WO2014168281A1 - 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물 - Google Patents

저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물 Download PDF

Info

Publication number
WO2014168281A1
WO2014168281A1 PCT/KR2013/003539 KR2013003539W WO2014168281A1 WO 2014168281 A1 WO2014168281 A1 WO 2014168281A1 KR 2013003539 W KR2013003539 W KR 2013003539W WO 2014168281 A1 WO2014168281 A1 WO 2014168281A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
low molecular
molecular weight
soluble
present
Prior art date
Application number
PCT/KR2013/003539
Other languages
English (en)
French (fr)
Inventor
나재운
장미경
박성철
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2014168281A1 publication Critical patent/WO2014168281A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3472Compounds of undetermined constitution obtained from animals or plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/736Chitin; Chitosan; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Antimicrobial composition containing low molecular weight water-soluble ⁇ -chitosan or derivatives thereof as an active ingredient
  • the present invention relates to an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • the low molecular weight water-soluble ⁇ -chitosan or a derivative thereof of 500 Daltons to 20,000 Daltons shows an excellent antimicrobial activity against bacteria. Because it is a low-molecular form, absorption is advantageous, not only does not form antibodies in the body, but also is safe from cytotoxicity, so it can be usefully used as a safe antibacterial composition for the human body.
  • An antimicrobial agent is a generic term for an antimicrobial agent.
  • an antimicrobial agent against bacteria in particular, a bacterium having excellent antimicrobial activity by inhibiting a system for synthesizing a cell wall or protein, or prepared from such a substance Means that.
  • the main components of the antimicrobial agent are mainly extracted from bears, and today, it is used to treat diseases caused by bacterial infection.
  • the most representative antimicrobial is penicillin, manufactured in 1928 by British physician Alexander Fleming. Penicillin was the first antibacterial agent manufactured by humans to fight off bacteria in earnest.
  • a representative antimicrobial agent developed after penicillin is methicillin (methicillin), which is recognized to be superior to penicillin. Methicillin is made by making some modifications to the chemical structure of penicillin.
  • Antimicrobial resistant bacteria are bacteria that show resistance to certain antimicrobial agents and do not work.
  • the penicillin resistant Staphylococcus aureus which does not hear the above mentioned effect of the penicillin is equivalent to this.
  • MRSA Resistant Staphylococcus aureus
  • chitin is present in crustaceans such as crabs and shrimps, crust shells, beetles, grasshoppers, insect uppers, squid bones, and bacterial cell walls.
  • Chitin and chitosan are classified into ⁇ -chitin, -chitin and ⁇ ⁇ chitin according to the crystal structure.
  • ⁇ -chitin is commonly found in shells of crustaceans such as crabs, shrimps, and lobsters.
  • the chitin of the y-structure is mainly present in the crusts of the strata, and is composed of a structure that is not fully defined but has one intersection and two parallels (KM Rudall., Advances in Insect Physiology ( 1963) 1, 257-313).
  • the chitosan produced by deacetylating the chitin is known to have characteristics such as large molecular weight, positive charges present in the chitosan molecule, film forming ability, biocompatibility, biodegradability, heavy metal adsorption, gelling properties, etc. Research into the maternity of chitin and chitosan in various fields such as cosmetics and food industry (L.
  • An object of the present invention is to provide an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • Another object of the present invention to provide a health functional food composition for the prevention or improvement of infectious diseases caused by bacteria, including an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • the present invention provides an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • the present invention also provides a health functional food composition for preventing or ameliorating an infectious disease caused by bacteria, including an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • the antimicrobial composition according to the present invention contains 500 to 20000 Dalton-derived low molecular weight water-soluble ⁇ -chitosan or derivatives thereof as an active ingredient, so that the absorption in the body is fast, the antibody is not formed, and the cytotoxicity is significantly low. safe.
  • an excellent antimicrobial effect against a variety of pathogenic bactemoea can be usefully used as an antimicrobial composition used in various fields where food additives, fungicides, disinfectants, detergents, deodorants, antibacterial effects of healthy functional foods.
  • Figure 1 shows the bacterial kill kinetics according to the treatment time for E. coli 0-157 ( ⁇ co / / 5 ⁇ ) of low molecular water soluble amine chitosan prepared in Example 2 and Comparative Example 6 according to the present invention Time graph.
  • Figure 2 is a graph showing the hemolytic action rate of human red blood cells (hRBC) of the low molecular water soluble amine ⁇ -chitosan according to the present invention
  • A shows the hemolysis rate according to the concentration of chitosan treatment
  • B shows the survival rate of human red blood cells (hRBC) according to the concentration of chitosan treatment.
  • Figure 3 is a graph showing the degree of fluorescence intensity of artificial cell membrane and the degree of deformation according to the pH of the low molecular weight water-soluble amine chitosan prepared in Example 2 and Comparative Example 2 according to the present invention.
  • Figure 4 was observed by scanning electron microscopy of the modification of E. coli ( ' Co / /) cell membrane by the low molecular water-soluble sub-chitosan of the present invention ; Is a picture; A: Coli untreated with low molecular weight water-soluble ⁇ -chitosan, B: E. Cb //) with low molecular weight water-soluble ⁇ -chitosan.
  • FIG. 5 is a graph showing preformed biofilm inhibitory activity of Pseudoinonas aeruginosa ATCC 27853) by low molecular water-soluble amine ⁇ -chitosan of the present invention. to be.
  • FIG. 6 shows the light absorbance at 595 nra of preformed biofilm inhibitory activity of Pseudomonas aer / apsa (Pseudomonas ae // sa MP-PaOOl) by the low molecular water-soluble amine ⁇ -chitosan of the present invention. It is a graph shown.
  • Figure 7 is a observation observation of the change over time after the low molecular water-soluble amine ⁇ -chitosan treatment of nude mice infected with Staphylococcus aureus (Staphylococcus aureus, CCARM 3087) according to Experimental Example 7 of the present invention ( ⁇ ) And fluorescence of primary antibody anti-TNF ⁇ ⁇ ( ⁇ ) and anti-IL-1
  • Example 2 V: Staphylo Cacus Aureus (5 a3 ⁇ 43 ⁇ 4 oco s aureus, CCARM 3087) inoculation and the low molecular water soluble amine ⁇ -chitosan (1.0 mg / mL) administration group of Example 2; 1: skin cells stained with haematoxylin & eosin and 2: FITC-labeled secondary antibody treated blood It is a minor cell.
  • Example 2 Low molecular water-soluble amine ⁇ -chitosan (0.3 mg / mL) administration group, V: Pseudomonas aeruginosa (/ 3 ⁇ 4e ffiow3S aeruginosa BMP-PaOOl) inoculation and low molecular water-soluble amine ⁇ -chitosan (0.6 mg / mL) administration group of Example 2 .
  • the present invention provides an antimicrobial composition containing a low molecular weight water-soluble ⁇ ⁇ chitosan or a derivative thereof which is 500 to 20000 daltons as an active ingredient.
  • the low molecular weight water-soluble ⁇ -chitosan or derivatives thereof according to the present invention can replace ⁇ -chitosan obtained in nature from insoluble to water-soluble form, thereby improving binding capacity when binding to cell membranes of microorganisms, and preventing cytotoxicity. It is characterized by being.
  • the low molecular weight water-soluble ⁇ -chitosan according to the present invention may be used in the range of 500 to 20000 daltons, and preferably in the range of 5000 to 10000 daltons.
  • the low molecular weight water-soluble ⁇ ⁇ chitosan of 500 to 20000 daltons according to the present invention has advantages in that it is free in terms of absorption and does not form antibodies in the body as it is converted into a low molecular form in a polymer derived from natural products.
  • the low molecular weight water-soluble ⁇ -chitosan of 5000 to 10000 Daltons according to the present invention is not cytotoxic, the side effect-causing functionality in the living body or the human body of the animal can be significantly lower and can be safely used.
  • the second carbon amino group (- ⁇ 3 ⁇ 4) or the sixth carbon alcohol (-0 ⁇ ) group may be substituted with carboxymethyl 'hydroxy methyl, hydroxypropyl or hydroxypropyl ether.
  • the ⁇ -chitosan derivative may be reduced in molecular weight, solubility, and antimicrobial activity even when a new chemical substituent is introduced into a free amino group (- ⁇ 3 ⁇ 4) or glucose 6 carbon alcohol (-0 ⁇ ) to the carbon at the glucose position 2 of the chitosan structure.
  • the intrinsic properties of chitosan or ⁇ -chitosan derivatives do not change.
  • the antimicrobial composition according to the present invention is Listeria monocytogenes
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has a MIC of about 9 yg / inL for pathogenic bacteria regardless of ⁇ : It showed high antibacterial activity as well as excellent antimicrobial activity against Pseudomonas aeruginosa 3 ⁇ 4e fc3 ⁇ 4was aeruginosa and Staphylococcus aureus (5 ⁇ 3 ⁇ 4a3 ⁇ 4K?
  • the low molecular weight water-soluble ⁇ -chitosan or a derivative thereof according to the present invention is effective.
  • the antimicrobial composition containing as a component may be usefully used as an antimicrobial composition used in various fields that require antimicrobial effects such as food additives, fungicides, disinfectants, detergents or deodorants.
  • the low molecular weight water-soluble ⁇ -chitosan according to the present invention may be prepared from the squid cartilage by the following preparation method:
  • step 2 Treating the solid prepared in step 1 with 2 ⁇ sodium hydroxide (NaOH) aqueous solution to prepare a protein-free solid (step 2);
  • step 3 Deacetylating the solid prepared in step 2 to prepare insoluble ⁇ ⁇ chitosan (step 3);
  • step 4 Preparing a chitosan polysaccharide by enzymatic decomposition of a salt using an organic acid and an inorganic acid to the insoluble ⁇ - ⁇ earth acid prepared in step 3 (step 4);
  • step 5 Treating the solution of the organic or inorganic acid salt of chitosan polysaccharide prepared in step 4 with trialkylamine as a base (step 5);
  • step 6 Adding an organic solvent to the mixed solution of step 5 to prepare a chitosan polysaccharide in which an organic acid or an inorganic acid bound to the chitosan polysaccharide is removed in the form of a trialkylamine salt (step 6); And
  • the acid-free chitosan polysaccharide solution prepared in step 6 was treated with inorganic acid, and then purified by an activated carbon / ion exchange resin column to prepare a low molecular weight water-soluble ⁇ -chitosan (step 7).
  • step 7 The acid-free chitosan polysaccharide solution prepared in step 6 was treated with inorganic acid, and then purified by an activated carbon / ion exchange resin column to prepare a low molecular weight water-soluble ⁇ -chitosan (step 7).
  • step 1 squid cartilage is added to 1 ⁇ hydrochloric acid (HC1) aqueous solution, stirred at room temperature for 24 hours to remove minerals, and the remaining solid water is washed with distilled water, and the washed solid is 1 M aqueous hydrochloric acid (HC1) was added again, followed by stirring at 40 ° C for 8 hours to completely remove the remaining minerals in the solid.
  • HC1 hydrochloric acid
  • the step 2 according to the present invention is added to the 2 M sodium hydroxide (NaOH) aqueous solution to remove the inorganic material prepared in step 1, and stirred at room temperature for 24 hours to remove the protein after the remaining solids Washing with distilled water, adding the washed solid to a 2 M aqueous sodium hydroxide (NaOH) solution, and then raising the temperature for 5 hours and stirring to completely remove the remaining protein from the solid, thereby preparing a protein-free solid. to be.
  • the step : 3 according to the present invention is a step of performing deacetylation by treating 40% sodium hydroxide (NaOH) aqueous solution of the protein removed in step 2.
  • Step 4 according to the present invention is dissolved insoluble chitosan extracted from chitin in the form of a salt using an organic acid including lactic acid, acetic acid, propionic acid, formic acid, ascorbic acid, and tartaric acid and inorganic acids including hydrochloric acid, nitric acid and sulfuric acid.
  • the chitosan solution can be enzymatically decomposed to obtain chitosan polysaccharides.
  • the acid solution of the chitosan polysaccharide is a solvent used to prepare a solution of organic acid salts including lactic acid, acetic acid, propionic acid, formic acid, ascorbic acid, and tartaric acid and inorganic acid salts including hydrochloric acid, nitric acid and sulfuric acid is PBS (Phosphate) buffered saline) 7.0, 7.2 or 7.4 may be used, but is not limited thereto.
  • trialkylamine may be added in a ratio of 2 to 3 equivalents to 1 equivalent of the amine group of the chitosan polysaccharide. And preferably 2 equivalents.
  • trialkylamine attracts H + from the amine group of the highly acidic chitosan polysaccharide, and electrostatic interactions between CH 3 CH0HC00 " or C3 ⁇ 4C00—, C1 " and trialkylamine
  • the amines of the carbon number 2 carbon can be obtained in the form of free amines by dissociation by dissociation.
  • tri-Cw alkylamine may be used as the trialkylamine, preferably trimethylamine, triethylamine, tripropylamine, triisopropyl ethylamine or tributylamine. More preferably triamine may be used.
  • step 6 the mixed reaction product produced by the addition of the organic solvent is reacted at room temperature for about 2 hours, and the mixture is stirred by adding an organic solvent selected from the group consisting of acetone, methane, chloroform and dichloromethane. Centrifugation to prepare chitosan polysaccharides from which organic or inorganic acids are removed.
  • the -C3 ⁇ 40H group of glucose 6 carbon protected by trialkylamine is removed by treating with 0.0005-0.010 N inorganic acid, wherein the salt removed is (C 2 3 ⁇ 4) 3 NH + ⁇ C1—salts. Can be removed in the air.
  • Step 7 is a step of preparing a pure low molecular water-soluble ⁇ ⁇ chitosan by purifying a solution of chitosan polysaccharides from which organic or inorganic acids have been removed with an activated carbon / ion exchange resin column.
  • the antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof according to the present invention as an active ingredient is a food additive, fungicide, disinfectant, detergent or deodorant. Can be used for purposes.
  • the detergent is generally used at home, including antibacterial activity is required, such as main detergent, laundry detergent, vegetable l fruit cleaner, hand cleaner, etc., but is not limited thereto.
  • Detergents of the invention may comprise one or more surfactants.
  • the surfactant may be an anionic, non-ionic, cationic, amphoteric or zwitter ionic type, or a combination thereof.
  • anionic surfactants include linear alkylbenzenesulfonates (LAS), alkylsulphates (AS), alphalepinsulfonates (AOS), alkali metal salts of hydroxysulphates (AES) or natural fatty acids in alcohols.
  • nonionic surfactants include alkyl polyethylene glycol ethers, nonylphenol polyethylene glycol ethers, fatty acid esters of sucrose and glucose, or esters of polyethoxylated alkyl glucosides.
  • the detergent of the present invention may further comprise other detergent ingredients known in the art such as fillers, fabric softeners and the like.
  • the detergents of the present invention may be formulated in any convenient form, such as powders, solutions, and the like.
  • the present invention provides a health functional food composition for preventing or improving infectious diseases caused by bacteria, including an antimicrobial composition containing a low molecular weight water-soluble ⁇ -chitosan or a derivative thereof as an active ingredient.
  • the low molecular weight water-soluble ⁇ -chitosan or derivative thereof may be added to a health functional food such as food or beverage for the purpose of preventing or improving diseases caused by pathogenic bacteria.
  • the kind of food There is no particular limitation on the kind of food.
  • foods to which the above substances can be added include dairy products, including drinks, meat, sausages, breads, biscuits, rice cakes, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, ice cream, and various soups. , Beverages, alcoholic beverages and vitamin complexes, dairy products and dairy products, and includes all the health functional foods in the ordinary sense.
  • the health functional food composition containing the low molecular weight water-soluble ⁇ -chitosan or derivatives thereof of the present invention as an active ingredient may be added to foods or used with other foods or food ingredients, and may be appropriately used according to conventional methods. The combined amount of the active ingredient can be suitably determined according to the purpose of use (prevention or improvement).
  • the amount of the composition in the health functional food may be added at 0.1 to 90 parts by weight of the total food weight.
  • the amount may be below the above range, and the active ingredient may be used in an amount above the above range because there is no problem in terms of safety. have.
  • the health functional beverage composition of the present invention is not particularly limited to other ingredients except for containing the compound as essential ingredients in the indicated ratios, and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks.
  • natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disacarides such as maltose, sucrose and the like; And sugars such as polysaccharides such as conventional sugars such as dextrin, cyclodextrin, and the like, and xylyl, sorbitol, and erythtriol.
  • natural flavoring agents such as tauumatin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring systems (saccharin, aspartame, etc.) can be advantageously used.
  • the ratio of the natural carbohydrate is generally about 1 to 20 g, preferably about 5 to 12 g per 100 compositions of the present invention, in addition to the low molecular water-soluble ⁇ -chitosan or derivatives thereof of the present invention as an active ingredient.
  • the functional food composition includes various nutrients, vitamins, minerals (electrolyzed), flavors such as synthetic and natural flavors, colorants and enhancers (such as cheese and chocolate), pectic acid and salts thereof, alginic acid and salts thereof. , Organic acids, protective colloidal thickeners, ⁇ modifiers, stabilizers, preservatives, glycerin, alcohols, carbonated beverages used in carbonated beverages.
  • the composition of healthy functional foods may contain the flesh for preparing natural fruit juice, fruit juice beverage and vegetable beverage.
  • the proportion of such additives is not so critical, but the low molecular water soluble ⁇ -chitosan or its derivatives of the present invention. It is generally selected from the range of 0.1 to about 20 parts by weight per 100 parts by weight of the antimicrobial composition containing the conductor as an active ingredient.
  • 5% chitosan solution was prepared using lactic acid as a solvent. 5 units of 5% chitosan solution (pH 5.0 to 5.5) were mixed with 5 units of chitosanase enzyme derived from fec //// ⁇ puniilus BN-262. It was reacted for 36 hours at ° C. After completion of the reaction, prefiltration was carried out using 1 / prefilter, followed by re-filtration with a hollow fiber filter having a molecular weight of 20,000. The filtrate obtained in the above step was concentrated using a nano no filtration system (n no filter system), sterilized and dried by an air spray dryer (spray dryer) to prepare a chitosan polysaccharide.
  • n no filter system nano no filter system
  • spray dryer air spray dryer
  • the chitosan polysaccharide obtained above was dissolved in PBS 7.0 of 1, followed by slowly dropping 0.52 £ of triethyl amine. At this time, 2 equivalents of triethyl amine are reacted with respect to 1 equivalent of amine groups of the chitosan polysaccharide. The reaction was reacted at room temperature for about 2 hours, and then stirred with acetone and centrifuged. The process was repeated 2-3 times, followed by air drying and freeze drying. At this time, centrifugation was carried out for 20 minutes at 4 ° C at 15,000 rpm using Supra 30 K.
  • Example 2 Preparation of Low Molecular Water-Soluble Amine ⁇ -Chitosan from Natural Products 2 Except for purifying the low molecular water-soluble amine ⁇ -chitosan of 5000 Daltons in Example 1, 10000 Daltons was carried out in the same manner as in Example 1 above. A low molecular water soluble amine ⁇ -chitosan was obtained.
  • Example 2 Except for purifying the water-soluble amine ⁇ 1 chitosan of 15000 Daltons in Example 1, in the same manner as in Example 1 ; 15,000 Daltons of low molecular weight water-soluble amine ⁇ -chitosan.
  • Example 2 Except for purifying the water-soluble amine ⁇ -chitosan of 20000 Dalton in Example 1, was carried out in the same manner as in Example 1 to obtain a low molecular water-soluble amine ⁇ ⁇ -chitosan of 20000 Daltons.
  • Comparative Example 4 Preparation of Low-Molecular Water-Soluble Amine ⁇ -Chitosan from Natural Products 1 1000 Daltons was carried out in the same manner as in Example 1, except that the low-molecular-weight water-soluble amine ⁇ -chitosan in Example 1 was purified. The low molecular weight water-soluble amine ⁇ -chitosan of was obtained.
  • Example 2 Except for purifying the low molecular water-soluble amine ⁇ -chitosan of 10000 Dalton in Example 1, it was carried out in the same manner as in Example 1 to obtain a low molecular water-soluble amine achichitosan of 10,000 Daltons.
  • Gram-positive bacteria Listeria monocytogenes ATCC 19115), Staphylococcus aureus (ATCC 25923), Bacillus subtilis subtil is, TCT 1918), Streptococcus Epidermidis (KCTC 3096) and the Gram-negative bacterium Escherichia coli (ATCC 25922), Escherichia coli 0-1 ⁇ 7 (Escherichia coli 0-157, ATCC 43895), Vibrio blepicus (/ r / o vulnificus, ATCC 29307), Pseudomonas aeruginosa (/ 3 ⁇ 4 «/ 3 ⁇ 47 ⁇ ?
  • the low molecular weight water-soluble amine chitosans prepared in Examples and Comparative Examples according to the present invention were plated at a concentration of 5000, 2500, 1250, 625, 312.5, 156.3, 78.1, 39.1, 19.5, 9.5 and 4.9 yg / mL, respectively. After the addition, the cells were incubated at 37 ° C. for 18 hours, and the absorbance was measured with a micro titrate plate reader at a wavelength of 620 ran. MIC value of each strain was determined, and the results are shown in Tables 1 to 3 below.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has an excellent antimicrobial effect against pathogenic bacteria regardless of pH. More specifically, most of the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention showed a MIC value of 9 ug / mL at pH 5.4 and 7.4. On the other hand, the low molecular weight water-soluble amine ⁇ -chitosan showed low MIC values only when the pH was 5.4 and the molecular weight was large.
  • the low molecular weight water-soluble amine-chitosan according to the present invention is not affected by pH and has an excellent antimicrobial effect against pathogenic bacteria compared to the low molecular weight water-soluble amine ⁇ -chitosan.
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention is a Gram-negative bacterium, Pseudomonas aeruginus 7 Pseudomonas aeruginosa, which is a pathogenic bacterium having drug resistance, The antibacterial activity against Staphylococcus ae / s was confirmed to be excellent.
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention is excellent in antibacterial activity regardless of pH, and especially in case of Pseudomonas aeruginosa (/ 3 ⁇ 4e »iMas aeruginosa) ⁇ having drug resistance.
  • the low molecular water-soluble amine ⁇ -chitosan of Example 2 was confirmed to have high antibacterial activity without being affected by pH.
  • the antimicrobial activity against Staphylococcus aureus (533 ⁇ 43 ⁇ 4rA® coa s is excellent when the pH is neutral. It was confirmed that.
  • the antimicrobial activity against Pseudomonas aeruginosa and P. eubiwnas aeruginosa) and Staphylococcus aureus ⁇ a Ay / occicras a ei / s) was greater than 10,000 Daltons. Only the ⁇ -chitosan having a molecular weight appeared similar to ⁇ -chitosan, and the lower the molecular weight, the antimicrobial effect was found to be significantly reduced.
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention has excellent antibacterial activity against pathogenic bacteria having drug resistance compared to the low molecular weight water-soluble amine ⁇ -chitosan. Therefore, the low molecular weight water-soluble ⁇ ⁇ chitosan or derivatives thereof according to the present invention have excellent antimicrobial activity against pathogenic bacteria having drug resistance as compared to the low molecular weight water-soluble ⁇ -chitosan, and the antimicrobial composition containing the same as an active ingredient is a food additive. , Fungicides, antiseptics, detergents, deodorants, health functional foods can be usefully used as antimicrobial compositions used in various fields that require antimicrobial effects.
  • the bactericidal kinetics of the low molecular water soluble amine ⁇ -chitosan according to the present invention is E. coli
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention has excellent bactericidal kinetics for pathogenic bacteria. More specifically, the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention is treated with cultured coliform bacillus 1570?. «? // at IX growth minimum inhibitory concentration (MIC).
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention has excellent bactericidal kinetics for killing bacteria compared to the elapsed treatment time for pathogenic bacteria. Therefore, the low molecular weight water-soluble ⁇ -chitosan or derivatives thereof according to the present invention show excellent apoptosis kinetics for pathogenic bacteria, and excellent antibacterial activity, antimicrobial compositions containing it as an active ingredient are food additives, fungicides, disinfectants , Detergent, deodorizer ⁇ It can be usefully used as an antimicrobial composition used in various fields such as functional foods that require antimicrobial effects.
  • hRBCs human red blood cells
  • PBS phosphate buffer
  • the supernatant was centrifuged at 414 nm and the absorbance was measured and untreated chitosan-treated groups and 100 human red blood cells (hRBC) suspended in complete phosphate solution (PBS) added with 1% Triton X-100. Absorbance was also measured for the group of the hemolyzed samples to confirm the degree of disruption of human erythrocytes (hRBCs), cell membrane disruption, and retention of erythrocytes due to cell membrane retention. All samples were subjected to three replicates to measure absorbance, and the results are shown in A of FIG. 2.
  • cytotoxicity was measured using the normal cell line HEK293 (human fetal kidney cells). More specifically, human fetal kidney cells (HEK293) cultured in DMEM medium containing 10% FBSCFetal Bovine Serum) were aliquoted into 96 well plates at 3 ⁇ 10 3 cells / mL and incubated for 24 hours. Thereafter, Examples 1 to 2 and Comparative Examples 1 to 6 were treated by concentration, respectively, and reacted in a 5% CO 2 incubator for 24 hours. When the reaction was complete, MTT (Thiazolyl Blue Tetrazol ium Bromide) solution (20 ul) dissolved in phosphate buffered saline (PBS) at a concentration of 5 mg / ml was added to each well.
  • MTT Thiazolyl Blue Tetrazol ium Bromide
  • the low molecular weight water-soluble amine ⁇ -chitosan of Examples 1 and 2 having a molecular weight of 5000 Daltons to 10,000 Daltons does not cause hemolysis of human erythrocytes (hRBCs), so that the lysed erythrocytes ( The hemolysis rate of hRBC) was found to be less than about 5%, while the low molecular weight water-soluble amine ⁇ -chitosan of Comparative Examples 2 and 3 having a molecular weight greater than 10000 daltons was 20% and 20% / ml, respectively. It was confirmed to exhibit 40% hemolysis.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has a significantly lower cell viability compared to the low molecular water-soluble amine ⁇ -chitosan, resulting in high cell viability. If the molecular weight exceeds 10000 daltonol, the cytotoxicity is significantly increased, while the low molecular weight water-soluble amine ⁇ -chitosan having a molecular weight of 5000 Daltons to 10000 Daltons is not cytotoxic and therefore is unlikely to cause side effects to animals or humans. Able to know.
  • the low molecular weight receptor- ⁇ -chitosan or derivatives thereof according to the present invention not only have excellent antimicrobial activity against general pathogenic bacteria and pathogenic bacteria with drug resistance, but also human red blood cells (hRBCs) present in human blood. It is safe for human body because it does not cause hemolytic action and does not show toxicity to human normal cells ( ⁇ 293) compared to low molecular water-soluble ⁇ -chitosan.
  • hRBCs human red blood cells
  • F 0 fluorescence intensity after chitosan treatment
  • F t Fluorescence intensity of liposomes.
  • the low molecular weight water-soluble ⁇ -chitosan according to the present invention exhibits high destructive power against artificial liposomes which are artificial cell membranes of bacteria.
  • the "low-molecular-weight water-soluble ⁇ - chitosan of 5000 Daltons in accordance with the present invention is specifically pH It showed high fluorescence intensity at both 5.4 and pH 7.4, indicating that it has high permeability to artificial liposomes to which calcein is bound.
  • low molecular water-soluble ⁇ -chitosan showed a slight increase in fluorescence intensity at pH 7.4, and a high fluorescence intensity even at pH 5.4. It was shown that the fluorescence increase was about 20% lower than that of the case.
  • the low molecular weight water-soluble ⁇ ⁇ chitosan according to the present invention has excellent breaking force on the cell membrane, which is consistent with the results of Experimental Example 2.
  • the breakdown force of the cell membrane is significantly superior to the low molecular weight water-soluble ci-chitosan.
  • the dehydrated bacteria were critically dried and then coated with gold and examined for morphology at 120 kV using a scanning electron microscope (HITHACHI S-2400, Japan). E. coli (co //) was also observed by scanning electron microscopy, and the results are shown in Fig. 4.
  • the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention was used to modify bacterial cell membranes. It can be seen that. It may be particularly seen that the membrane of the seal case 2 o'clock Escherichia coli E.coli process a low molecular weight water-soluble amine ⁇ - chitosan in the manufacture of 10,000 daltons in) ⁇ , E. coli (co //) according to the invention is collapsed. half Cotton, chitosan untreated E. coli? It can be seen that the deformation of the cell membrane did not occur.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has an excellent effect of modifying bacterial cell membranes, thereby causing the death of bacteria. Therefore, the low molecular weight water-soluble ⁇ -chitosan or derivatives thereof according to the present invention have an excellent effect of killing bacteria by modifying the cell membranes of bacteria, and thus, the antimicrobial composition containing it as an active ingredient includes food additives, fungicides, disinfectants, detergents, It can be usefully used as an antimicrobial composition used in various fields such as deodorant, health functional food and the like antimicrobial effect is required.
  • PBS phosphate buffer
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has an anti-biofilm effect. More specifically, the low molecular weight water-soluble amine ⁇ -chitosan according to the present invention is treated with Pseudomonas aeruginosa (/ 3 ⁇ 4e (3 ⁇ 4 / 7a5 aeruginosa ATCC 27853 and BMP-PaOOl) biofilms, which have a destructive activity of concentration and molecular weight.
  • Pseudomonas aeruginosa / 3 ⁇ 4e (3 ⁇ 4 / 7a5 aeruginosa ATCC 27853 and BMP-PaOOl
  • the low molecular water-soluble amine ⁇ -chitosan of 5000 and 10,000 Daltons showed more than 50% of the preformed biofilm breaking activity at 3.12 nig / mL, whereas the low molecular water-soluble ⁇ -chitosan was Pseudomo.
  • BMP-PaOOl bacteria of Nasu eruginosa 03 ⁇ 4e 3 ⁇ 4 as aeruginosa were significantly lower in destructive activity, indicating that preformed biofilm destructive activity was decreased depending on the type of strain.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has a preformed biofilm breaking activity depending on the concentration and molecular weight, and preformed biofilm breaking activity regardless of the strain type. It can be seen that this is excellent. Therefore, the low molecular weight water-soluble amine ⁇ -chitosan or derivatives thereof according to the present invention has excellent preformed biofilm destruction activity regardless of strain type, and thus has an excellent effect of inhibiting biofilm formation.
  • the composition may be usefully used as an antimicrobial composition used in various fields that require antimicrobial effects such as food additives, fungicides, disinfectants, detergents, deodorants, health functional food.
  • the low molecular water-soluble amine ⁇ -chitosan of Example 2 according to the present invention was inoculated with a drug resistant Staphylococcus aureus (Staphylococcus aureus, CCARM 3087, 5X10 8 cells / mL) in the back epidermis of a nude mouse. Inoculations were made at concentrations of 0.5 mg / mL and 1.0 mg / mL. After 7 days, the skin of inoculated nude mice was harvested and washed with phosphate buffer solution (PBS). Skin tissue of the washed nude mice was transferred to 4% paraformaldehyde and treated for 24 hours, and dehydrated 50% to 100% ethane 3 times for 2 hours.
  • PBS phosphate buffer solution
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has excellent antimicrobial effect in vivo w> o). More specifically, pre-inflammatory cytokines (anti-TNF- ⁇ and anti-IL- ⁇ ) present in the skin tissue of nude mice infected with the pathogenic bacteria Staphylococcus aureus (5 ⁇ 3 ⁇ 4 ⁇ ? Aureus, CCARM 3087) In observation, it was confirmed that in mice without chitosan treatment, pre-inflammatory cytokines (TNF ′ a and IL ′ 1 ⁇ ) were secreted excessively to emit strong fluorescence.
  • pre-inflammatory cytokines anti-TNF- ⁇ and anti-IL- ⁇
  • the epidermal thickness infected with the pathogenic bacterium is thickened, and when the low molecular water-soluble amine ⁇ -chitosan is additionally administered according to the present invention, the epidermal thickness is restored to the normal thickness again. Furthermore, it can be confirmed visually that skin inflammation of nude mice is alleviated by the low molecular water-soluble amine ⁇ -chitosan of the present invention.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has excellent antibacterial effect even in vivo (//? Y / ra).
  • Antimicrobial Effect on Drug-Resistant Pseudomonas aeruginosa 03 ⁇ 4e og £ was aer3 ⁇ 4g ' josa) Pseudomonas aeruginosa (/ 3 ⁇ 4 / ⁇ 3 ⁇ 4% 3 ⁇ 41 ⁇ 2 ⁇ 5 aeruginosa BMP-PaOOl, l iO 8 Cell AnL )
  • the low molecular weight water-soluble amine ⁇ -chitosan of Example 1 were inoculated at concentrations of 10 nig / mL, 20 mg / mL and 40 mg / mL.
  • mice inoculated for 7 days were observed, and after the observation, the lungs of the mice were removed and homogenized.
  • Homogenates were injected into NB + 0.5% sodium chloride agar plates to assess the degree of bacterial colony formation of the homogenates.
  • the results are shown in FIG. Figure 'as shown in 8, and the low molecular weight water-soluble amine ⁇ - chitosan according to the present invention was confirmed to have excellent antimicrobial effects in vivo (/? W> o).
  • the homogenized homogenized lung tissue cells of ICR mice inoculated with Pseudomonas aeruginosa (/ 3 ⁇ 4 «/ o3 ⁇ 4? O /? As aeruginosa BMP-PaOOl) were treated with the low molecular water-soluble amine ⁇ -chitosan of the present invention.
  • the bacterial colony formation is suppressed and the amount is significantly reduced.
  • the low molecular water-soluble amine ⁇ -chitosan according to the present invention has excellent antibacterial effect even in vivo (/ w> o).
  • Example 2 4 hours after inoculation of the drug-resistant Staphylococcus aureus (Staphylococcus aureus, ATCC 25923, 5X10 8 cells / mL) into the dorsal epidermis of ICR mice
  • Staphylococcus aureus Staphylococcus aureus, ATCC 25923, 5X10 8 cells / mL
  • the low molecular weight water-soluble amine J3-chitosan of Example 2 according to the invention was inoculated at concentrations of 0.3 mg / mL and 0.6 mg / mL. After 10 days, the skin of inoculated ICR mice was removed and washed with phosphate buffer (PBS). Skin tissue of the washed nude mice was transferred to 4% paraformaldehyde for 24 hours, and dehydrated 50% to 100% ethanol three times for 2 hours.
  • PBS phosphate buffer
  • antimicrobial compositions containing it as an active ingredient include food additives, fungicides, disinfectants, detergents, deodorizers, health It can be usefully used as an antimicrobial composition used in various fields where antibacterial effects are required, such as functional foods, etc.
  • the compounds of the present invention can be prepared in various forms according to the purpose. Examples of the preparation of health functional foods for the compositions of
  • 0.01 ⁇ 1 part by weight of the antimicrobial composition of the present invention is added to milk, and the milk To produce various dairy products such as butter and ice cream.
  • Brown rice, barley, glutinous rice, yulmu was alphad by a known method, and then dried and roasted to prepare a powder having a particle size of 60 mesh.
  • the black beans, black sesame seeds, and sesame seeds were also steamed and dried by a known method, and then prepared into a powder having a particle size of 60 mesh by a grinder.
  • the antimicrobial composition of the present invention was concentrated under reduced pressure in a vacuum concentrator to obtain a dry powder.
  • the dry powder of the grains, seeds and antimicrobial compositions prepared above was formulated in the following proportions. Cereals (34 parts by weight brown rice, 19 parts by weight of radish, 20 parts by weight of barley),
  • Seeds (7 parts by weight perilla, 8 parts by weight black beans, 7 parts by weight black sesame seeds),
  • Antimicrobial composition (2 parts by weight) ,
  • Vitamin A Acetate 70 ng
  • Vitamin B6 0.5 mg
  • composition ratio of the vitamin and mineral mixtures described above is a composition suitable for a relatively healthy functional food in a preferred embodiment, but the formulation ratio may be arbitrarily modified, according to a conventional healthy functional food manufacturing method After mixing the above components, to prepare a granule, it can be used for producing a health functional food composition according to a conventional method.
  • composition ratio is a relatively suitable composition for a preferred beverage in a preferred embodiment, the compounding ratio may be arbitrarily modified according to regional and ethnic preferences such as demand hierarchy, demand country, use purpose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Microbiology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Birds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물에 관한 것으로, 본 발명에 따른 항균용 조성물은 천연물로부터 유래된 500 내지 20000 달톤의 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하여 체내 흡수가 빠르고, 항체 형성이 이루어지지 않으며, 세포독성이 현저히 낮아 인체에 안전하다. 또한, 다양한 병원성 박테리아에 대하여 우수한 항균 효과가 있으므로 식품첨가제, 살균제, 소독제, 세제, 탈취제, 건강기능성 식품 등 항균 효과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다.

Description

【명세서】
【발명의 명칭】
저분자 수용성 β—키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물
【기술분야】
본 발명은 저분자 수용성 β—키토산 또는 이의 유도체를 유효성분으로 함유 하는 항균용 조성물에 관한 것으로, 구체적으로 500 달톤 내지 20000 달톤의 저분 자 수용성 β-키토산 또는 이의 유도체는 박테리아에 대하여 우수한 항균 활성올 나타내고, 저분자 형태이므로 흡수가 유리하며, 체내에서 항체를 형성하지 않을 뿐 만 아니라, 세포독성으로부터 안전하므로 인체에 안전한 항균용 조성물로 유용하게 사용될 수 있다.
【배경기술】
항균제란 통상적으로 항미생물제를 총칭하는 것으로, 특히 세균에 대한 항 균작용을 하는 물질, 상세하게는 세균이 세포벽이나 단백질 등을 합성하는 시스템 을 저해시킴으로써 뛰어난 항균작용을 하는 물질 또는 이러한 물질로부터 제조된 것을 의미한다. 항균제의 성분은 주로 곰광이로부터 추출된 것이 주를 이루었으며, 오늘날 세균 감염에 의한 질병 등을 치료하기 위해 많이 사용되고 있다. 가장 대표 적인 항균제로는 영국인 의사 알렉산더 플레밍이 1928년에 제조한 페니실린이다. 페니실린은 인류가 세균에 본격적으로 대웅하기 위해 제조한 최초의 항균제였다. 페니실린 이후에 개발된 대표적인 항균제로는 페니실린보다 효과가 탁월한 것으로 인정되는 메티실린 (methicillin)이 있다. 메티실린은 페니실린의 화학구조를 일부 변경하여 제조한 것이다. 항균제 내성세균이란 특정 항균제에 내성을 보여 약효가 듣지 않는 세균을 말한다. 예를 들어, 상기한 페니실린의 약효가 전혀 듣지 않는 페니실린 내성 황색 포도상구균이 이에 해당된다. 이 외에도, 1961년 최초로 학계에 보고되었으며, 그 후로 전 세계적으로 주요 병원성 감염균이 되고 있는 메티실린 내성 황색포도상구 대체용지 (규칙제 26조) 균 (Methici 11 in— Resistant Staphylococcus aureus, MRSA)이 있다. 이와 같은 기존 화학물질 유래 항균제에 대한 내성을 가진 병원성 미생물로 인한 감염이 증가될 뿐만 아니라, 최근에는 기존 화학물질 유래 항균제의 경우 부 작용과 내성이 문제되어, 천연물 유래 항균 물질에 대한 개발의 요구가 증대되면서, 천연물을 이용한 여러 약품 또는 항균제를 개발하려는 시도가 활발하게 진행되고 있다. 한편, 키틴은 게, 새우 등의 갑각류, 크릴의 피각, 투구풍뎅이, 메뚜기 등 곤충류의 갑피, 오징어의 뼈, 세균의 세포벽 등에 존재하며, 셀를로오스 다음으로 풍부한 생체 고분자 화합물이다. 키틴과 키토산은 결정구조에 따라 α-키틴, -키 틴 및 Υᅳ키틴으로 분류되는데, α-키틴은 게, 새우, 가재 등의 갑각류의 껍질에서 흔히 발견되고 키틴 분자쇄가서로 역방향이 되어 분자와 분자 간 수소결합이 이루 어지므로 결정 구조가 교차구조로 안정한 반면 , β-키틴은 오징어 연골 등에서 발 견되고 α-키틴에 비해 그 존재량이 매우 적으며, 인접하는 분자쇄 간 서로 평행한 상태를 유지하고 있다 (R. Minke, J. Blackwell. , Journal of Molecular Biology (1978) 120, 167-181; 및 K. H. Gardner, J.: Blackwell., Biopolymers (1975) 14, 1581-1595) . 구조의 키틴은 오징어 연골 등에서 발견되고 알파 구조에 비해 그 존 재량이 매우 적으며, 인접하는 분자쇄간 서로 평행한 상태를 유지하고 있다 (R. Minke, J. Blackwell. , Journal of Molecular Biology (1978) 120, 167-181; 및 K. H. Gardner , J. Blackwell. , Biopolymers (1975) 14, 1581-1595). y -구조의 키틴 은 곤층의 갑각에 주로 존재하며, 그 구조가 완전하 규명되지는 않았으나 1 개의 교차 및 2 개의 평행이 흔재되어 존재하는 구조로 구성되어 있다 (K. M. Rudall., Advances in Insect Physiology (1963) 1, 257-313) . 상기 키틴을 탈아세틸화하여 제조되는 키토산은 큰 분자량, 키토산 분자 내에 존재하는 양전하, 필름 형성력, 생체적합성, 생분해성, 중금속 흡착, 겔화 성질 등의 특성을 가지는 것이 알려지면서 생명공학, 제약, 폐수처리, 화장품, 식품공업 등의 다양한 분야에서 키틴 및 키토산의 웅용에 관한 연구가 활발히 진행되고 있다 (L. Ilium. , Pharmaceutical Research (1998) 15, 1326; Y. C. Chung, H. L. Wang, Y. M. Chen, S. L. Li. , Bioresource Technology, (2003) 88, 179- 184; F. Devi ieghere, A. Verweulen, J. Debevere. , Food Microbiology, (2004) 21, 703-714; 및 E. S. Abdou, K. S. A. Nagy, M. Z. Elsabee. , Bioresource Technology (2008) 99, 1359-1367) . β-키틴 및 β-키토산은 자연계에서 생성되는 키틴 및 키토산의 대부분이 α-키틴 및 α-키토산이므로 상대적으로 그 양은 현저히 적다. 이는 βᅳ키틴 및 βᅳ키토산 분자 내의 분자 간상호작용이 약하여 α-키틴에 비하여 느슨한 결합 구 조를 갖는데, 이러한 구조적 이유로 β-키틴 및 탈아세틸화된 βᅳ키토산은 특별한 공정이 수행되지 않을 시 구조의 변화가 심하여 α-키틴으로 변형되기 때문이다. 이러한 자연계로부터의 낮은 존재량 및 구조적 불안정성으로 인하여 현재까지 주로 α-키틴 및 키토산에 대한 연구가 집중되었으나, β-키틴 및 키토산이 αᅳ키틴 및 키토산에 비하여 우수한 생리활성을 갖는 것이 알려지면서, 이에 대한 연구도 활발 히 진행되고 있다.
. 먼저, β-키틴 및 β-키토산의 추출 및 이들의 탈아세틸화와 관련된 특성에 대한 연구가 발표된 바 있다 (J. Huang, D. Zhao, S. Hu, J. Mao, L. Mei. , Carbohydrate Polymers (2012) 87, 2231-2236) . 또한, 오징어로부터 추출된 저분자 량 βᅳ키토산이 갖는 환원력, 항산화력, 포집력 등의 물성에 대한 연구 및 흰오징 어 및 대만 오징어로부터 유래된 β-키토산의 열적 스트레스에 대한 안정성, 탈아 세틸화된 생성물의 점도 -평균 분자량 (viscosity-average molecular weight), 광학 활성 관측 평가 등과 관련된 물성에 대한 연구가 발표된 바 있다 (A. Chandumpai , N. Singh ibulporn, D. Faroongsarng, P. Sornprasit . , Carbohydrate Polymers (2004) 58, 467-474). 이에, 본 발명자들은 천연물 유래 항균 물질을 연구하던 중, 500 달톤 내지 20000 달톤의 저분자 수용성 β-키토산에서 병원성 박테리아에 대한 항균 활성이 나타나고,.독성이 없음을 확인하고 본 발명을 완성하였다. 【발명의 상세한 설명】
【기술적 과제】
본 발명꾀 목적은 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으 로 함유하는 항균용 조성물을 제공하는데 있다.
본 발명의 다른 목적은 저분자 수용성 β-키토산 또는 이의 유도체를 유효 성분으로 함유하는 항균용 조성물을 포함하는 세균에 의하여 발병되는 감염성 질환 의 예방 또는 개선용 건강기능성 식품 조성물을 제공한다. 【기술적 해결방법】
상기 과제를 해결하기 위해, 본 발명은,
본 발명은 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유 하는 항균용 조성물을 제공한다.
또한, 본 발명은 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으 로 함유하는 항균용 조성물을 포함하는, 세균에 의하여 발병되는 감염성 질환의 예 방또는 개선용 건강기능성 식품 조성물을 제공한다.
【유리한 효과】
본 발명에 따른 항균용 조성물은 천연물로부터 유래된 500 내지 20000 달톤 의 저분자 수용성 β_키토산 또는 이의 유도체를 유효성분으로 함유하여 체내 흡수 가 빠르고, 항체 형성이 이루어지지 않으며, 세포독성이 현저히 낮아 인체에 안전 하다. 또한, 다양한 병원성 박테뫼아에 대하여 우수한 항균 효과가 있으므로 식품 첨가제, 살균제, 소독제, 세제, 탈취제, 건강기능성 식품 둥 항균 효과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명에 따른 실시예 2 및 비교예 6에서 제조된 저분자 수용성 아 민 키토산의 대장균 0-157(^co//으 5^에 대한 처리시간별 세균사멸 동력학을 도 시한 그래프이다.
도 2는 본 발명에 따른 저분자 수용성 아민 β-키토산의 인간 적혈구 세포 (hRBC)에 대한 용혈작용률을 나타낸 그래프이다; A: 키토산의 처리 농도에 따른 용 혈률을 나타낸 것 , B: 키토산의 처리 농도에 따른 인간 적혈구 세포 (hRBC)의 생존 률을 나타낸 것이다.
도 3은 본 발명에 따른 실시예 2 및 비교예 2에서 제조된 저분자 수용성 아 민 키토산의 pH에 따른 인공 세포막와 변형정도를 형광강도 변화를 기준으로 도시 한 그래프이다.
도 4는 본 발명의 저분자 수용성 아 β-키토산에 의한 대장균 ( ' Co//) 세포막의 변형을 주사전자현미경으로 관찰한 ;사진이다; A: 저분자 수용성 β-키토 산이 처리되지 않은 대장균 ( Coli), B: 저분자 수용성 β-키토산이 처리된 대장 균 E. Cb//)이다.
도 5는 본 발명의 저분자 수용성 아민 β-키토산에 의한 슈도모나스 에루기 노入 Pseudoinonas aeruginosa ATCC 27853)의 전형성된 생물막 (preform biofilm) 저 해활성을 농도별로 595 nm에서 광흡수도를 측정하여 도시한 그래프이다.
도 6은 본 발명의 저분자 수용성 아민 β-키토산에 의한 슈도모나스 에루기 노쏘 Pseudomonas ae/ / sa MP-PaOOl)의 전형성된 생물막 (preform biofilm) 저 해활성을 농도별로 595 nra에서 광흡수도를 측정하여 도시한 그래프이다.
도 7은 본 발명의 실험예 7에 따른 스태필로코커스 아우레우스 {Staphylococcus aureus, CCARM 3087)에 감염된 누드 마우스의 실시예 2의 저분자 수용성 아민 β—키토산 처리 후 시간경과에 따른 변화관찰사진 (Α) 및 누드 마우스 피부 조직에 존재하는, 일차 항체 항 -TNFᅳ α(Β) 및 항 -IL-1|3(C)를 형광분석한 사 진이다; I: 무처리군, Π: 실시예 2의 저분자 수용성 아민 β-키토산 (1 mg/mL) 투 여군, ΙΠ: 스태필로코커스 아우레우스 (5 a¾ /ococa/s aureus, CCARM 3087) 접종군 IV: 스태필로코커스 아우레우스 (5^¾?/?y ?a?c«« aureus, CCARM 3087) 접종 및 실시 예 2의 저분자 수용성 아민 β-키토산 (0.5 mg/mL) 투여군, V: 스태필로코커스 아 우레우스 (5 a¾¾ oco s aureus, CCARM 3087) 접종 및 실시예 2의 저분자 수용성 아민 β-키토산 (1.0 mg/mL) 투여군이고; 1: 해마톡시린 및 에오신 염색 (haematoxylin & eosin staining)된 피부세포 및 2: FITC-라벨 2차 항체처리된 피 부 세포이다.
도 8은 본 발명의 실험예 7에 따른 슈도모나스 에루기노사 (/¾e i¾»OT2as aeruginosa BMP-PaOOl)에 감염된 ICR 마우스의 폐 조직을 균질화하여 얻은 균질화 물에 포함된 세균의 콜로니 형성 정도를 관찰한사진이다.
도 9는 본 발명의 실험예 7에 따른 스태필로코커스 아우레우스
{Staphylococcus aureus, ATCC 25923)에 감염된 ICR마우스의 피부 조직 세포를 관 찰한 사 이다; A: 무처리군, B: 슈도모나수 에루기노사 ( seucfcrai as aeruginosa BMP-PaOOl) 접종군, IV: 슈도모나스 에루기노사 (/¾e ¾/?¾ as aeruginosa BMP- PaOOl) 접종 및 실시예 2의 저분자 수용성 아민 β-키토산 (0.3 mg/mL) 투여군, V: 슈도모나스 에루기노사 (/¾e ffiow3S aeruginosa BMP-PaOOl) 접종 및 실시예 2의 저 분자 수용성 아민 β-키토산 (0.6 mg/mL) 투여군이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 상세히 설명한다. 본 발명은 500 내지 20000 달톤인 저분자 수용성 βᅳ키토산 또는 이의 유도 체를 유효성분으로 함유하는 항균용 조성물을 제공한다.
본 발명에 따른 저분자 수용성 βᅳ키토산 또는 이의 유도체는 자연계에서 얻어지는 β-키토산을 불용성에서 수용성 형태로 치환됨으로써 미생물의 세포막에 결합시 결합력을 향상시키고, 세포독성이 전혀 없게 하여 항생 효과를 증진시킬 수 있는 것을 특징으로 한다. 본 발명에 따른 상기 저분자 수용성 β-키토산은 500 내지 20000 달톤인 것 을 사용할 수 있으며, 바람직하게는 5000 내지 10000 달톤인 것을 사용할 수 있다. 본 발명에 따른 500 내지 20000 달톤의 저분자 수용성 βᅳ키토산은 천연물 에서 유래된 고분자에서 저분자 형태로 전환됨에 따라 흡수면에서 유리 (free)하고 체내에서 항체 형성의 이루어지지 않는다는 장점이 있다. 특히, 본 발명에 따른 5000 내지 10000 달톤의 저분자 수용성 β-키토산은 세포독성이 없으므로 동물의 생체 또는 인체에서의 부작용 유발 기능성이 현저히 낮아 안전하게 사용될 수 있다. 또한, 본 발명에 따른 상기 저분자 수용성 β_키토산 유도체는 글루코스의
2번 탄소 아미노기 (-Ν¾) 또는 6번 탄소 알코올 (-0Η)기가 카복시메틸ᅳ 하이드록시 메틸, 하이드록시프로필 또는 하이드록시프로필에테르로 치환될 수 있다.
상기 β-키토산 유도체는 키토산 구조의 글루코스 2번 위치의 탄소에 유리 아미노기 (-Ν¾) 또는 글루코스 6번 탄소 알코을 (-0Η)기에 새로운 화학적 치환기를 도입시켜도 분자량의 저하, 용해성, 항균 활성 등의 -키토산 또는 β-키토산 유 도체의 고유 성질이 변하지 않는다.. 나아가 본 발명에 따른 상기 항균용 조성물은 리스테리아 모노사이토제네스
{Listeria monocytogenes, ATCC 19115), 스태필로코커스 아우레우스 {Staphylococcus aureus, ATCC 25923), 바실러스 서브틸리스 (fec///i S subtil is, KTCT 1918) 및 스트랩토코커스 에피더미디스
Figure imgf000009_0001
epidermidis, KCTC 3096)으로 이루어진 군으로부터 선택되는 그람 양성균; 또는 잭^균 {Escherichia coli, ATCC 25922) , 대장균 Q-l^^Escherichia coli 0-157, ATCC 43895) , 비브리오 블리피커스 vulnificus, ATCC 29307), 슈도모나스 에루기노사 0¾ezffl ?o/¾5 aeruginosa, KCTC 1637) 및 살모넬라 티피뮤리움 (5a//»o/7e//a typhi murium, KCTC 1926)으로 이루어진 군으로부터 선택되는 그람 음성균에 대하여 항생효과를 가진다. 본 발명에 따른 저분자 수용성 β-키토산의 상기 병원성 세균에 대한 항균 활성을 실험한 결과, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 ρΗ에 상관없 이 병원성 세균에 대하여 약 9 yg/inL의 MIC:값으로 높은 항균 활성을 나타냈으며, 약물내성을 갖는 슈도모나스 에루기노사 ¾e fc¾was aeruginosa) 및 스태필로코커 스 아우레우스 (5 <¾a¾K ?cOca/s / «/s)에 대한 항균 활성 또한 우수한 것을 알 수 있다 (실험예 1 및 실험예 2 참조). 또한, 저분자 수용성 β-키토산은 세포독성이 없어 인간 적혈구 (hRBC)의 용혈작용을 초래하지 않으며 (실험예 3 참조), 세균의 세 포막을 변형시켜 세균의 사멸을 초래하는 효과가 우수하다 (실험예 4 내지 실험예 6 참조). 나아가 생체 내 w'ra)에서도 병원성 세균에 대한 항균 효과가 뛰어나다 (실험예 7 참조).
따라서, 본 발명에 따른 저분자 수용성 β-키토산 또는 이의 유도체를 유효 성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제 또는 탈취 제 등 항균 효과가요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사 용될 수 있다. 본 발명에 따른 상기 저분자 수용성 β-키토산은 오징어 연골로부터 하기의 제조방법에 의하여 제조될 수 있다:
오징어 연골에 1 Μ 염산 (HC1) 수용액으로 산처리하여 무기질을 제거된 고형 물을 제조하는 단계 (단계 1);
상기 단계 1에서 제조된 고형물에 2 Μ수산화나트륨 (NaOH) 수용액을 처리하 여 단백질이 제거된 고형물을 제조하는 단계 (단계 2);
상기 단계 2에서 제조된 고형물을 탈아세틸화하여 불용성 βᅳ키토산을 제조 하는 단계 (단계 3);
상기 단계 3에서 제조된 불용성 β- ί토산에 유기산 및 무기산을 이용하여 염의 형성한 후, 효소분해하여 키토산 다당류를 제조하는 단계 (단계 4);
상기 단계 4에서 제조된 키토산 다당류의 유기산 또는 무기산 염의 용액을 염기인 트라이알킬아민으로 처리하는 단계 (단계 5);
상기 단계 5의 흔합 용액에 유기용매를 첨가하여 키토산 다당류에 결합되어 있는 유기산 또는 무기산을 트라이알킬아민 염과의 형태로 제거된 키토산 다당류를 제조하는 단계 (단계 6); 및
단계 6에서 제조된 산이 제거된 키토산 다당류 용액을 무기산 처리 후, 활 성화된 탄소 /이온교환수지 (activated carbon/ ion exchange resin) 컬럼으로 정제하 여 저분자 수용성 β-키토산을 제조하는 단계 (단계 7). 이하, 상기 저분자 수용성 βᅳ키토산의 제조방법을 보다 상세히 설명한다. 먼저, 본 발명에 따른 상기 단계 1은 1 Μ 염산 (HC1) 수용액에 오징어 연골 을 투입시키고, 상온에서 24시간 동안 교반하여 무기질을 제거한 후, 잔류된 고형 물을 증류수로 세척하고, 세척된 고형물을 1 Μ 염산 (HC1) 수용액에 다시 투입시킨 다음, 8시간 동안 40°C에 교반하여 고형물에 남은 무기질을 완전히 제거하여, 무기 질이 제거된 고형물을 제조하는 단계이다. 다음으로, 본 발명에 따른 상기 단계 2는 상기 단계 1에서 제조된 무기질이 제거된 고형물을 2 M 수산화나트륨 (NaOH) 수용액에 투입시키고, 상온에서 24시간 동안 교반하여 단백질을 제거한 후 잔류된 고형물을 증류수로 세척하고, 세척된 고 형물을 2 M 수산화나트륨 (NaOH) 수용액에 다시 투입시킨 다음, 5시간반 동안 승온 하고 교반하여 고형물에 남은 단백질을 완전히 제거하여, 단백질이 제거된 고형물 을 제조하는 단계이다. 다음으로, 본 발명에 따른 상기 단계 :3은 상기 단계 2에서 제조된 단백질이 제거된 고형물을 40% 수산화나트륨 (NaOH) 수용액을 처리하여 탈아세틸화를 수행하 는 단계이다. 본 발명에 따른 상기 단계 4는 키틴으로부터 추출한 불용성 키토산을 젖산, 초산, 프로피온산, 포름산, 아스코르브산, 및 주석산을 포함하는 유기산과 염산, 질산 및 황산을 포함하는 무기산을 이용하여 염의 형태로 만들어 용해시킨다. 상기 의 키토산 용액을 효소 분해하여 키토산 다당류을 얻을 수 있다. 이때, 상기 키토산 다당류의 산 용액은 젖산, 초산, 프로피온산, 포름산, 아스코르브산, 및 주석산을 포함하는 유기산 염과 염산, 질산 및 황산을 포함하는 무기산 염의 용액을 제조하기 위하여 사용된 용매는 PBS(Phosphate buffered saline) 7.0, 7.2 또는 7.4를 사용할 수 있으나, 이에 제한되는 것은 아니다. 본 발명에 따른 상기 단계 5에서 트라이알킬아민을 상기 키토산 다당류에 포함되어 .있는 유기산 또는 무기산 염의 형태를 효과적으로 제거하기 위하여, 키토 산 다당류의 아민기 1 당량에 대해 2 내지 3 당량의 비율로 첨가할 수 있으며, 바 람직하게는 2 당량을 첨가할 수 있다. 일단, 트라이알킬아민이 첨가되면, 강한 산 성을 띠고 있는 키토산 다당류의 아민기에서 H+를 트라이알킬아민이 끌어당기고, CH3CH0HC00" 또는 C¾C00—, C1" 와 트라이알킬아민 간의 정전기적인 상호작용에 의 해 결합하여 제거됨으로써 글루코스 2번 탄소의 아민을 유리 아민 형태로 얻올 수 있다. 이때, 상기에서 첨가되는 트라이알킬아민의 정량비의 조절은 키토산 다당류 의 한 단위체에서 글루코스 2번 탄소의 아민기에 있는 유기산 또는 무기산이 트라 이알킬아민 염의 형태로 제거되고, 글루코스 6번 탄소의 —C¾0H기를 보호하는 역할 을 위해 필요하다. 또한, 상기 트라이알킬아민로는 트라이 -Cw 알킬아민을 사용할 수 있고, 바 람직하게는 트라이메틸아민, 트라이에틸아민, 트라이프로필아민, 트라이이소프로필 에틸아민 또는 트라이부틸아민을 사용할 수 있다. 보다 바람직하게는 트라이에아민 을 사용할 수 있다. 본 발명에 따른 상기 단계 6은 유기용매가 첨가되어 생성되는 흔합반웅물을 상온에서 2시간 정도 반웅시키고 아세톤, 메탄을, 클로로포름 및 디클로로메탄으로 이루어지는 군으로부터 선택되는 유기용매를 첨가하여 교반한 다음, 원심분리하여 유기산 또는 무기산이 제거된 키토산 다당류를 제조하는 단계이다. 상기 과정을 거 친 후, 트라이알킬아민에 의해 보호받은 글루코스 6번 탄소의 -C¾0H기는 0.0005- 0.010 N 무기산 처리하여 제거되는데, 이때 제거되는 염은 (C2¾)3NH+ · C1—염의 형 태로 제거될 수 있다.
이때, 상기 무기산으로는 염산, 질산 또는 황산을 사용할 수 있다. 바람직 하게는 0.001 N의 염산을 사용할 수 있다. 본 발명에 따른 상기 단계 7은 유기산 또는 무기산이 제거된 키토산 다당류 의 용액을 활성화된 탄소 /이온 교환수지 칼럼으로 정제하여 순수한 저분자 수용성 βᅳ키토산을 제조하는 단계이다. 또한, 본 발명에 따른 저분자 수용성 β-키토산 또는 이의 유도체를 유효성 분으로 함유하는 항균용 조성물은 식품 첨가제 , 살균제 , 소독제, 세제 또는 탈취제 용도로 사용될 수 있다.
이때, 상기 세제는 일반적으로 가정에서 사용되고 항균 활성이 요구되는 주 방세제, 세탁세제, 야채 과일세척제, 손 세정제 등을 포함하나, 이에 제한되는 것 은 아니다.
본 발명의 세제는 하나 이상의 계면활성제를 포함할 수 있다. 상기 계면활 성제는 음이은성, 비-이온성, 양이온성, 양쪽성 또는 양이온성형태 (zwitter ionic type), 또는 이것들의 흔합물일 수 있다. 음이온성 계면활성제의 대표적인 예로는 선형 알킬벤젠술폰산염 (LAS), 알킬황산염 (AS), 알파을레핀술폰산염 (AOS), 알코올에 록시황산염 (AES) 또는 천연지방산의 알칼리금속염을 들 수 있다. 비ᅳ이온성 계면활 성제의 예로는 알킬폴리에틸렌글리콜에테르, 노닐페놀 폴리에틸렌글리콜 에테르, 수크로스와 글루코스의 지방산에스테르, 또는 폴리에톡실화 알킬글루코시드의 에스 테르를 들 수 있다.
또한, 본 발명의 세제는 용도에 맞추어 연마제, 표백제, 표면활성제, 부식 방지제, 금속봉쇄제, 얼룩-재침착 방지제 향수, 효소 및 표백제의 안정화제 , 제형 보조제, 광증백제, 거품부스터, 킬레이트화제, 충전제, 직물연화제 둥과 같은 당업 계에서 공지된 다른 세제 성분들을 추가로 포함할 수 있다. 본 발명의 세제는 분제, 액제 등의 임의의 편리한 형태로 제형화될 수 있다. 나아가, 본 발명은 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분 으로 함유하는 항균용 조성물을 포함하는, 세균에 의하여 발병되는 감염성 질환의 예방 또는 개선용 건강기능성 식품 조성물을 제공한다.
본 발명에 따른 건강기능성 식품 조성물은 병원성 세균에 의하여 발병하는 질환의 예방 또는 개선을 목적으로 상기 저분자 수용성 β-키토산 또는 이의 유도 체를 식품, 음료 등의 건강기능성 식품에 첨가할 수 있다.
상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식 품의 예로는 드링크제, 육류, 소시지, 빵, 비스킷, 떡, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스 프, 음료수, 알코을 음료 및 비타민 복합제, 유제품 및 유가공 제품 등이 있으며 , 통상적인 의미에서의 건강기능성 식품을 모두 포함한다. 본 발명의 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유 하는 건강기능성 식품 조성물은 식품에 그대^ 첨가하거나 다른 식품 또는 식품 성 분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 흔합량은 그의 사용 목적 (예방 또는 개선용)에 따라 적합하게 결정될 수 있 다. 일반적으로, 건강기능성 식품 중의 상기 조성물의 양은 전체 식품 증량의 0.1 내지 90 중량부로 가할 수 있다. 그러나 건강 및 위생을 목적으로 하거나 또는 건 강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에 유효성분은 상기 범위 이상 의 양으로도 사용될 수 있다.
본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로서 상기 화합물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같 이 여러 가지 향미제 또는 천연 탄수화물 둥을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사 카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트 린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리를, 소르비를, 에리트라이를 등의 당알코을이다. 상술한 것 이외의 향미제로서 천연 향미제 (타우마틴, 스테비아 추출물 (예를 들어, 레바우디오시드 Α, 글리시르히진 등) 및 합성 향미계 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명 의 조성물 100 당 일반적으로 약 1 내지 20 g, 바람직하게는 약 5 내지 12 g이다. 상기 외에 본 발명의 저분자 수용성 β-키토산 또는 이의 유도체를 유효성 분으로 함유하는 건강기능성 식품 조성물은 여러 가지 영양제, 비타민, 광물 (전해 질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 증진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, ρΗ 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 둥을 함유할 수 있다. 그 밖에 본 발명의 건강기능성 식품 조성물은 천연 과일쥬스 및 과일쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.
이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 저분자 수용성 β-키토산 또는 이의 유 도체를 유효성분으로 함유하는 항균용 조성물 100 중량부 당 0.1 내지 약 20 중량 부의 범위에서 선택되는 것이 일반적이다.
【발명의 실시를 위한 형태】
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 실시예 및 실험예에 의해 한정되는 것은 아니다.
<실시예 1>천연물로부터의 저분자 수용성 아민 β-키토산의 제조 1
젖산을 용매로 하여 각각 5 % 키토산 용액을 제조한다. 상기 100 ml의 5 % 키토산 용액 (pH 5.0 내지 5.5)에 5 유니트 (unit)의 바실러스 푸밀러스 (fec////^ puniilus) BN-262에서 유래된 키토사네이즈 (chitosanase) 효소를 흔합하여 40°C에서 36시간 동안 반웅시켰다. 반웅종료 후, 1 / 프리필터 (prefilter)를 사용하여 예비 여과한 후, 분자량 20,000인 중공사 여과지 (hollow filter)로 재여과하였다. 상기 단계에서 얻은 여과액은 나노 여과 시스템 (n no filter system)을 이용하여 농축되 고, 살균과정을 거쳐 공기 분무 건조기 (spray dryer)로 건조됨으로써 키토산 다당 류이 제조되었다. 상기에서 얻어진 키토산 다당류을 1 의 PBS 7.0에 용해한 후 0.52 £의 트라이에틸 아민을 천천히 떨어뜨렸다. 이때, 키토산 다당류의 아민기 1 당량에 대해 트라이에틸 아민 2 당량으로 반웅시킨다. 상기의 반응물은 상온에서 2 시간 정도 반응시킨 후, 아세톤을 첨가하여 교반하고 원심분리하였다. 상기 과정을 2 내지 3 회 반복한 후 공기 건조 및 동결 건조하였다. 이때, 원심분리는 Supra 30 K를 이용하여 15,000 rpm으로 4°C에서 20 분 동안 실시하였다. 상기 과정에서 얻어 진 생성물에 30-50 ml의 0.001 N HC1을 첨가한 후 2 시간 정도 반웅시키고, 상기 반응물에 아세톤을 첨가하여 교반하고 상기 동일한 조건으로 원심분리하였다. 이 과정을 2 내지 3 회 반복 후 공기 건조 및 동결 건조시켰다. 상기에서 건조된 생성 물을 2차 증류수에 녹인 후, 활성화된 탄소 /이온교환 수지 컬럼으로 정제하고 얻어 진 수용액을 동결 건조하여 백색의 5000 달톤의 저분자 수용성 아민 β-키토산을 얻었다. <실시예 > 천연물로부터의 저분자 수용성 아민 β-키토산의 제조 2 상기 실시예 1에서 5000 달톤의 저분자 수용성 아민 βᅳ키토산을 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 10000 달톤의 저분자 수용성 아민 β-키토산을 얻었다.
,
<비교예 1> 천연물로부터의 저분자 수용성 아민 β-키토산의 제조 3 상기 실시예 1에서 50000 달톤의 저분자 수용성 아민 β-키토산올 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 1000 달톤의 저분자 수 용성 아민 β-키토산을 얻었다.
<비교예 2> 천연물로부터의 수용성 아민 β-키토산의 제조 1
상기 실시예 1에서 15000 달톤의 수용성 아민 βᅳ키토산을 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 ;수행하여 15000 달톤의 저분자 수용성 아민 β-키토산을 얻었다.
<비교예 3> 천연물로부터의 수용성 아민 β-키토산의 제조 2
상기 실시예 1에서 20000 달톤의 수용성 아민 β-키토산을 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 20000 달톤의 저분자 수용성 아민 · β—키토산을 얻었다.
<비교예 4> 천연물로부터의 저분자 수용성 아민 α—키토산의 제조 1 상기 실시예 1에서 1000 달톤의 저분자 수용성 아민 αᅳ키토산을 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 1000 달톤의 저분자 수 용성 아민 α-키토산을 얻었다.
<비교예 5>천연물로부터의 저분자 수용성 아민 α-키토산의 제조 2 상기 실시예 1에서 5000 달톤의 저분자 수용성 아민 α—키토산을 정제하는 것올 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 5000 달톤의 저분자 수 용성 아민 α-키토산을 얻었다. <비교예 6> 천연물로부터의 저분자 수용성 아민 α-키토산의 제조 3
상기 실시예 1에서 10000 달톤의 저분자 수용성 아민 α—키토산을 정제하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여 10000 달톤의 저분자 수용성 아민 aᅳ키토산을 얻었다.
<실험예 1>저분자수용성 아민 β-키토산의 항균활성 및 약물내성 평가 1 본 발명에 따른 저분자 수용성 아민 β-키토산의 병원성 세균에 대한 항균 활성 및 약물내성을 평가하기 위하여 하기와 같은 실험을 수행하였다. 상기 실시예 1 내지 실시예 2, 및 비교예 1 내지 비교예 6에서 제조된 저분 자 수용성 키토산의 생육 최소저해농도 (MIC) 값을 측정하였다.
우선, 항균 활성 측정을 위하여 그람 양성균인 리스테리아 모노사이토제네 즈 ^Listeria monocytogenes, ATCC 19115), 스태필로코커스 아우레우스 {Staphylococcus aureus, ATCC 25923), 바실러스 서브틸리스 subtil is, TCT 1918), 스트렙토코커스 에피더미디스 (? epidermidis, KCTC 3096) 및 그람 음성균인 멕^ 균 Escherichia coli, ATCC 25922), 대장균 0- 1^7 {Escherichia coli 0-157, ATCC 43895), 비브리오 블리피커스 ( / r/o vulnificus, ATCC 29307) , 슈도모나스 에루기노사 (/¾«/ ¾7Λ?Λ35 aeruginosa, KCTC 1637) 및 살모넬라 티피뮤리움 typhimurium, KCTC 1926)을 생명공학연 구소 유전자은행으로부터 분양받아 각 균주를 LB 배지 (10 g/L의 박토 트립톤, 5 g/L의 이스트 추출물, 10 g/L의 염화나트륨, pH 7.0)에서 중간 -로그 상 (mid-log phase, 0D600= 0.2-0.5)까지 배양한 다음, 10 (v/v) 성장 배지가 포함된 10 mM 소듐 포스페이트 (SP) 완충용액 (pH 5.4 또는 7.4)에 5X105 세포 (CFU)/1 mL의 균체 농도 로 희석하여 마이크로 타이트레이트 플레이트 (Nunc)에 접종하였다. 본 발명에 따른 상기 실시예 및 비교예에서 제조된 저분자 수용성 아민 키토산들을 각각 5000, 2500, 1250, 625, 312.5, 156.3, 78.1, 39.1, 19.5, 9.5 및 4.9 yg/mL의 농도로 회석하여 플레이트에 첨가한 후 37°C에서 18시간 동안 배양하였고, 620 ran의 파장 에서 마이크로 타이트레이트 플레이트 판독기 (Merck Elisa reader)로 흡광도를 측 정하여 각 균주의 MIC 값을 결정하였으며, 그 결과를 하기 표 1 내지 표 3에 나타 내었다 .
【표 1】
Figure imgf000018_0001
【표 2】
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000020_0001
상기 표 1에 나타난 바와 같이 , 본 발명에 따른 저분자 수용성 아민 β-키 토산은 pH에 상관없이 병원성 세균에 대하여 우수한 항균효과가 있는 것이 확인되 었다. 보다 구체적으로, 본 발명에 따른 저분자 수용성 아민 β-키토산 대부분이 pH 5.4 및 7.4에서 9 ug/mL의 MIC 값을 나타냈다. 반면, 저분자 수용성 아민 α- 키토산은 pH가 5.4이고 분자량이 큰 경우에만 MIC 값이 낮게 나타났다. 이로부터, 본 발명에 따른 저분자 수용성 아민 -키토산은 pH에 영향을 받지 않으며, 저분자 수용성 아민 α-키토산에 비하여 병원성 세균에 대한 우수한 항균효과가 있는 것을 알 수 있다. 또한, 표 2 및 표 3에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 아 민 β-키토산은 약물내성을 갖는 병원성 세균인 그람음성 세균인 슈도모나스 에루 7入노人 KPseuclomonas aeruginosa) 및 그람양성 세균인 스태필로코커스 아우레우스 {Staphylococcus a e/s)에 대한 항균 활성이 우수한 것으로 확인되었다. 보다 구 체적으로, 본 발명에 따른 저분자 수용성 아민 β—키토산은 pH에 상관없이 항균 활 성이 우수하며, 특히 약물내성을 갖는 슈도모나스 에루기노사 (/¾e »iMas aeruginosa)^ 경우 실시예 1 및 실시예 2의 저분자 수용성 아민 β-키토산은 pH에 영향올 받지 않고 높은 항균활성을 갖는 것으로 확인되었다. 또한, 스태필로코커스 아우레우스 (53¾¾rA?coa s 에 대한 항균활성은 pH가 중성인 경우에 우수한 것으로 확인되었다. 반면, 저분자 수용성 아민 αᅳ키토산의 경우, 슈도모나스 에루 7入노人\ Ps eubiwnas aeruginosa) 및 스태필로코커스 아우레우스 ^a Ay/occicras a ei/s)에 대한 항균 활성은 10, 000 달톤의 큰 분자량을 갖는 α_키토산에 한하여 β-키토산과 유사하게 나타났으며, 분자량이 낮아질수록 항균 효과가 현저히 감소 하는 것으로 확인되었다.
이로부터, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 저분자 수용성 아민 α-키토산에 비하여 약물내성을 갖는 병원성 세균에 대하여 항균 활성이 우수 한 것을 알 수 있다. 따라서, 본 발명에 따른 저분자 수용성 βᅳ키토산 또는 이의 유도체는 저분 자 수용성 α-키토산과 대비하여 약물내성을 갖는 병원성 세균에 대한 항균 활성이 우수하므로, 이를 유효성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소 독제, 세제, 탈취제, 건강기능성 식품 등 항균 효과가 요구되는 다양한 분야에 사 용되는 항균용 조성물로 유용하게 사용될 수 있다.
<실험예 2>저분자수용성 아민 β-키토산의 항균활성 평가 2
본 발명에 따른 저분자 수용성 아민 βᅳ키토산의 병원성 세균에 대한 항균 활성을 평가하기 위하여 하기와 같은 실험을 수행하였다. 본 발명에 따른 저분자 수용성 아민 β-키토산의 세균사멸 동력학은 대장균
0-157(E. col/ 0-157、^ 이용하여 측정하였다. 로그ᅳ상 세균 (2X106 CFR/mL) 및 10α%(ν/ν) 성장 배지를 포함하는 SP 완충용액 (ρΗ 5.4또는 7.4)에 실시예 2 및 비 교예 6에서 제조된 분자량 10000 달톤의 키토산을 IX 생육 최소저해농도 (MIC) 및 2Χ 생육 최소저해농도 (MIC)로 각각 처리하여 0, 2, 4, 6, 8, 10, 20, 30, 40, 60, 및 120분이 경과된 후에 고체상 생장배지에 도말하고, 37°C에서 16시간 동안 배양 하면서 콜로리 형성 단위를 측정하였다. 이때, 부분 표본은 고정된 시간 간격, 용 해된 정도, 한천 플레이트에 고정된 정도 등은 고려하지 않았다. 상기의 결과를 도 1에 나타내었다. 도 1에 나타난 바와 같이 , 본 발명에 따른 저분자 수용성 아민 β-키토산은 병원성 세균에 대한 세균사멸 동력학이 우수한 것을 알 수 있다. 보다 구체적으로, 본 발명에 따른 저분자 수용성 아민 β-키토산은 IX 생육 최소저해농도 (MIC)로 배 양돤대장균으 1570?.«?// 에 처리하였을 경우, 처리 후 약 5분 이내로 세균 을 50% 사멸시키는 것을 알 수 있으며, 2Χ 생육 최소저해농도 (MIC)로 배양된 대장 균 0- E.coli ^ 57)에 처리하였을 경우에는 처리 후 약 1시간이 경과되면 세균 을 모두 사멸시키는 것을 알 수 있다. 한편 비교예 6에서 제조된 저분자 수용성 아민 α-키토산은 본 발명에 따른 실시예 2에서 제조된 저분자 수용성 아민 βᅳ키 토산과 동일하게 세균을 모두 사멸시키는 것으로 확인되었으며, 세균의 세포막에 작용하여 사멸을 초래하는 효과를 가지나 그 작용기작은 본 발명에 따른 저분자 수 용성 아민 ᅳ키토산과 상이함을 알 수 있다.
이로부터, 본 발명에 따른 저분자 수용성 아민 β-키토산은 병원성 세균에 대하여 처리경과시간 대비 세균을 사멸시키는 세균사멸 동력학이 우수한 것을 알 수 있다. 따라서, 본 발명에 따른 저분자 수용성 β-키토산 또는 이의 유도체는 병원 성 세균에 대한 우수한 세포사멸 동력학을 나타내며, 항균 활성이 우수하므로, 이 를 유효성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제, 탈 취거ᅵ , 건강기능성 식품 등 항균 효과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다.
<실험예 3>저분자수용성 아민 βᅳ키토산의 세포독성 평가
본 발명에 따른 저분자 수용성 아민 β-키토산의 세포독성을 평가하기 위하 여 인간 적혈구 세포 (hRBC)의 용혈작용 분석을 하기와 같은 방법으로 수행하였다. 건강한 기증자로부터 제공되어 항응고제인 헤파린을 사용한 인간 적혈구 세 포 (hRBC)를 사용하여 용혈작용을 시험하였다. 건강한 인간 적혈구 세포 (hRBC)를 인 산 완충용액 (PBS)으로 10분 동안 원심분리하여 (800 rpm) 행궈준 후, 다시 현탁시켰 다. 인산 완층용액 (PBS)에 현탁된 실시예 1 내지 실시예 2, 비교예 1 및 비교예 4 내지 비교예 6에서 제조된 키토산에 인산 완충용액 (PBS)에 인간 적혈구 세포 (hRBC) 가 용해된 표준용액 100 를 첨가하였다. 이때, 인간 적혈구 세포 (hRBC)가 용해 된 표준용액이 첨가된 시료의 키토산 농도는 5, 10, 15 및 20 mg/niL이고, 인간 적 혈구 세포 (hRBC) 농도는 > v/v가 되도록 조절하였다. 각 시료를 37°C에서 1시간 동안 배양한후, 10분 동안 원심분리 (800 rpm)하였다. 원심분리된 상등액을 414 nm 에서 흡광도를 측정하였으며, 각각의 1% 트라이톤 X-100이 첨가된 인산완층 용액 (PBS)에 현탁된 인간 적혈구 세포 (hRBC)에 키토산을 처리하지 않은 무처리군 및 100% 용혈된 시료군에 대해서도 함께 흡광도를 측정하여 인간 적혈구 세포 (hRBC)가 용혈되어 세포막이 붕괴된 정도 및 세포막이 유지되어 적혈구가 보존된 정도를 확 인하였다. 모든 시료는 3회 반복실험을 수행하여 흡광도를 측정하였으며, 그 결과 를 도 2의 A에 나타내었다.
또한, 정상세포주인 HEK293(인간 태아 신장세포)을 이용하여 세포독성을 측 정하였다. 보다 구체적으로, 10% FBSCFetal Bovine Serum)가 함유된 DMEM 배지에서 배양된 사람의 태아 신장세포 (HEK293)를 각 3X103 cells/mL으로 96 웰 플레이트에 분주하고 24시간 배양하였다. 그 후, 실시예 1 내지 실시예 2 및 비교예 1 내지 비 교예 6을 각각 농도별로 처리하여 24시간 동안 5% C02 인큐베이터에서 반웅시켰다. 반웅이 완료되면 5 mg/ml 농도로 인산 완층액 생리식염수 (phosphate buffered saline;PBS)에 녹인 MTT(Thiazolyl Blue Tetrazol ium Bromide) 용액 (20 ul)을 각 웰에 투입.하고 4시간 동안 반웅시킨 다음, μ층액을 제거하였다. 상층액이 제거된 잔류물에 200 ul의 다이메틸설폭사이드 (DMS0)를 주입하고, 형성된 MTT 크리스탈을 녹여 560 nm에서 결과를 확인하였다. 그 결과를 도 2의 B에 나타내었다. 도 2에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 아민 —키토산은 인간 적혈구 세포 (hRBC)와 태아 신장세포에 대하여 독성을 나타내지 않는 것으로 나타났다. 보다 구체적으로 도 2의 A에서 5000 달톤 내지 10000 달톤의 분자량을 갖는 실시예 1 및 실시예 2의 저분자 수용성 아민 βᅳ키토산은 인간 적혈구 세포 (hRBC)의 용혈작용을 발생시키지 않아 용해된 적혈구 세포 (hRBC)의 용혈률이 약 5% 미만인 것으로 확인된 반면, 분자량이 10000 달톤을 초과하는 비교예 2 및 비교예 3의 저분자 수용성 아민 β-키토산은 20 mg/ml 농도로 처리할 경우 각각 20% 및 40%의 용혈를을 나타내는 것으로 확인되었다. 또한, 도 2의 B에서 5000 달톤 내지 10000 달톤의 분자량을 갖는 실시예 1 및 실시예 2의 저분자 수용성 아민 β-키토 산이 처리된 인간 태아신장세포 (ΗΕΚ293)의 경우, 약 97% 이상의 높은 세포 생존율 을 나타낸 반면, 분자량이 10000 달톤을 초과하는 비교예 2 및 비교예 3의 저분자 수용성 아민 -키토산은 10 mg/ml 농도로 처리할 경우 각각 72% 및 50%의 세포 생 존율을 나타내는 것으로 확인되었다. 아울러, 저분자 수용성 아민 α-키토산의 경 우, 인간 적혈구 세포 (hRBC)에 대한 용혈현상은 관찰되지 않았으나, 인간 태아 신 장세포 (HEK293)의 경우, 분자량 및 처리 농도가 높아짐에 따라 세포 생존율이 약 90%까지 감소하는 것으로 나타났다.
이로부터, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 저분자 수용성 아민 α-키토산과 대비하여 인간 태아 신장세포에 대한 세포 독성이 현저히 낮아 세포 생존율이 높은 것을 알 수 있으며, 저분자 수용성 아민 β-키토산의 분자량이 10000 달톤올 초과하는 경우에는 세포독성이 현저히 증가하는 반면 5000 달톤 내지 10000 달톤의 분자량을 갖는 저분자 수용성 아민 β-키토산은 세포독성이 없어 동 물 생체 또는 인체에 부작용 유발 가능성이 낮으므로 안전한 것을 알 수 있다. 따라서, 본 발명에 따른 저분자 수용^ β-키토산 또는 이와 유도체는 일반 병원성 세균 및 약물내성을 갖는 병원성 세균에 대한 항균활성이 현저히 우수할 뿐 만 아니라, 인체 내 혈액에 존재하는 인간 적혈구 세포 (hRBC)에 대한 용혈작용을 발생시키지 않고, 저분자 수용성 α-키토산과 대비하여 인간 정상세포 (ΗΕΚ293)에 대한 독성을 나타내지 않아 인체에 안전하므로.이를 유효성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제, 탈취제, 건강기능성 식품 등 항균 효 과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다. <실험예 4> 저분자수용성 아민 β-키토산의 세포막 투과도 평가
본 발명에 따른 저분자 수용성 아민 β—키토산의 세포막 투과도를 평가하기 위하여 하기와 같은 실험을 수행하였다. 먼저, 인공 리포좀 (Artificial liposome)을 박테리아의 막 지질 성분인 PE/PG=7/3, w/w)으로 제작하여 각각 실시예 1와 비교예 5에서 제조된 키토산을 pH 7.4와 5.4에서 처리하여 활성 정도 농도별로 탐색하였다. 지질 (Lipid, PE/PG)이 용 해된 클로로포름 용액 (0.1 ml)을 10 ml 바이엘 (vial)에 주입하고, 질소 가스 분출 (N2 gas blowing)로 클로로포름을 2시간 이상 제거하였다. 유리 벽면에 코팅된 지 질 필름에 70 mM 칼세인 (calcein)이 함유된 HEPES 완층용액 (각 pH 5.4, 7.4)을 1 ml을 주입하고 세게 진탕한 후, 팁 타입 소니케이터 (Tip type sonicator)를 이용하 여 10초 간격으로 20회 소니케이션 (sonication)을 수행하였다. 칼세인이 결합된 리 포좀는 유리 칼세인으로부터 세파텍스 G—컬럼 (Sephadex G-50 column)을 이용하여 겔 여과 크로마토그래피로 정제하였다. LUVs는 아밴티 미니—압출기 (Avanti Mini- Extruder, Avant i Polar Lipids Inc. Alabaster, AL)의 0.2 m 포어 크기를 갖는 폴 리카보네이트 여과기를 통하여 압출하였다. 그 후, 20 M의 지질함량을 가지는 칼세 인을 함유한 LUVs 현탁액을 pH 5.4 또는 pH 7.4의 10 mM HEPES에 용해된 실시예 1 및 비교예 5의 키토산을 다양한 농도로 처리하고 배양하였다. 그 후, 칼세인이 방 출하는 형광을 여기 파장은 480 nm에서, :방출 파장은 520 nm에서 형광분광기 (Perkin-Elmer LS55)에서 측정하였다. 염료 방출 완결의 조절은 트라이톤 액스— 100(Triton Xᅳ 100)으로 결정하였다. 100% 염료 방출은 트라이톤 액스 -100(Triton X-100)를 최종 농도의 0.1%가 되도록 첨가하여 완료되었다. 모든 실험은 25°C에서 수행되었으며, 상기 방출를은 하기의 식 1에 따라 계산하였다. 그 결과를 도 3에 나타내었다.
【수학식 1】
Figure imgf000025_0001
F: 무처리 형광강도;
F0: 키토산 처리 후 형광강도;
Ft: 리포좀의 형광강도. 도 3에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 β-키토산은 세균 의 인공 세포막인 인공 리포좀에 대하여 높은 파괴력을 나타내는 것으로 확인되었 다. 보다'구체적으로 본 발명에 따른 5000 달톤의 저분자 수용성 β-키토산은 pH 5.4 및 pH 7.4 모두에서 높은 형광강도를 나타내어, 칼세인이 결합되어 있는 인공 리포좀에 대하여 높은 투과성을 갖는 것을 확인할 수 있다. 반면, 저분자 수용성 α-키토산은 pH 7.4인 경우, 형광강도가 증가되는 정도가 미미한 것으로 나타났으 며, pH 5.4인 경우에도 형광강도가 증가되는 것으로 나타났으나 그 정도는 저분자 수용성 β-키토산을 사용하였을 경우에 비하여 약 20% 낮은 형광증가를 보이는 것 으로 나타났다.
이로부터, 본 발명에 따른 저분자 수용성 βᅳ키토산은 세포막에 대한 파괴 력이 우수한 것을 알 수 있으며, 이는 상기 실험예 2의 결과와 일치하는 것을 알 수 있다. 또한, 저분자 수용성 ci-키토산에 비하여 세포막의 파괴력이 현저히 우수 한 것을 알 수 있다.
<실험예 5> 저분자수용성 아민 β-키토산의 세포막 형태 변화 평가 본 발명에 따른 저분자 수용성 아민 β-키토산의 세포막 형태 변화를 관찰 하기 위하여 하기와 같은 실험을 수행하였다. 먼저, 대장균 ( 을 1 ml당 108개로 준비하고 Na-포스페이트 버퍼 (Na- phosphate buffer: pH 7.4)에 이를 현탁시켰다. 그 후 실시예 2에서 제조된 키토산 을 생육 최소저해농도 (MIC)로 처리하고 1시간 반웅시킨 후 2% 글루타르알데히드 ( glut ar aldehyde)를 이용하여 세포를 고정하였다. 그 후, 10, 30, 50, 70 및 100% 에탄올을 순차적으로 처리하고 역순으로 탈수 과정을 수행한다. 탈수된 세균을 임 계점 건조를 거친 다음, 골드 (gold)로 코팅하고 주사전자현미경 (HITHACHI S-2400, Japan)을 사용하여 120 kV에서 세균의 형태를 관찰하였다. 이때, 키토산이 처리되 지 않은 대장균 ( co//)도 주사전자현미경 관찰을 하였으며, 그 결과를 도 4에 나 타내었다. 도 4에 나타낸 바와 같이 , 본 발명에;따른 저분자 수용성 아민 βᅳ키토산은 세균의 세포막을 변형시키는 것을 알 수 있다. 보다 구체적으로 본 발명에 따른 실 시예 2에서 제조된 10,000 달톤의 저분자 수용성 아민 β-키토산을 처리한 대장균 E.coli)^ 경우, 대장균 ( co//)의 세포막이 붕괴되어 있는 것을 알 수 있다. 반 면, 키토산이 처리되지 않은 대장균 ?. 은 세포막의 변형이 일어나지 않은 것 을 알 수 있다.
이로부터, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 세균의 세포막 을 변형시키는 효과가 우수하며, 이로 인하여 세균의 사멸을 초래하는 것을 알 수 있다. 따라서, 본 발명에 따른 저분자 수용성 βᅳ키토산 또는 이의 유도체는 세균 의 세포막을 변형시켜 세균을 사멸하는 효과가 우수하므로, 이를 유효성분으로 함 유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제, 탈취제, 건강기능성 식품 등 항균 효과가 요구되는 다양한 분야예 사용되는 항균용 조성물로 유용하게 사용될 수 있다.
<실험예 6> 저분자수용성 아민 β-키토산의 항생물막 평가
본 발명에 따른 저분자 수용성 아민 β-키토산의 항생물막 평가를 하기 위 하여 하기와 같은 실험을 수행하였다. 저분자 수용성 아민 β-키토산의 부유성 세균인 슈도모나스 에루기노사 {Pseudomonas aeruginosa ATCC 27853 및 BMP—PaOOl)에 대한 전형성된 생물막 (preformed biofilm) 파괴활성 측정을 측정하였다. 부유성 세균인 슈도모나스 에루 ^노人 Pseudomonas aeruginosa ATCC 27853 및 BMP-PaOOl)를 37 :에서 배양하였다. 96ᅳ웰 플레이트에 상기 세균 IX 108 CFU/mL을 주입하고, 주입된 배양액을 37°C에서 50 rpm으로 48시간 동안 진탕배양하였다. 그 후백양액을 피펫을 이용하여 제거하 고, 200 LiL의 인산완충용액 (PBS)으로 3 회 세척하였다. 세척 후, 실시예 1 내지 실시예 2.및 비교예 1 내지 비교예 6에서 조된 키토산 (200 μί)을 18 내지 50 mg/mL 농도로 생물막이 전형성된 96ᅳ웰 플레이트에 첨가하였다. 상기 폴레이트를 37°C, 24시간 동안 배양하고, 배양된 배양액을 피펫을 이용하여 제거하고, 인산완 충용액 (PBS)으로 3 회 세척하였다. 세척 후, 생물막을 메탄올로 15분 동안 상온에 서 플레이트에 고정시키고, 메탄을이 모두 제거될 때까지 건조시켰다. 건조된 생물 막을 정량하기 위하여 200 의 0.1%(w/v) 크리스탈 바이을 ¾(Sigraa-Aldrich)을 첨가하고 5 내지 10분 동안 상온에서 염색하였다. 염색 후, 인산완층용액 (PBS)로 남은 크리스탈 바이을 ¾을 제거하기 위하여 3 회 행궜다. 각 웰의 슈도모나스 에루 기노사 0¾«//( «?/7as aeruginosa ATCC 27853 및 BMP-PaOOl) 생물막을 95% 에탄을 및 인산완층용액 (PBS, 200 μί)으로 가용화시키고, 상온에서 30분 동안 배양하였다. 그 후, 전형성된 생물막 (preform biofilm)의 파괴활성을 595 nm에서 microplate veresa max ELISA로 광흡수도를 측정하여 평가하였으며, 그 결과를 도 5 및 도 6에 나타내었다.
. 도 5 및 도 6에 나타낸 바와 같이, 본 발명에 따른 저분자 수용성 아민 β- 키토산은 항생물막 효과가 있는 것으로 확인되었다. 보다 구체적으로 본 발명에 따 른 저분자 수용성 아민 β-키토산은 슈도모나스 에루기노사 (/¾e (¾ /7a5 aeruginosa ATCC 27853 및 BMP-PaOOl) 생물막에 처리였을 경우, 농도 및 분자량 의 존적으로 파괴활성이 있는 것으로 나타났으며, 특히 5000 및 10,000 달톤의 저분자 수용성 아민 βᅳ키토산은 3.12 nig/mL에서 50% 이상의 전형성된 생물막 (preformed biofilm) 파괴활성이 있는 것으로 나타났다. 반면, 저분자 수용성 α-키토산은 슈 도모나스 에루기노사 0¾e ¾ as aeruginosa) 세균 중 BMP-PaOOl 세균에 대해서는 파괴활성이 현저히 떨어지는 것으로 나타나 균주 종류에 따라 전형성된 생물막 (preformed biofilm) 파괴활성이 감소하는 것으로 나타났다.
이로부터, 본 발명에 따른 저분자 수용성 아민 β-키토산은 농도 및 분자량 의존적으로 전형성된 생물막 (preformed biofilm) 파괴활성이 있는 것으로 알 수 있 으며, 균주 종류에 상관없이 전형성된 생물막 (preformed biofilm) 파괴활성이 우수 한 것을 알 수 있다. 따라서, 본 발명에 따른 저분자 수용성 아민 β-키토산 또는 이의 유도체는 균주 종류에 상관없이 전형성된 생물막 (preformed biofilm) 파괴활성이 우수하여 생물막 형성을 억제하는 효과가 우수하므로, 이를 유효성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제, 탈취제, 건강기능성 식품 등 항균 효 과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다. <실험예 7> 저분자 수용성 아민 β-키토산의 생체 내 (/ vivo) 항균효과 평 가
본 발명에 따른 저분자 수용성 아민 β-키토산의 생체 내 ( Vivo) 항균효 과를 평가하기 위하여 하기와 같은 실험을 수행하였다.
.
약물내성 스태필로코커스 아우레우스 (5 ¾¾. A?COCC"S aureus)^ 대한 항균 효과
누드 마우스의 등 표피에 약물내성인 스태필로코커스 아우레우스 {Staphylococcus aureus, CCARM 3087 , 5X108 세포 /mL)를 접종하고, 1시간 후 본 발명에 따른 실시예 2의 저분자 수용성 아민 βᅳ키토산을 0.5 mg/mL 및 1.0 mg/mL 의 농도로 접종하였다. 7일 후, 접종된 누드 마우스의 피부를 채취하고, 인산완충 용액 (PBS)로 세척하였다. 세척된 누드 마우스의 피부 조직을 4% 파라포름알데하이 드 (paraformaldehyde)에 옮겨 24시간 동안 처리하고, 2시간 동안 50% 내지 100% 에 탄을을 3회 탈수하였다. 그 후, 1시간 동안 자일렌으로 치환하고, 4 μηι로 절단된 시료에 파라핀 처리되었다 (Microtome, Thermo-scient i f ic) . 각각의 시료는 30분 동 안 상온에서 일차 항체 항 -TNFᅳ α , 항— IL-Ιβ를 포함하는 소혈청알부민 (bovine serum albumin, BSA)에 배양하였다. 상기 시료는 TBST 완충용액으로 세척한 다음, FITC—라벨 2차 항체 처리하였으며 해마특시린 및 에오신 염색 (haematoxylin & eosin staining)도 동시에 실시하여 형광분석기 (1X71, Olympus, Tokyo, Japan)로 측정하였다. 이때, 대조군으로 키토산을 처리하지 않은 세균에 대해서도 측정하였 으며, 그 결과를 도 7에 나타내었다. 도 7에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 생체 내 w>o)에서 우수한 항균 효과가 있는 것이 확인되었다. 보다 구체적으로 병원성 세균인 스태필로코커스 아우레우스 (5 <¾ρΛτΛ? aureus, CCARM 3087)가 감염된 누드 마우스의 피부 조직에 존재하는 선-염증성 사이토카인 (항ᅳ TNF-α 및 항 -IL-Ιβ)을 관찰해보면, 키토산이 처리되지 않은 마우스의 경우 선-염증성 사이 토카인 (TNFᅳ a 및 ILᅳ 1β)이 과량 분비되어 강한 형광을 발광하는 것을 확인할 수 있다. 또한, 해마특시린 및 에오신 염색 (haematoxylin & eosin staining)을 통하여 병원성 세균에 감염된 표피 두께가 두꺼워지는 것을 확인할 수 있는데 여기에 본 발명에 따른 저분자 수용성 아민 β-키토산 추가적으로 투여하면 다시 표피 두께 가 정상 두께로 회복되는 것을 알 수 있다. 나아가, 본 발명의 저분자 수용성 아민 β-키토산에 의하여 누드 마우스의 피부 염증이 완화되는 것을 육안으로도 확인할 수 있다.
이로부터 , 본 발명에 따른 저분자 수용성 아민 β-키토산은 생체 내 (//? y/ra)에서도 항균효과가 우수한 것을 알 수 있다. 약물내성 슈도모나스 에루기노사 0¾e og£was aer¾g 'josa)에 대한 항균효과 ICR 마우스의 등 표피에 약물내성인 슈도모나스 에루기노사 (/¾ /ο¾%¾½·5 aeruginosa BMP-PaOOl, l iO8 세포 AnL)를 접종하고, 실시예 1의 저분자 수용성 아 민 β-키토산을 10 nig/mL, 20 mg/mL 및 40 mg/mL의 농도로 접종하였다. 그 후, 7일 동안 접종된 마우스를 관찰하였으며, 관찰이 끝나면 마우스의 폐를 축출하여 균질 화하였다. 균질화물은 NB + 0.5% 소듐클로라이드 아가 (agar) 플레이트에 주입하여 균질화물의 세균 콜로니 형성 정도를 평가하였다. 그 결과를 도 8에 나타내었다. 도' 8에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 아민 β—키토산은 생체 내 (/? w>o)에서 우수한 항균 효과가 있는 것으로 확인되었다. 보다 구체적으 로 슈도모나스 에루기노사 (/¾«/o¾?o/?as aeruginosa BMP-PaOOl)가 접종되었던 ICR 마우스의 폐 조직 세포를 균질화한 균질화물은 본 발명의 저분자 수용성 아민 β- 키토산을 처리한 경우 세균 콜로니 형성이 억제되어 그 양이 현저히 감소된 것을 알 수 있다.
이로부터, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 생체 내 (/ w>o)에서도 항균효과가 우수한 것을 알 수 있다. 비약물내성 스태필로코커스 아우레우스 (5^ΡΛ Λ? coca/s /re^?)에 대한 항 균효과
ICR 마우스의 등 표피에 약물내성인 스태필로코커스 아우레우스 {Staphylococcus aureus, ATCC 25923, 5X108 세포 /mL)를 접종하고, 4시간 후 본 발명에 따른 실시예 2의 저분자 수용성 아민 J3-키토산을 0.3 mg/mL 및 0.6 mg/mL 농도로 접종하였다. 10일 후, 접종된 ICR 마우스의 피부를 축출하고 인산완충용액 (PBS)로 세척하였다. 세척된 누드 마우스의 피부 조직을 4% 파라포름알데하이드 (paraformaldehyde)에 옮겨 24시간 동안 처리하고, 2시간 동안 50% 내지 100% 에탄 올을 3회 탈수하였다. 그 후, 해마록시린 및 에오신 염색 (haematoxylin & eosin staining)하여 형광분석기 (1X71, Olyinpus, Tokyo, Japan)로 측정하였다. 이때, 대 조군으로 키토산을 처리하지 않은 세균에 대해서도 측정하였으며, 그 결과를 도 9 에 나타내었다. 도 9에 나타난 바와 같이, 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 생체 내 ra)에서 우수한 항균 효과가 는 것으로 확인되었다. 보다 구체적으 로' 스태필로코커스 아우레우스 (Sia AK/ococa/s aureus)7} 접종된 ICR 마우스의 피 부 조직 세포에 본 발명의 저분자 수용성 아민 βᅳ키토산을 0.3 mg/mL 및 0.6 mg/mL의 농도로 처리된 경우 스태필로코커스 아우레우스 y/ococc/s aureus) 가 접종되지 않은 무처리군에 가까운 피부 조직 세포가 확인되는 것을 알 수 있다. 이로부터 , 본 발명에 따른 저분자 수용성 아민 βᅳ키토산은 생체 내 ( /7 WVO)에서도 항균 활성이 우수한 것을 알 수 있다. 따라서 , 본 발명에 따른 저분자 수용성 βᅳ키토산 또는 이의 유도체는 생체 내 (/ 에서도 항균 활성이 우수하므로, 이를 유효성분으로 함유하는 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제, 탈취거ᅵ, 건강기능성 식품 등 항균 효 과가 요구되는 다양한 분야에 사용되는 항균용 조성물로 유용하게 사용될 수 있다. 한편, 본 발명의 화합물들은 목적에 따라 여러 형태로 건강기능성 식품의 제조가 가능하다. 하기에 본 발명의 조성물을 위한 건강기능성 식품의 제조예를 예 시한다 .
<제조예 1>유제품 (dairy products)의 제조
본 발명의 항균용 조성물 0.01 ᅳ 1 중량부를 우유에 첨가하고, 상기 우유를 이용하여 버터 및 아이스크림과 같은 다양한 유제품을 제조하였다.
<제조예 2> 선식의 제조
현미, 보리, 찹쌀, 율무를 공지의 방법으로 알파화시켜 건조시킨 것을 배전 한 후 분쇄기로 입도 60 메쉬의 분말로 제조하였다. 검정콩, 검정깨, 들깨도 공지 의 방법으로 찌서 건조시킨 것을 배전한 후 분쇄기로 입도 60 메쉬의 분말로 제조 하였다. 본 발명의 항균용 조성물을 진공 농축기에서 감압농축하고 건조분말을 얻 었다.
상기에서 제조한 곡물류, 종실류 및 항균용 조성물의 건조분말을 다음의 비 율로 배합하여 제조하였다. 곡물류 (현미 34 중량부, 율무 19 중량부, 보리 20 중량부),
종실류 (들깨 7 중량부, 검정콩 8 중량부, 검정깨 7 중량부),
항균용 조성물 (2 중량부),
영지 (1.5 중량부), 및
지황 (1.5 중량부).
<제조예 3> 건강기능성 식품의 제조
항균용 조성물 100 mg
비타민 흔합물 적량
비타민 A 아세테이트 70 ng
비타민 E 1.0 mg
비타민 B1 0.13 mg
비타민 B2 0.15 mg
비타민 B6 0.5 mg
비타민 B12 0.2 g
비타민 C 10 mg
비오틴 10 ng
니코틴산아미드 1.7 mg 엽산 50 μ§ 판토텐산 칼슴 0.5 mg
무기질 흔합물 -i o
황산제 1철 1.75 mg
산화아연 0.82 mg
탄산마그네슘 25.3 mg
제 1인산칼륨 15 mg
제 2인산칼슘 55 mg
구연산칼륨 90 mg
탄산칼슘 100 mg
염화마그네슘 24.8 mg 상기의 비타민 및 미네랄 흔합물의 조성비는 비교적 건강기능성 식품에 적 합한 성분을 바람직한 실시예로 흔합 조성하였지만, 그 배합비를 임의로 변형 실시 하여도 무방하며, 통상의 건강기능성 식품 제조방법에 따라 상기의 성분을 흔합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강기능성 식품 조성물 제조에 사용 할 수 있다.
<제조예 4> 건강기능 음료의 제조
항균용 조성물 100 mg 구연산 100 mg 을리고당 100 mg 매실농축액 2 mg 타우린 100 mg 정제수를 가하여 전체 500 mL 통상의 건강음료 제조방법에 따라 상기의 성분을 흔합한 다음, 약 1시간 등 안 85°C에서 교반 가열한 후, 만들어진 용액을 여과하여 멸균된 1 용기에 취득하여 밀봉 멸균한 뒤 넁장 보관한 다음 본 발명의 건강음료 조성물 제조에 사용한다. 상기 조성비는 비교적 기호 음료에 적합한 성분을 바람직한 실시예로 흔합 조성하였지만, 수요계층, 수요국가, 사용 용도 등 지역적, 민족적 기호도에 따라서 그 배합비를 임의로 변형 실시하여도 무방하다.

Claims

【청구의 범위】
【청구항 1】
500 내지 20000 달톤의 저분자 수용성 β-키토산 또는 이의 유도체를 유효 성분으로 함유하는 항균용 조성물.
【청구항 2】
거 U항에 있어서,
상기 ᅳ키토산은 5000 내지 10000 달톤인 것을 특징으로 하는 항균용 조성 물
【청구항 3】
제 1항에 있어서,
상기 유도체는 글루코스의 2번 탄소 아미노기 (-ΝΗ2) 또는 6번 탄소 알코을 (-0Η)기가 카복시메틸, 하이드톡시메틸, 하이드록시프로필 또는 하이드록시프로필 에테르로 치환되는 것을 특징으로 하는 항균용 조성물.
【청구항 4】
제 1항에 있어서,
상기 조성물은 리스테리아 모노사이토제네스 a/s / monocytogenes, ATCC 19115), 스태필로코커스 아우레우스 (5 a A (?a?ca/s aureus, ATCC 25923), 바실러 스 서브틸리스 subtil is, KTCT 1918) 및 스트렙토코커스 에피더미디스
{Streptococcus epidermidis, KCTC 3096)으로 이루어진 군으로부터 선택되는 그람 양성균; 또는 {Escherichia coli, ATCC 25922) , 대장균 Q— Escherichia col/으 157, ATCC 43895), 비브리오 블리피커스 ( vulnificus, ATCC 29307) , 슈도모나스 에루기노사 (/¾«ra OTss aeruginosa, KCTC 1637) 및 살모넬라 티피뮤리 ^ Sahwnella typhi murium, KCTC 1926)으로 이루어진 군으로부터 선택되는 그람 음성균에 대하여 항균 효과를 가지는 것을 특징으로 하는 항균용 조성물.
【청구항 5】 제 1항에 있어서,
상기 항균용 조성물은 식품첨가제, 살균제, 소독제, 세제.또는 탈취제 용도 로 사용되는 것을 특징으로 하는 항균용 조성물.
【청구항 6】
제 5항에 있어서,
상기 세제는 주방세제, 세탁세제, 야채 ·과일세척제 및 손 세정제로 이루어 진 군으로부터 선택되는 1종인 것을 특징으로 하는 항균용 조성물.
【청구항 7】
제 1항의 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 세균에 의하여 발병되는 감염성 질환의 예방 또는 개선용 건강기능성 식품 조성물.
PCT/KR2013/003539 2013-04-10 2013-04-24 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물 WO2014168281A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130039380A KR20140123131A (ko) 2013-04-10 2013-04-10 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물
KR10-2013-0039380 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014168281A1 true WO2014168281A1 (ko) 2014-10-16

Family

ID=51689678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003539 WO2014168281A1 (ko) 2013-04-10 2013-04-24 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물

Country Status (2)

Country Link
KR (1) KR20140123131A (ko)
WO (1) WO2014168281A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857013A (zh) * 2015-03-31 2015-08-26 中国科学院海洋研究所 一种抑制新城疫病毒的药物
CN104857012A (zh) * 2015-03-31 2015-08-26 中国科学院海洋研究所 一种抑制新城疫病毒制剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780310A (en) * 1985-11-22 1988-10-25 Wella Aktiengesellschaft Cosmetic compositions based upon N-hydroxypropyl-chitosans, new N-hyroxypropyl-chitosans, as well as processes for the production thereof
KR0164923B1 (ko) * 1995-02-28 1999-01-15 전동원 키토산을 주성분으로 하는 항균제
JP2005220331A (ja) * 2004-02-04 2005-08-18 Makoto Yafuji 低分子キトサンの製造方法
KR20090111304A (ko) * 2009-09-25 2009-10-26 주식회사 키토라이프 저분자 수용성 키토산 또는 이의 유도체를 유효성분으로 함유하는 항생제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780310A (en) * 1985-11-22 1988-10-25 Wella Aktiengesellschaft Cosmetic compositions based upon N-hydroxypropyl-chitosans, new N-hyroxypropyl-chitosans, as well as processes for the production thereof
KR0164923B1 (ko) * 1995-02-28 1999-01-15 전동원 키토산을 주성분으로 하는 항균제
JP2005220331A (ja) * 2004-02-04 2005-08-18 Makoto Yafuji 低分子キトサンの製造方法
KR20090111304A (ko) * 2009-09-25 2009-10-26 주식회사 키토라이프 저분자 수용성 키토산 또는 이의 유도체를 유효성분으로 함유하는 항생제

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, J. L. ET AL.: "Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of beta-chitosan based films", JOURNAL OF FOOD SCIENCE, vol. 77, no. 5, 2012, pages E127 - E136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857013A (zh) * 2015-03-31 2015-08-26 中国科学院海洋研究所 一种抑制新城疫病毒的药物
CN104857012A (zh) * 2015-03-31 2015-08-26 中国科学院海洋研究所 一种抑制新城疫病毒制剂及其应用

Also Published As

Publication number Publication date
KR20140123131A (ko) 2014-10-22

Similar Documents

Publication Publication Date Title
Xu et al. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus
Kim et al. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review
Raafat et al. Chitosan and its antimicrobial potential–a critical literature survey
Savin et al. Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom
RU2370532C2 (ru) Способ ферментации растительного материала и культивирования бактерий, экстракт ферментированного растительного материала, порошок экстракта ферментированного растительного материала и их применение
JP5585769B2 (ja) 腸管免疫賦活能を有する乳酸菌に対する効果促進剤
JP2007204423A (ja) ササ抽出物の製造方法及び該抽出物の利用
Gallo et al. Applications of chitosan as a functional food
El-Sayed et al. A comparative evaluation of antimicrobial activity of chitooligosaccharides with broad spectrum antibiotics on growth of some pathogenic microorganisms
KR101768613B1 (ko) 청각 추출물을 유효성분으로 함유하는 항균 조성물
Omar et al. Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan
CN102405935B (zh) 鱼精蛋白复配制剂及其制备方法和应用
El-Araby et al. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review)
Aldayel The synergistic effect of capsicum aqueous extract (Capsicum annuum) and chitosan against multidrug-resistant bacteria
JP2012520289A (ja) 新規なコプリヌス・コマトゥスおよびトレメッラ・メセンテリカキノコ菌株、それらの生産物および抽出物、ならびにそれらを含む組成物
WO2014168281A1 (ko) 저분자 수용성 β-키토산 또는 이의 유도체를 유효성분으로 함유하는 항균용 조성물
JP2006241023A (ja) 消化管組織における抗菌ペプチドの発現誘導または産生促進剤
JP3523220B2 (ja) 皮膚塗布剤
KR101434741B1 (ko) 페실로마이세스 바리오티 바라이어티 브른네오러스 gpp1101b 균주 및 이를 이용한 제제
JP2017226615A (ja) 抗菌性組成物及びその製造方法
KR20190129528A (ko) 왜주름불가사리 추출물을 유효성분으로 함유하는 항산화 및 항염증용 조성물 및 그 제조 방법
Fouad Chitosan as an antimicrobial compound: modes of action and resistance mechanisms
KR101915304B1 (ko) 아이스플랜트 추출물을 포함하는 식중독균 저해용 항균 조성물
Kazemi et al. Evaluation the effect of royal jelly on the growth of two members of gut microbiota; Bacteroides fragillis and Bacteroides thetaiotaomicron.
KR100517354B1 (ko) 해조류 유래 올리고당, 상기 올리고당의 제조방법 및사용방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881838

Country of ref document: EP

Kind code of ref document: A1