WO2014167598A1 - Up-drawing continuous casting apparatus and up-drawing continuous casting method - Google Patents

Up-drawing continuous casting apparatus and up-drawing continuous casting method Download PDF

Info

Publication number
WO2014167598A1
WO2014167598A1 PCT/JP2013/002453 JP2013002453W WO2014167598A1 WO 2014167598 A1 WO2014167598 A1 WO 2014167598A1 JP 2013002453 W JP2013002453 W JP 2013002453W WO 2014167598 A1 WO2014167598 A1 WO 2014167598A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
molten metal
gas
nozzle
shape defining
Prior art date
Application number
PCT/JP2013/002453
Other languages
French (fr)
Japanese (ja)
Inventor
直晋 杉浦
裕生 日下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/781,210 priority Critical patent/US20160052051A1/en
Priority to JP2015510948A priority patent/JPWO2014167598A1/en
Priority to CN201380075496.2A priority patent/CN105102152A/en
Priority to RU2015147723A priority patent/RU2015147723A/en
Priority to AU2013386130A priority patent/AU2013386130A1/en
Priority to CA2908090A priority patent/CA2908090A1/en
Priority to PCT/JP2013/002453 priority patent/WO2014167598A1/en
Priority to EP13881719.2A priority patent/EP2985095A4/en
Priority to BR112015025525A priority patent/BR112015025525A2/en
Publication of WO2014167598A1 publication Critical patent/WO2014167598A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/08Accessories for starting the casting procedure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Definitions

  • the present invention relates to a pull-up type continuous casting apparatus and a pull-up type continuous casting method.
  • Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold.
  • the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface) (that is, the molten metal surface)
  • the molten metal follows the starter by the surface film or surface tension of the molten metal.
  • a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
  • the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold.
  • the cast casting since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
  • the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction.
  • regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained.
  • Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
  • the inventor has found the following problems.
  • the molten metal led out through the shape defining member is cooled by a cooling gas.
  • the molten gas is indirectly cooled by spraying a cooling gas onto the casting immediately after solidification.
  • the cooling gas flow rate is increased, the casting speed can be increased and the productivity can be improved.
  • the flow rate of the cooling gas is increased, there is a problem that the molten metal derived from the shape determining member is swung by the cooling gas and the dimensional accuracy and surface quality of the casting deteriorate.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus that is excellent in dimensional accuracy and surface quality of a casting and also in productivity.
  • the up-drawing continuous casting apparatus is as follows.
  • a holding furnace for holding molten metal A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal, A first nozzle that blows cooling gas against the casting formed by solidification of the molten metal that has passed through the shape defining member; A second nozzle that blows gas in an obliquely upward direction toward the casting from a position lower than a position at which the cooling gas is blown onto the casting by the first nozzle.
  • the second nozzle is preferably fixed on the shape defining member or formed inside the shape defining member. Thereby, space saving is attained. Further, the shape defining member is further provided with a convex portion provided on an end portion side through which the molten metal passes and extending in the pulling direction, and a tip of the second nozzle is formed on an upper surface of the convex portion. It is preferable.
  • an angle formed between the surface of the casting and the flux of the gas blown from the second nozzle is 25 degrees or less.
  • the cooling gas can be effectively shut off.
  • the cooling gas blown from the first nozzle and the gas blown from the second nozzle are the same gas.
  • Equipment can be simplified.
  • An up-drawing continuous casting apparatus is as follows.
  • a holding furnace for holding molten metal A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal, A nozzle that blows cooling gas against a casting formed by solidification of the molten metal that has passed through the shape determining member;
  • On the said shape determination member it is provided in the edge part side which the said molten metal passes, and is provided with the convex part extended in the pulling-up direction.
  • the up-drawing continuous casting method is as follows. Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up; Spraying a cooling gas to the casting formed from the molten metal that has passed through the shape defining member, In the step of spraying the cooling gas, the gas is sprayed obliquely upward toward the casting from the lower side than the position of the cooling gas spraying on the casting.
  • the method further includes a step of adjusting the flow rate of the gas according to the flow rate of the cooling gas.
  • the nozzle for spraying the gas obliquely upward toward the casting is fixed on the shape defining member or formed inside the shape defining member. Thereby, space saving is attained. Further, it is preferable that a convex portion extending in the pulling direction is provided on the end portion side through which the molten metal passes on the shape defining member, and the tip of the nozzle is formed on the upper surface of the convex portion.
  • an angle formed between the surface of the casting and the flux of the gas blown obliquely upward toward the casting is 25 degrees or less.
  • the cooling gas can be effectively shut off.
  • the cooling gas and the gas sprayed obliquely upward toward the casting are the same gas.
  • Equipment can be simplified.
  • the up-drawing continuous casting method is as follows.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 3 is a side view showing a positional relationship between a blowing gas nozzle 104 and a cooling gas nozzle 106 provided in the free casting apparatus according to Embodiment 1.
  • FIG. It is a schematic diagram for demonstrating the influence of angle (theta) which the flux of cutoff gas and the surface of the casting M3 make. It is a graph for demonstrating the influence of angle (theta) which the flux of cutoff gas and the surface of casting M3 make.
  • 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 6 is a side view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 3.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • the free casting apparatus according to the first embodiment includes a molten metal holding furnace 101, a shape defining member 102, a blowing gas nozzle 104, an actuator 105, a cooling gas nozzle 106, and a pulling machine 108.
  • the xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
  • the molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds it at a predetermined temperature.
  • a molten metal M1 such as aluminum or an alloy thereof
  • the surface of the molten metal M1 decreases as the casting progresses.
  • the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant.
  • the molten metal M1 may be another metal or alloy other than aluminum.
  • the shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface.
  • the shape defining member 102 is installed so that the gap G between the main surface on the lower side (the molten metal surface side) and the molten metal surface is about 0.5 mm. By providing the gap G, it is possible to suppress the temperature drop of the molten metal due to the shape defining member 102.
  • the shape determining member 102 is in contact with the retained molten metal M2 pulled up from the molten metal surface in the vicinity of the opening (the molten metal passage portion 103) through which the molten metal passes. For this reason, the shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from being mixed into the cast M3.
  • the casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape.
  • the shape defining member 102 may be arranged so that the entire lower main surface is in contact with the hot water surface. In that case, in order to suppress the temperature drop of the molten metal due to the shape defining member 102, it is preferable to apply a coating agent having heat insulation to the lower main surface.
  • a coating agent for example, a vermiculite coating material can be used.
  • the vermiculite coating material is a coating material in which refractory fine particles such as silicon oxide (SiO 2 ), iron oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ) are suspended in water.
  • FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment.
  • the cross-sectional view of the shape determining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG.
  • the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t ⁇ b> 1 ⁇ a width w ⁇ b> 1 for allowing the molten metal to pass through a central portion.
  • a molten metal passage portion 103 having a thickness t ⁇ b> 1 ⁇ a width w ⁇ b> 1 for allowing the molten metal to pass through a central portion.
  • the xyz coordinates in FIG. 2 coincide with those in FIG.
  • the molten metal M ⁇ b> 1 is pulled up following the casting M ⁇ b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined.
  • the molten metal pulled up from the molten metal surface following the casting M3 due to the surface film or surface tension of the molten metal is referred to as retained molten metal M2. Further, the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
  • the blowing gas nozzle (second nozzle) 104 is a nozzle that is disposed on the shape defining member 102 and fixed to the shape defining member 102.
  • the blowing gas nozzle 104 gas (hereinafter referred to as a cut-off gas) obliquely upward toward the casting M3. ).
  • the blowing gas nozzle 104 supports the shape defining member 102. Details of the blowing gas nozzle 104 will be described later. Note that the same gas as the cooling gas can be used as the cutoff gas.
  • shut-off gas and the cooling gas are the same gas
  • the shut-off gas can also be supplied from a cooling gas supply unit (not shown). That is, the equipment can be simplified, which is preferable.
  • the blowing gas nozzle 104 may not be fixed on the shape defining member 102.
  • a blowing gas nozzle 104 is connected to the actuator 105.
  • the blowing gas nozzle 104 and the shape defining member 102 are movable in the vertical direction (vertical direction) and the horizontal direction.
  • the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting.
  • the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be freely changed.
  • the cooling gas nozzle 106 is a cooling means that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) on the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface.
  • the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the blowing gas nozzle 104 and the shape defining member 102.
  • the casting M3 While the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 near the solidification interface is sequentially solidified to form the casting M3.
  • the pulling speed by the pulling machine 108 is increased, the position of the solidification interface can be increased, and when the pulling speed is decreased, the position of the solidification interface can be decreased.
  • FIG. 3 is a side view showing the positional relationship between the blowing gas nozzle 104 and the cooling gas nozzle 106 provided in the free casting apparatus according to the first embodiment.
  • a cooling gas flux for cooling the casting M3 is blown from the cooling gas nozzle 106 substantially perpendicularly to the surface of the casting M3. This is because the closer to the vertical, the better the cooling efficiency.
  • the casting speed can be increased as the tip of the cooling gas nozzle 106 is closer to the casting M3, the cooling gas flow rate is larger, and the spraying position is closer to the solidification interface.
  • the cooling gas that collides with the surface of the casting M3 branches up and down along the surface of the casting M3. Here, if there is nothing to block the cooling gas branched downward, the surface of the retained molten metal M2 is swung. When the cooling gas flow rate is increased, this peristalsis increases and the dimensional accuracy and surface quality of the casting deteriorate.
  • the free casting apparatus is provided with a blow-up gas nozzle 104 that blows a shut-off gas obliquely upward from above the shape defining member 102.
  • the blocking gas spraying position on the surface of the casting M3 needs to be located between the cooling gas spraying position on the surface of the casting M3 and the solidification interface SIF.
  • the shut-off gas can shut off the cooling gas branched downward along the surface of the casting M3. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved.
  • the casting speed can be increased and the productivity can be improved.
  • the cooling effect of the casting M3 can be enhanced by the shut-off gas. It is preferable to adjust the flow rate of the shut-off gas according to the flow rate of the cooling gas.
  • FIG. 4 is a schematic diagram for explaining the influence of the angle ⁇ formed by the flow of the cutoff gas and the surface of the casting M3.
  • the shut-off gas is sprayed so as to have an angle ⁇ with respect to the surface of the casting M3.
  • FIG. 5 is a graph for explaining the influence of the angle ⁇ formed by the flux of the cutoff gas and the surface of the casting M3.
  • the ratio (%) of the flow rate Q1 branched downward with respect to the total flow rate Q0 changes.
  • This ratio (%) can be obtained by an expression represented by 1/2 ⁇ (1-cos ⁇ ) ⁇ 100.
  • FIG. 5 is a plot of this equation.
  • the horizontal axis in FIG. 5 indicates the angle ⁇ (degrees), and the vertical axis indicates the ratio Q1 / Q0 (%) of the flow rate Q1 branched downward with respect to the total flow rate Q0.
  • the ratio Q1 / Q0 (%) increases, the surface of the retained molten metal M2 is perturbed by the cutoff gas itself. Since the ratio Q1 / Q0 (%) is preferably 5% or less, the angle ⁇ is preferably 25 degrees or less from FIG.
  • the free casting method according to Embodiment 1 will be described with reference to FIG. First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
  • start-up of the starter ST is started at a predetermined speed.
  • the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension.
  • the retained molten metal M ⁇ b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
  • the starter ST is cooled by the cooling gas blown from the cooling gas nozzle 106, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows. In this way, the casting M3 can be continuously cast.
  • the free casting apparatus is provided with the blowing gas nozzle 104 that blows off the blocking gas obliquely upward from above the shape defining member 102.
  • the blowing gas nozzle 104 blows off the blocking gas obliquely upward from above the shape defining member 102.
  • FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 7 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 6 and 7 also coincide with those in FIG.
  • the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed.
  • the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
  • the shape defining plates 102a and 102b are arranged to face each other in the x-axis direction. Further, as shown in FIG. 7, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the x-axis direction, the width w1 can be changed.
  • a laser displacement meter S1 may be provided on the shape defining plate 102a and a laser reflecting plate S2 may be provided on the shape defining plate 102b as shown in FIGS. .
  • the shape defining plates 102c and 102d are arranged to face each other in the y-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the y-axis direction, the thickness t1 can be changed.
  • the shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
  • the drive mechanism of the shape defining plate 102a will be described with reference to FIGS.
  • the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2.
  • the shape defining plates 102b, 102c, and 102d also have a drive mechanism similar to the shape defining plate 102a, but are omitted in FIGS.
  • the shape defining plate 102a is placed and fixed on a slide table T1 that can slide in the x-axis direction.
  • the slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the x-axis direction.
  • the slide table T1 is connected to a rod R1 extending from the actuator A1 in the x-axis direction.
  • the linear guides G11 and G12 and the actuator A1 are placed and fixed on a slide table T2 that can slide in the z-axis direction.
  • the slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction.
  • the slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2.
  • the linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction.
  • the actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
  • FIG. 8 is a schematic cross-sectional view of the free casting apparatus according to the second embodiment. Note that the xyz coordinates in FIG. 8 also match those in FIG.
  • the blowing gas nozzle 104 is formed on the shape defining member 102.
  • the blowing gas nozzle 204 is formed inside the shape defining member 202. In other words, a flow path for the blocking gas is formed inside the shape defining member 202.
  • the free casting apparatus according to the second embodiment by forming a flow path for the shut-off gas inside the shape defining member 202, it is possible to save space compared to the free casting apparatus according to the first embodiment.
  • a blow-up gas nozzle 204 that blows off a blocking gas in an obliquely upward direction is provided inside the shape defining member 202.
  • the blocking gas spray position on the surface of the casting M3 needs to be located between the cooling gas spray position on the surface of the casting M3 and the solidification interface SIF, as in the first embodiment. Since the influence of the angle ⁇ formed by the flux of the cutoff gas and the surface of the casting M3 is the same as that in the first embodiment, the angle ⁇ is preferably 25 degrees or less.
  • the cooling gas branched downward along the surface of the casting M3 can be blocked by the blocking gas blown obliquely upward from the blowing gas nozzle 204 formed inside the shape defining member 202. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved.
  • the cooling effect of the casting M3 can be enhanced by the shut-off gas.
  • FIG. 9 is a schematic cross-sectional view of the free casting apparatus according to the third embodiment. Note that the xyz coordinates in FIG. 9 also coincide with those in FIG.
  • the blowing gas nozzle 104 is formed on the shape defining member 102.
  • a blocking wall (convex portion) 302a for blocking the cooling gas branched downward along the surface of the casting M3 is formed.
  • the blocking wall 302a is formed on the shape defining member 302 in the vicinity of the end on the molten metal passage portion 103 side.
  • the height of the blocking wall 302a and the distance from the molten metal passage 103 are determined according to the shape of the casting M3 in the longitudinal direction. Specifically, as the height H of the blocking wall 302a is higher and the distance L from the molten metal passage portion 103 is smaller, the effect of blocking the cooling gas branched downward is improved. On the other hand, the degree of freedom of the shape of the casting M3 in the longitudinal direction is reduced, and the casting M3 extends on a straight line.
  • the width W of the blocking wall 302a is not particularly limited.
  • FIG. 10 is a schematic cross-sectional view of a free casting apparatus according to a modification of the third embodiment.
  • the blocking wall 302 a may reach the outer edge (outer end portion) of the shape defining member 302.
  • the cooling wall branched downward along the surface of the casting M3 can be blocked by the blocking wall 302a. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved. Further, by increasing the flow rate of the cooling gas as compared with the conventional case, the casting speed can be increased and the productivity can be improved.
  • FIG. 11 is a schematic cross-sectional view of a free casting apparatus according to the fourth embodiment. Note that the xyz coordinates in FIG. 11 also match those in FIG.
  • the blowing gas nozzle 204 is formed inside the shape defining member 202.
  • the blocking wall 302a is formed on the shape defining member 302.
  • the blowing gas nozzle 404 is formed inside the shape defining member 402 and the blocking wall 402a.
  • a flow path for a blocking gas is formed inside the shape defining member 402 and the blocking wall 402a.
  • tip (blowing hole) of the blowing gas nozzle 404 is formed in the upper surface of the interruption
  • the blowing gas nozzle 404 that blows off the blocking gas in an obliquely upward direction is provided inside the shape defining member 402 and the blocking wall 402a.
  • the blocking gas spray position on the surface of the casting M3 needs to be located between the cooling gas spray position on the surface of the casting M3 and the solidification interface SIF, as in the first and second embodiments. Since the influence of the angle ⁇ formed by the flux of the cutoff gas and the surface of the casting M3 is the same as that in the first embodiment, the angle ⁇ is preferably 25 degrees or less.
  • the cooling gas branched downward along the surface of the casting M3 can be blocked by both the blocking wall 402a and the blocking gas blown obliquely upward from the inside thereof. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved.
  • the cooling effect of the casting M3 can be enhanced by the shut-off gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Devices For Molds (AREA)

Abstract

This up-drawing continuous casting apparatus is provided with: a holding furnace (101) for holding the molten metal; a shape-regulating member (102), which is set near the surface of the molten metal being held in the holding furnace and is for regulating the cross-sectional shape of the casting being cast as a result of the molten metal passing therethrough; first nozzles (106) for blowing cooling gas on the casting formed by coagulation of the molten metal that has passed through the shape-regulating member; and second nozzles (104) for blowing gas diagonally upward toward the casting from below the position at which the first nozzles blow cooling gas on the casting.

Description

引上式連続鋳造装置及び引上式連続鋳造方法Pull-up type continuous casting apparatus and pull-up type continuous casting method
 本発明は引上式連続鋳造装置及び引上式連続鋳造方法に関する。 The present invention relates to a pull-up type continuous casting apparatus and a pull-up type continuous casting method.
 特許文献1には、鋳型を要しない画期的な引上式連続鋳造方法として、自由鋳造方法が提案されている。特許文献1に示したように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。 Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold. As shown in Patent Document 1, after the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface), when the starter is pulled up, the molten metal follows the starter by the surface film or surface tension of the molten metal. Derived. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
 通常の連続鋳造方法では、鋳型によって断面形状とともに長手方向の形状も規定される。とりわけ、連続鋳造方法では、鋳型内を凝固した金属(すなわち鋳物)が通り抜ける必要があるため、鋳造された鋳物は長手方向に直線状に延びた形状となる。
 これに対し、自由鋳造方法における形状規定部材は、鋳物の断面形状のみを規定し、長手方向の形状は規定しない。そして、形状規定部材は、湯面に平行な方向(すなわち水平方向)に移動可能であるから、長手方向の形状が様々な鋳物が得られる。例えば、特許文献1には、長手方向に直線状でなく、ジグザグ状あるいは螺旋状に形成された中空鋳物(すなわちパイプ)が開示されている。
In a normal continuous casting method, the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold. In particular, in the continuous casting method, since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
On the other hand, the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction. And since a shape prescription | regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained. For example, Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
特開2012-61518号公報JP 2012-61518 A
 発明者は以下の課題を見出した。
 特許文献1に記載の自由鋳造方法では、形状規定部材を介して導出された溶湯を冷却ガスによって冷却している。具体的には、凝固した直後の鋳物に冷却ガスを吹き付け、間接的に溶湯を冷却している。ここで、冷却ガス流量を増やす程、鋳造速度を高め、生産性を向上させることができる。しかしながら、冷却ガス流量を増やすと、形状規定部材から導出された溶湯が冷却ガスによって搖動し、鋳物の寸法精度や表面品質が劣化するという問題があった。
The inventor has found the following problems.
In the free casting method described in Patent Document 1, the molten metal led out through the shape defining member is cooled by a cooling gas. Specifically, the molten gas is indirectly cooled by spraying a cooling gas onto the casting immediately after solidification. Here, as the cooling gas flow rate is increased, the casting speed can be increased and the productivity can be improved. However, when the flow rate of the cooling gas is increased, there is a problem that the molten metal derived from the shape determining member is swung by the cooling gas and the dimensional accuracy and surface quality of the casting deteriorate.
 本発明は、上記を鑑みなされたものであって、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus that is excellent in dimensional accuracy and surface quality of a casting and also in productivity.
 本発明の一態様に係る引上式連続鋳造装置は、
 溶湯を保持する保持炉と、
 前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
 前記形状規定部材を通過した前記溶湯が凝固することにより形成された前記鋳物に対し、冷却ガスを吹き付ける第1のノズルと、
 前記第1のノズルによる前記鋳物への前記冷却ガスの吹付位置よりも下側から、前記鋳物に向かって斜め上方向にガスを吹き付ける第2のノズルと、を備えるものである。このような構成により、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造装置を提供することができる。
The up-drawing continuous casting apparatus according to one aspect of the present invention is as follows.
A holding furnace for holding molten metal;
A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
A first nozzle that blows cooling gas against the casting formed by solidification of the molten metal that has passed through the shape defining member;
A second nozzle that blows gas in an obliquely upward direction toward the casting from a position lower than a position at which the cooling gas is blown onto the casting by the first nozzle. With such a configuration, it is possible to provide a pulling-up-type continuous casting apparatus that is excellent in dimensional accuracy and surface quality of a casting and is also excellent in productivity.
 前記第2のノズルは、前記形状規定部材上に固定されているか、前記形状規定部材の内部に形成されていることが好ましい。これにより、省スペース化が可能となる。
 また、前記形状規定部材上において前記溶湯が通過する端部側に設けられ、かつ、引上げ方向に延びた凸部を更に有し、前記第2のノズルの先端が前記凸部の上面に形成されていることが好ましい。
The second nozzle is preferably fixed on the shape defining member or formed inside the shape defining member. Thereby, space saving is attained.
Further, the shape defining member is further provided with a convex portion provided on an end portion side through which the molten metal passes and extending in the pulling direction, and a tip of the second nozzle is formed on an upper surface of the convex portion. It is preferable.
 前記鋳物の表面と前記第2のノズルから吹き付けられる前記ガスの流束とのなす角が25度以下であることが好ましい。効果的に冷却ガスを遮断することができる。
 さらに、前記第1のノズルから吹き付けられる前記冷却ガスと前記第2のノズルから吹き付けられる前記ガスとが同じガスであることが好ましい。設備を簡素化することができる。
It is preferable that an angle formed between the surface of the casting and the flux of the gas blown from the second nozzle is 25 degrees or less. The cooling gas can be effectively shut off.
Furthermore, it is preferable that the cooling gas blown from the first nozzle and the gas blown from the second nozzle are the same gas. Equipment can be simplified.
 本発明の他の態様に係る引上式連続鋳造装置は、
 溶湯を保持する保持炉と、
 前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
 前記形状規定部材を通過した前記溶湯が凝固することにより形成された鋳物に対し、冷却ガスを吹き付けるノズルと、
 前記形状規定部材上において、前記溶湯が通過する端部側に設けられ、かつ、引上げ方向に延びた凸部と、を備えるものである。このような構成により、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造装置を提供することができる。
An up-drawing continuous casting apparatus according to another aspect of the present invention is as follows.
A holding furnace for holding molten metal;
A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
A nozzle that blows cooling gas against a casting formed by solidification of the molten metal that has passed through the shape determining member;
On the said shape determination member, it is provided in the edge part side which the said molten metal passes, and is provided with the convex part extended in the pulling-up direction. With such a configuration, it is possible to provide a pulling-up-type continuous casting apparatus that is excellent in dimensional accuracy and surface quality of a casting and is also excellent in productivity.
 本発明の一態様に係る引上式連続鋳造方法は、
 保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させ、引き上げるステップと、
 前記形状規定部材を通過した前記溶湯から形成された前記鋳物に対し、冷却ガスを吹き付けるステップと、を備え、
 前記冷却ガスを吹き付けるステップにおいて、前記鋳物への前記冷却ガスの吹付位置よりも下側から、前記鋳物に向かって斜め上方向にガスを吹き付けるものである。このような構成により、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造方法を提供することができる。前記冷却ガスの流量に応じて、前記ガスの流量を調整するステップを更に備えることが好ましい。
The up-drawing continuous casting method according to one aspect of the present invention is as follows.
Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up;
Spraying a cooling gas to the casting formed from the molten metal that has passed through the shape defining member,
In the step of spraying the cooling gas, the gas is sprayed obliquely upward toward the casting from the lower side than the position of the cooling gas spraying on the casting. With such a configuration, it is possible to provide a pulling-up-type continuous casting method that is excellent in dimensional accuracy and surface quality of a casting and is also excellent in productivity. It is preferable that the method further includes a step of adjusting the flow rate of the gas according to the flow rate of the cooling gas.
 前記鋳物に向かって斜め上方向に前記ガスを吹き付けるためのノズルは、前記形状規定部材上に固定するか、前記形状規定部材の内部に形成することが好ましい。これにより、省スペース化が可能となる。
 また、前記形状規定部材上において前記溶湯が通過する端部側に引上げ方向に延びた凸部を設け、前記ノズルの先端を前記凸部の上面に形成することが好ましい。
It is preferable that the nozzle for spraying the gas obliquely upward toward the casting is fixed on the shape defining member or formed inside the shape defining member. Thereby, space saving is attained.
Further, it is preferable that a convex portion extending in the pulling direction is provided on the end portion side through which the molten metal passes on the shape defining member, and the tip of the nozzle is formed on the upper surface of the convex portion.
 前記鋳物の表面と前記鋳物に向かって斜め上方向に吹き付けられる前記ガスの流束とのなす角を25度以下とすることが好ましい。効果的に冷却ガスを遮断することができる。
 さらに、前記冷却ガスと前記鋳物に向かって斜め上方向に吹き付けられる前記ガスとを同じガスとすることが好ましい。設備を簡素化することができる。
It is preferable that an angle formed between the surface of the casting and the flux of the gas blown obliquely upward toward the casting is 25 degrees or less. The cooling gas can be effectively shut off.
Furthermore, it is preferable that the cooling gas and the gas sprayed obliquely upward toward the casting are the same gas. Equipment can be simplified.
 本発明の他の態様に係る引上式連続鋳造方法は、
 保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させて引き上げるステップと、
 前記形状規定部材を通過した前記溶湯から形成された前記鋳物に対し、冷却ガスを吹き付けるステップと、を備え、
 前記形状規定部材上において前記溶湯が通過する端部側に引上げ方向に延びた凸部を設けるものである。このような構成により、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造方法を提供することができる。
The up-drawing continuous casting method according to another aspect of the present invention is as follows.
A step of pulling the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast; and
Spraying a cooling gas to the casting formed from the molten metal that has passed through the shape defining member,
A convex portion extending in the pulling direction is provided on the end portion side through which the molten metal passes on the shape defining member. With such a configuration, it is possible to provide a pulling-up-type continuous casting method that is excellent in dimensional accuracy and surface quality of a casting and is also excellent in productivity.
 本発明により、鋳物の寸法精度や表面品質に優れるとともに生産性にも優れる引上式連続鋳造装置を提供することを提供することができる。 According to the present invention, it is possible to provide a pull-up type continuous casting apparatus that is excellent in dimensional accuracy and surface quality of a casting and also in productivity.
実施の形態1に係る自由鋳造装置の模式的断面図である。1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. 実施の形態1に係る形状規定部材102の平面図である。3 is a plan view of a shape defining member 102 according to Embodiment 1. FIG. 実施の形態1に係る自由鋳造装置が備える吹上ガスノズル104と冷却ガスノズル106との位置関係を示す側面図である。3 is a side view showing a positional relationship between a blowing gas nozzle 104 and a cooling gas nozzle 106 provided in the free casting apparatus according to Embodiment 1. FIG. 遮断ガスの流束と鋳物M3の表面とがなす角θの影響について説明するための模式図である。It is a schematic diagram for demonstrating the influence of angle (theta) which the flux of cutoff gas and the surface of the casting M3 make. 遮断ガスの流束と鋳物M3の表面とがなす角θの影響について説明するためのグラフである。It is a graph for demonstrating the influence of angle (theta) which the flux of cutoff gas and the surface of casting M3 make. 実施の形態1の変形例に係る形状規定部材102の平面図である。6 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 実施の形態1の変形例に係る形状規定部材102の側面図である。6 is a side view of a shape defining member 102 according to a modification of the first embodiment. FIG. 実施の形態2に係る自由鋳造装置の模式的断面図である。6 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 2. FIG. 実施の形態3に係る自由鋳造装置の模式的断面図である。6 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 3. FIG. 実施の形態3の変形例に係る自由鋳造装置の模式的断面図である。FIG. 10 is a schematic cross-sectional view of a free casting apparatus according to a modification of the third embodiment. 実施の形態4に係る自由鋳造装置の模式的断面図である。6 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 4. FIG.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
(実施の形態1)
 まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置の模式的断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉101、形状規定部材102、吹上ガスノズル104、アクチュエータ105、冷却ガスノズル106、引上機108を備えている。図1におけるxy平面は水平面を構成し、z軸方向が鉛直方向である。より具体的には、z軸のプラス方向が鉛直上向きとなる。
(Embodiment 1)
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. As shown in FIG. 1, the free casting apparatus according to the first embodiment includes a molten metal holding furnace 101, a shape defining member 102, a blowing gas nozzle 104, an actuator 105, a cooling gas nozzle 106, and a pulling machine 108. The xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
 溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、所定の温度に保持する。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。ここで、保持炉の設定温度を上げると凝固界面の位置を上げることができ、保持炉の設定温度を下げると凝固界面の位置を下げることができる。なお、当然のことながら、溶湯M1は他のアルミニウム以外の金属や合金であってもよい。 The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds it at a predetermined temperature. In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. Here, when the set temperature of the holding furnace is raised, the position of the solidification interface can be raised, and when the set temperature of the holding furnace is lowered, the position of the solidification interface can be lowered. As a matter of course, the molten metal M1 may be another metal or alloy other than aluminum.
 形状規定部材102は、例えばセラミックスやステンレスなどからなり、湯面近傍に配置されている。図1の例では、形状規定部材102が、その下側(湯面側)の主面と湯面とのギャップGが0.5mm程度となるように、設置されている。ギャップGを設けることにより、形状規定部材102による溶湯の温度低下を抑制することができる。 The shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the shape defining member 102 is installed so that the gap G between the main surface on the lower side (the molten metal surface side) and the molten metal surface is about 0.5 mm. By providing the gap G, it is possible to suppress the temperature drop of the molten metal due to the shape defining member 102.
 他方、形状規定部材102は、溶湯が通過する開口部(溶湯通過部103)の周辺では、湯面から引き上げられた保持溶湯M2と接触している。そのため、形状規定部材102は、鋳造する鋳物M3の断面形状を規定するとともに、溶湯M1の表面に形成される酸化膜や溶湯M1の表面に浮遊する異物の鋳物M3への混入を防止する。図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が板状の中実鋳物である。 On the other hand, the shape determining member 102 is in contact with the retained molten metal M2 pulled up from the molten metal surface in the vicinity of the opening (the molten metal passage portion 103) through which the molten metal passes. For this reason, the shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from being mixed into the cast M3. The casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape.
 なお、形状規定部材102は、下側の主面全体が湯面に接触するように配置されてもよい。その場合、形状規定部材102による溶湯の温度低下を抑制するため、下側の主面に断熱性を有する塗型剤を塗布することが好ましい。塗型剤としては、例えば、バーミキュライト塗型材を用いることができる。バーミキュライト塗型材は、酸化ケイ素(SiO)、酸化鉄(Fe)、酸化アルミニウム(Al)等の耐火物微粒子を水に懸濁させた塗型材である。 The shape defining member 102 may be arranged so that the entire lower main surface is in contact with the hot water surface. In that case, in order to suppress the temperature drop of the molten metal due to the shape defining member 102, it is preferable to apply a coating agent having heat insulation to the lower main surface. As the coating agent, for example, a vermiculite coating material can be used. The vermiculite coating material is a coating material in which refractory fine particles such as silicon oxide (SiO 2 ), iron oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ) are suspended in water.
 図2は、実施の形態1に係る形状規定部材102の平面図である。ここで、図1の形状規定部材102の断面図は、図2のI-I断面図に相当する。図2に示すように、形状規定部材102は、例えば矩形状の平面形状を有し、中央部に溶湯が通過するための厚さt1×幅w1の矩形状の開口部(溶湯通過部103)を有している。なお、図2におけるxyz座標は、図1と一致している。 FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment. Here, the cross-sectional view of the shape determining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG. As shown in FIG. 2, the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t <b> 1 × a width w <b> 1 for allowing the molten metal to pass through a central portion. have. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.
 図1に示すように、溶湯M1は、その表面膜や表面張力により鋳物M3に追従して引き上げられ、形状規定部材102の溶湯通過部103を通過する。すなわち、溶湯M1が形状規定部材102の溶湯通過部103を通過することにより、溶湯M1に対し形状規定部材102から外力が印加され、鋳物M3の断面形状が規定される。ここで、溶湯の表面膜や表面張力によって、鋳物M3に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との境界が凝固界面SIFである。 As shown in FIG. 1, the molten metal M <b> 1 is pulled up following the casting M <b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined. Here, the molten metal pulled up from the molten metal surface following the casting M3 due to the surface film or surface tension of the molten metal is referred to as retained molten metal M2. Further, the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
 図1に示すように、吹上ガスノズル(第2のノズル)104は、形状規定部材102上に配置されているとともに、形状規定部材102に固定されたノズルである。ここで、吹上ガスノズル104は、冷却ガスノズル106から鋳物M3に吹き付けられた冷却ガスが保持溶湯M2の表面を搖動させるのと防止するため、鋳物M3に向かって斜め上方向にガス(以下、遮断ガスという)を吹き上げる。また、吹上ガスノズル104は、形状規定部材102を支持している。吹上ガスノズル104の詳細については後述する。なお、遮断ガスとしては、冷却ガスと同様のガスを用いることができる。また、遮断ガスと冷却ガスとを同一のガスとすれば、遮断ガスも冷却ガス供給部(不図示)から供給することができる。すなわち、設備を簡素化でき、好ましい。なお、吹上ガスノズル104は、形状規定部材102上に固定されていなくてもよい。 As shown in FIG. 1, the blowing gas nozzle (second nozzle) 104 is a nozzle that is disposed on the shape defining member 102 and fixed to the shape defining member 102. Here, in order to prevent the cooling gas blown from the cooling gas nozzle 106 to the casting M3 from swinging the surface of the retained molten metal M2, the blowing gas nozzle 104 gas (hereinafter referred to as a cut-off gas) obliquely upward toward the casting M3. ). The blowing gas nozzle 104 supports the shape defining member 102. Details of the blowing gas nozzle 104 will be described later. Note that the same gas as the cooling gas can be used as the cutoff gas. Further, if the shut-off gas and the cooling gas are the same gas, the shut-off gas can also be supplied from a cooling gas supply unit (not shown). That is, the equipment can be simplified, which is preferable. The blowing gas nozzle 104 may not be fixed on the shape defining member 102.
 アクチュエータ105には、吹上ガスノズル104が連結されている。アクチュエータ105によって、吹上ガスノズル104及び形状規定部材102が上下方向(鉛直方向)及び水平方向に移動可能となっている。このような構成により、鋳造の進行による湯面の低下とともに、形状規定部材102を下方向に移動させることができる。また、形状規定部材102を水平方向に移動させることができるため、鋳物M3の長手方向の形状を自由に変化させることができる。 A blowing gas nozzle 104 is connected to the actuator 105. By the actuator 105, the blowing gas nozzle 104 and the shape defining member 102 are movable in the vertical direction (vertical direction) and the horizontal direction. With such a configuration, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be freely changed.
 冷却ガスノズル106は、冷却ガス供給部(不図示)から供給される冷却ガス(空気、窒素、アルゴンなど)を鋳物M3に吹き付け、冷却する冷却手段である。冷却ガスの流量を増やすと凝固界面の位置を下げることができ、冷却ガスの流量を減らすと凝固界面の位置を上げることができる。なお、図示されていないが、冷却ガスノズル(冷却部)106も吹上ガスノズル104及び形状規定部材102の移動に合わせて、水平方向や上下方向に移動することができる。 The cooling gas nozzle 106 is a cooling means that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) on the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface. Although not shown, the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the blowing gas nozzle 104 and the shape defining member 102.
 スタータSTに連結された引上機108により鋳物M3を引き上げつつ、冷却ガスにより鋳物M3を冷却することにより、凝固界面近傍の保持溶湯M2が順次凝固し、鋳物M3が形成されていく。引上機108による引上速度を速くすると凝固界面の位置を上げることができ、引上速度を遅くすると凝固界面の位置を下げることができる。 While the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 near the solidification interface is sequentially solidified to form the casting M3. When the pulling speed by the pulling machine 108 is increased, the position of the solidification interface can be increased, and when the pulling speed is decreased, the position of the solidification interface can be decreased.
 次に、図3を参照して、実施の形態1に係る自由鋳造装置が備える吹上ガスノズル104と冷却ガスノズル106との位置関係について説明する。図3は、実施の形態1に係る自由鋳造装置が備える吹上ガスノズル104と冷却ガスノズル106との位置関係を示す側面図である。 Next, the positional relationship between the blowing gas nozzle 104 and the cooling gas nozzle 106 included in the free casting apparatus according to Embodiment 1 will be described with reference to FIG. FIG. 3 is a side view showing the positional relationship between the blowing gas nozzle 104 and the cooling gas nozzle 106 provided in the free casting apparatus according to the first embodiment.
 図3に示すように、鋳物M3を冷却するための冷却ガスの流束は、冷却ガスノズル106から鋳物M3の表面に対して略垂直に吹き付けられる。垂直に近い程、冷却効率に優れるためである。また、冷却ガスノズル106の先端が鋳物M3に近い程、冷却ガス流量が多い程、吹付位置が凝固界面に近い程、鋳造速度を高めることができる。鋳物M3の表面に衝突した冷却ガスは、鋳物M3の表面に沿って、上下方向に分岐する。ここで、下方向に分岐した冷却ガスは、何も遮るものが無ければ、保持溶湯M2の表面を搖動させる。冷却ガス流量を増やすと、この搖動が大きくなり、鋳物の寸法精度や表面品質が劣化してしまうことになる。 As shown in FIG. 3, a cooling gas flux for cooling the casting M3 is blown from the cooling gas nozzle 106 substantially perpendicularly to the surface of the casting M3. This is because the closer to the vertical, the better the cooling efficiency. The casting speed can be increased as the tip of the cooling gas nozzle 106 is closer to the casting M3, the cooling gas flow rate is larger, and the spraying position is closer to the solidification interface. The cooling gas that collides with the surface of the casting M3 branches up and down along the surface of the casting M3. Here, if there is nothing to block the cooling gas branched downward, the surface of the retained molten metal M2 is swung. When the cooling gas flow rate is increased, this peristalsis increases and the dimensional accuracy and surface quality of the casting deteriorate.
 そこで、実施の形態1に係る自由鋳造装置には、図3に示すように、形状規定部材102上から斜め上方向に遮断ガスを吹き上げる吹上ガスノズル104が設けられている。ここで、図3から明らかなように、鋳物M3の表面における遮断ガスの吹付位置は、鋳物M3の表面における冷却ガスの吹付位置と凝固界面SIFとの間に位置する必要がある。遮断ガスにより、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断することができる。そのため、保持溶湯M2の表面の搖動を抑制し、鋳物の寸法精度や表面品質を向上させることができる。また、従来よりも冷却ガスの流量を増やすことにより、鋳造速度を高め、生産性を向上させることができる。さらに、遮断ガスにより、鋳物M3の冷却効果も高めることができる。なお、冷却ガスの流量に応じて、遮断ガスの流量を調整することが好ましい。 Therefore, as shown in FIG. 3, the free casting apparatus according to the first embodiment is provided with a blow-up gas nozzle 104 that blows a shut-off gas obliquely upward from above the shape defining member 102. Here, as apparent from FIG. 3, the blocking gas spraying position on the surface of the casting M3 needs to be located between the cooling gas spraying position on the surface of the casting M3 and the solidification interface SIF. The shut-off gas can shut off the cooling gas branched downward along the surface of the casting M3. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved. Further, by increasing the flow rate of the cooling gas as compared with the conventional case, the casting speed can be increased and the productivity can be improved. Furthermore, the cooling effect of the casting M3 can be enhanced by the shut-off gas. It is preferable to adjust the flow rate of the shut-off gas according to the flow rate of the cooling gas.
 次に、図4、5を参照して、遮断ガスの流束と鋳物M3の表面とがなす角θの影響について説明する。図4は、遮断ガスの流束と鋳物M3の表面とがなす角θの影響について説明するための模式図である。図4に示すように、吹上ガスノズル104から吹き付けられる遮断ガスの全流量をQ0、下方向に分岐した流量をQ1、上方向に分岐した流量をQ2とすると、Q0=Q1+Q2が成立する。ここで、遮断ガスは、鋳物M3の表面に対して角度θとなるように、吹き付けられている。 Next, with reference to FIGS. 4 and 5, the influence of the angle θ formed by the flow of the blocking gas and the surface of the casting M3 will be described. FIG. 4 is a schematic diagram for explaining the influence of the angle θ formed by the flow of the cutoff gas and the surface of the casting M3. As shown in FIG. 4, when the total flow rate of the blocking gas blown from the blowing gas nozzle 104 is Q0, the flow rate branched downward is Q1, and the flow rate branched upward is Q2, Q0 = Q1 + Q2 is established. Here, the shut-off gas is sprayed so as to have an angle θ with respect to the surface of the casting M3.
 図5は、遮断ガスの流束と鋳物M3の表面とがなす角θの影響について説明するためのグラフである。図5に示すように、遮断ガスの流束と鋳物M3の表面とがなす角θが変化すると、全流量Q0に対する下方向に分岐した流量Q1の割合(%)が変化する。この割合(%)は、1/2×(1-cosθ)×100で表される式により求めることができる。図5は、この式をプロットしたものである。図5の横軸は角度θ(度)、縦軸は全流量Q0に対する下方向に分岐した流量Q1の割合Q1/Q0(%)を示している。割合Q1/Q0(%)が大きくなると、遮断ガス自体によって保持溶湯M2の表面に搖動が生じる。割合Q1/Q0(%)は5%以下であることが好ましいため、図5から角度θは25度以下であることが好ましい。 FIG. 5 is a graph for explaining the influence of the angle θ formed by the flux of the cutoff gas and the surface of the casting M3. As shown in FIG. 5, when the angle θ formed by the flow of the shut-off gas and the surface of the casting M3 changes, the ratio (%) of the flow rate Q1 branched downward with respect to the total flow rate Q0 changes. This ratio (%) can be obtained by an expression represented by 1/2 × (1-cos θ) × 100. FIG. 5 is a plot of this equation. The horizontal axis in FIG. 5 indicates the angle θ (degrees), and the vertical axis indicates the ratio Q1 / Q0 (%) of the flow rate Q1 branched downward with respect to the total flow rate Q0. When the ratio Q1 / Q0 (%) increases, the surface of the retained molten metal M2 is perturbed by the cutoff gas itself. Since the ratio Q1 / Q0 (%) is preferably 5% or less, the angle θ is preferably 25 degrees or less from FIG.
 次に、図1を参照して、実施の形態1に係る自由鋳造方法について説明する。
 まず、スタータSTを降下させ、形状規定部材102の溶湯通過部103を通して、スタータSTの先端部を溶湯M1に浸漬させる。
Next, the free casting method according to Embodiment 1 will be described with reference to FIG.
First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
 次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、表面膜や表面張力によって、スタータSTに追従して湯面から引き上げられた保持溶湯M2が形成される。図1に示すように、保持溶湯M2は、形状規定部材102の溶湯通過部103に形成される。つまり、形状規定部材102により、保持溶湯M2に形状が付与される。 Next, start-up of the starter ST is started at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension. As shown in FIG. 1, the retained molten metal M <b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
 次に、スタータSTは、冷却ガスノズル106から吹き出される冷却ガスにより冷却されているため、保持溶湯M2が上側から下側に向かって順に凝固し、鋳物M3が成長していく。このようにして、鋳物M3を連続鋳造することができる。 Next, since the starter ST is cooled by the cooling gas blown from the cooling gas nozzle 106, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows. In this way, the casting M3 can be continuously cast.
 上述の通り、実施の形態1に係る自由鋳造装置には、形状規定部材102上から斜め上方向に遮断ガスを吹き上げる吹上ガスノズル104が設けられている。この遮断ガスにより、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断することができる。そのため、保持溶湯M2の表面の搖動を抑制し、鋳物の寸法精度や表面品質を向上させることができる。 As described above, the free casting apparatus according to the first embodiment is provided with the blowing gas nozzle 104 that blows off the blocking gas obliquely upward from above the shape defining member 102. By this shut-off gas, the cooling gas branched downward along the surface of the casting M3 can be shut off. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved.
(実施の形態1の変形例)
 次に、図6、7を参照して、実施の形態1の変形例に係る自由鋳造装置について説明する。図6は、実施の形態1の変形例に係る形状規定部材102の平面図である。図7は、実施の形態1の変形例に係る形状規定部材102の側面図である。なお、図6、7におけるxyz座標も、図1と一致している。
(Modification of Embodiment 1)
Next, a free casting apparatus according to a modification of the first embodiment will be described with reference to FIGS. FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 7 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 6 and 7 also coincide with those in FIG.
 図2に示された実施の形態1に係る形状規定部材102は、1枚の板から構成されていたため、溶湯通過部103の厚さt1、幅w1は固定されていた。これに対し、実施の形態1の変形例に係る形状規定部材102は、図6に示すように、4枚の矩形状の形状規定板102a、102b、102c、102dを備えている。すなわち、実施の形態1の変形例に係る形状規定部材102は、複数に分割されている。このような構成により、溶湯通過部103の厚さt1、幅w1を変化させることができる。また、4枚の矩形状の形状規定板102a、102b、102c、102dは、同調してz軸方向に移動することができる。 Since the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed. In contrast, the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
 図6に示すように、形状規定板102a、102bは、x軸方向に並んで対抗配置されている。また、図7に示すように、形状規定板102a、102bは、z軸方向には同じ高さで配置されている。形状規定板102a、102bの間隔が、溶湯通過部103の幅w1を規定している。そして、形状規定板102a、102bが、独立してx軸方向に移動可能であるため、幅w1を変化させることができる。なお、溶湯通過部103の幅w1を測定するために、図6、7に示すように、形状規定板102a上にレーザ変位計S1、形状規定板102b上にレーザ反射板S2が設けてもよい。 As shown in FIG. 6, the shape defining plates 102a and 102b are arranged to face each other in the x-axis direction. Further, as shown in FIG. 7, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the x-axis direction, the width w1 can be changed. In order to measure the width w1 of the molten metal passage portion 103, a laser displacement meter S1 may be provided on the shape defining plate 102a and a laser reflecting plate S2 may be provided on the shape defining plate 102b as shown in FIGS. .
 また、図6に示すように、形状規定板102c、102dは、y軸方向に並んで対抗配置されている。また、形状規定板102c、102cは、z軸方向には同じ高さで配置されている。形状規定板102c、102dの間隔が、溶湯通過部103の厚さt1を規定している。そして、形状規定板102c、102dが、独立してy軸方向に移動可能であるため、厚さt1を変化させることができる。
 形状規定板102a、102bは、形状規定板102c、102dの上側に接触するように配置されている。
Further, as shown in FIG. 6, the shape defining plates 102c and 102d are arranged to face each other in the y-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the y-axis direction, the thickness t1 can be changed.
The shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
 次に、図6、7を参照して、形状規定板102aの駆動機構について説明する。図6、7に示すように、形状規定板102aの駆動機構は、スライドテーブルT1、T2、リニアガイドG11、G12、G21、G22、アクチュエータA1、A2、ロッドR1、R2を備えている。なお、形状規定板102b、102c、102dも形状規定板102aと同様に駆動機構を備えているが、図6、7では省略されている。 Next, the drive mechanism of the shape defining plate 102a will be described with reference to FIGS. As shown in FIGS. 6 and 7, the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2. The shape defining plates 102b, 102c, and 102d also have a drive mechanism similar to the shape defining plate 102a, but are omitted in FIGS.
 図6、7に示すように、形状規定板102aは、x軸方向にスライド可能なスライドテーブルT1に載置、固定されている。スライドテーブルT1は、x軸方向に平行して延設された1対のリニアガイドG11、G12上に、摺動自在に載置されている。また、スライドテーブルT1は、アクチュエータA1からx軸方向に延設されたロッドR1に連結されている。以上のような構成により、形状規定板102aは、x軸方向にスライドすることができる。 As shown in FIGS. 6 and 7, the shape defining plate 102a is placed and fixed on a slide table T1 that can slide in the x-axis direction. The slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the x-axis direction. The slide table T1 is connected to a rod R1 extending from the actuator A1 in the x-axis direction. With the configuration described above, the shape defining plate 102a can slide in the x-axis direction.
 また、図6、7に示すように、リニアガイドG11、G12、及びアクチュエータA1は、z軸方向にスライド可能なスライドテーブルT2上に載置、固定されている。スライドテーブルT2は、z軸方向に平行して延設された1対のリニアガイドG21、G22上に、摺動自在に載置されている。また、スライドテーブルT2は、アクチュエータA2からz軸方向に延設されたロッドR2に連結されている。リニアガイドG21、G22、及びアクチュエータA2は、水平な床面や台座(不図示)などに固定されている。以上のような構成により、形状規定板102aは、z軸方向にスライドすることができる。なお、アクチュエータA1、A2として、油圧シリンダ、エアシリンダ、モータなどを挙げることができる。 6 and 7, the linear guides G11 and G12 and the actuator A1 are placed and fixed on a slide table T2 that can slide in the z-axis direction. The slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction. The slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2. The linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction. The actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
(実施の形態2)
 次に、図8を参照して、実施の形態2に係る自由鋳造装置について説明する。図8は、実施の形態2に係る自由鋳造装置の模式的断面図である。なお、図8におけるxyz座標も、図1と一致している。実施の形態1に係る自由鋳造装置では、吹上ガスノズル104が形状規定部材102上に形成されていた。これに対し、実施の形態2に係る自由鋳造装置では、吹上ガスノズル204が形状規定部材202の内部に形成されている。換言すると、形状規定部材202の内部に遮断ガス用の流路が形成されている。実施の形態2に係る自由鋳造装置では、形状規定部材202の内部に遮断ガス用の流路を形成することにより、実施の形態1に係る自由鋳造装置よりも省スペース化が可能となる。
(Embodiment 2)
Next, with reference to FIG. 8, the free casting apparatus which concerns on Embodiment 2 is demonstrated. FIG. 8 is a schematic cross-sectional view of the free casting apparatus according to the second embodiment. Note that the xyz coordinates in FIG. 8 also match those in FIG. In the free casting apparatus according to the first embodiment, the blowing gas nozzle 104 is formed on the shape defining member 102. On the other hand, in the free casting apparatus according to the second embodiment, the blowing gas nozzle 204 is formed inside the shape defining member 202. In other words, a flow path for the blocking gas is formed inside the shape defining member 202. In the free casting apparatus according to the second embodiment, by forming a flow path for the shut-off gas inside the shape defining member 202, it is possible to save space compared to the free casting apparatus according to the first embodiment.
 実施の形態2に係る自由鋳造装置では、斜め上方向に遮断ガスを吹き上げる吹上ガスノズル204が、形状規定部材202の内部に設けられている。一方、鋳物M3の表面における遮断ガスの吹付位置は、実施の形態1と同様に、鋳物M3の表面における冷却ガスの吹付位置と凝固界面SIFとの間に位置する必要がある。なお、遮断ガスの流束と鋳物M3の表面とがなす角θの影響については、実施の形態1と同様であるため、角度θは25度以下であることが好ましい。 In the free casting apparatus according to the second embodiment, a blow-up gas nozzle 204 that blows off a blocking gas in an obliquely upward direction is provided inside the shape defining member 202. On the other hand, the blocking gas spray position on the surface of the casting M3 needs to be located between the cooling gas spray position on the surface of the casting M3 and the solidification interface SIF, as in the first embodiment. Since the influence of the angle θ formed by the flux of the cutoff gas and the surface of the casting M3 is the same as that in the first embodiment, the angle θ is preferably 25 degrees or less.
 形状規定部材202の内部に形成された吹上ガスノズル204から斜め上方向に吹き上げられる遮断ガスにより、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断することができる。そのため、保持溶湯M2の表面の搖動を抑制し、鋳物の寸法精度や表面品質を向上させることができる。他方、従来よりも冷却ガスの流量を増やすことにより、鋳造速度を高め、生産性を向上させることができる。さらに、遮断ガスにより、鋳物M3の冷却効果も高めることができる。 The cooling gas branched downward along the surface of the casting M3 can be blocked by the blocking gas blown obliquely upward from the blowing gas nozzle 204 formed inside the shape defining member 202. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved. On the other hand, by increasing the flow rate of the cooling gas as compared with the prior art, the casting speed can be increased and the productivity can be improved. Furthermore, the cooling effect of the casting M3 can be enhanced by the shut-off gas.
(実施の形態3)
 次に、図9を参照して、実施の形態3に係る自由鋳造装置について説明する。図9は、実施の形態3に係る自由鋳造装置の模式的断面図である。なお、図9におけるxyz座標も、図1と一致している。実施の形態1に係る自由鋳造装置では、吹上ガスノズル104が形状規定部材102上に形成されていた。これに対し、実施の形態3に係る自由鋳造装置では、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断するための遮断壁(凸部)302aが形成されている。遮断壁302aは、形状規定部材302上において溶湯通過部103側の端部近傍に形成されている。
(Embodiment 3)
Next, with reference to FIG. 9, the free casting apparatus which concerns on Embodiment 3 is demonstrated. FIG. 9 is a schematic cross-sectional view of the free casting apparatus according to the third embodiment. Note that the xyz coordinates in FIG. 9 also coincide with those in FIG. In the free casting apparatus according to the first embodiment, the blowing gas nozzle 104 is formed on the shape defining member 102. On the other hand, in the free casting apparatus according to the third embodiment, a blocking wall (convex portion) 302a for blocking the cooling gas branched downward along the surface of the casting M3 is formed. The blocking wall 302a is formed on the shape defining member 302 in the vicinity of the end on the molten metal passage portion 103 side.
 ここで、鋳物M3の長手方向の形状に応じて、遮断壁302aの高さや溶湯通過部103からの距離が定まる。具体的には、遮断壁302aの高さHが高い程、溶湯通過部103からの距離Lが小さい程、下方向に分岐した冷却ガスを遮断する効果は向上する。他方、鋳物M3の長手方向の形状の自由度は小さくなり、直線上に延びた鋳物M3になる。
 なお、遮断壁302aの幅Wは特に限定されない。
Here, the height of the blocking wall 302a and the distance from the molten metal passage 103 are determined according to the shape of the casting M3 in the longitudinal direction. Specifically, as the height H of the blocking wall 302a is higher and the distance L from the molten metal passage portion 103 is smaller, the effect of blocking the cooling gas branched downward is improved. On the other hand, the degree of freedom of the shape of the casting M3 in the longitudinal direction is reduced, and the casting M3 extends on a straight line.
The width W of the blocking wall 302a is not particularly limited.
 ここで、図10は、実施の形態3の変形例に係る自由鋳造装置の模式的断面図である。例えば、図10に示すように、遮断壁302aが形状規定部材302の外縁(外側の端部)に達していてもよい。 Here, FIG. 10 is a schematic cross-sectional view of a free casting apparatus according to a modification of the third embodiment. For example, as shown in FIG. 10, the blocking wall 302 a may reach the outer edge (outer end portion) of the shape defining member 302.
 実施の形態3に係る自由鋳造装置では、遮断壁302aにより、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断することができる。そのため、保持溶湯M2の表面の搖動を抑制し、鋳物の寸法精度や表面品質を向上させることができる。また、従来よりも冷却ガスの流量を増やすことにより、鋳造速度を高め、生産性を向上させることができる。 In the free casting apparatus according to the third embodiment, the cooling wall branched downward along the surface of the casting M3 can be blocked by the blocking wall 302a. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved. Further, by increasing the flow rate of the cooling gas as compared with the conventional case, the casting speed can be increased and the productivity can be improved.
(実施の形態4)
 次に、図11を参照して、実施の形態4に係る自由鋳造装置について説明する。図11は、実施の形態4に係る自由鋳造装置の模式的断面図である。なお、図11におけるxyz座標も、図1と一致している。実施の形態2に係る自由鋳造装置では、吹上ガスノズル204が形状規定部材202の内部に形成されていた。また、実施の形態3に係る自由鋳造装置では、遮断壁302aが形状規定部材302上に形成されていた。これに対し、実施の形態4に係る自由鋳造装置では、吹上ガスノズル404が形状規定部材402及び遮断壁402aの内部に形成されている。換言すると、形状規定部材402及び遮断壁402aの内部に遮断ガス用の流路が形成されている。また、吹上ガスノズル404の先端(吹出孔)が、遮断壁402aの上面に形成されている。
(Embodiment 4)
Next, a free casting apparatus according to Embodiment 4 will be described with reference to FIG. FIG. 11 is a schematic cross-sectional view of a free casting apparatus according to the fourth embodiment. Note that the xyz coordinates in FIG. 11 also match those in FIG. In the free casting apparatus according to the second embodiment, the blowing gas nozzle 204 is formed inside the shape defining member 202. In the free casting apparatus according to the third embodiment, the blocking wall 302a is formed on the shape defining member 302. On the other hand, in the free casting apparatus according to Embodiment 4, the blowing gas nozzle 404 is formed inside the shape defining member 402 and the blocking wall 402a. In other words, a flow path for a blocking gas is formed inside the shape defining member 402 and the blocking wall 402a. Moreover, the front-end | tip (blowing hole) of the blowing gas nozzle 404 is formed in the upper surface of the interruption | blocking wall 402a.
 実施の形態4に係る自由鋳造装置では、斜め上方向に遮断ガスを吹き上げる吹上ガスノズル404が、形状規定部材402及び遮断壁402aの内部に設けられている。一方、鋳物M3の表面における遮断ガスの吹付位置は、実施の形態1、2と同様に、鋳物M3の表面における冷却ガスの吹付位置と凝固界面SIFとの間に位置する必要がある。なお、遮断ガスの流束と鋳物M3の表面とがなす角θの影響については、実施の形態1と同様であるため、角度θは25度以下であることが好ましい。 In the free casting apparatus according to the fourth embodiment, the blowing gas nozzle 404 that blows off the blocking gas in an obliquely upward direction is provided inside the shape defining member 402 and the blocking wall 402a. On the other hand, the blocking gas spray position on the surface of the casting M3 needs to be located between the cooling gas spray position on the surface of the casting M3 and the solidification interface SIF, as in the first and second embodiments. Since the influence of the angle θ formed by the flux of the cutoff gas and the surface of the casting M3 is the same as that in the first embodiment, the angle θ is preferably 25 degrees or less.
 遮断壁402a及びその内部から斜め上方向に吹き上げられる遮断ガスの両方により、鋳物M3の表面に沿って下方向に分岐した冷却ガスを遮断することができる。そのため、保持溶湯M2の表面の搖動を抑制し、鋳物の寸法精度や表面品質を向上させることができる。他方、従来よりも冷却ガスの流量を増やすことにより、鋳造速度を高め、生産性を向上させることができる。さらに、遮断ガスにより、鋳物M3の冷却効果も高めることができる。 The cooling gas branched downward along the surface of the casting M3 can be blocked by both the blocking wall 402a and the blocking gas blown obliquely upward from the inside thereof. Therefore, the surface fluctuation of the retained molten metal M2 can be suppressed, and the dimensional accuracy and surface quality of the casting can be improved. On the other hand, by increasing the flow rate of the cooling gas as compared with the prior art, the casting speed can be increased and the productivity can be improved. Furthermore, the cooling effect of the casting M3 can be enhanced by the shut-off gas.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
101 溶湯保持炉
102、202、302、402 形状規定部材
102a~102d 形状規定板
103 溶湯通過部
104、204、404 吹上ガスノズル
105 アクチュエータ
106 冷却ガスノズル
108 引上機
302a、402a 遮断壁(凸部)
A1、A2 アクチュエータ
G11、G12、G21、G22 リニアガイド
M1 溶湯
M2 保持溶湯
M3 鋳物
R1、R2 ロッド
S1 レーザ変位計
S2 レーザ反射板
SIF 凝固界面
ST スタータ
T1、T2 スライドテーブル
101 Molten metal holding furnaces 102, 202, 302, 402 Shape defining members 102a to 102d Shape defining plate 103 Molten gas passing sections 104, 204, 404 Blowing gas nozzle 105 Actuator 106 Cooling gas nozzle 108 Lifting machines 302a, 402a Barrier wall (convex part)
A1, A2 Actuator G11, G12, G21, G22 Linear guide M1 Molten metal M2 Holding molten metal M3 Casting R1, R2 Rod S1 Laser displacement meter S2 Laser reflector SIF Solidification interface ST Starter T1, T2 Slide table

Claims (15)

  1.  溶湯を保持する保持炉と、
     前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
     前記形状規定部材を通過した前記溶湯が凝固することにより形成された前記鋳物に対し、冷却ガスを吹き付ける第1のノズルと、
     前記第1のノズルによる前記鋳物への前記冷却ガスの吹付位置よりも下側から、前記鋳物に向かって斜め上方向にガスを吹き付ける第2のノズルと、を備える引上式連続鋳造装置。
    A holding furnace for holding molten metal;
    A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
    A first nozzle that blows cooling gas against the casting formed by solidification of the molten metal that has passed through the shape defining member;
    An up-drawing continuous casting apparatus comprising: a second nozzle that blows gas obliquely upward toward the casting from a position lower than a position where the cooling gas is blown onto the casting by the first nozzle.
  2.  前記第2のノズルが、前記形状規定部材上に固定されている、
    請求項1に記載の引上式連続鋳造装置。
    The second nozzle is fixed on the shape defining member;
    The up-drawing continuous casting apparatus according to claim 1.
  3.  前記第2のノズルが、前記形状規定部材の内部に形成されている、
    請求項1に記載の引上式連続鋳造装置。
    The second nozzle is formed inside the shape defining member;
    The up-drawing continuous casting apparatus according to claim 1.
  4.  前記形状規定部材上において、前記溶湯が通過する端部側に設けられ、かつ、引上げ方向に延びた凸部を更に有し、
     前記第2のノズルの先端が前記凸部の上面に形成されている、
    請求項3に記載の引上式連続鋳造装置。
    On the shape defining member, further having a convex portion provided on the end side through which the molten metal passes and extending in the pulling direction,
    The tip of the second nozzle is formed on the upper surface of the convex portion,
    The up-drawing continuous casting apparatus according to claim 3.
  5.  前記鋳物の表面と前記第2のノズルから吹き付けられる前記ガスの流束とのなす角が25度以下である、
    請求項1~4のいずれか一項に記載の引上式連続鋳造装置。
    An angle formed by the surface of the casting and the flux of the gas blown from the second nozzle is 25 degrees or less,
    The up-drawing continuous casting apparatus according to any one of claims 1 to 4.
  6.  前記第1のノズルから吹き付けられる前記冷却ガスと前記第2のノズルから吹き付けられる前記ガスとが同じガスである、
    請求項1~5のいずれか一項に記載の引上式連続鋳造装置。
    The cooling gas blown from the first nozzle and the gas blown from the second nozzle are the same gas,
    The up-drawing continuous casting apparatus according to any one of claims 1 to 5.
  7.  溶湯を保持する保持炉と、
     前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
     前記形状規定部材を通過した前記溶湯が凝固することにより形成された鋳物に対し、冷却ガスを吹き付けるノズルと、
     前記形状規定部材上において、前記溶湯が通過する端部側に設けられ、かつ、引上げ方向に延びた凸部と、を備える引上式連続鋳造装置。
    A holding furnace for holding molten metal;
    A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
    A nozzle that blows cooling gas against a casting formed by solidification of the molten metal that has passed through the shape determining member;
    A pulling-up-type continuous casting apparatus comprising: a convex portion provided on an end portion side through which the molten metal passes and extending in a pulling direction on the shape defining member.
  8.  保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させ、引き上げるステップと、
     前記形状規定部材を通過した前記溶湯から形成された前記鋳物に対し、冷却ガスを吹き付けるステップと、を備え、
     前記冷却ガスを吹き付けるステップにおいて、前記鋳物への前記冷却ガスの吹付位置よりも下側から、前記鋳物に向かって斜め上方向にガスを吹き付ける、引上式連続鋳造方法。
    Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up;
    Spraying a cooling gas to the casting formed from the molten metal that has passed through the shape defining member,
    The pulling-up-type continuous casting method, wherein, in the step of spraying the cooling gas, the gas is sprayed obliquely upward toward the casting from the lower side than the position of the cooling gas spraying on the casting.
  9.  前記冷却ガスの流量に応じて、前記ガスの流量を調整するステップを更に備える、
    請求項8に記載の引上式連続鋳造方法。
    Adjusting the flow rate of the gas according to the flow rate of the cooling gas;
    The pulling-up-type continuous casting method according to claim 8.
  10.  前記鋳物に向かって斜め上方向に前記ガスを吹き付けるためのノズルを、前記形状規定部材上に固定する、
    請求項8又は9に記載の引上式連続鋳造方法。
    A nozzle for blowing the gas in an obliquely upward direction toward the casting is fixed on the shape defining member.
    The pulling-up-type continuous casting method according to claim 8 or 9.
  11.  前記鋳物に向かって斜め上方向に前記ガスを吹き付けるためのノズルを、前記形状規定部材の内部に形成する、
    請求項8又は9に記載の引上式連続鋳造方法。
    A nozzle for blowing the gas obliquely upward toward the casting is formed inside the shape defining member;
    The pulling-up-type continuous casting method according to claim 8 or 9.
  12.  前記形状規定部材上において、前記溶湯が通過する端部側に引上げ方向に延びた凸部を設け、
     前記ノズルの先端を前記凸部の上面に形成する、
    請求項11に記載の引上式連続鋳造方法。
    On the shape defining member, a convex portion extending in the pulling direction is provided on the end side through which the molten metal passes,
    Forming the tip of the nozzle on the upper surface of the convex portion;
    The pulling-up-type continuous casting method according to claim 11.
  13.  前記鋳物の表面と前記鋳物に向かって斜め上方向に吹き付けられる前記ガスの流束とのなす角を25度以下とする、
    請求項8~12のいずれか一項に記載の引上式連続鋳造方法。
    The angle formed by the surface of the casting and the flux of the gas blown obliquely upward toward the casting is 25 degrees or less.
    The up-drawing continuous casting method according to any one of claims 8 to 12.
  14.  前記冷却ガスと前記鋳物に向かって斜め上方向に吹き付けられる前記ガスとを同じガスとする、
    請求項8~13のいずれか一項に記載の引上式連続鋳造方法。
    The same gas as the cooling gas and the gas sprayed obliquely upward toward the casting,
    The pulling-up-type continuous casting method according to any one of claims 8 to 13.
  15.  保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させて引き上げるステップと、
     前記形状規定部材を通過した前記溶湯から形成された前記鋳物に対し、冷却ガスを吹き付けるステップと、を備え、
     前記形状規定部材上において前記溶湯が通過する端部側に引上げ方向に延びた凸部を設ける、引上式連続鋳造方法。
    A step of pulling the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast; and
    Spraying a cooling gas to the casting formed from the molten metal that has passed through the shape defining member,
    A pulling-up-type continuous casting method, wherein a convex portion extending in a pulling direction is provided on an end portion side through which the molten metal passes on the shape determining member.
PCT/JP2013/002453 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method WO2014167598A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/781,210 US20160052051A1 (en) 2013-04-10 2013-04-10 Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP2015510948A JPWO2014167598A1 (en) 2013-04-10 2013-04-10 Pull-up type continuous casting apparatus and pull-up type continuous casting method
CN201380075496.2A CN105102152A (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method
RU2015147723A RU2015147723A (en) 2013-04-10 2013-04-10 CONTINUOUS CASTING DEVICE WITH EXTRACTION OF Billets UP AND METHOD OF CONTINUOUS CASTING UP
AU2013386130A AU2013386130A1 (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method
CA2908090A CA2908090A1 (en) 2013-04-10 2013-04-10 Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
PCT/JP2013/002453 WO2014167598A1 (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method
EP13881719.2A EP2985095A4 (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method
BR112015025525A BR112015025525A2 (en) 2013-04-10 2013-04-10 pull-up continuous casting apparatus and pull-up continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002453 WO2014167598A1 (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method

Publications (1)

Publication Number Publication Date
WO2014167598A1 true WO2014167598A1 (en) 2014-10-16

Family

ID=51689036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002453 WO2014167598A1 (en) 2013-04-10 2013-04-10 Up-drawing continuous casting apparatus and up-drawing continuous casting method

Country Status (9)

Country Link
US (1) US20160052051A1 (en)
EP (1) EP2985095A4 (en)
JP (1) JPWO2014167598A1 (en)
CN (1) CN105102152A (en)
AU (1) AU2013386130A1 (en)
BR (1) BR112015025525A2 (en)
CA (1) CA2908090A1 (en)
RU (1) RU2015147723A (en)
WO (1) WO2014167598A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477667B2 (en) * 2016-11-08 2019-03-06 トヨタ自動車株式会社 Molded body manufacturing method and molded body manufacturing apparatus
CN109604550B (en) * 2018-12-27 2020-02-21 河南理工大学 Magnesium alloy vertical semi-continuous casting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Continuous crystal growth method
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1286510B (en) * 1962-11-23 1969-01-09 Siemens Ag Process for the production of band-shaped single crystals consisting of semiconductor material by pulling from a melt
JPS58161990A (en) * 1982-03-16 1983-09-26 Atsumi Ono Continuous casting method for single crystal molding
JPS58179541A (en) * 1982-04-13 1983-10-20 Atsumi Ono Method and device for continuous casting of metallic material having smooth surface
JPS58184043A (en) * 1982-04-23 1983-10-27 Atsumi Ono Method and device for upward open type continuous casting of metallic material
JPS61262450A (en) * 1985-05-17 1986-11-20 Kawasaki Steel Corp Continuous casting method for molten metal
JP2996378B2 (en) * 1993-12-03 1999-12-27 矢崎総業株式会社 Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Continuous crystal growth method
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985095A4

Also Published As

Publication number Publication date
EP2985095A1 (en) 2016-02-17
BR112015025525A2 (en) 2017-07-18
US20160052051A1 (en) 2016-02-25
EP2985095A4 (en) 2016-04-27
AU2013386130A1 (en) 2015-10-15
CA2908090A1 (en) 2014-10-16
RU2015147723A (en) 2017-05-16
JPWO2014167598A1 (en) 2017-02-16
CN105102152A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP2015167987A (en) Drawing-up type continuous casting device and drawing-up type continuous casting method
WO2014167598A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6036710B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6119578B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6616343B2 (en) Pull-up continuous casting equipment
JP2014144484A (en) Hoisting type continuous casting device
JP6701615B2 (en) Pull-up continuous casting apparatus and pull-up continuous casting method
JP6003840B2 (en) Pull-up continuous casting method
JP2015167989A (en) Drawing-up type continuous casting method
JP2014104468A (en) Draw-up continuous casting apparatus and draw-up type continuous casting method
JP6003839B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6156222B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP2014144483A (en) Hoisting type continuous casting device and hoisting type continuous casting method
WO2015015687A1 (en) Upward-drawing continuous casting method, and upward-drawing continuous casting apparatus
WO2015015685A1 (en) Upward-drawing continuous casting method, upward-drawing continuous casting apparatus, and casting
JP6265172B2 (en) Pull-up continuous casting equipment
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
JP6036711B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP2018075628A (en) Pulling up type continuous casting device
JP2015226915A (en) Up-drawing continuous casting apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075496.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510948

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2908090

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013881719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013881719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14781210

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013386130

Country of ref document: AU

Date of ref document: 20130410

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015147723

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025525

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015025525

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151006