WO2014169499A1 - 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法 - Google Patents

一种识别和解释碳酸盐岩古岩溶储层三维结构的方法 Download PDF

Info

Publication number
WO2014169499A1
WO2014169499A1 PCT/CN2013/075441 CN2013075441W WO2014169499A1 WO 2014169499 A1 WO2014169499 A1 WO 2014169499A1 CN 2013075441 W CN2013075441 W CN 2013075441W WO 2014169499 A1 WO2014169499 A1 WO 2014169499A1
Authority
WO
WIPO (PCT)
Prior art keywords
cave
section
karst
caves
development
Prior art date
Application number
PCT/CN2013/075441
Other languages
English (en)
French (fr)
Inventor
田飞
金强
徐守余
张文博
康逊
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2014169499A1 publication Critical patent/WO2014169499A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • E21B47/0025Survey of boreholes or wells by visual inspection generating an image of the borehole wall using down-hole measurements, e.g. acoustic or electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • G01V3/28Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection

Definitions

  • the present invention relates to a method for predicting carbonate rock karst reservoirs based on well seismic combination, and more particularly to identifying and interpreting carbonic acid Method for three-dimensional structure of salt rock paleo-karst reservoir.
  • BACKGROUND OF THE INVENTION With the development of petroleum exploration technology in China, the exploration field has been expanding, and has been developed from conventional clastic oil and gas reservoirs to unconventional oil and gas reservoirs. Carbonate karst reservoirs are one of them. Among the many oilfields in China, a variety of carbonate rock paleo-karst reservoirs have been discovered.
  • the Tahe oilfield which is dominated by paleo-karst reservoirs, has become the largest Paleozoic marine oilfield in China. It has experienced various geological functions such as dissolution, filling, collapse and burial structure, geochemistry, etc. Paleo-karst reservoirs are formed by caves and their surrounding genetically related fractures, with strong non-representation in the vertical and horizontal directions. The characteristics of homogeneity cause huge differences in production between adjacent wells. Production practice proves that the productivity of the reservoir is mainly controlled by the development degree of the cave. Therefore, accurately identifying and explaining the spatial development characteristics of the caverns in the carbonate karst are the core content of the three-dimensional structure identification and interpretation of the paleokarst reservoir.
  • the seismic data identifies that the accuracy of the wells in the well is low, and the caves of ⁇ 6!11 cannot be effectively identified, and the development of the caves between the wells cannot be effectively determined;
  • Paleokarst reservoirs have strong vertical and horizontal heterogeneity and multi-layer development characteristics. Due to the limited recognition resolution, reliable three-dimensional structural features of paleokarst reservoirs cannot be obtained.
  • the object of the present invention is to solve the above problems and propose a combination of core observation, log analysis and seismic inversion to effectively identify and explain the position and structure of a single well and an interwell ancient karst reservoir, and promote the ancient Development of three-dimensional identification technology for karst reservoirs.
  • the present invention provides quantitative identification of single well caves; identification of wells between wells; and interpretation of three-dimensional structure of paleokarst reservoirs.
  • the step of single well cave identification preferably includes: summarizing the conventional logging response characteristics according to the core development section of the core and the electrical imaging logging data; and optimizing the cave sensitive logging parameters by the logging parameter intersection method to establish the identification plate;
  • the cave identification function is established by multi-parameter normalization weighting method; the specific steps are as follows: A method for identifying and interpreting the three-dimensional structure of carbonate rock karst reservoir, characterized in that it comprises the following steps: 1 first according to each mouth The well core and electric imaging logging data obtained from the wells yields a limited single well cave development position; then the conventional logging curve is calibrated according to the actual location of the cave, that is, the conventional logging curve of the cave section is drawn; thus, the cave is clearly defined The response characteristics on the conventional logging curve, that is, the characteristics of the "three highs and two lows" of the cave section;
  • the "three high and two low” standards are:
  • the cave section has a low double lateral resistivity (R, R LLS ) of less than 700 ⁇ m; a low compensation density (DEN) of less than 2.7 g/cm 3 ; a high natural gamma (GR), greater than 30 API; high acoustic time difference (AC), greater than 48 s/ft; high compensated neutron porosity (CNL), greater than 1.5%; this step is a clear response feature, but the location of the cave is not obtained.
  • Reasons 1. The recognition accuracy is not high, because there is no quantitative acquisition between different parameters, sometimes there are contradictions; 2. If the quantitative recognition result cannot be obtained, it cannot be calibrated to the acoustic impedance inversion data body in the time domain; therefore, The following steps are also required.
  • Lithology Density The cave section is filled with mechanical deposits, breccia, and chemical deposits, and is somewhat different from the density of surrounding non-cavity sections (original rocks, fractures, and fracture-cavity complexes).
  • the density of the cave section is large (>2.7 ( ⁇ /0!11 3 ) and the density of the cave is small (generally ⁇ 2.73g/cm 3 );
  • Neutron Porosity The neutron porosity response inside the cave is high (>1.5%), and the non-cavity section has a small neutron porosity, especially the original rock section.
  • the neutron porosity is mostly less than 1%;
  • GR is the normalized natural gamma value, API
  • GR max is the GR value of the pure mudstone section in the cave, API
  • GR min is the pure carbonate section GR value, API
  • S For the transitional parameters, dimensionless
  • V sh is the shale content, %
  • the non-cavity section is dominated by pure carbonate rock, the shale content is generally between 5% and 15%
  • the cavern section is filled with mechanical sediments and breccia The shale content will increase significantly, even more than 40%;
  • C Shallow lateral conductivity
  • AC Acoustic time difference
  • V sh , CNL , AC and C s in the non - cavern sections are very small, and the data points are more concentrated in the intersection diagram shown in Figure 3, and the response characteristics of the cave sections are just opposite.
  • the four parameters are higher in value and data. point distribution range is large; DEN rather low value to a high value in the segment cave cave section; cave segment C ⁇ greater than 10- 2 s / m, V sh - generally greater than 8%, AC is greater than 54 ws/ft, CNL is greater than 1.5%, and DEN is less than 2.73 g/cm 3 ;
  • the log interpretation results obtained in step 4 show that the positions of the caves in each well are different, and the number of small holes More, the difference between the time and depth of different single wells is large; and the method of synthetic seismic record is used to establish the accurate time-depth conversion relationship from the single well according to the conclusion obtained in step 3, and for each case Jingjun made a synthetic seismic record, and converted the cave identification result in the depth domain into the time domain, so as to accurately calibrate to the acoustic impedance inversion data body. According to the acoustic wave impedance values corresponding to the contrast cave section and non-cavity section, the cave section is determined.
  • the wave impedance threshold of the non-cavity segment so that the spatial structure of the paleo-karst reservoir is identified on the three-dimensional acoustic impedance data volume; the acoustic wave impedance is >16500 g*s- ⁇ by comparing the development time of the cavity and non-cave in the time domain.
  • M- 2 is a non-cavity section (white), ⁇ 15500 g* *! ⁇ 2 is a cave section (red), 15500-16500 g*s— ⁇ m- 2 is a transition section (gray), and the subsequent acoustic impedance
  • the inversion data body can more effectively identify the three-dimensional structure of the ancient karst reservoir, and obtain a single well cave recognition effect table;
  • the isochronous slices used in conventional seismic interpretation can only show part of the caves; the invention selects large scale and continuity in the process of three-dimensional tracking of paleokarsts.
  • a good cave is continuously tracked in the middle, and the average value of the acoustic impedance of the 2ms around the tracking layer is extracted, so that the distribution characteristics of the paleo-karst reservoir in the target interval are obtained.
  • the steps for explaining the three-dimensional structure of the paleokarst reservoir preferably include: According to the karst hydrogeological theory and the actual characteristics of the paleokarst reservoir, the cave is divided into three types of genesis: the sinkhole, the main stream and the tributary.
  • the geological interpretation of the three-dimensional structure of the obtained paleo-karst spatial development features Geological statistics on the sinkhole, main stream and tributary are obtained, and their number, length, width, development area and percentage of cave area, development volume and percentage of cave volume, cave area/total area and cave volume/total area are obtained. And other parameters.
  • the reservoir engraving technique the structural features of paleo-karst reservoirs of different genetic types are carved out from three-dimensional space. Combined with the current drilling situation, the recommendations for oil and gas exploration and development in the next step are given.
  • the sensitivity curve of the cave reaction comprises: a compensation density (DEN), a supplemental neutron porosity (CNL), a shale content (V sh ), a shallow lateral conductivity. (C s ) and acoustic time difference (AC).
  • DEN compensation density
  • CNL supplemental neutron porosity
  • V sh shale content
  • AC acoustic time difference
  • the invention has the advantages that the carbon rock karst reservoir identification and interpretation method includes four main technologies: quantitative identification of single well caves by conventional logging data; calibration of single well cave interpretation results by synthetic seismic records to Acoustic impedance inversion on the body; continuous tracking along the middle of the cave to explain the paleo-karst reservoir structure; according to the interpretation of the combination of well-seismic, the genetic type of the ancient karst reservoir is divided, the geometric forms of different genetic types are counted, and Three-dimensional carving.
  • the combination of these four methods has not been applied to the record of the identification and interpretation of carbonate rock karst reservoir structures, that is, this is the first time to identify the structure of carbonate karst reservoirs.
  • the present invention makes accurate synthetic seismic records for each single well, thereby being able to obtain reliable The acoustic impedance threshold of the cave section and non-cavity section.
  • isochronous slices can only show the problem of some caves.
  • the invention continuously tracks along the middle of a large-scale and continuous cave, and obtains the spatial distribution characteristics of the multi-layered ancient karst reservoir.
  • FIG. 1 is a flow chart of a method for identifying and interpreting a three-dimensional structure of a carbonate rock paleo-karst reservoir proposed by the present invention
  • FIG. 2 is a conventional logging curve of a known well
  • FIG. 3 is a cave identification chart
  • Figure 4 is a composite seismic record of a known well
  • Figure 5 is a cross-sectional view of the well
  • Figure 6 is a wave impedance tracking plan and geological analysis of the upper paleo-karst reservoir in a known well
  • Figure 7 is a It is known that the wave impedance tracking plan and geological analysis map of the lower karst reservoir in the lower part of the well area
  • Figure 8 is a three-dimensional engraving diagram of the paleo-karst reservoir with different genetic types in the upper layer of the known well
  • Figure 9 is a different cause of the lower layer of the known well area.
  • FIG 3 is a three-dimensional engraving diagram of the TK602 well;
  • Figure 11 is a TK632 well cave identification result;
  • Figure 12 is a TK647 well cave identification result;
  • Figure 13 is a TK666 well cave identification result.
  • the present invention proposes a comprehensive identification and interpretation method for three-dimensional structure of carbonate rock paleo-karst reservoir based on well seismic combination.
  • Fig. 1 a flow chart of a method for identifying and interpreting a carbonate karst reservoir structure proposed by the present invention is shown. The method comprises: Step 101: Calibrating a conventional logging curve according to a cave defined by the core and the electrical imaging logging data, and determining the response characteristics of the cave on the conventional logging curve. As shown in Fig.
  • the cave section has low double lateral resistivity (R D , RLLS), less than 700 ⁇ ⁇ ⁇ ; low compensation density (DEN), less than 2.7g/cm 3 ; High natural gamma (GR), greater than 30 API; High acoustic time difference (AC), greater than 48 n s / ft; Highly compensated neutron porosity (CNL), greater than 1.5%; Local cavern section expansion.
  • R D double lateral resistivity
  • DEN low compensation density
  • GR High natural gamma
  • AC High acoustic time difference
  • CNL Highly compensated neutron porosity
  • Step 102 According to the information of the multi-port core and the imaging well, using the logging parameter intersection diagram method, the cave sensitivity parameter is selected, and the cave identification map is established.
  • the cave section is filled with mechanical deposits, breccia and chemical deposits, and surrounding non-cavity sections (original rocks, cracks and There is a difference in the density of the fracture-cavity complex.
  • the density of the non-cavity section is large (>2.70 ⁇ /011 3 ) and the density inside the cave is small (generally ⁇ 2.73 g/cm 3 ).
  • GR is the normalized natural gamma value, API; GR is the GR value of the pure mudstone section in the cave, API; GR min is the pure carbonate section GR value, API; S is Transition parameters, dimensionless; V sh is shale content, %.
  • the non-cavity section is dominated by pure carbonate rock, and the shale content is generally between 5% and 15%.
  • the shale content of the caverns filled with mechanical deposits and breccia will increase significantly, even exceeding 40%.
  • Shallow lateral conductivity (C ⁇ ): Conductivity logging reflects the conductivity of the reservoir and is directly related to lithology, pore structure and fluid properties; the cavern section is invaded by mud filtrate, compared to the non-cavity section. The conductivity is obviously increased, which corresponds to the decrease of the double lateral resistivity in the log response, and the decrease is particularly obvious, generally less than 700 ⁇ ; therefore, the shallow lateral conductivity
  • the acoustic time difference of the cave development section is obviously increased, generally greater than 54 s/ft. In some caves, the acoustic time difference is sharply increased (>85 s/ft), and even the "cycle jump" occurs.
  • the non-cavity segments V sh , CNL, AC and C s are all small, and the data points are more concentrated.
  • the response characteristics of the cave segments are just opposite. The four parameters are higher in value and the data points are distributed.
  • the cave section C s is greater than 10 - 2 s / m, V sh is generally greater than 8%, AC is greater than 54 ⁇ s / ft, CNL is greater than 1.5%, and DEN is less than 2.73 g / cm 3 .
  • Step 103 To quantitatively identify the cave, normalize and weight the above sensitive parameters, and establish a multi-parameter comprehensive recognition function: first, normalize the sensitive parameters to eliminate the difference caused by different numerical ranges; then according to the parameters and the cave segments The sensitivity of the magnitude of the weighting coefficient of each parameter; then by calculating the discriminant function value, using the core and electrical imaging results to explain the results of the calibration, and finally determine the threshold value of the function value P, to quantitatively divide the cave section and non-cavity section; The segment applies a multi-parameter normalized weighting method to establish a comprehensive identification function:
  • X 5 is normalized to the shale content (V sh , unit %).
  • V sh shale content
  • statistical analysis is used: When the P value is greater than 0.42, the cave coincidence rate is the highest, which is 85.32%, so it is set when P>0.42.
  • the cave development section therefore, corresponding, when 1 ⁇ 0. 42 is a non-cave development section.
  • Step 104 The log interpretation results show that the positions of caves in each well are different, and the number of small holes is large, and the time-depth relationship between single wells is different.
  • the invention utilizes the method of synthesizing seismic record to establish a precise time-depth conversion relationship from a single well, and synthesizes a seismic record for each single well, and accurately calibrates the cave identification result to the acoustic impedance inversion data body.
  • the wave impedance threshold of the cave and non-cave sections is determined to identify the spatial structure of the paleokarst reservoir on the three-dimensional acoustic impedance data volume.
  • Figure 4 is a diagram of the synthetic seismic record of a known well.
  • the invention first selects the nearest seismic trace from a single well, extracts the wavelet in the target interval (the known seismic wave is 22HZ, the initial phase is 230°), and performs multiple times and depth calibration. Finally, the time-depth relationship of a single well was clarified, and the results showed that the anastomosis effect was very good. According to this method, other wells in the study area were effectively calibrated.
  • Figure 5 is a cross-sectional view of a typical well of a known well area.
  • the black line on the left side of the single well is the cave identification result. Comparing the caves identified by logging, it is considered that the acoustic impedance is inverted in the data body, when the acoustic impedance is >16500 g*s- ⁇ m - 2 is the non-cavity development segment (white), the acoustic impedance is ⁇ 15500 For the transition segment (gray).
  • the sonic impedance inversion data body after the threshold is determined to more effectively identify the three-dimensional structure of the paleo-karst reservoir (Table 1).
  • the wave impedance inversion data body can identify a cave with a hole height of 3 m.
  • Step 105 Due to the strong irregularities in the geometry of the ancient karst reservoir, isochronous slices can only show part of the cave.
  • the invention selects a large-scale and continuous cave to continuously track the middle, and extracts the average value of the acoustic impedance around the tracking layer for 2ms, thereby obtaining the target interval between wells. Distribution characteristics of paleokarst reservoirs. As shown in Figure 5, the dotted line in the middle of the cave is the interpretation line of the ancient karst reservoir. As shown in Fig.
  • FIG. 6 it is a wave impedance tracking plan and geological analysis map of the upper layer paleo-karst reservoir in a known well area.
  • Fig. 7 it is a wave impedance tracking plan and a near-energy geological analysis map of the underlying palaeokarst reservoir in a known well area.
  • Step 106 According to the karst hydrogeological theory and the actual characteristics of the paleokarst reservoir, the cave is divided into three types of genesis: the sinkhole, the main stream and the tributary.
  • the geological interpretation of the three-dimensional structure of the spatial development characteristics of the obtained karst reservoirs is carried out. Geological statistics were carried out on the sinkhole, main stream and tributary, and their parameters such as number, length, width, development area and area ratio, development volume and volume ratio, cave area/total area and cave volume/total area were obtained.
  • the reservoir engraving technique the structural features of caves of different genetic types are carved out from the three-dimensional space. Combined with the current drilling situation, the recommendations for oil and gas exploration and development in the next step are given.
  • FIG. 6b it is a plane distribution map of caves of different genetic types in the upper paleo-karst reservoirs of the known study area.
  • the statistics show that (Table 2): There are 4 sinkholes, 1 trunk bore and 8 tributary caves in the upper paleo-karst reservoir.
  • the length of the upper landing hole is generally 80-610m and the width is 40-330m; the length of the main stream is 7080m and the width is 130-720m; the length of the branch hole is 290-1800m and the width is 30-420m.
  • the area ratio of the upper falling water hole is relatively low, 10.88%, and the area ratio of the main stream and the tributary hole are similar, which are 45.86% and 43.26%, respectively.
  • the volume of the main stream in the upper paleo-karst reservoir is the largest, accounting for 52.49% of the total volume of the cave; the volume ratio of the branch hole and the sinkhole is lower, 28.94% and 18.57%, respectively.
  • the upper cave area/total area is 33.27%, and the upper cave volume/total area is 9.42 m 3 /m 2 .
  • the length of the lower landing hole is generally 60-240m, the width is 90-260m; the length of the main stream is 1400-2200m, the width is 130-500m ; the length of the branch hole is 400-1500m, and the width is 60-230m.
  • the area ratio of the lower water hole is 4.72%; the area ratio of the branch hole is 41.02%; the area ratio of the main stream is the largest, which is 54.27%.
  • the volume of the main stream in the lower paleo-karst reservoir is the largest, accounting for 57.85% of the total volume of the cave; the volume ratio of the tributary and the sinkhole is lower, 35.34% and 6.81%, respectively.
  • the lower cave area/total area is 42.90%, and the lower cave volume/total area is 11.37 m / m.
  • the area of the caverns accounts for the area of the layer and the volume of the layer.
  • the three-dimensional engraving results of the two layers of ancient karst reservoirs in the well area are known. It can be seen from the three-dimensional structure diagram that the current wells have encountered large caverns inside, and the next drilling can consider multiple horizontal wells and high-angle wells, effectively increasing the length of the ancient karst wells. For example, drilling a horizontal well along the top of a main flow hole between the TK730-TK632 well is expected to effectively increase the production of the well. In the exploration and development of paleo-karst reservoirs, the reservoir and transport of the tributary caves are also very strong.
  • the tributary caves are also favorable reservoirs for oil and gas, even in local areas.
  • the main reservoir For example, in the upper Paleokarst reservoir in the northern part of the TK637H well and the lower Paleokarst reservoir in the south of the TK637H well, the tributary cave is particularly developed and has a high position and is also a favorable exploration site.
  • TK602 well, TK666 well, TK647 well and TK632 well in the north of T615 well area were selected for case analysis. The analysis diagrams are shown in Figures 10 to 13.
  • logging interpretation shows that 3 caves have been developed in TK602 well, with developmental positions of 5555.3 ⁇ 5559.5m (hole height 4.2m), 5588.l ⁇ 5618.8m (hole height 30.7m), 5621.0 ⁇ 5625 .lm (hole height 4.1m).
  • the second cave has the largest scale of development. From the well, it can be seen that the caves are multi-layered in a single well, and the heights of the different elevation caves are different.
  • the logging interpretation shows that three caves have been developed in TK632, with developmental positions of 5558.4 ⁇ 5559.7m (hole height 1.3m), 5562.3 ⁇ 5564.2m (hole height 1.9m), 5566.l ⁇ 5587.2 m (hole height 21. lm).
  • the third cave has the largest scale of development. And the three caves are closer to each other, especially the second cave and the third cave.
  • the logging interpretation shows that 4 caves have been developed in TK647, and the developmental positions are 5560.0 ⁇ 5567.lm (hole height 7.1m), 5570.l ⁇ 5573.lm (hole height 3.0m), 5675.0 ⁇ 5676.lm (hole height l.lm), 5679.2 ⁇ 5680.0m (hole height 0.8m).
  • the four caves can be divided into two cave development layers in the longitudinal direction: the first two caves are developed in the upper cave development zone, and the latter two caves are developed in the lower cave development zone; The scale of cave development is greater than that of the lower cave.
  • TK666 well developed two caves with developmental positions of 5562.3 ⁇ 5563.9m (hole height 1.6m) and 5566.2 ⁇ 5586.8m (hole height 22.6m). It has the characteristics of a small cave at the top of a typical large hole. Comparing the depth of the cave in the TK647 well, we believe that the two caves encountered in the TK666 well are developed in the upper cave development zone.
  • the specific implementation of the present invention has been described above, and these embodiments should be considered as merely exemplary and not The invention is intended to be limited, and the invention is to be construed in accordance with the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种识别和解释碳酸盐岩古岩溶储层三维结构的方法,包括以下步骤:根据岩心和电成像测井资料明确的洞穴发育段,总结其常规测井响应特征;通过测井参数交会法优选出洞穴敏感测井参数,建立识别图版;利用多参数归一化加权法建立洞穴识别函数;得到古岩溶储层的三维空间发育位置。

Description

一种识别和解释碳酸盐岩古岩溶储层三维结构的方法 技术领域 本发明涉及一种基于井震结合的预测碳酸盐岩古岩溶储层的方法,特别涉及一种识别和 解释碳酸盐岩古岩溶储层三维结构的方法。 背景技术 随着我国石油勘探技术的发展, 勘探领域不断扩大, 已由常规的碎屑岩油气藏向非常规 油气藏发展。 碳酸盐岩古岩溶油气藏就是其中之一。 在我国多个油田中, 相继发现了多种碳 酸盐岩古岩溶油气藏, 其中, 以古岩溶油藏为主的塔河油田已经成为我国最大的古生代海相 油田。 经历了溶蚀、 充填、 垮塌和埋藏期构造、 地球化学等多种地质作用, 古岩溶储层形成 以洞穴和其周围具有成因联系的裂缝为主要储集空间, 具有在纵横向上具有极强的非均质性 的特征, 造成相邻油井间产量差异巨大。 生产实践证明储层的产能主要受控于洞穴的发育程 度, 所以, 精确识别和解释碳酸盐岩古岩溶中洞穴的空间发育特征, 是古岩溶储层的三维结 构识别和解释的核心内容。 前人研究表明: 常规测井资料具有较高的垂向分辨率, 能够在单 井上直接识别洞高大于 2m的洞穴, 采用多参数综合法可识别 0.5m的洞穴; 利用常规地震资 料能识别洞高大于 15m的洞穴, 地震资料经特殊处理后可识别洞高大于 6m的洞穴。 但是,钻 井和岩心显示大部分洞穴的高度小于 10m, 并且以小洞数目居多; 同时由于古岩溶储层几何 结构的不规则性、 分布的非均质性, 所以有效识别和解释古岩溶储层空间发育位置和结构成 为油田面临的科学和实际问题, 直接关系到油田下一步的勘探部署工作及勘探开发的程度。 而当前古岩溶储层结构识别中仍存在以下问题:
1. 目前地震资料识别井间洞穴精度低,对<6!11的洞穴不能有效识别,无法有效明确井间 洞穴的发育情况;
2. 古岩溶储层具有强烈的纵横向非均质性和多层发育的特征, 受识别分辨率的限制, 目 前无法得到古岩溶储层可靠的三维结构特征;
3. 由于无法明确古岩溶储层三维结构, 造成这类油藏探井成功率低, 严重制约了对这类 储层的高效勘探和开发。 发明内容 本发明的目的是针对上述问题, 提出以岩心观察、 测井分析和地震反演相结合的方法, 有效识别和解释了单井和井间古岩溶储层的位置和结构, 推动了古岩溶储层三维识别技术的 发展。 为实现上述目的, 本发明提供了单井洞穴定量识别; 井间洞穴识别; 古岩溶储层三维结 构解释。 单井洞穴识别的步骤优选的包括: 根据岩心和电成像测井资料明确的洞穴发育段, 总结 其常规测井响应特征; 通过测井参数交会法优选出洞穴敏感测井参数, 建立识别图版; 利用 多参数归一化加权法建立洞穴识别函数; 具体步骤如下: 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法,其特征在于,包括以下步聚: ①首先根据对每一口井实地勘探出的岩心和电成像测井资料, 得出有限的单井洞穴发 育位置; 然后根据洞穴实际位置标定常规测井曲线, 即绘制洞穴段常规测井曲线图; 从而, 明确出洞穴在常规测井曲线上的响应特征, 即明确洞穴段 "三高两低" 的特征;
"三高两低"标准为: 洞穴段具有低双侧向电阻率 (R , RLLS) , 小于 700 Ω . m; 低补偿 密度 (DEN), 小于 2.7g/cm3; 高自然伽马 (GR), 大于 30API; 高声波时差 (AC), 大于 48 s/ft; 高补偿中子孔隙度 (CNL), 大于 1.5%; 该步骤是明确响应特征, 但得不到洞 穴的位置。 原因: 1、 识别精度不高, 因为不同参数之间无法定量获取, 有时候存在矛 盾; 2、 无法得到定量的识别结果, 就没法标定到时间域的声波阻抗反演数据体中;因 此, 还需要以下步骤。
②根据步骤①所得的洞穴段常规测井 "三高两低" 的特征,优选 DEN、CNL、Vsh、 CLLS, AC共 5个敏感参数用于识别洞穴; 利用测井参数交会图方法绘制交会图, 再利用 交会图建立了洞穴识别图板; 5个参数表征如下:
• 岩性密度 (DEN): 洞穴段由于被机械沉积物、 角砾岩和化学淀积物所充填, 与周围非洞穴段 (原岩、 裂缝、 缝洞复合体)密度有一定的差异, 非洞穴段密度大(>2.7(^/0!113)而洞穴内部密度 小 (一般 <2.73g/cm3);
• 中子孔隙度 (CNL): 洞穴内部中子孔隙度响应较高(>1.5%), 非洞穴段中子孔隙度较小, 尤其是原岩段 中子孔隙度大多小于 1% ;
• 泥质含量 (Vsh) : 采用自然伽马 (GR)计算泥质含量:
Figure imgf000004_0001
Ά ■ -—
lh 3 ' (2) 式中, GR为标准化后的自然伽马值, API; GRmax为洞穴内纯泥岩段 GR数值, API; GRmin为纯碳酸盐岩段 GR数值, API; S 为过渡参数, 无量纲; Vsh为泥质含量, %; 非洞穴段以纯碳酸盐岩为主,泥质含量一般在 5%-15%之间; 洞穴段内充填机械沉 积物和角砾时泥质含量会明显升高, 甚至超过 40% ;
• 浅侧向电导率 (C : 电导率测井反映储层的导电性能, 与岩性、孔隙结构和流体性质等因素直接相关; 洞穴段因泥浆滤液侵入, 与非洞穴段相比, 其电导率明显增高, 对应到测井响应上为 双侧向电阻率降低, 其中 降低尤为明显, 一般小于 700Ω·ηι; 所以, 浅侧向电导率 (CLLS=1/RLLS) , 也是洞穴敏感参数;
• 声波时差 (AC): 洞穴发育段声波时差明显增大, 一般大于 54 μ 8/1¾, 在某些洞穴特别发育段声波时 差急剧增大 (>85 w s/ft), 甚至发生 "周波跳跃" ;
非洞穴段 Vsh、 CNL、 AC和 C s数值都很小, 并且在如图 3所示的交会图中数据点 分布较集中,洞穴段响应特征刚好相反, 这四个参数数值较高且数据点分布范围较大; DEN在洞穴段为低值而非洞穴段为高值; 洞穴段 C ^大于 10— 2s/m, Vsh—般大于 8%, AC大于 54 w s/ft, CNL大于 1.5%, DEN小于 2.73g/cm3;
③为定量识别洞穴,对步骤②得出的 5个洞穴敏感参数归一化加权,建立了多参数 综合定量识别函数: 即首先对敏感参数进行归一化处理, 消除不同数值范围造成的差 异;然后根据参数与洞穴段的敏感性大小对各参数赋权系数; 再通过计算判别函数值, 利用岩心、 电成像结论解释结果进行标定, 最终明确函数值 P的门槛值, 以定量划分 洞穴段和非洞穴段; 对于洞穴段应用多参数归一化加权方法建立综合识别函数:
P ^ CO x ] 4- 0.22 κ .¾ ' 0, 17x .¾ + 0.1 + - 0. ! Ι χΧ5 (3) 式中: 为声波时差 (AC, 单位 w s/ft)归一化; 为浅侧向电导率 (C^, 单位 s/m)归一化; 为岩性密度 (DEN, 单位 g/cm3)归一化; X4为中子孔隙度 (CNL, 单位%)归一化; X5为泥质含量 (Vsh, 单位%)归一化; 通过对非洞穴段、 岩心和电成像测井解释的洞穴段 P值进行计算, 利用统计分析 得到: 当 P值大于 0.42时洞穴符合率最高, 为 85.32%, 故设定当 P>0.42时是洞穴发育 段; 所以, 对应的, 当 P 0.42时是非洞穴发育段; 从而, 最终确定单口井的洞穴发育 位置; 井间洞穴识别的步骤优选的包括: 对每口单井利用合成地震记录法将深度域的洞穴解释 成果标定到时间域的声波反演数据体上; 然后确定洞穴段和非洞穴段的门槛值, 进而对井间 洞穴进行有效识别; 沿规模大、 连续性好的洞穴中间进行连续追踪, 得到三维追踪层位, 并 计算出追踪层位周围 2ms的声波阻抗的平均值,从而得到了古岩溶储层的三维空间发育位置。 具体步骤如下:
④步骤③所得的测井解释结果显示每口井内洞穴发育的位置不同, 并且小洞数目 多, 造成了不同单井之间时深关系差异性大; 再利用合成地震记录的方法, 依所步骤 ③得出的结论从单井入手建立起精确的时深转换关系, 并且对每口单井均制作了合成 地震记录, 将深度域的洞穴识别结果转换为时间域, 从而精确标定到声波阻抗反演数 据体上; 根据对比洞穴段、 非洞穴段对应的声波阻抗数值, 确定洞穴段、 非洞穴段的 波阻抗门槛值, 从而在三维声波阻抗数据体上进行古岩溶储层的空间结构识别; 通过得到的时间域洞穴和非洞穴发育位置, 对比认为声波阻抗 >16500 g*s— ^m— 2为 非洞穴段(白色), <15500 g* *!^ 2的为洞穴段 (红色), 15500-16500 g*s— ^m— 2的为过渡段 (灰色), 之后的声波阻抗反演数据体能更有效地识别古岩溶储层的三维结构, 并得到 单井洞穴识别效果表;
⑤由于古岩溶储层的几何形态具有极强的不规则性, 常规地震解释所用的等时切 片只能显示出部分的洞穴; 本发明在古岩溶三维追踪的过程中, 选择规模大、 连续性 好的洞穴对其中间进行连续追踪,并且提取出追踪层位周围 2ms的声波阻抗的平均值, 从而得到了目的层段井间古岩溶储层分布特征。 古岩溶储层三维结构解释的步骤优选的包括: 根据岩溶水文地质理论和古岩溶储层的实 际特征, 将洞穴划分为落水洞、 干流洞和支流洞三种成因类型。 对所得到的古岩溶空间发育 特征进行三维结构的地质解释。对落水洞、干流洞、支流洞进行地质统计, 得出它们的数目、 长度、 宽度、 发育面积和占洞穴面积百分比、 发育体积和占洞穴体积百分比、 洞穴面积 /总面 积和洞穴体积 /总面积等参数。 利用储层雕刻技术, 从三维空间上雕刻出不同成因类型古岩溶 储层的结构特征。 结合目前已经钻井的情况, 给出下一步油气勘探和开发的建议。 可选的, 在本发明的一个实施例中, 所述洞穴反应敏感的曲线包括: 补偿密度 (DEN)、 补充中子孔隙度 (CNL)、 泥质含量 (Vsh)、 浅侧向电导率 (C s)和声波时差 (AC)。 本发明的优点在于, 该碳酸盐岩古岩溶储层识别和解释方法包括的技术主要有四种: 利 用常规测井资料定量识别单井洞穴; 通过合成地震记录将单井洞穴解释成果标定到声波阻抗 反演体上; 沿洞穴中间进行连续追踪, 解释古岩溶储层结构; 根据井震结合的解释成果, 对 古岩溶储层进行成因类型划分, 统计了不同成因类型的几何形态, 并且进行了立体雕刻。 在 已有的资料中并没有将这四种方法相结合运用到碳酸盐岩古岩溶储层结构识别和解释领域的 记录, 即这是第一次在碳酸盐岩古岩溶储层结构识别和解释领域综合应用这四个方法。 其中, 为了解决由于单井洞穴发育位置的强烈差异、 不整合面起伏等造成的单井时深标 定不准确的难题, 本发明针对每口单井都制作了精确的合成地震记录, 从而能够得到可靠的 洞穴段、 非洞穴段的声波阻抗门槛值。 为了解决由于古岩溶储层的几何形态具有的极强不规则性, 等时切片只能显示出部分的 洞穴的难题。 本发明沿规模大、 连续性好的洞穴中间进行连续追踪, 得到了多层古岩溶储层 的空间展布特征。 附图说明 图 1 是本发明提出的一种识别和解释碳酸盐岩古岩溶储层三维结构的方法流程图; 图 2 是一已知井的常规测井曲线图; 图 3 是洞穴识别图版; 图 4 是一已知井的合成地震记录成果 图; 图 5 是一条连井剖面图; 图 6 是一已知井区上层古岩溶储层波阻抗追踪平面图和地质分 析图; 图 7 是一已知井区下层古岩溶储层波阻抗追踪平面图和地质分析图; 图 8 是一已知井 区上层不同成因类型古岩溶储层三维立体雕刻图; 图 9 是一已知井区下层不同成因类型古岩 溶储层三维立体雕刻图;图 10是 TK602井洞穴识别结果图;图 11是 TK632井洞穴识别结果图; 图 12是 TK647井洞穴识别结果图; 图 13是 TK666井洞穴识别结果图。 具体实施方式 为了更好的阐述本发明的目的、 技术方案及优点, 以下结合附图及实例, 对本发明进行 进一步详细说明。 由上一段分析可知, 古岩溶储层在空间上具有极强的非均质性, 有效识别和解释井间古 岩溶储层发育情况和结构特征是油田急需解决的问题。 另外, 在本技术领域, 精细识别和解 释古岩溶储层结构的综合技术方案还没有出现, 也是急需解决的问题。 为解决这个问题, 本 发明提出一种基于井震结合的碳酸盐岩古岩溶储层三维结构综合识别和解释方法。 如图 1 所示, 为本发明提出的一种识别和解释碳酸盐岩古岩溶储层结构的方法流程图。 该方法包括: 步骤 101 : 根据岩心、 电成像测井资料明确的洞穴来标定常规测井曲线, 明确洞穴在常规 测井曲线上的响应特征。 如图 2所示, 为一已知井岩性剖面和常规测井曲线图。通过该图可以总结出洞穴段的测井 响应特征, 即: 洞穴段具有低双侧向电阻率 (R D, RLLS) , 小于 700 Ω · πι; 低补偿密度 (DEN), 小于 2.7g/cm3; 高自然伽马 (GR), 大于 30API; 高声波时差 (AC) , 大于 48 n s/ft; 高补偿中子孔 隙度 (CNL), 大于 1.5% ; 局部洞穴段发生扩径现象。 以上 "三高两低" 的特征为洞穴段的主 要测井响应特征。 步骤 102: 根据多口取心井和成像井的信息, 利用测井参数交会图方法, 优选出洞穴敏感 参数, 并且建立了洞穴识别图板。
如图 3所示, 为利用测井参数交会分析方法, 优选 DEN、 CNL、 Vsh、 C s、 AC共 5个敏感 参数用于识别洞穴, 并建立了综合识别图版。 5个参数表征如下:
• 岩性密度 (DEN) :
洞穴段由于被机械沉积物、 角砾岩和化学淀积物所充填, 与周围非洞穴段 (原岩、 裂缝和 缝洞复合体)密度有一定的差异, 非洞穴段密度大(>2.70§/0113)而洞穴内部密度小(一般 <2.73g/cm3)。
• 中子孔隙度 (CNL):
洞穴内部中子孔隙度响应较高(>1.5%), 非洞穴段尤其是原岩段中子孔隙度大多小于 1%。 • 泥质含量 (Vsh) : 采用自然伽马 (GR)计算泥质含量:
Pl— rtp
, l0¾%
J' 3 (2) 式中, GR为标准化后的自然伽马值, API; GR皿为洞穴内纯泥岩段 GR数值, API; GRmin 为纯碳酸盐岩段 GR数值, API; S 为过渡参数, 无量纲; Vsh为泥质含量, %。
非洞穴段以纯碳酸盐岩为主,泥质含量一般在 5%-15%之间。洞穴段内充填机械沉积物和 角砾时泥质含量会明显升高, 甚至超过 40%。
• 浅侧向电导率 (C^) : 电导率测井反映储层的导电性能, 与岩性、孔隙结构和流体性质等因素直接相关; 洞穴段因泥浆滤液侵入, 与非洞穴段相比, 其电导率明显增高, 对应到测井响应上为 双侧向电阻率降低, 其中 降低尤为明显, 一般小于 700Ω·ηι; 所以, 浅侧向电导率
(CLLS=1/RLLS) , 也是洞穴敏感参数;
• 声波时差 (AC):
洞穴发育段声波时差明显增大, 一般大于 54 s/ft, 在某些洞穴特别发育段声波时差急剧 增大 (>85 s/ft), 甚至发生 "周波跳跃" 。
如图 3所示, 非洞穴段 Vsh、 CNL、 AC和 C s数值都很小, 并且数据点分布较集中, 洞穴 段响应特征刚好相反, 这四个参数数值较高且数据点分布范围较大; DEN在洞穴段为低值而 非洞穴段为高值。洞穴段 C s大于 10— 2s/m, Vsh—般大于 8%, AC大于 54 μ s/ft, CNL大于 1.5%, DEN小于 2.73g/cm3
步骤 103: 为定量识别洞穴, 对上述敏感参数归一化加权, 建立了多参数综合识别函数: 即首先对敏感参数进行归一化处理, 消除不同数值范围造成的差异; 然后根据参数与洞穴段 的敏感性大小对各参数赋权系数; 再通过计算判别函数值, 利用岩心、 电成像结论解释结果 进行标定, 最终明确函数值 P的门槛值, 以定量划分洞穴段和非洞穴段; 对于洞穴段应用多参数归一化加权方法建立综合识别函数:
P -謂 x¾ + 0.22 X 2™ f, + ,14κ JT, + ,1】 χ s 式中: 为声波时差 (AC, 单位 w s/ft)归一化; 为浅侧向电导率 (C^, 单位 s/m)归一化; 为岩性密度 (DEN, 单位 g/cm3)归一化; X4为中子孔隙度 (CNL, 单位%)归一化;
X5为泥质含量 (Vsh, 单位%)归一化。 通过对非洞穴段、岩心和电成像测井解释的洞穴段 P值进行计算,利用统计分析得到: 当 P值大于 0.42时洞穴符合率最高, 为 85.32%, 故设定当 P>0.42时是洞穴发育段; 所以, 对应 的, 当1^≤0. 42时是非洞穴发育段。 从而, 最终确定单口井的洞穴发育位置。 步骤 104: 测井解释结果显示每口井内洞穴发育的位置不同, 并且小洞数目多, 单井间时 深关系差异性大。本发明利用合成地震记录的方法, 从单井入手建立起精确的时深转换关系, 并且对每口单井均制作了合成地震记录,将洞穴识别结果精确标定到声波阻抗反演数据体上, 确定洞穴、 非洞穴段的波阻抗门槛值, 从而在三维声波阻抗数据体上进行古岩溶储层的空间 结构识别。
图 4为已知井的合成地震记录效果图。本发明首先选取距离单井最近的地震道, 提取出目 的层段内的子波 (已知井在此处的地震子波为 22HZ, 初始相位为 230°), 通过进行多次时深标 定, 最终明确了单井的时深关系, 结果显示吻合效果非常好。 按照此方法, 对研究区其他井 都进行了有效标定。
图 5为已知井区的典型连井剖面图。单井左侧的黑线为洞穴识别结果。通过测井识别的洞 穴对比认为声波阻抗反演数据体中, 当声波阻抗 >16500 g*s- ^m- 2为非洞穴发育段(白色), 声 波阻抗 <15500
Figure imgf000009_0001
的为过渡段 (灰色)。 确 定门槛之后的声波阻抗反演数据体能更有效的识别古岩溶储层的三维结构 (表 1)。 可以有效识 别出 TK730井 3.1m (NO. B7)、2.4m (NO. B9)的洞穴, T615井中的 3.1m (NO. B9)和 2.8m (NO. B3) 的洞穴。 并且在 TK730井中累厚 4.4m的多层小洞穴 (NO. B1-B6)也能够识别出。 但是在 T615 井的 6.3m的洞穴 (NO. Al l)无法有效识别, 这是由于洞穴埋藏太深, 洞穴相对孤立造成的。所 以, 在本实例中, 波阻抗反演数据体可以识别洞高在 3m的洞穴。
T615井和 TK730井洞穴发育分布和识别效果表
深度 与不整合 波阻抗 成像 井名 洞顶(: m) 洞底 (1 m) 洞高(m)
序号 距离 (m) 反演体 测井
T615 A2 5534. 1 5554. 6 20. 5 13. 1 V V
T615 A10 5631. 3 5639. 9 8. 6 110. 3 V V
T615 Al l 5669. 6 5675. 9 6. 3 148. 6 X V
T615 A9 5624. 6 5627. 8 3. 2 103. 6 V V
T615 A3 5555. 5 5558. 3 2. 8 34. 5 V V
T615 A12 5677. 4 5679. 4 2. 0 156. 4 X V
T615 A4 5561. 6 5563. 5 1. 9 40. 6 X V
T615 A6 5567. 6 5569. 3 1. 7 46. 6 X V
T615 A8 5572. 5 5574. 1 1. 6 51. 5 X V
T615 A13 5685. 0 5686. 4 1. 4 164. 0 X V
T615 A1 5529. 4 5530. 6 1. 2 8. 4 V
T615 A5 5566. 4 5567. 0 0. 6 45. 4 X V T615 A7 5570. 5 5570. 9 0. 4 49. , 5
TK730 B8 5563. 1 5581. 3 18. 2 44. , 1
TK730 BIO 5603. 4 5611. 3 7. 9 84. , 4
TK730 B7 5558. 3 5561. 4 3. 1 39. , 3
TK730 B9 5588. 9 5591. 3 2. 4 69. , 9
TK730 B6 5556. 0 5557. 1 1. 1 37. , 0 无:
TK730 B2 5528. 9 5529. 8 0. 9 9. 9
TK730 B4 5540. 9 5541. 6 0. 7 21. , 9
TK730 B3 5530. 8 5531. 4 0. 6 11. , 8
TK730 B5 5543. 8 5544. 4 0. 6 24. , 8
区分
TK730 Bl 5525. 8 5526. 1 0. 3 6. 8
:符合, χ : 不符合, 不明确 步骤 105: 由于古岩溶储层的几何形态具有极强的不规则性, 等时切片只能显示出部分的 洞穴。 本发明在古岩溶三维追踪的过程中, 选择规模大、 连续性好的洞穴对其中间进行连续 追踪, 并且提取出追踪层位周围 2ms的声波阻抗的平均值, 从而得到了目的层段井间古岩溶 储层分布特征。 如图 5所示, 洞穴中间虚线即为古岩溶储层解释线。 如图 6所示, 为一已知井区上层古岩溶储层波阻抗追踪平面图和地质分析图。 如图 7所示, 为一已知井区下层古岩溶储层波阻抗追踪平面图和距近能地质分析图。
而有离 s
太效不
步骤 106: 根据岩溶水文地质理论和古岩溶储层的实际特征, 将洞穴划分为落水洞、干流 洞和支流洞三种成因类型。 对所得到的古岩溶储层空间发育特征进行三维结构的地质解释。 对落水洞、 干流洞、 支流洞进行地质统计, 得出它们的数目、 长度、 宽度、 发育面积和面积 比率、发育体积和体积比率、洞穴面积 /总面积和洞穴体积 /总面积等参数。利用储层雕刻技术, 从三维空间上雕刻出不同成因类型洞穴的结构特征。 结合目前已经钻井的情况, 给出下一步 油气勘探和开发的建议。 如图 6 b所示, 为已知研究区上层古岩溶储层不同成因类型洞穴的平面分布图。数据统计 显示 (表 2): 上层古岩溶储层内发育有 4个落水洞、 1个干流洞、 8个支流洞。 上层落水洞长度 一般在 80-610m, 宽度为 40-330m; 干流洞的长度为 7080m, 宽度为 130-720m; 支流洞的长度 为 290-1800m, 宽度为 30-420m。 从面积上讲, 上层落水洞的面积比率较低, 为 10.88%, 干流 洞和支流洞的面积比率相近,分别是 45.86%和 43.26%。上层古岩溶储层中干流洞的体积最大, 占洞穴总体积的 52.49% ; 支流洞和落水洞的体积比率较低, 分别为 28.94%和 18.57%。 上层洞 穴面积 /总面积为 33.27 %, 上层洞穴体积 /总面积 9.42 m3/m2。 如图 7 b所示, 为已知研究区下层古岩溶储层内发育有 5个落水洞、 3个干流洞、 5个支流 洞。 下层落水洞长度一般在 60-240m, 宽度为 90-260m; 干流洞的长度为 1400-2200m, 宽度为 130-500m; 支流洞的长度为 400-1500m, 宽度为 60-230m。 从面积上讲, 下层落水洞的面积比 率较低, 为 4.72% ; 支流洞的面积比率较高, 为 41.02% ; 干流洞的面积比率最大, 为 54.27%。 下层古岩溶储层中干流洞的体积最大, 占洞穴总体积的 57.85% ; 支流洞和落水洞的体积比率 较低, 分别为 35.34%和 6.81%。 下层洞穴面积 /总面积为 42.90 %, 下层洞穴体积 /总面积 11.37 m /m。 表 2 T615井区两层古岩溶储层洞穴发育统计表
储 洞穴类 面积 占本层面积 体积 占本层体积
长度 (m)
(m) (m2) 比率 (m3) 比率
40-33 203670
落水洞 80-610 421425 10. 88% 18. 57%
0
上 130-7 177660 575740
干流洞 7080 45. 86% 52. 49%
20 0
290-180 30-42 167557 317410
支流洞 43. 26% 28. 94%
0 0 5
90-26 901700
落水洞 60-240 235575 4. 72% 6. 81%
0 0
下 1400-22 130-5 271080 765870
干流洞 54. 27% 57. 85%
0
400-150 60-23 204885 467930
支流洞 41. 02% 35. 34%
0 0 0 如图 8和图 9所示, 为已知井区上下两层古岩溶储层的三维雕刻成果。 从三维结构图可以 看出, 目前的井大都钻遇到了较大的洞穴内部, 下一步钻井可以考 虑多打水平井和大斜度 井, 有效增加钻遇古岩溶井段的长度。 例如在 TK730-TK632井之间沿干流洞顶部钻水平井, 预计可以有效增加油井的产量。 在古岩溶储层的勘探和开发中, 支流洞的储集和输导作用也 非常强, 由于支流洞的长度长、 分支多、 分布面积广, 也是油气的有利储层, 在局部地区甚 至是主要的储层。 例如在 TK637H井北部的上层古岩溶储层和 TK637H井南部的下层古岩溶 储层, 支流洞特别发育, 并且位置较高, 也是有利的勘探部位。 为了更明确的说明单井多参数定量识别洞穴方法的实用性,选取 T615井区北部的 TK602 井、 TK666井、 TK647井和 TK632井进行实例分析, 分析图如图 10至 13所示。 如图 10所示,测井解释显示, TK602井发育了 3个洞穴,发育位置分别是 5555.3~5559.5m (洞 高 4.2m), 5588.l~5618.8m (洞高 30.7m), 5621.0~5625.lm (洞高 4.1m)。 从高度上看, 第二个洞 穴发育的规模最大。 从该井可以看到洞穴在单井中呈多层状的发育, 并且不同高程洞穴的高 度有所差别。 如图 11所示,测井解释显示, TK632井发育了 3个洞穴,发育位置分别是 5558.4~5559.7m (洞 高 1.3m), 5562.3~5564.2m (洞高 1.9m), 5566.l~5587.2m (洞高 21. lm)。 从高度上看, 第三个洞 穴发育的规模最大。 并且这三个洞穴发育的距离较近, 尤其是第二个洞穴和第三个洞穴。 如图 12所示,测井解释显示, TK647井发育了 4个洞穴,发育位置分别是 5560.0~5567.lm (洞 高 7.1m), 5570.l~5573.lm (洞高 3.0m), 5675.0~5676.lm (洞高 l.lm) , 5679.2~5680.0m (洞高 0.8m)。 根据洞穴发育位置, 可以看出这四个洞穴在纵向上可以分为两个洞穴发育层: 前两个 洞穴发育在上层洞穴发育带内, 后两个洞穴发育在下层洞穴发育带内; 并且上层洞穴发育规 模要大于下层洞穴。 如图 13所示,测井解释显示, TK666井发育了 2个洞穴,发育位置分别是 5562.3~5563.9m (洞 高 1.6m), 5566.2~5586.8m (洞高 22.6m)。 具有典型的大洞顶部发育小洞的特征; 对比 TK647 井发育洞穴的深度, 我们认为 TK666井钻遇的这两个洞穴都发育在上层洞穴发育带内。 以上对本发明的具体实施进行了描述 说明, 这些实施例应被认为只是示例性的, 并不 用于对本发明进行限制, 本发明应根据所附权利要求书所述特征进行解释。

Claims

权 利 要 求 书
1、 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法, 其特征在于, 包括以下 步聚: ①首先根据对每一口井实地勘探出的岩心和电成像测井资料, 得出有限的单井 洞穴发育位置; 然后根据洞穴实际位置标定常规测井曲线, 即绘制洞穴段常规测井曲 线图; 从而, 明确出洞穴在常规测井曲线上的响应特征, 即明确洞穴段 "三高两低" 的特征; "三高两低"标准为:洞穴段具有低双侧向电阻率 (R , RLLS) , 小于 700 Ω . m; 低补偿密度 (DEN), 小于 2.7g/cm3; 高自然伽马 (GR), 大于 30API; 高声波时差 (AC), 大于 48 w s/ft; 高补偿中子孔隙度 (CNL), 大于 1.5% ;
②根据步骤①所得的洞穴段常规测井 "三高两低" 的特征,优选 DEN、CNL、Vsh、 CLLS, AC共 5个敏感参数用于识别洞穴; 利用测井参数交会图方法绘制交会图, 再利用 交会图建立了洞穴识别图板; 5个参数表征如下:
• 岩性密度 (DEN): 洞穴段由于被机械沉积物、 角砾岩和化学淀积物所充填, 与周围非洞穴段 (原岩、 裂缝、 缝洞复合体)密度有一定的差异, 非洞穴段密度大(>2.7(^/0!113)而洞穴内部密度 小 (一般 <2.73g/cm3);
• 中子孔隙度 (CNL):
洞穴内部中子孔隙度响应较高(>1.5%), 非洞穴段中子孔隙度较小, 尤其是原岩段 中子孔隙度大多小于 1%;
• 泥质含量 (Vsh) : 采用自然伽马 (GR)计算泥质含量:
Figure imgf000013_0001
1 m 式中, GR为标准化后的自然伽马值, API; GRmax为洞穴内纯泥岩段 GR数值, API; GRmin为纯碳酸盐岩段 GR数值, API; S 为过渡参数, 无量纲; Vsh为泥质含量, %;
非洞穴段以纯碳酸盐岩为主,泥质含量一般在 5%-15%之间;洞穴段内充填机械沉 积物和角砾时泥质含量会明显升高, 甚至超过 40%;
• 浅侧向电导率 (C : 电导率测井反映储层的导电性能, 与岩性、孔隙结构和流体性质等因素直接相关; 洞穴段因泥浆滤液侵入, 与非洞穴段相比, 其电导率明显增高, 对应到测井响应上为 双侧向电阻率降低, 其中 降低尤为明显, 一般小于 700Ω·ηι; 所以, 浅侧向电导率 (CLLS=1/RLLS) , 也是洞穴敏感参数;
• 声波时差 (AC): 洞穴发育段声波时差明显增大, 一般大于 54 μ 8/1¾, 在某些洞穴特别发育段声波时 差急剧增大 (>85 w s/ft), 甚至发生 "周波跳跃" ;
非洞穴段 Vsh、 CNL、 AC和 C s数值都很小, 并且在交会图中数据点分布较集中, 洞穴段响应特征刚好相反, 这四个参数数值较高且数据点分布范围较大; DEN在洞穴 段为低值而非洞穴段为高值;洞穴段 C s大于 10— 2s/m,Vsh—般大于 8%,AC大于 54 w s/ft, CNL大于 1.5%, DEN小于 2.73g/cm3;
③为定量识别洞穴,对步骤②得出的 5个洞穴敏感参数归一化加权,建立了多参数 综合定量识别函数: 即首先对敏感参数进行归一化处理, 消除不同数值范围造成的差 异;然后根据参数与洞穴段的敏感性大小对各参数赋权系数; 再通过计算判别函数值, 利用岩心、 电成像结论解释结果进行标定, 最终明确函数值 P的门槛值, 以定量划分 洞穴段和非洞穴段; 对于洞穴段应用多参数归一化加权方法建立综合识别函数:
式中: 为声波时差 (AC, 单位 w s/ft)归一化; 为浅侧向电导率 (C^, 单位 s/m)归一化; 为岩性密度 (DEN, 单位 g/cm3)归一化;
X4为中子孔隙度 (CNL, 单位%)归一化; X5为泥质含量 (Vsh, 单位%)归一化;
通过对非洞穴段、 岩心和电成像测井解释的洞穴段 P值进行计算, 利用统计分析 得到: 当 P值大于 0.42时洞穴符合率最高, 为 85.32%, 故设定当 P>0.42时是洞穴发育 段; 所以, 对应的, 当 P 0.42时是非洞穴发育段; 从而, 最终确定单口井的洞穴发育 位置;
④步骤③所得的测井解释结果显示每口井内洞穴发育的位置不同, 并且小洞数目 多, 造成了不同单井之间时深关系差异性大; 再利用合成地震记录的方法, 依所步骤 ③得出的结论从单井入手建立起精确的时深转换关系, 并且对每口单井均制作了合成 地震记录, 将深度域的洞穴识别结果转换为时间域, 从而精确标定到声波阻抗反演数 据体上; 根据对比洞穴段、 非洞穴段对应的声波阻抗数值, 确定洞穴段、 非洞穴段的 波阻抗门槛值, 从而在三维声波阻抗数据体上进行古岩溶储层的空间结构识别; 通过得到的时间域洞穴和非洞穴发育位置, 对比认为声波阻抗 >16500 g*s— ^m— 2为 非洞穴段(白色), <15500 g* *!!!— 2的为洞穴段 (红色), 15500-16500 g*s— ^m— 2的为过渡段 (灰色), 之后的声波阻抗反演数据体能更有效地识别古岩溶储层的三维结构, 并得到 单井洞穴识别效果表;
⑤由于古岩溶储层的几何形态具有极强的不规则性, 常规地震解释所用的等时切 片只能显示出部分的洞穴; 本发明在古岩溶三维追踪的过程中, 选择规模大、 连续性 好的洞穴对其中间进行连续追踪,并且提取出追踪层位周围 2ms的声波阻抗的平均值, 从而得到了目的层段井间古岩溶储层分布特征。
2、 根据权利要求 1所述的一种识别和解释碳酸盐岩古岩溶储层三维结构的方法, 其特征在于:根据岩溶水文地质理论和古岩溶储层的实际特征,将洞穴划分为落水洞、 干流洞和支流洞三种成因类型; 对所得到的古岩溶储层空间发育特征进行三维结构的 地质解释; 对落水洞、 干流洞、 支流洞进行地质统计, 得出它们的数目、 长度、 宽度、 发育面积和面积比率、发育体积和体积比率、洞穴面积 /总面积和洞穴体积 /总面积等参 数; 利用储层雕刻技术, 从三维空间上雕刻出不同成因类型洞穴的结构特征。
PCT/CN2013/075441 2013-04-19 2013-05-10 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法 WO2014169499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310137562.6A CN103529475B (zh) 2013-04-19 2013-04-19 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法
CN201310137562.6 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014169499A1 true WO2014169499A1 (zh) 2014-10-23

Family

ID=49931628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075441 WO2014169499A1 (zh) 2013-04-19 2013-05-10 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法

Country Status (2)

Country Link
CN (1) CN103529475B (zh)
WO (1) WO2014169499A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989392A (zh) * 2015-07-10 2015-10-21 中国石油天然气股份有限公司 一种岩性识别方法
CN109558630A (zh) * 2018-10-22 2019-04-02 杭州叙简科技股份有限公司 一种适用于地下空间的三维自动建模方法
CN111596352A (zh) * 2020-04-28 2020-08-28 中国石油天然气股份有限公司 串珠体空间发育规律分析方法、系统、装置及存储介质
CN111810136A (zh) * 2020-07-08 2020-10-23 中国石油大学(北京) 致密白云岩储层固态沥青的定量评价方法和装置
CN111983702A (zh) * 2020-08-18 2020-11-24 中海石油(中国)有限公司 一种基于电成像测井的油砂隔夹层定量识别方法及系统
CN112147698A (zh) * 2019-06-28 2020-12-29 中国石油化工股份有限公司 裂缝发育带识别与特征确定的方法及系统
CN112379435A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 相控岩溶型缝洞集合体刻画方法及装置
CN113107464A (zh) * 2021-05-11 2021-07-13 中国石油天然气集团有限公司 一种水平井步进式水淹层识别测井方法
CN113296151A (zh) * 2020-02-21 2021-08-24 中国石油天然气集团有限公司 暴露期岩溶储层识别方法及装置
CN113534262A (zh) * 2021-06-24 2021-10-22 中国海洋石油集团有限公司 基于大数据分析的砂泥互层型储层发育带地震的预测方法
CN114137607A (zh) * 2020-09-03 2022-03-04 中国石油化工股份有限公司 一种层序地层划分方法
CN114508338A (zh) * 2020-11-17 2022-05-17 中国石油化工股份有限公司 一种循缝找洞的酸液体系选择方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775075B (zh) * 2014-01-26 2016-04-20 中国海洋石油总公司 一种全井段岩性识别方法
CN103867194B (zh) * 2014-02-14 2016-06-08 中国石油天然气股份有限公司 一种砂体结构的测井表征方法与钻井层段选择方法及装置
CN104975850A (zh) * 2014-04-01 2015-10-14 中国石油化工股份有限公司 碳酸盐岩微相类型识别方法及其沉积相描述方法
CN104018827A (zh) * 2014-05-13 2014-09-03 长江大学 一种基于叠覆朵体的三角洲砂体内部结构分析方法
CN104142523B (zh) * 2014-07-23 2017-01-11 中国地质大学(北京) 一种富有机质泥岩沉积构造的表征方法
CN105589098B (zh) * 2014-10-29 2017-11-07 中国石油天然气股份有限公司 碳酸盐岩去除沉积泥质横向影响的储层反演方法和系统
CN105651962B (zh) * 2014-11-10 2018-02-02 中国石油天然气股份有限公司 成岩相识别方法
CN104678455A (zh) * 2014-12-12 2015-06-03 中国石油化工股份有限公司 一种陆相缝洞型储层识别方法
CN104634295B (zh) * 2015-02-10 2017-08-25 西南石油大学 碳酸盐岩洞穴型储层有效体积估算方法
CN104834007B (zh) * 2015-05-04 2017-09-26 中国石油天然气股份有限公司 地震反演过程中计算碳酸盐岩缝洞型储层充填程度的方法
CN104977626B (zh) * 2015-07-16 2018-03-23 西南石油大学 一种油气储层中孔、洞、缝三维分布表征方法
CN105626058B (zh) * 2015-12-30 2018-11-16 中国石油天然气股份有限公司 一种确定储层岩溶发育程度的方法及装置
CN106443823B (zh) * 2016-09-06 2018-11-16 中国石油天然气股份有限公司 一种碳酸盐岩沥青储层测井识别方法
CN107942378A (zh) * 2016-10-12 2018-04-20 中国石油化工股份有限公司 一种河流相低含砂率储层预测方法
CN107402411A (zh) * 2017-08-17 2017-11-28 中国石油天然气股份有限公司 一种微生物碳酸盐岩地层藻白云岩的定量识别方法
CN108267795B (zh) * 2017-12-18 2020-03-10 中国石油天然气股份有限公司 岩溶垮塌角砾的确定方法和装置
CN108318534B (zh) * 2017-12-18 2020-07-10 中国石油天然气股份有限公司 岩心约束的电成像测井图像处理方法和装置
CN109061763B (zh) * 2018-09-04 2020-08-28 中国地质大学(北京) 碳酸盐岩断溶体油藏洞穴测井综合评价方法
CN110927818B (zh) * 2018-09-20 2022-02-15 中国石油化工股份有限公司 一种潮坪相碳酸盐岩非均质性储层随钻识别方法
CN110552680B (zh) * 2019-08-21 2022-11-04 中国石油天然气集团有限公司 一种利用中子输运时间测量地层参数空间分布的方法
CN110717528A (zh) * 2019-09-25 2020-01-21 中国石油大学(华东) 运用常规测井资料的基于支持向量机的沉积微相识别方法
CN110924937B (zh) * 2019-10-25 2022-08-30 中国石油天然气股份有限公司 套管井水淹层段的识别方法及装置
CN111427085B (zh) * 2020-04-01 2023-02-10 中国石油天然气股份有限公司 一种碳酸盐岩层间岩溶储层预测方法及装置
CN111596351B (zh) * 2020-04-28 2023-04-25 中国石油天然气股份有限公司 碳酸盐岩输导体系定量评价方法、系统、装置及存储介质
CN111766629B (zh) * 2020-06-30 2022-07-29 中国地质大学(北京) 一种深部碳酸盐岩岩溶结构的识别及描述方法
CN112182966B (zh) * 2020-09-28 2021-08-20 河南理工大学 一种基于多源测录井数据的生物扰动储集层识别方法
CN113759425B (zh) * 2021-09-13 2022-04-01 中国科学院地质与地球物理研究所 井震联合评价深层古岩溶储层充填特征的方法与系统
CN113759424B (zh) * 2021-09-13 2022-03-08 中国科学院地质与地球物理研究所 基于频谱分解和机器学习的岩溶储层充填分析方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047058A (ja) * 2005-08-11 2007-02-22 Yamaguchi Univ 原位置における岩石浸透率の測定システム及び測定方法
US20100165788A1 (en) * 2008-12-31 2010-07-01 Christophe Rayssiguier Acoustic transceiver assembly with blocking element
CN102042010A (zh) * 2010-09-07 2011-05-04 中国石油天然气股份有限公司 一种确定碳酸盐岩缝洞型储层发育位置的方法
CN102454400A (zh) * 2010-10-26 2012-05-16 中国石油化工股份有限公司 碳酸盐岩缝洞型储层识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047058A (ja) * 2005-08-11 2007-02-22 Yamaguchi Univ 原位置における岩石浸透率の測定システム及び測定方法
US20100165788A1 (en) * 2008-12-31 2010-07-01 Christophe Rayssiguier Acoustic transceiver assembly with blocking element
CN102042010A (zh) * 2010-09-07 2011-05-04 中国石油天然气股份有限公司 一种确定碳酸盐岩缝洞型储层发育位置的方法
CN102454400A (zh) * 2010-10-26 2012-05-16 中国石油化工股份有限公司 碳酸盐岩缝洞型储层识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN, FEI ET AL.: "Identification of small fracture-vugs and their fillings through log interpretation in fractured-vuggy Ordovician reservoirs in Tahe oilfield", OIL & GAS GEOLOGY, vol. 33, no. 6, December 2012 (2012-12-01), pages 900 - 907 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989392A (zh) * 2015-07-10 2015-10-21 中国石油天然气股份有限公司 一种岩性识别方法
CN104989392B (zh) * 2015-07-10 2018-01-02 中国石油天然气股份有限公司 一种岩性识别方法
CN109558630A (zh) * 2018-10-22 2019-04-02 杭州叙简科技股份有限公司 一种适用于地下空间的三维自动建模方法
CN112147698A (zh) * 2019-06-28 2020-12-29 中国石油化工股份有限公司 裂缝发育带识别与特征确定的方法及系统
CN113296151A (zh) * 2020-02-21 2021-08-24 中国石油天然气集团有限公司 暴露期岩溶储层识别方法及装置
CN111596352A (zh) * 2020-04-28 2020-08-28 中国石油天然气股份有限公司 串珠体空间发育规律分析方法、系统、装置及存储介质
CN111596352B (zh) * 2020-04-28 2023-04-07 中国石油天然气股份有限公司 串珠体空间发育规律分析方法、系统、装置及存储介质
CN111810136A (zh) * 2020-07-08 2020-10-23 中国石油大学(北京) 致密白云岩储层固态沥青的定量评价方法和装置
CN111810136B (zh) * 2020-07-08 2023-03-21 中国石油大学(北京) 致密白云岩储层固态沥青的定量评价方法和装置
CN111983702A (zh) * 2020-08-18 2020-11-24 中海石油(中国)有限公司 一种基于电成像测井的油砂隔夹层定量识别方法及系统
CN114137607A (zh) * 2020-09-03 2022-03-04 中国石油化工股份有限公司 一种层序地层划分方法
CN112379435A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 相控岩溶型缝洞集合体刻画方法及装置
CN114508338A (zh) * 2020-11-17 2022-05-17 中国石油化工股份有限公司 一种循缝找洞的酸液体系选择方法
CN113107464A (zh) * 2021-05-11 2021-07-13 中国石油天然气集团有限公司 一种水平井步进式水淹层识别测井方法
CN113107464B (zh) * 2021-05-11 2024-05-07 中国石油天然气集团有限公司 一种水平井步进式水淹层识别测井方法
CN113534262B (zh) * 2021-06-24 2023-02-03 中国海洋石油集团有限公司 基于大数据分析的砂泥互层型储层发育带地震的预测方法
CN113534262A (zh) * 2021-06-24 2021-10-22 中国海洋石油集团有限公司 基于大数据分析的砂泥互层型储层发育带地震的预测方法

Also Published As

Publication number Publication date
CN103529475B (zh) 2016-08-03
CN103529475A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2014169499A1 (zh) 一种识别和解释碳酸盐岩古岩溶储层三维结构的方法
Lai et al. A review on the applications of image logs in structural analysis and sedimentary characterization
Tian et al. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe Oilfield, Tarim Basin, Western China
Tréhu et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204
Liu et al. Multiple-point simulation integrating wells, three-dimensional seismic data, and geology
CN110579802B (zh) 一种天然气水合物储层物性参数的高精度反演方法
CA2470335A1 (en) Method of using electrical and acoustic anisotropy measurements for fracture identification
CN111475920A (zh) 一种深水盆地古水深的获取方法、系统、电子设备及存储介质
CN116299672B (zh) 一种缝洞型储层地质力学非均质-各向异性建模方法
CN112946782B (zh) 一种致密油气储渗体地震精细刻画方法
Yang et al. Addressing microseismic uncertainty from geological aspects to improve accuracy of estimating stimulated reservoir volumes
Ali et al. Integrated fracture characterization of thamama reservoirs in Abu Dhabi oil field, United Arab Emirates
Shew et al. Characterization and modeling of thin-bedded turbidite deposits from the Gulf of Mexico using detailed subsurface and analog data
CN106869915B (zh) 一种水平井井间隔夹层预测方法及装置
CN116047602B (zh) 基于生烃数值模拟的ii型水合物饱和度预测方法
Parra et al. Permeability and porosity images based on NMR, sonic, and seismic reflectivity: Application to a carbonate aquifer
Coleman et al. Seismic resolution of submarine channel architecture as indicated by outcrop analogs
CN115857047A (zh) 一种地震储层综合预测方法
Deemer et al. Post-rift flood-basalt-like volcanism on the Newfoundland Basin nonvolcanic margin: The U event mapped with spectral decomposition
RU2351963C1 (ru) Способ определения пористости коллектора в горизонтальных скважинах с использованием трехзондового нейтронного каротажа
Guerin et al. Gulf of mexico gas hydrate joint industry project leg ii
Argüello Scotti et al. Morphological characterization of an exceptionally preserved eolian system: the cretaceous Troncoso inferior member in the Neuquén Basin (Argentina)
CN113514884A (zh) 一种致密砂岩储层预测方法
CN112147676A (zh) 一种煤层及夹矸厚度预测方法
Williams-Rojas et al. Geologic controls on reservoir performance in Muspac and Catedral gas fields, southeastern Mexico

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882237

Country of ref document: EP

Kind code of ref document: A1