014057160W WO 2014171247 A1 WO2014171247 A1 WO 2014171247A1
Authority
WO
WIPO (PCT)
Prior art keywords
support plate
sheet
support
brittle
glass sheet
Prior art date
Application number
PCT/JP2014/057160
Other languages
French (fr)
Japanese (ja)
Inventor
純一 ▲角▼田
研一 江畑
小池 章夫
裕介 小林
健 山内
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157024823A priority Critical patent/KR20150140647A/en
Priority to JP2015512363A priority patent/JP6387958B2/en
Priority to CN201480015847.5A priority patent/CN105143848B/en
Publication of WO2014171247A1 publication Critical patent/WO2014171247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Definitions

  • the present invention relates to a bending test method, a sheet manufacturing method, a bending test apparatus, a brittle sheet, a brittle sheet with elements, and an electronic device.
  • Glass substrates are used as substrates for electronic devices such as image display panels, solar cells, and thin film secondary batteries.
  • a flexible glass sheet has been developed as a glass substrate.
  • Patent Document 1 As a test method for examining the durability of a glass sheet, a method of bending the glass sheet along the outer periphery of the roller while conveying the glass sheet with a roller has been proposed (for example, see Patent Document 1). Further, as a glass sheet test method, a method of gradually narrowing the interval between two parallel plates sandwiching a curved glass sheet is also known (see, for example, Non-Patent Document 1).
  • the position where the tensile stress is generated in the sheet does not change. Therefore, if there are no defects (scratches, deposits, inclusions, etc.) that are the starting points of cracks at the position where the tensile stress is generated, the fracture strength is detected to be high and the reliability is low.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable bending test method and the like.
  • the first support plate and the second support plate each support a sheet containing a brittle material, Moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate that are parallel to each other is maintained; There is provided a bending test method for examining whether or not a crack is formed in the sheet material to be bent between the first support plate and the second support plate.
  • a highly reliable bending test method is provided.
  • FIG. 1 It is a figure which shows the mode of the test of the bending test apparatus by one Embodiment of this invention. It is a top view of the bending test apparatus of FIG. It is a figure which shows the state at the time of the setting of the sheet
  • FIG. 1 is a diagram showing a test state of a bending test apparatus according to an embodiment of the present invention.
  • FIG. 1 when the lower support plate is moved in the left direction in the figure with respect to the base in the state indicated by the solid line, the state indicated by the alternate long and short dash line is obtained.
  • FIG. 2 is a top view of the bending test apparatus of FIG.
  • FIG. 3 is a diagram illustrating a state when the sheet is set in the bending test apparatus of FIG. 1. In FIG. 1 and FIG. 3, a part of moving part is broken and shown.
  • the bending test apparatus 10 is an apparatus for bending a sheet material including a brittle material.
  • a glass sheet 2 is used as the sheet.
  • the durability of the glass sheet 2 can be understood by examining whether or not a crack is formed in the curved glass sheet 2.
  • the glass sheet 2 may be used as a substrate of an electronic device such as an image display panel, a solar battery, or a thin film secondary battery, and various elements may be formed on the glass sheet 2.
  • the glass type of the glass sheet 2 may be various, for example, soda lime glass, non-alkali glass, or the like.
  • the thickness of the glass sheet 2 is, for example, 200 ⁇ m or less. When the glass sheet 2 has a thickness of 200 ⁇ m or less, it is possible to produce a glass roll by winding the glass sheet 2 in a spiral shape.
  • the thickness of the glass sheet 2 is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less. Moreover, the thickness of the glass sheet 2 becomes like this. Preferably it is 0.1 micrometer or more, More preferably, it is 1 micrometer or more, More preferably, it is 5 micrometers or more.
  • the long side length may be 150 mm to 3050 mm, and the short side length may be 100 mm to 2850 mm.
  • the bending test apparatus 10 includes, as shown in FIGS. 1 to 3, for example, a base 12, an upper support board 14 as a first support board, a lower support board 16 as a second support board, a moving unit 20, and an adjustment.
  • Unit 30 detection unit 40, support unit 50, and placement unit 60.
  • the upper support plate 14 supports the glass sheet 2.
  • the support surface 14a of the upper support plate 14 may be a flat surface facing downward, and may be a surface that fixes one end of the glass sheet 2 with a tape or the like, for example.
  • the surface of the upper support plate 14 opposite to the support surface 14a may be flat or not flat.
  • the upper support plate 14 may be composed of a resin layer in contact with the glass sheet 2 and a metal main body in order to prevent the glass sheet 2 from being damaged.
  • the resin layer may be separably attached to the metal main body. When fragments or the like of the glass sheet 2 are stuck in the resin layer, the resin layer can be exchanged.
  • the lower support plate 16 supports the glass sheet 2 in the same manner as the upper support plate 14.
  • the support surface 16a of the lower support board 16 may be an upward flat surface, for example, a mounting surface on which the other end of the glass sheet 2 is placed. The other end of the glass sheet 2 is pressed against the support surface 16a of the lower support board 16 by gravity and fixed by a frictional force.
  • a stopper 17 that contacts the other end of the glass sheet 2 may be provided on the support surface 16 a of the lower support board 16 in order to prevent the glass sheet 2 from being displaced.
  • the surface of the lower support plate 16 opposite to the support surface 16a may be flat or not flat.
  • the lower support board 16 may be composed of a resin layer in contact with the glass sheet 2 and a metal main body in order to prevent the glass sheet 2 from being damaged.
  • the resin layer may be separably attached to the metal main body. When fragments or the like of the glass sheet 2 are stuck in the resin layer, the resin layer can be exchanged.
  • the moving unit 20 moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 that are parallel to each other. Let The moving unit 20 moves the lower support plate 16 parallel to the base 12 in order to move the position of the lower support plate 16 with respect to the upper support plate 14.
  • the moving part 20 of this embodiment moves the lower side support board 16 in parallel with respect to the base 12
  • the moving unit 20 includes, for example, a lifting frame 21, a motor 22, a ball screw mechanism 23, a slider block 24, and the like.
  • the lifting frame 21 is movable with respect to the base 12.
  • the motor 22 may be an electric servo motor, for example, and is attached to the lifting frame 21.
  • the ball screw mechanism 23 converts the rotational motion of the motor 22 into a linear motion and transmits it to the slider block 24.
  • the slider block 24 is connected to the lower support plate 16 and moves in parallel with the base 12 together with the lower support plate 16.
  • the motor 22 rotates the ball screw shaft 23a and moves the ball screw nut 23b under the control of a controller constituted by a microcomputer or the like. As the ball screw nut 23 b moves, the slider block 24 and the lower support plate 16 move in parallel to the base 12.
  • the motor 22 of this embodiment is a rotary motor, a linear motor may be sufficient.
  • the linear motor includes a stator and a mover, and a lower support board 16 is attached to the mover. Due to the magnetic force acting between the stator and the mover, the mover moves linearly and the lower support plate 16 moves.
  • the adjusting unit 30 adjusts the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 that are parallel to each other.
  • the adjustment unit 30 may raise and lower the lower support plate 16 with respect to the base 12 in order to adjust the interval D.
  • the adjustment unit 30 of the present embodiment raises and lowers the lower support plate 16 with respect to the base 12, but may also raise and lower the upper support plate 14 with respect to the base 12. You may raise / lower both of the support boards 14. In any case, the distance D between the upper support plate 14 and the lower support plate 16 can be adjusted.
  • the adjustment unit 30 is constituted by a pantograph jack, for example.
  • the adjusting unit 30 is disposed between the moving unit 20 (specifically, the lifting frame 21) and the base 12, and moves the moving unit 20 up and down with respect to the base 12. As the moving unit 20 moves up and down, the lower support plate 16 moves up and down, and the distance between the lower support plate 16 and the upper support plate 14 can be adjusted.
  • the adjustment part 30 of this embodiment is comprised with the pantograph-type jack and is act
  • the motor of the adjustment unit operates under the control of the controller.
  • the detection unit 40 includes a sensor (for example, an AE sensor) that detects an elastic wave (for example, an AE (Acoustic Emission) wave) generated when a crack is formed in the glass sheet 2. It can be seen whether or not a crack is formed in the glass sheet 2 while being supported by the upper support plate 14 and the lower support plate 16. Cracks in the glass sheet 2 are formed starting from defects (scratches, deposits, inclusions, etc.) present in the glass sheet 2.
  • the detection unit 40 is attached to the lower support plate 16 that supports the glass sheet 2, but may be attached to the upper support plate 14.
  • the detection part 40 of this embodiment is comprised by the sensor which detects the elastic wave of the crack which arises in the glass sheet 2, it receives the light source which irradiates light to the glass sheet 2, and the reflected light from the glass sheet 2 And a light receiving element. Based on the amount of light received by the light receiving element, it can be determined whether or not a crack has occurred in the glass sheet 2. Moreover, you may investigate the presence or absence of a crack visually or with a microscope.
  • the support portion 50 is fixed to the base 12 and rotatably supports the upper support plate 14 via a connecting portion 52 such as a hinge.
  • the upper support plate 14 has a test position (first position) where the support surface 14a of the upper support plate 14 is parallel to the support surface 16a of the lower support plate 16, and the support surface 14a of the upper support plate 14 is lower. It is rotatable between a set position (second position) that is inclined with respect to the support surface 16 a of the side support board 16. While the upper support plate 14 rotates from the test position to the set position, the radius of curvature of the curved portion of the glass sheet 2 supported by the upper support plate 14 and the lower support plate 16 gradually increases.
  • a rotation stopper that stops the upper support board 14 at the set position may be attached to the support portion 50.
  • the support part 50 may function as a guide for guiding the elevating frame 21 up and down.
  • the mounting portion 60 is fixed to the base 12 and places the upper support plate 14 disposed above the lower support plate 16.
  • the upper support plate 14 is placed on the upper end surface of the placement unit 60 when it is in the test position (the position in FIG. 1).
  • the upper support plate 14 may be placed on a plurality of placement units 60 as shown in FIG. 2 so that the posture of the upper support plate 14 is stabilized.
  • Each mounting portion 60 is formed with a bolt hole for screwing the shaft portion 62 b of the bolt 62.
  • the upper support plate 14 is formed with a through hole through which the shaft portion 62b of the bolt 62 passes.
  • the upper support plate 14 is sandwiched between the head portion 62a of the bolt 62 and each mounting portion 60, and the posture of the upper support plate 14 can be stabilized.
  • the operator removes the bolt 62, rotates the upper support plate 14 from the test position (position shown in FIG. 1) to the set position (position shown in FIG. 3), and stops at the set position.
  • the worker supports the glass sheet 2 on the upper support plate 14 and the lower support plate 16, respectively.
  • the radius of curvature of the curved portion of the glass sheet 2 during setting is larger than the radius of curvature of the curved portion of the glass sheet 2 during testing. Since the tensile stress generated in the curved portion of the glass sheet 2 is minimized at the time of setting and is maximized at the time of testing, excessive tensile stress exceeding the set value is not generated in the glass sheet 2. At the time of setting, the tensile stress generated in the curved portion of the glass sheet 2 is sufficiently small, and cracks are hardly formed in the curved portion.
  • the operator rotates the upper support plate 14 from the set position to the test position and places it on the placement unit 60. While the upper support plate 14 is rotated from the set position to the test position, the detection unit 40 may monitor the presence or absence of an elastic wave generated when a crack is formed. Subsequently, the operator sandwiches the upper support plate 14 between the placing portion 60 and the head 62 a of the bolt 62. The posture of the upper support board 14 can be stabilized, and the support surface 14a of the upper support board 14 and the support surface 16a of the lower support board 16 can be maintained in parallel.
  • the operator manually operates the adjustment unit 30 to adjust the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 which are parallel to each other, and the upper support plate.
  • a tensile stress of a set value is generated in the glass sheet 2 that is curved between the lower support plate 16 and the lower support plate 16.
  • the tensile stress ⁇ generated at the top end of the curved portion of the glass sheet 2 (the right end of the glass sheet 2 in FIG. 1) can be calculated based on the following formula (1).
  • A ⁇ E ⁇ t / (D ⁇ t) (1)
  • A is a constant (1.198) specific to this test
  • E is the Young's modulus of the glass sheet 2
  • t is the thickness of the glass sheet 2.
  • the lower support board 16 in order to adjust the distance D, the lower support board 16 is moved up and down with respect to the base 12.
  • the lower support plate 16 is closer to the base 12 than the upper support plate 14 and is easily maintained in a posture parallel to the base 12. Therefore, the parallelism between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 can be maintained satisfactorily.
  • the operator operates the moving unit 20 under the control of the controller, and moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D.
  • the lower support plate 16 is moved in the left-right direction in the figure with respect to the base 12.
  • the lower support plate 16 is reciprocated a predetermined number of times.
  • the lower support board 16 may be reciprocated only once, may be moved leftward only once, or may be moved rightward only once. In any case, the generation position of the tensile stress ⁇ of the glass sheet 2 can be moved.
  • defects that are the starting points of cracks in the glass sheet 2 are scattered in the glass sheet 2.
  • the generation position of the tensile stress ⁇ of the glass sheet 2 can be moved and a large area test is possible, the durability of the glass sheet 2 is required with high accuracy.
  • the amount of movement of the lower support plate 16 in the predetermined direction with respect to the upper support plate 14 in a predetermined direction is preferably 100 mm or more, more preferably 200 mm or more, and even more preferably 300 mm or more.
  • the evaluation area of the glass sheet 2 is preferably 100 cm 2 or more, more preferably 300 cm 2 or more, and further preferably 900 cm 2 or more.
  • the “evaluation area” is a one-time movement area in the predetermined direction of the top end of the curved portion in the glass sheet 2 (the right end of the glass sheet 2 in FIG. 1). For example, when the relative movement direction of the lower support plate 16 with respect to the upper support plate 14 is perpendicular to the short side of the rectangular glass sheet 2, the “evaluation area” is the length of the short side of the glass sheet 2 and the above It is the product of the amount of movement.
  • Whether or not a crack is formed in the glass sheet 2 to be curved between the upper support plate 14 and the lower support plate 16 is detected by the detection unit 40 by detecting the presence or absence of an elastic wave generated when the crack is formed. It can be examined at. It can be confirmed whether or not a crack is formed in the glass sheet 2 while being supported by the upper support plate 14 and the lower support plate 16.
  • the operator operates the moving unit 20 under the control of the controller and moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D, so that the upper support plate 14 and the lower support are supported. It is examined whether or not a crack is formed in the glass sheet 2 to be bent with the board 16.
  • the fracture strength of the glass sheet 2 can be determined by gradually decreasing the distance D and increasing the tensile stress ⁇ applied to the glass sheet 2 step by step until cracks are formed in the glass sheet 2.
  • the tensile stress ⁇ when the glass sheet 2 is broken is used as the fracture strength.
  • an anti-scattering film may be bonded to at least a part of the surface opposite to the evaluation surface of the glass sheet 2 (the surface where tensile stress is generated in the bending test). Since the fragments broken in the bending test do not scatter, the transition to the next measurement is accelerated, and analysis of the crack initiation point is also possible.
  • the interval D is narrowed stepwise for the purpose of examining the breaking strength of the glass sheet 2, but when confirming that the breaking strength of the glass sheet 2 is larger than a threshold value (for example, 50 MPa), the threshold value is set. What is necessary is just to test whether the crack was formed by performing the test by the space
  • a threshold value for example, 50 MPa
  • the glass sheet 2 is used as the sheet material including the brittle material, but the type of the sheet material is not particularly limited.
  • the brittle material include ceramics in addition to glass.
  • the sheet material may be a ceramic sheet. Glass sheets and ceramic sheets are collectively referred to as brittle sheets.
  • the sheet may be a composite sheet 6 as shown in FIG.
  • the composite sheet 6 includes a glass sheet 2 and a reinforcing layer 4 formed of a material containing a resin on the glass sheet 2.
  • the composite sheet 6 in FIG. 4 has a reinforcing layer 4 that is bonded to the glass sheet 2 on one side of the glass sheet 2, but has a reinforcing layer that is bonded to the glass sheet 2 on both sides of the glass sheet 2. Also good.
  • the two reinforcing layers disposed across the glass sheet 2 may have the same thickness or different thicknesses, and may have the same physical properties (Young's modulus, thermal expansion coefficient, etc.). It may have different physical properties.
  • the composite sheet of FIG. 4 includes a glass sheet as a brittle sheet, but may include a ceramic sheet.
  • the glass sheet 2 may have a surface treated with a surface treatment agent such as a silane coupling agent on the main surface 2 a bonded to the reinforcing layer 4 in the glass sheet 2.
  • a surface treatment agent such as a silane coupling agent on the main surface 2 a bonded to the reinforcing layer 4 in the glass sheet 2.
  • the change in the thickness of the glass sheet 2 due to the surface treatment is sufficiently small (for example, 10 nm or less) compared to the thickness of the glass sheet 2 before the surface treatment.
  • the reinforcing layer 4 has a binding force that does not peel from the glass sheet 2 when the composite sheet 6 is bent and deformed along a roll such as a winding core, and restricts the glass sheet 2 from being damaged.
  • the reinforcing layer 4 may be peeled off from the glass sheet 2 during the manufacturing process of the electronic device, and may not be a part of the electronic device.
  • the reinforcing layer 4 may cover a portion of the glass sheet 2 where the average breaking strength is desired to be increased, and covers at least a part of one main surface 2a of the glass sheet 2.
  • the reinforcing layer 4 preferably covers the entire main surface 2 a of the glass sheet 2.
  • the reinforcing layer 4 may protrude from one main surface 2a of the glass sheet 2.
  • the reinforcing layer 4 may be formed by applying a liquid resin composition on the glass sheet 2 and solidifying it, or may be formed by attaching a resin film to the glass sheet 2.
  • the reinforcing layer 4 may be composed of a resin film and an adhesive layer that bonds the resin film and the glass sheet.
  • the surface of the glass sheet for example, silane coupling treatment
  • the surface of the resin film for example, corona treatment
  • the change in the thickness of the resin film due to the surface treatment is sufficiently small (for example, 10 nm or less) compared to the thickness of the resin film before the surface treatment.
  • the reinforcing layer 4 is composed of one layer in FIG. 4, but may be composed of a plurality of layers made of different materials.
  • the surface of the reinforcing layer 4 opposite to the main surface coupled to the glass sheet 2 may be an exposed surface.
  • the reinforcing layer 4 may be formed of only resin, for example.
  • the reinforcement layer 4 should just be formed with the material containing resin, for example, may be formed with resin and a filler.
  • fillers include fibrous or non-fibrous fillers such as plate-like, scale-like, granular, indeterminate shapes, and crushed products.
  • glass fibers PAN-based and pitch-based carbon fibers
  • Stainless steel fiber metal fiber such as aluminum fiber and brass fiber, organic fiber such as aromatic polyamide fiber, gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool , Potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, mica, talc, kaolin, silica, calcium carbonate, glass beads, glass flake, glass microballoon, clay, molybdenum disulfide, wollastonite, oxidation Titanium, zinc oxide, poly Calcium phosphate, graphite, metal powders, metal flakes, metal ribbons, metal oxides, carbon powder, graphite, carbon flake, scaly carbon, and carbon nanotubes.
  • metal species of metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin.
  • the type of glass fiber or carbon fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from long fiber type, short fiber type chopped strand, milled fiber, and the like.
  • the reinforcing layer 4 may be composed of a woven fabric, a nonwoven fabric or the like impregnated with a resin.
  • the resin of the reinforcing layer 4 may be various, for example, either a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin for example, polyimide (PI), epoxy (EP), or the like is used.
  • the thermoplastic resin include polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethersal. Hong (PES), cyclic polyolefin (COP), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), acrylic (PMMA), urethane (PU) and the like are used.
  • the resin film may be formed of a photocurable resin, and may be a copolymer or a mixture.
  • the manufacturing process of the electronic device by the roll-to-roll method may include a process involving heat treatment, and the heat-resistant temperature (continuous usable temperature) of the resin is preferably 100 ° C. or higher.
  • the resin having a heat resistant temperature of 100 ° C. or higher include polyimide (PI), epoxy (EP), polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), and polyethylene terephthalate.
  • PET polyethylene naphthalate
  • PES polyethersulfone
  • COP cyclic polyolefin
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PMMA acrylic
  • PU urethane
  • the average thickness of the reinforcing layer 4 is, for example, less than 100 ⁇ m. If the average thickness of the reinforcing layer 4 is less than 100 ⁇ m, the flexibility of the composite sheet 6 can be sufficiently secured. Moreover, if the average thickness of the reinforcement layer 4 is less than 100 micrometers, the curvature by the thermal expansion coefficient difference of resin and glass can be suppressed.
  • the average thickness of the reinforcing layer 4 is preferably 90 ⁇ m or less, more preferably 75 ⁇ m or less.
  • the average thickness of the reinforcing layer 4 is, for example, 0.5 ⁇ m or more. If the average thickness of the reinforcing layer 4 is 0.5 ⁇ m or more, it is possible to limit the opening of the glass sheet 2 due to the presence of the reinforcing layer 4.
  • the average thickness of the reinforcing layer 4 is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the sheet material may be a brittle sheet with elements, an electronic device as a final product, or the like.
  • the brittle sheet with an element and the electronic device include at least a brittle sheet and may further include a reinforcing layer 4 shown in FIG.
  • Examples of the electronic device include an image display panel, a solar battery, a thin film secondary battery, an image sensor (CCD, CMOS, etc.), a pressure sensor, an acceleration sensor, and a biological sensor.
  • Examples of the image display panel include a liquid crystal panel (LCD), a plasma display panel (PDP), an organic EL panel (OLED), and electronic paper.
  • FIG. 5 is a view showing a liquid crystal panel according to an embodiment of the present invention.
  • the liquid crystal panel 70 includes a TFT substrate 72, a CF substrate 74, a liquid crystal layer 76, and the like.
  • the TFT substrate 72 is formed by patterning TFT elements (thin film transistors) 73 on the glass sheet 2.
  • the CF substrate 74 is formed by patterning a color filter element 75 on the glass sheet 2.
  • the TFT substrate 72 and the CF substrate 74 correspond to the brittle sheet with elements described in the claims.
  • FIG. 6 is a diagram showing an organic EL panel (OLED) according to an embodiment of the present invention.
  • the organic EL panel 80 includes, for example, the glass sheet 2, the transparent electrode 82, the organic layer 84, the reflective electrode 86, and the sealing plate 88.
  • the organic layer 84 includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer as necessary.
  • the organic layer 84 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side.
  • the transparent electrode 82, the organic layer 84, the reflective electrode 86, and the like constitute a bottom emission type organic EL element 81.
  • the organic EL element may be a top emission type.
  • FIG. 7 is a diagram showing a solar cell according to an embodiment of the present invention.
  • the solar cell 90 includes, for example, a glass sheet 2, a transparent electrode 92, a silicon layer 94, a reflective electrode 96, a sealing plate 98, and the like.
  • the silicon layer includes, for example, a p layer (p-type doped layer), an i layer (light absorption layer), an n layer (n-type doped layer), and the like from the anode side.
  • the transparent electrode 92, the silicon layer 94, the reflective electrode 96, and the like constitute a silicon type solar cell element 91.
  • the solar cell element may be a compound type, a dye sensitized type, a quantum dot type, or the like.
  • FIG. 8 is a view showing a thin film secondary battery according to an embodiment of the present invention.
  • the thin film secondary battery 100 includes, for example, a glass sheet 2, a transparent electrode 102, an electrolyte layer 104, a current collecting layer 106, a sealing layer 108, a sealing plate 109, and the like.
  • the thin-film secondary battery element 101 is configured by the transparent electrode 102, the electrolyte layer 104, the current collecting layer 106, the sealing layer 108, and the like.
  • the thin-film secondary battery element 101 of this embodiment is a lithium ion type, but may be a nickel hydrogen type, a polymer type, a ceramic electrolyte type, or the like.
  • FIG. 9 is a view showing electronic paper according to an embodiment of the present invention.
  • the electronic paper 110 includes, for example, a glass sheet 2, a TFT layer 112, a layer 114 containing an electrical engineering medium (for example, microcapsule), a transparent electrode 116, and a front plate 118.
  • the electronic paper element 111 is constituted by the TFT layer 112, the layer 114 of the electrical engineering medium, the transparent electrode 116, and the like.
  • the electronic paper element may be any of a microcapsule type, an in-plane type, a twist ball type, a particle movement type, an electronic jet type, and a polymer network type.
  • a thin film is formed on at least one side of the glass sheet 2.
  • the tensile stress ⁇ generated at the apex of the curved portion of the thin film forming surface of the glass sheet 2 can be calculated based on the following formula (2).
  • A ⁇ E ⁇ t / (D′ ⁇ t) (2)
  • A is a constant (1.198) specific to this test
  • E is the Young's modulus of the glass sheet 2
  • t the thickness of the glass sheet 2
  • D ′ D ⁇ 2 ⁇ It is a value calculated from the equation “u”.
  • u represents the thickness of the thin film.
  • the distance between the upper end and the lower end of the glass sheet is shorter than the distance D by 2 ⁇ u.
  • the neutral surface is a surface in which neither a tensile stress nor a compressive stress is generated, and is a center plane in the thickness direction of the glass sheet 2 when no thin film is present.
  • the displacement amount of the neutral plane can be calculated using a general formula of material mechanics. The tensile stress ⁇ when the glass sheet 2 is broken is used as the fracture strength.
  • the manufacturing method of a sheet has a sheet manufacturing process for manufacturing a sheet, and a test process for bending the sheet manufactured in the sheet manufacturing process.
  • the sheet manufacturing process may be a general process.
  • the sheet manufacturing process may be any of a float method, a fusion method, and a redraw method.
  • a float process molten glass is flowed on molten tin in a bath and formed into a strip shape. After the formed glass is gradually cooled, the gradually cooled glass is cut into a desired size.
  • the fusion method the molten glass overflowing from the left and right sides of the bowl-shaped member is joined at the lower end of the bowl-shaped member to form a strip, and after the formed glass is slowly cooled, the gradually cooled glass is obtained as desired. Cut to size.
  • the redraw method the glass sheet is softened with heat and then stretched to a desired thickness, and the stretched glass sheet is solidified.
  • the test process may be performed using the bending test apparatus 10.
  • the test method has already been described.
  • a sheet having a breaking strength exceeding a predetermined value is determined as a non-defective product, and a sheet having a breaking strength equal to or lower than a predetermined value is determined as a defective product.
  • the glass sheet 2 is preferably such that no cracks are formed when the bending test is performed under the condition of the following formula (3) using the bending test apparatus 10 of FIG.
  • the following formula (3) is a modification of the above formula (1).
  • D (A ⁇ E ⁇ t / ⁇ ) + t (3)
  • D Distance between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 (unit [mm])
  • A 1.198
  • E Young's modulus of glass sheet 2 (unit: [MPa])
  • t thickness of the glass sheet 2 (unit: [mm])
  • 50 (unit [MPa]) That is, the glass sheet 2 may have a breaking strength greater than 50 MPa when a bending test is performed using the bending test apparatus 10 of FIG.
  • the glass sheet 2 having a fracture strength greater than 50 MPa hardly breaks when stored in a spiral shape around the core.
  • the ceramic sheet may also have a fracture strength greater than 50 MPa when a bending test is performed using the bending test apparatus 10 of FIG.
  • a rectangular glass sheet (long side 300 mm, short side 200 mm) was prepared as a brittle sheet.
  • the glass sheet was produced by the float process. Specifically, molten glass was flowed on molten tin to form a strip, and the molded glass was slowly cooled, and then the gradually cooled glass was cut into a desired size. In the slow cooling step and the cutting step, the glass was supported by compressed air pressure so that the glass did not come into contact with solid objects. In the cutting process, a laser cutting method which is a non-contact cutting method was used. The prepared glass sheet was subjected to a bending test using the bending test apparatus shown in FIG.
  • Example 5 a glass sheet prepared in the same manner as in Examples 1 to 4 was prepared as a brittle sheet, and the evaluation surface of the glass sheet was previously scratched with a sandpaper to a depth of about 10 ⁇ m. Thereafter, the prepared glass sheet was subjected to a bending test using the bending test apparatus shown in FIG. In the bending test, the composite sheet was bent so that a tensile stress was generated on the scratched surface of the glass sheet.
  • Table 1 shows the test conditions and test results of Examples 1 to 6.
  • T, E, D, and ⁇ in Table 1 have the same meaning as t, E, D, and ⁇ in Equation (1).
  • a strip-shaped glass sheet (long side 30 m, short side 300 mm, thickness 100 ⁇ m) prepared in the same manner as the glass sheet of Example 3 to Example 4 is spirally wound around a core having a diameter of 6 inches (diameter 152.4 mm). When stored for 30 days, no cracks occurred.
  • a belt-like glass sheet (long side 30 m, short side 300 mm, thickness 100 ⁇ m) similar to the glass sheet of Example 6 was spirally wound around a 6-inch diameter core (diameter 152.4 mm) and stored for 30 days. However, cracks occurred. The glass sheet was wound around the core so that a tensile stress was generated on the surface of the glass sheet having scratches.
  • the upper support plate 14 as the first support plate and the lower support plate 16 as the second support plate are arranged at intervals in the vertical direction.
  • the support plate and the second support plate may be disposed at an interval in the horizontal direction.
  • the one end part of the glass sheet 2 is fixed to the upper side support board 14 with a tape
  • the other end part of the glass sheet 2 is mounted in the lower side support board 16
  • FIG. 10 is a diagram showing a state when a sheet is set in a bending test apparatus according to a modification.
  • FIG. 11 is a view of the lower support plate of FIG. 10 as viewed from above.
  • one end portion of the glass sheet 2 is sandwiched between the belt-like upper fixing plate 122 and the upper support plate 14, and the upper fixing plate 122 and the upper support plate 14 are connected by the upper fixing bolt 124. It may be fastened and fixed.
  • the other end portion of the glass sheet 2 is sandwiched between the belt-like lower fixing plate 126 and the lower support plate 16, and the lower fixing plate 126 and the lower support plate 16 are connected by the lower fixing bolt 128. It may be fastened and fixed.
  • the lower support plate 16 may be formed with a long hole 16b through which the shaft portion 128b of the lower fixing bolt 128 is inserted.
  • the position of the lower fixing plate 126 relative to the lower support plate 16 can be adjusted by loosening the lower fixing bolt 128 and moving the lower fixing bolt 128 in the longitudinal direction of the long hole 16b. It can respond to the glass sheet 2 of various sizes.
  • the lower fixing plate 126 may be composed of a resin layer that is in contact with the glass sheet 2 and a metal main body.
  • the upper fixing bolt 124 may be configured not to protrude downward from the upper fixing plate 122.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

[Solution] A bend-test method for determining whether or not cracks form in a brittle-material-containing sheet article supported by a first support plate and a second support plate when, with a separation maintained between the support surface of the first support plate and the support surface of the second support plate, said support surfaces being parallel to each other, the second support plate is moved relative to the first support plate, making the sheet article flex therebetween.

Description

曲げ試験方法、シート物の製造方法、曲げ試験装置、脆性シート、素子付き脆性シート、および電子デバイスBending test method, sheet manufacturing method, bending test apparatus, brittle sheet, brittle sheet with element, and electronic device
 本発明は、曲げ試験方法、シート物の製造方法、曲げ試験装置、脆性シート、素子付き脆性シート、および電子デバイスに関する。 The present invention relates to a bending test method, a sheet manufacturing method, a bending test apparatus, a brittle sheet, a brittle sheet with elements, and an electronic device.
 画像表示パネル、太陽電池、薄膜2次電池などの電子デバイスの基板として、ガラス基板が用いられる。近年では、ガラス基板として、フレキシブル性を有するガラスシートが開発されている。 Glass substrates are used as substrates for electronic devices such as image display panels, solar cells, and thin film secondary batteries. In recent years, a flexible glass sheet has been developed as a glass substrate.
 ガラスシートの耐久性を調べる試験方法として、ガラスシートをローラで搬送しながらローラの外周に沿って湾曲させる方法が提案されている(例えば特許文献1参照)。また、ガラスシートの試験方法として、湾曲させたガラスシートを挟む平行な2つの板の間隔を徐々に狭める方法も知られている(例えば非特許文献1参照)。 As a test method for examining the durability of a glass sheet, a method of bending the glass sheet along the outer periphery of the roller while conveying the glass sheet with a roller has been proposed (for example, see Patent Document 1). Further, as a glass sheet test method, a method of gradually narrowing the interval between two parallel plates sandwiching a curved glass sheet is also known (see, for example, Non-Patent Document 1).
特表2010-506168号公報Special table 2010-506168
 ガラスなどの脆性材料を含むシート物をローラに沿って湾曲させる場合、シート物がローラに抱き付くように、シート物に張力が加えられる。また、ローラ上に異物などがあると、シート物の一部に応力が集中する。よって、想定外の力がシート物に加わることがあり、信頼性が低かった。 When a sheet material including a brittle material such as glass is bent along the roller, a tension is applied to the sheet material so that the sheet material is stuck to the roller. Further, if there is a foreign matter on the roller, stress concentrates on a part of the sheet. Therefore, unexpected force may be applied to the sheet, and the reliability is low.
 また、シート物を挟む平行な2つの板の間隔を徐々に狭める場合、シート物の引張応力の発生位置は変わらない。そのため、引張応力の発生位置にクラックの起点となる欠陥(傷、付着物、内包物など)がなければ、破壊強度が高めに検出され、信頼性が低かった。 Also, when the distance between two parallel plates sandwiching the sheet is gradually reduced, the position where the tensile stress is generated in the sheet does not change. Therefore, if there are no defects (scratches, deposits, inclusions, etc.) that are the starting points of cracks at the position where the tensile stress is generated, the fracture strength is detected to be high and the reliability is low.
 本発明は、上記課題に鑑みてなされたものであって、信頼性の高い、曲げ試験方法などの提供を目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable bending test method and the like.
 上記課題を解決するため、本発明の一態様によれば、
 第1の支持盤と第2の支持盤とにそれぞれ脆性材料を含むシート物を支持させ、
 互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を維持した状態で、前記第1の支持盤に対する前記第2の支持盤の位置を移動させ、
 前記第1の支持盤と前記第2の支持盤との間で湾曲させる前記シート物にクラックが形成されるか否かを調べる、曲げ試験方法が提供される。
In order to solve the above problems, according to one aspect of the present invention,
The first support plate and the second support plate each support a sheet containing a brittle material,
Moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate that are parallel to each other is maintained;
There is provided a bending test method for examining whether or not a crack is formed in the sheet material to be bent between the first support plate and the second support plate.
 本発明の一態様によれば、信頼性の高い、曲げ試験方法が提供される。 According to one embodiment of the present invention, a highly reliable bending test method is provided.
本発明の一実施形態による曲げ試験装置の試験の様子を示す図である。It is a figure which shows the mode of the test of the bending test apparatus by one Embodiment of this invention. 図1の曲げ試験装置の上面図である。It is a top view of the bending test apparatus of FIG. 図1の曲げ試験装置のシート物のセット時の状態を示す図である。It is a figure which shows the state at the time of the setting of the sheet | seat thing of the bending test apparatus of FIG. 本発明の一実施形態による複合シートを示す図である。It is a figure which shows the composite sheet by one Embodiment of this invention. 本発明の一実施形態による液晶パネルを示す図である。It is a figure which shows the liquid crystal panel by one Embodiment of this invention. 本発明の一実施形態による有機ELパネルを示す図である。It is a figure which shows the organic electroluminescent panel by one Embodiment of this invention. 本発明の一実施形態による太陽電池を示す図である。It is a figure which shows the solar cell by one Embodiment of this invention. 本発明の一実施形態による薄膜2次電池を示す図である。It is a figure which shows the thin film secondary battery by one Embodiment of this invention. 本発明の一実施形態による電子ペーパを示す図である。It is a figure showing electronic paper by one embodiment of the present invention. 変形例による曲げ試験装置のシート物のセット時の状態を示す図である。It is a figure which shows the state at the time of the setting of the sheet | seat of the bending test apparatus by a modification. 図10の下側支持盤を上から見た図である。It is the figure which looked at the lower support board of FIG. 10 from the top.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して、説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 図1は、本発明の一実施形態による曲げ試験装置の試験の様子を示す図である。図1において、実線で示す状態で、ベースに対して下側支持盤が図中左方向に移動されると、一点鎖線で示す状態になる。図2は、図1の曲げ試験装置の上面図である。図3は、図1の曲げ試験装置のシート物のセット時の状態を示す図である。図1および図3において、移動部の一部を破断して示す。 FIG. 1 is a diagram showing a test state of a bending test apparatus according to an embodiment of the present invention. In FIG. 1, when the lower support plate is moved in the left direction in the figure with respect to the base in the state indicated by the solid line, the state indicated by the alternate long and short dash line is obtained. FIG. 2 is a top view of the bending test apparatus of FIG. FIG. 3 is a diagram illustrating a state when the sheet is set in the bending test apparatus of FIG. 1. In FIG. 1 and FIG. 3, a part of moving part is broken and shown.
 曲げ試験装置10は、脆性材料を含むシート物を湾曲させる装置である。シート物としては、例えばガラスシート2が用いられる。湾曲させるガラスシート2にクラックが形成されるか否かを調べることで、ガラスシート2の耐久性がわかる。 The bending test apparatus 10 is an apparatus for bending a sheet material including a brittle material. For example, a glass sheet 2 is used as the sheet. The durability of the glass sheet 2 can be understood by examining whether or not a crack is formed in the curved glass sheet 2.
 ガラスシート2は、画像表示パネルや太陽電池、薄膜2次電池などの電子デバイスの基板として用いられるものであってよく、ガラスシート2上に各種の素子が形成されてよい。 The glass sheet 2 may be used as a substrate of an electronic device such as an image display panel, a solar battery, or a thin film secondary battery, and various elements may be formed on the glass sheet 2.
 ガラスシート2のガラスの種類は、多種多様であってよく、例えばソーダライムガラス、無アルカリガラスなどでよい。 The glass type of the glass sheet 2 may be various, for example, soda lime glass, non-alkali glass, or the like.
 ガラスシート2の厚さは、例えば200μm以下である。ガラスシート2の厚さが200μm以下の場合、ガラスシート2を渦巻き状に巻回してガラスロールを作製することが可能である。ガラスシート2の厚さは、好ましくは150μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。また、ガラスシート2の厚さは、好ましくは0.1μm以上、より好ましくは1μm以上、更に好ましくは5μm以上である。 The thickness of the glass sheet 2 is, for example, 200 μm or less. When the glass sheet 2 has a thickness of 200 μm or less, it is possible to produce a glass roll by winding the glass sheet 2 in a spiral shape. The thickness of the glass sheet 2 is preferably 150 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less. Moreover, the thickness of the glass sheet 2 becomes like this. Preferably it is 0.1 micrometer or more, More preferably, it is 1 micrometer or more, More preferably, it is 5 micrometers or more.
 ガラスシート2が矩形状の場合、長辺の長さは150mm~3050mm、短辺の長さは100mm~2850mmであってよい。 When the glass sheet 2 is rectangular, the long side length may be 150 mm to 3050 mm, and the short side length may be 100 mm to 2850 mm.
 曲げ試験装置10は、例えば図1~図3に示すように、ベース12、第1の支持盤としての上側支持盤14、第2の支持盤としての下側支持盤16、移動部20、調整部30、検出部40、支持部50、および載置部60を備える。 The bending test apparatus 10 includes, as shown in FIGS. 1 to 3, for example, a base 12, an upper support board 14 as a first support board, a lower support board 16 as a second support board, a moving unit 20, and an adjustment. Unit 30, detection unit 40, support unit 50, and placement unit 60.
 上側支持盤14は、ガラスシート2を支持する。上側支持盤14の支持面14aは、下向きの平坦な面であってよく、例えばテープなどでガラスシート2の一端部を固定する面であってよい。上側支持盤14における支持面14aとは反対側の面は、平坦であっても平坦でなくてもよい。 The upper support plate 14 supports the glass sheet 2. The support surface 14a of the upper support plate 14 may be a flat surface facing downward, and may be a surface that fixes one end of the glass sheet 2 with a tape or the like, for example. The surface of the upper support plate 14 opposite to the support surface 14a may be flat or not flat.
 上側支持盤14は、ガラスシート2の損傷を防止するため、ガラスシート2と接触する樹脂層と、金属製の本体とで構成されてよい。樹脂層は、金属製の本体に分離自在に取り付けられてよい。ガラスシート2の破片などが樹脂層に刺さった場合に、樹脂層が交換できる。 The upper support plate 14 may be composed of a resin layer in contact with the glass sheet 2 and a metal main body in order to prevent the glass sheet 2 from being damaged. The resin layer may be separably attached to the metal main body. When fragments or the like of the glass sheet 2 are stuck in the resin layer, the resin layer can be exchanged.
 下側支持盤16は、上側支持盤14と同様に、ガラスシート2を支持する。下側支持盤16の支持面16aは、上向きの平坦な面であってよく、例えばガラスシート2の他端部を載せる載置面であってよい。ガラスシート2の他端部は重力で下側支持盤16の支持面16aに押し付けられ、摩擦力で固定される。下側支持盤16の支持面16aには、ガラスシート2の位置ずれを防止するため、ガラスシート2の他端部と当接するストッパ17が設けられてよい。下側支持盤16における支持面16aとは反対側の面は、平坦であっても平坦でなくてもよい。 The lower support plate 16 supports the glass sheet 2 in the same manner as the upper support plate 14. The support surface 16a of the lower support board 16 may be an upward flat surface, for example, a mounting surface on which the other end of the glass sheet 2 is placed. The other end of the glass sheet 2 is pressed against the support surface 16a of the lower support board 16 by gravity and fixed by a frictional force. A stopper 17 that contacts the other end of the glass sheet 2 may be provided on the support surface 16 a of the lower support board 16 in order to prevent the glass sheet 2 from being displaced. The surface of the lower support plate 16 opposite to the support surface 16a may be flat or not flat.
 下側支持盤16は、ガラスシート2の損傷を防止するため、ガラスシート2と接触する樹脂層と、金属製の本体とで構成されてよい。樹脂層は、金属製の本体に分離自在に取り付けられてよい。ガラスシート2の破片などが樹脂層に刺さった場合に、樹脂層が交換できる。 The lower support board 16 may be composed of a resin layer in contact with the glass sheet 2 and a metal main body in order to prevent the glass sheet 2 from being damaged. The resin layer may be separably attached to the metal main body. When fragments or the like of the glass sheet 2 are stuck in the resin layer, the resin layer can be exchanged.
 移動部20は、互いに平行な上側支持盤14の支持面14aと下側支持盤16の支持面16aとの間隔Dを維持した状態で、上側支持盤14に対する下側支持盤16の位置を移動させる。移動部20は、上側支持盤14に対する下側支持盤16の位置を移動させるため、ベース12に対して下側支持盤16を平行に移動させる。 The moving unit 20 moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 that are parallel to each other. Let The moving unit 20 moves the lower support plate 16 parallel to the base 12 in order to move the position of the lower support plate 16 with respect to the upper support plate 14.
 尚、本実施形態の移動部20は、ベース12に対して下側支持盤16を平行に移動させるが、ベース12に対して上側支持盤14を平行に移動させてもよいし、上側支持盤14および下側支持盤16の両方を平行に移動させてもよい。いずれの場合でも、上側支持盤14に対する下側支持盤16の位置が移動する。 In addition, although the moving part 20 of this embodiment moves the lower side support board 16 in parallel with respect to the base 12, you may move the upper side support board 14 in parallel with respect to the base 12, or an upper side support board. Both 14 and the lower support board 16 may be moved in parallel. In any case, the position of the lower support board 16 with respect to the upper support board 14 moves.
 移動部20は、例えば、昇降フレーム21、モータ22、ボールねじ機構23、スライダブロック24などで構成される。昇降フレーム21は、ベース12に対して移動自在とされる。モータ22は、例えば電動サーボモータであってよく、昇降フレーム21に取り付けられる。ボールねじ機構23は、モータ22の回転運動を直線運動に変換してスライダブロック24に伝える。スライダブロック24は、下側支持盤16と連結され、下側支持盤16と共にベース12に対して平行に移動する。モータ22は、マイクロコンピュータなどで構成されるコントローラによる制御下で、ボールねじ軸23aを回転させ、ボールねじナット23bを移動させる。ボールねじナット23bの移動に伴って、スライダブロック24および下側支持盤16がベース12に対して平行に移動する。 The moving unit 20 includes, for example, a lifting frame 21, a motor 22, a ball screw mechanism 23, a slider block 24, and the like. The lifting frame 21 is movable with respect to the base 12. The motor 22 may be an electric servo motor, for example, and is attached to the lifting frame 21. The ball screw mechanism 23 converts the rotational motion of the motor 22 into a linear motion and transmits it to the slider block 24. The slider block 24 is connected to the lower support plate 16 and moves in parallel with the base 12 together with the lower support plate 16. The motor 22 rotates the ball screw shaft 23a and moves the ball screw nut 23b under the control of a controller constituted by a microcomputer or the like. As the ball screw nut 23 b moves, the slider block 24 and the lower support plate 16 move in parallel to the base 12.
 尚、本実施形態のモータ22は回転モータであるが、リニアモータであってもよい。リニアモータは、固定子と可動子とで構成され、可動子に下側支持盤16が取り付けられる。固定子と可動子との間に作用する磁力によって、可動子が直線運動し、下側支持盤16が移動する。 In addition, although the motor 22 of this embodiment is a rotary motor, a linear motor may be sufficient. The linear motor includes a stator and a mover, and a lower support board 16 is attached to the mover. Due to the magnetic force acting between the stator and the mover, the mover moves linearly and the lower support plate 16 moves.
 調整部30は、互いに平行な上側支持盤14の支持面14aと下側支持盤16の支持面16aとの間隔Dを調整する。調整部30は、間隔Dを調整するため、ベース12に対して下側支持盤16を昇降させてよい。 The adjusting unit 30 adjusts the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 that are parallel to each other. The adjustment unit 30 may raise and lower the lower support plate 16 with respect to the base 12 in order to adjust the interval D.
 尚、本実施形態の調整部30は、ベース12に対して下側支持盤16を昇降させるが、ベース12に対して上側支持盤14を昇降させてもよいし、下側支持盤16および上側支持盤14の両方を昇降させてもよい。いずれの場合でも、上側支持盤14と下側支持盤16との間隔Dが調整できる。 The adjustment unit 30 of the present embodiment raises and lowers the lower support plate 16 with respect to the base 12, but may also raise and lower the upper support plate 14 with respect to the base 12. You may raise / lower both of the support boards 14. In any case, the distance D between the upper support plate 14 and the lower support plate 16 can be adjusted.
 調整部30は、例えばパンタグラフ式のジャッキで構成される。調整部30は、移動部20(詳細には昇降フレーム21)とベース12との間に配設され、ベース12に対して移動部20を昇降させる。移動部20の昇降に伴って、下側支持盤16が昇降し、下側支持盤16と上側支持盤14との間隔が調整できる。 The adjustment unit 30 is constituted by a pantograph jack, for example. The adjusting unit 30 is disposed between the moving unit 20 (specifically, the lifting frame 21) and the base 12, and moves the moving unit 20 up and down with respect to the base 12. As the moving unit 20 moves up and down, the lower support plate 16 moves up and down, and the distance between the lower support plate 16 and the upper support plate 14 can be adjusted.
 尚、本実施形態の調整部30は、パンタグラフ式のジャッキで構成され、手動で作動させられるが、移動部20と同様に構成されてよく、モータなどで構成されてよい。調整部のモータは、コントローラによる制御下で作動する。 In addition, although the adjustment part 30 of this embodiment is comprised with the pantograph-type jack and is act | operated manually, it may be comprised similarly to the movement part 20, and may be comprised with a motor etc. The motor of the adjustment unit operates under the control of the controller.
 検出部40は、ガラスシート2にクラックが形成されるときに生じる弾性波(例えばAE(Acoustic Emission)波)を検出するセンサ(例えばAEセンサ)で構成される。上側支持盤14および下側支持盤16で支持されたままの状態でガラスシート2にクラックが形成されるか否かがわかる。ガラスシート2のクラックは、ガラスシート2に存在する欠陥(傷、付着物、内包物など)を起点として形成される。検出部40は、ガラスシート2を支持する下側支持盤16に取り付けられるが、上側支持盤14に取り付けられてもよい。 The detection unit 40 includes a sensor (for example, an AE sensor) that detects an elastic wave (for example, an AE (Acoustic Emission) wave) generated when a crack is formed in the glass sheet 2. It can be seen whether or not a crack is formed in the glass sheet 2 while being supported by the upper support plate 14 and the lower support plate 16. Cracks in the glass sheet 2 are formed starting from defects (scratches, deposits, inclusions, etc.) present in the glass sheet 2. The detection unit 40 is attached to the lower support plate 16 that supports the glass sheet 2, but may be attached to the upper support plate 14.
 尚、本実施形態の検出部40は、ガラスシート2で生じるクラックの弾性波を検出するセンサで構成されるが、ガラスシート2に光を照射する光源と、ガラスシート2からの反射光を受光する受光素子とで構成されてもよい。受光素子の受光量に基づいて、ガラスシート2でクラックが発生しているか否かが分かる。また、目視や顕微鏡などでクラックの有無を調べてもよい。 In addition, although the detection part 40 of this embodiment is comprised by the sensor which detects the elastic wave of the crack which arises in the glass sheet 2, it receives the light source which irradiates light to the glass sheet 2, and the reflected light from the glass sheet 2 And a light receiving element. Based on the amount of light received by the light receiving element, it can be determined whether or not a crack has occurred in the glass sheet 2. Moreover, you may investigate the presence or absence of a crack visually or with a microscope.
 支持部50は、ベース12に対して固定され、蝶番などの連結部52を介して、上側支持盤14を回動自在に支持する。上側支持盤14は、上側支持盤14の支持面14aが下側支持盤16の支持面16aに対して平行となる試験位置(第1の位置)と、上側支持盤14の支持面14aが下側支持盤16の支持面16aに対して斜めになるセット位置(第2の位置)との間で回動自在とされる。上側支持盤14が試験位置からセット位置に回動する間、上側支持盤14および下側支持盤16で支持されたガラスシート2の湾曲部の曲率半径が徐々に大きくなる。上側支持盤14をセット位置で停止させる回動ストッパが支持部50に取り付けられてもよい。尚、支持部50は、昇降フレーム21を上下に案内するガイドとして機能してもよい。 The support portion 50 is fixed to the base 12 and rotatably supports the upper support plate 14 via a connecting portion 52 such as a hinge. The upper support plate 14 has a test position (first position) where the support surface 14a of the upper support plate 14 is parallel to the support surface 16a of the lower support plate 16, and the support surface 14a of the upper support plate 14 is lower. It is rotatable between a set position (second position) that is inclined with respect to the support surface 16 a of the side support board 16. While the upper support plate 14 rotates from the test position to the set position, the radius of curvature of the curved portion of the glass sheet 2 supported by the upper support plate 14 and the lower support plate 16 gradually increases. A rotation stopper that stops the upper support board 14 at the set position may be attached to the support portion 50. The support part 50 may function as a guide for guiding the elevating frame 21 up and down.
 載置部60は、ベース12に対して固定され、下側支持盤16よりも上方に配設される上側支持盤14を載せる。上側支持盤14は、試験位置(図1の位置)にあるとき、載置部60の上端面に載せられる。上側支持盤14の姿勢が安定化するように、上側支持盤14は図2に示すように複数の載置部60に載せられてよい。各載置部60にはボルト62の軸部62bを螺合するボルト孔が形成される。また、上側支持盤14にはボルト62の軸部62bを貫通させる貫通孔が形成される。ボルト62の頭部62aと各載置部60とで上側支持盤14が挟まれ、上側支持盤14の姿勢が安定化できる。 The mounting portion 60 is fixed to the base 12 and places the upper support plate 14 disposed above the lower support plate 16. The upper support plate 14 is placed on the upper end surface of the placement unit 60 when it is in the test position (the position in FIG. 1). The upper support plate 14 may be placed on a plurality of placement units 60 as shown in FIG. 2 so that the posture of the upper support plate 14 is stabilized. Each mounting portion 60 is formed with a bolt hole for screwing the shaft portion 62 b of the bolt 62. Further, the upper support plate 14 is formed with a through hole through which the shaft portion 62b of the bolt 62 passes. The upper support plate 14 is sandwiched between the head portion 62a of the bolt 62 and each mounting portion 60, and the posture of the upper support plate 14 can be stabilized.
 次に、上記構成の曲げ試験装置10の動作(曲げ試験方法)について説明する。 Next, the operation (bending test method) of the bending test apparatus 10 having the above configuration will be described.
 先ず、作業者は、ボルト62を外し、上側支持盤14を試験位置(図1に示す位置)からセット位置(図3に示す位置)に回動させ、セット位置で停止させる。次いで、作業者は、上側支持盤14と下側支持盤16とにそれぞれガラスシート2を支持させる。セット時のガラスシート2の湾曲部の曲率半径は、試験時のガラスシート2の湾曲部の曲率半径よりも大きい。ガラスシート2の湾曲部で生じる引張応力がセット時に最小となり、試験時に最大となるため、設定値以上の過度な引張応力がガラスシート2で生じることがない。セット時に、ガラスシート2の湾曲部で生じる引張応力は十分小さく、湾曲部にクラックが形成されることはほとんどない。 First, the operator removes the bolt 62, rotates the upper support plate 14 from the test position (position shown in FIG. 1) to the set position (position shown in FIG. 3), and stops at the set position. Next, the worker supports the glass sheet 2 on the upper support plate 14 and the lower support plate 16, respectively. The radius of curvature of the curved portion of the glass sheet 2 during setting is larger than the radius of curvature of the curved portion of the glass sheet 2 during testing. Since the tensile stress generated in the curved portion of the glass sheet 2 is minimized at the time of setting and is maximized at the time of testing, excessive tensile stress exceeding the set value is not generated in the glass sheet 2. At the time of setting, the tensile stress generated in the curved portion of the glass sheet 2 is sufficiently small, and cracks are hardly formed in the curved portion.
 次いで、作業者は、上側支持盤14をセット位置から試験位置に回動させ、載置部60に載せる。上側支持盤14をセット位置から試験位置に回動させる間、クラックが形成されるときに生じる弾性波の有無を検出部40が監視してよい。続いて、作業者は、載置部60とボルト62の頭部62aとで上側支持盤14を挟む。上側支持盤14の姿勢が安定化でき、上側支持盤14の支持面14aと、下側支持盤16の支持面16aとが平行に維持できる。 Next, the operator rotates the upper support plate 14 from the set position to the test position and places it on the placement unit 60. While the upper support plate 14 is rotated from the set position to the test position, the detection unit 40 may monitor the presence or absence of an elastic wave generated when a crack is formed. Subsequently, the operator sandwiches the upper support plate 14 between the placing portion 60 and the head 62 a of the bolt 62. The posture of the upper support board 14 can be stabilized, and the support surface 14a of the upper support board 14 and the support surface 16a of the lower support board 16 can be maintained in parallel.
 次いで、作業者は、手動で調整部30を作動させて、互いに平行な上側支持盤14の支持面14aと下側支持盤16の支持面16aとの間の間隔Dを調整し、上側支持盤14と下側支持盤16との間で湾曲させるガラスシート2に設定値の引張応力を発生させる。 Next, the operator manually operates the adjustment unit 30 to adjust the distance D between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 which are parallel to each other, and the upper support plate. A tensile stress of a set value is generated in the glass sheet 2 that is curved between the lower support plate 16 and the lower support plate 16.
 ガラスシート2の湾曲部の頂端(図1においてガラスシート2の右端)に発生する引張応力σは、下記の式(1)に基づいて算出可能である。
σ=A×E×t/(D-t)・・・(1)
上記式(1)中、Aは本試験に固有の定数(1.198)、Eはガラスシート2のヤング率、tはガラスシート2の厚さである。式(1)から明らかなように、間隔D(D>2×t)が狭くなるほど、引張応力σが大きくなる。
The tensile stress σ generated at the top end of the curved portion of the glass sheet 2 (the right end of the glass sheet 2 in FIG. 1) can be calculated based on the following formula (1).
σ = A × E × t / (D−t) (1)
In the above formula (1), A is a constant (1.198) specific to this test, E is the Young's modulus of the glass sheet 2, and t is the thickness of the glass sheet 2. As is clear from the equation (1), the tensile stress σ increases as the distance D (D> 2 × t) decreases.
 本実施形態では、間隔Dを調整するため、ベース12に対して下側支持盤16を昇降させる。下側支持盤16は、上側支持盤14よりもベース12に近く、ベース12に対して平行な姿勢に維持しやすい。よって、上側支持盤14の支持面14aと、下側支持盤16の支持面16aとの平行度が良好に維持できる。 In this embodiment, in order to adjust the distance D, the lower support board 16 is moved up and down with respect to the base 12. The lower support plate 16 is closer to the base 12 than the upper support plate 14 and is easily maintained in a posture parallel to the base 12. Therefore, the parallelism between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 can be maintained satisfactorily.
 次いで、作業者は、コントローラによる制御下で移動部20を作動させ、間隔Dを維持した状態で、上側支持盤14に対する下側支持盤16の位置を移動させる。具体的には、ベース12に対して下側支持盤16を図中左右方向に移動させる。下側支持盤16は、所定の回数だけ往復移動される。尚、下側支持盤16は、1回だけ往復されてもよいし、1回だけ左方向に移動されてもよいし、1回だけ右方向に移動されてもよい。いずれの場合でも、ガラスシート2の引張応力σの発生位置が移動できる。 Next, the operator operates the moving unit 20 under the control of the controller, and moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D. Specifically, the lower support plate 16 is moved in the left-right direction in the figure with respect to the base 12. The lower support plate 16 is reciprocated a predetermined number of times. The lower support board 16 may be reciprocated only once, may be moved leftward only once, or may be moved rightward only once. In any case, the generation position of the tensile stress σ of the glass sheet 2 can be moved.
 ところで、ガラスシート2のクラックの起点となる欠陥(傷、付着物、内包物など)は、ガラスシート2に点在している。 Incidentally, defects (scratches, deposits, inclusions, etc.) that are the starting points of cracks in the glass sheet 2 are scattered in the glass sheet 2.
 本実施形態では、ガラスシート2の引張応力σの発生位置が移動でき、大面積の試験が可能であるため、ガラスシート2の耐久性が精度良く求められる。 In this embodiment, since the generation position of the tensile stress σ of the glass sheet 2 can be moved and a large area test is possible, the durability of the glass sheet 2 is required with high accuracy.
 上側支持盤14に対する下側支持盤16の位置の所定方向への1回の移動量は、好ましくは100mm以上、より好ましくは200mm以上、さらに好ましくは300mm以上である。 The amount of movement of the lower support plate 16 in the predetermined direction with respect to the upper support plate 14 in a predetermined direction is preferably 100 mm or more, more preferably 200 mm or more, and even more preferably 300 mm or more.
 ガラスシート2の評価面積は、好ましくは100cm以上、より好ましくは300cm以上、さらに好ましくは900cm以上である。「評価面積」は、ガラスシート2における湾曲部の頂端(図1においてガラスシート2の右端)の所定方向への1回の移動面積のことである。例えば、上側支持盤14に対する下側支持盤16の相対移動方向が矩形状のガラスシート2の短辺に対して垂直な場合、「評価面積」は、ガラスシート2の短辺の長さと、上記移動量との積である。 The evaluation area of the glass sheet 2 is preferably 100 cm 2 or more, more preferably 300 cm 2 or more, and further preferably 900 cm 2 or more. The “evaluation area” is a one-time movement area in the predetermined direction of the top end of the curved portion in the glass sheet 2 (the right end of the glass sheet 2 in FIG. 1). For example, when the relative movement direction of the lower support plate 16 with respect to the upper support plate 14 is perpendicular to the short side of the rectangular glass sheet 2, the “evaluation area” is the length of the short side of the glass sheet 2 and the above It is the product of the amount of movement.
 上側支持盤14と下側支持盤16との間で湾曲させるガラスシート2にクラックが形成されるか否かは、クラックが形成されるときに生じる弾性波の有無を検出部40で検出することで調べられる。上側支持盤14および下側支持盤16で支持されたままの状態でガラスシート2にクラックが形成されるか否かが確認できる。 Whether or not a crack is formed in the glass sheet 2 to be curved between the upper support plate 14 and the lower support plate 16 is detected by the detection unit 40 by detecting the presence or absence of an elastic wave generated when the crack is formed. It can be examined at. It can be confirmed whether or not a crack is formed in the glass sheet 2 while being supported by the upper support plate 14 and the lower support plate 16.
 ガラスシート2にクラックが生じない場合、作業者は、手動で調整部30を作動させて、互いに平行な上側支持盤14の支持面14aと下側支持盤16の支持面16aとの間の間隔Dを狭める。これにより、上側支持盤14と下側支持盤16との間で湾曲させるガラスシート2に前回よりも高い引張応力が発生する。 When the glass sheet 2 is not cracked, the operator manually operates the adjusting unit 30 to establish a distance between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 that are parallel to each other. Narrows D. Thereby, the tensile stress higher than the last time generate | occur | produces in the glass sheet 2 curved between the upper side support board 14 and the lower side support board 16. FIG.
 次いで、作業者は、コントローラによる制御下で移動部20を作動させ、間隔Dを維持した状態で、上側支持盤14に対する下側支持盤16の位置を移動させ、上側支持盤14と下側支持盤16との間で湾曲させるガラスシート2にクラックが形成されるか否か調べる。ガラスシート2にクラックが形成されるまで、間隔Dを段階的に狭め、ガラスシート2にかける引張応力σを段階的に強めることで、ガラスシート2の破壊強度がわかる。ガラスシート2が割れたときの引張応力σが破壊強度として用いられる。 Next, the operator operates the moving unit 20 under the control of the controller and moves the position of the lower support plate 16 with respect to the upper support plate 14 while maintaining the distance D, so that the upper support plate 14 and the lower support are supported. It is examined whether or not a crack is formed in the glass sheet 2 to be bent with the board 16. The fracture strength of the glass sheet 2 can be determined by gradually decreasing the distance D and increasing the tensile stress σ applied to the glass sheet 2 step by step until cracks are formed in the glass sheet 2. The tensile stress σ when the glass sheet 2 is broken is used as the fracture strength.
 ガラスシート2の曲げ試験前に、ガラスシート2の評価面(曲げ試験で引張応力が生じる面)とは反対側の面の少なくとも一部に飛散防止フィルムを貼り合わせておいてもよい。曲げ試験で割れた破片が飛び散らないので、次の測定への移行がはかどり、また割れ発生起点の解析も可能である。 Prior to the bending test of the glass sheet 2, an anti-scattering film may be bonded to at least a part of the surface opposite to the evaluation surface of the glass sheet 2 (the surface where tensile stress is generated in the bending test). Since the fragments broken in the bending test do not scatter, the transition to the next measurement is accelerated, and analysis of the crack initiation point is also possible.
 尚、本実施形態では、ガラスシート2の破壊強度を調べる目的で、間隔Dを段階的に狭めるが、ガラスシート2の破壊強度が閾値(例えば50MPa)よりも大きいことを確認する場合、閾値に対応する間隔Dで試験を行ってクラックが形成されたか否かを調べればよい。クラックが形成されない場合、さらに間隔Dを狭めなくてよい。クラックが形成されない場合、ガラスシート2の破壊強度は閾値値よりも大きいとみなすことができる。 In this embodiment, the interval D is narrowed stepwise for the purpose of examining the breaking strength of the glass sheet 2, but when confirming that the breaking strength of the glass sheet 2 is larger than a threshold value (for example, 50 MPa), the threshold value is set. What is necessary is just to test whether the crack was formed by performing the test by the space | interval D corresponding. When no crack is formed, the interval D does not have to be further narrowed. When a crack is not formed, it can be considered that the breaking strength of the glass sheet 2 is larger than a threshold value.
 尚、本実施形態では、脆性材料を含むシート物として、ガラスシート2を用いたが、シート物の種類は特に限定されない。脆性材料としては、ガラスの他に、セラミックスなどが挙げられる。例えばシート物は、セラミックスシートでもよい。ガラスシートおよびセラミックスシートを脆性シートと総称する。 In this embodiment, the glass sheet 2 is used as the sheet material including the brittle material, but the type of the sheet material is not particularly limited. Examples of the brittle material include ceramics in addition to glass. For example, the sheet material may be a ceramic sheet. Glass sheets and ceramic sheets are collectively referred to as brittle sheets.
 また、シート物は、図4に示すように、複合シート6でもよい。複合シート6は、ガラスシート2と、ガラスシート2上に樹脂を含む材料で形成される補強層4とを含む。尚、図4の複合シート6は、ガラスシート2の片側にガラスシート2と結合する補強層4を有するが、ガラスシート2を挟んだ両側にそれぞれガラスシート2と結合する補強層を有してもよい。ガラスシート2を挟んで配設される2つの補強層は、同じ厚さを有しても異なる厚さを有してもよく、同じ物性(ヤング率、熱膨張係数など)を有しても異なる物性を有してもよい。また、図4の複合シートは、脆性シートとして、ガラスシートを含むが、セラミックスシートを含んでもよい。 The sheet may be a composite sheet 6 as shown in FIG. The composite sheet 6 includes a glass sheet 2 and a reinforcing layer 4 formed of a material containing a resin on the glass sheet 2. The composite sheet 6 in FIG. 4 has a reinforcing layer 4 that is bonded to the glass sheet 2 on one side of the glass sheet 2, but has a reinforcing layer that is bonded to the glass sheet 2 on both sides of the glass sheet 2. Also good. The two reinforcing layers disposed across the glass sheet 2 may have the same thickness or different thicknesses, and may have the same physical properties (Young's modulus, thermal expansion coefficient, etc.). It may have different physical properties. The composite sheet of FIG. 4 includes a glass sheet as a brittle sheet, but may include a ceramic sheet.
 ガラスシート2は、ガラスシート2と補強層4との結合力を高めるため、ガラスシート2における補強層4と結合する主面2aがシランカップリング剤などの表面処理剤で表面処理されたものでもよい。表面処理によるガラスシート2の厚みの変化は、表面処理前のガラスシート2の厚みに比べて十分に小さい(例えば10nm以下)。 In order to increase the bonding force between the glass sheet 2 and the reinforcing layer 4, the glass sheet 2 may have a surface treated with a surface treatment agent such as a silane coupling agent on the main surface 2 a bonded to the reinforcing layer 4 in the glass sheet 2. Good. The change in the thickness of the glass sheet 2 due to the surface treatment is sufficiently small (for example, 10 nm or less) compared to the thickness of the glass sheet 2 before the surface treatment.
 補強層4は、巻芯などのロールに沿って複合シート6を曲げ変形したときに、ガラスシート2と剥離しない程度の結合力を有し、ガラスシート2の傷が開くのを制限する。補強層4は、電子デバイスの製造工程の途中でガラスシート2から剥離されてもよく、電子デバイスの一部とならなくてもよい。 The reinforcing layer 4 has a binding force that does not peel from the glass sheet 2 when the composite sheet 6 is bent and deformed along a roll such as a winding core, and restricts the glass sheet 2 from being damaged. The reinforcing layer 4 may be peeled off from the glass sheet 2 during the manufacturing process of the electronic device, and may not be a part of the electronic device.
 補強層4は、ガラスシート2の平均破壊強度を高めたい部分を覆えばよく、ガラスシート2の一方の主面2aの少なくとも一部を覆う。補強層4は、好ましくは、ガラスシート2の一方の主面2a全体を覆う。尚、補強層4はガラスシート2の一方の主面2aからはみ出してもよい。 The reinforcing layer 4 may cover a portion of the glass sheet 2 where the average breaking strength is desired to be increased, and covers at least a part of one main surface 2a of the glass sheet 2. The reinforcing layer 4 preferably covers the entire main surface 2 a of the glass sheet 2. The reinforcing layer 4 may protrude from one main surface 2a of the glass sheet 2.
 補強層4は、ガラスシート2上に液状の樹脂組成物を塗布し固化させて形成されてもよいし、ガラスシート2に樹脂フィルムを貼り付けて形成されてもよい。後者の場合、補強層4は、樹脂フィルムおよび樹脂フィルムとガラスシートとを接着する接着層で構成されてもよい。尚、後者の場合、接着剤を用いずに、ガラスシートの表面処理(例えばシランカップリング処理)した面と、樹脂フィルムの表面処理(例えばコロナ処理)した面とを貼り合わせてもよい。表面処理による樹脂フィルムの厚みの変化は、表面処理前の樹脂フィルムの厚みに比べて十分に小さい(例えば10nm以下)。 The reinforcing layer 4 may be formed by applying a liquid resin composition on the glass sheet 2 and solidifying it, or may be formed by attaching a resin film to the glass sheet 2. In the latter case, the reinforcing layer 4 may be composed of a resin film and an adhesive layer that bonds the resin film and the glass sheet. In the latter case, the surface of the glass sheet (for example, silane coupling treatment) and the surface of the resin film (for example, corona treatment) may be bonded together without using an adhesive. The change in the thickness of the resin film due to the surface treatment is sufficiently small (for example, 10 nm or less) compared to the thickness of the resin film before the surface treatment.
 補強層4は、図4では1つの層で構成されるが、材料の異なる複数の層で構成されてもよい。補強層4におけるガラスシート2と結合する主面とは反対側の面は、露出面であってよい。 The reinforcing layer 4 is composed of one layer in FIG. 4, but may be composed of a plurality of layers made of different materials. The surface of the reinforcing layer 4 opposite to the main surface coupled to the glass sheet 2 may be an exposed surface.
 補強層4は、例えば樹脂のみで形成されてよい。尚、補強層4は、樹脂を含む材料で形成されていればよく、例えば樹脂およびフィラーで形成されてもよい。フィラーとしては、繊維状もしくは、板状、鱗片状、粒状、不定形状、破砕品など非繊維状の充填剤が挙げられ、具体的には例えば、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ほう酸アルミニウムウィスカー、窒化ケイ素ウィスカー、マイカ、タルク、カオリン、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、ワラステナイト、酸化チタン、酸化亜鉛、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、カーボンナノチューブなどが挙げられる。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。ガラス繊維あるいは炭素繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、補強層4は、樹脂を含浸した織布、不織布などで構成されてもよい。 The reinforcing layer 4 may be formed of only resin, for example. In addition, the reinforcement layer 4 should just be formed with the material containing resin, for example, may be formed with resin and a filler. Examples of fillers include fibrous or non-fibrous fillers such as plate-like, scale-like, granular, indeterminate shapes, and crushed products. Specific examples include glass fibers, PAN-based and pitch-based carbon fibers, Stainless steel fiber, metal fiber such as aluminum fiber and brass fiber, organic fiber such as aromatic polyamide fiber, gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool , Potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, mica, talc, kaolin, silica, calcium carbonate, glass beads, glass flake, glass microballoon, clay, molybdenum disulfide, wollastonite, oxidation Titanium, zinc oxide, poly Calcium phosphate, graphite, metal powders, metal flakes, metal ribbons, metal oxides, carbon powder, graphite, carbon flake, scaly carbon, and carbon nanotubes. Specific examples of metal species of metal powder, metal flakes, and metal ribbons include silver, nickel, copper, zinc, aluminum, stainless steel, iron, brass, chromium, and tin. The type of glass fiber or carbon fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from long fiber type, short fiber type chopped strand, milled fiber, and the like. The reinforcing layer 4 may be composed of a woven fabric, a nonwoven fabric or the like impregnated with a resin.
 補強層4の樹脂は、多種多様であってよく、例えば例えば熱可塑性樹脂、熱硬化性樹脂のいずれでもよい。熱硬化性樹脂としては、例えば、ポリイミド(PI)、エポキシ(EP)等が用いられる。熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリベンズイミダゾール(PBI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、環状ポリオレフィン(COP)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、アクリル(PMMA)、ウレタン(PU)等が用いられる。尚、樹脂膜は、光硬化性樹脂で形成されてもよく、共重合体、または混合物であってもよい。ロールツーロール法による電子デバイスの製造工程は加熱処理を伴う工程を含むことがあり、樹脂の耐熱温度(連続使用可能温度)は好ましくは100℃以上である。耐熱温度が100℃以上の樹脂としては、例えばポリイミド(PI)、エポキシ(EP)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリベンズイミダゾール(PBI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、環状ポリオレフィン(COP)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、アクリル(PMMA)、ウレタン(PU)などが挙げられる。 The resin of the reinforcing layer 4 may be various, for example, either a thermoplastic resin or a thermosetting resin. As the thermosetting resin, for example, polyimide (PI), epoxy (EP), or the like is used. Examples of the thermoplastic resin include polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethersal. Hong (PES), cyclic polyolefin (COP), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), acrylic (PMMA), urethane (PU) and the like are used. The resin film may be formed of a photocurable resin, and may be a copolymer or a mixture. The manufacturing process of the electronic device by the roll-to-roll method may include a process involving heat treatment, and the heat-resistant temperature (continuous usable temperature) of the resin is preferably 100 ° C. or higher. Examples of the resin having a heat resistant temperature of 100 ° C. or higher include polyimide (PI), epoxy (EP), polyamide (PA), polyamideimide (PAI), polyetheretherketone (PEEK), polybenzimidazole (PBI), and polyethylene terephthalate. (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), cyclic polyolefin (COP), polycarbonate (PC), polyvinyl chloride (PVC), acrylic (PMMA), urethane (PU) and the like. .
 補強層4の平均厚みは、例えば100μm未満である。補強層4の平均厚みが100μm未満であれば、複合シート6のフレキシブル性が十分確保できる。また、補強層4の平均厚みが100μm未満であれば、樹脂とガラスとの熱膨張係数差による反りが抑制できる。補強層4の平均厚みは、好ましくは90μm以下、より好ましくは75μm以下である。 The average thickness of the reinforcing layer 4 is, for example, less than 100 μm. If the average thickness of the reinforcing layer 4 is less than 100 μm, the flexibility of the composite sheet 6 can be sufficiently secured. Moreover, if the average thickness of the reinforcement layer 4 is less than 100 micrometers, the curvature by the thermal expansion coefficient difference of resin and glass can be suppressed. The average thickness of the reinforcing layer 4 is preferably 90 μm or less, more preferably 75 μm or less.
 また、補強層4の平均厚みは、例えば0.5μm以上である。補強層4の平均厚みが0.5μm以上であれば、補強層4の存在によってガラスシート2の傷が開くのを制限できる。補強層4の平均厚みは、好ましくは1μm以上、より好ましくは2μm以上である。 Further, the average thickness of the reinforcing layer 4 is, for example, 0.5 μm or more. If the average thickness of the reinforcing layer 4 is 0.5 μm or more, it is possible to limit the opening of the glass sheet 2 due to the presence of the reinforcing layer 4. The average thickness of the reinforcing layer 4 is preferably 1 μm or more, more preferably 2 μm or more.
 さらに、シート物は、素子付きの脆性シート、最終製品である電子デバイスなどでもよい。素子付きの脆性シート、電子デバイスは、少なくとも脆性シートを含み、図4に示す補強層4をさらに含んでもよい。 Furthermore, the sheet material may be a brittle sheet with elements, an electronic device as a final product, or the like. The brittle sheet with an element and the electronic device include at least a brittle sheet and may further include a reinforcing layer 4 shown in FIG.
 電子デバイスとしては、画像表示パネル、太陽電池、薄膜二次電池、撮像素子(CCD、CMOSなど)、圧力センサ、加速度センサ、生体センサなどが挙げられる。画像表示パネルとしては、液晶パネル(LCD)、プラズマディスプレイパネル(PDP)、有機ELパネル(OLED)、電子ペーパなどが挙げられる。 Examples of the electronic device include an image display panel, a solar battery, a thin film secondary battery, an image sensor (CCD, CMOS, etc.), a pressure sensor, an acceleration sensor, and a biological sensor. Examples of the image display panel include a liquid crystal panel (LCD), a plasma display panel (PDP), an organic EL panel (OLED), and electronic paper.
 図5は、本発明の一実施形態による液晶パネルを示す図である。液晶パネル70は、TFT基板72、CF基板74、および液晶層76などで構成される。TFT基板72は、ガラスシート2上にTFT素子(薄膜トランジスタ)73などをパターン形成してなる。CF基板74は、ガラスシート2上にカラーフィルター素子75をパターン形成してなる。TFT基板72およびCF基板74が特許請求の範囲に記載の素子付き脆性シートに相当する。 FIG. 5 is a view showing a liquid crystal panel according to an embodiment of the present invention. The liquid crystal panel 70 includes a TFT substrate 72, a CF substrate 74, a liquid crystal layer 76, and the like. The TFT substrate 72 is formed by patterning TFT elements (thin film transistors) 73 on the glass sheet 2. The CF substrate 74 is formed by patterning a color filter element 75 on the glass sheet 2. The TFT substrate 72 and the CF substrate 74 correspond to the brittle sheet with elements described in the claims.
 図6は、本発明の一実施形態による有機ELパネル(OLED)を示す図である。有機ELパネル80は、例えばガラスシート2、透明電極82、有機層84、反射電極86、および封止板88などで構成される。有機層84は、少なくとも発光層を含み、必要に応じて正孔注入層、正孔輸送層、電子輸送層、電子注入層を含む。例えば、有機層84は、陽極側から、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層をこの順で含む。透明電極82、有機層84、および反射電極86などで、ボトムエミッション型の有機EL素子81が構成される。尚、有機EL素子は、トップエミッション型でもよい。 FIG. 6 is a diagram showing an organic EL panel (OLED) according to an embodiment of the present invention. The organic EL panel 80 includes, for example, the glass sheet 2, the transparent electrode 82, the organic layer 84, the reflective electrode 86, and the sealing plate 88. The organic layer 84 includes at least a light emitting layer, and includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer as necessary. For example, the organic layer 84 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode side. The transparent electrode 82, the organic layer 84, the reflective electrode 86, and the like constitute a bottom emission type organic EL element 81. The organic EL element may be a top emission type.
 図7は、本発明の一実施形態による太陽電池を示す図である。太陽電池90は、例えばガラスシート2、透明電極92、シリコン層94、反射電極96、および封止板98などで構成される。シリコン層は、例えば、陽極側から、p層(p型にドーピングされた層)、i層(光吸収層)、n層(n型にドーピングされた層)などで構成される。透明電極92、シリコン層94、および反射電極96などで、シリコン型の太陽電池素子91が構成される。尚、太陽電池素子は、化合物型、色素増感型、量子ドット型などでもよい。 FIG. 7 is a diagram showing a solar cell according to an embodiment of the present invention. The solar cell 90 includes, for example, a glass sheet 2, a transparent electrode 92, a silicon layer 94, a reflective electrode 96, a sealing plate 98, and the like. The silicon layer includes, for example, a p layer (p-type doped layer), an i layer (light absorption layer), an n layer (n-type doped layer), and the like from the anode side. The transparent electrode 92, the silicon layer 94, the reflective electrode 96, and the like constitute a silicon type solar cell element 91. The solar cell element may be a compound type, a dye sensitized type, a quantum dot type, or the like.
 図8は、本発明の一実施形態による薄膜2次電池を示す図である。薄膜2次電池100は、例えばガラスシート2、透明電極102、電解質層104、集電層106、封止層108、および封止板109などで構成される。透明電極102、電解質層104、集電層106、および封止層108などで、薄膜2次電池素子101が構成される。尚、本実施形態の薄膜2次電池素子101は、リチウムイオン型であるが、ニッケル水素型、ポリマー型、セラミックス電解質型などでもよい。 FIG. 8 is a view showing a thin film secondary battery according to an embodiment of the present invention. The thin film secondary battery 100 includes, for example, a glass sheet 2, a transparent electrode 102, an electrolyte layer 104, a current collecting layer 106, a sealing layer 108, a sealing plate 109, and the like. The thin-film secondary battery element 101 is configured by the transparent electrode 102, the electrolyte layer 104, the current collecting layer 106, the sealing layer 108, and the like. The thin-film secondary battery element 101 of this embodiment is a lithium ion type, but may be a nickel hydrogen type, a polymer type, a ceramic electrolyte type, or the like.
 図9は、本発明の一実施形態による電子ペーパを示す図である。電子ペーパ110は、例えばガラスシート2、TFT層112、電気工学媒体(例えばマイクロカプセル)を含む層114、透明電極116、および前面板118で構成される。TFT層112、電気工学媒体の層114、および透明電極116などで、電子ペーパ素子111が構成される。電子ペーパ素子は、マイクロカプセル型、インプレーン型、ツイストボール型、粒子移動型、電子噴流型、ポリマーネットワーク型のいずれでもよい。 FIG. 9 is a view showing electronic paper according to an embodiment of the present invention. The electronic paper 110 includes, for example, a glass sheet 2, a TFT layer 112, a layer 114 containing an electrical engineering medium (for example, microcapsule), a transparent electrode 116, and a front plate 118. The electronic paper element 111 is constituted by the TFT layer 112, the layer 114 of the electrical engineering medium, the transparent electrode 116, and the like. The electronic paper element may be any of a microcapsule type, an in-plane type, a twist ball type, a particle movement type, an electronic jet type, and a polymer network type.
 ところで、複合シートや素子付き脆性シート、電子デバイスでは、ガラスシート2の少なくとも片側に薄膜が形成される。曲げ試験時に、ガラスシート2の薄膜形成面の湾曲部の頂端に発生する引張応力σは、下記の式(2)に基づいて算出可能である。
σ=A×E×t/(D´-t)・・・(2)
上記式(2)中、Aは本試験に固有の定数(1.198)、Eはガラスシート2のヤング率、tはガラスシート2の厚さ、D´は「D´=D-2×u」の式から算出される値である。uは薄膜の厚さを表す。薄膜の存在によって、ガラスシートの上端と下端の間隔が間隔Dよりも2×uだけ短くなる。尚、薄膜の存在によるガラスシート2の中立面の変位量は、ガラスシート2の厚さtの5%以下であり、引張応力σの計算結果にほとんど影響を与えないので、無視する。中立面とは、引張応力も圧縮応力も生じない面であって、薄膜が存在しない場合、ガラスシート2の板厚方向中心面である。中立面の変位量は、材料力学の一般的な式を用いて算出できる。ガラスシート2が割れたときの引張応力σが破壊強度として用いられる。
By the way, in a composite sheet, a brittle sheet with elements, and an electronic device, a thin film is formed on at least one side of the glass sheet 2. During the bending test, the tensile stress σ generated at the apex of the curved portion of the thin film forming surface of the glass sheet 2 can be calculated based on the following formula (2).
σ = A × E × t / (D′−t) (2)
In the above formula (2), A is a constant (1.198) specific to this test, E is the Young's modulus of the glass sheet 2, t is the thickness of the glass sheet 2, and D ′ is “D ′ = D−2 × It is a value calculated from the equation “u”. u represents the thickness of the thin film. Due to the presence of the thin film, the distance between the upper end and the lower end of the glass sheet is shorter than the distance D by 2 × u. Note that the amount of displacement of the neutral surface of the glass sheet 2 due to the presence of the thin film is 5% or less of the thickness t of the glass sheet 2 and has little influence on the calculation result of the tensile stress σ, so it is ignored. The neutral surface is a surface in which neither a tensile stress nor a compressive stress is generated, and is a center plane in the thickness direction of the glass sheet 2 when no thin film is present. The displacement amount of the neutral plane can be calculated using a general formula of material mechanics. The tensile stress σ when the glass sheet 2 is broken is used as the fracture strength.
 次に、シート物の製造方法について説明する。シート物の製造方法は、シート物を製造するシート物製造工程と、シート物製造工程で製造したシート物を湾曲させる試験工程とを有する。 Next, a method for manufacturing a sheet will be described. The manufacturing method of a sheet has a sheet manufacturing process for manufacturing a sheet, and a test process for bending the sheet manufactured in the sheet manufacturing process.
 シート物製造工程は、一般的な工程であってよい。例えばシート物がガラスシートの場合、シート物製造工程はフロート法、フュージョン法、リドロー法のいずれでもよい。フロート法では、浴槽内の溶融スズ上で溶融ガラスを流動させて帯板状に成形し、成形したガラスを徐冷した後、徐冷したガラスを所望のサイズに切断する。フュージョン法では、樋状部材から左右両側に溢れ出た溶融ガラスを、樋状部材の下端で合流させて帯板状に成形し、成形したガラスを徐冷した後、徐冷したガラスを所望のサイズに切断する。リドロー法では、ガラスシートを熱で軟化させたうえで所望の厚さに引き伸ばし、引き伸ばしたガラスシートを固化させる。 The sheet manufacturing process may be a general process. For example, when the sheet is a glass sheet, the sheet manufacturing process may be any of a float method, a fusion method, and a redraw method. In the float process, molten glass is flowed on molten tin in a bath and formed into a strip shape. After the formed glass is gradually cooled, the gradually cooled glass is cut into a desired size. In the fusion method, the molten glass overflowing from the left and right sides of the bowl-shaped member is joined at the lower end of the bowl-shaped member to form a strip, and after the formed glass is slowly cooled, the gradually cooled glass is obtained as desired. Cut to size. In the redraw method, the glass sheet is softened with heat and then stretched to a desired thickness, and the stretched glass sheet is solidified.
 試験工程は、上記曲げ試験装置10を用いて行われてよい。試験方法については既に説明した通りである。破壊強度が所定値を超えるシート物は良品と判定され、破壊強度が所定値以下のシート物は不良品と判定される。 The test process may be performed using the bending test apparatus 10. The test method has already been described. A sheet having a breaking strength exceeding a predetermined value is determined as a non-defective product, and a sheet having a breaking strength equal to or lower than a predetermined value is determined as a defective product.
 次に、ガラスシート2について説明する。
  ガラスシート2は、好ましくは、図1の曲げ試験装置10を用いて下記式(3)の条件で曲げ試験を行う場合にクラックが形成されないものである。下記式(3)は上記式(1)を変形したものである。
D=(A×E×t/σ)+t・・・(3)
D;上側支持盤14の支持面14aと下側支持盤16の支持面16aとの間隔(単位[mm])
A=1.198
E;ガラスシート2のヤング率(単位[MPa])
t;ガラスシート2の厚さ(単位[mm])
σ=50(単位[MPa])
  つまり、ガラスシート2は、図1の曲げ試験装置10を用いて曲げ試験を行う場合の破壊強度が50MPaよりも大きいものであってよい。破壊強度が50MPaよりも大きいガラスシート2は、巻芯に対して渦巻き状に巻き付けて保管した場合に、ほとんど割れない。
Next, the glass sheet 2 will be described.
The glass sheet 2 is preferably such that no cracks are formed when the bending test is performed under the condition of the following formula (3) using the bending test apparatus 10 of FIG. The following formula (3) is a modification of the above formula (1).
D = (A × E × t / σ) + t (3)
D: Distance between the support surface 14a of the upper support plate 14 and the support surface 16a of the lower support plate 16 (unit [mm])
A = 1.198
E: Young's modulus of glass sheet 2 (unit: [MPa])
t: thickness of the glass sheet 2 (unit: [mm])
σ = 50 (unit [MPa])
That is, the glass sheet 2 may have a breaking strength greater than 50 MPa when a bending test is performed using the bending test apparatus 10 of FIG. The glass sheet 2 having a fracture strength greater than 50 MPa hardly breaks when stored in a spiral shape around the core.
 尚、セラミックスシートも、図1の曲げ試験装置10を用いて曲げ試験を行う場合の破壊強度が50MPaよりも大きいものであってよい。 Note that the ceramic sheet may also have a fracture strength greater than 50 MPa when a bending test is performed using the bending test apparatus 10 of FIG.
 例1~例4では、脆性シートとして矩形状のガラスシート(長辺300mm、短辺200mm)を用意した。ガラスシートは、フロート法で作製した。具体的には、溶融スズ上で溶融ガラスを流動させて帯板状に成形し、成形したガラスを徐冷した後、徐冷したガラスを所望のサイズに切断した。徐冷工程および切断工程において、ガラスを圧縮空気の空気圧で支持し、ガラスが固体物と触れないようにした。切断工程では、非接触切断法であるレーザ切断法を用いた。用意したガラスシートを図1の曲げ試験装置で曲げ試験した。 In Examples 1 to 4, a rectangular glass sheet (long side 300 mm, short side 200 mm) was prepared as a brittle sheet. The glass sheet was produced by the float process. Specifically, molten glass was flowed on molten tin to form a strip, and the molded glass was slowly cooled, and then the gradually cooled glass was cut into a desired size. In the slow cooling step and the cutting step, the glass was supported by compressed air pressure so that the glass did not come into contact with solid objects. In the cutting process, a laser cutting method which is a non-contact cutting method was used. The prepared glass sheet was subjected to a bending test using the bending test apparatus shown in FIG.
 例5および例6では、脆性シートとして、例1~例4と同様に作成したガラスシートを用意し、ガラスシートの評価面に予めサンドペーパで深さ10μm程度の傷を付けた。その後、用意したガラスシートを図1の曲げ試験装置で曲げ試験した。曲げ試験では、ガラスシートの傷を付けた面に引張応力が生じるように複合シートを曲げた。 In Examples 5 and 6, a glass sheet prepared in the same manner as in Examples 1 to 4 was prepared as a brittle sheet, and the evaluation surface of the glass sheet was previously scratched with a sandpaper to a depth of about 10 μm. Thereafter, the prepared glass sheet was subjected to a bending test using the bending test apparatus shown in FIG. In the bending test, the composite sheet was bent so that a tensile stress was generated on the scratched surface of the glass sheet.
 例1~例6の試験条件および試験結果を表1に示す。表1のt、E、D、σは、式(1)のt、E、D、σと同じ意味である。 Table 1 shows the test conditions and test results of Examples 1 to 6. T, E, D, and σ in Table 1 have the same meaning as t, E, D, and σ in Equation (1).
 表1から明らかなように、例1~例4では、徐冷工程および切断工程において、ガラスを圧縮空気の空気圧で支持し、ガラスが固体物と触れないようにしたので、曲げ試験でクラックが形成されず、破壊強度が50MPaよりも大きいことを確認できた。また、例1~例2のガラスシートと同様に作成した帯状のガラスシート(長辺30m、短辺300mm、厚さ50μm)を直径3インチ(直径76.2mm)の巻芯に渦巻き状に巻き付けて30日間保管したところ、クラックが発生しなかった。また、例3~例4のガラスシートと同様に作成した帯状のガラスシート(長辺30m、短辺300mm、厚さ100μm)を直径6インチ(直径152.4mm)の巻芯に渦巻き状に巻き付けて30日間保管したところ、クラックが発生しなかった。 As is clear from Table 1, in Examples 1 to 4, the glass was supported by the air pressure of the compressed air in the slow cooling step and the cutting step so that the glass did not come into contact with the solid material. It was not formed and it was confirmed that the fracture strength was greater than 50 MPa. Also, a strip-shaped glass sheet (long side 30 m, short side 300 mm, thickness 50 μm) prepared in the same manner as the glass sheet of Example 1 to Example 2 is spirally wound around a core having a diameter of 3 inches (diameter 76.2 mm). When stored for 30 days, no cracks occurred. Also, a strip-shaped glass sheet (long side 30 m, short side 300 mm, thickness 100 μm) prepared in the same manner as the glass sheet of Example 3 to Example 4 is spirally wound around a core having a diameter of 6 inches (diameter 152.4 mm). When stored for 30 days, no cracks occurred.
 また、表1から明らかなように、例5~例6では、ガラスシートに傷がついているので、曲げ試験でクラックが形成され、破壊強度が50MPa以下であることを確認できた。また、例5のガラスシートと同様の帯状のガラスシート(長辺30m、短辺300mm、厚さ50μm)を直径3インチ(直径76.2mm)の巻芯に渦巻き状に巻き付けて30日間保管したところ、クラックが発生した。ガラスシートは、ガラスシートの傷を付けた面に引張応力が生じるように巻芯に巻き付けた。また、例6のガラスシートと同様の帯状のガラスシート(長辺30m、短辺300mm、厚さ100μm)を直径6インチ(直径152.4mm)の巻芯に渦巻き状に巻き付けて30日間保管したところ、クラックが発生した。ガラスシートは、ガラスシートの傷を付けた面に引張応力が生じるように巻芯に巻き付けた。 Further, as apparent from Table 1, in Examples 5 to 6, since the glass sheet was scratched, it was confirmed that cracks were formed in the bending test and the fracture strength was 50 MPa or less. Further, a belt-like glass sheet (long side 30 m, short side 300 mm, thickness 50 μm) similar to the glass sheet of Example 5 was spirally wound around a core having a diameter of 3 inches (diameter 76.2 mm) and stored for 30 days. However, cracks occurred. The glass sheet was wound around the core so that a tensile stress was generated on the surface of the glass sheet having scratches. Further, a belt-like glass sheet (long side 30 m, short side 300 mm, thickness 100 μm) similar to the glass sheet of Example 6 was spirally wound around a 6-inch diameter core (diameter 152.4 mm) and stored for 30 days. However, cracks occurred. The glass sheet was wound around the core so that a tensile stress was generated on the surface of the glass sheet having scratches.
 以上、曲げ試験装置などの実施形態を説明したが、本発明は上記実施形態に限定されない。本発明は、特許請求の範囲に記載された趣旨の範囲で変形や改良が可能である。 The embodiments of the bending test apparatus and the like have been described above, but the present invention is not limited to the above embodiments. The present invention can be modified and improved within the scope of the gist of the claims.
 例えば、上記実施形態では、第1の支持盤としての上側支持盤14と、第2の支持盤としての下側支持盤16とが上下方向に間隔をおいて配設されるが、第1の支持盤と第2の支持盤とは水平方向に間隔をおいて配設されてもよい。 For example, in the above embodiment, the upper support plate 14 as the first support plate and the lower support plate 16 as the second support plate are arranged at intervals in the vertical direction. The support plate and the second support plate may be disposed at an interval in the horizontal direction.
 また、上記実施形態では、図1に示すように、ガラスシート2の一端部を上側支持盤14にテープで固定し、ガラスシート2の他端部を下側支持盤16に載置するが、ガラスシート2のセット方法は多種多様であってよい。 Moreover, in the said embodiment, as shown in FIG. 1, although the one end part of the glass sheet 2 is fixed to the upper side support board 14 with a tape, the other end part of the glass sheet 2 is mounted in the lower side support board 16, There are various methods for setting the glass sheet 2.
 図10は、変形例による曲げ試験装置のシート物のセット時の状態を示す図である。図11において、曲げ試験装置の要部のみ図示する。図11は、図10の下側支持盤を上方から見た図である。例えば図10に示すように、帯板状の上側固定板122と上側支持盤14との間にガラスシート2の一端部を挟み、上側固定板122と上側支持盤14とを上側固定ボルト124で締めて固定してよい。また、帯板状の下側固定板126と下側支持盤16との間にガラスシート2の他端部を挟み、下側固定板126と下側支持盤16とを下側固定ボルト128で締めて固定してよい。 FIG. 10 is a diagram showing a state when a sheet is set in a bending test apparatus according to a modification. In FIG. 11, only the main part of the bending test apparatus is shown. FIG. 11 is a view of the lower support plate of FIG. 10 as viewed from above. For example, as shown in FIG. 10, one end portion of the glass sheet 2 is sandwiched between the belt-like upper fixing plate 122 and the upper support plate 14, and the upper fixing plate 122 and the upper support plate 14 are connected by the upper fixing bolt 124. It may be fastened and fixed. Further, the other end portion of the glass sheet 2 is sandwiched between the belt-like lower fixing plate 126 and the lower support plate 16, and the lower fixing plate 126 and the lower support plate 16 are connected by the lower fixing bolt 128. It may be fastened and fixed.
 下側支持盤16には、図11に示すように下側固定ボルト128の軸部128bを挿通させる長孔16bが形成されてよい。下側固定ボルト128を緩め、下側固定ボルト128を長孔16bの長手方向に移動させることで、下側支持盤16に対する下側固定板126の位置が調節可能である。種々のサイズのガラスシート2に対応することができる。 As shown in FIG. 11, the lower support plate 16 may be formed with a long hole 16b through which the shaft portion 128b of the lower fixing bolt 128 is inserted. The position of the lower fixing plate 126 relative to the lower support plate 16 can be adjusted by loosening the lower fixing bolt 128 and moving the lower fixing bolt 128 in the longitudinal direction of the long hole 16b. It can respond to the glass sheet 2 of various sizes.
 下側固定ボルト128が下側固定板126から上方に突出しないように、下側固定ボルト128の頭部128aは下側支持盤16と接触し、下側固定ボルト128の軸部128bは下側支持盤16に形成されるボルト孔に螺合される。下側固定板126は、ガラスシート2の損傷を防止するため、ガラスシート2と接触する樹脂層と、金属製の本体とで構成されてよい。 The head 128a of the lower fixing bolt 128 is in contact with the lower support plate 16 so that the lower fixing bolt 128 does not protrude upward from the lower fixing plate 126, and the shaft portion 128b of the lower fixing bolt 128 is on the lower side. It is screwed into a bolt hole formed in the support board 16. In order to prevent the glass sheet 2 from being damaged, the lower fixing plate 126 may be composed of a resin layer that is in contact with the glass sheet 2 and a metal main body.
 尚、下側支持盤16と同様に、上側支持盤14にも長孔が形成されてよい。また、下側固定ボルト128と同様に、上側固定ボルト124は上側固定板122から下方に突出しないように構成されてよい。 Note that, similarly to the lower support plate 16, a long hole may be formed in the upper support plate 14. Similarly to the lower fixing bolt 128, the upper fixing bolt 124 may be configured not to protrude downward from the upper fixing plate 122.
 本出願は、2013年4月15日に日本国特許庁に出願された特願2013-085220号に基づく優先権を主張するものであり、特願2013-085220号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-085220 filed with the Japan Patent Office on April 15, 2013. The entire contents of Japanese Patent Application No. 2013-085220 are incorporated herein by reference. To do.
2  脆性シート
10 曲げ試験装置
12 ベース
14 上側支持盤(第1の支持盤)
14a 支持面
16 下側支持盤(第2の支持盤)
16a 支持面
20 移動部
21 昇降フレーム
22 モータ
23 ボールねじ機構
24 スライダブロック
30 調整部
40 検出部
50 支持部
52 連結部
60 載置部
2 Brittle sheet 10 Bending test device 12 Base 14 Upper support plate (first support plate)
14a Support surface 16 Lower support plate (second support plate)
16a Support surface 20 Moving part 21 Lifting frame 22 Motor 23 Ball screw mechanism 24 Slider block 30 Adjustment part 40 Detection part 50 Support part 52 Connection part 60 Mounting part

Claims (18)

  1.  第1の支持盤と第2の支持盤とにそれぞれ脆性材料を含むシート物を支持させ、
     互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を維持した状態で、前記第1の支持盤に対する前記第2の支持盤の位置を移動させ、
     前記第1の支持盤と前記第2の支持盤との間で湾曲させる前記シート物にクラックが形成されるか否かを調べる、曲げ試験方法。
    The first support plate and the second support plate each support a sheet containing a brittle material,
    Moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate that are parallel to each other is maintained;
    A bending test method for investigating whether or not a crack is formed in the sheet to be bent between the first support plate and the second support plate.
  2.  前記シート物にクラックが形成されなかった場合、前記間隔を狭めた後、
     互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を維持した状態で、前記第1の支持盤に対する前記第2の支持盤の位置を移動させ、
     前記第1の支持盤と前記第2の支持盤との間で湾曲させる前記シート物にクラックが形成されるか否かを調べる、請求項1に記載の曲げ試験方法。
    If no cracks are formed in the sheet, after narrowing the interval,
    Moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate that are parallel to each other is maintained;
    The bending test method according to claim 1, wherein it is examined whether or not a crack is formed in the sheet material that is bent between the first support plate and the second support plate.
  3.  前記第1の支持盤に対する前記第2の支持盤の位置の所定方向への1回の移動量が100mm以上であり、
     前記シート物の評価面積が100cm以上である、請求項1または2に記載の曲げ試験方法。
    The amount of movement of the position of the second support plate relative to the first support plate in a predetermined direction is 100 mm or more,
    The bending test method according to claim 1 or 2, wherein the evaluation area of the sheet is 100 cm 2 or more.
  4.  前記シート物にクラックが形成されるときに発生する弾性波の有無を検出し、前記シート物にクラックが形成されるか否かを調べる、請求項1~3のいずれか1項に記載の曲げ試験方法。 The bending according to any one of claims 1 to 3, wherein presence or absence of an elastic wave generated when a crack is formed in the sheet is detected, and whether or not a crack is formed in the sheet is determined. Test method.
  5.  前記第1の支持盤は、前記第1の支持盤の支持面と前記第2の支持盤の支持面とが平行となる第1の位置と、前記第1の支持盤の支持面および前記第2の支持盤の支持面とが斜めになる第2の位置との間で回動自在とされる、請求項1~4のいずれか1項に記載の曲げ試験方法。 The first support plate includes a first position where a support surface of the first support plate and a support surface of the second support plate are parallel, a support surface of the first support plate, and the first support plate. The bending test method according to any one of claims 1 to 4, wherein the bending test method is rotatable between a second position where the support surface of the second support plate is inclined.
  6.  脆性材料を含むシート物を製造するシート物製造工程と、
     該シート物製造工程で製造した前記シート物を湾曲させる試験工程とを有し、
     該試験工程では、
     第1の支持盤と第2の支持盤とにそれぞれ前記シート物を支持させ、
     互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を維持した状態で、前記第1の支持盤に対する前記第2の支持盤の位置を移動させ、
     前記第1の支持盤と前記第2の支持盤との間で湾曲させる前記シート物にクラックが形成されるか否かを調べる、シート物の製造方法。
    A sheet manufacturing process for manufacturing a sheet including a brittle material;
    A test process for bending the sheet manufactured in the sheet manufacturing process,
    In the test process,
    The first support plate and the second support plate each support the sheet material,
    Moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate that are parallel to each other is maintained;
    A method for manufacturing a sheet material, in which it is determined whether or not a crack is formed in the sheet material that is curved between the first support plate and the second support plate.
  7.  前記シート物は、ガラスまたはセラミックスで形成される脆性シートである、請求項6に記載のシート物の製造方法。 The method for producing a sheet according to claim 6, wherein the sheet is a brittle sheet formed of glass or ceramics.
  8.  前記シート物は、ガラスまたはセラミックスで形成される脆性シートと、該脆性シート上に樹脂を含む材料で形成される補強層とを有する複合シートである、請求項6に記載のシート物の製造方法。 The method for producing a sheet according to claim 6, wherein the sheet is a composite sheet having a brittle sheet formed of glass or ceramics and a reinforcing layer formed of a material containing a resin on the brittle sheet. .
  9.  前記シート物は、ガラスまたはセラミックスで形成される脆性シートと、該脆性シート上に形成される素子とを含む素子付き脆性シートである、請求項6に記載のシート物の製造方法。 The method for producing a sheet according to claim 6, wherein the sheet is a brittle sheet with an element including a brittle sheet formed of glass or ceramics and an element formed on the brittle sheet.
  10.  前記シート物は、ガラスまたはセラミックスで形成される脆性シートを含む電子デバイスである、請求項6に記載のシート物の製造方法。 The method for producing a sheet according to claim 6, wherein the sheet is an electronic device including a brittle sheet formed of glass or ceramics.
  11.  脆性材料を含むシート物を支持する第1の支持盤と、
     前記シート物を支持する第2の支持盤と、
     互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を維持した状態で、前記第1の支持盤に対する前記第2の支持盤の位置を移動させる移動部とを備え、
     互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間で前記シート物を湾曲させる、曲げ試験装置。
    A first support plate for supporting a sheet containing a brittle material;
    A second support plate for supporting the sheet material;
    Movement for moving the position of the second support plate relative to the first support plate in a state in which the distance between the support surface of the first support plate and the support surface of the second support plate is maintained parallel to each other. With
    A bending test apparatus for bending the sheet material between a support surface of the first support plate and a support surface of the second support plate which are parallel to each other.
  12.  互いに平行な前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔を調整する調整部を備える、請求項11に記載の曲げ試験装置。 The bending test apparatus according to claim 11, further comprising an adjusting unit that adjusts a distance between a support surface of the first support plate and a support surface of the second support plate that are parallel to each other.
  13.  前記シート物にクラックが生じるときに発生する弾性波の有無を検出する検出部を備える、請求項11または12に記載の曲げ試験装置。 The bending test apparatus according to claim 11 or 12, further comprising a detection unit configured to detect presence or absence of an elastic wave generated when a crack occurs in the sheet.
  14.  連結部を介して前記第1の支持盤を、前記第1の支持盤の支持面と前記第2の支持盤の支持面とが平行となる第1の位置と、前記第1の支持盤の支持面および前記第2の支持盤の支持面とが斜めになる第2の位置との間で回動自在に支持する支持部を備える、請求項11~13のいずれか1項に記載の曲げ試験装置。 The first support plate is connected to the first support plate via a connecting portion at a first position where the support surface of the first support plate and the support surface of the second support plate are parallel to each other. The bending according to any one of claims 11 to 13, further comprising a support portion that rotatably supports a support surface and a second position where the support surface of the second support plate is inclined. Test equipment.
  15.  前記第2の支持盤よりも上方に配設される前記第1の支持盤を載せる載置部を備える、請求項11~14のいずれか1項に記載の曲げ試験装置。 The bending test apparatus according to any one of claims 11 to 14, further comprising a mounting portion on which the first support plate is disposed above the second support plate.
  16.  ガラスまたはセラミックスで形成され、下記式の条件で請求項1に記載の曲げ試験方法を行う場合にクラックが形成されない、脆性シート。
    D=(A×E×t/σ)+t
    D;前記第1の支持盤の支持面と前記第2の支持盤の支持面との間隔(単位[mm])
    A=1.198
    E;前記脆性シートのヤング率(単位[MPa])
    t;前記脆性シートの厚さ(単位[mm])
    σ=50(単位[MPa])
    A brittle sheet which is formed of glass or ceramics and does not form cracks when the bending test method according to claim 1 is performed under the conditions of the following formula.
    D = (A × E × t / σ) + t
    D: Distance between the support surface of the first support plate and the support surface of the second support plate (unit [mm])
    A = 1.198
    E; Young's modulus of the brittle sheet (unit: [MPa])
    t; thickness of the brittle sheet (unit: mm)
    σ = 50 (unit [MPa])
  17.  請求項16に記載の脆性シートを含む、素子付き脆性シート。 A brittle sheet with an element, comprising the brittle sheet according to claim 16.
  18.  請求項16に記載の脆性シートを含む、電子デバイス。 An electronic device comprising the brittle sheet according to claim 16.
PCT/JP2014/057160 2013-04-15 2014-03-17 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device WO2014171247A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157024823A KR20150140647A (en) 2013-04-15 2014-03-17 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
JP2015512363A JP6387958B2 (en) 2013-04-15 2014-03-17 Bending test method, sheet manufacturing method, and bending test apparatus
CN201480015847.5A CN105143848B (en) 2013-04-15 2014-03-17 The manufacture method of sheet shaped piece, fragility piece, fragility piece and electronic device with element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085220 2013-04-15
JP2013-085220 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014171247A1 true WO2014171247A1 (en) 2014-10-23

Family

ID=51731204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057160 WO2014171247A1 (en) 2013-04-15 2014-03-17 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device

Country Status (5)

Country Link
JP (1) JP6387958B2 (en)
KR (1) KR20150140647A (en)
CN (1) CN105143848B (en)
TW (1) TWI640772B (en)
WO (1) WO2014171247A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062437A1 (en) * 2015-10-06 2017-04-13 Corning Incorporated Foldable apparatus, foldable apparatus kits and methods of customizing a foldable apparatus
EP3327422A1 (en) * 2016-11-23 2018-05-30 Samsung Electronics Co., Ltd Evaluating device of flexural property of material, and evaluation method using the same
JP2018200205A (en) * 2017-05-26 2018-12-20 株式会社ディスコ Method and device for measuring curvature of chip
CN109612847A (en) * 2019-01-25 2019-04-12 安阳师范学院 Fiber reinforcement regeneration brick aggregate concrete bending property experimental rig and method
JP2020041885A (en) * 2018-09-10 2020-03-19 株式会社ディスコ Chip destruction unit and method for comparing chip strength
JP2020051965A (en) * 2018-09-28 2020-04-02 株式会社ディスコ Breaking test device and method for recovering fragments
WO2020085774A1 (en) * 2018-10-23 2020-04-30 주식회사 제낙스 Method for evaluating performance of flexible battery
WO2021177534A1 (en) * 2020-03-04 2021-09-10 (주)플렉시고 Rolling apparatus and evaluation system for evaluating durability of flexible material
KR20210116037A (en) * 2020-03-17 2021-09-27 (주)플렉시고 Sliding device for durability evaluation of flexible material and evaluation system
KR102400742B1 (en) * 2021-03-23 2022-05-23 주식회사 도우인시스 UTG folding durability evaluation device equipped with particle removal device in case of breakage

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218176A1 (en) * 2015-10-02 2017-04-06 Schott Ag Long-term flexible glass material, as well as method for producing a long-term flexible glass material
CN106442164B (en) * 2016-08-31 2019-03-12 昆山工研院新型平板显示技术中心有限公司 A kind of flexible display screen body bend testing apparatus
CN106501076B (en) * 2016-10-28 2019-02-15 昆山国显光电有限公司 A kind of the detection fixture and method of flexible screen bending ability
KR102556478B1 (en) * 2016-11-23 2023-07-18 삼성디스플레이 주식회사 Glass folding reliability test method and test device performing the same
CN108988784B (en) * 2018-03-23 2019-11-08 常州工学院 Flexible solar battery curvature influences research device and method to electric parameter
CN108709816B (en) * 2018-03-29 2021-04-06 北京工业大学 Ultra-thin glass flexibility test device and method
CN108627396B (en) * 2018-05-04 2020-02-14 武汉理工大学 Method for testing bending strength of ultrathin glass
CN108801817A (en) * 2018-05-07 2018-11-13 中国航发北京航空材料研究院 A kind of crooked test method and apparatus of flexible battery
KR101996348B1 (en) * 2019-01-10 2019-10-01 서울과학기술대학교 산학협력단 Jig for U-shape folding fatigue test of flexible devices
CN110132757B (en) * 2019-06-24 2024-06-18 凯茂科技(深圳)有限公司 Ultrathin glass bending detection device and application method thereof
KR102415289B1 (en) * 2020-05-25 2022-06-30 (주)피엔피 Bending testing apparatus of ultra thin glass
KR102407618B1 (en) * 2020-05-25 2022-06-10 (주)피엔피 Bending testing method of ultra thin glass
CN112845170B (en) * 2021-01-07 2022-09-30 河北光兴半导体技术有限公司 Method for removing cracked glass substrate
WO2024182202A1 (en) * 2023-02-27 2024-09-06 Corning Incorporated Two-point bend testing apparatuses and methods of using the same
CN116973242B (en) * 2023-09-22 2023-11-28 江苏华恬节能科技有限公司 Polyurethane product high-temperature illumination deformation detection equipment and detection method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290938A (en) * 1987-05-22 1988-11-28 Fujikura Ltd Bending test method for flexible printed wiring board
JPH03200047A (en) * 1989-12-28 1991-09-02 Fujikura Ltd Bending test device for flexible printed wiring board
JPH08267426A (en) * 1995-03-28 1996-10-15 Chichibu Onoda Cement Corp Ceramic green sheet and manufacture thereof
JP2005024355A (en) * 2003-07-01 2005-01-27 Daio Paper Corp Breakage testing machine for sheet-like article
JP2010237197A (en) * 2009-03-10 2010-10-21 Murata Mfg Co Ltd Breaking strength measuring device and breaking strength measuring method
JP2012174772A (en) * 2011-02-18 2012-09-10 Tdk Corp Manufacturing method of multilayer printed board, multilayer printed board and coating device
JP2013035132A (en) * 2011-08-03 2013-02-21 Dainippon Printing Co Ltd Glass film laminate, and glass film laminate with pixel for color filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI358537B (en) * 2006-10-04 2012-02-21 Corning Inc Method and apparatus for proof testing a sheet of
US7461564B2 (en) 2006-10-04 2008-12-09 Corning Incorporated Method and apparatus for proof testing a sheet of brittle material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290938A (en) * 1987-05-22 1988-11-28 Fujikura Ltd Bending test method for flexible printed wiring board
JPH03200047A (en) * 1989-12-28 1991-09-02 Fujikura Ltd Bending test device for flexible printed wiring board
JPH08267426A (en) * 1995-03-28 1996-10-15 Chichibu Onoda Cement Corp Ceramic green sheet and manufacture thereof
JP2005024355A (en) * 2003-07-01 2005-01-27 Daio Paper Corp Breakage testing machine for sheet-like article
JP2010237197A (en) * 2009-03-10 2010-10-21 Murata Mfg Co Ltd Breaking strength measuring device and breaking strength measuring method
JP2012174772A (en) * 2011-02-18 2012-09-10 Tdk Corp Manufacturing method of multilayer printed board, multilayer printed board and coating device
JP2013035132A (en) * 2011-08-03 2013-02-21 Dainippon Printing Co Ltd Glass film laminate, and glass film laminate with pixel for color filter

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062437A1 (en) * 2015-10-06 2017-04-13 Corning Incorporated Foldable apparatus, foldable apparatus kits and methods of customizing a foldable apparatus
EP3327422A1 (en) * 2016-11-23 2018-05-30 Samsung Electronics Co., Ltd Evaluating device of flexural property of material, and evaluation method using the same
US10444131B2 (en) 2016-11-23 2019-10-15 Samsung Electronics Co., Ltd. Evaluating device of flexural property of material, and evaluation method using the same
JP2018200205A (en) * 2017-05-26 2018-12-20 株式会社ディスコ Method and device for measuring curvature of chip
JP7134566B2 (en) 2018-09-10 2022-09-12 株式会社ディスコ Chip breaking unit, chip strength comparison method
JP2020041885A (en) * 2018-09-10 2020-03-19 株式会社ディスコ Chip destruction unit and method for comparing chip strength
JP2020051965A (en) * 2018-09-28 2020-04-02 株式会社ディスコ Breaking test device and method for recovering fragments
JP7134567B2 (en) 2018-09-28 2022-09-12 株式会社ディスコ Destructive testing device and fragment collection method
WO2020085774A1 (en) * 2018-10-23 2020-04-30 주식회사 제낙스 Method for evaluating performance of flexible battery
CN109612847A (en) * 2019-01-25 2019-04-12 安阳师范学院 Fiber reinforcement regeneration brick aggregate concrete bending property experimental rig and method
CN109612847B (en) * 2019-01-25 2024-01-26 安阳师范学院 Device and method for testing bending performance of fiber reinforced recycled brick aggregate concrete
WO2021177534A1 (en) * 2020-03-04 2021-09-10 (주)플렉시고 Rolling apparatus and evaluation system for evaluating durability of flexible material
KR102348743B1 (en) 2020-03-17 2022-01-07 (주)플렉시고 Sliding device for durability evaluation of flexible material and evaluation system
KR20210116037A (en) * 2020-03-17 2021-09-27 (주)플렉시고 Sliding device for durability evaluation of flexible material and evaluation system
KR102400742B1 (en) * 2021-03-23 2022-05-23 주식회사 도우인시스 UTG folding durability evaluation device equipped with particle removal device in case of breakage

Also Published As

Publication number Publication date
TWI640772B (en) 2018-11-11
TW201502505A (en) 2015-01-16
KR20150140647A (en) 2015-12-16
CN105143848B (en) 2018-03-16
JPWO2014171247A1 (en) 2017-02-23
JP6387958B2 (en) 2018-09-12
CN105143848A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6387958B2 (en) Bending test method, sheet manufacturing method, and bending test apparatus
JP6515925B2 (en) Composite, laminate, electronic device, and method for manufacturing them
EP2069752B1 (en) Method and apparatus for proof testing a sheet of brittle material
US11833800B2 (en) Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
Cao et al. Strengthening in graphene oxide nanosheets: bridging the gap between interplanar and intraplanar fracture
JP6299405B2 (en) Method for producing composite and method for producing laminate
Lotfian et al. Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminates
EP3522689A1 (en) Heat dissipation sheet having high load carrying capacity and high thermal conductivity
WO2015194324A1 (en) Composite
Lee et al. Direct visualization of cross-sectional strain distribution in flexible devices
Jang et al. Stretchability of PMMA-supported CVD graphene and of its electrical contacts
Al-Bahrani et al. Damage sensing and mechanical properties of laminate composite based MWCNTs under anticlastic test
Amirmaleki et al. Fracture and fatigue of Al2O3-graphene nanolayers
JP2014205327A (en) Composite sheet and electronic device
TWI228692B (en) Dividing sheet for hot press bonding and manufacturing method thereof
Hufenbach et al. Fibre-reinforced composite structures based on thermoplastic matrices with embedded piezoceramic modules
CN112839797A (en) Screen protector comprising glass-based substrate and adhesive
TW201529281A (en) Article bearing rugged mold pattern transferred thereto, process for producing article, and process for producing optical panel
Mohammed Mechanical and electro-mechanical reliability of transparent oxide thin films for flexible electronics applications
JP6354587B2 (en) Laminate consisting of film and fiber sheet
KR20240027538A (en) Secondary battery manufacturing device
JP2021098255A (en) Cutting method, cutting device, and laminate
TWM449693U (en) Thin silicone rubber sheet for easy vacuum breaker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015847.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157024823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785065

Country of ref document: EP

Kind code of ref document: A1