WO2014169546A1 - 一种可调式地埋灯及该种地埋灯的角度可调节装置 - Google Patents

一种可调式地埋灯及该种地埋灯的角度可调节装置 Download PDF

Info

Publication number
WO2014169546A1
WO2014169546A1 PCT/CN2013/081484 CN2013081484W WO2014169546A1 WO 2014169546 A1 WO2014169546 A1 WO 2014169546A1 CN 2013081484 W CN2013081484 W CN 2013081484W WO 2014169546 A1 WO2014169546 A1 WO 2014169546A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipating
light source
led light
source module
heat
Prior art date
Application number
PCT/CN2013/081484
Other languages
English (en)
French (fr)
Inventor
程世友
Original Assignee
浙江晶日照明科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江晶日照明科技有限公司 filed Critical 浙江晶日照明科技有限公司
Publication of WO2014169546A1 publication Critical patent/WO2014169546A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/02Fastening of light sources or lamp holders with provision for adjustment, e.g. for focusing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/30Pivoted housings or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/73Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements being adjustable with respect to each other, e.g. hinged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a lighting appliance, in particular to an adjustable buried lamp and an angle adjustable device of the buried lamp. Background technique
  • An underground lamp disclosed in the prior art such as the buried lamp disclosed in the invention patent CN101586757A. After the buried lamp is installed, the angle of illumination is often unadjustable or needs to be reinstalled to adjust the illumination. Angle, and thus can not adapt to changes in the environment.
  • an adjustable buried lamp comprising a housing and an LED light source module, the housing being rotatably connected to the LED light source module; the buried light further comprising an angle Adjustable device; the angle adjustable device includes a steering gear power device fixed opposite to the housing, a power transmission device coupled to the steering gear power device, and the power transmission device and the LED An exit angle adjusting device between the light source modules, an intelligent control device electrically connected to the steering gear power device; the steering gear power device is a steering gear fixed to the casing through a steering gear bracket; the power transmission device a gear connected to the output end of the steering gear; the light-emitting angle adjusting device is a matching tooth disposed at a bottom of the LED light source module and intermeshing with the gear; the intelligent control device is fixed to the casing
  • the steering infrared control panel; the buried light further includes a remote control device matched with the servo infrared control panel.
  • the LED light source module is rotated by the steering gear power device, thereby adjusting the illumination angle; the setting of the remote control device is further convenient for human control.
  • the LED light source module includes a heat sink 1 having heat dissipating fins and heat dissipating fins 2 disposed in parallel and parallel to the axial direction of the LED light source module;
  • the bottom surface of the casing is provided with a mounting base, the driving power source of the buried lamp is fixed on the mounting seat, and the plurality of pieces are arranged in parallel and parallel to the axial direction of the housing.
  • the heat dissipating fins 3 are formed by the heat sink 2; each of the heat dissipating fins 3 is interposed between the adjacent heat dissipating fins 1 and the heat dissipating fins 2; the heat dissipating fins are along the axial direction of the LED light source module The length value is greater than the length of the heat dissipating fins along the axial direction of the LED light source module.
  • the LED light source module and the mounting seat are axially integrated in the housing; and the unique arrangement of the two heat sinks makes the structure of the present invention compact; the air in the inner cavity of the casing of the present invention cannot circulate with the outside atmosphere. Therefore, the heat in the inner cavity of the casing is often absorbed by the casing wall and then emitted to the outside.
  • the outer wall of the casing is provided with heat dissipating fins; the largest source of heat is the LED light source module as a light source, therefore,
  • Each of the heat dissipating fins 3 is inserted between the adjacent heat dissipating fins 1 and the heat dissipating fins 2, which is advantageous for the heat dissipating fins to absorb the heat of the fins and the fins 2, thereby dispersing as much as possible on the one hand.
  • the heat of the LED light source module also helps to reduce the heat difference between the upper and lower parts of the inner cavity of the housing, which facilitates the better dissipation of heat through the housing to the outside; at the same time, due to the flow of air in the inner cavity of the housing It is driven by the heat in the inner cavity, and the arrangement of the heat dissipating fins also contributes to the large air flow of the upper and lower parts of the inner cavity of the casing, thereby enhancing the overall air flow in the inner cavity of the casing, thereby facilitating heat dissipation.
  • the space between the two heat dissipating fins is likely to form a heat dead angle.
  • the heat source on the LED light source module as the largest heat source has a large heat, and the number of the heat dissipating fins and the heat dissipating fins 2 determine the heat dissipating effect.
  • the heat dissipating fins A length along the axial direction of the LED light source module is greater than a length of the heat dissipating fins along the axial direction of the LED light source module, so that on the one hand, the heat on the LED light source module is discharged as quickly as possible, and on the other hand
  • the heat dissipation fins are avoided; the temperature of the heat dissipating fins and the heat dissipating fins 2 should be greater than the temperature of the heat dissipating fins 3; therefore, the heat of the fins and the fins 2 can be effectively dissipated by adjacent heat.
  • the fins are three-absorbed, and the length of the heat-dissipating fins 2 adjacent to the heat-dissipating fins is shorter, so that a proper gap can be maintained between the adjacent heat-dissipating fins 3, and since the temperature on the heat-dissipating fins 3 is smaller than the heat-dissipating fins And the temperature on the heat dissipating fins 2 also makes the heat dissipation effect lower on the gap between the heat dissipating fins 3; meanwhile, since the length of the heat dissipating fins 2 between the two heat dissipating fins 3 is short, the adjacent heat dissipating fins are three A significant temperature difference is formed between the upper and lower portions of the space, thereby enhancing the air convection in the space, which is advantageous for quickly dissipating heat from the heat dissipating fins and the fins 2.
  • the compact structure of the present invention provides heat dissipation. The higher requirements,
  • the LED light source module includes a heat sink 1 having heat dissipating fins and heat dissipating fins 2 arranged side by side and parallel to the axial direction of the LED light source module; the heat dissipating fins and the heat dissipating fins a two-phase distribution; a bottom surface of the casing is provided with a mounting base, the mounting base is fixed with a driving power source of the buried lamp, and is located above the driving power source and has a plurality of laterally side by side distributions and parallel to the LED light source a heat sink 2 of the module is disposed in the axial direction of the LED light source module; the length of the heat dissipating fin 2 along the axial direction of the LED light source module is smaller than the length of the heat dissipating fin along the axial direction of the LED light source module; a sinusoidal wave shape, wherein the heat dissipating fins are cosine wave-shaped, that is, the troughs of the
  • the LED light source module and the mounting seat are axially integrated in the housing; and the unique arrangement of the two heat sinks makes the structure of the present invention compact; the air in the inner cavity of the casing of the present invention cannot circulate with the outside atmosphere. Therefore, the heat in the inner cavity of the casing is often absorbed by the casing wall and then emitted to the outside.
  • the outer wall of the casing is provided with heat dissipating fins; the largest source of heat is the LED light source module as a light source, therefore,
  • Each of the heat dissipating fins 3 is inserted between the adjacent heat dissipating fins, which is advantageous for the heat dissipating fins to absorb the heat of the heat dissipating fins and the heat dissipating fins 2, thereby dissipating the heat of the LED light source module as much as possible.
  • the heat on the LED light source module as the largest heat source is larger, and the number of heat-dissipating fins and the heat-dissipating fins 2 determine the heat-dissipating effect, therefore,
  • the length of the heat dissipating fins along the axial direction of the LED light source module is greater than the length of the heat dissipating fins along the axial direction of the LED light source module, thereby making the LED light source on the one hand
  • the heat on the module is
  • the heat on the fins and the heat dissipating fins 2 is generally higher than the heat on the heat dissipating fins 3, thereby enhancing the thermal convection between the heat sink 1 and the heat sink 2, thereby as much as possible to heat the LED light source module to the shell.
  • the cavity in the middle of the body is dissipated, thereby equalizing the heat difference between the upper and lower parts of the casing, thereby improving the heat dissipation effect.
  • the heat dissipating fins are provided with an air chamber 1 communicating with the collecting chamber, and the lateral ends of the heat dissipating fins 1 are provided with an air outlet 1 communicating with the air chamber;
  • the air dissipating fins 2 are provided with an air chamber 2 communicating with the collecting chamber, and the two lateral ends of the heat dissipating fins 2 are provided with an air outlet 2 communicating with the air chamber.
  • the above arrangement provides a channel for the lateral emission of heat on the radiator, and since the heat on the radiator is often dense, the air activity in the manifold is higher, and the sides of the two radiators are higher.
  • the cavity has less heat, so the lateral flow of the air inside the radiator is enhanced, and the side outlets are arranged, so that the cavity on one side of the radiator receives a similar "blowing" effect, and the radiator is improved.
  • the fluidity in the air in the side cavity is matched with the longitudinal flow between the radiator 1 and the radiator 2 as described above, thereby further enhancing the air circulation and the activity in the casing, thereby enabling the LED light source module to be
  • the heat can be absorbed by the rest of the casing as much as possible, and the heat absorption effect of each part of the inner wall of the casing is further improved, thereby improving the heat dissipation efficiency in the casing.
  • the inner wall of the collecting chamber is provided with an air inlet port that communicates with the air chamber and has a longitudinal direction parallel to the axial direction of the LED light source module; the inner wall of the collecting chamber is provided with the The gas chamber is two-way and the length direction is parallel to the air inlet port 2 of the LED light source module; the air inlet is located farther away from the valley or peak of the heat collecting fin on the collecting chamber where the air inlet is located
  • One side has a blocking piece 1 having a longitudinal direction parallel to the axial direction of the LED light source module, and the blocking piece is flat The surface is equal to the distance between the trough or the peak on the heat dissipating fin of the baffle; the air inlet 2 is farther away from the trough or peak of the heat dissipating fin 2 in the collecting cavity where the air inlet is located
  • the side has a blocking piece 2 whose longitudinal direction is parallel to the axial direction of the LED light source module, and the distance between the plane of the blocking piece 2 and the trough or peak on
  • the arrangement of the air inlet does not affect the longitudinal circulation of the hot air, and the cutting piece is disposed on the one hand to cut the hot air flowing in the lateral direction, so as not to affect the hot air located outside the corresponding air inlet.
  • Lateral circulation on the other hand, the circulation of hot air at the air inlet in the direction of the heat dissipating fins to the heat dissipating fins 2 or in the direction of the heat dissipating fins 2 to the heat dissipating fins 1 is hindered, thereby reinforcing the air inlets
  • the airflow intensity is further increased in the airflow intensity of the air outlet, thereby further enhancing the air flowability in the casing, which is advantageous for further improving the heat dissipation effect.
  • the LED light source module includes an LED aluminum substrate fixed to the heat sink 1 , a reflector disposed on the LED aluminum substrate, a stable panel for fixing the reflector, and a flat lens on an upper end surface of the reflector, and an anti-glare panel disposed above the stabilization panel.
  • the LED aluminum substrate is an LED aluminum substrate with an LED light source lens formed by integrating materials such as an aluminum plate, an optical lens and an LED chip.
  • the LED lamp beads on the LED substrate are often dense, so that the heat of the LED light source module is large, so The heat dissipation requirement is high, and the heat dissipation in the prior art is often very good; however, in combination with the heat dissipation structure of the present invention, the heat of the LED light source module of the present invention can be better even if it is larger and denser.
  • the housing has a step above the LED light source module, and the step is provided with a light-transmissive panel having a stepped edge; the edge of the transparent panel is provided with a sealing ring. And the sealing ring has a recess for covering the edge of the transparent panel; the step of the transparent panel is further provided with a pressing plate pressed against the sealing ring; and the upper surface of the pressing plate is The upper surface of the light transmissive panel is in the same plane; the housing is provided with a cable binding post; and the housing is provided with a protective shell under the pressing plate; and the outer diameter of the protective shell is smaller than the The outer diameter of the pressure plate.
  • the flat lens surface has a plurality of spherical transparent protrusions;
  • the anti-glare panel has a tapered hole corresponding to each of the reflective cups, and the inner diameter of the tapered hole is along The direction of the LED light source module to the housing gradually becomes smaller, and the taper is 3-5 degrees.
  • the arrangement of the spherical transparent protrusions is advantageous for diffuse reflection and has an anti-glare effect; the depth of the tapered holes is preferably 5-6 cm.
  • the housing is provided with an angle ruler; the LED light source module is provided with a pointer that cooperates with the angle ruler to facilitate recognition of the rotation angle of the LED light source module.
  • Another object of the present invention is to provide an angle adjustable device for a buried lamp, comprising an intelligent control device, the intelligent control device is connected with a power source at one end, and the other end is connected with a steering gear power device disposed in the buried lamp.
  • the steering gear power unit is connected with a light angle adjusting device, and the light angle adjusting device is connected to the LED light source module.
  • the present invention has the following beneficial effects:
  • the present invention has a simple structure and is easy to implement; it is advantageous for artificially adjusting the illumination angle of the lamp body without reinstalling the present invention, and the present invention also has excellent heat dissipation. The effect is better because the good heat dissipation effect of the invention is beneficial to improve the power of the buried lamp of the invention, even up to 80-100w.
  • Embodiment 1 is a schematic diagram of the principle of Embodiment 1;
  • Figure 2 is a front elevational view of Embodiment 1;
  • Figure 3 is an internal perspective view of Embodiment 1;
  • Embodiment 4 is a schematic structural view of a light control cylinder in Embodiment 1;
  • Figure 5 is a left side view of Embodiment 1;
  • Figure 6 is a schematic exploded view of the structure of Embodiment 2.
  • Figure 7 is a schematic view showing the rotational connection of the lamp body and the steel ring in Embodiment 2;
  • FIG. 8 is a schematic view showing a combined structure of an aluminum substrate, a stabilizing panel, and an anti-glare panel in Embodiment 2;
  • Figure 9 is a schematic view of a reflector and a flat lens in Embodiment 2.
  • Figure 10 is a schematic structural view of a stable panel in Embodiment 2.
  • FIG. 11 is a schematic structural view of an anti-glare panel in Embodiment 2;
  • FIG. 12 is a schematic structural view of a heat sink 1 and a heat sink 2 in Embodiment 3;
  • Figure 13 is a plan view showing the planar structure of the heat dissipating fins 1 and the heat dissipating fins 2 in the embodiment 3;
  • Figure 14 is a schematic view showing the structure of the air outlet 1 and the air inlet on the heat dissipating fin 1 in Embodiment 3;
  • Figure 15 is a schematic view showing the structure of the air outlet 2 and the air inlet 2 on the heat dissipating fin 2 in the embodiment 3;
  • Figure 16 is a schematic view showing the structure of the flap 1 and the flap 2 in the embodiment 3;
  • Figure 17 is an enlarged schematic view of a portion A in Figure 16;
  • Figure 18 is an enlarged schematic view of a portion B of Figure 16.
  • Embodiment 1 An angle adjustable device on an underground lamp, as shown in FIG. 1 to FIG. 5, includes an intelligent control device, and the intelligent control device is connected with a power source at one end and a rudder disposed at the buried lamp at the other end.
  • the power unit is connected, and the steering gear power unit is connected with a light angle adjusting device.
  • the light angle adjusting device is connected with a power transmission device, and the power transmission device is connected to the LED light source module.
  • the buried lamp comprises a casing 1 , and an LED light source module 2 is rotatably connected in the casing 1 , and a steering gear power device and a steering gear 4 (also a motor) are fixed in the casing 1 via the steering gear bracket 3 .
  • the power transmission device is a gear 5 connected to the output end of the steering gear 4, and the output end of the steering gear 4 is connected to the light exit angle adjusting device fixed at the bottom of the LED light source module 2 via the gear 5, and the light exit angle adjusting device is disposed at
  • the matching teeth 6 at the bottom of the LED light source module 2, the gear 5 and the mating teeth 6 mesh with each other;
  • the intelligent control device is a servo infrared control board 7 fixed in the housing 1, and the servo infrared control board 7 is also Correspondingly, a remote control device 8 is provided.
  • the LED light source module 2 is provided with a decorative cover 9 .
  • the cover of the decorative cover 9 is mounted on the fixed base 10 of the housing 1 , and the LED light source module 2 is rotatably connected under the decorative cover 9 .
  • the height of the decorative cover 9 is 65 mm; a light control cylinder 11 is further disposed above the LED light source module 2, the light control cylinder 11 includes a cylinder 12, and the cylinder 12 is provided with a plurality of LED light sources.
  • the position of the block 13 corresponds to the through hole 14 , and the lower portion of the through hole 14 is provided with a lens 15 ; the lower side of the LED light source module 2 is provided with a heat sink 16 , and the outer casing 17 and the heat sink of the LED light source module 2 16 is a die-cast unitary structure; an angle ruler 18 is fixed below the decorative cover 9.
  • Embodiment 2 An adjustable buried lamp includes a casing 1 having an upper portion having a step 201 and a flange 202.
  • the bottom surface of the casing 1 is fixedly provided with a mounting seat 19, and the middle portion of the mounting seat 19 is provided
  • the driving power source 191 is provided with a supporting plate 193 on each side of the mounting seat 19, a heat sink 192 on the supporting plate 193, and a plurality of heat dissipating fins three 1921.
  • a steel ring 30 having a taper is fixed on the upper portion of the housing 1 , and a scale 301 is disposed on the inner wall of the steel ring 30 .
  • the LED light source module 2 is rotatably connected to the steel ring 30 , and the LED light source module 2 includes a rotating connection with the steel ring 30 .
  • the heat sink one 21 and the LED aluminum substrate 22 fixed on the heat sink one 21, the LED aluminum substrate 22 is an LED aluminum substrate 22 with an LED light source lens formed by integrating materials such as an aluminum plate, an optical lens and an LED chip.
  • the LED aluminum substrate 22 is provided with a reflector cup 23 disposed for each LED lamp bead, and a flat lens 25 is disposed on the reflector cup 23, and the surface of the flat lens 25 has a plurality of spherical transparent projections, and the projections should be relatively Dense, the height of the protrusion should be between l-2mm, and the protrusion is mostly hemispherical, the light-transmitting protrusion is not shown in the figure; the LED aluminum substrate 22 is also provided with a stable for stabilizing the reflector 23
  • the panel 24 is further provided with an anti-glare panel 26 on the stabilizing panel 24; the anti-glare panel 26 has a tapered hole 261 corresponding to each of the reflector cups 23, and the inner diameter of the tapered hole 261 is along the LED light source module 2 to the housing 1. The direction is gradually smaller, and the taper is 3-5 .
  • a steering gear 4 and a steering gear capable of controlling the start and stop and/or start duration of the steering gear 4 are also fixedly attached to the side wall of the steel ring 30.
  • the infrared control board 7 is fixedly connected with a gear 5 on the output shaft of the steering gear 4, and the matching tooth 6 meshing with the gear 5 is fixedly connected to the radiator one 21, and the remote control device, the remote control device and the steering gear are also included in this embodiment.
  • the infrared control board 7 is connected by a wireless signal so that the steering infrared control panel 7 can be controlled to start and stop and/or start the duration of the servo 4 by operating the remote control device, which is not shown in Figs. 6-11.
  • the heat sink one 21 has heat dissipating fins 211 and fins 212 parallel to the axial direction of the LED light source module 2; the heat dissipating fins 211 and the heat dissipating fins 212 are arranged between the two; the heat dissipating fins three 1921 are also arranged in parallel with each other.
  • each of the heat dissipating fins 3192 is inserted between the adjacent heat dissipating fins 211 and the heat dissipating fins 212; and adjacent heat dissipating fins 211 and fins 212, the fins
  • the length of the 211 along the axial direction of the LED light source module 2 is greater than the length of the heat dissipating fins 212 along the axial direction of the LED light source module 2.
  • a heat dissipating fins 41 are provided on the outer wall of the casing 1 corresponding to the driving power source 191, and a cable terminal 32 electrically connected to the driving power source 191 is disposed near the heat dissipating fins 41.
  • An angle rule 18 is also fixed to the side wall of the steel ring 30, and a pointer 181 for matching the angle ruler 18 to recognize the rotation angle of the LED light source module 2 is further disposed on the heat sink 21.
  • a protective shell 34 is further disposed outside the casing 1.
  • the protective shell 34 has a flange 341, and the flange 341 is located below the flange 202.
  • the step 201 is provided with a light-transmissive panel 35 having a stepped edge.
  • the edge of the panel 35 is also covered with a sealing ring 351.
  • the transparent panel 35 is generally tempered glass.
  • the sealing ring 351 has a recess for covering the edge of the transparent panel 35.
  • the step of the transparent panel 35 is also provided with a pressure.
  • the pressing plate 352 of the sealing ring 351 is disposed, and the upper surface of the pressing plate 352 is in the same plane as the upper surface of the transparent plate 35.
  • the pressing plate 352 is provided with a screw, and the flange 202, the flange 341 and the pressing plate 352 are screwed.
  • the fastening connection is; and the outer diameter of the protective casing 34 is smaller than the outer diameter of the pressure plate 352.
  • Embodiment 3 The difference from Embodiment 2, as shown in FIG. 12-18, the heat dissipating fin 211 is sinusoidal, and the heat dissipating fin 212 is cosine wave, that is, the trough of the heat dissipating fin 211 and the heat dissipating fin 212.
  • the trough is opposite; and the trough of the fins 211 and the troughs of the fins 212 form a collecting chamber 213 whose space gradually decreases from the central portion to the both sides; in order to facilitate the rotation of the LED light source module 2, the heat dissipating fins 1921 are located
  • the portion between the adjacent heat dissipating fins 211 and between the adjacent heat dissipating fins 211 is curved.
  • An air chamber 1 communicating with the collecting chamber 213 is disposed in the heat dissipating fin 211, and two air outlets are connected to the air chamber at two lateral ends of the heat dissipating fin 211; the heat dissipating fins 212 are provided and collected
  • the inner wall of the collecting chamber 213 is provided with an air inlet port 2113 which is in communication with the air chamber and has a longitudinal direction parallel to the axial direction of the LED light source module 2; the inner wall of the collecting chamber 213 is provided with the air chamber 2 and the length direction is parallel to the LED light source module.
  • the air inlet 2113 is farther away from the air inlet 2113, and the side of the valley or peak on the heat dissipating fin 211 has a length direction parallel to the axis of the LED light source module 2
  • the facing piece 21131, the plane of the blocking piece 21131 The distance between the trough or the peak on the heat dissipating fin 211 of the baffle 21131 is equal; the air inlet 2123 is farther away from the trough or crest of the heat dissipating fin 212 on the collecting cavity 213 of the air inlet 2123.
  • One side has a blocking piece 21231 whose length direction is parallel to the axial direction of the LED light source module 2, and the distance between the plane of the blocking piece 21231 and the trough or peak on the heat dissipating fin 212 of the blocking piece 21231 is equal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

公开了一种可调式地埋灯及该种地埋灯的角度可调装置。可调式地埋灯包括壳体(1)、LED光源模块(2)及角度可调装置,壳体(1)与LED光源模块(2)可转动连接;角度可调装置包括与壳体相对固定的舵机动力装置(4)、连接于舵机动力装置的动力传导装置(5)、连接于动力传导装置(5)与LED光源模块(2)之间的出光角度调节装置、电连接于舵机动力装置(4)的智能控制装置。可调式地埋灯便于调节发光角度,可适应环境变化,满足客户需求。

Description

一种可调式地埋灯及该种地埋灯的角度可调节装置 技术领域
本发明涉及一种照明用具,特别涉及一种可调式地埋灯及该种地埋灯的角度可调节装置。 背景技术
现有技术中的地埋灯, 如公开号为 CN101586757A的发明专利所公开的一种地埋灯, 该种 地埋灯在安装好后, 其发光的角度往往不可调节或需重新安装以调节发光角度, 从而不能适 应环境的变化。
发明内容
本发明的目的是提供一种可调式地埋灯, 其能够便于调节发光角度, 适应环境的变化, 满足客户需求。
本发明的上述技术目的是通过以下技术方案得以实现的: 一种可调式地埋灯, 包括壳体 与 LED光源模块, 所述壳体与 LED光源模块转动连接; 该种地埋灯还包括角度可调装置; 所 述角度可调装置包括与所述壳体相对固定的舵机动力装置、 连接于所述所述舵机动力装置 的动力传导装置、 连接于所述动力传导装置与所述 LED光源模块之间的出光角度调节装置、 电连接于所述舵机动力装置的智能控制装置; 所述舵机动力装置为通过舵机支架固定于所述 壳体的舵机; 所述动力传导装置为与所述舵机输出端相连的齿轮; 所述出光角度调节装置为 设置于所述 LED光源模块底部且与所述齿轮相互啮合的配合齿; 所述智能控制装置为固定于 所述壳体的舵机红外控制板; 该种地埋灯还包括与所述舵机红外控制板配合的遥控装置。
通过对智能控制装置的操作, 从而通过舵机动力装置转动 LED光源模块, 进而调整发光 角度; 遥控装置的设置进一步便于人为控制。
作为本发明的优选, 所述 LED光源模块包括具有平行设置且都平行于所述 LED光源模块 轴向的散热翅一与散热翅二的散热器一; 所述散热翅一与所述散热翅二相间分布; 所述壳体 底面设有安装座, 所述安装座上固定有该种地埋灯的驱动电源及位于所述驱动电源上方的由 多片平行设置且平行于所述壳体轴向的散热翅三构成的散热器二; 每片所述散热翅三都插于 相邻的所述散热翅一与所述散热翅二之间; 所述散热翅一沿所述 LED光源模块轴向的长度值 大于所述散热翅二沿所述 LED光源模块轴向的长度值。
上述设置, 可见 LED光源模块与安装座轴向设置集成于壳体内; 更由于两个散热器的独 特设置, 使得本发明结构较为紧凑; 本发明的壳体内腔中的空气与外界大气无法流通, 因此 壳体内腔中的热量往往是由壳体壁吸收后再散发于外界, 作为优选, 还可以在壳体外壁上设 有散热翅; 热量的最大来源则是作为光源的 LED光源模块, 因此, 每片所述散热翅三都插于 相邻的散热翅一与散热翅二之间的设置,有利于散热翅三吸收散热翅一及散热翅二上的热量, 从而一方面尽可能地散去 LED光源模块的热量, 另一方面也有利于减小壳体内腔内上下部分 的热量差, 利于热量更好地通过壳体散发至外界; 同时, 由于壳体内腔中的空气的流动主要 是由内腔中的热量所带动, 散热翅的设置, 也有利于使壳体内腔的上下部都产生较大的空气 流动性, 从而加强壳体内腔中整体的空气流动性, 以更利于散热; 同时, 由于壳体内腔中的 空气流动性毕竟不强, 若两个散热翅之间的间隙太小, 而散热翅本身热量又较大的话, 此两 散热翅之间的空间易形成散热死角; 而作为最大热源的 LED光源模块上的热量较大, 散热翅 一及散热翅二的数量又决定了其散热的效果, 因此, 在相邻所述散热翅一及散热翅二中, 散 热翅一沿所述 LED光源模块轴向的长度值大于散热翅二沿所述 LED光源模块轴向的长度值, 从而一方面使 LED光源模块上的热量尽可能地被快速排出,另一方面尽可能地避免散热死角; 由于散热翅一及散热翅二的温度应大于散热翅三的温度; 因此, 散热翅一及散热翅二上的热 量能有效被相邻的散热翅三吸收, 且与该散热翅三相邻的散热翅二长度较短, 从而使相邻的 散热翅三之间的能保持较合适的间隙, 且由于散热翅三上的温度小于散热翅一及散热翅二上 的温度, 也使得散热效果对散热翅三之间的间隙要求较低; 同时, 由于位于两个散热翅三之 间的散热翅二长度较短, 使得相邻散热翅三之间的空间的上下部分之间形成明显的温差, 从 而加强了此空间的空气对流, 有利于快速地将散热翅一及散热翅二上的热量散发; 本发明这 种紧凑结构虽然对散热提出了较高的要求, 但是, 也正是由于这种紧凑结构带来的散热器设 置结构, 使得本发明具有良好的散热效果。
作为本发明的优选, 所述 LED光源模块包括具有横向并排分布且都平行于所述 LED光源 模块轴向的散热翅一及散热翅二的散热器一; 所述散热翅一与所述散热翅二相间分布; 所述 壳体底面设有安装座, 所述安装座上固定有该种地埋灯的驱动电源及位于所述驱动电源上方 并具有多片横向并排分布且平行于所述 LED光源模块轴向的散热翅三的散热器二; 所述散热 翅二沿所述 LED光源模块轴向的长度小于所述散热翅一沿所述 LED光源模块轴向的长度; 所 述散热翅一呈正弦波状, 所述散热翅二呈余弦波状, 即散热翅一的波谷与所述散热翅二的波 谷相对; 且所述散热翅一的波谷与散热翅二的波谷之间形成空间大小由中部向两侧逐渐变小 的集流腔; 所述散热翅三位于相邻散热翅一之间且位于相邻散热翅一之间的部分呈弧状。
上述设置, 可见 LED光源模块与安装座轴向设置集成于壳体内; 更由于两个散热器的独 特设置, 使得本发明结构较为紧凑; 本发明的壳体内腔中的空气与外界大气无法流通, 因此 壳体内腔中的热量往往是由壳体壁吸收后再散发于外界, 作为优选, 还可以在壳体外壁上设 有散热翅; 热量的最大来源则是作为光源的 LED光源模块, 因此, 每片所述散热翅三都插于 相邻散热翅一之间的设置, 有利于散热翅三吸收散热翅一及散热翅二上的热量, 从而一方面 尽可能地散去 LED光源模块的热量, 另一方面也有利于减小壳体内腔内上下部分的热量差, 利于热量更好地通过壳体散发至外界; 同时, 由于壳体内腔中的空气的流动主要是由壳体内 腔中的热量所带动, 散热翅的设置, 也有利于使壳体内腔的上下部都产生较大的空气流动性, 从而加强壳体内腔中整体的空气流动性, 以更利于散热; 同时, 由于壳体内腔中的空气流动 性毕竟不强, 若两个散热翅之间的间隙太小, 而散热翅本身热量又较大的话, 此两散热翅之 间的空间易形成散热死角; 而作为最大热源的 LED光源模块上的热量较大, 散热翅一及散热 翅二的数量又决定了其散热的效果, 因此, 在相邻所述散热翅一及散热翅二中, 散热翅一沿 所述 LED光源模块轴向的长度值大于散热翅二沿所述 LED光源模块轴向的长度值, 从而一方 面使 LED光源模块上的热量尽可能地被快速排出, 另一方面尽可能地避免散热死角; 由于散 热翅一及散热翅二的温度应大于散热翅三的温度; 因此, 散热翅一及散热翅二上的热量能有 效被相邻的散热翅三吸收, 也使得散热效果对散热翅三之间的间隙要求较低, 从而使相邻的 散热翅三之间的能保持较合适的间隙; 同时, 由于散热翅二长度较散热翅一长度较短, 使得 相邻散热翅三之间的空间的上下部分之间形成明显的温差, 从而加强了此空间的空气对流, 有利于快速地将散热翅一及散热翅二上的热量散发; 更由于散热翅一呈正弦波状, 而散热翅 二呈余弦波状, 从而增加了散热翅的有效作用面积, 进一步有利于提高吸收来自 LED光源模 块的热量的效率, 且由于散热翅一及散热翅二形状的特殊设计, 使得处于集流腔中的热量的 横向流通受到一定阻碍, 进而加强了集流腔中的纵向流通, 而又由于散热翅一及散热翅二的 上的热量一般都高于散热翅三上的热量, 从而加强了散热器一与散热器二之间的热对流, 从 而尽可能地将 LED光源模块上的热量向壳体中部的空腔散发, 从而均衡壳体内上下部的热量 差, 提高散热效果。
作为本发明的优选, 所述散热翅一内设有与所述集流腔相通的气腔一, 所述散热翅一的 横向两侧端设有与所述气腔一相通的出气口一; 所述散热翅二内设有与所述集流腔相通的气 腔二, 所述散热翅二的横向两侧端设有与所述气腔二相通的出气口二。
上述设置, 为散热器一上的热量的横向散发提供了通道, 且由于散热器一上的热量往往 较为密集, 从而使得集流腔中的空气活跃度较高, 更由于两个散热器侧边空腔的热量较少, 因此, 加强了散热器一内空气的横向流通性, 侧出气口的设置, 使得散热器一侧边的空腔受 到类似 "吹气" 的效果, 提高了散热器一侧边空腔中空气中流动性, 从而配合散热器一与散 热器二之间如上所述的纵向流通性, 进一步使壳体内的空气流通性及活跃性得到有效加强, 从而使 LED光源模块上的热量能尽可能地被壳体内其余部分所吸收, 也进一步提高壳体内壁 每一处的吸热效果, 从而提高壳体内热量的散发效率。
作为本发明的优选, 所述集流腔内壁设有与所述气腔一相通且长度方向平行于所述 LED 光源模块轴向的进气口一;所述集流腔内壁设有与所述气腔二相通且长度方向平行于所述 LED 光源模块轴向的进气口二; 所述进气口一较远离该进气口所在集流腔位于所述散热翅一上的 波谷或波峰的一侧具有长度方向平行于所述 LED光源模块轴向的挡片一, 所述挡片一所在平 面与该挡片一所在散热翅一上的波谷或波峰之间的距离相等; 所述进气口二较远离该进气口 所在集流腔位于所述散热翅二上的波谷或波峰的一侧具有长度方向平行于所述 LED光源模块 轴向的挡片二, 所述挡片二所在平面与该挡片二所在散热翅二上的波谷或波峰之间的距离相 等。 进气口的设置既不影响热空气的纵向流通, 更由于挡片的设置, 一方面对位于对横向流 通的热空气起到切割作用, 从而并不会影响位于相应进气口外的热空气的横向流通, 另一方 面却使处于进气口处的热空气在沿散热翅一至散热翅二的方向上或沿散热翅二至散热翅一的 方向上的流通受到阻碍, 从而加强进气口的气流流通强度, 进而有种于提高出气口的气流流 通强度, 从而进一步加强壳体内的空气流通性, 有利于进一步提高散热效果。
作为本发明的优选, 所述 LED光源模块包括固设于所述散热器一的 LED铝基板、 设于所 述 LED铝基板上的反光杯、 用于固定所述反光杯的稳固面板、 设于所述反光杯上端面的平透 镜、 设于所述稳固面板上方的防炫光面板。
LED铝基板是由铝板、 光学透镜和 LED芯片等材质整合在一起而形成的自带 LED光源透 镜的 LED铝基板, 其上的 LED灯珠往往较为密集, 使得 LED光源模块上热量较大, 因此, 散 热要求较高, 现有技术中的散热往往很较; 然而结合本发明前述散热结构, 使得本发明 LED 光源模块的热量即使较大且较密集, 也能得到较好的散热效果。
作为本发明的优选, 所述壳体上位于所述 LED光源模块上方处具有台阶, 且所述台阶上 设有边缘呈台阶状的透光面板; 所述透光面板的边缘设有密封圈, 且所述密封圈具有用于包 覆所述透光面板边缘的凹口; 所述透光面板的台阶处还设有压紧于所述密封圈的压板; 且所 述压板的上表面与所述透光面板的上表面处于同一平面; 所述壳体上设有电缆接线柱; 且所 述壳体外套设有位于所述压板下方的保护壳; 且所述保护壳的外径小于所述压板的外径。
作为本发明的优选, 所述平透镜表面具有多个球面状透光凸起; 所述防炫光面板具有与 每个所述反光杯对应设置的锥孔, 所述锥孔的内径沿所述 LED光源模块至所述壳体方向逐渐 变小, 且锥度为 3-5度。
球面状透光凸起的设置, 有利于发生漫反射, 具有防炫光的作用; 锥孔的深度优选为 5_6cm。
作为本发明的优选, 所述壳体上设有角度尺; 所述 LED光源模块上设有配合所述角度尺 以便于识别所述 LED光源模块转动角度的指针。
本发明的另一目的还在于提供一种地埋灯上的角度可调装置, 包括一智能控制装置, 智 能控制装置一端连接有电源, 另一端与设置在地埋灯内的舵机动力装置连接, 舵机动力装置 连接有一出光角度调节装置, 出光角度调节装置与 LED光源模块相连。 综上所述, 本发明具有以下有益效果: 本发明结构简单, 易于实施; 有利于在不重新安 装本发明的情况下, 便于人为调节灯体的发光角度, 同时本发明还具有优良地的散热效果; 更由于本发明良好的散热效果, 有利于提高本发明地埋灯的功率, 甚至达至 80-100w。
附图说明
图 1是实施例 1的原理示意图;
图 2是实施例 1的主视图;
图 3是实施例 1的内部立体图;
图 4是实施例 1中控光筒的结构示意图;
图 5是实施例 1左视图;
图 6是实施例 2结构分解示意图;
图 7是实施例 2中灯体与钢圈的转动连接示意图;
图 8是实施例 2中铝基板、 稳固面板及防炫光面板组合结构示意图;
图 9是实施例 2中反光杯及平透镜示意图;
图 10是实施例 2中稳固面板结构示意图;
图 11是实施例 2中防炫光面板结构示意图;
图 12是实施例 3中散热器一与散热器二结构示意图;
图 13是实施例 3中散热翅一与散热翅二的平面结构示意图;
图 14是实施例 3中散热翅一上的出气口一与进气口一结构示意图;
图 15是实施例 3中散热翅二上的出气口二与进气口二结构示意图;
图 16是实施例 3中挡片一与挡片二的结构示意图;
图 17是图 16中 A部放大示意图;
图 18是图 16中 B部放大示意图。
图中, 1、 壳体, 2、 LED光源模块, 3、 舵机支架, 4、 舵机, 5、 齿轮, 6、 配合齿, 7、 舵机 红外线控制板, 8、 遥控装置, 9、 装饰盖, 10、 固定台, 11、 控光筒, 12、 筒体, 13、 发光 芯片块, 14、 通孔, 15、 透镜, 16、 散热片, 17、 外壳, 18、 角度尺; 201、 台阶, 32、 电缆 接线柱, 202、 翻边一, 30、 钢圈, 301、 刻度, 31、 散热翅四, 21、 散热器一, 211、 散热翅 一, 181、 指针, 22、 LED铝基板, 23、 反光杯, 24、 稳固面板, 25、 平透镜, 26、 防炫光面 板, 261、 锥孔, 19、 安装座, 191、 驱动电源, 192、 散热器二, 1921、 散热翅三, 193、 支 撑板, 35、 透光面板, 351、 密封圈, 352、 压板, 34、 保护壳, 341、 翻边二, 212、 散热翅 二, 213、 集流腔, 2112、 出气口一, 2122、 出气口二, 2113、 进气口一, 2123、 进气口二, 21131、 挡片一, 21231、 挡片二。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本具体实施例仅仅是对本发明的解释, 其并不是对本发明的限制, 本领域技术人员在阅 读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改, 但只要在本发明的权 利要求范围内都受到专利法的保护。
实施例 1 : 一种地埋灯上的角度可调装置, 如图 1至图 5所示, 包括一智能控制装置, 智能控制装置一端连接有电源, 另一端与设置在地埋灯内的舵机动力装置连接, 舵机动力装 置连接有一出光角度调节装置, 出光角度调节装置连接有一动力传导装置, 动力传导装置与 LED光源模块相连。
所述的地埋灯包括一壳体 1, 壳体 1内转动连接一 LED光源模块 2, 壳体 1内经舵机支架 3固定一舵机动力装置一舵机 4 (也用电机),所述的动力传导装置为与舵机 4输出端相连的齿 轮 5,舵机 4的输出端经齿轮 5与固定在 LED光源模块 2底部的出光角度调节装置连接, 所述 的出光角度调节装置为设置在 LED光源模块 2底部的配合齿 6, 所述的齿轮 5与配合齿 6相 互啮合;所述的智能控制装置为固定在壳体 1 内的舵机红外线控制板 7,舵机红外线控制板 7 还对应连接一与其配合的遥控装置 8 ;所述的 LED光源模块 2上方设有一装饰盖 9, 装饰盖 9 的盖沿架设在壳体 1的固定台 10,装饰盖 9下方转动连接 LED光源模块 2 ;所述的装饰盖 9的 高度为 65mm ;所述的 LED光源模块 2上方还设有一控光筒 11, 所述的控光筒 11包括筒体 12, 筒体 12上设有若干与 LED光源模块 2的发光芯片块 13的位置对应的通孔 14, 通孔 14的下 部设有透镜 15 ;所述的 LED光源模块 2的下方设有散热片 16, 且所述的 LED光源模块 2的外 壳 17与散热片 16为压铸成一体的整体结构;所述的装饰盖 9的下方固定有一角度尺 18。
实施例 2: —种可调式地埋灯, 包括壳体 1, 壳体 1的上部具有台阶 201及翻边一 202, 壳体 1的底面固定设有安装座 19, 安装座 19的中部设有驱动电源 191, 在安装座 19的两侧 分别设有支撑板 193,在支撑板 193上设有散热器二 192,散热器二 192由多片散热翅三 1921 构成。
壳体 1上部固定设有具有锥度的钢圈 30, 且在钢圈 30的内壁上设有刻度 301, 钢圈 30 上转动连接有 LED光源模块 2, LED光源模块 2包括与钢圈 30转动连接的散热器一 21及固定 于散热器一 21的 LED铝基板 22, LED铝基板 22是由铝板、 光学透镜和 LED芯片等材质整合 在一起而形成的自带 LED光源透镜的 LED铝基板 22, LED铝基板 22上设有针对每个 LED灯珠 设置的反光杯 23,在反光杯 23上设有平透镜 25,平透镜 25的表面具有多个球面的透光凸起, 这些凸起应较为密集, 凸起的高度应在 l-2mm之间, 且凸起多为半球面状, 透光凸起在图中 未示出; 在 LED铝基板 22上还设有用于稳固反光杯 23的稳固面板 24, 在稳固面板 24上还 设有防炫光面板 26; 防炫光面板 26具有与每个反光杯 23对应设置的锥孔 261, 锥孔 261的 内径沿 LED光源模块 2至壳体 1方向逐渐变小, 且锥度为 3-5度。
在钢圈 30的侧壁还固定连接有舵机 4及能够控制舵机 4启停和 /或启动持续时间的舵机 红外控制板 7, 在舵机 4的输出轴上固定连接有齿轮 5, 在散热器一 21上固定连接有与齿轮 5啮合的配合齿 6, 本实施例还包括遥控装置, 遥控装置与舵机红外控制板 7之间无线信号连 接, 从而可通过操作遥控装置以使舵机红外控制板 7控制舵机 4启停和 /或启动持续时间, 遥 控装置在图 6-11中未示出。
散热器一 21具有平行设置且都平行于所述 LED光源模块 2轴向的散热翅一 211与散热翅 二 212; 散热翅一 211与散热翅二 212相间分布; 散热翅三 1921也相互平行设置且平行于壳 体 1轴向; 每片散热翅三 1921都插于相邻的散热翅一 211及散热翅二 212之间; 且相邻散热 翅一 211及散热翅二 212中,散热翅一 211沿 LED光源模块 2轴向的长度值大于散热翅二 212 沿 LED光源模块 2轴向的长度值。
在壳体 1外壁上对应于驱动电源 191处设有散热翅四 31, 在散热翅四 31附近设有与驱 动电源 191电连接的电缆接线柱 32。
在钢圈 30的侧壁还固定有角度尺 18, 在散热器一 21上还设有配合角度尺 18以便于识 别 LED光源模块 2转动角度的指针 181。
在壳体 1外还套有保护壳 34, 保护壳 34具有翻边二 341, 翻边二 341位于翻边一 202下 方,在台阶 201上设有边缘呈台阶状的透光面板 35,透光面板 35的边缘还包覆有密封圈 351, 透光面板 35—般为钢化玻璃, 密封圈 351具有用于包覆透光面板 35边缘的凹口, 透光面板 35的台阶处还设有压紧于密封圈 351的压板 352,且压板 352的上表面与透光面板 35的上表 面处于同一平面; 压板 352上设有螺钉, 且通过螺钉将翻边一 202、 翻边二 341及压板 352 紧固连接; 且保护壳 34的外径小于压板 352的外径。
实施例 3: 与实施例 2的不同之处, 如图 12-18所示, 散热翅一 211呈正弦波状, 散热 翅二 212呈余弦波状, 即散热翅一 211的波谷与散热翅二 212的波谷相对; 且散热翅一 211 的波谷与散热翅二 212的波谷之间形成空间大小由中部向两侧逐渐变小的集流腔 213; 为便 于 LED光源模块 2的转动, 散热翅三 1921位于相邻散热翅一 211之间且位于相邻散热翅一 211之间的部分呈弧状。
散热翅一 211内设有与集流腔 213相通的气腔一, 散热翅一 211的横向两侧端设有与气 腔一相通的出气口一 2112; 散热翅二 212内设有与集流腔 213相通的气腔二, 散热翅二 212 的横向两侧端设有与气腔二相通的出气口二 2122。
集流腔 213 内壁设有与气腔一相通且长度方向平行于 LED光源模块 2轴向的进气口一 2113; 集流腔 213内壁设有与气腔二相通且长度方向平行于 LED光源模块 2轴向的进气口二 2123; 进气口一 2113较远离该进气口 2113所在集流腔 213位于散热翅一 211上的波谷或波 峰的一侧具有长度方向平行于 LED光源模块 2轴向的挡片一 21131, 挡片一 21131所在平面 与该挡片一 21131所在散热翅一 211上的波谷或波峰之间的距离相等;进气口二 2123较远离 该进气口 2123所在集流腔 213位于散热翅二 212上的波谷或波峰的一侧具有长度方向平行于 LED光源模块 2轴向的挡片二 21231,挡片二 21231所在平面与该挡片二 21231所在散热翅二 212上的波谷或波峰之间的距离相等。

Claims

WO 2014/169546 权 要 求 书 PCT/CN2013/081484
1、 一种可调式地埋灯, 包括壳体(1)与 LED光源模块(2), 其特征在于, 所述壳体(1) 与 LED光源模块(2)转动连接; 该种地埋灯还包括角度可调装置; 所述角度可调装置包括与 所述壳体 (1) 相对固定的舵机动力装置、 连接于所述所述舵机动力装置的动力传导装置、 连接于所述动力传导装置与所述 LED光源模块(2)之间的出光角度调节装置、 电连接于所述 舵机动力装置的智能控制装置; 所述舵机动力装置为通过舵机支架(3) 固定于所述壳体(1) 的舵机(4); 所述动力传导装置为与所述舵机(4)输出端相连的齿轮(5); 所述出光角度调 节装置为设置于所述 LED光源模块 (2) 底部且与所述齿轮 (5) 相互啮合的配合齿 (6); 所 述智能控制装置为固定于所述壳体(1) 的舵机红外控制板(7); 该种地埋灯还包括与所述舵 机红外控制板 (7) 配合的遥控装置 (8)。
2、 根据权利要求 1所述的一种可调式地埋灯, 其特征在于, 所述 LED光源模块 (2) 包 括具有平行设置且都平行于所述 LED光源模块(2)轴向的散热翅一(211)与散热翅二(212) 的散热器一 (21); 所述散热翅一 (211) 与所述散热翅二 (212) 相间分布; 所述壳体 (1) 底面设有安装座 (19), 所述安装座 (19) 上固定有该种地埋灯的驱动电源 (191) 及位于所 述驱动电源 (191) 上方的由多片平行设置且平行于所述壳体 (1) 轴向的散热翅三 (1921) 构成的散热器二 (192); 每片所述散热翅三(1921)都插于相邻的所述散热翅一 (211) 与所 述散热翅二 (212)之间; 所述散热翅一 (211) 沿所述 LED光源模块 (2)轴向的长度值大于 所述散热翅二 (212) 沿所述 LED光源模块 (2) 轴向的长度值。
3、 根据权利要求 1所述的一种可调式地埋灯, 其特征在于, 所述 LED光源模块 (2) 包 括具有横向并排分布且都并排于所述 LED光源模块 (2) 轴向的散热翅一 (211) 及散热翅二
(212) 的散热器一 (21); 所述散热翅一 (211) 与所述散热翅二 (212) 相间分布; 所述壳 体 (1)底面设有安装座 (19), 所述安装座 (19) 上固定有该种地埋灯的驱动电源 (191)及 位于所述驱动电源 (191) 上方并具有多片横向并排分布且平行于所述 LED光源模块 (2) 轴 向的散热翅三 (1921) 的散热器二 (192); 所述散热翅二 (212) 沿所述 LED光源模块 (2) 轴向的长度小于所述散热翅一 (211) 沿所述 LED光源模块 (2) 轴向的长度; 所述散热翅一 (211) 呈正弦波状, 所述散热翅二 (212) 呈余弦波状, 即散热翅一 (211) 的波谷与所述散 热翅二 (212) 的波谷相对; 且所述散热翅一 (211) 的波谷与散热翅二 (212) 的波谷之间形 成空间大小由中部向两侧逐渐变小的集流腔 (213); 所述散热翅三 (1921) 位于相邻散热翅 一 (211) 之间且位于相邻散热翅一 (211) 之间的部分呈弧状。
4、 根据权利要求 3所述的一种可调式地埋灯, 其特征在于, 所述散热翅一 (211) 内设 有与所述集流腔 (213) 相通的气腔一, 所述散热翅一 (211) 的横向两侧端设有与所述气腔 一相通的出气口一(2112); 所述散热翅二(212) 内设有与所述集流腔(213)相通的气腔二, 所述散热翅二 (212) 的横向两侧端设有与所述气腔二相通的出气口二 (2122)。
5、 根据权利要求 4所述的一种可调式地埋灯, 其特征在于, 所述集流腔 (213) 内壁设 有与所述气腔一相通且长度方向平行于所述 LED光源模块 (2) 轴向的进气口一 (2113); 所 述集流腔 (213) 内壁设有与所述气腔二相通且长度方向平行于所述 LED光源模块 (2) 轴向 的进气口二 (2123); 所述进气口一 (2113) 较远离该进气口 (2113) 所在集流腔 (213) 位 于所述散热翅一 (211) 上的波谷或波峰的一侧具有长度方向平行于所述 LED光源模块 (2) 轴向的挡片一 (21131), 所述挡片一 (21131) 所在平面与该挡片一 (21131) 所在散热翅一
(211)上的波谷或波峰之间的距离相等; 所述进气口二 (2123)较远离该进气口 (2123)所 在集流腔 (213) 位于所述散热翅二 (212) 上的波谷或波峰的一侧具有长度方向平行于所述 LED光源模块(2)轴向的挡片二(21231),所述挡片二(21231)所在平面与该挡片二(21231) 所在散热翅二 (212) 上的波谷或波峰之间的距离相等。
6、根据权利要求 2或 3或 4或 5所述的一种可调式地埋灯, 其特征在于, 所述 LED光源 模块 (2) 包括固设于所述散热器一 (21) 的 LED铝基板 (22)、 设于所述 LED铝基板 (22) 上的反光杯 (23)、 用于固定所述反光杯 (23) 的稳固面板 (24)、 设于所述反光杯 (23) 上 端面的平透镜 (25)、 设于所述稳固面板 (24) 上方的防炫光面板 (26)。
7、 根据权利要求 1所述的一种可调式地埋灯, 其特征在于, 所述壳体 (1) 上位于所述 LED 光源模块 (2) 上方处具有台阶 (201), 且所述台阶 (201) 上设有边缘呈台阶状的透光 面板(35); 所述透光面板(35) 的边缘设有密封圈 (351 ), 且所述密封圈具有用于包覆所述 透光面板 (35) 边缘的凹口; 所述透光面板 (35) 的台阶处还设有压紧于所述密封圈 (351 ) 的压板 (352); 且所述压板 (352) 的上表面与所述透光面板 (35) 的上表面处于同一平面; 所述壳体 (1 ) 上设有电缆接线柱 (32); 且所述壳体 (1 ) 外套设有位于所述压板 (352 ) 下 方的保护壳 (34); 且所述保护壳 (34) 的外径小于所述压板 (352) 的外径。
8、 根据权利要求 6所述的一种可调式地埋灯, 其特征在于, 所述平透镜 (25)表面具有 多个球面状透光凸起; 所述防炫光面板 (26) 具有与每个所述反光杯 (23) 对应设置的锥孔
( 261 ), 所述锥孔 (261 ) 的内径沿所述 LED光源模块 (2) 至所述壳体 (1 ) 方向逐渐变小, 且锥度为 3-5度。
9、 根据权利要求 1所述的一种可调式地埋灯, 其特征在于, 所述壳体 (1 ) 上设有角度 尺 (18); 所述 LED光源模块 (2) 上设有配合所述角度尺 (18) 以便于识别所述 LED光源模 块 (2) 转动角度的指针 (181 )。
10、 一种地埋灯上的角度可调装置, 其特征在于, 包括一智能控制装置, 智能控制装置 一端连接有电源, 另一端与设置在地埋灯内的舵机动力装置连接, 舵机动力装置连接有一出 光角度调节装置, 出光角度调节装置与 LED光源模块相连。
PCT/CN2013/081484 2013-04-15 2013-08-14 一种可调式地埋灯及该种地埋灯的角度可调节装置 WO2014169546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310130996.3A CN103196108B (zh) 2013-04-15 2013-04-15 一种地埋灯上的角度可调装置
CN201310130996.3 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014169546A1 true WO2014169546A1 (zh) 2014-10-23

Family

ID=48718828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081484 WO2014169546A1 (zh) 2013-04-15 2013-08-14 一种可调式地埋灯及该种地埋灯的角度可调节装置

Country Status (2)

Country Link
CN (1) CN103196108B (zh)
WO (1) WO2014169546A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600094427A1 (it) * 2016-09-20 2018-03-20 Harcosbei S R L Lampada da incasso orientabile

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196108B (zh) * 2013-04-15 2015-02-25 浙江晶日照明科技有限公司 一种地埋灯上的角度可调装置
CN104735868A (zh) * 2015-03-06 2015-06-24 浙江晶日照明科技有限公司 一种基于智能设备的地埋灯和灯具智能控制系统
CN106714369A (zh) * 2016-12-02 2017-05-24 安徽波维电子科技有限公司 一种基于微透镜阵列的远红外照明控制系统
CN107255245B (zh) * 2017-06-09 2019-08-27 余姚市新概念照明电器有限公司 一种地埋灯
CN107489937A (zh) * 2017-09-15 2017-12-19 和鸿电气股份有限公司 一种公园草地用的led地埋灯
KR102115208B1 (ko) * 2020-01-20 2020-05-26 (주)포스라이트 지중 투광등

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320533B1 (en) * 2006-03-03 2008-01-22 Beadle Joshua Z In ground lighting fixture with adjustable lamp
CN201475949U (zh) * 2009-05-13 2010-05-19 洋鑫科技股份有限公司 照明装置及其复合式散热组件
CN201548110U (zh) * 2009-11-20 2010-08-11 王新 一种散热片
CN102022682A (zh) * 2010-12-07 2011-04-20 上海亮硕光电子科技有限公司 一种led嵌入式筒灯
CN102032454A (zh) * 2009-09-30 2011-04-27 元瑞科技股份有限公司 发光二极管灯管
CN202040688U (zh) * 2011-04-22 2011-11-16 浙江捷莱照明有限公司 一种地埋灯
CN202177052U (zh) * 2011-06-15 2012-03-28 欧司朗股份有限公司 用于埋地灯的照射角度调节装置以及埋地灯
CN103196108A (zh) * 2013-04-15 2013-07-10 浙江晶日照明科技有限公司 一种地埋灯上的角度可调装置
CN203082722U (zh) * 2013-03-25 2013-07-24 浙江晶日照明科技有限公司 可电动调节出光角度的led地埋灯
CN203131728U (zh) * 2013-04-15 2013-08-14 浙江晶日照明科技有限公司 一种地埋灯上的角度可调装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818436A (en) * 1956-05-29 1959-08-19 Sperry Rand Corp Flight control system
KR100800975B1 (ko) * 2006-08-18 2008-02-11 정병태 자동차용 사이드미러의 조절장치
CN202561637U (zh) * 2012-05-14 2012-11-28 驻马店市金格尔电气设备有限公司 太阳能红外线感应led路灯
CN203082723U (zh) * 2013-03-25 2013-07-24 浙江晶日照明科技有限公司 有效减少眩光的远程可转动led地埋灯
CN203099578U (zh) * 2013-03-25 2013-07-31 浙江晶日照明科技有限公司 具有远程控制功能的led地埋灯

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320533B1 (en) * 2006-03-03 2008-01-22 Beadle Joshua Z In ground lighting fixture with adjustable lamp
CN201475949U (zh) * 2009-05-13 2010-05-19 洋鑫科技股份有限公司 照明装置及其复合式散热组件
CN102032454A (zh) * 2009-09-30 2011-04-27 元瑞科技股份有限公司 发光二极管灯管
CN201548110U (zh) * 2009-11-20 2010-08-11 王新 一种散热片
CN102022682A (zh) * 2010-12-07 2011-04-20 上海亮硕光电子科技有限公司 一种led嵌入式筒灯
CN202040688U (zh) * 2011-04-22 2011-11-16 浙江捷莱照明有限公司 一种地埋灯
CN202177052U (zh) * 2011-06-15 2012-03-28 欧司朗股份有限公司 用于埋地灯的照射角度调节装置以及埋地灯
CN203082722U (zh) * 2013-03-25 2013-07-24 浙江晶日照明科技有限公司 可电动调节出光角度的led地埋灯
CN103196108A (zh) * 2013-04-15 2013-07-10 浙江晶日照明科技有限公司 一种地埋灯上的角度可调装置
CN203131728U (zh) * 2013-04-15 2013-08-14 浙江晶日照明科技有限公司 一种地埋灯上的角度可调装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600094427A1 (it) * 2016-09-20 2018-03-20 Harcosbei S R L Lampada da incasso orientabile

Also Published As

Publication number Publication date
CN103196108A (zh) 2013-07-10
CN103196108B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2014169546A1 (zh) 一种可调式地埋灯及该种地埋灯的角度可调节装置
US9482395B2 (en) LED luminaire
EP2180246B1 (en) Led lighting fixture
CN101970935A (zh) 散热装置以及包括散热装置的发光装置
US8899778B2 (en) Optical cavity structure of LED lighting apparatus
CN202032342U (zh) 灯具
WO2010069159A1 (zh) Led反射灯
CN103398355B (zh) 一种可调式地埋灯及该种地埋灯的角度可调节装置
US20120314426A1 (en) LED Bulb Structure
CN208269033U (zh) 一种快速散热led远近光一体化透镜模组
TWM487221U (zh) 車燈裝置
CN202532311U (zh) 一种led轨道灯
CN203384914U (zh) 一种可调式地埋灯及该种地埋灯的角度可调节装置
CN203585849U (zh) 一种利用空气自下而上自由流动散热的led蜡烛灯
CN209944273U (zh) 一种智慧型led景观灯漫反射灯罩
TWI335402B (en) Led lamp with a heat sink
CN108224257A (zh) 一种可调地埋灯装置
CN202001863U (zh) 一种易散热集成封装led光源
CN203298256U (zh) 一种led灯的散热结构
CN108240583A (zh) 一种带有光学透镜罩的led吸顶灯
CN203240344U (zh) 大角度led灯
CN202253031U (zh) 一种led灯及led灯具
CN206222080U (zh) 一种带散热结构的防水防触电led投光灯
WO2014127720A1 (zh) 一种led户外灯
CN213394734U (zh) 一种带有风扇的led灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882441

Country of ref document: EP

Kind code of ref document: A1