WO2014167882A1 - Variable gain circuit - Google Patents

Variable gain circuit Download PDF

Info

Publication number
WO2014167882A1
WO2014167882A1 PCT/JP2014/052250 JP2014052250W WO2014167882A1 WO 2014167882 A1 WO2014167882 A1 WO 2014167882A1 JP 2014052250 W JP2014052250 W JP 2014052250W WO 2014167882 A1 WO2014167882 A1 WO 2014167882A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
variable gain
input
gain circuit
terminal
Prior art date
Application number
PCT/JP2014/052250
Other languages
French (fr)
Japanese (ja)
Inventor
靖也 原田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2014167882A1 publication Critical patent/WO2014167882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/008Control by switched capacitors

Definitions

  • the present invention relates to a variable gain circuit that amplifies an input signal and blocks unnecessary frequency components.
  • FIG. 5 shows the configuration of the variable gain circuit described in Non-Patent Document 1.
  • a variable gain circuit 100 illustrated in FIG. 5 includes an OTA 101 that is a transconductance circuit, an input capacitor 102, a changeover switch 103, a feedback capacitor 104, a feedback resistor 105, a changeover switch 106, and a load capacitor 107. .
  • the OTA 101 has at least a positive input terminal, a negative input terminal, and an output terminal, and amplifies and outputs the input signal Vin input to the positive input terminal.
  • the input capacitor 102 has a plurality of capacitors whose first ends are connected to the negative input terminal of the OTA 101.
  • the changeover switch 103 has a plurality of switches having a first end connected to the second end of the input capacitor 102 and a second end connected to the reference potential or the lowest potential.
  • the first ends of the feedback capacitor 104 and the feedback resistor 105 are connected to the negative input terminal of the OTA 101 and the first end of the input capacitor 102, and the second ends of the feedback capacitor 104 and the feedback resistor 105 are connected to the output terminal of the OTA 101. .
  • the changeover switch 106 has a plurality of switches whose first ends are connected to the output terminal of the OTA 101.
  • the first end of the load capacitor 107 is connected to the second end of the changeover switch 106, and the second end of the load capacitor 107 is connected to the lowest potential.
  • FIG. 6 shows the configuration of the OTA 101.
  • the OTA 101 includes transistors M1, M2, M3, M4, M5, M6, M7, and M8, and a current source I1.
  • the transistors M1, M2, M7, and M8 are composed of PMOS transistors, and the transistors M3, M4, M5, and M6 are composed of NMOS transistors.
  • the gate terminal of the transistor M1 is connected to the positive input terminal of the OTA 101.
  • the gate terminal of the transistor M2 is connected to the negative input terminal of the OTA 101, and the source terminal of the transistor M2 is connected to the source terminal of the transistor M1.
  • the first end of the current source I1 is connected to the highest potential, and the second end of the current source I1 is connected to the source terminal of the transistor M1 and the source terminal of the transistor M2.
  • the gate terminal and the drain terminal of the transistor M3 are connected to the drain terminal of the transistor M1, and the source terminal of the transistor M3 is connected to the lowest potential.
  • the gate terminal and the drain terminal of the transistor M4 are connected to the drain terminal of the transistor M2, and the source terminal of the transistor M4 is connected to the lowest potential.
  • the gate terminal of the transistor M5 is connected to the gate terminal and the drain terminal of the transistor M3, the source terminal of the transistor M5 is connected to the lowest potential, and the drain terminal of the transistor M5 is connected to the output terminal of the OTA 101.
  • the gate terminal of the transistor M6 is connected to the gate terminal and the drain terminal of the transistor M4, and the source terminal of the transistor M6 is connected to the lowest potential.
  • the gate terminal and drain terminal of the transistor M7 are connected to the drain terminal of the transistor M6.
  • the gate terminal of the transistor M8 is connected to the gate terminal and the drain terminal of the transistor M7, the source terminal of the transistor M8 is connected to the highest potential, and the drain terminal of the transistor M8 is connected to the output terminal of the OTA 101.
  • variable gain circuit 100 amplifies the input signal applied to the positive input terminal with a predetermined gain (amplification factor), and removes unnecessary frequency band noise included in the input signal. More specifically, the variable gain circuit 100 defines the input signal applied to the positive input terminal as a ratio of the input capacitor 102 whose value is controlled by the changeover switch 103 and the feedback capacitor 104 (1 ) Is amplified with a gain (Av) shown in the equation.
  • variable gain circuit 100 converts unnecessary low frequency band side noise included in the input signal to a cutoff frequency (fc HPF ) expressed by the equation (2) defined by the product of the feedback capacitor 104 and the feedback resistor 105. Remove accordingly.
  • variable gain circuit 100 controls unnecessary high frequency band noise included in the input signal by the transconductance gm101 controlled by the current source I1 and the changeover switch 106. It is removed according to the cutoff frequency (fc LPF ) shown in the equation (3) defined by the product of the load capacity 107 and the gain (Av).
  • FIG. 7 shows an example of the relationship between the gain (Av) and the cut-off frequencies (fc LPF , fc HPF ) indicated by the equations (1) to (3).
  • the horizontal axis in FIG. 7 indicates the cutoff frequency [Hz]
  • the vertical axis in FIG. 7 indicates the gain [dB].
  • the variable gain circuit 100 amplifies the input signal applied to the positive input terminal to Av [times], and removes noise in a frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. To do.
  • variable gain circuit 100 can change the value of the input capacitor 102 and change the gain (Av) by controlling the changeover switch 103.
  • the gain (Av ′) in the variable gain circuit 100 in which the input capacitor 102 is changed ⁇ times is defined by the ratio of the input capacitor 102 and the feedback capacitor 104 as shown in the equation (4).
  • equation (4) represents the gain when the capacitance value is multiplied by ⁇ with reference to the capacitance value of the feedback capacitor 104 in equation (1).
  • Equation (5) is the same as Equation (2) above.
  • the cutoff frequency (fc LPF ) on the high frequency band side is defined by the product of transconductance gm101, load capacitance 107, and gain (Av ′), as shown in equation (6).
  • FIG. 8 shows an example of the relationship between the gain (Av ′) and the cut-off frequencies (fc LPF ′, fc HPF ′) indicated by the equations (4) to (6).
  • the horizontal axis in FIG. 8 indicates the cutoff frequency [Hz]
  • the vertical axis in FIG. 8 indicates the gain [dB].
  • the variable gain circuit 100 amplifies an input signal applied to the positive input terminal to Av ′ [times] and has a frequency band of fc HPF ′ [Hz] or less and fc LPF ′ [Hz] or more included in the input signal. Remove noise.
  • the expressions (1) to (3) are compared with the expressions (4) to (6) with reference to FIGS.
  • the cut-off frequencies (fc LPF and fc LPF ′) on the high frequency band side are in a relationship opposite to the gains (Av and Av ′).
  • the gain (Av) increases ⁇ times
  • the cut-off frequency (fc LPF ) becomes 1 / Since it decreases to ⁇ times, the input signal on the high frequency band side input to the variable gain circuit 100 cannot be amplified correctly.
  • the transconductance gm101 of the OTA 101 is increased ⁇ times, and the cutoff frequency (fc LPF ) on the high frequency band side is increased. It is possible to offset the fluctuations in In general, the transconductance gm101 of the OTA 101 that is small and has ultra-low power consumption is proportional to the source-drain current (Ids) of the transistor as shown in the equation (7).
  • Ids source-drain current
  • the present invention provides a variable gain circuit capable of maintaining a constant signal pass band even when the gain is changed while realizing miniaturization and low power consumption.
  • the variable gain circuit has at least a first input terminal, a second input terminal, and an output terminal, and amplifies a signal input to the first input terminal.
  • a transconductance circuit that outputs from the output terminal; a first capacitor having a first end connected to a first reference potential; a second end connected to the second input terminal of the transconductance circuit; One end connected to the second input terminal of the transconductance circuit, a second end connected to the output terminal of the transconductance circuit, and a first end connected to the transconductance circuit.
  • a third capacitor connected to the output terminal and having a second end connected to the second reference potential, and a fourth capacitor connected in parallel with either the first capacitor or the third capacitor; Capacity and said Capacity has a selector switch for controlling the connection of said fourth capacitor to be connected to one parallel with the third capacitor and the first capacitor.
  • the capacitance value of the fourth capacitor may be variable.
  • variable gain circuit may further include a resistor connected in parallel with the second capacitor.
  • the signal passband can be kept constant even when the gain is changed while realizing miniaturization and low power consumption. it can.
  • FIG. 1 is a circuit diagram showing a configuration of a variable gain circuit according to an embodiment of the present invention. It is a graph which shows the relationship between the gain and cutoff frequency of the variable gain circuit which concerns on one Embodiment of this invention. It is a graph which shows the relationship between the gain and cutoff frequency of the variable gain circuit which concerns on one Embodiment of this invention. It is a circuit diagram which shows the structure of the feedback resistance which the variable gain circuit which concerns on one Embodiment of this invention has. It is a circuit diagram which shows the structure of the conventional variable gain circuit. It is a circuit diagram which shows the structure of OTA which the conventional variable gain circuit has. It is a graph which shows the relationship between the gain and cutoff frequency of the conventional variable gain circuit. It is a graph which shows the relationship between the gain and cutoff frequency of the conventional variable gain circuit.
  • FIG. 1 shows a configuration of a variable gain circuit according to the present embodiment.
  • the variable gain circuit 10 includes a transconductance circuit OTA1, an input capacitor C1 (first capacitor), a feedback capacitor C2 (second capacitor), a feedback resistor R1, and a load capacitor.
  • C3 third capacitor
  • change-over switches SW1a, SW1b, SW1c, SW1d and a shared capacitor C4 (fourth capacitor).
  • the shared capacitor C4 can be configured as a variable capacitor.
  • OTA1 has at least a positive input terminal (first input terminal), a negative input terminal (second input terminal), and an output terminal, and amplifies and outputs an input signal Vin input to the positive input terminal.
  • the first end of the input capacitor C1 is connected to the negative input terminal of OTA1, and the second end of the input capacitor C1 is connected to the reference potential Vref (first reference potential).
  • the first ends of the feedback capacitor C2 and the feedback resistor R1 are connected to the negative input terminal of the OTA1, and the second ends of the feedback capacitor C2 and the feedback resistor R1 are connected to the output terminal of the OTA1.
  • the first end of the load capacitor C3 is connected to the output terminal of the OTA1, and the second end of the load capacitor C3 is connected to the lowest potential (second reference potential).
  • the first end of the changeover switch SW1a is connected to the output terminal of OTA1.
  • the first end of the shared capacitor C4 is connected to the second end of the changeover switch SW1a.
  • the shared capacitor C4 is connected in parallel with either the input capacitor C1 or the load capacitor C3.
  • the first end of the changeover switch SW1b is connected to the second end of the shared capacitor C4, and the second end of the changeover switch SW1b is connected to the lowest potential.
  • the first end of the changeover switch SW1c is connected to the first end of the shared capacitor C4, and the second end of the changeover switch SW1c is connected to the second end of the input capacitor C1.
  • the first end of the changeover switch SW1d is connected to the second end of the shared capacitor C4, and the second end of the changeover switch SW1d is connected to the first end of the input capacitor C1.
  • the changeover switches SW1a, SW1b, SW1c, and SW1d can be switched ON and OFF, and the first end and the second end are short-circuited when the switches are ON.
  • the changeover switches SW1a, SW1b, SW1c, and SW1d control the connection of the shared capacitor C4 so that the shared capacitor C4 is connected in parallel with either the input capacitor C1 or the load capacitor C3.
  • OTA1 has the same configuration as OTA101 shown in FIG. 6, description of the configuration of OTA1 is omitted.
  • the change-over switches SW1a to SW1d are controlled before the input signal is applied to the variable gain circuit 10 and during the application of the input signal, and are controlled to amplify the input signal with a desired gain (amplification factor). .
  • the selector switches SW1a and SW1b are controlled to be ON and the selector switches SW1c and SW1d are controlled to be OFF.
  • the first ends of the shared capacitor C4 and the load capacitor C3 are commonly connected to the output terminal of the OTA1, and the second ends of the shared capacitor C4 and the load capacitor C3 are commonly connected to the lowest potential.
  • a load capacitor C3 are connected in parallel. At this time, the variable gain circuit 10 amplifies the input signal with a relatively low gain.
  • the changeover switches SW1a and SW1b are controlled to be OFF, and the changeover switches SW1c and SW1d are controlled to be ON.
  • the first end of the shared capacitor C4 and the input capacitor C1 are commonly connected to the first end of the input capacitor C1
  • the second end of the shared capacitor C4 and the input capacitor C1 are commonly connected to the reference potential Vref.
  • the shared capacitor C4 and the input capacitor C1 are connected in parallel. At this time, the variable gain circuit 10 amplifies the input signal with a relatively high gain.
  • variable gain circuit 10 amplifies the input signal applied to the positive input terminal with a predetermined gain, and removes unnecessary frequency band noise included in the input signal.
  • variable gain circuit 10 When load capacity C3 and shared capacity C4 are connected in parallel, The gain and cut-off frequency of the variable gain circuit 10 when the load capacitor C3 and the shared capacitor C4 are connected in parallel when the changeover switches SW1a and SW1b are turned on and the changeover switches SW1c and SW1d are turned off will be described.
  • the variable gain circuit 10 amplifies the input signal applied to the positive input terminal with the gain (Av) shown in the equation (8) according to the ratio of the input capacitance C1 and the feedback capacitance C2.
  • variable gain circuit 10 removes unnecessary low frequency band noise included in the input signal at a cutoff frequency (fc HPF ) shown in the equation (9) according to the product of the feedback capacitor C2 and the feedback resistor R1. To do.
  • variable gain circuit 10 uses the common frequency controlled by the transconductance gm1, the load capacitor C3, and the change-over switches SW1a to SW1d as noise on the high frequency band side included in the input signal. According to C4, it removes according to the cut-off frequency (fc LPF ) shown in the equation (10).
  • FIG. 2 shows an example of the relationship between the gain (Av) and the cut-off frequencies (fc LPF , fc HPF ) indicated by the equations (8) to (10).
  • the horizontal axis in FIG. 2 indicates the cutoff frequency [Hz]
  • the vertical axis in FIG. 2 indicates the gain [dB].
  • the variable gain circuit 10 amplifies the input signal applied to the positive input terminal to Av [times] and removes noise in the frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. To do.
  • variable gain circuit 100 When input capacitor C1 and shared capacitor C4 are connected in parallel, the cutoff frequency (fc LPF ) on the low frequency side, which is in a contradictory relationship, decreases. For this reason, the input signal on the high frequency band side input to the variable gain circuit 100 cannot be correctly amplified.
  • the gain (Av) in the variable gain circuit 10 when the gain (Av) in the variable gain circuit 10 is increased, by controlling the changeover switches SW1a to SW1d, the input capacitor C1 and the shared capacitor C4 are connected in parallel, and the load capacitor C3 and the shared capacitor C4 are It is not a parallel connection. As a result, the high-frequency cutoff frequency (fc LPF ) can be kept constant.
  • the gain and cutoff frequency of the variable gain circuit 10 when the input capacitor C1 and the shared capacitor C4 are connected in parallel when the changeover switches SW1a and SW1b are turned off and the changeover switches SW1c and SW1d are turned on will be described.
  • the switches SW1a and SW1b By controlling the switches SW1a and SW1b to be OFF and controlling the switches SW1c and SW1d to be ON so that the gain of the variable gain circuit 10 is ⁇ times the gain (Av), the sum of the input capacitances is controlled.
  • the gain (Av ′) in the variable gain circuit 10 is expressed by equation (11).
  • the load capacitance of the variable gain circuit 10 is 1 / ⁇ Doubled.
  • the cut-off frequency (fc LPF ′) on the wide area side in the variable gain circuit 10 is expressed by equation (13). This is the same as the above equation (10).
  • FIG. 3 shows an example of the relationship between the gain (Av ′) and the cut-off frequencies (fc LPF ′, fc HPF ′) indicated by the equations (11) to (13).
  • the horizontal axis in FIG. 3 indicates the cutoff frequency [Hz]
  • the vertical axis in FIG. 3 indicates the gain [dB].
  • the variable gain circuit 10 amplifies an input signal applied to the positive input terminal to Av ′ [times], and at the same time, noise in a frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. Remove.
  • variable gain circuit 10 can correctly amplify the input signal on the high frequency band side as compared with the prior art.
  • the load capacity of the variable gain circuit 10 is only the load capacity C3, the load capacity becomes 1 / ⁇ times as compared with the case where the load capacity C3 and the shared capacity C4 are connected in parallel. Becomes the equation (15).
  • the capacitance values of the input capacitor C1, the feedback capacitor C2, the load capacitor C3, and the shared capacitor C4 are adjusted in advance so as to satisfy the equations (14) and (15). That is, the capacitance values of the input capacitance C1, the feedback capacitance C2, and the load capacitance C3 are adjusted in advance so that the sum of the capacitance values of the input capacitance C1 and the feedback capacitance C2 is the same as the capacitance value of the load capacitance C3.
  • the shared capacitor C4 can be configured as a variable capacitor having a variable capacitance value.
  • variable gain circuit 10 includes the changeover switches SW1a, SW1b, and the like so that the shared capacitor C4 and only one of the input capacitor C1 and the load capacitor C3 are connected in parallel.
  • the signal passband fc HPF to fc LPF [Hz]
  • the shared capacitor C4 as a variable capacitor and changing the capacitance value, the relationship between the gain of the variable gain circuit 10 and the cutoff frequency can be arbitrarily adjusted.
  • the feedback resistor R1 may be configured as a pseudo MOS resistor including at least four PMOS transistors T1, T2, T3, and T4.
  • the present invention can be widely applied to a variable gain circuit.
  • the signal pass band can be kept constant even when the gain is changed while realizing miniaturization and low power consumption.

Abstract

A variable gain circuit provided with: a transconductance circuit which is provided with at least a first input terminal, a second input terminal, and an output terminal and which amplifies a signal input into the first input terminal and outputs the signal from the output terminal; a first capacitance having a first end connected to a first reference potential and a second end connected to the second input terminal of the transconductance circuit; a second capacitance having a first end connected to the second input terminal of the transconductance circuit and a second end connected to the output terminal of the transconductance circuit; a third capacitance having a first end connected to the output terminal of the transconductance circuit and a second end connected to a second reference potential; a fourth capacitance connected in parallel to either the first capacitance or the third capacitance; and changeover switches for controlling the connections of the fourth capacitance such that the fourth capacitance is connected in parallel to either the first capacitance or the third capacitance.

Description

可変利得回路Variable gain circuit
 本発明は、入力信号を増幅すると共に、不要な周波数成分を遮断する可変利得回路に関する。
 本願は、2013年4月12日に、日本に出願された特願2013-084229号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a variable gain circuit that amplifies an input signal and blocks unnecessary frequency components.
This application claims priority based on Japanese Patent Application No. 2013-084229 filed in Japan on April 12, 2013, the contents of which are incorporated herein by reference.
 従来、小型で低消費電力化を実現する可変利得回路が知られている(例えば、非特許文献1参照)。図5は、非特許文献1に記載された可変利得回路の構成を示している。図5に示す可変利得回路100は、トランスコンダクタンス回路であるOTA101と、入力容量102と、切替スイッチ103と、帰還容量104と、帰還抵抗105と、切替スイッチ106と、負荷容量107と、を有する。 Conventionally, a variable gain circuit that is small and realizes low power consumption is known (for example, see Non-Patent Document 1). FIG. 5 shows the configuration of the variable gain circuit described in Non-Patent Document 1. A variable gain circuit 100 illustrated in FIG. 5 includes an OTA 101 that is a transconductance circuit, an input capacitor 102, a changeover switch 103, a feedback capacitor 104, a feedback resistor 105, a changeover switch 106, and a load capacitor 107. .
 OTA101は、少なくとも正入力端子、負入力端子、出力端子を有し、正入力端子に入力される入力信号Vinを増幅して出力する。入力容量102は、第1端がOTA101の負入力端子に接続される複数の容量を有する。切替スイッチ103は、第1端が入力容量102の第2端に接続され、第2端が基準電位又は最低電位に接続される複数のスイッチを有する。帰還容量104及び帰還抵抗105の第1端はOTA101の負入力端子及び入力容量102の第1端に接続され、帰還容量104及び帰還抵抗105の第2端はOTA101の出力端子に接続されている。切替スイッチ106は、第1端がOTA101の出力端子に接続される複数のスイッチを有する。負荷容量107の第1端は切替スイッチ106の第2端に接続され、負荷容量107の第2端は最低電位に接続されている。 The OTA 101 has at least a positive input terminal, a negative input terminal, and an output terminal, and amplifies and outputs the input signal Vin input to the positive input terminal. The input capacitor 102 has a plurality of capacitors whose first ends are connected to the negative input terminal of the OTA 101. The changeover switch 103 has a plurality of switches having a first end connected to the second end of the input capacitor 102 and a second end connected to the reference potential or the lowest potential. The first ends of the feedback capacitor 104 and the feedback resistor 105 are connected to the negative input terminal of the OTA 101 and the first end of the input capacitor 102, and the second ends of the feedback capacitor 104 and the feedback resistor 105 are connected to the output terminal of the OTA 101. . The changeover switch 106 has a plurality of switches whose first ends are connected to the output terminal of the OTA 101. The first end of the load capacitor 107 is connected to the second end of the changeover switch 106, and the second end of the load capacitor 107 is connected to the lowest potential.
 図6は、OTA101の構成を示している。OTA101は、トランジスタM1,M2,M3,M4,M5,M6,M7,M8と、電流源I1と、を有する。図6では、トランジスタM1,M2,M7,M8はPMOSトランジスタで構成され、トランジスタM3,M4,M5,M6はNMOSトランジスタで構成されている。トランジスタM1のゲート端子はOTA101の正入力端子に接続されている。トランジスタM2のゲート端子はOTA101の負入力端子に接続され、トランジスタM2のソース端子はトランジスタM1のソース端子に接続されている。電流源I1の第1端は最高電位に接続され、電流源I1の第2端はトランジスタM1のソース端子及びトランジスタM2のソース端子に接続されている。 FIG. 6 shows the configuration of the OTA 101. The OTA 101 includes transistors M1, M2, M3, M4, M5, M6, M7, and M8, and a current source I1. In FIG. 6, the transistors M1, M2, M7, and M8 are composed of PMOS transistors, and the transistors M3, M4, M5, and M6 are composed of NMOS transistors. The gate terminal of the transistor M1 is connected to the positive input terminal of the OTA 101. The gate terminal of the transistor M2 is connected to the negative input terminal of the OTA 101, and the source terminal of the transistor M2 is connected to the source terminal of the transistor M1. The first end of the current source I1 is connected to the highest potential, and the second end of the current source I1 is connected to the source terminal of the transistor M1 and the source terminal of the transistor M2.
 トランジスタM3のゲート端子及びドレイン端子はトランジスタM1のドレイン端子に接続され、トランジスタM3のソース端子は最低電位に接続されている。トランジスタM4のゲート端子及びドレイン端子はトランジスタM2のドレイン端子に接続され、トランジスタM4のソース端子は最低電位に接続されている。トランジスタM5のゲート端子はトランジスタM3のゲート端子及びドレイン端子に接続され、トランジスタM5のソース端子は最低電位に接続され、トランジスタM5のドレイン端子はOTA101の出力端子に接続されている。トランジスタM6のゲート端子はトランジスタM4のゲート端子及びドレイン端子に接続され、トランジスタM6のソース端子は最低電位に接続されている。 The gate terminal and the drain terminal of the transistor M3 are connected to the drain terminal of the transistor M1, and the source terminal of the transistor M3 is connected to the lowest potential. The gate terminal and the drain terminal of the transistor M4 are connected to the drain terminal of the transistor M2, and the source terminal of the transistor M4 is connected to the lowest potential. The gate terminal of the transistor M5 is connected to the gate terminal and the drain terminal of the transistor M3, the source terminal of the transistor M5 is connected to the lowest potential, and the drain terminal of the transistor M5 is connected to the output terminal of the OTA 101. The gate terminal of the transistor M6 is connected to the gate terminal and the drain terminal of the transistor M4, and the source terminal of the transistor M6 is connected to the lowest potential.
 トランジスタM7のゲート端子及びドレイン端子はトランジスタM6のドレイン端子に接続されている。トランジスタM8のゲート端子はトランジスタM7のゲート端子及びドレイン端子に接続され、トランジスタM8のソース端子は最高電位に接続され、トランジスタM8のドレイン端子はOTA101の出力端子に接続されている。 The gate terminal and drain terminal of the transistor M7 are connected to the drain terminal of the transistor M6. The gate terminal of the transistor M8 is connected to the gate terminal and the drain terminal of the transistor M7, the source terminal of the transistor M8 is connected to the highest potential, and the drain terminal of the transistor M8 is connected to the output terminal of the OTA 101.
 次に、以上のように構成された可変利得回路100における特徴となる動作例について説明する。可変利得回路100は、正入力端子に印加される入力信号を所定の利得(増幅率)で増幅すると共に、入力信号に含まれる不要な周波数帯域のノイズを除去する。より具体的には、可変利得回路100は、正入力端子に印加される入力信号を、切替スイッチ103により値が制御される入力容量102と、帰還容量104との比で定義される、(1)式に示す利得(Av)で増幅する。 Next, an operation example that is a feature of the variable gain circuit 100 configured as described above will be described. The variable gain circuit 100 amplifies the input signal applied to the positive input terminal with a predetermined gain (amplification factor), and removes unnecessary frequency band noise included in the input signal. More specifically, the variable gain circuit 100 defines the input signal applied to the positive input terminal as a ratio of the input capacitor 102 whose value is controlled by the changeover switch 103 and the feedback capacitor 104 (1 ) Is amplified with a gain (Av) shown in the equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、可変利得回路100は、入力信号に含まれる不要な低周波数帯域側のノイズを、帰還容量104と帰還抵抗105の積で定義される、(2)式に示す遮断周波数(fcHPF)に応じて除去する。 Further, the variable gain circuit 100 converts unnecessary low frequency band side noise included in the input signal to a cutoff frequency (fc HPF ) expressed by the equation (2) defined by the product of the feedback capacitor 104 and the feedback resistor 105. Remove accordingly.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、OTA1のトランスコンダクタンスをgm101とすると、可変利得回路100は、入力信号に含まれる不要な高周波数帯域のノイズを、電流源I1により制御されるトランスコンダクタンスgm101と、切替スイッチ106により制御される負荷容量107と、利得(Av)との積で定義される、(3)式に示す遮断周波数(fcLPF)に応じて除去する。 Also, assuming that the transconductance of OTA1 is gm101, the variable gain circuit 100 controls unnecessary high frequency band noise included in the input signal by the transconductance gm101 controlled by the current source I1 and the changeover switch 106. It is removed according to the cutoff frequency (fc LPF ) shown in the equation (3) defined by the product of the load capacity 107 and the gain (Av).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図7は、(1)式~(3)式が示す利得(Av)と遮断周波数(fcLPF,fcHPF)の関係の一例を示している。図7の横軸は遮断周波数[Hz]を示し、図7の縦軸は利得[dB]を示している。可変利得回路100は、正入力端子に印加される入力信号をAv〔倍〕に増幅すると共に、入力信号に含まれるfcHPF〔Hz〕以下かつfcLPF〔Hz〕以上の周波数帯域のノイズを除去する。 FIG. 7 shows an example of the relationship between the gain (Av) and the cut-off frequencies (fc LPF , fc HPF ) indicated by the equations (1) to (3). The horizontal axis in FIG. 7 indicates the cutoff frequency [Hz], and the vertical axis in FIG. 7 indicates the gain [dB]. The variable gain circuit 100 amplifies the input signal applied to the positive input terminal to Av [times], and removes noise in a frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. To do.
 また、可変利得回路100は、切替スイッチ103を制御することにより、入力容量102の値を変化させ、利得(Av)を変化させることができる。例えば、入力容量102をα倍に変化させた可変利得回路100における利得(Av’)は、(4)式に示す通り、入力容量102と帰還容量104の比で定義される。ただし、(4)式は、(1)式における帰還容量104の容量値を基準としてその容量値をα倍にした場合の利得を示している。 Further, the variable gain circuit 100 can change the value of the input capacitor 102 and change the gain (Av) by controlling the changeover switch 103. For example, the gain (Av ′) in the variable gain circuit 100 in which the input capacitor 102 is changed α times is defined by the ratio of the input capacitor 102 and the feedback capacitor 104 as shown in the equation (4). However, equation (4) represents the gain when the capacitance value is multiplied by α with reference to the capacitance value of the feedback capacitor 104 in equation (1).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、低周波数帯域側の遮断周波数(fcHPF)は、(5)式に示す通り、帰還容量104と帰還抵抗105の積で定義される。(5)式は、上記の(2)式と同一である。 Further, the cutoff frequency (fc HPF ) on the low frequency band side is defined by the product of the feedback capacitor 104 and the feedback resistor 105 as shown in the equation (5). Equation (5) is the same as Equation (2) above.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、高周波数帯域側の遮断周波数(fcLPF)は、(6)式に示す通り、トランスコンダクタンスgm101と負荷容量107と利得(Av’)との積で定義される。 The cutoff frequency (fc LPF ) on the high frequency band side is defined by the product of transconductance gm101, load capacitance 107, and gain (Av ′), as shown in equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図8は、(4)式~(6)式が示す利得(Av’)と遮断周波数(fcLPF’,fcHPF’)の関係の一例を示している。図8の横軸は遮断周波数[Hz]を示し、図8の縦軸は利得[dB]を示している。可変利得回路100は、正入力端子に印加される入力信号をAv’〔倍〕に増幅すると共に、入力信号に含まれるfcHPF’〔Hz〕以下かつfcLPF’〔Hz〕以上の周波数帯域のノイズを除去する。 FIG. 8 shows an example of the relationship between the gain (Av ′) and the cut-off frequencies (fc LPF ′, fc HPF ′) indicated by the equations (4) to (6). The horizontal axis in FIG. 8 indicates the cutoff frequency [Hz], and the vertical axis in FIG. 8 indicates the gain [dB]. The variable gain circuit 100 amplifies an input signal applied to the positive input terminal to Av ′ [times] and has a frequency band of fc HPF ′ [Hz] or less and fc LPF ′ [Hz] or more included in the input signal. Remove noise.
 ここで、図7と図8を参照しつつ、(1)式~(3)式と(4)式~(6)式を比較する。高周波数帯域側の遮断周波数(fcLPF及びfcLPF’)は利得(Av及びAv’)と相反する関係にあり、利得(Av)がγ倍に増加すると、遮断周波数(fcLPF)は1/γ倍に減少するため、可変利得回路100に入力される高周波数帯域側の入力信号を正しく増幅することができない。 Here, the expressions (1) to (3) are compared with the expressions (4) to (6) with reference to FIGS. The cut-off frequencies (fc LPF and fc LPF ′) on the high frequency band side are in a relationship opposite to the gains (Av and Av ′). When the gain (Av) increases γ times, the cut-off frequency (fc LPF ) becomes 1 / Since it decreases to γ times, the input signal on the high frequency band side input to the variable gain circuit 100 cannot be amplified correctly.
 この課題を解決するための第1の方法として、利得(Av)をγ倍に増加させる際には、OTA101のトランスコンダクタンスgm101をγ倍に増加させ、高周波数帯域側の遮断周波数(fcLPF)の変動を相殺することが考えられる。一般的に、小型で超低消費電力なOTA101のトランスコンダクタンスgm101は、(7)式に示す通り、トランジスタのソース-ドレイン間電流(Ids)と比例する。(7)式において、qは電荷素量、kはボルツマン定数、Tは絶対温度である。(7)式が示す関係により、ソース-ドレイン間電流(Ids)をγ倍に増加させると、OTA101の消費電流が大幅に増大してしまう。 As a first method for solving this problem, when the gain (Av) is increased γ times, the transconductance gm101 of the OTA 101 is increased γ times, and the cutoff frequency (fc LPF ) on the high frequency band side is increased. It is possible to offset the fluctuations in In general, the transconductance gm101 of the OTA 101 that is small and has ultra-low power consumption is proportional to the source-drain current (Ids) of the transistor as shown in the equation (7). In equation (7), q is the elementary charge, k is the Boltzmann constant, and T is the absolute temperature. According to the relationship expressed by the equation (7), when the source-drain current (Ids) is increased by γ times, the current consumption of the OTA 101 is significantly increased.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 一方、この課題を解決するための第2の方法として、利得(Av)をγ倍に増加させる際には、OTA101の負荷容量107の容量値を1/γ倍に減少させ、遮断周波数(fcLPF)の変動を相殺することが考えられる。しかしながら、負荷容量107の容量値を1/γ倍に減少させた状態でも負荷容量107の容量値を帰還容量104と入力容量102の容量値よりも大きな値にする必要があるため、一般的に、小型で超低消費電力なOTA101の負荷容量107を予め大きな値に設定しておくことは、大変困難である。 On the other hand, as a second method for solving this problem, when the gain (Av) is increased by γ times, the capacitance value of the load capacitance 107 of the OTA 101 is decreased by 1 / γ times to reduce the cutoff frequency (fc). It is conceivable to offset fluctuations in LPF ). However, since the capacitance value of the load capacitor 107 needs to be larger than the capacitance values of the feedback capacitor 104 and the input capacitor 102 even in a state where the capacitance value of the load capacitor 107 is reduced to 1 / γ times, in general, It is very difficult to set the load capacity 107 of the OTA 101, which is small and has very low power consumption, to a large value in advance.
 本発明は、小型化、低消費電力化を実現しつつ、利得を変化させても信号通過帯域を一定に保つことができる可変利得回路を提供する。 The present invention provides a variable gain circuit capable of maintaining a constant signal pass band even when the gain is changed while realizing miniaturization and low power consumption.
 本発明の第1態様によれば、可変利得回路は、少なくとも第1の入力端子、第2の入力端子、及び出力端子を有し、前記第1の入力端子に入力された信号を増幅して前記出力端子から出力するトランスコンダクタンス回路と、第1端が第1の基準電位に接続され、第2端が前記トランスコンダクタンス回路の前記第2の入力端子に接続される第1の容量と、第1端が前記トランスコンダクタンス回路の前記第2の入力端子に接続され、第2端が前記トランスコンダクタンス回路の前記出力端子に接続される第2の容量と、第1端が前記トランスコンダクタンス回路の前記出力端子に接続され、第2端が第2の基準電位に接続される第3の容量と、前記第1の容量と前記第3の容量とのいずれか一方と並列に接続される第4の容量と、前記第4の容量が前記第1の容量と前記第3の容量とのいずれか一方と並列に接続するように前記第4の容量の接続を制御する切替スイッチと、を有する。 According to the first aspect of the present invention, the variable gain circuit has at least a first input terminal, a second input terminal, and an output terminal, and amplifies a signal input to the first input terminal. A transconductance circuit that outputs from the output terminal; a first capacitor having a first end connected to a first reference potential; a second end connected to the second input terminal of the transconductance circuit; One end connected to the second input terminal of the transconductance circuit, a second end connected to the output terminal of the transconductance circuit, and a first end connected to the transconductance circuit. A third capacitor connected to the output terminal and having a second end connected to the second reference potential, and a fourth capacitor connected in parallel with either the first capacitor or the third capacitor; Capacity and said Capacity has a selector switch for controlling the connection of said fourth capacitor to be connected to one parallel with the third capacitor and the first capacitor.
 本発明の第2態様によれば、第1態様に係る可変利得回路において、前記第4の容量の容量値が可変であってもよい。 According to the second aspect of the present invention, in the variable gain circuit according to the first aspect, the capacitance value of the fourth capacitor may be variable.
 本発明の第3態様によれば、第1態様に係る可変利得回路は、前記第2の容量と並列に接続される抵抗を更に有してもよい。 According to the third aspect of the present invention, the variable gain circuit according to the first aspect may further include a resistor connected in parallel with the second capacitor.
 本発明によれば、第1の容量と第3の容量を互いに共用し合うことにより、小型化、低消費電力化を実現しつつ、利得を変化させても信号通過帯域を一定に保つことができる。 According to the present invention, by sharing the first capacitor and the third capacitor, the signal passband can be kept constant even when the gain is changed while realizing miniaturization and low power consumption. it can.
本発明の一実施形態に係る可変利得回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a variable gain circuit according to an embodiment of the present invention. 本発明の一実施形態に係る可変利得回路の利得と遮断周波数の関係を示すグラフである。It is a graph which shows the relationship between the gain and cutoff frequency of the variable gain circuit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る可変利得回路の利得と遮断周波数の関係を示すグラフである。It is a graph which shows the relationship between the gain and cutoff frequency of the variable gain circuit which concerns on one Embodiment of this invention. 本発明の一実施形態に係る可変利得回路が有する帰還抵抗の構成を示す回路図である。It is a circuit diagram which shows the structure of the feedback resistance which the variable gain circuit which concerns on one Embodiment of this invention has. 従来の可変利得回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional variable gain circuit. 従来の可変利得回路が有するOTAの構成を示す回路図である。It is a circuit diagram which shows the structure of OTA which the conventional variable gain circuit has. 従来の可変利得回路の利得と遮断周波数の関係を示すグラフである。It is a graph which shows the relationship between the gain and cutoff frequency of the conventional variable gain circuit. 従来の可変利得回路の利得と遮断周波数の関係を示すグラフである。It is a graph which shows the relationship between the gain and cutoff frequency of the conventional variable gain circuit.
 以下、図面を参照し、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (構成概要)
 図1は、本実施形態に係る可変利得回路の構成を示している。図1に示すように、可変利得回路10は、トランスコンダクタンス回路であるOTA1と、入力容量C1(第1の容量)と、帰還容量C2(第2の容量)と、帰還抵抗R1と、負荷容量C3(第3の容量)と、切替スイッチSW1a,SW1b,SW1c,SW1dと、共用容量C4(第4の容量)と、を有する。後述するように、共用容量C4は可変容量として構成することが可能である。
(Configuration overview)
FIG. 1 shows a configuration of a variable gain circuit according to the present embodiment. As shown in FIG. 1, the variable gain circuit 10 includes a transconductance circuit OTA1, an input capacitor C1 (first capacitor), a feedback capacitor C2 (second capacitor), a feedback resistor R1, and a load capacitor. C3 (third capacitor), change-over switches SW1a, SW1b, SW1c, SW1d, and a shared capacitor C4 (fourth capacitor). As will be described later, the shared capacitor C4 can be configured as a variable capacitor.
 OTA1は、少なくとも正入力端子(第1の入力端子)、負入力端子(第2の入力端子)、出力端子を有し、正入力端子に入力される入力信号Vinを増幅して出力する。入力容量C1の第1端はOTA1の負入力端子に接続され、入力容量C1の第2端は基準電位Vref(第1の基準電位)に接続されている。帰還容量C2及び帰還抵抗R1の第1端はOTA1の負入力端子に接続され、帰還容量C2及び帰還抵抗R1の第2端はOTA1の出力端子に接続されている。 OTA1 has at least a positive input terminal (first input terminal), a negative input terminal (second input terminal), and an output terminal, and amplifies and outputs an input signal Vin input to the positive input terminal. The first end of the input capacitor C1 is connected to the negative input terminal of OTA1, and the second end of the input capacitor C1 is connected to the reference potential Vref (first reference potential). The first ends of the feedback capacitor C2 and the feedback resistor R1 are connected to the negative input terminal of the OTA1, and the second ends of the feedback capacitor C2 and the feedback resistor R1 are connected to the output terminal of the OTA1.
 負荷容量C3の第1端はOTA1の出力端子に接続され、負荷容量C3の第2端は最低電位(第2の基準電位)に接続されている。切替スイッチSW1aの第1端はOTA1の出力端子に接続されている。共用容量C4の第1端は切替スイッチSW1aの第2端に接続されている。後述するように、共用容量C4は、入力容量C1と負荷容量C3とのいずれか一方と並列に接続される。切替スイッチSW1bの第1端は共用容量C4の第2端に接続され、切替スイッチSW1bの第2端は最低電位に接続されている。切替スイッチSW1cの第1端は共用容量C4の第1端に接続され、切替スイッチSW1cの第2端は入力容量C1の第2端に接続されている。切替スイッチSW1dの第1端は共用容量C4の第2端に接続され、切替スイッチSW1dの第2端は入力容量C1の第1端に接続されている。切替スイッチSW1a,SW1b,SW1c,SW1dはONとOFFの切替が可能であり、オンである場合に第1端と第2端が短絡される。また、切替スイッチSW1a,SW1b,SW1c,SW1dは、共用容量C4が入力容量C1と負荷容量C3とのいずれか一方と並列に接続するように共用容量C4の接続を制御する。 The first end of the load capacitor C3 is connected to the output terminal of the OTA1, and the second end of the load capacitor C3 is connected to the lowest potential (second reference potential). The first end of the changeover switch SW1a is connected to the output terminal of OTA1. The first end of the shared capacitor C4 is connected to the second end of the changeover switch SW1a. As will be described later, the shared capacitor C4 is connected in parallel with either the input capacitor C1 or the load capacitor C3. The first end of the changeover switch SW1b is connected to the second end of the shared capacitor C4, and the second end of the changeover switch SW1b is connected to the lowest potential. The first end of the changeover switch SW1c is connected to the first end of the shared capacitor C4, and the second end of the changeover switch SW1c is connected to the second end of the input capacitor C1. The first end of the changeover switch SW1d is connected to the second end of the shared capacitor C4, and the second end of the changeover switch SW1d is connected to the first end of the input capacitor C1. The changeover switches SW1a, SW1b, SW1c, and SW1d can be switched ON and OFF, and the first end and the second end are short-circuited when the switches are ON. The changeover switches SW1a, SW1b, SW1c, and SW1d control the connection of the shared capacitor C4 so that the shared capacitor C4 is connected in parallel with either the input capacitor C1 or the load capacitor C3.
 OTA1は、図6に示すOTA101と同一の構成を有するため、OTA1の構成についての説明は省略する。 Since OTA1 has the same configuration as OTA101 shown in FIG. 6, description of the configuration of OTA1 is omitted.
 (動作概要)
 次に、以上のように構成された可変利得回路10における特徴となる動作例について説明する。切替スイッチSW1a~SW1dは、可変利得回路10に入力信号が印加される前、及び入力信号が印加されている途中で制御され、入力信号を所望の利得(増幅率)で増幅するよう制御される。
(Overview of operation)
Next, an operation example which is a feature of the variable gain circuit 10 configured as described above will be described. The change-over switches SW1a to SW1d are controlled before the input signal is applied to the variable gain circuit 10 and during the application of the input signal, and are controlled to amplify the input signal with a desired gain (amplification factor). .
 すなわち、可変利得回路10に印加される入力信号が大きい場合、切替スイッチSW1a,SW1bはON、切替スイッチSW1c,SW1dはOFFに制御される。これにより、共用容量C4と負荷容量C3の第1端が共通にOTA1の出力端子に接続されると共に、共用容量C4と負荷容量C3の第2端が共通に最低電位に接続され、共用容量C4と負荷容量C3が並列に接続される。このとき、可変利得回路10は入力信号を相対的に低い利得で増幅する。 That is, when the input signal applied to the variable gain circuit 10 is large, the selector switches SW1a and SW1b are controlled to be ON and the selector switches SW1c and SW1d are controlled to be OFF. As a result, the first ends of the shared capacitor C4 and the load capacitor C3 are commonly connected to the output terminal of the OTA1, and the second ends of the shared capacitor C4 and the load capacitor C3 are commonly connected to the lowest potential. And a load capacitor C3 are connected in parallel. At this time, the variable gain circuit 10 amplifies the input signal with a relatively low gain.
 また、可変利得回路10に印加される入力信号が小さい場合、切替スイッチSW1a,SW1bはOFF、切替スイッチSW1c,SW1dはONに制御される。これにより、共用容量C4と入力容量C1の第1端が共通に入力容量C1の第1端に接続されると共に、共用容量C4と入力容量C1の第2端が共通に基準電位Vrefに接続され、共用容量C4と入力容量C1が並列に接続される。このとき、可変利得回路10は入力信号を相対的に高い利得で増幅する。 When the input signal applied to the variable gain circuit 10 is small, the changeover switches SW1a and SW1b are controlled to be OFF, and the changeover switches SW1c and SW1d are controlled to be ON. As a result, the first end of the shared capacitor C4 and the input capacitor C1 are commonly connected to the first end of the input capacitor C1, and the second end of the shared capacitor C4 and the input capacitor C1 are commonly connected to the reference potential Vref. The shared capacitor C4 and the input capacitor C1 are connected in parallel. At this time, the variable gain circuit 10 amplifies the input signal with a relatively high gain.
 これにより、可変利得回路10は、正入力端子に印加される入力信号を所定の利得で増幅すると共に、入力信号に含まれる不要な周波数帯域のノイズを除去する。 Thereby, the variable gain circuit 10 amplifies the input signal applied to the positive input terminal with a predetermined gain, and removes unnecessary frequency band noise included in the input signal.
 (負荷容量C3と共用容量C4が並列に接続される場合)
 切替スイッチSW1a,SW1bがON、切替スイッチSW1c,SW1dがOFFとなることにより、負荷容量C3と共用容量C4が並列に接続される場合の可変利得回路10の利得と遮断周波数を説明する。可変利得回路10は、正入力端子に印加される入力信号を、入力容量C1と帰還容量C2の比に応じて、(8)式に示す利得(Av)で増幅する。
(When load capacity C3 and shared capacity C4 are connected in parallel)
The gain and cut-off frequency of the variable gain circuit 10 when the load capacitor C3 and the shared capacitor C4 are connected in parallel when the changeover switches SW1a and SW1b are turned on and the changeover switches SW1c and SW1d are turned off will be described. The variable gain circuit 10 amplifies the input signal applied to the positive input terminal with the gain (Av) shown in the equation (8) according to the ratio of the input capacitance C1 and the feedback capacitance C2.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、可変利得回路10は、入力信号に含まれる不要な低周波数帯域側のノイズを、帰還容量C2と帰還抵抗R1の積に応じて、(9)式に示す遮断周波数(fcHPF)で除去する。 Further, the variable gain circuit 10 removes unnecessary low frequency band noise included in the input signal at a cutoff frequency (fc HPF ) shown in the equation (9) according to the product of the feedback capacitor C2 and the feedback resistor R1. To do.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、OTA1のトランスコンダクタンスをgm1とすると、可変利得回路10は、入力信号に含まれる高周波数帯域側のノイズを、トランスコンダクタンスgm1、負荷容量C3、及び切替スイッチSW1a~SW1dにより制御される共用容量C4に応じて、(10)式に示す遮断周波数(fcLPF)に応じて除去する。 Also, assuming that the transconductance of OTA1 is gm1, the variable gain circuit 10 uses the common frequency controlled by the transconductance gm1, the load capacitor C3, and the change-over switches SW1a to SW1d as noise on the high frequency band side included in the input signal. According to C4, it removes according to the cut-off frequency (fc LPF ) shown in the equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図2は、(8)式~(10)式が示す利得(Av)と遮断周波数(fcLPF,fcHPF)の関係の一例を示している。図2の横軸は遮断周波数[Hz]を示し、図2の縦軸は利得[dB]を示している。可変利得回路10は、正入力端子に印加される入力信号をAv〔倍〕に増幅すると共に、入力信号に含まれるfcHPF〔Hz〕以下かつfcLPF〔Hz〕以上の周波数帯域のノイズを除去する。 FIG. 2 shows an example of the relationship between the gain (Av) and the cut-off frequencies (fc LPF , fc HPF ) indicated by the equations (8) to (10). The horizontal axis in FIG. 2 indicates the cutoff frequency [Hz], and the vertical axis in FIG. 2 indicates the gain [dB]. The variable gain circuit 10 amplifies the input signal applied to the positive input terminal to Av [times] and removes noise in the frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. To do.
 (入力容量C1と共用容量C4が並列に接続される場合)
 前述した通り、従来技術の可変利得回路100では、入力容量102の容量値を増加させて利得(Av)を上げると、相反する関係にある低域側の遮断周波数(fcLPF)が減少する。このため、可変利得回路100に入力される高周波数帯域側の入力信号を正しく増幅することができなかった。
(When input capacitor C1 and shared capacitor C4 are connected in parallel)
As described above, in the variable gain circuit 100 of the prior art, when the gain (Av) is increased by increasing the capacitance value of the input capacitor 102, the cutoff frequency (fc LPF ) on the low frequency side, which is in a contradictory relationship, decreases. For this reason, the input signal on the high frequency band side input to the variable gain circuit 100 cannot be correctly amplified.
 本実施形態では、可変利得回路10における利得(Av)を増加させる場合、切替スイッチSW1a~SW1dを制御することにより、入力容量C1と共用容量C4は並列接続となり、負荷容量C3と共用容量C4は並列接続ではなくなる。これにより、高域側の遮断周波数(fcLPF)を一定に保つことができる。 In the present embodiment, when the gain (Av) in the variable gain circuit 10 is increased, by controlling the changeover switches SW1a to SW1d, the input capacitor C1 and the shared capacitor C4 are connected in parallel, and the load capacitor C3 and the shared capacitor C4 are It is not a parallel connection. As a result, the high-frequency cutoff frequency (fc LPF ) can be kept constant.
 切替スイッチSW1a,SW1bがOFF、切替スイッチSW1c,SW1dがONとなることにより、入力容量C1と共用容量C4が並列に接続される場合の可変利得回路10の利得と遮断周波数を説明する。可変利得回路10の利得が利得(Av)に対してβ倍となるように、切替スイッチSW1a,SW1bをOFFに制御すると共に、切替スイッチSW1c,SW1dをONに制御することにより、入力容量の総和(入力容量C1と共用容量C4の和)を変化させた場合、可変利得回路10における利得(Av’)は、(11)式で示される。 The gain and cutoff frequency of the variable gain circuit 10 when the input capacitor C1 and the shared capacitor C4 are connected in parallel when the changeover switches SW1a and SW1b are turned off and the changeover switches SW1c and SW1d are turned on will be described. By controlling the switches SW1a and SW1b to be OFF and controlling the switches SW1c and SW1d to be ON so that the gain of the variable gain circuit 10 is β times the gain (Av), the sum of the input capacitances is controlled. When (the sum of the input capacitor C1 and the shared capacitor C4) is changed, the gain (Av ′) in the variable gain circuit 10 is expressed by equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、可変利得回路10における低域側の遮断周波数(fcHPF’)は、(12)式で示される。これは上記の(9)式と同一である。 Further, the cut-off frequency (fc HPF ′) on the low frequency side in the variable gain circuit 10 is expressed by equation (12). This is the same as the above equation (9).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、切替スイッチSW1a,SW1bをOFF、切替スイッチSW1c,SW1dをONに制御することにより、負荷容量の総和(負荷容量C3のみ)を変化させた場合、可変利得回路10の負荷容量は1/β倍となる。この場合、可変利得回路10における広域側の遮断周波数(fcLPF’)は、(13)式で示される。これは上記の(10)式と同一である。 Further, when the total of the load capacitances (only the load capacitance C3) is changed by controlling the changeover switches SW1a and SW1b to be OFF and the changeover switches SW1c and SW1d to be ON, the load capacitance of the variable gain circuit 10 is 1 / β Doubled. In this case, the cut-off frequency (fc LPF ′) on the wide area side in the variable gain circuit 10 is expressed by equation (13). This is the same as the above equation (10).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 図3は、(11)式~(13)式が示す利得(Av’)と遮断周波数(fcLPF’,fcHPF’)の関係の一例を示している。図3の横軸は遮断周波数[Hz]を示し、図3の縦軸は利得[dB]を示している。可変利得回路10は、正入力端子に印加される入力信号をAv’〔倍〕に増幅すると共に、入力信号に含まれるfcHPF〔Hz〕以下かつfcLPF〔Hz〕以上の周波数帯域のノイズを除去する。すなわち、可変利得回路10が正入力端子に印加される入力信号をAv’〔倍〕に増幅させる場合でも、高周波数帯域側の遮断周波数(fcLPF’)及び低周波数帯域側の遮断周波数(fcHPF’)は変わらないため、従来技術と比較して、可変利得回路10は、入力される高周波数帯域側の入力信号を正しく増幅することができる。 FIG. 3 shows an example of the relationship between the gain (Av ′) and the cut-off frequencies (fc LPF ′, fc HPF ′) indicated by the equations (11) to (13). The horizontal axis in FIG. 3 indicates the cutoff frequency [Hz], and the vertical axis in FIG. 3 indicates the gain [dB]. The variable gain circuit 10 amplifies an input signal applied to the positive input terminal to Av ′ [times], and at the same time, noise in a frequency band of fc HPF [Hz] or less and fc LPF [Hz] or more included in the input signal. Remove. That is, even when the variable gain circuit 10 amplifies the input signal applied to the positive input terminal to Av ′ [times], the cut-off frequency on the high frequency band side (fc LPF ′) and the cut-off frequency on the low frequency band side (fc) Since HPF ′) does not change, the variable gain circuit 10 can correctly amplify the input signal on the high frequency band side as compared with the prior art.
 なお、(8)式と(11)式から、βは(14)式となる。 Note that β is expressed by equation (14) from equations (8) and (11).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、可変利得回路10の負荷容量が負荷容量C3のみの場合には、負荷容量C3と共用容量C4が並列に接続されている場合と比べて負荷容量が1/β倍となることから、βは(15)式となる。 Further, when the load capacity of the variable gain circuit 10 is only the load capacity C3, the load capacity becomes 1 / β times as compared with the case where the load capacity C3 and the shared capacity C4 are connected in parallel. Becomes the equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 本実施形態では、(14)式と(15)式を満たすように、入力容量C1、帰還容量C2、負荷容量C3、及び共用容量C4のそれぞれの容量値が予め調整されている。すなわち、入力容量C1と帰還容量C2の容量値の和が負荷容量C3の容量値と同一となるように入力容量C1、帰還容量C2、及び負荷容量C3の容量値が予め調整されている。これによって、共用容量C4を容量値が可変な可変容量として構成することが可能となる。共用容量C4の容量値を任意に設定することにより、可変利得回路10の利得と遮断周波数の関係を任意に調整することができる。 In the present embodiment, the capacitance values of the input capacitor C1, the feedback capacitor C2, the load capacitor C3, and the shared capacitor C4 are adjusted in advance so as to satisfy the equations (14) and (15). That is, the capacitance values of the input capacitance C1, the feedback capacitance C2, and the load capacitance C3 are adjusted in advance so that the sum of the capacitance values of the input capacitance C1 and the feedback capacitance C2 is the same as the capacitance value of the load capacitance C3. As a result, the shared capacitor C4 can be configured as a variable capacitor having a variable capacitance value. By arbitrarily setting the capacitance value of the shared capacitor C4, the relationship between the gain of the variable gain circuit 10 and the cutoff frequency can be arbitrarily adjusted.
 上述したように、本実施形態によれば、可変利得回路10は、共用容量C4と、入力容量C1及び負荷容量C3のいずれか一方のみとが並列に接続されるように切替スイッチSW1a,SW1b,SW1c,SW1dを制御して利得を上げることにより、小型化、低消費電力化を実現しつつ、利得を変化させても信号通過帯域(fcHPF~fcLPF〔Hz〕)を一定に保つことができる。 As described above, according to the present embodiment, the variable gain circuit 10 includes the changeover switches SW1a, SW1b, and the like so that the shared capacitor C4 and only one of the input capacitor C1 and the load capacitor C3 are connected in parallel. By controlling the SW1c and SW1d to increase the gain, the signal passband (fc HPF to fc LPF [Hz]) can be kept constant even when the gain is changed while realizing miniaturization and low power consumption. it can.
 また、共用容量C4を可変容量として構成し、その容量値を変化させることによって、可変利得回路10の利得と遮断周波数の関係を任意に調整することができる。 Further, by configuring the shared capacitor C4 as a variable capacitor and changing the capacitance value, the relationship between the gain of the variable gain circuit 10 and the cutoff frequency can be arbitrarily adjusted.
 また、図4に示す通り、帰還抵抗R1を、少なくとも4つのPMOSトランジスタT1,T2,T3,T4を含む擬似MOS抵抗として構成しても良い。 Further, as shown in FIG. 4, the feedback resistor R1 may be configured as a pseudo MOS resistor including at least four PMOS transistors T1, T2, T3, and T4.
 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the above-described embodiments, and includes design changes and the like without departing from the gist of the present invention. .
 本発明は、可変利得回路に広く適用でき、可変利得回路において、小型化、低消費電力化を実現しつつ、利得を変化させても信号通過帯域を一定に保つことができる。 The present invention can be widely applied to a variable gain circuit. In the variable gain circuit, the signal pass band can be kept constant even when the gain is changed while realizing miniaturization and low power consumption.
 10,100 可変利得回路
 1,101 OTA
 C1,102 入力容量
 C2,104 帰還容量
 R1,105 帰還抵抗
 C3,107 負荷容量
 SW1a,SW1b,SW1c,SW1d,103,106 切替スイッチ
 C4 共用容量
 103,106 スイッチ
10,100 Variable gain circuit 1,101 OTA
C1, 102 Input capacity C2, 104 Feedback capacity R1, 105 Feedback resistance C3, 107 Load capacity SW1a, SW1b, SW1c, SW1d, 103, 106 Changeover switch C4 Shared capacity 103, 106 switch

Claims (3)

  1.  少なくとも第1の入力端子、第2の入力端子、及び出力端子を有し、前記第1の入力端子に入力された信号を増幅して前記出力端子から出力するトランスコンダクタンス回路と、
     第1端が第1の基準電位に接続され、第2端が前記トランスコンダクタンス回路の前記第2の入力端子に接続される第1の容量と、
     第1端が前記トランスコンダクタンス回路の前記第2の入力端子に接続され、第2端が前記トランスコンダクタンス回路の前記出力端子に接続される第2の容量と、
     第1端が前記トランスコンダクタンス回路の前記出力端子に接続され、第2端が第2の基準電位に接続される第3の容量と、
     前記第1の容量と前記第3の容量とのいずれか一方と並列に接続される第4の容量と、
     前記第4の容量が前記第1の容量と前記第3の容量とのいずれか一方と並列に接続するように前記第4の容量の接続を制御する切替スイッチと、
     を有することを特徴とする可変利得回路。
    A transconductance circuit having at least a first input terminal, a second input terminal, and an output terminal, amplifying a signal input to the first input terminal and outputting the amplified signal from the output terminal;
    A first capacitor having a first end connected to the first reference potential and a second end connected to the second input terminal of the transconductance circuit;
    A second capacitor having a first end connected to the second input terminal of the transconductance circuit and a second end connected to the output terminal of the transconductance circuit;
    A third capacitor having a first end connected to the output terminal of the transconductance circuit and a second end connected to a second reference potential;
    A fourth capacitor connected in parallel with one of the first capacitor and the third capacitor;
    A change-over switch that controls connection of the fourth capacitor so that the fourth capacitor is connected in parallel with either the first capacitor or the third capacitor;
    A variable gain circuit comprising:
  2.  前記第4の容量の容量値が可変であることを特徴とする請求項1に記載の可変利得回路。 The variable gain circuit according to claim 1, wherein a capacitance value of the fourth capacitor is variable.
  3.  前記第2の容量と並列に接続される抵抗を更に有することを特徴とする請求項1に記載の可変利得回路。 The variable gain circuit according to claim 1, further comprising a resistor connected in parallel with the second capacitor.
PCT/JP2014/052250 2013-04-12 2014-01-31 Variable gain circuit WO2014167882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013084229A JP2014207577A (en) 2013-04-12 2013-04-12 Variable gain circuit
JP2013-084229 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014167882A1 true WO2014167882A1 (en) 2014-10-16

Family

ID=51689300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052250 WO2014167882A1 (en) 2013-04-12 2014-01-31 Variable gain circuit

Country Status (2)

Country Link
JP (1) JP2014207577A (en)
WO (1) WO2014167882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150468A1 (en) * 2016-02-29 2017-09-08 株式会社ニコン Imaging element, imaging device and capacitor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114835A (en) * 1991-10-22 1993-05-07 Toshiba Corp Integrated filter circuit and its adjusting method
JPH06270462A (en) * 1993-03-24 1994-09-27 Canon Inc Quantity-of-light control device of image forming apparatus
JP2002185298A (en) * 2000-12-11 2002-06-28 Toyota Central Res & Dev Lab Inc Physical amount detecting circuit
JP2005323131A (en) * 2004-05-10 2005-11-17 Sony Corp Gain control amplifying circuit and recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114835A (en) * 1991-10-22 1993-05-07 Toshiba Corp Integrated filter circuit and its adjusting method
JPH06270462A (en) * 1993-03-24 1994-09-27 Canon Inc Quantity-of-light control device of image forming apparatus
JP2002185298A (en) * 2000-12-11 2002-06-28 Toyota Central Res & Dev Lab Inc Physical amount detecting circuit
JP2005323131A (en) * 2004-05-10 2005-11-17 Sony Corp Gain control amplifying circuit and recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150468A1 (en) * 2016-02-29 2017-09-08 株式会社ニコン Imaging element, imaging device and capacitor device

Also Published As

Publication number Publication date
JP2014207577A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US7420423B2 (en) Active balun device
Satansup et al. Electronically tunable single-input five-output voltage-mode universal filter using VDTAs and grounded passive elements
WO2011111140A1 (en) Variable gain amplifier
US10734957B2 (en) High linearly WiGig baseband amplifier with channel select filter
JP4193066B2 (en) Wireless filter circuit and noise reduction method
JP2007184895A (en) Amplifier and signal amplification method
JP5239451B2 (en) Differential single phase converter circuit
JP2006314059A (en) Semiconductor device
JP2008294682A (en) Variable impedance circuit, variable impedance system using the circuit, filter circuit, amplifier, and communication system using the same variable impedance ciricuit
WO2014167882A1 (en) Variable gain circuit
JP5445458B2 (en) Differential amplifier and configuration method thereof
JP2008227667A (en) Variable gain amplifier circuit
US11196387B2 (en) Amplifier circuit with high-order damping circuit and the high-order damping circuit
JP2008271112A (en) Amplifier apparatus
JP6470213B2 (en) Variable gain amplifier
JP2008228149A (en) Low-noise amplifier
JP2002252523A (en) Fet band amplifier
JP5503437B2 (en) Phase variable amplifier
JP2011188343A (en) Semiconductor integrated circuit device
JP2006287651A (en) Filter circuit
JP2006254158A (en) Variable gain amplifier
JP2014003526A (en) Amplifier and amplification circuit
JP2014176048A (en) Amplifier circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782183

Country of ref document: EP

Kind code of ref document: A1