WO2014167983A1 - トルク制御装置 - Google Patents
トルク制御装置 Download PDFInfo
- Publication number
- WO2014167983A1 WO2014167983A1 PCT/JP2014/057924 JP2014057924W WO2014167983A1 WO 2014167983 A1 WO2014167983 A1 WO 2014167983A1 JP 2014057924 W JP2014057924 W JP 2014057924W WO 2014167983 A1 WO2014167983 A1 WO 2014167983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- motorcycle
- control device
- information
- engine
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 230000001133 acceleration Effects 0.000 claims description 35
- 238000010586 diagram Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1701—Braking or traction control means specially adapted for particular types of vehicles
- B60T8/1706—Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/175—Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J27/00—Safety equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/41—Sensor arrangements; Mounting thereof characterised by the type of sensor
- B62J45/413—Rotation sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/41—Sensor arrangements; Mounting thereof characterised by the type of sensor
- B62J45/414—Acceleration sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/41—Sensor arrangements; Mounting thereof characterised by the type of sensor
- B62J45/415—Inclination sensors
- B62J45/4151—Inclination sensors for sensing lateral inclination of the cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/41—Sensor arrangements; Mounting thereof characterised by the type of sensor
- B62J45/415—Inclination sensors
- B62J45/4152—Inclination sensors for sensing longitudinal inclination of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2230/00—Monitoring, detecting special vehicle behaviour; Counteracting thereof
- B60T2230/03—Overturn, rollover
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2240/00—Monitoring, detecting wheel/tire behaviour; counteracting thereof
- B60T2240/06—Wheel load; Wheel lift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2300/00—Indexing codes relating to the type of vehicle
- B60W2300/36—Cycles; Motorcycles; Scooters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
- B60W2510/0652—Speed change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
- B60W2510/0661—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/16—Pitch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/18—Roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
- B60W2520/263—Slip values between front and rear axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
- B60W2540/106—Rate of change
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K2202/00—Motorised scooters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/50—Input parameters for engine control said parameters being related to the vehicle or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/60—Input parameters for engine control said parameters being related to the driver demands or status
- F02D2200/602—Pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
- F02D2250/26—Control of the engine output torque by applying a torque limit
Definitions
- the present invention relates to a torque control device.
- TCS Traction Control System
- the TCS detects the spin-up (idling) of the drive wheel of the vehicle, calculates the engine output (torque) for suppressing the spin-up, and performs control, so that the drive wheel efficiently transmits power to the road surface. It is what you want to do.
- TCS control methods There are various types of TCS control methods, but typically, slip control is known.
- a target drive wheel speed is determined (target speed), and if the actual speed of the drive wheel is higher than the target speed, the engine output (torque) is decreased, and if it is smaller, the engine output (torque) is increased.
- PID Proportional Integral Derivative
- Patent Document 1 discloses a state in which the front wheel of the motorcycle is raised (willy state) based on the detection output of an acceleration sensor provided in the motorcycle, and when the state is determined to be a wheelie state.
- a technique for gradually reducing engine output is disclosed. According to this, it is said that a front wheel can be slowly returned from a wheelie state.
- the conventional technique is to reduce the engine output when it is determined that the motorcycle is in the wheelie state, the motorcycle may become unstable when the motorcycle is in the wheelie state.
- the conventional TCS reduces the engine output when the drive wheel spin-up is detected, there is a possibility that a wheelie state may occur before the engine output is reduced.
- an object of the present invention is to realize a torque control device that can suppress generation of a wheelie of a motorcycle.
- the torque control device of the present invention has been made in view of the above problems, and is based on at least one of engine information of a motorcycle, accelerator operation information of a driver of the motorcycle, and information on a vehicle body or wheels of the motorcycle. Detecting a state where the front wheel of the motorcycle may be lifted, and detecting a state where the front wheel of the motorcycle may be lifted by the detection unit, a torque smaller than the torque required by the driver is applied. An output unit that outputs as a required torque to the engine of the motorcycle or outputs a difference between the driver's required torque and a torque smaller than the driver's required torque as a brake torque. To do.
- the detection unit is configured to determine the actual engine torque of the motorcycle. Whether the rate of change or amount of change is greater than a preset threshold value, or the rate of change or amount of change of the driver's required torque is greater than a preset threshold value, or the engine speed of the motorcycle When the rate of change or the amount of change is greater than a preset threshold, it is possible to detect a state where the front wheels of the motorcycle may be lifted.
- the detection unit when the change rate or change amount of the accelerator opening of the motorcycle is greater than a preset threshold value, It is possible to detect a state in which the front wheel of the motorcycle may be lifted.
- the detection unit detects that an actual acceleration or an estimated acceleration of a vehicle body or a wheel of the motorcycle is greater than a preset threshold value, and the output unit detects the motorcycle by the detection unit. After detecting that there is a possibility that the front wheel may be lifted, if the detection unit detects that the actual acceleration or estimated acceleration of the motorcycle body or wheel of the motorcycle is larger than a preset threshold, The required torque to the engine of the motorcycle can be further reduced or maintained and output.
- the output unit outputs the required torque to the engine of the motorcycle, the brake torque, or both based on bank information, pitch information, clutch information, estimated gear position information, or gear information of the motorcycle. It can be corrected.
- the detection unit has the rate of change or amount of change of the actual engine torque
- the change rate or change amount of the actual engine torque set in advance corresponding to the magnitude of the actual engine torque is greater than the threshold value of the change rate or change amount of the actual engine torque, or the change rate or change amount of the actual engine torque
- the threshold value of the rate of change or the amount of change of the actual engine torque or the threshold value of the actual engine torque is determined based on the bank information, pitch information, engine speed information, accelerator operation information, clutch information, and the like of the motorcycle. Correction is possible based on gear position information or gear information.
- the detection unit is preset with an actual acceleration or an estimated acceleration of a vehicle body or a wheel of the motorcycle.
- the accelerator opening is greater than a preset threshold
- the actual engine torque is greater than a preset threshold
- the driver demand torque of the motorcycle is greater than a preset threshold.
- the output unit applies a torque smaller than the driver's required torque to the motorcycle engine. It can be output as the required torque.
- FIG. 1 is a diagram showing a configuration of a torque control system including a torque control device of the present embodiment.
- FIG. 2 is a diagram illustrating a first example of control by the torque control device of the present embodiment.
- FIG. 3 is a diagram illustrating a second example of control by the torque control device of the present embodiment.
- FIG. 4 is a diagram illustrating a third example of control by the torque control device of the present embodiment.
- FIG. 5 is a diagram showing a processing flow by the torque control device of the present embodiment.
- FIG. 6 is a diagram illustrating an example of a threshold for the actual engine torque and the rate of change of the actual engine torque.
- FIG. 7 is a diagram illustrating a fourth example of control by the torque control device of the present embodiment.
- FIG. 8 is a diagram showing a fifth example of control by the torque control device of the present embodiment.
- FIG. 1 is a diagram showing a configuration of a torque control system including a torque control device of the present embodiment.
- the torque control system 100 includes a motorcycle vehicle 200, a gear box 210 for transmitting driving force from the engine 200, a sprocket 220, a chain 230, and the transmitted driving force.
- a wheel 240 that is rotationally driven and a brake 250 that brakes the driving force of the wheel 240 are provided.
- the wheel 240 includes a wheel speed sensor.
- the torque control system 100 also includes an external information source 260 including a sensor box in which an acceleration sensor that detects accelerations in the X, Y, and Z axis directions of the vehicle body, a yaw rate sensor that detects the yaw rate of the vehicle body, and the like are housed.
- the external information source 260 can also receive information from various sensors such as a signal from a GPS (Global Positioning System) satellite and the degree of expansion and contraction of the fork in order to obtain the acceleration of the motorcycle.
- GPS Global Positioning System
- the torque control system 100 includes a torque control device (ABS / MTC ECU) 300 that outputs a required torque to the engine 200.
- the torque control device 300 also serves to control the braking force in the brake 250.
- the engine speed 200 (rpm), actual engine torque (Nm), driver request torque (Nm), accelerator opening (%), and the like are input to the torque control device 300.
- the gear information of the motorcycle is input from the gear box 210 to the torque control device 300.
- information on the wheel 240 is input to the torque control device 300 from a wheel speed sensor mounted on the wheel 240. Based on information obtained from the wheel speed sensor, wheel speed, wheel acceleration, and the like are calculated. Further, the acceleration and yaw rate of the vehicle body are input to the torque control device 300 from the external information source 260.
- the torque control device 300 outputs a required torque to the engine 200 based on various input information.
- the torque control device 300 of the present embodiment includes a detection unit 310 that detects a state in which the front wheels of the motorcycle may float (become a wheelie state).
- Torque control device 300 outputs a torque smaller than the driver's required torque (driver request torque) as a required torque to engine 200 when detecting state of detecting the possibility that the front wheels of the motorcycle will float.
- an output unit 320 that outputs a difference between the driver's required torque and a torque smaller than the driver's required torque as a brake torque.
- FIG. 2 is a diagram illustrating a first example of control by the torque control device of the present embodiment.
- the vertical axis represents the engine torque (Nm)
- the horizontal axis represents the passage of time (s).
- the driver request torque 402 requested by the driver has changed as shown in FIG. For example, when the accelerator opening is suddenly increased from a stopped state, the driver request torque 402 suddenly rises as shown in FIG.
- the detecting unit 310 obtains a change rate or a change amount of the driver request torque 402 by differentiating the driver request torque 402 with respect to time. Then, when the change rate or change amount of the obtained driver request torque 402 becomes larger than a preset threshold value, the detection unit 310 detects a state in which the front wheels of the motorcycle may be lifted. That is, that the change rate or change amount of the driver request torque 402 is larger than the threshold value indicates that the driver has suddenly opened the accelerator, which indicates that there is a possibility of wheelie. In FIG. 2, it is assumed that a state in which the front wheel of the motorcycle may be lifted is detected at point 408.
- the output unit 320 outputs a torque smaller than the driver request torque 402 to the engine 200 as a request torque 406 when a state in which the front wheel of the motorcycle may be lifted is detected.
- the torque control device 300 outputs a torque having an increasing gradient smaller than the increasing gradient of the driver request torque 402 to the engine 200 as the request torque 406.
- the output unit 320 can also output the difference between the driver request torque 402 (driver's request torque) and a torque smaller than the driver's request torque (request torque 406) to the brake 250 as a brake torque.
- the actual engine torque of the engine 200 follows the driver request torque 402 until the control start point 408. Further, since the actual engine torque of the engine 200 follows the request torque 406 after the control start point 408, the actual engine torque can be suppressed to be smaller than the actual engine torque corresponding to the driver request torque 402. That is, the control (gradient limitation) is performed so that the gradient is smaller than the driver request torque 402 at the control start point 408. As a result, the occurrence of the wheelie state can be suppressed, and the vehicle body can be prevented from becoming unstable. If slip (spin-up) is calculated while the gradient is limited, the control shifts to slip control.
- TCS slip control
- target speed the speed of a target drive wheel is determined
- torque the engine output
- TCS request torque 406 indicated by a broken line in FIG. 2 is a TCS request torque output to the engine 200 by the gradient limiting control.
- FIG. 3 is a diagram illustrating a second example of the control by the torque control device of the present embodiment.
- the vertical axis indicates the engine torque (Nm)
- the horizontal axis indicates the passage of time (s).
- the driver request torque 412 requested by the driver has changed as shown in FIG.
- the driver request torque 412 in FIG. 3 corresponds to the driver request torque 402 in FIG.
- FIG. 3 as in the first embodiment, it is assumed that a state in which the front wheel of the motorcycle may be lifted is detected at point 418.
- the detection unit 310 determines whether or not the acceleration of the motorcycle body or the wheel 240 is greater than a preset threshold value.
- the acceleration of the vehicle body is obtained by calculating from information on the wheels 240, and the vehicle body acceleration is obtained based on the information on the front and rear wheels, but can also be obtained from the acceleration sent from the external information source 260.
- the output unit 320 is configured such that the acceleration of the vehicle body or the wheel of the motorcycle is set in advance after the detection unit 310 detects that the front wheel of the motorcycle may be lifted in the manner as in the first embodiment. If it is detected that the threshold value is exceeded, the required torque for the motorcycle engine is further reduced and output.
- the request torque 414 in FIG. 3 corresponds to the request torque 406 in FIG.
- the output unit 320 outputs a request torque 416 that is smaller than the request torque 414 by providing a region where the increase amount of the request torque is “0 (hold)” or “slight increase”, as indicated by a broken line 417.
- the detection unit 310 can also detect a state in which the front wheel of the motorcycle may be lifted when the accelerator opening is larger than a preset threshold value.
- FIG. 4 is a diagram illustrating a third example of control by the torque control device of the present embodiment.
- the vertical axis represents the engine torque (Nm)
- the horizontal axis represents the passage of time (s).
- the driver request torque 422 requested by the driver has changed as shown in FIG.
- the driver request torque 422 in FIG. 4 corresponds to the driver request torque 402 in FIG.
- a state in which the front wheel of the motorcycle may be lifted is detected at point 428.
- the output unit 320 controls the start point 428 of the control based on bank information (for example, bank angle), pitch information (for example, pitch angle), clutch information, estimated gear position information, or gear information of the motorcycle. Is restricted (timing correction) or prohibited, or the required torque for the motorcycle engine is corrected. That is, the request torque 424 in FIG. 4 corresponds to the request torque 406 in FIG.
- the output unit 320 can largely correct the request torque like the request torque 427 according to the bank information (for example, bank angle) of the motorcycle. For example, when the bank angle of a motorcycle is increased, the wheelie state is less likely to occur.
- the gear position can be estimated from the ratio of the engine speed.
- the output unit 320 can correct the request torque to be small like the request torque 426 according to the bank angle of the motorcycle.
- the bank angle of a motorcycle is reduced, a wheelie condition is likely to occur or the vehicle has a poor grip with the ground, so by reducing the request torque accordingly, the wheelie condition is suppressed and the vehicle body is stabilized. Can be increased.
- the output unit 320 can easily correct the request torque like the request torque 426 because the wheelie state is likely to occur as the pitch angle increases. On the contrary, the output unit 320 can easily correct the request torque like the request torque 427 because the wheelie state is less likely to occur as the pitch angle becomes smaller.
- the output unit 320 can correct the request torque to be small like the request torque 426.
- the output unit 320 makes it difficult for the wheelie state to occur as the gear of the motorcycle becomes a high-speed gear, so that the request torque is largely corrected as in the request torque 427, or at the time of the control start point 428. Control can be restricted or prohibited.
- control start point 428 is corrected or prohibited according to the state of the motorcycle (bank angle, pitch angle, clutch information, estimated gear position information, or gear state), and a request to the engine 200 is made. Torque can be appropriately corrected.
- FIG. 5 is a diagram showing a processing flow by the torque control device of the present embodiment.
- FIG. 6 is a diagram illustrating an example of a threshold for the actual engine torque and the rate of change of the actual engine torque. In the following description, an example using the rate of change of the actual engine torque is shown, but the present invention is not limited to this, and the amount of change of the actual engine torque can also be used.
- the processing flow of FIG. 5 describes a case where threshold values for the rate of change of the actual engine torque are set in advance in accordance with the magnitude of the actual engine torque of the motorcycle.
- the detection unit 310 sets a threshold value for the actual engine torque of the motorcycle and its rate of change (step S101).
- the actual engine torque of the motorcycle and the threshold value of the rate of change thereof are set as shown in FIG. That is, in FIG. 6, the vertical axis represents the actual engine torque (Nm), and the horizontal axis represents the rate of change of the actual engine torque (Nm / s).
- threshold values for the rate of change (Nm / s) of the actual engine torque are set in accordance with the magnitude of the actual engine torque (Nm) of the motorcycle.
- the threshold value of the actual engine torque (Nm) is set according to the magnitude of the change rate (Nm / s) of the actual engine torque.
- the change rate of the actual engine torque is set to 500 (Nm / s) as a threshold value.
- the rate of change of the actual engine torque is 500 (Nm / s)
- 30 (Nm) is set as the threshold value for the actual engine torque.
- the detection unit 310 determines that the rate of change of the actual engine torque is greater than a threshold value of the rate of change of the actual engine torque set in advance corresponding to the magnitude of the actual engine torque, or the actual engine torque is When the threshold value of the actual engine torque set in advance corresponding to the magnitude of the torque change rate becomes larger, a state in which the front wheels of the motorcycle may be lifted is detected.
- the detection unit 310 determines that the wheelie state may occur if the change rate of the actual engine torque is greater than 500 (Nm / s). Further, for example, when the change rate of the actual engine torque is 500 (Nm / s), the detection unit 310 determines that there is a possibility that the wheelie state may occur if the actual engine torque is greater than 30 (Nm). .
- the detection unit 310 corrects the threshold value based on the vehicle body state (bank angle, pitch angle, clutch information, estimated gear position information, or gear information) of the motorcycle (step S102). ). For example, the detection unit 310 is less likely to generate a wheelie state as the bank angle increases, and therefore, in a vehicle having a good grip with the ground, the detection unit 310 sets a large threshold value (it is difficult to detect that a wheelie state may occur). To do). On the contrary, the detection unit 310 sets the threshold value small for a vehicle having a poor grip with the ground as the bank angle decreases, or for a vehicle with a poor grip with the ground (the wheelie state is generated or the vehicle stability is increased). Can be easily detected if there is a risk of deterioration).
- the threshold value is set to be larger, and conversely, the wheelie state is more likely to occur as the pitch angle is larger. It can also be set small.
- the threshold value is set larger, and conversely, the wheelie state is more likely to occur as the gear speed is lower. It can also be set small.
- the detection unit 310 determines whether or not the actual engine torque and its change rate> threshold value (step S103). If it is determined that the actual engine torque and its rate of change> threshold value (step S103, Yes), the detection unit 310 determines whether the accelerator slot is open (step S104).
- step S104 If it is determined that the accelerator slot is open (step S104, Yes), the detection unit 310 determines whether or not the driver request torque is greater than the TCS request torque (step S105).
- step S105 When it is determined that the driver request torque is greater than the TCS request torque (step S105, Yes), the output unit 320 executes torque limitation (step S106). That means Output unit 320 outputs torque smaller than driver request torque (TCS request torque) to engine 200 as request torque.
- TCS request torque driver request torque
- the output unit 320 does not satisfy the actual engine torque and the rate of change thereof> the threshold value (No in Step S103), the accelerator slot is not open (No in Step S104), or the driver request torque> the TCS required torque. If it is determined (No in step S105), torque limitation is not executed.
- the state of the motorcycle (bank angle, pitch angle, engine speed information, accelerator operation information, clutch information, estimated gear position information, or gears) Since the threshold value is corrected based on (information), the threshold value can be set appropriately. Further, according to the processing flow of the torque control device of the present embodiment, since it is determined whether or not the wheelie state may occur based on the actual engine torque and the rate of change thereof, the wheelie state is more reliably determined. The possibility of occurrence can be detected.
- FIG. 7 is a diagram illustrating a fourth example of control by the torque control device of the present embodiment.
- the vertical axis represents acceleration (m / S 2 )
- the horizontal axis represents the passage of time (s).
- the vertical axis indicates the actual engine torque (Nm)
- the horizontal axis indicates the passage of time (s).
- the actual acceleration of the vehicle body or wheel of the motorcycle will be described as an example.
- the present invention is not limited to this, and the estimated acceleration of the vehicle body or wheel of the motorcycle can also be used.
- the rear wheel acceleration 502 and the vehicle body (estimated) acceleration 504 change as shown in the upper diagram of FIG. 7, and the actual engine torque 506 changes as shown in the lower diagram of FIG.
- the rear wheel acceleration 502, the vehicle body (estimated) acceleration 504, and the actual engine torque 506 increase to high values as shown in the upper diagram of FIG.
- the detection unit 310 has the acceleration of the motorcycle body or wheel of the motorcycle greater than a preset threshold value, and the actual engine torque is greater than a preset threshold value. Then, a state in which the front wheel of the motorcycle may be lifted is detected. That is, the fact that the rear wheel acceleration 502 or the vehicle body (estimated) acceleration 504 is larger than the threshold value and the actual engine torque 506 is larger than the threshold value indicates that there is a possibility of wheelie.
- FIG. 7 it is assumed that a state in which the front wheel of the motorcycle may be lifted is detected at point 509.
- the point 509 can be corrected based on the vehicle body state (bank angle, pitch angle, clutch information, estimated gear position information, or gear information) of the motorcycle.
- the output unit 320 outputs torque smaller than the actual engine torque 506 to the engine 200 as the request torque 508, 510 when a state in which the front wheel of the motorcycle may be lifted is detected. Specifically, the output unit 320 performs a torque cut with the request torque 508 and then gradually increases the torque with the request torque 510. The output unit 320 repeatedly outputs the request torque 508 and the request torque 510 alternately.
- the actual engine torque of the engine 200 changes corresponding to the request torques 508 and 510, so that the actual engine torque 506 can be kept small. As a result, the occurrence of the wheelie state can be suppressed.
- FIG. 8 is a diagram showing a fifth example of control by the torque control device of the present embodiment.
- the vertical axis indicates the wheel speed (m / S), and the horizontal axis indicates the passage of time (s).
- the vertical axis indicates the engine torque (Nm), and the horizontal axis indicates the passage of time (s).
- the fifth embodiment is an example in which when a wheelie occurs in a motorcycle, a torque smaller than the driver's required torque is output as a required torque to the engine of the motorcycle in order to quickly get out of the wheelie state.
- FIG. 8 shows front and rear wheel speeds at the time of a wheelie that is typical for motorcycles.
- the rear wheel speed 612 increases linearly as shown in the upper diagram of FIG. Speed 614 decreases.
- the detection unit 310 detects that a wheelie state has occurred. In FIG. 8, it is assumed that a wheelie state is detected at point 608.
- the output unit 320 When it is detected that the wheelie state has occurred, the output unit 320 outputs a torque smaller than the driver's request torque as the request torque 618. Specifically, the output unit 320 can first perform a torque cut as indicated by a broken line 619, and then lowers the request torque 618.
- TCS slip control
- target speed the speed of a target drive wheel
- torque the engine output
- TCS request torque 616 indicated by a broken line in the lower diagram of FIG. 8 is a TCS request torque output to the engine 200 by this slip control.
- the torque control device 300 of the present embodiment outputs a torque smaller than the TCS request torque 616 output to the engine 200 by the slip control to the engine 200 as the request torque 618.
- the wheelie state can be promptly removed and returned to the normal state (a state where the front wheels are in contact with the road surface).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
車輪速センサから、車輪240の情報が入力される。車輪速センサから得られた情報をもとに、車輪速、車輪加速度などが演算される。また、トルク制御装置300には、外部情報源260から、車体の加速度、及びヨーレートが入力される。
図2は、本実施形態のトルク制御装置による制御の第1実施例を示す図である。図2において縦軸はエンジントルク(Nm)を示しており、横軸は時間(s)の経過を示している。
いる。図2の破線で示したTCSリクエストトルク406は、前記勾配制限制御によってエンジン200へ出力されるTCS要求トルクである。
次に、本実施形態のトルク制御装置による制御の第2実施例を説明する。図3は、本実施形態のトルク制御装置による制御の第2実施例を示す図である。図3において縦軸はエンジントルク(Nm)を示しており、横軸は時間(s)の経過を示している。
次に、本実施形態のトルク制御装置による制御の第3実施例を説明する。図4は、本実施形態のトルク制御装置による制御の第3実施例を示す図である。図4において縦軸はエンジントルク(Nm)を示しており、横軸は時間(s)の経過を示している。
設定されている。すなわち、図6は、縦軸が実エンジントルク(Nm)を示し、横軸が実エンジントルクの変化率(Nm/s)を示している。例えば、この例では、自動二輪車の実エンジントルク(Nm)の大きさに応じてそれぞれ実エンジントルクの変化率(Nm/s)のしきい値が設定されている。言い換えれば、実エンジントルクの変化率(Nm/s)の大きさに応じてそれぞれ実エンジントルク(Nm)のしきい値が設定されている。
出力部320は、ドライバリクエストトルク(TCS要求トルク)よりも小さいトルクをリクエストトルクとしてエンジン200へ出力する。
次に、本実施形態のトルク制御装置による制御の第4実施例を説明する。図7は、本実施形態のトルク制御装置による制御の第4実施例を示す図である。図7の上図において縦軸は加速度(m/S2)を示しており、横軸は時間(s)の経過を示している。また、図7の下図において縦軸は実エンジントルク(Nm)を示しており、横軸は時間(s)の経過を示している。なお、以下の説明では、自動二輪車の車体又は車輪の実加速度を例に挙げて説明するが、これに限らず、自動二輪車の車体又は車輪の推定加速度を用いることもできる。
次に、本実施形態のトルク制御装置による制御の第5実施例を説明する。図8は、本実施形態のトルク制御装置による制御の第5実施例を示す図である。図8の上図において縦軸は車輪速度(m/S)を示しており、横軸は時間(s)の経過を示している。また、図8の下図において縦軸はエンジントルク(Nm)を示しており、横軸は時間(s)の経過を示している。
Claims (9)
- 自動二輪車のエンジン情報、前記自動二輪車の運転者のアクセル操作情報、及び前記自動二輪車の車体又は車輪の情報の少なくとも1つに基づいて、前記自動二輪車の前輪が浮き上がるおそれがある状態を検出する検出部と、
前記検出部によって前記自動二輪車の前輪が浮き上がるおそれがある状態が検出されたら、前記運転者の要求トルクより小さいトルクを前記自動二輪車のエンジンへの要求トルクとして出力するか、又は前記運転者の要求トルクと前記運転者の要求トルクより小さいトルクとの差分をブレーキトルクとして出力する出力部と、
を備えることを特徴とするトルク制御装置。 - 請求項1のトルク制御装置において、
前記自動二輪車のエンジン情報は、前記自動二輪車の実エンジントルク、前記運転者の要求トルク、又は前記自動二輪車のエンジン回転数を含み、
前記検出部は、前記自動二輪車の実エンジントルクの変化率又は変化量があらかじめ設定されたしきい値より大きくなるか、又は前記運転者の要求トルクの変化率又は変化量があらかじめ設定されたしきい値より大きくなるか、前記自動二輪車のエンジン回転数の変化率又は変化量があらかじめ設定されたしきい値より大きくなったら、前記自動二輪車の前輪が浮き上がるおそれがある状態を検出する
ことを特徴とするトルク制御装置。 - 請求項1又は2のトルク制御装置において、
前記アクセル操作情報は、前記自動二輪車のアクセル開度を含み、
前記検出部は、前記自動二輪車のアクセル開度の変化率又は変化量があらかじめ設定されたしきい値より大きくなったら、前記自動二輪車の前輪が浮き上がるおそれがある状態を検出する
ことを特徴とするトルク制御装置。 - 請求項2又は3のトルク制御装置において、
前記検出部は、前記自動二輪車の車体又は車輪の実加速度又は推定加速度があらかじめ設定されたしきい値より大きくなったことを検出し、
前記出力部は、前記検出部によって前記自動二輪車の前輪が浮き上がるおそれがある状態が検出された後、さらに前記検出部によって前記自動二輪車の車体又は車輪の実加速度又は推定加速度があらかじめ設定されたしきい値より大きくなったことが検出されたら、前記自動二輪車のエンジンへの要求トルクをさらに小さくするか又は保持して出力する
ことを特徴とするトルク制御装置。 - 請求項1~4のいずれか1項のトルク制御装置において、
前記出力部は、前記自動二輪車のバンク情報、ピッチ情報、クラッチ情報、推定ギヤ位置情報、又はギヤ情報に基づいて前記自動二輪車のエンジンへの要求トルク又は前記ブレーキトルク、又はこれらの両方を補正する
ことを特徴とするトルク制御装置。 - 請求項1~5のいずれか1項のトルク制御装置において、
前記自動二輪車のエンジン情報は、前記自動二輪車の実エンジントルク及び該実エンジントルクの変化率又は変化量を含み、
前記検出部は、前記実エンジントルクの変化率又は変化量が、前記実エンジントルクの大きさに対応してあらかじめ設定された実エンジントルクの変化率又は変化量のしきい値より大きくなるか、又は前記実エンジントルクが、前記実エンジントルクの変化率又は変化量の大きさに対応してあらかじめ設定された実エンジントルクのしきい値より大きくな
ったら、前記自動二輪車の前輪が浮き上がるおそれがある状態を検出する
ことを特徴とするトルク制御装置。 - 請求項6のトルク制御装置において、
前記実エンジントルクの変化率又は変化量のしきい値又は前記実エンジントルクのしきい値は、前記自動二輪車のバンク情報、ピッチ情報、エンジン回転数情報、アクセル操作情報、クラッチ情報、推定ギヤ位置情報、又はギヤ情報に基づいて補正される
ことを特徴とするトルク制御装置。 - 請求項1~7のいずれか1項のトルク制御装置において、
前記自動二輪車のエンジン情報は、前記自動二輪車の実エンジントルクを含み、
前記検出部は、前記自動二輪車の車体又は車輪の実加速度又は推定加速度があらかじめ設定されたしきい値より大きくなる、前記実エンジントルクがあらかじめ設定されたしきい値より大きくなる、及び前記自動二輪車の運転者要求トルクがあらかじめ設定されたしきい値より大きくなる、前記アクセル開度があらかじめ設定されたしきい値より大きくなる、前記エンジン回転数があらかじめ設定されたしきい値より大きくなる、という条件の少なくとも1つを満たした場合に、前記自動二輪車の前輪が浮き上がるおそれがある状態を検出する
ことを特徴とするトルク制御装置。 - 請求項1~8のいずれか1項のトルク制御装置において、
前記出力部は、前記自動二輪車の前輪と後輪の回転速度の比があらかじめ設定されたしきい値より大きくなったら、前記運転者の要求トルクより小さいトルクを前記自動二輪車のエンジンへの要求トルクとして出力する
ことを特徴とするトルク制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015511184A JP6108573B2 (ja) | 2013-04-10 | 2014-03-21 | トルク制御装置 |
EP14782450.2A EP2985213B1 (en) | 2013-04-10 | 2014-03-21 | Torque control device |
US14/783,902 US10017177B2 (en) | 2013-04-10 | 2014-03-21 | Torque control apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013081985 | 2013-04-10 | ||
JP2013-081985 | 2013-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167983A1 true WO2014167983A1 (ja) | 2014-10-16 |
Family
ID=51689395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057924 WO2014167983A1 (ja) | 2013-04-10 | 2014-03-21 | トルク制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10017177B2 (ja) |
EP (1) | EP2985213B1 (ja) |
JP (1) | JP6108573B2 (ja) |
WO (1) | WO2014167983A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017071300A (ja) * | 2015-10-07 | 2017-04-13 | 川崎重工業株式会社 | ウィリー判定装置、乗物、および車輪浮上り量判定方法 |
WO2017150674A1 (ja) * | 2016-03-03 | 2017-09-08 | ヤマハ発動機株式会社 | 前輪浮き抑制装置およびその前輪浮き抑制装置を搭載する車両 |
JP2018043627A (ja) * | 2016-09-14 | 2018-03-22 | 川崎重工業株式会社 | ウィリー判定装置およびウィリー判定方法 |
JP6420447B1 (ja) * | 2017-11-10 | 2018-11-07 | 株式会社ケーヒン | 自動二輪車の駆動力制御装置 |
US20180370506A1 (en) * | 2015-12-24 | 2018-12-27 | Robert Bosch Gmbh | Wheelie controller and control method thereof |
JP2019019784A (ja) * | 2017-07-19 | 2019-02-07 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | モーターサイクルに用いられる制御装置、モーターサイクルに用いられる制御方法、及び、目標トルク決定方法 |
EP3483482A1 (en) | 2017-10-17 | 2019-05-15 | Keihin Corporation | Driving-force control device |
WO2020213333A1 (ja) * | 2019-04-19 | 2020-10-22 | 本田技研工業株式会社 | クラッチ制御装置 |
JP2021038709A (ja) * | 2019-09-04 | 2021-03-11 | 川崎重工業株式会社 | ウィリー抑制制御装置 |
JP7545323B2 (ja) | 2020-12-28 | 2024-09-04 | カワサキモータース株式会社 | 乗物制御プログラム及び乗物制御装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10138819B2 (en) * | 2014-12-09 | 2018-11-27 | Kawasaki Jukogyo Kabushiki Kaisha | Vehicle, straddle-type vehicle, and method of driving throttle valve |
EP3332107A1 (en) * | 2015-08-06 | 2018-06-13 | General Electric Company | System and method for engine control |
JP6806506B2 (ja) * | 2015-10-07 | 2021-01-06 | 川崎重工業株式会社 | ウィリー抑制装置 |
JP6654846B2 (ja) * | 2015-10-07 | 2020-02-26 | 川崎重工業株式会社 | 出力制御装置 |
JP6842866B2 (ja) * | 2016-09-14 | 2021-03-17 | 川崎重工業株式会社 | エンジン出力抑制装置 |
CN113968297B (zh) | 2020-07-21 | 2023-05-05 | 北京零极创新科技有限公司 | 一种车辆的辅助翘头方法及装置、车辆、计算机存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070709A (ja) | 2000-09-01 | 2002-03-08 | Yamaha Motor Co Ltd | 自動二輪車のウィリー防止装置 |
JP2011068253A (ja) * | 2009-09-25 | 2011-04-07 | Advics Co Ltd | 車両の状態検出装置、及び車両の状態安定化制御装置 |
JP2012145072A (ja) * | 2011-01-14 | 2012-08-02 | Suzuki Motor Corp | 自動二輪車の出力制御装置及び方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19532521C2 (de) * | 1995-09-02 | 2002-11-28 | Henry Tunger | Anti-Wheelie-System |
JP2003056437A (ja) * | 2001-08-10 | 2003-02-26 | Moric Co Ltd | 小型車両のエンジン制御方法および装置 |
GB2386103B (en) * | 2002-03-05 | 2006-03-15 | Simon Gamble | Device for sensing the pitch of a vehicle |
US6938717B2 (en) * | 2003-06-20 | 2005-09-06 | Dowon D. Gaudiano | Engine control tilt switch for motorcycles |
DE102006036650A1 (de) * | 2005-08-18 | 2007-03-22 | Continental Teves Ag & Co. Ohg | Verfahren zur Verhinderung und/oder Regelung des Vorderradabhebens bei Krafträdern |
JP2007245993A (ja) * | 2006-03-17 | 2007-09-27 | Sanko Sangyo:Kk | ウィリー制御装置及び自動二輪車 |
JP5039349B2 (ja) * | 2006-09-27 | 2012-10-03 | ヤマハ発動機株式会社 | 鞍乗型車両の姿勢検知装置、エンジン制御装置、及び鞍乗型車両 |
JP5422376B2 (ja) * | 2009-12-28 | 2014-02-19 | 川崎重工業株式会社 | 車両の制御システム、ウィリー判定方法及び出力抑制方法 |
US8744732B2 (en) * | 2009-12-28 | 2014-06-03 | Kawasaki Jukogyo Kabushiki Kaisha | Vehicle and engine controlling method |
JP5926095B2 (ja) * | 2012-03-30 | 2016-05-25 | 本田技研工業株式会社 | 自動二輪車用トラクション制御装置 |
-
2014
- 2014-03-21 JP JP2015511184A patent/JP6108573B2/ja active Active
- 2014-03-21 WO PCT/JP2014/057924 patent/WO2014167983A1/ja active Application Filing
- 2014-03-21 EP EP14782450.2A patent/EP2985213B1/en active Active
- 2014-03-21 US US14/783,902 patent/US10017177B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070709A (ja) | 2000-09-01 | 2002-03-08 | Yamaha Motor Co Ltd | 自動二輪車のウィリー防止装置 |
JP2011068253A (ja) * | 2009-09-25 | 2011-04-07 | Advics Co Ltd | 車両の状態検出装置、及び車両の状態安定化制御装置 |
JP2012145072A (ja) * | 2011-01-14 | 2012-08-02 | Suzuki Motor Corp | 自動二輪車の出力制御装置及び方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017071300A (ja) * | 2015-10-07 | 2017-04-13 | 川崎重工業株式会社 | ウィリー判定装置、乗物、および車輪浮上り量判定方法 |
US11230272B2 (en) * | 2015-12-24 | 2022-01-25 | Robert Bosch Gmbh | Wheelie controller and control method thereof |
US20180370506A1 (en) * | 2015-12-24 | 2018-12-27 | Robert Bosch Gmbh | Wheelie controller and control method thereof |
WO2017150674A1 (ja) * | 2016-03-03 | 2017-09-08 | ヤマハ発動機株式会社 | 前輪浮き抑制装置およびその前輪浮き抑制装置を搭載する車両 |
JP2018043627A (ja) * | 2016-09-14 | 2018-03-22 | 川崎重工業株式会社 | ウィリー判定装置およびウィリー判定方法 |
JP2019019784A (ja) * | 2017-07-19 | 2019-02-07 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | モーターサイクルに用いられる制御装置、モーターサイクルに用いられる制御方法、及び、目標トルク決定方法 |
EP3483482A1 (en) | 2017-10-17 | 2019-05-15 | Keihin Corporation | Driving-force control device |
JP6420447B1 (ja) * | 2017-11-10 | 2018-11-07 | 株式会社ケーヒン | 自動二輪車の駆動力制御装置 |
JP2019085981A (ja) * | 2017-11-10 | 2019-06-06 | 株式会社ケーヒン | 自動二輪車の駆動力制御装置 |
EP3482992A1 (en) | 2017-11-10 | 2019-05-15 | Keihin Corporation | Driving-force control device of two-wheeled automobile |
WO2020213333A1 (ja) * | 2019-04-19 | 2020-10-22 | 本田技研工業株式会社 | クラッチ制御装置 |
JPWO2020213333A1 (ja) * | 2019-04-19 | 2021-11-25 | 本田技研工業株式会社 | クラッチ制御装置 |
JP7112594B2 (ja) | 2019-04-19 | 2022-08-03 | 本田技研工業株式会社 | クラッチ制御装置 |
JP2021038709A (ja) * | 2019-09-04 | 2021-03-11 | 川崎重工業株式会社 | ウィリー抑制制御装置 |
JP7404000B2 (ja) | 2019-09-04 | 2023-12-25 | カワサキモータース株式会社 | ウィリー抑制制御装置 |
US11897332B2 (en) | 2019-09-04 | 2024-02-13 | Kawasaki Motors, Ltd. | Wheelie suppressing control unit |
JP7545323B2 (ja) | 2020-12-28 | 2024-09-04 | カワサキモータース株式会社 | 乗物制御プログラム及び乗物制御装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2985213B1 (en) | 2019-08-07 |
US20160144854A1 (en) | 2016-05-26 |
EP2985213A1 (en) | 2016-02-17 |
JP6108573B2 (ja) | 2017-04-05 |
EP2985213A4 (en) | 2016-03-30 |
US10017177B2 (en) | 2018-07-10 |
JPWO2014167983A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108573B2 (ja) | トルク制御装置 | |
JP4306770B2 (ja) | 車両およびその制御方法 | |
JP6194940B2 (ja) | 車両用挙動制御装置 | |
US20130090828A1 (en) | Method for stabilizing a two-wheeled vehicle having a laterally slipping rear wheel | |
JP5724783B2 (ja) | 車両の制御装置 | |
JP6538200B2 (ja) | ウイリー制御装置及びその制御方法 | |
JP5848151B2 (ja) | 車両に働く駆動力を制御する制御装置 | |
JP7106843B2 (ja) | 車両安定制御装置 | |
JP2006348854A (ja) | トラクション制御装置 | |
JP5848149B2 (ja) | 車両に働く駆動力を制御する制御装置 | |
JP6819557B2 (ja) | 車両安定制御装置 | |
JP2006240386A (ja) | 車両挙動制御装置 | |
JP6318795B2 (ja) | 車両用旋回走行制御装置、車両用旋回走行制御方法 | |
JP5918564B2 (ja) | 車両に働く駆動力を制御する制御装置 | |
JP2008230513A (ja) | 車輪速度補正装置 | |
US8725377B2 (en) | Control device for controlling drive force that operates on vehicle | |
JP4535178B2 (ja) | 車両の挙動制御装置 | |
JP2009275591A (ja) | 車両の制御装置 | |
JP2009298277A (ja) | 車両の制駆動力制御装置 | |
JP7445459B2 (ja) | 電動車両の制御装置 | |
US12071152B2 (en) | Driving support apparatus | |
JP5130964B2 (ja) | 車両の挙動制御装置 | |
KR20080022773A (ko) | 2륜 구동 차량의 차량안전 시스템 제어방법 | |
JP5832327B2 (ja) | 車両に働く駆動力を制御する制御装置 | |
JP2004316639A (ja) | トラクション制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14782450 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015511184 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014782450 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14783902 Country of ref document: US |