WO2020035047A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020035047A1
WO2020035047A1 PCT/CN2019/100962 CN2019100962W WO2020035047A1 WO 2020035047 A1 WO2020035047 A1 WO 2020035047A1 CN 2019100962 W CN2019100962 W CN 2019100962W WO 2020035047 A1 WO2020035047 A1 WO 2020035047A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
filtering
polarization
metal layer
display panel
Prior art date
Application number
PCT/CN2019/100962
Other languages
English (en)
French (fr)
Inventor
林允植
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/646,633 priority Critical patent/US20200301200A1/en
Publication of WO2020035047A1 publication Critical patent/WO2020035047A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133533Colour selective polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • Embodiments of the present disclosure relate to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a display device.
  • a liquid crystal display device (Liquid Crystal Display, LCD for short) is one of the flat panel display devices.
  • a liquid crystal display panel and a backlight module are important components thereof.
  • a liquid crystal display device is formed by setting a backlight on one side of the liquid crystal display panel. So as to realize the image display.
  • the backlight module includes a backlight source, a light guide plate, and an optical film layer (for example, a reflection sheet, a diffusion sheet, a prism sheet, and a polarization increasing film).
  • the display panel includes a liquid crystal cell, and polarizations attached to both sides of the liquid crystal cell. sheet.
  • the natural light emitted by the backlight passes through the role of the optical film and is then directed to the polarizer near the backlight module. After filtering, it forms linearly polarized light. After the polarized light passes through the liquid crystal cell, the polarization direction occurs. Change, and then pass through the filtering effect of the polarizer away from the backlight module to show a certain color and brightness.
  • an embodiment of the present disclosure provides a display panel including: a first substrate and a second substrate opposite to each other, the first substrate including: a plurality of sub-pixel regions arranged in an array; and A plurality of filtering polarization structures arranged in an array on the first substrate, the plurality of filtering polarization structures corresponding to the plurality of sub-pixel regions one by one; wherein each filtering polarization structure is configured to transmit a first polarization direction, And the light corresponding to the color of the sub-pixel region corresponding to the filtering polarization structure reflects light of other colors.
  • each filtering polarization structure includes: a plurality of filtering polarization units disposed at intervals; each filtering polarization unit includes: a first metal layer, a second metal layer, and a dielectric layer; the first metal layer is disposed on a substrate On one side of the substrate, the dielectric layer is disposed on a side of the first metal layer remote from the substrate substrate; the second metal layer is disposed on a side of the dielectric layer remote from the substrate substrate; wherein the first metal layer, The orthographic projections of the dielectric layer and the second metal layer on the base substrate coincide.
  • the distances between the filtering polarization structures of adjacent rows are equal, and the distances between the filtering polarization structures of adjacent columns are equal.
  • each filtering polarization unit in the same filtering polarization structure is equal, and the distances between adjacent filtering polarization units are equal.
  • the material of the first metal layer and the second metal layer includes: aluminum or silver; and the material of the dielectric layer includes: silicon oxide or zinc selenide.
  • the first substrate includes a base substrate and a thin film transistor array, wherein: the plurality of filter polarization structures are disposed on a side of the base substrate away from the thin film transistor array; or The filter polarization structure is disposed between the base substrate and the thin film transistor array; or, the plurality of filter polarization structures are disposed on a side of the thin film transistor array remote from the substrate substrate.
  • the display panel further includes: a polarizer disposed on a side of the second substrate away from the first substrate; the polarizer is configured to transmit light having a second polarization direction, wherein the first polarization direction and the second polarization direction The polarization directions are vertical or parallel.
  • the first substrate is an array substrate
  • the second substrate is a color filter substrate
  • the color filter substrate includes a plurality of filters arranged at intervals and arranged in an array, a black matrix layer is provided between adjacent filters, the plurality of filters and the plurality of filters
  • the polarization structures correspond one-to-one, and the orthographic projection of each filter polarization structure on the color filter substrate is located inside the orthographic projection of the filter corresponding to the filter polarization structure on the color filter substrate.
  • an embodiment of the present disclosure further provides a display device, including a backlight module and the display panel.
  • the backlight module includes a backlight source, a light guide plate, a diffusion sheet, and a prism sheet; wherein the backlight source is disposed on the light entrance side of the light guide plate; the diffusion sheet is disposed on the light exit side of the light guide plate, and the prism sheet is disposed on The light emitting side of the diffusion sheet is used to provide incident light to the display panel.
  • an embodiment of the present disclosure further provides a method for manufacturing a display panel, which is used to manufacture the display panel.
  • the method includes: forming a first substrate.
  • the first substrate includes a plurality of sub-pixels arranged in an array. Area; forming a plurality of filtering polarization structures arranged in an array on the first substrate, the plurality of filtering polarization structures corresponding to the plurality of sub-pixel areas in a one-to-one correspondence, each filtering polarization structure configured to transmit a first Light with a polarization direction corresponding to the color of the sub-pixel region corresponding to the filtering polarization structure, and reflecting light of other colors; forming a second substrate; and boxing the first substrate and the second substrate with each other.
  • forming the first substrate includes providing a base substrate, and forming a thin film transistor array on a side of the base substrate facing the second substrate.
  • forming the plurality of filter polarization structures on the first substrate includes: forming a first metal layer on a side of the base substrate away from the thin film transistor array; and forming a dielectric on a side of the first metal layer away from the base substrate. Forming a second metal layer on a side of the dielectric layer remote from the base substrate.
  • the forming a plurality of filter polarization structures on the first substrate includes: forming a first metal layer on a side of the substrate facing the thin film transistor array; and forming a dielectric on a side of the first metal layer remote from the substrate. Forming a second metal layer on a side of the dielectric layer remote from the base substrate.
  • the forming a plurality of filter polarization structures on the first substrate includes: forming a first metal layer on a side of the thin film transistor array remote from the substrate substrate; and away from the thin film transistor on the first metal layer A dielectric layer is formed on one side of the array; and a second metal layer is formed on the side of the dielectric layer remote from the thin film transistor array.
  • the forming the second substrate includes: providing a polarizer on a side of the second substrate remote from the first substrate, the polarizer is configured to transmit light having a second polarization direction, wherein the first The polarization direction is perpendicular or parallel to the second polarization direction.
  • the forming the second substrate includes: forming a plurality of filters and a black matrix on a side of the second substrate facing the first substrate, the plurality of filters and the plurality of filters
  • the polarization structures correspond one-to-one, and the orthographic projection of each filtering polarization structure on the second substrate is located inside the orthographic projection of the filter corresponding to the filtering polarization structure on the second substrate.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display device in the related art
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is another schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a filtering polarization structure according to an embodiment of the present disclosure.
  • FIG. 5 is another schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for manufacturing a display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is another schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic top view of the filtering polarization structure shown in FIG. 4.
  • FIG. 1 is a schematic structural diagram of a related liquid crystal display device.
  • the related liquid crystal display device includes a backlight module, an array substrate 120, a color filter substrate 130, and a first polarizer 140.
  • the backlight module includes: The backlight 111, the reflective sheet 112, the light guide plate 113, the diffusion sheet 114, the prism sheet 115, and the reflective polarizer 116, wherein the reflective polarizer 116 is the same as the transmission axis of the first polarizer 140, and the color filter substrate includes: sheet.
  • the light emitted from the backlight 111 passes through the light guide plate 113, the diffusion sheet 114, and the prism sheet 115 to form unpolarized light.
  • the reflective polarizer 116 transmits light that is aligned with the transmission axis of the first polarizer 140 and reflects the inconsistent light to the light guide plate 113.
  • the light transmitted through the reflective polarizer 116 is emitted through the first polarizer 140, the array substrate 120, and the color filter substrate 130.
  • the light emitted to the color filter substrate 130 is white light.
  • the filter in the color filter substrate in the liquid crystal display device provided in FIG. 1 transmits light corresponding to the color of the filter, and absorbs light of other colors.
  • the reflective polarizer and the first polarizer also absorb part of the light, resulting in a low light utilization rate of the liquid crystal display device and a high-brightness display effect cannot be achieved.
  • embodiments of the present disclosure provide a display panel, a manufacturing method thereof, and a display device, which are specifically described as follows.
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • a display panel provided by an embodiment of the present disclosure includes a first substrate and a second substrate opposite to each other.
  • the first substrate includes: A plurality of sub-pixel regions arranged in an array; and a plurality of filtering polarization structures 30 arranged in an array arranged on the first substrate, the plurality of filtering polarization structures 30 corresponding to the plurality of sub-pixel regions on a one-to-one basis
  • each filtering polarization structure 30 is configured to transmit light having a first polarization direction and corresponding to the color of the sub-pixel region corresponding to the filtering polarization structure, and reflecting light of other colors.
  • the first substrate may include a base substrate 11 and a thin film transistor array 12, and the plurality of filter polarization structures 30 may be disposed on a side of the base substrate 11 remote from the thin film transistor array 12.
  • the second substrate may include: a glass substrate 21; and a plurality of filters 22 arranged at intervals on the glass substrate 21 near the first substrate and arranged in an array, and a black matrix is provided between adjacent filters 22 Layer 23.
  • the plurality of filters 22 are in one-to-one correspondence with the plurality of sub-pixel regions of the first substrate, and each of the filters 22 is configured to transmit light of a color corresponding to the corresponding sub-pixel region. Specifically, setting a black matrix between adjacent filters can prevent sub-pixels from leaking light and ensure a display effect.
  • the plurality of filtering polarization structures 30 may be disposed between the base substrate 11 and the thin film transistor array 12. Between the insulation layer 13 is provided.
  • the insulating layer 13 is used to isolate the thin film transistor array and the filtering polarization structure.
  • the material for the insulating layer 13 includes: silicon oxide, silicon nitride, or a composite of silicon oxide and silicon nitride, which is not described in the embodiments of the present disclosure. Any restrictions.
  • the plurality of filtering polarization structures 30 may be disposed on a side of the thin film transistor array 12 remote from the base substrate 11.
  • the filter polarization structure can be disposed in the liquid crystal layer (LC), which can effectively reduce the thickness of the display substrate and facilitate the fabrication of ultra-thin display panels.
  • LC liquid crystal layer
  • the size of the filter may be slightly larger than the size of the filtering polarization structure, that is, each filtering polarization structure is on the color filter substrate.
  • the orthographic projection is located inside the orthographic projection of the filter corresponding to the filtering polarization structure on the color filter substrate, as shown in Figs. 2, 3, and 8 to ensure the filtered and polarized light. It is not blocked by the black matrix layer, which improves the light utilization efficiency.
  • the size of the filter may also be smaller than or equal to the size of the filtering polarizing structure, and the technical concept of the present invention may also be implemented. The disclosure does not limit the specific size of the filter.
  • the base substrate 11 includes a glass substrate, a quartz substrate, or other transparent substrates, which are not limited in the embodiments of the present disclosure.
  • the thin film transistors in the thin film transistor array 12 may be a top gate structure or a bottom gate structure, which is not limited in the embodiment of the present disclosure.
  • the one-to-one correspondence between the plurality of filter polarization structures and the plurality of sub-pixel regions indicates that one filter polarization structure is correspondingly provided on each sub-pixel region.
  • the filtering polarization structure can also reflect light of other colors to the backlight module connected to the display panel (not shown in the figure).
  • a plurality of filtering polarization structures are provided on the first substrate to ensure that the light emitted by the filtering polarization structure is filtered light and does not include light of other colors.
  • the filter of the second substrate will directly Transmits the filtered light without absorbing that part of the light.
  • the filter on the second substrate only filters the light emitted from the position between adjacent filtering polarization structures, that is, the filter on the second substrate only Absorb light of a color different from the corresponding color of the sub-pixel region emitted from the position between adjacent filtering polarization structures. Therefore, in the technical solution provided in this application, the light absorbed by the filter of the second substrate is less than that of the related art.
  • the light absorbed by the second substrate in the middle improves the light utilization rate.
  • a display panel provided by an embodiment of the present disclosure includes a first substrate and a second substrate opposite to each other.
  • the first substrate includes: a plurality of sub-pixel regions arranged in an array; and an array arranged on the first substrate.
  • the color of the subpixel area corresponds to the light and reflects light of other colors.
  • the same structure is used to achieve polarization and filtering And reflection. Therefore, the number of optical film layers required for the display device is reduced, thereby reducing the absorption of light by the optical film layer. At the same time, it also ensures that the second substrate absorbs less light, further reducing the absorption of light by the display panel, improving the utilization of light, and achieving a high-brightness display effect.
  • the second substrate may be a color filter substrate
  • the first substrate is an array substrate
  • FIG. 9 is another schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the second substrate includes a glass substrate 21, a plurality of transparent dielectric layers 24 arranged in an interval and arranged in an array on a side of the glass substrate 21 near the first substrate, and between adjacent transparent dielectric layers 24.
  • a black matrix layer 23 is provided. In this way, the second substrate does not absorb light, which further improves the utilization rate of light.
  • FIG. 4 is a schematic structural diagram of a filtering polarization structure provided by an embodiment of the present disclosure.
  • each filtering polarization structure includes a plurality of filtering polarization units 31 arranged at intervals.
  • Each filtering and polarizing unit 31 includes a first metal layer 311, a dielectric layer 312, and a second metal layer 313.
  • the first metal layer 311 is disposed on the side of the base substrate 11
  • the dielectric layer 312 is disposed on the side of the first metal layer 311 away from the base substrate 11
  • the second metal layer 313 is disposed on the dielectric layer 312 away from the base substrate 11.
  • FIG. 10 shows a schematic top view of the filtering polarization structure shown in FIG. 4.
  • a plurality of filtering polarization units 31 are sequentially spaced in parallel.
  • FIG. 4 is a cross-section of the filtering polarization structure shown in FIG. 10 taken along the A-A ′ line.
  • the material of the first metal layer 311 and the second metal layer 313 may be aluminum, and the thickness of the first metal layer 311 and the second metal layer 313 may be 40 nm; the material of the dielectric layer 312 may be silicon oxide.
  • the thickness can be 100nm.
  • the width w of the filter polarization unit 31 may be 185 nm, and the distance s between adjacent filter polarization units may be 370 nm; for the filter polarization structure corresponding to the green sub-pixel region, the filter polarization unit The width w of 31 may be 120 nm, and the distance s between adjacent filtering polarization units may be 240 nm.
  • the width w of the filtering polarization unit 31 may be 105 nm, and the adjacent filtering polarization unit The interval s between them may be 210 nm.
  • Each filtered polarization structure in the embodiment of the present disclosure includes a plurality of three-layer structured filtering polarization units.
  • the filter polarization unit of each three-layer structure forms an FP-like cavity. It can be known from the FP-like cavity model that changes in the thickness of the first metal layer, the second metal layer, and the dielectric layer cause changes in the FP cavity, which will cause transmission or reflection. The peak position changes, so that the transmission spectrum is selected, that is, the filtering function is realized.
  • each filtering polarization structure a plurality of filtering polarization units are arranged in parallel and spaced apart in sequence, and the metal layers (the first metal layer and / or the second metal layer) of the plurality of filtering polarization units are substantially equivalent to a wire grid polarizer. If the polarization direction of the incident light is parallel to the length direction of the metal layer, the free electrons in the metal layer will be directed along the metal layer by the external electric field. Because the length of the metal layer is very long compared to the wavelength, it is equivalent to the incident light acting on the surface of the metal thin film, that is, the polarized light in the length direction of the metal layer will be reflected.
  • the number of filtering polarization units in the filtering polarization structure corresponding to the sub-pixel regions of different colors is different, and is determined according to actual requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the first metal layer 311 is disposed on a side of the base substrate 11 away from the thin film transistor array 12.
  • the first metal layer is disposed on a side of the substrate substrate near the thin film transistor array.
  • the filtering polarization structure is disposed on a side of the thin film transistor array away from the substrate, the first metal layer is disposed on a side of the thin film transistor array away from the substrate.
  • FIG. 4 illustrates that the first metal layer 311 is disposed on a side of the base substrate 11 away from the thin film transistor array 12 as an example.
  • the orthographic projections of the first metal layer 311, the dielectric layer 312, and the second metal layer 313 on the base substrate 11 overlap.
  • the distance between the filtering polarization structures of adjacent rows is equal, and the distance between the filtering polarization structures of adjacent columns is equal.
  • the widths w of the filtering polarization units in the same filtering polarization structure are equal, and the distance s between adjacent filtering polarization units is equal.
  • a filtering polarization structure including a plurality of filtering polarization units is substantially equivalent to a wire grid polarizer.
  • the polarization function can be realized.
  • Each filtering polarization unit is equivalent to an FP resonant cavity.
  • a filtering function can be realized. The data of these parameters are not specifically limited in the embodiment of the present disclosure, as long as the filtering and polarization effects can be achieved at the same time.
  • the material of the dielectric layer 312 includes silicon oxide or zinc selenide, which is not limited in the embodiment of the present disclosure. It should be noted that the thicknesses of silicon oxide and zinc selenide in the filtering polarization structure used to achieve the same function are different, and are determined according to actual needs.
  • a material of the first metal layer 311 and the second metal layer 313 includes aluminum or silver. It should be noted that the manufacturing materials of the first metal layer 311 and the second metal layer 313 are the same.
  • the display panel provided in the embodiment of the present disclosure further includes a polarizer.
  • 5 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure. As shown in FIG. 5, the display panel provided by the embodiment of the present disclosure further includes: a polarizer 40 disposed on a side of the second substrate away from the first substrate; The polarizer 40 is used to transmit light in a second polarization direction, wherein the first polarization direction is perpendicular or parallel to the second polarization direction.
  • the filtering polarization structure provided by the embodiment of the present disclosure has the polarization function of the polarizer provided on the first substrate in the related art, and can cooperate with the polarizer provided on the second substrate to ensure the normality of the display panel. display.
  • the liquid crystal display panel in the embodiment of the present disclosure may be a liquid crystal display panel of an arbitrary display mode, for example, a twisted nematic (TN) liquid crystal display panel or an in-plane switching type.
  • IPS liquid crystal display panel
  • FFS Fringe Field Switching
  • VA Vertical Alignment
  • ADS Advanced Super Dimension Switch ADS
  • An embodiment of the present disclosure further provides a method for manufacturing a display panel, which is used to manufacture the display panel provided by the foregoing embodiment.
  • FIG. 6 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present disclosure. As shown in FIG. The manufacturing method of the display panel provided by the embodiment includes the following steps.
  • Step 100 forming a first substrate.
  • the first substrate includes a plurality of sub-pixel regions arranged in an array.
  • Step 200 forming a plurality of filter polarization structures arranged in an array on the first substrate.
  • the plurality of filtering polarization structures corresponds to the plurality of sub-pixel regions, and each of the filtering polarization structures is configured to transmit light having a first polarization direction and corresponding to the color of the sub-pixel region corresponding to the filtering polarization structure. And reflect other colors of light
  • Step 300 Form a second substrate.
  • Step 400 Place the first substrate and the second substrate on a box.
  • forming the first substrate may include providing a base substrate, and forming a thin film transistor array on a side of the base substrate facing the second substrate.
  • the base substrate may include a glass substrate, a quartz substrate, or other transparent substrates, which are not limited in the embodiments of the present disclosure.
  • the thin film transistor in the thin film transistor array may be a top gate structure or a bottom gate structure, which is not limited in the embodiments of the present disclosure.
  • forming the plurality of filter polarization structures on the first substrate may include: forming a first metal layer on a side of the base substrate away from the thin film transistor array; and forming a side of the first metal layer away from the base substrate. A dielectric layer; and forming a second metal layer on a side of the dielectric layer remote from the base substrate.
  • forming the plurality of filter polarization structures on the first substrate may include: forming a first metal layer on a side of the substrate facing the thin film transistor array; and forming a side of the first metal layer remote from the substrate. A dielectric layer; and forming a second metal layer on a side of the dielectric layer remote from the base substrate.
  • the forming a plurality of filter polarization structures on the first substrate may include: forming a first metal layer on a side of the thin film transistor array away from the base substrate; and away from the film on the first metal layer A dielectric layer is formed on one side of the transistor array; and a second metal layer is formed on the side of the dielectric layer remote from the thin film transistor array.
  • the forming the second substrate may include: providing a polarizer on a side of the second substrate remote from the first substrate, and the polarizer is configured to transmit light having a second polarization direction, wherein the first One polarization direction is perpendicular or parallel to the second polarization direction.
  • forming the second substrate may include: forming a plurality of filters and a black matrix on a side of the second substrate facing the first substrate, the plurality of filters and the plurality of filters
  • the filtering polarization structures correspond one-to-one, and the orthographic projection of each filtering polarization structure on the second substrate is located inside the orthographic projection of the filter corresponding to the filtering polarization structure on the second substrate.
  • a method for manufacturing a display panel includes: forming a first substrate, the first substrate including: a plurality of sub-pixel regions arranged in an array; and forming a plurality of array arranged in an array on the first substrate
  • a filtering polarization structure wherein the plurality of filtering polarization structures correspond to the plurality of sub-pixel regions one by one, and each filtering polarization structure is configured to transmit a color having a first polarization direction and corresponding to a color of the sub-pixel region corresponding to the filtering polarization structure
  • Forming a second substrate and arranging the first substrate and the second substrate to a box.
  • the same structure is used to achieve polarization, filtering, and reflection, reducing the need for a display device
  • the number of optical film layers provided reduces the absorption of light by the optical film layer, while ensuring that the second substrate absorbs less light, further reducing the absorption of light by the display panel, improving the utilization of light, and achieving a high level of light. Brightness display effect.
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • a display device provided by an embodiment of the present disclosure includes a backlight module and a display panel provided by the foregoing embodiment.
  • the display panel is disposed on a light emitting side of the backlight module.
  • the display device is a liquid crystal display device.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the backlight module provided in the embodiment of the present disclosure is used to provide a backlight for the display panel, and the light-emitting effect of the backlight directly affects the display effect of the display module.
  • the backlight module may be a side-entry type or a direct-down type.
  • FIG. 7 illustrates the side-type backlight module as an example.
  • the backlight module provided by the embodiment of the present disclosure includes a backlight source 51, a reflection sheet 52, a light guide plate 53, a diffusion sheet 54, and a prism sheet 55.
  • the backlight source 51 is disposed on the light incident side of the light guide plate 53 and is configured to provide incident light.
  • the light incident side of the light guide plate 53 may be a side surface, or may be a side of the light guide plate away from the diffusion sheet.
  • the backlight source 51 includes: a light emitting diode (LED), or a cold cathode fluorescent lamp (CCFL).
  • LED light emitting diode
  • CCFL cold cathode fluorescent lamp
  • the reflecting sheet 52 is disposed on a side of the light guide plate 53 far from the diffusion sheet 54 and is used for reusing part of the light reflected from the display panel, reducing light loss and improving light utilization rate.
  • the light guide plate 53 is configured to guide light emitted from the backlight 51.
  • the diffusion sheet 54 is disposed on the light exit side of the light guide plate 53 and diffuses light emitted from the light guide plate to ensure uniform light.
  • the prism sheet 55 is disposed on the light exit side of the diffusion sheet 54 and is used to converge the light diffused by the diffusion sheet to increase the brightness of the light and provide the incident light to the display panel.
  • the backlight module in the display device provided by the embodiments of the present disclosure reduces reflective polarizers, reduces the number of optical film layers, thereby reducing the absorption of light by the optical film layers, and improves the utilization rate of light. Achieve high-brightness display effect.
  • the embodiments of the present disclosure disclose a display panel, a manufacturing method thereof, and a display device.
  • the display panel includes: a first substrate and a second substrate opposite to each other, the first substrate including: a plurality of sub-pixel regions arranged in an array; and a plurality of filters arranged in an array arranged on the first substrate.
  • a polarization structure wherein the plurality of filtering polarization structures correspond to the plurality of sub-pixel areas one by one; wherein each filtering polarization structure is configured to transmit a color phase of a sub-pixel area having a first polarization direction and corresponding to the filtering polarization structure Corresponds to light and reflects light of other colors.
  • a filtering polarization structure capable of transmitting light having a first polarization direction and corresponding to the color of the sub-pixel region corresponding to the filtering polarization structure and reflecting light of other colors can be used to reduce the absorption of light by the display panel.
  • the utilization ratio of light is improved, and a high-brightness display effect is realized.

Abstract

一种显示面板及其制作方法、显示装置,显示面板包括:相对设置的第一基板和第二基板,第一基板包括:呈阵列排布的多个子像素区域;以及设置在第一基板上的呈阵列排布的多个滤波偏振结构(30),多个滤波偏振结构(30)和多个子像素区域一一对应;其中,每个滤波偏振结构(30)配置为透射具有第一偏振方向、且与滤波偏振结构(30)对应的子像素区域颜色相对应的光线,并反射其他颜色的光线。

Description

显示面板及其制作方法、显示装置
相关申请
本公开要求2018年8月17日提交的申请号为201810942948.7的中国专利申请的优先权,该专利申请的所有内容通过引用合并于此。
技术领域
本公开实施例涉及显示技术领域,具体涉及一种显示面板及其制作方法、显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,简称LCD)是平板显示装置中的一种,液晶显示面板和背光模组是其中的重要部件,通过在液晶显示面板的一侧设置背光源,形成液晶显示装置,从而实现图像显示。
背光模组包括:背光源、导光板和光学膜层(例如:反射片、扩散片、棱镜片、偏振增量膜片)等,显示面板包括:液晶盒、贴附于液晶盒两侧的偏振片。在进行工作时,背光源发出的自然光经过光学膜层的作用后射向靠近背光模组的偏振片,经过滤光作用后形成线偏振光,该偏振光经过液晶盒的作用后,偏振方向发生改变,再经过远离背光模组的偏振片的滤光作用以呈现出一定的颜色和亮度。
研究发现,现有的液晶显示装置中光利用率较低,难以实现高亮度的显示效果。
发明内容
第一方面,本公开实施例提供了一种显示面板,包括:相对设置的第一基板和第二基板,所述第一基板包括:呈阵列排布的多个子像素区域;以及设置在所述第一基板上的呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应;其中,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线。
可选地,每个滤波偏振结构包括:间隔设置的多个滤波偏振单元; 每个滤波偏振单元包括:第一金属层、第二金属层和介质层;所述第一金属层设置在衬底基板的一侧,所述介质层设置在第一金属层远离衬底基板的一侧;所述第二金属层设置在介质层远离衬底基板的一侧;其中,所述第一金属层、所述介质层和所述第二金属层在衬底基板上的正投影重合。
可选地,相邻行滤波偏振结构之间的距离相等,相邻列滤波偏振结构之间的距离相等。
可选地,同一滤波偏振结构中的每个滤波偏振单元的宽度相等,且相邻滤波偏振单元之间的距离相等。
可选地,所述第一金属层和所述第二金属层的材料包括:铝或银;所述介质层的材料包括:氧化硅或硒化锌。
可选地,所述第一基板包括衬底基板和薄膜晶体管阵列,其中:所述多个滤波偏振结构设置在所述衬底基板远离所述薄膜晶体管阵列的一侧;或者,所述多个滤波偏振结构设置在所述衬底基板与所述薄膜晶体管阵列之间;或者,所述多个滤波偏振结构设置在所述薄膜晶体管阵列远离所述衬底基板的一侧。
可选地,所述显示面板还包括:设置在第二基板远离第一基板一侧的偏光片;所述偏光片配置为透射具有第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
可选地,所述第一基板是阵列基板,所述第二基板是彩膜基板。
可选地,所述彩膜基板包括间隔设置、且阵列排布的多个滤光片,相邻滤光片之间设置有黑矩阵层,所述多个滤光片与所述多个滤波偏振结构一一对应,每个滤波偏振结构在所述彩膜基板上的正投影位于与该滤波偏振结构对应的滤光片在所述彩膜基板上的正投影的内部。
第二方面,本公开实施例还提供一种显示装置,包括:背光模组和上述显示面板。
可选地,所述背光模组包括:背光源、导光板、扩散片和棱镜片;其中,背光源设置在导光板的入光侧;扩散片设置在导光板的出光侧,棱镜片设置在扩散片的出光侧,用于向显示面板提供入射光。
第三方面,本公开实施例还提供一种显示面板的制作方法,用于制作上述显示面板,所述方法包括:形成第一基板,所述第一基板包括:呈阵列排布的多个子像素区域;在所述第一基板上形成呈阵列排 布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线;形成第二基板;以及将所述第一基板和所述第二基板对盒。
可选地,所述形成第一基板包括:提供衬底基板,以及在所述衬底基板面向第二基板的一侧形成薄膜晶体管阵列。
可选地,所述在第一基板上形成多个滤波偏振结构包括:在衬底基板远离薄膜晶体管阵列的一侧形成第一金属层;在第一金属层远离衬底基板的一侧形成介质层;以及在介质层远离衬底基板的一侧形成第二金属层。
可选地,所述在第一基板上形成多个滤波偏振结构包括:在衬底基板面向薄膜晶体管阵列的一侧形成第一金属层;在第一金属层远离衬底基板的一侧形成介质层;以及在介质层远离衬底基板的一侧形成第二金属层。
可选地,所述在第一基板上形成多个滤波偏振结构包括:在所述薄膜晶体管阵列远离所述衬底基板的一侧形成第一金属层;在所述第一金属层远离薄膜晶体管阵列的一侧形成介质层;以及在所述介质层远离薄膜晶体管阵列的一侧形成第二金属层。
可选地,所述形成第二基板包括:在所述第二基板远离所述第一基板的一侧提供偏光片,所述偏光片配置为透射具有第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
可选地,所述形成第二基板包括:在所述第二基板面向所述第一基板的一侧形成多个滤光片和黑矩阵,所述多个滤光片与所述多个滤波偏振结构一一对应,每个滤波偏振结构在所述第二基板上的正投影位于与该滤波偏振结构对应的滤光片在所述第二基板上的正投影的内部。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为相关技术中液晶显示装置的结构示意图;
图2为本公开实施例提供的显示面板的一个结构示意图;
图3为本公开实施例提供的显示面板的另一结构示意图;
图4为本公开实施例提供的滤波偏振结构的结构示意图;
图5为本公开实施例提供的显示面板的又一结构示意图;
图6为本公开实施例提供的显示面板的制作方法的流程图;
图7为本公开实施例提供的显示装置的结构示意图;
图8为本公开实施例提供的显示面板的另一结构示意图;
图9为本公开实施例提供的显示面板的另一结构示意图;以及
图10为图4所示滤波偏振结构的俯视示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另外定义,本公开实施例公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述的对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为相关液晶显示装置的结构示意图,如图1所示,相关的液晶显示装置包括:背光模组、阵列基板120、彩膜基板130和第一偏光片140,其中,背光模组包括:背光源111、反射片112、导光板113、扩散片114、棱镜片115和反射偏光片116,其中,反射偏光片116与第一偏光片140的透光轴相同,彩膜基板包括:滤光片。
具体的,背光源111射出的光线经过导光板113、扩散片114和棱镜片115之后形成非偏振光。反射偏光片116透过与第一偏光片140透过轴一致的光线,并将不一致的光线反射至导光板113。反射偏光片116透过的光线经过第一偏光片140、阵列基板120和彩膜基板130射出。其中,射向彩膜基板130的光线为白光,图1提供的液晶显示装置中的彩膜基板中的滤光片透射与滤光片颜色相对应的光线,并吸收其他颜色的光线。另外,反射偏光片与第一偏光片也会吸收掉部分光线,导致液晶显示装置的光线利用率较低,无法实现高亮度的显示效果。
为了解决上述技术问题,本公开实施例提供了一种显示面板及其制作方法、显示装置,具体说明如下。
图2为本公开实施例提供的显示面板的一个结构示意图,如图2所示,本公开实施例提供的显示面板包括:相对设置的第一基板和第二基板,所述第一基板包括:呈阵列排布的多个子像素区域;以及设置在所述第一基板上的呈阵列排布的多个滤波偏振结构30,所述多个滤波偏振结构30和所述多个子像素区域一一对应;其中,每个滤波偏振结构30配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线。
如图2所示,第一基板可以包括衬底基板11和薄膜晶体管阵列12,所述多个滤波偏振结构30可以设置在所述衬底基板11远离所述薄膜晶体管阵列12的一侧。第二基板可以包括:玻璃基板21;以及设置在玻璃基板21靠近第一基板一侧的间隔设置、且阵列排布的多个滤光片22,相邻滤光片22之间设置有黑矩阵层23。其中,多个滤光片22与第一基板的多个子像素区域一一对应,每个滤光片22配置为透射与对应子像素区域对应的颜色的光。具体的,在相邻滤光片之间设置黑矩阵能够防止子像素漏光,保证显示效果。
在一些实施中,如图3所示,所述多个滤波偏振结构30可以设置在所述衬底基板11与所述薄膜晶体管阵列12之间,多个滤波偏振结构30和薄膜晶体管阵列12之间设置有绝缘层13。绝缘层13用于隔绝薄膜晶体管阵列和滤波偏振结构,可选地,绝缘层13的制作材料包括:氧化硅、氮化硅或者氧化硅和氮化硅的复合物,本公开实施例对此不作任何限定。
在一些实施例中,如图8所示,所述多个滤波偏振结构30可以设置在所述薄膜晶体管阵列12远离所述衬底基板11的一侧。这种情况下,滤波偏振结构可以设置在液晶层(LC)中,可以有效减小显示基板的厚度,便于制作超薄显示面板。
光线从滤波偏振结构向滤光片行进的过程中会有一定程度的扩散,有鉴于此,滤光片的尺寸可以略大于滤波偏振结构的尺寸,即每个滤波偏振结构在所述彩膜基板上的正投影位于与该滤波偏振结构对应的滤光片在所述彩膜基板上的正投影的内部,如图2、图3、图8所示,以保证经过滤波和偏振选择后的光不被黑矩阵层遮挡,提高光的利用率。当然,滤光片的尺寸也可以小于或等于滤波偏振结构的尺寸,同样可以实现本发明的技术构思,本公开对于滤光片的具体尺寸不做限制。
可选地,衬底基板11包括:玻璃基板、石英基板或者其他透明基板,本公开实施例对此不作任何限定。薄膜晶体管阵列12中的薄膜晶体管可以为顶栅结构,还可以为底栅结构,本公开实施例对此不作任何限定。
具体的,多个滤波偏振结构与多个子像素区域一一对应说明每个子像素区域上对应设置一个滤波偏振结构。滤波偏振结构还可以将其他颜色的光线反射至显示面板连接的背光模组中(图中并未示出)。
本公开实施例通过在第一基板上设置有多个滤波偏振结构,保证经过滤波偏振结构射出的光线为经过滤波后的光线,并不包含其他颜色的光线,第二基板的滤光片会直接将滤波后的光线透射出去,并不吸收该部分光线,第二基板的滤光片只对从相邻滤波偏振结构之间的位置射出的光线进行滤波,也即第二基板的滤光片只吸收从相邻滤波偏振结构之间的位置射出的不同于子像素区域相对应的颜色的光线,因此,本申请提供的技术方案中第二基板的滤光片吸收的光线要少于的相关技术中第二基板吸收的光线,提高了光线的利用率。
本公开实施例提供的显示面板包括:相对设置的第一基板和第二基板,所述第一基板包括:呈阵列排布的多个子像素区域;以及设置在所述第一基板上的呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应;其中,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区 域颜色相对应的光线,并反射其他颜色的光线。本公开实施例中通过设置能够透射具有第一偏振方向、且与滤波偏振结构对应的子像素区域颜色相对应的光线的滤波偏振结构,并反射其他颜色的光线,采用同一结构实现了偏振、滤波以及反射。因此,减少了显示装置需要设置的光学膜层数量,进而减少了光学膜层对光线的吸收。同时,还保证第二基板吸收的光线较少,进一步减少了显示面板对光线的吸收,提高了光线的利用率,实现了高亮度的显示效果。
在第二基板包括滤光片的情况下,第二基板可以是彩膜基板,第一基板是阵列基板。
当从相邻滤波偏振结构之间的位置射出的光线对像素显示的影响可忽略的情况下,第二基板可以不包括滤光片。图9为本公开实施例提供的显示面板的另一个结构示意图。如图9所示,第二基板包括:玻璃基板21、设置在玻璃基板21靠近第一基板一侧的间隔设置、且阵列排布的多个透明介质层24,相邻透明介质层24之间设置有黑矩阵层23。这样,第二基板不吸收光线,进一步提高了光线的利用率。
可选地,图4为本公开实施例提供的滤波偏振结构的结构示意图,如图4所示,每个滤波偏振结构包括:间隔设置的多个滤波偏振单元31。其中,每个滤波偏振单元31包括:第一金属层311、介质层312和第二金属层313。第一金属层311设置在衬底基板11的一侧,介质层312设置在第一金属层311远离衬底基板11的一侧,第二金属层313设置在介质层312远离衬底基板11的一侧。
图10示出了图4所示滤波偏振结构的俯视示意图,在每个子像素区域50中,多个滤波偏振单元31平行地依次间隔设置。其中,图4是图10所示的滤波偏振结构沿着A-A′线获得的横截面。
在一个实施例中,第一金属层311和第二金属层313的材料可以是铝,第一金属层311和第二金属层313的厚度可以均为40nm;介质层312的材料可以是氧化硅,厚度可以为100nm。对于红色子像素区域对应的滤波偏振结构,滤波偏振单元31的宽度w可以是185nm,相邻滤波偏振单元之间的间距s可以是370nm;对于绿色子像素区域对应的滤波偏振结构,滤波偏振单元31的宽度w可以是120nm,相邻滤波偏振单元之间的间距s可以是240nm;对于蓝色子像素区域对应的滤波偏振结构,滤波偏振单元31的宽度w可以是105nm,相邻滤波 偏振单元之间的间距s可以是210nm。
本公开实施例中的每个滤波偏振结构包括多个三层结构滤波偏振单元。每个三层结构的滤波偏振单元形成类FP腔,通过类FP共振腔模型可知,第一金属层、第二金属层以及介质层厚度的变化导致FP共振腔发生变化,这会导致透射或反射峰位变化,从而实现了对透过光谱的选择,即实现了滤波功能。
在每个滤波偏振结构中,多个滤波偏振单元平行地依次间隔设置,则多个滤波偏振单元的金属层(第一金属层和/或第二金属层)实质上相当于线栅偏振片。如果入射光的偏振方向与金属层的长度方向平行,金属层中的自由电子受到外电场的作用沿金属层定向运动。由于金属层的长度与波长相比很长,相当于入射光作用到金属薄膜表面,也就是说金属层的长度方向上的偏振光将被反射。相反,当入射光的偏振方向与金属层的长度方向垂直,由于金属层的宽度只有波长的三分之一至四分之一左右,受激电子的运动严重受限,无法与入射光波发生有效作用,从而不产生第二性的反射波和折射波,也就是说这一方向上的偏振光被透射。因此,通过调节滤波偏振单元的宽度、相邻滤波偏振单元之间的距离、以及金属层的厚度,可以实现对偏振的选择。
可选地,不同颜色子像素区域对应的滤波偏振结构中的滤波偏振单元的数量不同,具体的根据实际需求确定,本公开实施例对此不作具体限定。
具体的,当滤波偏振结构设置在衬底基板11远离薄膜晶体管阵列12的一侧时,第一金属层311设置在衬底基板11远离薄膜晶体管阵列12的一侧。当滤波偏振结构设置在衬底基板和薄膜晶体管阵列之间时,第一金属层设置在衬底基板靠近薄膜晶体管阵列的一侧。当滤波偏振结构设置在所述薄膜晶体管阵列远离所述衬底基板的一侧时,第一金属层设置在薄膜晶体管阵列远离所述衬底的一侧。图4是以第一金属层311设置在衬底基板11远离薄膜晶体管阵列12的一侧为例进行说明。
具体的,第一金属层311、介质层312和第二金属层313在衬底基板11上的正投影重合。
具体的,相邻行滤波偏振结构之间的距离相等,相邻列滤波偏振结构之间的距离相等。
具体的,同一滤波偏振结构中的滤波偏振单元的宽度w相等,且相邻滤波偏振单元之间的距离s相等。
在本公开实施例中,包括多个滤波偏振单元的滤波偏振结构实质上相当于线栅偏振片。通过调节滤波偏振单元的宽度、相邻滤波偏振单元之间的距离,能够实现偏振功能。每个滤波偏振单元相当于FP共振腔,通过控制介质层的厚度l,能够实现滤波功能。本公开实施例对这些参数的数据不作具体限定,只要能够同时实现滤光和偏振效果即可。
可选地,介质层312的制作材料包括:氧化硅或硒化锌,本公开实施例对此不作任何限定。需要说明的是,用于实现同一功能的滤波偏振结构中的氧化硅和硒化锌的厚度有所不同,具体根据实际需求确定。
可选地,第一金属层311和第二金属层313的制作材料包括:铝或银。需要说明的是,第一金属层311和第二金属层313的制作材料相同。
可选地,为了保证显示面板能够正常显示,本公开实施例提供的显示面板还包括偏光片。图5为本公开实施例提供的显示面板的又一结构示意图,如图5所示,本公开实施例提供的显示面板还包括:设置在第二基板远离第一基板一侧的偏光片40;偏光片40用于透射第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
另外,需要说明的是,本公开实施例提供的滤波偏振结构具有相关技术中设置在第一基板上的偏光片的偏振功能,能够与设置在第二基板上的偏光片配合保证显示面板的正常显示。
需要说明的是,本公开实施例中的液晶显示面板可以为任意显示模式的液晶显示面板,例如,扭曲向列型(Twisted Nematic,简称TN)液晶显示面板、平面转换型(In-Plane Switching,简称IPS)液晶显示面板、面内开关型(Fringe Field Switching,简称FFS)液晶显示面板、垂直配向型(Vertical Alignment,简称VA)液晶显示面板,高级超维场转换型(Advanced Super Dimension Switch,简称ADS)液晶显示面板,本公开实施例并不以此为限。
本公开实施例还提供一种显示面板的制作方法,用于制作上述实施例提供的显示面板,图6为本公开实施例提供的显示面板的制作方 法的流程图,如图6所示,本公开实施例提供的显示面板的制作方法,具体包括以下步骤。
步骤100:形成第一基板。
其中,第一基板包括:呈阵列排布的多个子像素区域。
步骤200:在所述第一基板上形成呈阵列排布的多个滤波偏振结构。
其中,所述多个滤波偏振结构和所述多个子像素区域一一对应,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线
步骤300:形成第二基板。
步骤400:将所述第一基板和所述第二基板对盒。
可选地,形成第一基板可以包括:提供衬底基板,以及在所述衬底基板面向第二基板的一侧形成薄膜晶体管阵列。衬底基板可以包括玻璃基板、石英基板或者其他透明基板,本公开实施例对此不作任何限定。薄膜晶体管阵列中的薄膜晶体管可以为顶栅结构,还可以为底栅结构,本公开实施例对此不作任何限定。
可选地,所述在第一基板上形成多个滤波偏振结构可以包括:在衬底基板远离薄膜晶体管阵列的一侧形成第一金属层;在第一金属层远离衬底基板的一侧形成介质层;以及在介质层远离衬底基板的一侧形成第二金属层。
可选地,所述在第一基板上形成多个滤波偏振结构可以包括:在衬底基板面向薄膜晶体管阵列的一侧形成第一金属层;在第一金属层远离衬底基板的一侧形成介质层;以及在介质层远离衬底基板的一侧形成第二金属层。
可选地,所述在第一基板上形成多个滤波偏振结构可以包括:在所述薄膜晶体管阵列远离所述衬底基板的一侧形成第一金属层;在所述第一金属层远离薄膜晶体管阵列的一侧形成介质层;以及在所述介质层远离薄膜晶体管阵列的一侧形成第二金属层。
可选地,所述形成第二基板可以包括:在所述第二基板远离所述第一基板的一侧提供偏光片,所述偏光片配置为透射具有第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
可选地,所述形成第二基板可以包括:在所述第二基板面向所述 第一基板的一侧形成多个滤光片和黑矩阵,所述多个滤光片与所述多个滤波偏振结构一一对应,每个滤波偏振结构在所述第二基板上的正投影位于与该滤波偏振结构对应的滤光片在所述第二基板上的正投影的内部。
本公开实施例提供的显示面板的制作方法包括:形成第一基板,所述第一基板包括:呈阵列排布的多个子像素区域;在所述第一基板上形成呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线;形成第二基板;以及将所述第一基板和所述第二基板对盒。本公开实施例中通过设置能够透射第一偏振方向,且与滤波偏振结构对应的子像素区域颜色相对应的光线的滤波偏振结构,采用同一结构实现了偏振、滤波以及反射,减少了显示装置需要设置的光学膜层数量,进而减少了光学膜层对光线的吸收,同时还保证第二基板吸收的光线较少,进一步减少了显示面板对光线的吸收,提高了光线的利用率,实现了高亮度的显示效果。
基于上述实施例的构思,本公开实施例还提供一种显示装置,图7为本公开实施例提供的显示装置的结构示意图。如图7所示,本公开实施例提供的显示装置包括:背光模组和上述实施例提供的显示面板。
其中,显示面板设置在背光模组的出光侧。
具体的,显示装置为液晶显示装置。可选地,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可选地,本公开实施例提供的背光模组用于为显示面板提供背光,背光源的发光效果直接影响到显示模组的显示效果。需要说明的是,背光模组可以为侧入式,还可以为直下式,本公开实施例并不以此为限,图7以侧入式背光模组为例进行说明。
如图7所示,本公开实施例提供的背光模组包括:背光源51、反射片52、导光板53、扩散片54和棱镜片55。
其中,背光源51设置在导光板53的入光侧;用于提供入射光。其中,导光板53的入光侧可以为侧面,也可以为导光板远离扩散片的一侧。
可选地,背光源51包括:发光二极管(Light Emitting Diode,简称LED),或者,或者冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,简称CCFL)。
其中,反射片52设置在导光板53的远离扩散片54的一侧,用于将显示面板反射回来的部分光再次利用,减少了光的损失,提高了光利用率。
其中,导光板53用于将背光源51发射的光导出。
其中,扩散片54设置在导光板53的出光侧,将导光板导出的光进行扩散,保证光线的均匀。
其中,棱镜片55设置在扩散片54的出光侧,用于对扩散片扩散的光进行会聚,以提高光线的亮度,并向显示面板提供入射光。
本公开实施例提供的显示装置中的背光模组与相关技术相比,减少了反射偏光片,通过减少了光学膜层的数量进而减少光学膜层对光线的吸收,提高了光线的利用率,实现了高亮度的显示效果。
本公开实施例附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
本公开实施例公开一种显示面板及其制作方法、显示装置。显示面板包括:相对设置的第一基板和第二基板,所述第一基板包括:呈阵列排布的多个子像素区域;以及设置在所述第一基板上的呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应;其中,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线。本公开实施例中通过设置能够透射第一偏振方向,且与滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线的滤波偏振结构,能够减少显示面板对光线的吸收,提高了光线的利用率,实现了高亮度的显示效果。
为了清晰起见,在用于描述本公开的实施例的附图中,层或微结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在不冲突的情况下,本公开的实施例即实施例中的特征可以相互组合以得到新的实施例。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (18)

  1. 一种显示面板,包括:
    相对设置的第一基板和第二基板,所述第一基板包括:呈阵列排布的多个子像素区域;以及
    设置在所述第一基板上的呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应;
    其中,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线。
  2. 根据权利要求1所述的显示面板,其中,每个滤波偏振结构包括:间隔设置的多个滤波偏振单元;
    每个滤波偏振单元包括:第一金属层、第二金属层和介质层;
    所述第一金属层设置在衬底基板的一侧,所述介质层设置在第一金属层远离衬底基板的一侧;所述第二金属层设置在介质层远离衬底基板的一侧;
    其中,所述第一金属层、所述介质层和所述第二金属层在衬底基板上的正投影重合。
  3. 根据权利要求1所述的显示面板,其中,相邻行滤波偏振结构之间的距离相等,相邻列滤波偏振结构之间的距离相等。
  4. 根据权利要求2所述的显示面板,其中,同一滤波偏振结构中的每个滤波偏振单元的宽度相等,且相邻滤波偏振单元之间的距离相等。
  5. 根据权利要求2所述的显示面板,其中,所述第一金属层和所述第二金属层的材料包括:铝或银;
    所述介质层的材料包括:氧化硅或硒化锌。
  6. 根据权利要求1所述的显示面板,其中,所述第一基板包括衬底基板和薄膜晶体管阵列,其中:
    所述多个滤波偏振结构设置在所述衬底基板远离所述薄膜晶体管阵列的一侧;
    或者,所述多个滤波偏振结构设置在所述衬底基板与所述薄膜晶体管阵列之间;
    或者,所述多个滤波偏振结构设置在所述薄膜晶体管阵列远离所述衬底基板的一侧。
  7. 根据权利要求1所述的显示面板,还包括:设置在第二基板远离第一基板一侧的偏光片;
    其中,所述偏光片配置为透射具有第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
  8. 根据权利要求1-7中任一项所述的显示面板,所述第一基板是阵列基板,所述第二基板是彩膜基板。
  9. 根据权利要求8所述的显示面板,所述彩膜基板包括间隔设置、且阵列排布的多个滤光片,相邻滤光片之间设置有黑矩阵层,所述多个滤光片与所述多个滤波偏振结构一一对应,每个滤波偏振结构在所述彩膜基板上的正投影位于与该滤波偏振结构对应的滤光片在所述彩膜基板上的正投影的内部。
  10. 一种显示装置,包括:背光模组和如权利要求1~9中任一项所述的显示面板。
  11. 根据权利要求10所述的显示装置,其中,所述背光模组包括:背光源、导光板、扩散片和棱镜片;
    其中,背光源设置在导光板的入光侧;扩散片设置在导光板的出光侧,棱镜片设置在扩散片的出光侧,用于向显示面板提供入射光。
  12. 一种显示面板的制作方法,其中,用于制作如权利要求1~9中任一项所述的显示面板,所述方法包括:
    形成第一基板,所述第一基板包括:呈阵列排布的多个子像素区域;
    在所述第一基板上形成呈阵列排布的多个滤波偏振结构,所述多个滤波偏振结构和所述多个子像素区域一一对应,每个滤波偏振结构配置为透射具有第一偏振方向、且与该滤波偏振结构对应的子像素区域颜色相对应的光线,并反射其他颜色的光线;
    形成第二基板;以及
    将所述第一基板和所述第二基板对盒。
  13. 根据权利要求12所述的方法,其中,所述形成第一基板包括:
    提供衬底基板;以及
    在所述衬底基板面向第二基板的一侧形成薄膜晶体管阵列。
  14. 根据权利要求13所述的方法,其中,所述在第一基板上形成多个滤波偏振结构包括:
    在衬底基板远离薄膜晶体管阵列的一侧形成第一金属层;
    在第一金属层远离衬底基板的一侧形成介质层;以及
    在介质层远离衬底基板的一侧形成第二金属层。
  15. 根据权利要求13所述的方法,其中,所述在第一基板上形成多个滤波偏振结构包括:
    在衬底基板面向薄膜晶体管阵列的一侧形成第一金属层;
    在第一金属层远离衬底基板的一侧形成介质层;以及
    在介质层远离衬底基板的一侧形成第二金属层。
  16. 根据权利要求13所述的方法,其中,所述在第一基板上形成多个滤波偏振结构包括:
    在所述薄膜晶体管阵列远离所述衬底基板的一侧形成第一金属层;
    在所述第一金属层远离薄膜晶体管阵列的一侧形成介质层;以及
    在所述介质层远离薄膜晶体管阵列的一侧形成第二金属层。
  17. 根据权利要求12所述的方法,其中,所述形成第二基板包括:
    在所述第二基板远离所述第一基板的一侧提供偏光片,所述偏光片配置为透射具有第二偏振方向的光线,其中,第一偏振方向与第二偏振方向垂直或平行。
  18. 根据权利要求12所述的方法,其中,所述形成第二基板包括:
    在所述第二基板面向所述第一基板的一侧形成多个滤光片和黑矩阵,所述多个滤光片与所述多个滤波偏振结构一一对应,每个滤波偏振结构在所述第二基板上的正投影位于与该滤波偏振结构对应的滤光片在所述第二基板上的正投影的内部。
PCT/CN2019/100962 2018-08-17 2019-08-16 显示面板及其制作方法、显示装置 WO2020035047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/646,633 US20200301200A1 (en) 2018-08-17 2019-08-16 Display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942948.7A CN108983485A (zh) 2018-08-17 2018-08-17 一种显示面板及其制作方法、显示装置
CN201810942948.7 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020035047A1 true WO2020035047A1 (zh) 2020-02-20

Family

ID=64553187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100962 WO2020035047A1 (zh) 2018-08-17 2019-08-16 显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20200301200A1 (zh)
CN (1) CN108983485A (zh)
WO (1) WO2020035047A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN109801564A (zh) * 2019-03-22 2019-05-24 信利半导体有限公司 一种显示装置
CN110471213A (zh) 2019-09-11 2019-11-19 京东方科技集团股份有限公司 显示基板、显示面板及其制造方法、显示装置
CN110908183B (zh) * 2019-11-12 2021-07-23 惠州市华星光电技术有限公司 显示器
CN111487806B (zh) * 2020-04-24 2023-05-23 京东方科技集团股份有限公司 一种彩膜基板、镜面显示面板及镜面显示装置
CN112162426A (zh) * 2020-09-28 2021-01-01 维沃移动通信有限公司 显示屏、显示方法、电子设备及可读存储介质
CN114371572A (zh) * 2020-10-14 2022-04-19 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN113031355A (zh) * 2021-02-26 2021-06-25 京东方科技集团股份有限公司 反射型阵列基板及其制备方法、显示装置
CN113031351A (zh) * 2021-03-08 2021-06-25 绵阳惠科光电科技有限公司 液晶面板、显示装置及液晶面板制造方法
CN113900300B (zh) * 2021-09-08 2023-09-19 北京信息科技大学 一种液晶显示面板及显示装置
CN114420870B (zh) * 2022-01-19 2024-02-23 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法
CN114994982B (zh) * 2022-06-15 2023-10-13 京东方科技集团股份有限公司 前置光源和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056024A1 (en) * 2004-09-15 2006-03-16 Ahn Seh W Wire grid polarizer and manufacturing method thereof
CN102636900A (zh) * 2011-02-14 2012-08-15 三星电子株式会社 显示面板及制造显示装置的方法
CN106125185A (zh) * 2016-08-29 2016-11-16 武汉华星光电技术有限公司 显示屏及其偏光片
CN107870471A (zh) * 2016-09-22 2018-04-03 三星电子株式会社 定向背光单元、其制造方法和包括其的三维图像显示装置
CN107908037A (zh) * 2017-09-21 2018-04-13 友达光电股份有限公司 显示面板
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153304A (zh) * 2017-07-20 2017-09-12 武汉华星光电技术有限公司 液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056024A1 (en) * 2004-09-15 2006-03-16 Ahn Seh W Wire grid polarizer and manufacturing method thereof
CN102636900A (zh) * 2011-02-14 2012-08-15 三星电子株式会社 显示面板及制造显示装置的方法
CN106125185A (zh) * 2016-08-29 2016-11-16 武汉华星光电技术有限公司 显示屏及其偏光片
CN107870471A (zh) * 2016-09-22 2018-04-03 三星电子株式会社 定向背光单元、其制造方法和包括其的三维图像显示装置
CN107908037A (zh) * 2017-09-21 2018-04-13 友达光电股份有限公司 显示面板
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
US20200301200A1 (en) 2020-09-24
CN108983485A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020035047A1 (zh) 显示面板及其制作方法、显示装置
WO2020119490A1 (zh) 显示组件、显示装置及其驱动方法
US11029570B2 (en) Reflective LCD panel by disposing a white sub-pixel unit in the pixel unit and using the while sub-pixel unit in collaboration with the pixel electrode to increase brightness of the pixel unit
WO2018120504A1 (zh) 液晶显示面板及其应用的液晶显示装置
WO2014176818A1 (zh) 液晶显示装置
JP2008102416A (ja) ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
US20080252823A1 (en) Double-sided display device employing a polarized light guide
KR20160088397A (ko) 헤드업 디스플레이 장치용 액정 표시 장치 및 헤드업 디스플레이 장치
US20200209681A1 (en) Reflective display panel and manufacturing method thereof, and display device
CN102656492A (zh) 带干涉型滤光片层的基板及使用该基板的显示装置
US10642112B2 (en) Array substrate, display panel and display device
KR20090079779A (ko) 듀얼 액정표시장치
CN105700236A (zh) 双面液晶显示装置及其背光模组
TW200419246A (en) Liquid crystal display
WO2018120507A1 (zh) 液晶显示面板及其制造方法
US9964801B2 (en) Display substrate, manufacturing method thereof and display device
WO2017118234A1 (zh) 显示装置及控制方法
KR20170106567A (ko) 광학 필름 및 이를 포함하는 액정표시장치
WO2014169519A1 (zh) 显示面板及显示装置
US8570467B2 (en) Liquid crystal display and the fabricating method of the same
KR20180083031A (ko) 표시 장치
CN106054469B (zh) 超薄型液晶显示器
JPH1152372A (ja) 面光源装置及びそれを使用した液晶表示装置
CN210720943U (zh) 显示面板以及显示装置
WO2018223480A1 (zh) 显示面板及其应用的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850260

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850260

Country of ref document: EP

Kind code of ref document: A1