JPH076900B2 - Bending test method of flexible printed wiring board - Google Patents

Bending test method of flexible printed wiring board

Info

Publication number
JPH076900B2
JPH076900B2 JP62125182A JP12518287A JPH076900B2 JP H076900 B2 JPH076900 B2 JP H076900B2 JP 62125182 A JP62125182 A JP 62125182A JP 12518287 A JP12518287 A JP 12518287A JP H076900 B2 JPH076900 B2 JP H076900B2
Authority
JP
Japan
Prior art keywords
flexible printed
wiring board
printed wiring
bending
bending test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125182A
Other languages
Japanese (ja)
Other versions
JPS63290938A (en
Inventor
秀臣 林
清一 西川
克典 新田
雅洋 海津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62125182A priority Critical patent/JPH076900B2/en
Publication of JPS63290938A publication Critical patent/JPS63290938A/en
Publication of JPH076900B2 publication Critical patent/JPH076900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、磁気記録装置等における可動部分の電気的
接続に用いられるフレキシブルプリント配線板に係わ
り、特に、その繰り返し屈曲に対する寿命を測定するフ
レキシブルプリント配線板の屈曲試験方法に関する。
TECHNICAL FIELD The present invention relates to a flexible printed wiring board used for electrical connection of movable parts in a magnetic recording device or the like, and more particularly to a flexible printed wiring board for measuring the life against repeated bending. The present invention relates to a bending test method for a printed wiring board.

「従来の技術」 従来、フレキシブルプリント配線板の屈曲試験方法とし
て、IPC(米国プリント回路学会)法とMIT(JIS−P−8
115)法が知られている。
"Conventional technology" Conventionally, as a bending test method for a flexible printed wiring board, the IPC (American Printed Circuit Society) method and the MIT (JIS-P-8) method are used.
115) The law is known.

IPC法は、第7図に示すように、平行に配置された固定
板1と移動板2との間にフレキシブルプリント配線板3
を固定し、移動板2を矢印Y1方向へ往復平行移動させて
屈曲試験を行う。この屈曲試験は自由曲げ形態であり、
フレキシブルプリント配線板3の曲率半径rは固定板1
と移動板2との間の距離によって設定される。
In the IPC method, as shown in FIG. 7, a flexible printed wiring board 3 is provided between a fixed plate 1 and a movable plate 2 arranged in parallel.
Is fixed, and the movable plate 2 is reciprocally moved in parallel in the direction of arrow Y1 to perform a bending test. This bending test is a free bending form,
The radius of curvature r of the flexible printed wiring board 3 is the fixed plate 1
And the moving plate 2 are set.

MIT法は、第8図に示すように、先端部にアールが形成
された2個の固定ダイス5,6によってフレキシブルプリ
ント配線板3を挾持し、一定の張力Fをフレキシブルプ
リント配線板3にかけた状態で、固定ダイス5,6を矢印Y
2のように揺動させて屈曲試験を行う。この屈曲試験
は、フレキシブルプリント配線板3が張力Fによって固
定ダイス5または6に密着する強制曲げ形態である。
In the MIT method, as shown in FIG. 8, the flexible printed wiring board 3 is held by two fixed dies 5 and 6 having rounded ends, and a constant tension F is applied to the flexible printed wiring board 3. In the state, the fixed dies 5, 6 are arrowed Y
Perform a bending test by rocking as in 2. This bending test is a forced bending mode in which the flexible printed wiring board 3 is brought into close contact with the fixed die 5 or 6 by the tension F.

いずれの方法も、試料のフレキシブルプリント配線板3
の曲げの加わる部分の回路をループさせ、微電流を流し
た状態で試験を実施し、屈曲により通電回路にクラック
が生じ、断線するまでの屈曲回数をカウントするもので
ある。
In either method, the sample flexible printed wiring board 3
The circuit of the portion to which the bending is applied is looped, and the test is carried out in the state where a slight current is applied, and the number of times of bending until a break occurs due to the occurrence of a crack in the energized circuit due to the bending is counted.

「発明が解決しようとする問題点」 ところで、上述したMIT法は、荷重のかかった状態での
フレキシブルプリント配線板の特性評価を与えるが、荷
重をかけない現実の使用状態との相関性を係数値化する
ことができない。一方、IPC法は、自由曲げ形態で用い
られるプリンタヘッド等に代表される中・低速の屈曲動
作用のフレキシブルプリント配線板の多用されている
が、高速動作に対する屈曲試験法としては次の問題があ
る。
"Problems to be solved by the invention" By the way, the above-mentioned MIT method gives a characteristic evaluation of a flexible printed wiring board under a load condition, but it is concerned with the correlation with the actual use condition without load. It cannot be digitized. On the other hand, the IPC method is widely used for flexible printed wiring boards for medium- and low-speed bending operation, which is represented by a printer head used in a free bending mode, but the following problems exist as a bending test method for high-speed operation. is there.

屈曲部分全体に屈曲−平坦の繰り返しを行おうとした
場合、第9図に示すように、平行移動幅を設定した曲率
rに対して2πr以上とすることが必要となる。すなわ
ち、曲率の設定から平行移動幅が制約を受け、また、平
行移動幅もかなり大きくなる。
When it is attempted to repeat bending-flattening over the entire bent portion, as shown in FIG. 9, it is necessary to set the translation width to 2πr or more with respect to the set curvature r. That is, the translation width is restricted by the setting of the curvature, and the translation width becomes considerably large.

高速において平行移動幅を大きくとることは、従来の
IPC試験機の動作原理では機構上の限界がある。
Taking a large translation width at high speed is
The operating principle of the IPC tester has mechanical limitations.

この発明は上述した事情に鑑みてなされたもので、フレ
キシブルプリント配線板を高速で大きく変形させること
ができ、しかも、順方向/逆方向の曲げを同時に実施す
ることができるフレキシブルプリント配線板の屈曲試験
方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to greatly deform a flexible printed wiring board at high speed, and further, to bend the flexible printed wiring board at the same time in a forward / reverse direction. The purpose is to provide a test method.

「問題点を解決するための手段」 この発明は、フレキシブルプリント配線板の両側を各々
ホルダによって支持し、これらのホルダのうち少なくと
も一方に対し前記フレキシブルプリント配線板の長手方
向に沿って圧縮荷重を加えることにより両ホルダを相互
に所定距離だけ接近させる操作を繰り返し、前記フレキ
シブルプリント基板を前記所定距離に対応した曲率で繰
り返し屈曲させることを特徴としている。
"Means for Solving Problems" The present invention supports both sides of a flexible printed wiring board by holders, respectively, and applies a compressive load to at least one of the holders along the longitudinal direction of the flexible printed wiring board. It is characterized in that an operation of bringing both holders closer to each other by a predetermined distance is repeated by adding the flexible printed circuit board and the flexible printed circuit board is repeatedly bent with a curvature corresponding to the predetermined distance.

「実施例」 以下、図面を参照してこの発明の一実施例について説明
する。第1図は同実施例による方法を説明するための概
略構成図であり、この図において、3はフレキシブルプ
リント配線板、8はこのフレキシブルプリント配線板3
の一部を装置の固定部に固定する固定ホルダ、9はフレ
キシブルプリント配線板3の他の一部が下面に取り付け
られ、配線板3が取り付けられた状態で矢印Y3方向に往
復運動をする移動ホルダである。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram for explaining the method according to the embodiment, in which 3 is a flexible printed wiring board and 8 is the flexible printed wiring board 3.
A fixed holder for fixing a part of the device to a fixed part of the device, and 9 is a movement in which the other part of the flexible printed wiring board 3 is attached to the lower surface and reciprocates in the direction of arrow Y3 with the wiring board 3 attached. It is a holder.

このような構成において、移動ホルダ9を矢印Y3方向へ
往復運動させると、固定ホルダ8,移動ホルダ9間のフレ
キシブルプリント配線板3が屈曲運動を行う。この際
に、フレキシブルプリント配線板3の屈曲部分に形成さ
れている回路パターンの抵抗値を測定し、その抵抗値が
高抵抗側へ大きく変化した時、断線と判断する。移動ホ
ルダ9が往復運動を開始した時点からこの断線時までの
往復運動の回数がフレキシブルプリント配線板3の屈曲
特性を示している。第2図は、回路パターンの抵抗値の
変化の一例を示す図であり、この図に示す点Pにおいて
断線と判断される。
In such a configuration, when the movable holder 9 is reciprocated in the direction of the arrow Y3, the flexible printed wiring board 3 between the fixed holder 8 and the movable holder 9 makes a bending motion. At this time, the resistance value of the circuit pattern formed in the bent portion of the flexible printed wiring board 3 is measured, and when the resistance value largely changes to the high resistance side, it is determined that the wire is broken. The number of times of reciprocating motion from the time when the movable holder 9 starts reciprocating motion to the time of this wire breakage shows the bending characteristic of the flexible printed wiring board 3. FIG. 2 is a diagram showing an example of changes in the resistance value of the circuit pattern, and it is determined that the line is broken at a point P shown in this figure.

しかして、上記の試験方法によれば、従来のIPC法に比
較し、フレキシブルプリント配線板3を小さなストロー
クで大きく変形させることができる。また、配線板3に
順方向/逆方向の曲げを同時に加えることができる。す
なわち、第3図において、部分Aは上面に引張力が、下
面に圧縮力が各々加わるが、部分B,Cは上面に圧縮力
が、下面に引張力が各々加わる。この結果、1回の試験
でフレキシブルプリント配線板3上面(下面)に引張力
および圧縮力の双方を加えることが可能となる。
Therefore, according to the above test method, the flexible printed wiring board 3 can be largely deformed with a small stroke as compared with the conventional IPC method. Further, the wiring board 3 can be bent at the same time in the forward / reverse directions. That is, in FIG. 3, a tensile force is applied to the upper surface of the portion A and a compressive force is applied to the lower surface thereof, while a compressive force is applied to the upper surface and a tensile force is applied to the lower surface of portions B and C, respectively. As a result, it is possible to apply both tensile force and compressive force to the upper surface (lower surface) of the flexible printed wiring board 3 in one test.

次に、上述した試験において、フレキシブルプリント配
線板3の曲率の設定は屈曲形態に近似する関数より求め
ることができる。すなわち、第4図において、フレキシ
ブルプリント配線板3上の各点の曲率ρは、 なる式により与えられ、この時屈曲形態を、 Y=(h/2)cos(2πx/l) ……(2) に近似させた場合、(1)式は次のようになる。
Next, in the above-mentioned test, the setting of the curvature of the flexible printed wiring board 3 can be obtained from a function that approximates the bent form. That is, in FIG. 4, the curvature ρ at each point on the flexible printed wiring board 3 is When the bending form is approximated to Y = (h / 2) cos (2πx / l) (2), the equation (1) becomes as follows.

ここで、フレキシブルプリント配線板に最大の歪を与え
る最小曲率|ρ|は、x=0の時に実現される。すなわ
ち、(3)式より第4図のQ点の最小曲率|ρ|(x=
0)は、 |ρ|(x=0)=l2/2πh ……(4) により与えられる。
Here, the minimum curvature | ρ | that gives the maximum strain to the flexible printed wiring board is realized when x = 0. That is, from the equation (3), the minimum curvature | ρ | (x =
0) is given by | ρ | (x = 0) = l 2 / 2πh (4).

また、実際に屈曲に係わるフレキシブルプリント配線板
の長さL(=l+△l)は、 に近似し、hが十分にlよりも小さければ、 と見なすことができる。したがって、フレキシブルプリ
ント配線板に(4)式による変形を与えるために必要な
長さ方向の移動量△lは次式により求まる。
In addition, the length L (= l + Δl) of the flexible printed wiring board actually involved in bending is And h is sufficiently smaller than l, Can be regarded as Therefore, the amount of movement Δl in the length direction required to give the deformation of the flexible printed wiring board by the equation (4) is obtained by the following equation.

△l=L−l=(π2/4)(h2/l) ……(7) 上記の展開に基づく曲率ρとQ点の高さhとの関係を第
5図に、高さhとストローク△lとの関係を第6図に各
々示す。
△ l = L-l = ( π 2/4) (h 2 / l) ...... (7) in FIG. 5 the relationship between the height h of the curvature ρ and Q points based on the above development, the height h And the stroke Δl are shown in FIG. 6, respectively.

以上が、この発明の一実施例による屈曲試験方法であ
る。なお、上記の方法を適用した屈曲試験装置は、振動
発生機,振動出力アンプ,振動制御装置,試料取付ユニ
ット,固定ホルダ,移動ホルダ,抵抗測定器および測定
データ処理部を組み合わせて構成する。
The above is the bending test method according to one embodiment of the present invention. The bending test apparatus to which the above method is applied is configured by combining a vibration generator, a vibration output amplifier, a vibration control device, a sample mounting unit, a fixed holder, a moving holder, a resistance measuring device, and a measurement data processing unit.

「発明の効果」 以上説明したように、この発明によれば、フレキシブル
プリント配線板の両側を各々ホルダによって支持し、こ
れらのホルダのうち少なくとも一方に対し前記フレキシ
ブルプリント配線板の長手方向に沿って圧縮荷重を加え
ることにより両ホルダを相互に所定距離だけ接近させる
操作を繰り返し、前記フレキシブルプリント基板を前記
所定距離に対応した曲率で繰り返し屈曲させる次の効果
を得ることができる。
"Effects of the Invention" As described above, according to the present invention, both sides of a flexible printed wiring board are supported by holders, respectively, and at least one of these holders is provided along the longitudinal direction of the flexible printed wiring board. By applying a compressive load, the operation of bringing both holders closer to each other by a predetermined distance is repeated, and the following effect can be obtained in which the flexible printed circuit board is repeatedly bent with a curvature corresponding to the predetermined distance.

フレキシブルプリント配線板の屈曲寿命を、従来の方
法より、小さなストロークで試験することができ、この
結果、標準的な振動発生装置を用いて試験機を構成で
き、広い屈曲径の範囲に亙る試験を短時間で実施するこ
とが可能となる。
The flex life of the flexible printed wiring board can be tested with a smaller stroke than the conventional method, and as a result, a test machine can be configured using a standard vibration generator, and tests over a wide range of flex diameters can be performed. It can be carried out in a short time.

順方向/逆方向の双方の曲げを1回の試験で実施する
ことができる。
Both forward / reverse bending can be performed in a single test.

従来、曲率に比例して大きな移動が必要であった試験
を、歪量に比例した移動量で行うことが可能となり、高
速試験を小型の機器を行うことが可能となる。
Conventionally, a test that requires a large movement in proportion to a curvature can be performed with a movement amount proportional to a strain amount, and a high-speed test can be performed on a small device.

フレキシブルプリント配線板の特定箇所に集中的な屈
曲を加えることが可能となる。
It is possible to apply intensive bending to a specific portion of the flexible printed wiring board.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による屈曲試験方法を説明
するための概略構成図、第2図は試験時間と回路パター
ンの抵抗値との関係を示す図、第3図はフレキシブルプ
リント配線板3に加わる引張力および圧縮力を説明する
ための図、第4図は曲率−ストローク−高さの関係を説
明するための図、第5図は曲率−高さの相関関係を示す
グラフ、第6図はストローク−高さの相関関係を示すグ
ラフ、第7図は従来のIPC法の説明図、第8図は従来のM
IT法の説明図、第9図はIPC法の問題点を説明するため
の図である。 3……フレキシブルプリント配線板、8……固定ホル
ダ、9……移動ホルダ。
FIG. 1 is a schematic configuration diagram for explaining a bending test method according to an embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a test time and a resistance value of a circuit pattern, and FIG. 3 is a flexible printed wiring board. 3 is a diagram for explaining a tensile force and a compressive force applied to No. 3, FIG. 4 is a diagram for explaining a curvature-stroke-height relationship, and FIG. 5 is a graph showing a curvature-height correlation. Fig. 6 is a graph showing the correlation between stroke and height, Fig. 7 is an explanatory diagram of the conventional IPC method, and Fig. 8 is a conventional M.
FIG. 9 is a diagram for explaining the IT method, and FIG. 9 is a diagram for explaining the problems of the IPC method. 3 ... Flexible printed wiring board, 8 ... Fixed holder, 9 ... Moving holder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海津 雅洋 千葉県佐倉市六崎1440番地 藤倉電線株式 会社佐倉工場内 (56)参考文献 特開 昭59−142437(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Kaizu 1440 Rokuzaki, Sakura City, Chiba Prefecture Sakura Factory, Fujikura Electric Wire Co., Ltd. (56) References JP-A-59-142437 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フレキシブルプリント配線板の両側を各々
ホルダによって支持し、これらのホルダのうち少なくと
も一方に対し前記フレキシブルプリント配線板の長手方
向に沿って圧縮荷重を加えることにより両ホルダを相互
に所定距離だけ接近させる操作を繰り返し、前記フレキ
シブルプリント基板を前記所定距離に対応した曲率で繰
り返し屈曲させることを特徴とするフレキシブルプリン
ト基板の屈曲試験方法。
1. Both sides of a flexible printed wiring board are supported by respective holders, and a compressive load is applied to at least one of these holders along the longitudinal direction of the flexible printed wiring board so that both holders are mutually predetermined. A bending test method of a flexible printed circuit board, characterized in that the flexible printed circuit board is repeatedly bent with a curvature corresponding to the predetermined distance by repeating an operation of approaching by a distance.
JP62125182A 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board Expired - Lifetime JPH076900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125182A JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125182A JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JPS63290938A JPS63290938A (en) 1988-11-28
JPH076900B2 true JPH076900B2 (en) 1995-01-30

Family

ID=14903929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125182A Expired - Lifetime JPH076900B2 (en) 1987-05-22 1987-05-22 Bending test method of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JPH076900B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104822A1 (en) * 1991-02-16 1992-08-20 Telefunken Systemtechnik TEST DEVICE FOR CARRYING OUT 4-POINT BEND CHANGING TESTS
KR20150140647A (en) * 2013-04-15 2015-12-16 아사히 가라스 가부시키가이샤 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
DE102016223900B4 (en) * 2016-12-01 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the bending behavior of a sample
CN117148121B (en) * 2023-10-31 2024-01-26 深圳市华旭达精密电路科技有限公司 Flexible circuit board electrical measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142437A (en) * 1983-02-02 1984-08-15 Furukawa Electric Co Ltd:The Bending test device of long object

Also Published As

Publication number Publication date
JPS63290938A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
USRE43739E1 (en) Test probe for finger tester and corresponding finger tester
JPH02183177A (en) Mounting device for electric test
CN109863582A (en) The calibration method and throwing device of wire-clamping device
JPH076900B2 (en) Bending test method of flexible printed wiring board
JP2003307478A (en) Bending fatigue tester
JPS5833825B2 (en) dot print head
JP3391617B2 (en) Probing method by timing belt drive of XY system in-circuit tester
JPH10307091A (en) Method and system for evaluating flexing fatigue resistance of elastomer material
JP3430660B2 (en) Strength reliability evaluation test equipment
JP2002048815A (en) Probe head
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
JPH03200047A (en) Bending test device for flexible printed wiring board
JPH03245600A (en) Test method and device of printed board
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
JPH0729838U (en) Vertical motion probe card with buckling stress reduction mechanism
JP4255857B2 (en) Circuit board inspection probing apparatus and circuit board inspection apparatus
SU1654723A1 (en) Method of determining rigidity upon twist testing
JPH09119890A (en) Apparatus for testing bending-fatigue
KR940000742B1 (en) Wire-clamping method and device
JP3374364B2 (en) Method for measuring die pulling force of metal wire to be processed, die fixing jig and wire drawing jig used in the method
JPH0972798A (en) Friction force measuring device
JP2767634B2 (en) Tensile type dynamic viscoelasticity measuring device
JP3628186B2 (en) Method for predicting detection value of load sensor
JPH06323973A (en) Parallel plate spring type tension tester