JPS63290938A - Bending test method for flexible printed wiring board - Google Patents

Bending test method for flexible printed wiring board

Info

Publication number
JPS63290938A
JPS63290938A JP62125182A JP12518287A JPS63290938A JP S63290938 A JPS63290938 A JP S63290938A JP 62125182 A JP62125182 A JP 62125182A JP 12518287 A JP12518287 A JP 12518287A JP S63290938 A JPS63290938 A JP S63290938A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
flexible printed
bending
bending test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62125182A
Other languages
Japanese (ja)
Other versions
JPH076900B2 (en
Inventor
Hideomi Hayashi
秀臣 林
Seiichi Nishikawa
西川 清一
Katsunori Nitta
新田 克典
Masahiro Kaizu
雅洋 海津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62125182A priority Critical patent/JPH076900B2/en
Publication of JPS63290938A publication Critical patent/JPS63290938A/en
Publication of JPH076900B2 publication Critical patent/JPH076900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To measure characteristics to repetitive bending by bending a flexible printed wiring board repeatedly and measuring the number of time of bending breaking. CONSTITUTION:One end of the flexible printed wiring board 3 is fixed by a fixing holder 8 and a movable holder 9 is fitted to the other end. The mobile holder 9 is moved reciprocally as shown by an arrow Y3 to bend the printer wiring board 3 repeatedly. In this case, the resistance value of a circuit pattern formed at the bent part of the wiring board 3 is measured and it is judged that the board is broken when the resistance value varies greatly to a high resistance side. The number of times of reciprocation of the mobile holder 9 is counted from the reciprocal motion of the mobile holder 9 until the breaking and this counted value is regarded as the bending characteristics of this printed wiring board.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、磁気記録装置等における可動部分の電気的
接続に用いられろフレキシブルプリント配線板に係わり
、特に、その繰り返し屈曲に対する寿命を測定するフレ
キシブルプリント配線板の屈曲試験方法に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to flexible printed wiring boards used for electrical connection of movable parts in magnetic recording devices, etc., and in particular, to measuring the lifespan of the flexible printed wiring boards against repeated bending. This invention relates to a bending test method for flexible printed wiring boards.

「従来の技術」 従来、フレキシブルプリント配線板の屈曲試験方法とし
て、rpc(米国プリント とM+4’(JIS−P−81 15)法が知られテt
)IPC法は、第7図に示すように、平行に配置された
固定板1と移動板2との間にフレキノプルプリント配線
板3を固定し、移動板2を矢印Y1方向へ往復平行移動
させて屈曲試験を行う。この屈曲試験は自由曲げ形態で
あり、フレギノブルプリント配線板30曲率半径rは固
定板1と移動板2との間の距離によって設定される。
"Prior Art" Conventionally, the RPC (American Print and M+4' (JIS-P-81 15) method) has been known as a bending test method for flexible printed wiring boards.
) In the IPC method, as shown in Fig. 7, a flexible printed wiring board 3 is fixed between a fixed plate 1 and a movable plate 2 arranged in parallel, and the movable plate 2 is moved back and forth in parallel in the direction of arrow Y1. Move and perform a bending test. This bending test is a free bending test, and the radius of curvature r of the flexible printed wiring board 30 is set by the distance between the fixed plate 1 and the movable plate 2.

MIT法は、第8図に示すように、先端部にアールが形
成された2個の固定ダイス5.6によってフレキシブル
プリント配線板3を挾持し、一定の張力Fをフレギノブ
ルプリンI・配線板3にか(Jた状態で、固定ダイス5
.6を矢印Y2のよう7こ揺動させて屈曲試験を行う。
In the MIT method, as shown in Fig. 8, a flexible printed wiring board 3 is held between two fixed dies 5 and 6 each having a rounded tip, and a constant tension F is applied to the flexible printed circuit board I and the wiring. Fixed die 5 on board 3 (in J state)
.. 6 is swung seven times as shown by arrow Y2 to conduct a bending test.

この屈曲試験は、フレキノプルプリント配線板3が張力
Fによって固定ダイス5または6に密着する強制曲げ形
態である。
This bending test is a forced bending mode in which the flexible printed wiring board 3 is brought into close contact with the fixed die 5 or 6 by the tension F.

いずれの方法も、試料のフレキシブルプリント配線板3
の曲げの加イっる部分の回路をループさ且、微電流を流
した状態で試験を実施し、屈曲により通電回路にクラッ
クか生じ、断線するまでの屈曲回数をカウントするもの
である。
In either method, the sample flexible printed wiring board 3
The test is carried out by looping the circuit in the part where the bending occurs and applying a small current, and counting the number of bends until the energized circuit cracks and breaks due to bending.

[発明が解決しようとする問題点」 ところで、」−述したMIT法は、荷重のかかった状態
でのフレキノプルプリント配線板の特性評価を与えるが
、荷重をか1」ない現実の使用状態との相関性を係数値
化することができない。一方、IPC法は、自由曲げ形
態で用いられるプリンタヘット等に代表される中・低速
の屈曲動作用のフレキンプルプリント配線板の多用さイ
1ているが、高速動作に対する屈曲試験法としては次の
問題がある。
[Problems to be Solved by the Invention] By the way, the MIT method described above evaluates the characteristics of a flexible printed wiring board under a load, but it cannot be used in actual usage conditions without any load. It is not possible to convert the correlation with the coefficient into a coefficient value. On the other hand, the IPC method makes extensive use of flexible printed wiring boards for medium- to low-speed bending motions, such as printer heads used in free bending mode1, but as a bending test method for high-speed motions, the following There is a problem.

■屈曲部分全体に屈曲−平坦の繰り返しを行おうとした
場合、第9図に示すように、平行移動幅を設定した曲率
rに対して2πr以」二とすることが必要となる。オな
イつち、曲率の設定から平行移動幅か制約を受け、また
、平行移動幅もかなり大きくなる。
(2) When attempting to repeat bending and flattening over the entire bent portion, as shown in FIG. 9, it is necessary to set the translation width to 2πr or more with respect to the set curvature r. On the other hand, the translation width is constrained by the curvature setting, and the translation width also becomes quite large.

■高速において平行移動幅を大きくとるごとは、従来の
IPC試験機の動作原理では機構上の限界かある。
■Increasing the width of parallel movement at high speeds may be due to mechanical limitations of the operating principles of conventional IPC testing machines.

この発明は上述した事情に鑑みてなされたもので、フレ
キノプルプリント配線板を高速で大きく変形させること
かでき、しかも、順方向/逆方向の曲げを同時に実施す
ることができるフレキシブルプリント配線板の屈曲試験
方法を提供することを目的としている。
This invention was made in view of the above-mentioned circumstances, and is a flexible printed wiring board that can greatly deform a flexible printed wiring board at high speed, and can also be bent in forward and reverse directions at the same time. The purpose of this study is to provide a bending test method.

1問題点を解決するための手段」 この発明は、フレキソプルプリント配線板の長手方向に
繰り返し圧縮荷重を加えることを特徴としている。
1. Means for Solving Problem 1 The present invention is characterized in that a compressive load is applied repeatedly in the longitudinal direction of a flexo-pulled printed wiring board.

「実施例」 以下、図面を参照してこの発明の一実施例について説明
する。第1図は同実施例による方法を説明するための概
略構成図であり、この図において、3はフレキシブルプ
リント配線板、8はこのフレキシブルプリント配線板3
の一部を装置の固定部に固定する固定ホルダ、9はフレ
キノプルプリント配線板3の他の一部が下面に取り付(
プられ、配線板3が取り付けられた状態で矢印Y3方向
に往復運動をする移動ホルダである。
"Embodiment" Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram for explaining the method according to the same embodiment. In this figure, 3 is a flexible printed wiring board, and 8 is this flexible printed wiring board 3.
A fixed holder 9 fixes a part of the flexible printed wiring board 3 to a fixed part of the device;
This is a movable holder that reciprocates in the direction of arrow Y3 with the wiring board 3 attached.

このような構成において、移動ホルダ9を矢印Y3方向
へ往復運動させろと、固定ホルダ8.移動ボルダ9間の
フレキシブルプリント配線板3が屈曲運動を行う。この
際に、フレキノプルプリント配線板3の屈曲部分に形成
されている回路パターンの抵抗値を測定し、その抵抗値
が高抵抗側へ大きく変化した時、断線と判断する。移動
ホルダ9が往復運動を開始した時点からこの断線時まで
の往復運動の回数がフレキノプルプリント配線板3の屈
曲特性を示している。第2図は、回路〕(ターンの抵抗
値の変化の一例を示す図であり、この図に示す点Pにお
いて断線と判断される。
In such a configuration, fixed holders 8 . The flexible printed wiring board 3 between the movable boulders 9 performs a bending motion. At this time, the resistance value of the circuit pattern formed on the bent portion of the flexible printed wiring board 3 is measured, and when the resistance value changes significantly to the high resistance side, it is determined that the wire is disconnected. The number of reciprocating movements from the time when the movable holder 9 starts its reciprocating movement until the time of this disconnection indicates the bending characteristics of the flexible printed wiring board 3. FIG. 2 is a diagram showing an example of a change in the resistance value of a circuit (turn), and a disconnection is determined at point P shown in this diagram.

しかして、」二記の試験方法によれば、従来のIPC法
に比較し、フレキシブルプリント配線板3を小さなスト
ロークで大きく変形させることができる。また、配線板
3に順方向/逆方向の曲げを同時に加えることができる
。すなわち、第3図において、部分Aは−1−面に引張
力か、下面に圧縮力が各々加わるか、部分B、Cは」−
面に圧縮力が、下面に引張力が各々加わる。この結果、
1回の試験でフレキンプルプリント配線板3の−1−而
(下面)に引張力および圧縮力の双方を加えることか可
能となる。
According to the test method described in section 2, the flexible printed wiring board 3 can be significantly deformed with a small stroke compared to the conventional IPC method. Further, the wiring board 3 can be bent in the forward direction and in the reverse direction at the same time. That is, in Fig. 3, part A has tensile force applied to the -1- plane, compressive force is applied to the lower surface, and parts B and C are
A compressive force is applied to the surface, and a tensile force is applied to the bottom surface. As a result,
It is possible to apply both a tensile force and a compressive force to the -1- side (lower surface) of the flexible printed wiring board 3 in one test.

次に、上述した試験おいて、フレキシブルプリント配線
板3の曲率の設定は屈曲形態に近似する関数より求める
ことができる。すなわち、第4図において、フレキシブ
ルプリント配線板3」−の各点の曲率ρは、 なる式により与えられ、この時屈曲形態を、y −(h
/ 2 )cos(2rr X/ρ)−−(2)に近似
させた場合、(1)式は次のようになる。
Next, in the above-described test, the setting of the curvature of the flexible printed wiring board 3 can be determined from a function that approximates the bending form. That is, in FIG. 4, the curvature ρ at each point of the flexible printed wiring board 3'' is given by the following equation, and the bending form is defined as y − (h
/ 2 ) cos (2rr X/ρ) -- When approximated to (2), equation (1) becomes as follows.

ここで、フレキノプルプリント配線板に最大の歪を与え
る最小曲率Iρ(は、X=0の時に実現される。すなわ
ち、(3)式より第4図のQ点の最小曲率1ρl (X
・0)は、 1ρl (X・0)−ρ2/2πh・・・(4)により
与えられる。
Here, the minimum curvature Iρ (that gives the maximum distortion to the flexinople printed wiring board) is realized when X = 0. In other words, from equation (3), the minimum curvature 1ρl (X
・0) is given by 1ρl (X・0)−ρ2/2πh (4).

また、実際に屈曲に係わるフレキノプルプリント配線板
の長さL (−ρ十△ρ)は、1.74=S“(I+(
dY/dX)’)””dX・   (5)に近似し、l
+が和分にgよりも小さければ、L−4J”(l+(1
/2)(πh/Q)’sin’(2πx#り)dX一ρ
(ト(πh/2ρ)2) ・・(6)と見なすことがで
きる。したがって、フレキシブルプリント配線板に(4
)式による変形を与えるために必要な長さ方向の移動量
△ρは次式により求まる。
In addition, the length L (-ρ+△ρ) of the flexible printed wiring board that is actually related to bending is 1.74=S"(I+(
dY/dX)')""dX・ Approximate to (5), l
+ is smaller than g in sum, then L-4J”(l+(1
/2) (πh/Q)'sin'(2πx#ri)dX-ρ
((πh/2ρ)2) (6). Therefore, on the flexible printed wiring board (4
) The lengthwise movement amount Δρ required to give the deformation according to the equation is determined by the following equation.

△Q= L−(!= (π2/4)(h2/(り−−(
7)上記の展開に基づく曲率ρとQ点の高さhとの関係
を第5図に、高さhとストローク△Qとの関係を第6図
に各々示す。
△Q= L-(!= (π2/4)(h2/(ri--(
7) The relationship between the curvature ρ and the height h of point Q based on the above development is shown in FIG. 5, and the relationship between the height h and the stroke ΔQ is shown in FIG. 6.

以」二が、この発明の一実施例による屈曲試験方法であ
る。なお、上記の方法を適用した屈曲試験装置は、振動
発生機、振動出力アンプ、振動制御装置、試料取付ユニ
ット、固定ボルダ、移動ボルダ、抵抗測定器および測定
データ処理部を組ろ合イっせて構成する。
The following is a bending test method according to an embodiment of the present invention. The bending test device to which the above method is applied is a combination of a vibration generator, a vibration output amplifier, a vibration control device, a sample mounting unit, a fixed boulder, a movable boulder, a resistance measuring device, and a measurement data processing section. Configure.

「発明の効果」 以J二説明したように、この発明によれば、フレキノプ
ルプリント配線板の長手方向に繰り返し圧縮荷重を加え
るようにしたので、次の効果を得ることができる。
"Effects of the Invention" As explained below, according to the present invention, compressive loads are applied repeatedly in the longitudinal direction of the flexible printed wiring board, so that the following effects can be obtained.

■フレキンプルプリント配線板の屈曲寿命を、従来の方
法より、小さなストロークで試験することができ、この
結果、標準的な振動発生装置を用いて試験機を構成でき
、広い屈曲径の範囲に亙る試験を短時間で実施すること
が可能となる。
■The bending life of flexible printed wiring boards can be tested with a smaller stroke than conventional methods. As a result, the test machine can be configured using a standard vibration generator and can be used over a wide range of bending diameters. It becomes possible to conduct the test in a short time.

■順方向/逆方向の双方の曲げを1回の試験で実施する
ことができろ。
■Be able to perform both forward and reverse bending in one test.

■従来、曲率に比例して大きな移動が必要であった試験
を、歪量に比例した移動量で行うことが可能となり、高
速試験を小型の機器で行うことが゛可能となる。
■Tests that conventionally required large movements in proportion to the curvature can now be performed with movements in proportion to the amount of strain, making it possible to perform high-speed tests with small equipment.

■フレキシブルプリント配線板の特定箇所に集中的な屈
曲を加えることが可能となる。
■It is possible to apply concentrated bending to specific points on a flexible printed wiring board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による屈曲試験方−7= 法を説明するための概略構成図、第2図は試験時間と回
路パターンの抵抗値との関係を示す図、第3図はフレキ
シブルプリント配線板3に加わる引張力および圧縮力を
説明するための図、第4図は曲率−スドロークー高さの
関係を説明するための図、第5図は曲率−高さの相関関
係を示すグラフ、第6図はストローク−高さの相関関係
を示すグラフ、第7図は従来のIPC法の説明図、第8
図は従来のMrT法の説明図、第9図はIPC法の問題
点を説明するための図である。 3 ・フレキノプルプリント配線板、8・・・・固定ボ
ルダ、9・・ ・移動ホルダ。
Fig. 1 is a schematic configuration diagram for explaining the bending test method-7 according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between test time and resistance value of a circuit pattern, and Fig. 3 is a diagram showing the relationship between test time and resistance value of a circuit pattern. FIG. 4 is a diagram for explaining the tensile force and compressive force applied to the flexible printed wiring board 3, FIG. 4 is a diagram for explaining the relationship between curvature and height, and FIG. 5 is a diagram showing the correlation between curvature and height. Graph, Figure 6 is a graph showing the stroke-height correlation, Figure 7 is an explanatory diagram of the conventional IPC method, Figure 8
The figure is a diagram for explaining the conventional MrT method, and FIG. 9 is a diagram for explaining the problems of the IPC method. 3 ・Flexible pull printed wiring board, 8...Fixed boulder, 9... ・Movable holder.

Claims (1)

【特許請求の範囲】[Claims] フレキシブルプリント配線板の長手方向に繰り返し圧縮
荷重を加えることを特徴とするフレキシブルプリント配
線板の屈曲試験方法
Flexible printed wiring board bending test method characterized by repeatedly applying a compressive load in the longitudinal direction of the flexible printed wiring board
JP62125182A 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board Expired - Lifetime JPH076900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125182A JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125182A JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JPS63290938A true JPS63290938A (en) 1988-11-28
JPH076900B2 JPH076900B2 (en) 1995-01-30

Family

ID=14903929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125182A Expired - Lifetime JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JPH076900B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499943A2 (en) * 1991-02-16 1992-08-26 Daimler-Benz Aerospace Aktiengesellschaft Apparatus for carrying out 4-point alternating bending stress tests
WO2014171247A1 (en) * 2013-04-15 2014-10-23 旭硝子株式会社 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
DE102016223900A1 (en) * 2016-12-01 2018-06-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the bending behavior of a sample
CN117148121A (en) * 2023-10-31 2023-12-01 深圳市华旭达精密电路科技有限公司 Flexible circuit board electrical measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142437A (en) * 1983-02-02 1984-08-15 Furukawa Electric Co Ltd:The Bending test device of long object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142437A (en) * 1983-02-02 1984-08-15 Furukawa Electric Co Ltd:The Bending test device of long object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499943A2 (en) * 1991-02-16 1992-08-26 Daimler-Benz Aerospace Aktiengesellschaft Apparatus for carrying out 4-point alternating bending stress tests
WO2014171247A1 (en) * 2013-04-15 2014-10-23 旭硝子株式会社 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
CN105143848A (en) * 2013-04-15 2015-12-09 旭硝子株式会社 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
JPWO2014171247A1 (en) * 2013-04-15 2017-02-23 旭硝子株式会社 Bending test method, sheet manufacturing method, bending test apparatus, brittle sheet, brittle sheet with element, and electronic device
DE102016223900A1 (en) * 2016-12-01 2018-06-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the bending behavior of a sample
DE102016223900B4 (en) * 2016-12-01 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the bending behavior of a sample
CN117148121A (en) * 2023-10-31 2023-12-01 深圳市华旭达精密电路科技有限公司 Flexible circuit board electrical measurement device
CN117148121B (en) * 2023-10-31 2024-01-26 深圳市华旭达精密电路科技有限公司 Flexible circuit board electrical measurement device

Also Published As

Publication number Publication date
JPH076900B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
USRE43739E1 (en) Test probe for finger tester and corresponding finger tester
JP4507898B2 (en) Torsion test equipment
US9970960B2 (en) Sliding rail type probe
JPS63290938A (en) Bending test method for flexible printed wiring board
JP2799973B2 (en) Vertically actuated probe card
JP4024023B2 (en) Electronic component measuring apparatus and method
JPH04330757A (en) Wire loop bending inspection method and device
EP3935350A1 (en) Coriolis sensor and coriolis measuring device having a coriolis sensor
US20240027495A1 (en) Contact probe for probe heads of electronic devices and corresponding probe head
US11454650B2 (en) Probe, inspection jig, inspection device, and method for manufacturing probe
JP3944196B2 (en) Probe device and substrate inspection device
JP2002048815A (en) Probe head
JP2002228567A (en) Service life tester
JPH0729838U (en) Vertical motion probe card with buckling stress reduction mechanism
SU1310929A1 (en) Test prod for voltammetric instrument
KR20070117452A (en) Substrate inspection tool and substrate inspection device
CN112698056A (en) Magnetic-force electric coupling loading system for atomic force microscope
US20190079114A1 (en) Test socket of flexible semiconductor chip package and bending test method using the same
JPH02190742A (en) High speed bending and vibrating method for test piece and device therefor
DE153919C (en) Device for the increased mechanical transmission of the change in length of a body under the influence of temperature changes.
JPH0972798A (en) Friction force measuring device
JP2023024032A (en) Probe to be used in inspection device for inspecting circuit of printed board, probe unit, and inspection device having the probe unit
JP2000097969A (en) Contact probe for frame ground
CN117990203A (en) Automatic testing device for strain sensitivity of base
DE102019123148A1 (en) Hand- or robot-operated bond point testing device and bond point testing method carried out with this