TWI358537B - Method and apparatus for proof testing a sheet of - Google Patents

Method and apparatus for proof testing a sheet of Download PDF

Info

Publication number
TWI358537B
TWI358537B TW96137008A TW96137008A TWI358537B TW I358537 B TWI358537 B TW I358537B TW 96137008 A TW96137008 A TW 96137008A TW 96137008 A TW96137008 A TW 96137008A TW I358537 B TWI358537 B TW I358537B
Authority
TW
Taiwan
Prior art keywords
sheet
glass
glass sheet
arcuate
brittle material
Prior art date
Application number
TW96137008A
Other languages
Chinese (zh)
Other versions
TW200844423A (en
Inventor
Scott Glaesemann Gregory
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200844423A publication Critical patent/TW200844423A/en
Application granted granted Critical
Publication of TWI358537B publication Critical patent/TWI358537B/en

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Electroluminescent Light Sources (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

1358537 九、發明說明: 【發明所屬之技術領域】 本項發贼翻絲錄壞概輯料财 ,尤其是玻璃或陶免玻璃片的驗證測試。1358537 IX. Description of the invention: [Technical field to which the invention belongs] This item is a thief turning over the record of bad materials, especially the verification test of glass or ceramic glass.

【先前技術J 糊離子體、液晶或有機光發射二極體鮮元件等的 顯示裝置很快地取代㈣)顯示器的商品,從手機到電視使 用在無數的朗上。然而,非料,雜觸对引進尚在 初期階段。奴因麟這鶴示裝置有大量的結構需求: 必須可以耐得住重複_曲和料,而不傷_設備或其 置放的綠;由於想用在可攜式裝置的彈性顯示器上,所以 希望它們耐得住粗魯的操作,而又不會傷害到設備或絲; 更且它們應該要能财得住小於2公分的彎曲半徑,在有此 情形下小於1公分。 ’ 一 玻璃是被認為可用在彈性顯示器上的一種材料。玻璃 通常是抗化學性的、透明的,可以形成密封的阻隔或密封, 也可以形成非常薄的玻翻。已生產而且常被使用的超過 10平方公尺的玻璃厚度是低於〗公釐,甚至低於〇 7公釐而 且我們希望很快可以生產至少約100平方公尺的玻璃片。 一般的顯示器製造過程是利用一個或多個大玻璃片或基板 形成數個顯示器。顯示器再利用劃線分割成個別的顯示單 元。因此很大的玻璃片就足夠用來產生很多顯示單元。 切割的玻璃在此也就是玻璃片通常會在玻璃片邊緣形 成裂隙(例如缺口)。這些裂隙可能會成為破裂的來源,因 第 5 頁 丄358537 而減少玻璃片的強度,尤其假使玻璃片是屈曲的,就會使此 裂隙受到張應力。通常一般的顯示設備並不會受到明顯的 屈曲,因而這些裂隙的存在就不為人所關注。 彈性顯示器由於其具彈性的特質,無論在製造過程或 使用期間會在顯示基板上產生顯著的應力。因此玻璃内可 能出現的裂隙會受到足以使玻璃碎裂的張應力。由於一般 的顯示器製造牽涉到切割玻璃以形成個別的顯示器而切 割通常會在沿著玻璃片邊緣形成多個裂隙,這似乎是以玻 璃基板為主裝置不良的現象。 消拜玻璃片邊緣裂隙的嘗試包括雷射切割、研磨、拋 光專等,這些纛S式都可以去除或減少玻璃片切割時產生的 裂隙。然而,這些方法在彈性顯示器應用上有很多令人不 滿意之處,因為此項技;街無法去除預期應力所需大小以下 的裂隙,或者此項技術難以運用在很薄的玻璃片(少於約 〇· 4公釐的厚度)。也可以使用玻璃邊緣的酸姓刻但這可 能會損害基板上的顯示器設備。因此無論使用什麼切割的 方法,裂隙都會在玻璃内形成,尤其是玻璃片邊緣。 【發明内容】 在本項發明的一個實施範例中,說明了驗證測試脆性 材料片的方法,包括在玻璃片上使用一個彎曲,並在玻璃片 和彎曲之間產生相對移動使得彎曲越過玻璃片在其中藉 由彎曲在玻璃片表面引起的張應力對應於預定的強度值 以偵測玻璃片的強度是否大於預定的強度值。 在另一個實施範例中,說明驗證測試玻璃片的方法,包 第6 頁 括在至少-個滾軸上彎曲玻璃片,並在玻璃片表面產生伸 2應力對應於縱的強度值,以及在玻制和至少一個滚 筒之間產生姆鶴,使得玻璃㈣連_錢制於伸拉 應力以偵測玻璃片的強度是否大於預定的強度值。 在另一個實施範例中,說明驗證測試跪性材料片的設 備’包括至少一個用來接觸玻璃片並引發脆性材料片彎曲 =弓形秘,在其帽定至少—蜗形元件_度半徑使 得因彎曲耐丨發的玻翻表面張應力對應於預定的強度值 ,以偵測玻璃片的強度是否大於預定的強度值。 我們知道以上的大略說明和下列的詳細描述都只是本 項發明的範例以提供一個概觀和架構,讓人們瞭解本項發 明申請專利範圍之本質和特性。 所包含的附圖是用來使大家對本項發明有更進一步的 瞭解,因此也併入並構成這份規格書的一部分。附圖並不 一疋疋按照比例來晝,各式元件的大小也因為要清楚說明 而有所改變。附圖圖示了一個或以上的實施範例,一起和 說明用來解釋本項發明的原理和運作。 【實施方式】 玻璃的強度是由玻璃内呈現的裂隙來決定。如果伸拉 應力所施力σ的玻璃有裂隙,應力就會集中在此裂隙上。例 如,如果應力集中在缺口尖端,裂隙就可能變成一個微小的 缺口。如果應力超過某定量,原來的裂隙即缺口就可能會 變大。如果施用的應力夠大,裂隙的增長就會瞬間造成玻 璃的破裂。 1358537 類似於鏈結的強度是彳艮據於最弱連接強度,玻璃的強 度也可以由最大的強度也就是最弱的裂隙來表示。例如, 如果施加於玻璃纖維lOkpsi的應力,而且纖維維持固定那 麼就說纖維有至少lOkpsi的強度。也就是說,所有可能出 現在玻璃纖維上的裂隙是小於會導致破裂的10kpsi的強度 °因此玻璃内裂隙的大小通常是以造成起因於那個裂隙的 破裂所需最小張應力來表示。所以假使玻璃被施加應力到 lOkpsi而沒有破裂,就可以說此玻璃沒有大於1〇 kpsi的裂 隙。雖然有一點名稱上的不同,但在玻璃強度的技術上一 般是使用應力來表示裂隙的大小。 如同前面的討論,玻璃的強度是玻璃製造歷史的結果 也就疋5兒,新形成的玻璃特別地強。抽拉玻璃片時可能 達到新形成玻璃纖維的強度,通常超過7〇〇Μρ^然而,接下 來的處理或猶的環賴素可紐成獅,或增大已有的 裂隙,因而使玻璃的強度減弱。就是因為這個緣故,新抽拉 好的玻璃纖維會立即塗上聚合物的塗層以保護玻璃的表面 ,並預防或至少降低t,強度的減弱。 玻璃片的大小通常是用切割的方式來決定。例如在溶 化玻璃⑽tit触,雜玻贼流軸秋形成體兩邊 傾斜的形絲Φ。續侧的_棘合在碱體底部或 根部,傾斜的觀表面在此會合以產生具·始表面的玻 璃條帶。接著條帶在以機器劃分的方式切割成預定長度的 玻璃片。然後也是以類似的機器劃分處理方式移除玻璃片 的邊緣。因此,破璃片的邊緣會受制於可能傷害邊緣的壓 Μ 8 頁 1358537 力。例如這種傷害可能包括玻璃片邊緣的切削或裂開,造 成強度的減弱。本項發明針對此問題的解決係藉著測試玻 璃片以偵測玻璃片内特別是玻璃片邊緣出現的超過某大小 的裂隙。 如上所述,例如玻璃的脆性材料會因張力而破裂。在 玻璃内產生張力的一種方法是使玻璃彎曲。就特定的彎曲 半徑而言,可以由下列式子決定引發的應力:[Previous technology J Display, liquid crystal or organic light-emitting diodes and other display devices quickly replaced (4)) display products, from mobile phones to televisions used in countless Lang. However, unexpectedly, the introduction of miscellaneous touch is still in its infancy. The slave device has a large number of structural requirements: it must be able to withstand repeated _ songs and materials without damaging the equipment or the green it is placed; since it is intended to be used on the flexible display of the portable device, I hope they will withstand rude operations without hurting the equipment or the wire; moreover they should be able to withstand a bending radius of less than 2 cm, in this case less than 1 cm. A glass is a material that is considered to be usable on a flexible display. Glass is usually chemically resistant, transparent, forms a sealed barrier or seal, and forms a very thin glass transition. Glass thicknesses of more than 10 square meters that have been produced and are often used are below -, or even less than, 7 mm and we hope to produce glass sheets of at least about 100 square meters soon. A typical display manufacturing process utilizes one or more large glass sheets or substrates to form a plurality of displays. The display is further divided into individual display units by using a line. Therefore, a large glass piece is enough to produce many display units. The cut glass, here the glass sheet, usually forms cracks (e. g., notches) at the edges of the glass sheet. These cracks can be a source of cracking, and the strength of the glass sheet is reduced by page 丄358537, especially if the glass sheet is buckling, which causes the crack to be tensilely stressed. Usually the general display device is not subject to significant buckling, so the presence of these cracks is not of concern. Due to its resilient nature, flexible displays create significant stresses on the display substrate during the manufacturing process or during use. Therefore, cracks that may occur in the glass are subject to tensile stresses sufficient to break the glass. Since general display manufacturing involves cutting glass to form individual displays, cutting typically creates multiple cracks along the edge of the glass sheet, which appears to be a problem with glass substrates as the primary device. Attempts to eliminate the edge cracks of the glass sheet include laser cutting, grinding, and polishing, all of which can remove or reduce the cracks generated when the glass sheet is cut. However, these methods have many unsatisfactory results in flexible display applications because of the technology; the street cannot remove the cracks below the size required for the expected stress, or the technology is difficult to apply to very thin glass sheets (less than About 〇·4 mm thickness). It is also possible to use the acid edge of the glass edge but this may damage the display device on the substrate. Therefore, no matter what cutting method is used, cracks are formed in the glass, especially at the edge of the glass sheet. SUMMARY OF THE INVENTION In one embodiment of the present invention, a method of verifying a test piece of brittle material is described, including using a bend on a glass sheet and creating a relative movement between the glass sheet and the bend such that the bend passes over the glass sheet The tensile stress caused by bending on the surface of the glass sheet corresponds to a predetermined intensity value to detect whether the strength of the glass sheet is greater than a predetermined intensity value. In another embodiment, a method of verifying a test glass sheet is described, and the sixth page includes bending the glass sheet on at least one of the rollers, and generating a tensile stress on the surface of the glass sheet corresponding to the longitudinal strength value, and in the glass A m-heel is produced between the system and the at least one roller so that the glass (four) is attached to the tensile stress to detect whether the strength of the glass piece is greater than a predetermined intensity value. In another embodiment, the apparatus for verifying the test piece of inert material includes at least one for contacting the glass sheet and causing the sheet of brittle material to bend = bow shape, at least in the cap - the snail element _ degree radius is caused by bending The burst-resistant surface tensile stress of the burst corresponds to a predetermined intensity value to detect whether the strength of the glass sheet is greater than a predetermined intensity value. We understand that the above general description and the following detailed description are merely examples of the present invention to provide an overview and structure to understand the nature and characteristics of the scope of the patent application of this invention. The drawings are included to provide a further understanding of the invention and are therefore incorporated in and constitute a part of this specification. The drawings are not to scale, and the size of various elements may vary depending on the description. The drawings illustrate one or more embodiments, together with the description of the principles and operation of the invention. [Embodiment] The strength of the glass is determined by the cracks present in the glass. If there is a crack in the glass of the force σ applied by the tensile stress, the stress will concentrate on the crack. For example, if stress is concentrated at the tip of the notch, the crack may become a tiny gap. If the stress exceeds a certain amount, the original crack, that is, the gap may become larger. If the applied stress is large enough, the growth of the crack will instantaneously cause the glass to rupture. 1358537 Similar to the strength of the chain, depending on the weakest joint strength, the strength of the glass can also be expressed by the maximum strength, that is, the weakest crack. For example, if the stress applied to the glass fiber is 10 kpsi and the fiber remains fixed, the fiber is said to have a strength of at least 10 kpsi. That is, all cracks that may appear on the fiberglass are less than 10 kpsi of strength that would cause cracking. Therefore, the size of the crack in the glass is usually expressed as the minimum tensile stress required to cause cracking of that crack. So if the glass is stressed to lOkpsi without cracking, it can be said that the glass has no cracks greater than 1 〇 kpsi. Although there is a difference in name, the technique of glass strength generally uses stress to indicate the size of the crack. As discussed earlier, the strength of the glass is the result of the history of glass manufacturing, and the newly formed glass is particularly strong. When pulling the glass sheet, it is possible to reach the strength of the newly formed glass fiber, usually more than 7 〇〇Μ ρ ^ However, the next treatment or the helium ring can be a lion, or increase the existing crack, thus making the glass The strength is weakened. For this reason, the newly drawn glass fiber is immediately coated with a polymer to protect the surface of the glass and prevent or at least reduce t and weaken the strength. The size of the glass piece is usually determined by cutting. For example, in the molten glass (10) tit touch, the mixed glass thief flow axis forms an inclined wire Φ on both sides of the body. The continuation of the thorn is at the bottom or root of the base, where the slanted viewing surface meets to create a glass strip with the initial surface. The strip is then cut into a predetermined length of glass in a machine-divided manner. The edge of the glass piece is then removed in a similar machine division process. Therefore, the edge of the shard will be subject to pressure that may damage the edges. For example, such damage may include cutting or splitting of the edge of the glass sheet, resulting in a decrease in strength. The present invention addresses this problem by testing a glass sheet to detect cracks in the glass sheet, particularly at the edge of the glass sheet, that exceed a certain size. As described above, a brittle material such as glass may be broken by tension. One way to create tension in the glass is to bend the glass. For a given bend radius, the induced stress can be determined by the following equation:

^ =£〇(^-)Π+«^·]式 1 其中t是玻璃片厚度,r是彎曲半徑,&是材料的零應力楊 氏模數’ α是某脆性材料受到應變的楊氏模數的線性相關 值。,圖1顯示Coming公司代碼1737玻璃片計算出的驗說 力,這裡的E。是約70. 9GPa。因為不知道代碼1737玻璃的a ,因此翻_土的參數α。然而實際上咕1%的庫變(^ =£〇(^-)Π+«^·] Formula 1 where t is the thickness of the glass sheet, r is the radius of curvature, & is the zero-stress Young's modulus of the material 'α is the strain of a brittle material subjected to strain The linear correlation of the modulus. Figure 1 shows the test power calculated by the Coming company code 1737 glass, here E. It is about 70. 9GPa. Because I don't know the a of the code 1737 glass, I turn the parameter α of the soil. However, in fact, 1% of the library changes (

職糾下只有3_t果,可料略·免不必要的錯誤 玻璃片厚度可以是微米(曲線⑻棚微米(曲 線12)和700微米(曲線14)。 材料Γ2:發明一個實施範例,說明一個驗證測聰生 紐她—般伽麵_玻璃, a ,、可形成彈性片的跪性材料。請參考 藉縣具錢材料片 圖=弓 以是固祝岐可雜轉摘_,但也可 是從且H 非旋轉式),或者如圖3所示可能口 _擦_料形成弓形表面的形式(例如雜' f鐵鼠龍的氟聚合物樹脂)。脆性材料片16可移到弓形元 =之上’使得材_6的預枝度__财加諸的 t半徑。預定的長度可以是材料片的整個長度,也可以 疋1份長度。或者,弓形元件可移舰性材料片16之上 而讓弓形元件保持不動。 , 如以上的式子丨,我們可選擇弓形元件辭徑曲度R,使 Γ予材則所需_力。也就是說,所需的應力值,因而 f斤需的最小強度,可由材料片在其上f曲的弓形元件的 t曲度來決定。圖4顯示在材料片驗證__所_ 、,徑曲度以提供後續使用的安全彎曲半徑,例如在瞬間彎 曲條件(曲線20);她長時期彎曲(數小時的彎曲曲線22) ,·以及數年的彎曲條件(譬如超過5年—曲線⑷。例如,請看 圖4,如果材料片包括100公分持久的彎曲半往將需要50公 分的驗證測試彎曲半徑(弓形元件醉徑曲度)以保證可使 用5年以上。如果材料片被捲起來儲存一段期間,就有可能 碰到這種情況。 從之刖的敘述可很明顯歸出,使用單一弓形元件需 要材料片在方向上的變(假定材料片是移到弓形元件^ 上)。或許更重要的,圖2和圖3的實施範峨生的拉伸應力 只施加於材料片16的單一邊。也就是只在單_方向彎曲, 使弓形兀件的另-邊產生張力,而鋪$形元件的一邊則 會形成壓縮。為了使材料片16另一邊的拉伸應力和第;_邊 -樣,需要迴轉材料片並第二次在弓形元件之上繼續通過 材料片的長度。 第10 頁 圖5圖不的是本項發明一個更有效的實施範例,這裡兩 個弓形元件接觸材料片16。這兩個弓形元件版和咖,每 個都從另—個弓侃件的另_邊接觸—# I也就^ ^弓形兀件父換邊來接觸材料片。材料片16先以一個方向 彎曲在曲度半徑為Rl的第—個弓形元件版上(譬如以順時 針方向)’然後以和第-個方向不同的第二個方向,彎曲在 曲度半徑為的第二個弓形元件18b上(譬如以逆時針方向 )。因此,材料片16的第-邊26受到拉伸應力然後第二邊 28¾到拉伸應力,娜元件之的材料# 回,以施加拉伸應力至材料片的兩邊。為了保證材料片的 料峨械縣,可碟邊緣塗上保 護層。例如,可以在邊緣塗上聚合物保護層。有些實施範 例’整個材料片可以塗上一邊或兩邊。 應該很明顯地^也可以使用額外的滾軸。例如,如果想 要從材料片進入弓形元件的相同平面29内的弓形元件間移 除材料片,那麼就可以加入半徑為Rs的第三個弓形元件18c ,如圖5所示。因物理空間考量,可加入這種條件,譬如仍, 忆和R3最好是相等(同樣的),但如果需要的話也可以是不 相同的。 以上的實施範例使用一個橫跨整個材料片寬度的弓形 元件。在一些實施範例,可能不想要接觸整個寬度。例如, 用在平板顯示器製造上的玻璃片,必須符合嚴格的表面品 質需求。接觸玻璃片可以被使用的或所謂品質區域,可能 會使表面產生缺陷,而讓玻璃片無法使用。通常所謂品質 第η 頁 1358537 區域是定義為處理期間任何接觸區域的内側區。因此可以 適應弓形元件,使得只有玻璃片的周邊區域可由弓形元件 在片的至少一邊接近玻璃片的外緣來接觸。這種設計顯示 在圖7,圖中έ兒a月玻璃X 16從一邊的邊緣滾軸和另一邊的 全寬滾軸32 Γ4通過。圖巾玻璃片16移動的方向是以箭頭來 表示。這種安排保留了至少一邊的表面品質。如果和玻璃 片兩邊的接觸可儘量減少,就可以使用邊緣滾轴在玻璃片 兩邊的周邊區域接觸玻璃片,而不會接觸到玻璃片任何一 邊的印質區域。圖8類似圖7顯示的情形,但圖示了邊緣滾 筒30接觸玻璃片16的兩邊,而不會接觸到玻璃片任何一邊 的中央品質區域。 如果裂隙的強度小於彎曲玻璃片戶斤施用的張應力玻 璃就可能破裂。在一些實施範例,特別是玻璃沒有塗層時, 破裂的情形就很明顯:玻璃會裂成兩塊或以上的碎片。這 種情开>,尤其是在自動化製造過程,裂痕可能不會立即被偵 測出來。因此,可有效使用聲音偵測方法來偵測裂痕。例 如,玻璃片16可置於傳輸線上引起彎曲滾軸32之間,將聲音 偵測器34置放在靠近玻璃片表面處。玻璃内的裂痕產生的 聲音會被聲音偵測器震測到。聲音偵測器經由控制線部電 子轉合至控制器38(譬如電腦38),可用來停止玻璃片在滾 軸間的移動。其他的控制功能還可包括像是啟動聽覺和/ 或視覺警鈴。 對於熟悉此項技術的人而§,本5兄明的好處應該是顯 而易見的,這裡所描述的各式滚軸設置可置放在靜止的框 架上,脆性材料片相對於滾轴移動,使材料片的連續部分實 施該強度測試。或者,小型滾軸也可放在手提式框架上以 產生一個可赋_貞_。於是要被測試 邊緣’可放在手提式強度測試器和手拿測試器的操作者之 間,相對於材料片移動測試器以測辦目對於預定強度值的 材料片邊緣強度。 _軸本發明已對特定實施例加以說明,熟知此技術者 將經由先前的說明了解百分比許Μ代情況,改變及變化 。因而’本發明預期包含所有這些替代情況,改變,及變化 ,其均屬於下财請專概目之精神及範圍内。 【附圖簡單說明】 第一圖疋以MPa為單位施用的驗證測試張應力作為彎 曲玻璃片二種厚度的弓形元件(例如滾軸)以⑽為單位的曲 度半控:函數圖形。 卜第二圖是依據本項發明實施範例,使用單一滚軸或套 筒驗證測試脆性材料片的設備側面圖。 第二圖是依據本項發明實施範例,使用單一非圓形弓 形元件驗證測試脆性材料片的設備側面圖。 第四圖是依據本項發明實施範例,顯示施用在被驗證 測5式玻璃片的安全應力,作為驗證測試中所用彎曲半徑的 函數圖形。 第五圖是本項發明另一個實施範例,使用兩個弓形元 件在不同方向彎曲脆性材料片。 第六圖是本項發明另一個實施範例,使用三個弓形元 件在不财^親_饥跡目麵>^輸入面。 第七圖是本項發明另一個實施範例使用在片狀物的 邊只接觸脆性材料片邊緣的弓开)元件在另一邊接觸整 個片狀物寬度的弓形元件。 第八圖是本項發明另一個實施範例,使用只接觸脆性 材料片邊緣的弓形元件。 附圖元件數字元號說明: 曲線10,12,14;脆性材料片16;弓形元件18;曲線 20, 22, 24;第一邊26;第二邊28;平面29;邊緣滚軸30; 全寬滾軸32;聲音偵測器34;控制線36;控制器38。There are only 3_t fruits under the job correction. It can be omitted. The unnecessary error glass thickness can be micron (curve (8) shed micron (curve 12) and 700 micron (curve 14). Material Γ 2: Invent an embodiment to illustrate a verification Measured Congo New----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- And H is non-rotating), or as shown in Fig. 3, it may be in the form of an arcuate surface (for example, a fluoropolymer resin of a hetero-f iron rat). The brittle material piece 16 can be moved to the bow element = above so that the pre-branched degree of the material_6 is added to the t-radius. The predetermined length may be the entire length of the sheet of material or may be one length. Alternatively, the arcuate element can be placed over the sheet of marine material 16 to keep the arcuate element stationary. As in the above formula, we can choose the rhombic R of the bow-shaped element, so that the _ force is required for the Γ. That is to say, the required stress value, and thus the minimum strength required, can be determined by the t curvature of the arcuate element on which the sheet of material is bent. Figure 4 shows the verification of the material sheet __, the curvature to provide a safe bending radius for subsequent use, such as in an instantaneous bending condition (curve 20); her long-term bending (a few hours of bending curve 22), and Several years of bending conditions (such as more than 5 years - curve (4). For example, please see Figure 4, if the piece of material consists of 100 cm long lasting bend half will require 50 cm of proof test bending radius (bow element drunk curve) It can be used for more than 5 years. If the piece of material is rolled up and stored for a period of time, it is possible to encounter this situation. From the description of it, it can be clearly stated that the use of a single arcuate element requires the change of the direction of the piece of material ( It is assumed that the sheet of material is moved to the arcuate element ^. Perhaps more importantly, the tensile stress of the embodiment of Figures 2 and 3 is applied only to a single side of the sheet of material 16. That is, bending only in the single direction, The tension is generated on the other side of the arcuate member, and the compression is formed on the other side of the profiled member. In order to make the tensile stress on the other side of the material sheet 16 and the _ edge-like sample, the material piece needs to be rotated and the second time Continue above the bow The length of the sheet of material. Figure 5 is a more efficient embodiment of the invention, where the two arcuate members contact the sheet of material 16. The two bow members and the coffee, each from the other - The other side of the bow member—# I also ^ ^The bow member replaces the edge to contact the sheet of material. The sheet 16 is first bent in one direction on the first arcuate element plate with a curvature radius of Rl ( For example, in a clockwise direction 'and then in a second direction different from the first direction, it is bent on the second arcuate element 18b having a curvature radius (for example, in a counterclockwise direction). - The edge 26 is subjected to tensile stress and then the second side 283⁄4 to the tensile stress, the material of the Na element is back to apply tensile stress to both sides of the sheet of material. To ensure the material of the material sheet, the disc edge coating Upper protective layer. For example, a polymer protective layer can be applied to the edges. Some embodiments can be applied to one or both sides of the entire sheet of material. It should be obvious that additional rollers can also be used. For example, if you want to The same piece enters the bow element By removing the sheet of material between the arcuate elements in face 29, a third arcuate element 18c of radius Rs can be added, as shown in Figure 5. This condition can be added due to physical space considerations, such as still, recall and R3. Preferably, they are equal (same), but may be different if desired. The above embodiment uses an arcuate element that spans the width of the entire sheet of material. In some embodiments, it may not be desirable to contact the entire width. For example, Glass sheets used in the manufacture of flat panel displays must meet stringent surface quality requirements. Contact glass sheets can be used or so-called quality areas, which can cause defects on the surface and render the glass sheets unusable. 1358537 A zone is an inside zone defined as any contact zone during processing. It is thus possible to adapt the arcuate element such that only the peripheral region of the glass sheet can be contacted by the arcuate element on at least one side of the sheet near the outer edge of the glass sheet. This design is shown in Figure 7, where the enamel glass X 16 passes from the edge roller on one side and the full width roller 32 Γ 4 on the other side. The direction in which the towel glass 16 moves is indicated by an arrow. This arrangement preserves the surface quality of at least one side. If the contact with the glass sheet is minimized, the edge roller can be used to contact the glass sheet in the peripheral area on either side of the glass sheet without touching the printed area on either side of the glass sheet. Figure 8 is similar to the situation shown in Figure 7, but illustrates that the edge roller 30 contacts both sides of the glass sheet 16 without contacting the central quality region on either side of the glass sheet. If the strength of the crack is less than the tensile stress glass applied by the curved glass sheet, it may break. In some embodiments, particularly where the glass is uncoated, the crack is evident: the glass breaks into two or more pieces. This kind of situation >, especially in the automated manufacturing process, cracks may not be detected immediately. Therefore, the sound detection method can be effectively used to detect cracks. For example, the glass sheet 16 can be placed on the transfer line between the bending rollers 32, with the sound detector 34 placed near the surface of the glass sheet. The sound produced by cracks in the glass is detected by the sound detector. The sound detector is electronically coupled to a controller 38 (e.g., computer 38) via a control line to stop the movement of the glass sheet between the rollers. Other control functions may also include, for example, activating an audible and/or visual alarm. For those familiar with the art, the benefits of this 5 brothers should be obvious. The various roller arrangements described here can be placed on a stationary frame, and the sheet of brittle material moves relative to the roller to make the material The strength test was performed on successive portions of the sheet. Alternatively, a small roller can be placed on the hand-held frame to create an assignable _贞_. The edge to be tested is then placed between the operator of the portable strength tester and the hand tester, and the tester is moved relative to the sheet of material to measure the edge strength of the sheet of material for a predetermined intensity value. The present invention has been described with respect to specific embodiments, and those skilled in the art will understand the percentage change, changes and changes in the prior art. Accordingly, it is intended that the present invention encompasses all such alternatives, changes, and variations, which are within the spirit and scope of the following. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a verification test tensile stress applied in units of MPa as a curved element (for example, a roller) of two thicknesses of a curved glass piece. The curvature is semi-controlled in units of (10): a function figure. The second figure is a side view of a device for verifying a test piece of brittle material using a single roller or sleeve in accordance with an embodiment of the present invention. The second figure is a side view of a device for verifying a test piece of brittle material using a single non-circular bow element in accordance with an embodiment of the present invention. The fourth figure is a functional graph showing the safety stress applied to the glass sheet to be tested as a function of the bending radius used in the verification test in accordance with an embodiment of the present invention. The fifth figure is another embodiment of the present invention in which two arcuate members are used to bend a sheet of brittle material in different directions. The sixth figure is another embodiment of the present invention, in which three arcuate elements are used in the input surface. The seventh drawing is an arcuate member in which another member of the present invention uses the bow member whose edge of the sheet is only in contact with the edge of the brittle material sheet to contact the entire sheet width on the other side. The eighth figure is another embodiment of the invention, using an arcuate member that only contacts the edge of the brittle material sheet. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 10: 12, 14; brittle material sheet 16; arcuate element 18; curve 20, 22, 24; first side 26; second side 28; plane 29; edge roller 30; Wide roller 32; sound detector 34; control line 36; controller 38.

Claims (1)

_月7日修π換頁 十、申請專利範圍: --- 1. -種驗證測•料片狀物的方法,該方法包括: 藉由彎舰性材料㈣物於娜元件上舰性材料片狀物 產生彎曲以及在脆性材料4狀物和弓形元件之間產生相對移 動使得彎祕越過紐材則㈣在其巾藉岭曲在脆性 材料片狀齡面引起的張應力對應於預定的強度值以偵測脆 性材料片狀物的強度是否大於預定的強度值;以及 其中弓形元件並不接觸玻璃片之中央部份。 2. 依據申請專利範圍第i項之方法其中更進一步包含彎曲 脆性材料狀物衫蜗侃件上叹生夠f #多個弓 形元件 在脆性材料片狀物另一側上接觸片狀物。 3. 依射請專利細第i項之方法,其中弓形元件為滾轴。 4. 依财請專利細第2項之方法,其中多個弓形元件包含 多個滾軸。 5·依據申請專利棚第1項之方法其中脆性材料片狀物由 玻璃或玻璃陶瓷所構成。 6·依據申請專利細第1項之方法,其中更進-步包含利用 聲音偵測器感測在片狀物中之破裂。 7. 依據申請專利範圍第丨項之方法,其中弓形元件之曲率半 徑為小於20公分。 8. 依據申請專利範圍第i項之方法,其中片狀物塗覆聚合物 層。 9. 一種驗證測試玻璃片的方法,該方法包括 ;7008: 第15頁 1003410609-0 1358537 埤"月〆日修贫換頁 在至少一個滚軸上彎曲玻璃片以及在玻璃片表面產生張應 力對應於預定的強度值,以及在玻璃片以及至少一個滚軸之 間產生相對移動,使得玻璃片的連續部份承受張應力以偵測 玻璃片的強度是否大於預定的強度值;以及 其中至少一個滾軸並不接觸玻璃片之中央部份。 10.依據申請專利範圍第9項之方法,其中玻璃片厚度為小 於 0.4mm。_月7日修π换页10, the scope of application for patents: --- 1. - A method for verifying the measurement of the sheet, the method includes: by bending the ship material (four) on the Na element on the ship material sheet The bending of the object and the relative movement between the brittle material 4 and the arcuate element make the bending over the new material. (4) The tensile stress caused by the ridge of the brittle material in the sheet-like age of the brittle material corresponds to a predetermined intensity value. To detect whether the strength of the brittle material sheet is greater than a predetermined intensity value; and wherein the arcuate member does not contact the central portion of the glass sheet. 2. According to the method of claim i of the scope of the patent, which further comprises a curved brittle material, the sling is sighed with a plurality of bow elements. The sheet is contacted on the other side of the brittle material sheet. 3. According to the method of the patent item i, the arcuate element is a roller. 4. The method of claim 2, wherein the plurality of arcuate elements comprise a plurality of rollers. 5. According to the method of claim 1, wherein the brittle material sheet is composed of glass or glass ceramic. 6. The method of claim 1, wherein the step further comprises sensing the rupture in the sheet using a sound detector. 7. The method of claim 2, wherein the arcuate element has a radius of curvature of less than 20 cm. 8. The method of claim i, wherein the sheet is coated with a polymer layer. 9. A method of verifying a test glass sheet, the method comprising: 7008: page 15 1003410609-0 1358537 埤" 〆 〆 修 换 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少A predetermined intensity value, and a relative movement between the glass sheet and the at least one roller, such that a continuous portion of the glass sheet is subjected to tensile stress to detect whether the strength of the glass sheet is greater than a predetermined intensity value; and at least one of the rolls The shaft does not touch the central portion of the glass piece. 10. The method of claim 9, wherein the glass sheet has a thickness of less than 0.4 mm. 11·依據申請專利範圍第9項之方法,其中張應力至少為 50Mpa ° 12.依據申請專利範圍第9項之方法,其中至少一個滚轴包 含多個滾軸接觸玻璃片另一側。 13. —種驗證測試玻璃片的裝置,該裝置包括至少一個用來接 觸玻璃片以及產生玻璃片彎曲的弓形元件,其中選定至少一 個弓形元件_度摊,使· f _產生的表面張 應力對應於預定的強度值,以偵測玻璃片的強度是否大於 定的強度值;以及11. The method of claim 9, wherein the tensile stress is at least 50 MPa. 12. The method of claim 9, wherein at least one of the rollers comprises a plurality of rollers contacting the other side of the glass sheet. 13. A device for verifying a test glass sheet, the device comprising at least one arcuate member for contacting the glass sheet and for producing a curvature of the glass sheet, wherein at least one of the arcuate members is selected to provide a surface tensile stress corresponding to ·f_ At a predetermined intensity value to detect whether the strength of the glass sheet is greater than a predetermined intensity value; 其中弓形元件並不接觸玻璃片之中央部份。 14·依據t請專利麵第13項之裝置,其巾弓形元 15.依據申請專利麵第13項之裝置其中至少一個弓^ 件包含多個弓形元件。 ’ 依據φ請專利範圍第13項之裝置其中夠弓形元件肩 多個滚轴。 D96137008 1003410609-0The arcuate element does not contact the central portion of the glass sheet. 14. A device according to the thirteenth aspect of the patent, wherein the device has a plurality of arcuate members. According to the device of claim 13 wherein at least one of the bow members comprises a plurality of arcuate members. ' According to φ, please refer to the device of item 13 of the patent scope, which has a plurality of rollers on the shoulder of the arcuate member. D96137008 1003410609-0
TW96137008A 2006-10-04 2007-10-02 Method and apparatus for proof testing a sheet of TWI358537B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84929806P 2006-10-04 2006-10-04

Publications (2)

Publication Number Publication Date
TW200844423A TW200844423A (en) 2008-11-16
TWI358537B true TWI358537B (en) 2012-02-21

Family

ID=41105002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96137008A TWI358537B (en) 2006-10-04 2007-10-02 Method and apparatus for proof testing a sheet of

Country Status (2)

Country Link
CN (2) CN101542264B (en)
TW (1) TWI358537B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919205B2 (en) 2012-09-06 2014-12-30 Industrial Technology Research Institute Measuring device and operation method thereof
US9157843B2 (en) 2012-12-21 2015-10-13 Industrial Technology Research Institute Testing method of bending stress and testing apparatus thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891941B2 (en) * 2012-05-17 2016-03-23 旭硝子株式会社 Durability test method for brittle plate and durability test apparatus for brittle plate
JP5891965B2 (en) * 2012-06-18 2016-03-23 旭硝子株式会社 Durability test method for brittle plate and durability test apparatus for brittle plate
CN104619658B (en) 2012-11-13 2017-10-20 日本电气硝子株式会社 The manufacture method and manufacture device of plate glass
KR102090560B1 (en) * 2013-04-11 2020-03-19 삼성디스플레이 주식회사 Apparatus for bending and the method of bending using the same.
WO2014171247A1 (en) * 2013-04-15 2014-10-23 旭硝子株式会社 Bend-test method, sheet-article manufacturing method, bend-test device, brittle sheet, brittle sheet with element attached thereto, and electronic device
DE102014110856B4 (en) * 2014-07-31 2016-04-14 Schott Ag Method and device for determining the edge strength of disc-shaped elements made of brittle material
DE102014110855B4 (en) * 2014-07-31 2017-08-03 Schott Ag Method and device for determining the breaking strength of the edges of thin webs of brittle material
KR102275867B1 (en) * 2017-09-07 2021-07-09 주식회사 엘지에너지솔루션 Apparatus and method of evaluating brittleness of electrodes
CN107831079A (en) * 2017-12-05 2018-03-23 国网内蒙古东部电力有限公司电力科学研究院 A kind of electronic tag is counter-bending and torsional resistance test device
CN112823274A (en) * 2018-08-14 2021-05-18 康宁股份有限公司 Method and apparatus for determining crush strength of an edge
CN112629999A (en) * 2020-12-12 2021-04-09 盐城华昱光电技术有限公司 Flexible circuit board detection device and detection method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317368A (en) * 1980-07-28 1982-03-02 Mcelroy John W Acoustic emission warning system for a fiberglass member
US4346601A (en) * 1980-08-18 1982-08-31 The Post Office Testing glass fibres
CN86102352A (en) * 1986-04-02 1987-10-14 苏州丝绸工学院 Producing GFRP ply-board new technology and equipment thereof
US4862414A (en) * 1986-06-11 1989-08-29 Kuehnle Manfred R Optoelectronic recording tape or strip comprising photoconductive layer on thin, monocrystalline, flexible sapphire base
US5824127A (en) * 1996-07-19 1998-10-20 Corning Incorporated Arsenic-free glasses
EP1048628A1 (en) * 1999-04-30 2000-11-02 Schott Glas Polymer coated glassfoil substrate
JP2001060708A (en) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd Transparent laminated and glass article using it
JP2002341776A (en) * 2001-05-16 2002-11-29 Nitto Denko Corp Film-like filter for preventing glass crack and plasma display device
US6975067B2 (en) * 2002-12-19 2005-12-13 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
US7208206B2 (en) * 2003-03-10 2007-04-24 Nitto Denko Corporation Glass crack prevention laminate and liquid crystal display device
US7375795B2 (en) * 2004-12-22 2008-05-20 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919205B2 (en) 2012-09-06 2014-12-30 Industrial Technology Research Institute Measuring device and operation method thereof
US9157843B2 (en) 2012-12-21 2015-10-13 Industrial Technology Research Institute Testing method of bending stress and testing apparatus thereof

Also Published As

Publication number Publication date
CN101535039B (en) 2013-10-23
CN101535039A (en) 2009-09-16
CN101542264A (en) 2009-09-23
CN101542264B (en) 2012-03-14
TW200844423A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
TWI358537B (en) Method and apparatus for proof testing a sheet of
KR101229618B1 (en) Method and apparatus for proof testing a sheet of brittle material
JP5514302B2 (en) Carrier for glass substrate
KR101565638B1 (en) Debonding a glass substrate from carrier using ultrasonic wave
TWI409512B (en) An optical function film, and a method of manufacturing the liquid crystal display device using the same
Gunda et al. Review of mechanical characterization techniques for thin films used in flexible electronics
JP4673414B2 (en) Manufacturing method of liquid crystal display element
JP5743291B2 (en) Cutting method
WO2009087942A1 (en) Polarizer
KR20120136299A (en) Method of manufacturing liquid crystal display device and system of manufacturing liquid crystal display device
JP4878070B2 (en) Manufacturing method of liquid crystal display element
KR102043677B1 (en) Durability testing method for brittle sheet and durability testing device for brittle sheet
KR20110132655A (en) Stage for measuring strength of flat glass and appratus for measuring strength of flat glass having the stage
WO2009060923A1 (en) Polarizing plate
JP6232486B2 (en) Method for producing optical laminate
US10814603B2 (en) Methods for processing a first substrate bonded to a second substrate
JP4305267B2 (en) Thin film layer adhesion evaluation method
TWI345521B (en) Method of setting pressure loads of pressure assemblies provided in scribing apparatus
El Gowini et al. Evaluating the adhesion of SU-8 thin films using an AlN/Si surface acoustic wave sensor
KR20210103406A (en) The ultra-thin glass protects the surface of the flexible display
KR20210103405A (en) The ultra-thin glass protects the surface of the flexible display
KR20230132832A (en) Flexible stainless steel foil and flexible light-emitting device
JP2011158908A (en) Method for producing liquid crystal display element
JP2012234608A (en) Flexural strength test method and flexural strength test device of glass substrate for magnetic disk