WO2014169519A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2014169519A1
WO2014169519A1 PCT/CN2013/077526 CN2013077526W WO2014169519A1 WO 2014169519 A1 WO2014169519 A1 WO 2014169519A1 CN 2013077526 W CN2013077526 W CN 2013077526W WO 2014169519 A1 WO2014169519 A1 WO 2014169519A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
layer
display panel
film layer
light
Prior art date
Application number
PCT/CN2013/077526
Other languages
English (en)
French (fr)
Inventor
杜志宏
王尚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/359,320 priority Critical patent/US9671642B2/en
Publication of WO2014169519A1 publication Critical patent/WO2014169519A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Definitions

  • Embodiments of the present invention relate to a display panel and a display device. Background technique
  • the structure of the conventional liquid crystal display panel is as shown in FIG. 1 , and includes an upper polarizer 111 , an upper substrate 121 , a color filter layer 130 , a common electrode layer 140 , an upper alignment layer 151 , and a liquid crystal layer 160 which are sequentially disposed from top to bottom.
  • the color filter layer includes: a blue filter 131, a green filter 132, and a red filter 133; and the pixel electrode layer 170 includes a plurality of pixel electrodes.
  • a disadvantage of the above conventional solution is that most of the light is absorbed after the light emitted from the backlight passes through the green filter 132 and the red filter 133, and only a small portion of the light is transmitted, thereby causing the light emitted by the backlight.
  • the utilization rate is low.
  • An embodiment of the present invention provides a display panel including a color filter layer, wherein a reflective filter is disposed under the color filter layer;
  • the reflective filter reflects light having a wavelength less than a predetermined value and transmits light having a wavelength greater than or equal to the predetermined value.
  • the reflective filter is disposed above the common electrode layer.
  • the reflective filter is disposed under the red filter and the green filter of the color filter layer;
  • the predetermined value is greater than 470 nm and less than or equal to 500 nm.
  • a light-transmitting sheet is further disposed under the blue color filter of the color filter layer; and the light-transmitting sheet is disposed in the same layer as the reflective filter, and a transparent material is used.
  • the reflective filter is disposed under the red filter of the color filter layer; the predetermined value is greater than 530 nanometers and less than or equal to 620 nanometers.
  • the blue filter and the green filter of the color filter layer are further provided with a transparent Light sheet
  • the light-transmissive sheet is disposed in the same layer as the reflective filter, and is made of a transparent material.
  • the reflective filter includes: a first reflective filter and a second reflective filter; the first reflective filter, a red filter disposed on the color filter layer Below the sheet, for light having a wavelength less than a first predetermined value, for transmission of light having a wavelength greater than or equal to the first predetermined value; the first predetermined value being greater than 530 nanometers and less than or equal to 620 nanometers;
  • the second reflective filter is disposed under the green filter of the color filter layer, and reflects light having a wavelength smaller than a second predetermined value, and the light having a wavelength greater than or equal to the second predetermined value Transmission; the second predetermined value is greater than 470 nanometers and less than or equal to 500 nanometers.
  • the main film of the reflective filter is as follows:
  • H represents a first film layer
  • H/2 represents a second film layer having the same refractive index as the first film layer
  • the thickness of the second film layer is Half of the thickness of the first film layer
  • L represents the third film layer
  • M represents the number of cycles.
  • the refractive index of the first film layer is higher than the refractive index of the third film layer.
  • the thickness h of the first film layer and the thickness I of the third film layer are calculated as follows:
  • represents the width of the cutoff band
  • represents the center wavelength of the cutoff band
  • ⁇ ⁇ represents the refractive index of the first film layer
  • n L represents the refractive index of the third film layer
  • represents the predetermined value
  • the transmittance of the reflective filter at the center wavelength of the cutoff band, ⁇ is represented.
  • the refractive index, n H represents the refractive index of the first film layer
  • 3 ⁇ 4 represents the refractive index of the third film layer.
  • Embodiments of the present invention also provide a display device including the above display panel.
  • FIG. 1 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic structural view of a liquid crystal display panel according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a film layer of a color filter according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram showing the principle of improving the utilization of light in the liquid crystal display panel according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural view of the liquid crystal display panel according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of a liquid crystal display panel according to Embodiment 3 of the present invention.
  • Figure 7 is a schematic view showing the structure of a liquid crystal display panel according to Embodiment 4 of the present invention. detailed description
  • the design principle of the present invention is to reflect a portion of the light that should be absorbed into the backlight and reuse it before the light reaches the color filter, thereby achieving improved light utilization.
  • FIG. 2 is a schematic structural view of a liquid crystal display panel according to Embodiment 1 of the present invention.
  • reflective filtering is disposed between the color filter layer 230 and the common electrode layer 240.
  • the reflective filter 281 reflects light having a wavelength smaller than a predetermined value and transmits light having a wavelength greater than or equal to the predetermined value.
  • the predetermined value can be set to 500 nm.
  • the wavelength information of visible light blue light wavelength 430-470 nm, green light wavelength 500-530 nm, red light wavelength 620-770 nm, yellow light wavelength 560-590 nm
  • the predetermined value may be set to other values between 470 nm and 500 nm, such as 480 nm or the like.
  • the reflective filter 281 is disposed in the color filter layer in this embodiment. Below the red filter 232 and the green filter 233. In the prior art, when the blue light passes through the red filter and the green filter, most of it is absorbed, thus causing waste of light. However, by providing the reflective filter 281, the blue light can be effectively reflected, and the reflected blue color is reused after being returned to the backlight, which can finally be blocked by the reflective filter 281. The blue filter 231 is transmitted.
  • the reflective filter 281 may also be disposed only below the red color filter 232, or may be disposed only below the green color filter 233 or disposed on the red color filter 232. And below the partial area of the green filter 233. When this is set, the utilization of blue light can be improved to some extent.
  • a light-transmitting sheet 282 is further disposed under the blue color filter 231 of the color filter layer 230.
  • the light-transmissive sheet 282 is disposed in the same layer as the reflective filter 281, and is made of a transparent material such as glass.
  • no filler material may be disposed under the blue filter 231 to save cost.
  • the upper substrate 221 and the upper polarizing plate 211 are sequentially disposed above the color filter layer 230.
  • a common electrode layer 240 is disposed under the reflective filter 281 and the light transmissive sheet 282. Further, below the common electrode layer 240, an upper alignment layer 251, a liquid crystal layer 260, a lower alignment layer 252, a pixel electrode layer 270 composed of a plurality of pixel electrodes, a lower substrate 222, and a lower polarizing plate 212 are disposed in this order.
  • FIG. 3 is a schematic view showing the structure of a film layer of the color filter according to Embodiment 1 of the present invention. As shown in FIG. 3, the main film of the color filter 281 is as follows:
  • H represents a first film layer
  • H/2 represents a second film layer having the same refractive index as the first film layer
  • the thickness of the second film layer is half of the thickness of the first film layer
  • L Indicates the third film layer
  • M represents the number of cycles.
  • the refractive index of the first film layer H is higher than the refractive index of the third film layer L.
  • the reflective filter 281 is H/2, L, H, L, H, L, H/2 in order from top to bottom, that is, the second film layer in turn, the third Film layer, first film layer, third film layer, first film layer, third film layer, second film layer.
  • the first film layer and the third film layer have the same thickness, and both are cutoff band center waves.
  • the thickness of the first film layer and the third film layer is calculated as follows:
  • represents the width of the cutoff band
  • represents the center wavelength of the cutoff band
  • ⁇ ⁇ represents the refractive index of the first film layer
  • n L represents the refractive index of the third film layer
  • represents the predetermined value, indicating the first The thickness of the film layer
  • / represents the thickness of the third film layer.
  • the first film layer is made of titanium dioxide (refractive index is 2.1)
  • the third film layer is made of silicon dioxide (refractive index of 1.46)
  • the transmittance of the reflective filter at the center wavelength of the cutoff band n.
  • n g represents the refractive index of the lower substrate of the reflective filter.
  • the refractive index of the upper substrate is the refractive index of the color filter layer 230
  • the refractive index of the lower substrate is the refractive index of the common electrode layer 240.
  • FIG. 4 is a schematic diagram showing the principle of improving the utilization ratio of light in the liquid crystal display panel according to Embodiment 1 of the present invention.
  • the light emitted by the light source 310 is transmitted through the light guide plate 320, the diffusion film 330, and the prism film 340 to white light. 350 is incident on the reflective filter 281 of the liquid crystal panel, and the red light component 351 and the green light component 352 in the white light 350 are transmitted from the reflective filter 281, and the blue light component 353 is reflected back to the reflective sheet 360. And returning to the liquid crystal screen, and finally passing through the blue color filter 231 from which the reflective filter 281 is not disposed.
  • the blue light emitted from the light source is prevented from being absorbed by the red color filter 232 and the green color filter 233, and the utilization rate is improved.
  • the liquid crystal display panel of the embodiment of the present invention After the liquid crystal display panel of the embodiment of the present invention is used, if the chromaticity of the light source LED lamp is not changed, the image displayed on the liquid crystal panel will be bluish. In order to adjust the white point of the LCD screen, you need to lower it.
  • the component of blue light in the LED lamp achieves the purpose of reducing power, or increases the component of red and green light to achieve the purpose of improving brightness.
  • FIG. 5 is a schematic structural view of a liquid crystal display panel according to Embodiment 2 of the present invention.
  • the liquid crystal display panel of the present embodiment is substantially the same as the liquid crystal display panel of Embodiment 1.
  • the reflective filter 581 is disposed between the common electrode layer 540 and the upper alignment layer 551, and the reflective filter 581 is disposed under the red filter 532 and the green filter 533.
  • a light-transmitting sheet 582 is disposed in the same layer as the reflective filter 581, and the light-transmitting sheet 582 is disposed in a projection area of the blue color filter 531.
  • a color filter layer 530, an upper substrate 521, and an upper polarizing plate 51 1 are disposed above the common electrode layer 540, and a liquid crystal layer 560 and a lower alignment layer 552 are sequentially disposed under the upper alignment layer 551.
  • the pixel electrode layer 570, the lower substrate 522, and the lower polarizing plate 512 composed of a plurality of pixel electrodes are not described again.
  • FIG. 6 is a schematic structural diagram of a liquid crystal display panel according to Embodiment 3 of the present invention.
  • the liquid crystal display panel of the embodiment is substantially the same as the liquid crystal display panel of Embodiment 1, and the other difference is that
  • the reflective filter 681 is disposed only below the red color filter 632.
  • the predetermined value is greater than 530 nanometers and less than or equal to 620 nanometers. According to visible wavelength information, the reflective filter 681 can simultaneously reflect blue light and green light, thereby simultaneously avoiding blue light and The green light is absorbed by the red filter 632, which is advantageous for improving the utilization of light.
  • a light transmitting sheet 682 is disposed in the same layer as the reflective filter 681, and the light transmitting sheet 682 is disposed under the blue color filter 631 and the green color filter 633.
  • an upper substrate 621 and an upper polarizing plate 61 1 are sequentially disposed above the color filter layer 630, and an upper alignment layer 651, a liquid crystal layer 660, and a lower alignment layer are sequentially disposed under the common electrode layer 640. 652.
  • a pixel electrode layer 670, a lower substrate 622, and a lower polarizing plate 612 composed of a plurality of pixel electrodes. No longer.
  • Example 4
  • FIG. 7 is a schematic structural diagram of a liquid crystal display panel according to Embodiment 4 of the present invention.
  • the liquid crystal display panel of the embodiment is substantially the same as the liquid crystal display panel of Embodiment 1, and the other difference is that
  • the reflective filter comprises: a first reflective filter 781 and a second reflective filter 783.
  • the first reflective filter 781 is disposed under the red filter 732 of the color filter layer 730, and reflects light having a wavelength smaller than a first predetermined value, and the wavelength is greater than or equal to the first predetermined A value of light transmission, the first predetermined value being greater than 530 nanometers and less than or equal to 620 nanometers.
  • the second reflective filter 783 is disposed under the green filter 733 of the color filter layer 730, and reflects light having a wavelength less than a second predetermined value, and the wavelength is greater than or equal to the second predetermined A value of light transmission, the second predetermined value being greater than 470 nanometers and less than or equal to 500 nanometers.
  • the first reflective filter 781 of the reflective filter can reflect blue light and green light at the same time, and the second reflective filter 783 can reflect blue light.
  • a light-transmitting sheet 782 is disposed in the same layer as the reflective filter, and the light-transmitting sheet 782 is disposed below the blue color filter 731.
  • an upper substrate 721 and an upper polarizing plate 711 are sequentially disposed above the color filter layer 730, and an upper alignment layer 751, a liquid crystal layer 760, and a lower alignment layer 752 are sequentially disposed under the common electrode layer 740.
  • a pixel electrode layer 770 composed of a plurality of pixel electrodes, a lower substrate 722, and a lower polarizing plate 712. No longer.
  • the reflective filter in addition to the reflective filter disposed at the position described in the above four embodiments, it may be disposed at other positions below the color filter layer, such as the lower alignment layer and Between the TFT layers and so on.
  • the display panel of the present invention may also be a display panel other than the liquid crystal display panel, such as a plasma display panel.
  • a display panel other than the liquid crystal display panel such as a plasma display panel.
  • the embodiment of the invention further provides a display device comprising any one of the above display panels.
  • the display device can be: a liquid crystal panel, a mobile phone, a tablet computer, a television, a display, a note Any product or component that has a display function, such as a computer, digital photo frame, and navigation device.
  • the display panel and the display device according to the embodiment of the present invention by providing a reflective filter under the color filter layer, to reflect light having a wavelength smaller than a predetermined value and transmit light having a wavelength greater than or equal to the predetermined value. Therefore, the reflected light of the portion is prevented from being absorbed by the color filter, thereby improving the utilization of light emitted by the backlight, and is advantageous for reducing the power of the backlight or increasing the brightness.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及显示装置,所述显示面板包括彩色滤光片层(230),其中在彩色滤光片层(230)的下方设置有反射式滤光片(281),所述反射式滤光片(281)反射波长小于预定值的光,并透射波长大于等于所述预定值的光。

Description

显示面板及显示装置 技术领域
本发明实施例涉及一种显示面板及显示装置。 背景技术
现有的液晶显示面板结构如图 1所示, 包括从上至下依次设置的上偏光 片 111、 上基板 121、 彩色滤光片层 130、 公共电极层 140、 上取向层 151、 液晶层 160、 下取向层 152、 像素电极层 170、 下基板 122和下偏光片 112。 其中, 彩色滤光片层包括: 蓝色滤光片 131、 绿色滤光片 132和红色滤光片 133; 像素电极层 170包括多个像素电极。
上述现有方案的缺陷在于, 从背光源发出的光线经过绿色滤光片 132和 红色滤光片 133之后大部分光线被吸收, 只有少部分光线能透过, 因此, 造 成背光源发出的光的利用率较低。 发明内容
本发明实施例提供一种显示面板, 包括彩色滤光片层, 其中在该彩色滤 光片层的下方设置有反射式滤光片;
所述反射式滤光片反射波长小于预定值的光, 透射波长大于等于所述预 定值的光。
其中, 所述反射式滤光片设置在公共电极层的上方。
其中, 所述反射式滤光片设置在所述彩色滤光片层的红色滤光片和绿色 滤光片的下方;
所述预定值大于 470纳米, 小于等于 500纳米。
其中, 所述彩色滤光片层的蓝色滤光片的下方还设置有透光片; 所述透光片与所述反射式滤光片同层设置, 采用透明材料。
其中,所述反射式滤光片设置在所述彩色滤光片层的红色滤光片的下方; 所述预定值大于 530纳米, 小于等于 620纳米。
其中, 所述彩色滤光片层的蓝色滤光片和绿色滤光片的下方还设置有透 光片;
所述透光片与所述反射式滤光片同层设置, 采用透明材料。
其中,所述反射式滤光片包括: 第一反射式滤光片和第二反射式滤光片; 所述第一反射式滤光片,设置在所述彩色滤光片层的红色滤光片的下方, 对波长小于第一预定值的光反射,对波长大于等于所述第一预定值的光透射; 所述第一预定值大于 530纳米, 小于等于 620纳米;
所述第二反射式滤光片,设置在所述彩色滤光片层的绿色滤光片的下方, 对波长小于第二预定值的光反射,对波长大于等于所述第二预定值的光透射; 所述第二预定值大于 470纳米, 小于等于 500纳米。
其中, 所述反射式滤光片的主膜系如下:
Figure imgf000003_0001
其中, 相邻的两个 H/2组成 H, H表示第一膜层, H/2表示与所述第一 膜层的折射率相同的第二膜层, 所述第二膜层的厚度是所述第一膜层厚度的 一半, L表示第三膜层, M表示周期数。
其中, 所述第一膜层的折射率高于所述第三膜层的折射率。
其中,所述第一膜层的厚度 h和所述第三膜层的厚度 I的计算公式如下:
Figure imgf000003_0002
其中, Δλ表示截止带的宽度, λο表示截止带中心波长, ηΗ表示第一膜 层的折射率, nL表示第三膜层的折射率, λ表示所述预定值。
其中, 所述周期数 Μ的计算公式如下:
Figure imgf000003_0003
其中, 表示所述反射式滤光片在截止带中心波长处的透过率, η。表示 所述反射式滤光片的上基底的折射率, 表示所述反射式滤光片的下基底的 折射率, nH表示第一膜层的折射率, ¾表示第三膜层的折射率。
本发明实施例还提供一种显示装置, 其包括上述的显示面板。 附图说明
图 1是现有的液晶显示面板结构示意图;
图 2是本发明实施例 1的液晶显示面板结构示意图;
图 3是本发明实施例 1所述彩色滤光片的膜层结构示意图;
图 4是本发明实施例 1所述液晶显示面板提高光的利用率的原理示意图; 图 5是本发明实施例 2所述液晶显示面板的结构示意图;
图 6是本发明实施例 3所述液晶显示面板的结构示意图;
图 7是本发明实施例 4所述液晶显示面板的结构示意图。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明的设计原理是, 在光线到达彩色滤光片之前, 将一部分本应该被 吸收的波段的光, 反射到背光源里重新利用, 从而实现提高光的利用率。 以 下结合附图和实施例对本发明方案进行详细说明。
实施例 1
图 2是本发明实施例 1所述液晶显示面板的结构示意图, 如图 2所示, 所述液晶显示面板中, 在彩色滤光片层 230和公共电极层 240之间设置有反 射式滤光片 281。 所述反射式滤光片 281反射波长小于预定值的光, 并透射 波长大于等于所述预定值的光。
例如, 所述预定值可以设置为 500nm。 根据可见光的波长信息(蓝色光 波长 430-470 nm, 绿色光波长 500-530 nm, 红色光波长 620-770 nm, 黄色光 波长 560-590 nm )可知, 当将所述预定值设置为 500nm时, 所述反射式滤光 片 281可以实现对蓝光的反射。 另外, 根据所述可见光的波长信息, 为了提 高蓝光的利用率, 还可以将所述预定值设置为 470nm至 500nm之间的其他 值, 比如 480nm等。
参见图 2, 本实施例中所述反射式滤光片 281设置在所述彩色滤光片层 的红色滤光片 232和绿色滤光片 233的下方。 现有方案中, 当蓝色光经过红 色滤光片和绿色滤光片时, 其大部分被吸收, 因此造成光的浪费。 然而, 通 过设置所述反射式滤光片 281 , 可以有效对蓝色光进行反射, 被反射的蓝色 回到背光源后重新被利用, 其最终可以通过未被所述反射式滤光片 281遮挡 的蓝色滤光片 231透射出。
其中, 所述反射式滤光片 281还可以仅设置在所述红色滤光片 232的下 方, 或者, 仅设置在所述绿色滤光片 233的下方, 或者设置在所述红色滤光 片 232和绿色滤光片 233的部分区域的下方。 当这样设置时, 蓝光的利用率 也可以得到一定程度的提高。
参见图 2, 本实施例中, 所述彩色滤光片层 230的蓝色滤光片 231的下 方还设置有透光片 282。所述透光片 282与所述反射式滤光片 281同层设置, 采用透明材料, 比如采用玻璃等。 另外, 如果加工工艺允许, 在所述蓝色滤 光片 231的下方还可以不设置任何填充材料, 以节省成本。
另外, 本实施例中, 所述彩色滤光片层 230的上方还依次设置有上基板 221、 上偏振片 211。 公共电极层 240设置在所述反射式滤光片 281和透光片 282的下方。所述公共电极层 240的下方还依次设置有上取向层 251、液晶层 260、 下取向层 252、 由多个像素电极构成的像素电极层 270、 下基板 222和 下偏振片 212。
图 3是本发明实施例 1所述彩色滤光片的膜层结构示意图,如图 3所示, 所述彩色滤光片 281的主膜系如下:
Figure imgf000005_0001
其中, H表示第一膜层, H/2表示与所述第一膜层的折射率相同的第二 膜层, 所述第二膜层的厚度是所述第一膜层厚度的一半, L表示第三膜层, M表示周期数。其中,所述第一膜层 H的折射率高于所述第三膜层 L的折射 率。
假设周期数 M为 3 , 则所述反射式滤光片 281从上至下依次为 H/2, L, H, L, H, L, H/2, 即依次为第二膜层, 第三膜层, 第一膜层, 第三膜层, 第一膜层, 第三膜层, 第二膜层。
本实施例中, 所述第一膜层和第三膜层的厚度相同, 均为截止带中心波 长的 1/4 具体地, 所述第一膜层和第三膜层的厚度计算公式如下:
Figure imgf000006_0001
其中, Δλ表示截止带的宽度, λο表示截止带中心波长, ηΗ表示第一膜 层的折射率, nL表示第三膜层的折射率, λ表示所述预定值, 表示所述第一 膜层的厚度, /表示所述第三膜层的厚度。
假设当所述预定值为 500nm, 所述第一膜层采用二氧化钛(折射率为 2.1 ) , 所述第三膜层采用二氧化硅(折射率为 1.46 )时, 利用上述公式可以 计算得到 ο=448.4匪, Δ X =103.2nm, =/=112.1 nm。
所述 期数 M的计算公式如下:
Figure imgf000006_0002
其中, 表示所述反射式滤光片在截止带中心波长处的透过率, n。表示 所述反射式滤光片的上基底的折射率, ng表示所述反射式滤光片的下基底的 折射率。 本实施例中, 所述上基底的折射率即为所述彩色滤光层 230的折射 率, 所述下基底的折射率的即为所述公共电极层 240的折射率。
图 4是本发明实施例 1所述液晶显示面板提高光的利用率的原理示意图, 如图 4所示, 光源 310发出的光线, 经导光板 320、 扩散膜 330、 棱镜膜 340 传播, 以白光 350射入到液晶屏的反射式滤光片 281上, 白光 350中的红光 分量 351和绿光分量 352从所述反射式滤光片 281透射, 蓝光分量 353被反 射回到反射片 360处, 又 射回液晶屏, 最终从未设置所述反射式滤光片 281的蓝色滤光片 231处透射过去。 这样, 光源发出的蓝色光避免了被红色 滤光片 232和绿色滤光片 233吸收, 利用率得到提高。
采用本发明实施例的液晶显示面板后, 如果不改变光源 LED灯的色度, 那么液晶屏上显示的图象将会偏蓝。 为了调整液晶屏画面白点, 需要降低 LED灯中蓝色光的分量达到降低功率的目的, 或者增加红、 绿色光的分量, 达到提高亮度的目的。 实施例 2
图 5是本发明实施例 2所述液晶显示面板的结构示意图, 如图 5所示, 本实施例所述液晶显示面板与实施例 1所述液晶显示面板基本相同, 其不同 之处在于, 本实施例中, 反射式滤光片 581设置在公共电极层 540和上取向 层 551之间, 并且所述反射式滤光片 581设置在红色滤光片 532和绿色滤光 片 533的下方。 同时, 与所述反射式滤光片 581同层设置有透光片 582 , 所 述透光片 582设置在蓝色滤光片 531的投影区域内。
另外, 所述公共电极层 540的上方依次设置有彩色滤光片层 530、 上基 板 521、 上偏振片 51 1 , 所述上取向层 551的下方还依次设置有液晶层 560、 下取向层 552、 由多个像素电极构成的像素电极层 570、下基板 522和下偏振 片 512 , 不再赘述。 实施例 3
图 6是本发明实施例 3所述液晶显示面板的结构示意图, 如图 6所示, 本实施例所述液晶显示面板与实施例 1所述液晶显示面板基本相同, 其他不 同之处在于, 本实施例中, 反射式滤光片 681仅设置在红色滤光片 632的下 方。 本实施例中, 所述预定值大于 530纳米, 小于等于 620纳米, 根据可见 光波长信息可以知道, 该反射式滤光片 681能够同时对蓝色光和绿色光进行 反射, 从而能够同时避免蓝色光和绿色光被红色滤光片 632吸收, 有利于提 高光的利用率。
同时,与所述反射式滤光片 681同层设置有透光片 682 ,所述透光片 682 设置在蓝色滤光片 631和绿色滤光片 633的下方。
另外, 所述彩色滤光片层 630的上方还依次设置有上基板 621、 上偏振 片 61 1 ,所述公共电极层 640的下方还依次设置有上取向层 651、液晶层 660、 下取向层 652、由多个像素电极构成的像素电极层 670、下基板 622和下偏振 片 612。 不再赘述。 实施例 4
图 7是本发明实施例 4所述液晶显示面板的结构示意图, 如图 7所示, 本实施例所述液晶显示面板与实施例 1所述液晶显示面板基本相同, 其他不 同之处在于, 本实施例中, 反射式滤光片包括: 第一反射式滤光片 781和第 二反射式滤光片 783。所述第一反射式滤光片 781 ,设置在所述彩色滤光片层 730的红色滤光片 732的下方, 对波长小于第一预定值的光反射, 对波长大 于等于所述第一预定值的光透射, 所述第一预定值大于 530纳米, 小于等于 620纳米。所述第二反射式滤光片 783 ,设置在所述彩色滤光片层 730的绿色 滤光片 733的下方, 对波长小于第二预定值的光反射, 对波长大于等于所述 第二预定值的光透射, 所述第二预定值大于 470纳米, 小于等于 500纳米。
根据可见光波长信息可以知道, 该反射式滤光片中第一反射式滤光片 781能够同时对蓝色光和绿色光进行反射, 第二反射式滤光片 783能够对蓝 色光进行反射, 相比上一实施例, 可以进一步避免原本经过绿色滤光片 733 的蓝色光被吸收, 更加有利于提高光的利用率。
同时, 与所述反射式滤光片同层设置有透光片 782, 所述透光片 782设 置在蓝色滤光片 731的下方。
另外, 所述彩色滤光片层 730的上方还依次设置有上基板 721、 上偏振 片 711 ,所述公共电极层 740的下方还依次设置有上取向层 751、液晶层 760、 下取向层 752、由多个像素电极构成的像素电极层 770、下基板 722和下偏振 片 712。 不再赘述。
需要说明的是, 除了将所述反射式滤光片设置于上述四个实施例所述位 置处, 还可以将其设置在彩色滤光片层的下方的其他位置处, 比如设置在下 取向层与 TFT层之间等。
另外, 本发明所述显示面板还可以是除液晶显示面板之外的其他显示面 板, 比如等离子显示面板。 当应用于其他显示面板时, 其设置原理与上述实 施例相类似, 不再赘述。 实施例 5
本发明实施例还提供了一种显示装置, 其包括上述任意一种显示面板。 所述显示装置可以为: 液晶面板、 手机、 平板电脑、 电视机、 显示器、 笔记 本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。 本发明实施例所述显示面板及显示装置, 通过在彩色滤光片层的下方设 置有反射式滤光片, 以对波长小于预定值的光反射并对波长大于等于所述预 定值的光透射, 从而避免了该部分被反射的光线被彩色滤光片吸收, 从而提 高了背光源发出的光的利用率, 有利于降低背光源的功率或增加亮度。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种显示面板, 包括彩色滤光片层
其中, 在彩色滤光片层的下方设置有反射式滤光片;
所述反射式滤光片反射波长小于预定值的光, 透射波长大于等于所述预 定值的光。
2、如权利要求 1所述的显示面板, 其中, 所述反射式滤光片设置在公共 电极层的上方。
3、 如权利要求 1所述的显示面板, 其中,
所述反射式滤光片设置在所述彩色滤光片层的红色滤光片和绿色滤光片 的下方;
所述预定值大于 470纳米, 小于等于 500纳米。
4、如权利要求 3所述的显示面板, 其中, 所述彩色滤光片层的蓝色滤光 片的下方还设置有透光片;
所述透光片与所述反射式滤光片同层设置, 采用透明材料。
5、 如权利要求 1所述的显示面板, 其中,
所述反射式滤光片设置在所述彩色滤光片层的红色滤光片的下方; 所述预定值大于 530纳米, 小于等于 620纳米。
6、如权利要求 5所述的显示面板, 其中, 所述彩色滤光片层的蓝色滤光 片和绿色滤光片的下方还设置有透光片;
所述透光片与所述反射式滤光片同层设置, 采用透明材料。
7、 如权利要求 1所述的显示面板, 其中, 所述反射式滤光片包括: 第一 反射式滤光片和第二反射式滤光片;
所述第一反射式滤光片,设置在所述彩色滤光片层的红色滤光片的下方, 对波长小于第一预定值的光反射,对波长大于等于所述第一预定值的光透射; 所述第一预定值大于 530纳米, 小于等于 620纳米;
所述第二反射式滤光片,设置在所述彩色滤光片层的绿色滤光片的下方, 对波长小于第二预定值的光反射,对波长大于等于所述第二预定值的光透射; 所述第二预定值大于 470纳米, 小于等于 500纳米。
8、如权利要求 1所述的显示面板, 其中, 所述反射式滤光片的主膜系如
Figure imgf000011_0001
其中, H表示第一膜层, H/2表示与所述第一膜层的折射率相同的第二 膜层, 所述第二膜层的厚度是所述第一膜层厚度的一半, L表示第三膜层, M表示周期数。
9、 如权利要求 8所述的显示面板, 其中,
所述第一膜层的折射率高于所述第三膜层的折射率。
10、 如权利要求 8所述的显示面板, 其中, 所述第一膜层的厚度 和所 述第三膜层的厚度 I的计算公式如下:
Figure imgf000011_0002
其中, Δ λ表示截止带的宽度, λο表示截止带中心波长, ηΗ表示第一膜 层的折射率, ¾表示第三膜层的折射率, λ表示所述预定值。
11、 如权利要求 8所述的显示面板, 其中, 所述周期数 Μ的计算公式如 下:
Figure imgf000011_0003
其中, 表示所述反射式滤光片在截止带中心波长处的透过率, n。表示 所述反射式滤光片的上基底的折射率, ng表示所述反射式滤光片的下基底的 折射率, nH表示第一膜层的折射率, ¾表示第三膜层的折射率。
12、 一种显示装置, 包括权利要求 1至 11任一项所述的显示面板。
PCT/CN2013/077526 2013-04-17 2013-06-20 显示面板及显示装置 WO2014169519A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/359,320 US9671642B2 (en) 2013-04-17 2013-06-20 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310134148.X 2013-04-17
CN201310134148.XA CN103235440B (zh) 2013-04-17 2013-04-17 一种显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2014169519A1 true WO2014169519A1 (zh) 2014-10-23

Family

ID=48883488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077526 WO2014169519A1 (zh) 2013-04-17 2013-06-20 显示面板及显示装置

Country Status (3)

Country Link
US (1) US9671642B2 (zh)
CN (1) CN103235440B (zh)
WO (1) WO2014169519A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793392B (zh) * 2015-04-24 2017-10-10 武汉华星光电技术有限公司 液晶显示面板和液晶显示器
CN105717688B (zh) * 2016-04-22 2019-06-07 京东方科技集团股份有限公司 对盒基板、反射式显示面板、显示装置及其驱动方法
CN106154625A (zh) * 2016-07-11 2016-11-23 深圳天珑无线科技有限公司 液晶显示器及其显示模组、彩色滤光装置
CN108303817A (zh) * 2018-01-22 2018-07-20 深圳市华星光电技术有限公司 彩色滤光基板及其制作方法
CN108319064A (zh) * 2018-02-06 2018-07-24 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置
CN113253528A (zh) * 2021-05-14 2021-08-13 绵阳惠科光电科技有限公司 阵列基板、反射式显示面板和反射式显示装置
CN115524883A (zh) * 2022-02-26 2022-12-27 长沙普佳德光电科技有限公司 一种lcd投影机反热光阀及投影机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079207B2 (en) * 2001-11-06 2006-07-18 Dai Nippon Printing Co., Ltd. Liquid crystal display
JP2010019958A (ja) * 2008-07-09 2010-01-28 Sony Corp 液晶表示パネル、液晶表示モジュールおよび液晶表示装置
CN202472014U (zh) * 2012-02-07 2012-10-03 京东方科技集团股份有限公司 彩膜基板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723478B2 (en) * 2000-12-08 2004-04-20 Hitachi, Ltd. Color filter and liquid crystal display provided therewith
US7072013B2 (en) * 2002-07-10 2006-07-04 Lg.Philips Lcd Co., Ltd. Liquid crystal display device having cholesteric liquid crystal polarizing film and internal retardation film and internal polarizing film
US7342623B2 (en) * 2002-10-04 2008-03-11 Dai Nippon Printing Co., Ltd. Optical element and liquid crystal display device using the same
JP2004207065A (ja) * 2002-12-25 2004-07-22 Fuji Electric Holdings Co Ltd 色変換発光デバイスおよびその製造方法ならびに該デバイスを用いるディスプレイ
JP2005309112A (ja) * 2004-04-22 2005-11-04 Dainippon Printing Co Ltd 反射型色変換カラーフィルタおよびこれを用いた反射型表示装置
TW200831987A (en) * 2007-01-24 2008-08-01 Wintek Corp Transreflective type LCD panel and LCD device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079207B2 (en) * 2001-11-06 2006-07-18 Dai Nippon Printing Co., Ltd. Liquid crystal display
JP2010019958A (ja) * 2008-07-09 2010-01-28 Sony Corp 液晶表示パネル、液晶表示モジュールおよび液晶表示装置
CN202472014U (zh) * 2012-02-07 2012-10-03 京东方科技集团股份有限公司 彩膜基板及显示装置

Also Published As

Publication number Publication date
US9671642B2 (en) 2017-06-06
CN103235440B (zh) 2015-08-05
CN103235440A (zh) 2013-08-07
US20150177564A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
WO2014169519A1 (zh) 显示面板及显示装置
WO2018120504A1 (zh) 液晶显示面板及其应用的液晶显示装置
US10191322B2 (en) Display and electronic unit
WO2015093077A1 (ja) ヘッドアップディスプレイ装置用液晶表示装置及びヘッドアップディスプレイ装置
JP4122808B2 (ja) 液晶表示装置および電子機器
WO2020035047A1 (zh) 显示面板及其制作方法、显示装置
WO2017045370A1 (zh) 蓝光衰减器件及制备方法、基板、显示器、智能穿戴产品
WO2014121559A1 (zh) 光子晶体、彩膜基板、显示面板及显示装置
JP2014182280A (ja) 表示装置
WO2017181477A1 (zh) 背光模组及显示装置
US10642112B2 (en) Array substrate, display panel and display device
US20180107061A1 (en) Reflective liquid crystal display panel
WO2013177966A1 (zh) 液晶显示设备
TWI506310B (zh) 液晶顯示裝置
KR20180083031A (ko) 표시 장치
US8625056B2 (en) Liquid crystal display
CN104280811B (zh) 偏光片、液晶面板以及液晶显示器
TW201516529A (zh) 顯示面板單元及顯示裝置
WO2014183362A1 (zh) 显示装置、彩膜基板及其制作方法
WO2021031396A1 (zh) 显示面板和显示装置
US20200012148A1 (en) Reflective liquid crystal display panel, manufacturing method thereof and display device
WO2011148701A1 (ja) カラーフィルタおよびこれを備えた反射型表示装置
JP2009271379A (ja) 透過型表示装置
JP2002090723A (ja) 液晶装置および電子機器
JP2010032821A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14359320

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882148

Country of ref document: EP

Kind code of ref document: A1