JP6265172B2 - Pull-up continuous casting equipment - Google Patents

Pull-up continuous casting equipment Download PDF

Info

Publication number
JP6265172B2
JP6265172B2 JP2015120515A JP2015120515A JP6265172B2 JP 6265172 B2 JP6265172 B2 JP 6265172B2 JP 2015120515 A JP2015120515 A JP 2015120515A JP 2015120515 A JP2015120515 A JP 2015120515A JP 6265172 B2 JP6265172 B2 JP 6265172B2
Authority
JP
Japan
Prior art keywords
molten metal
negative pressure
pressure region
casting
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015120515A
Other languages
Japanese (ja)
Other versions
JP2017001084A (en
Inventor
直晋 杉浦
直晋 杉浦
時春 福田
時春 福田
真弘 久野
真弘 久野
盾 八百川
盾 八百川
岩田 靖
靖 岩田
杉山 義雄
義雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015120515A priority Critical patent/JP6265172B2/en
Priority to CN201610364296.4A priority patent/CN106238693A/en
Priority to US15/168,918 priority patent/US20160361761A1/en
Priority to EP16172806.8A priority patent/EP3106246A1/en
Priority to KR1020160071478A priority patent/KR20160147657A/en
Publication of JP2017001084A publication Critical patent/JP2017001084A/en
Application granted granted Critical
Publication of JP6265172B2 publication Critical patent/JP6265172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/006Continuous casting of metals, i.e. casting in indefinite lengths of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1245Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は引上式連続鋳造装置及び引上式連続鋳造方法に関する。   The present invention relates to an up-drawing continuous casting apparatus and an up-drawing continuous casting method.

特許文献1には、鋳型を要しない引上式の連続鋳造方法が開示されている。特許文献1に示すように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。   Patent Document 1 discloses a pull-up type continuous casting method that does not require a mold. As shown in Patent Document 1, when a starter is immersed in the surface of molten metal (molten metal) (that is, the molten metal surface) and then the starter is pulled up, the molten metal is derived by following the starter by the surface film and surface tension of the molten metal. Is done. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.

特開平9−248657号公報JP-A-9-248657

発明者は以下の課題を見出した。
特許文献1に記載の連続鋳造方法において、中空形状の鋳物(中空鋳物)を鋳造する場合がある。この場合、凝固界面近傍の中空鋳物の外周面及び内周面に冷却ガスを吹き付けて、湯面から導出された溶湯を間接的に冷却することにより、湯面から導出された溶湯の凝固を促進させることができる。しかしながら、凝固界面近傍の中空鋳物の内周面に冷却ガスを吹き付けると、その気流の影響により、吹き出された冷却ガスの流れる流路と形状規定部材の上面との間の空間に負圧領域が発生し、湯面から導出された溶湯がその負圧に引っ張られて中空鋳物の内側に流れ込んでしまうという問題があった。
The inventor has found the following problems.
In the continuous casting method described in Patent Document 1, a hollow casting (hollow casting) may be cast. In this case, solidification of the melt derived from the molten metal surface is promoted by blowing cooling gas to the outer peripheral surface and inner peripheral surface of the hollow casting near the solidification interface and indirectly cooling the molten metal derived from the molten metal surface. Can be made. However, when cooling gas is blown onto the inner peripheral surface of the hollow casting near the solidification interface, a negative pressure region is formed in the space between the flow path of the blown cooling gas and the upper surface of the shape defining member due to the influence of the air flow. There was a problem that the molten metal led out from the molten metal surface was pulled by the negative pressure and flowed into the hollow casting.

本発明は、上記を鑑みなされたものであって、湯面から導出された溶湯が中空鋳物の内側に流れ込むのを抑制することが可能な引上式連続鋳造装置及び引上式連続鋳造方法を提供することを目的とする。   The present invention has been made in view of the above, and includes a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method capable of suppressing the molten metal led out from the molten metal surface from flowing into the inside of the hollow casting. The purpose is to provide.

本発明の一態様に係る引上式連続鋳造装置は、溶湯を保持する保持炉と、前記溶湯の湯面上に設置され、前記湯面から導出された前記溶湯が通過することにより、鋳造する中空鋳物の断面形状を規定する形状規定部材と、凝固界面近傍の前記中空鋳物の内周面に冷却ガスを吹き付けることにより、前記中空鋳物と当該凝固界面を介して連続する、前記湯面から導出された前記溶湯、を冷却する冷却部と、を備えた引上式連続鋳造装置であって、前記冷却部から吹き出された前記冷却ガスの流れる流路と前記形状規定部材の上面との間の空間において発生する負圧領域に対して送風する送風部をさらに備えるものである。それにより、負圧領域の負圧状態が緩和されるため、湯面から導出された溶湯が中空鋳物の内側に流れ込むのを抑制することができる。   The up-drawing continuous casting apparatus according to an aspect of the present invention is cast by a holding furnace for holding a molten metal and the molten metal that is installed on the molten metal surface and that is led out from the molten metal surface. A shape-defining member that defines the cross-sectional shape of the hollow casting, and is derived from the molten metal surface that is continuous with the hollow casting and the solidification interface by blowing cooling gas to the inner peripheral surface of the hollow casting near the solidification interface. And a cooling unit that cools the molten metal, and is provided between a flow path through which the cooling gas blown out from the cooling unit flows and an upper surface of the shape defining member. A blower for blowing air to a negative pressure region generated in the space is further provided. Thereby, since the negative pressure state of the negative pressure region is relaxed, it is possible to suppress the molten metal led out from the molten metal surface from flowing into the hollow casting.

前記送風部の送風口は、前記中空鋳物の内部において前記冷却部よりも上方に設けられ、下方の前記負圧領域に向けて送風することが好ましい。それにより、ノズルを保持炉内に設置する必要が無くなるため、送風部の設置が容易になる。   It is preferable that the blower port of the blower part is provided above the cooling part inside the hollow casting and blows air toward the negative pressure region below. Thereby, since it is not necessary to install the nozzle in the holding furnace, it is easy to install the blower.

前記送風部の送風口は、前記負圧領域に接する部材に配置され、当該負圧領域に向けて開口していることが好ましい。それにより、より正確に負圧領域に風を送り込むことが可能になるため、より確実に負圧領域の負圧状態が緩和される。   It is preferable that the air outlet of the air blower is disposed on a member that contacts the negative pressure region and opens toward the negative pressure region. As a result, it becomes possible to send the wind more accurately into the negative pressure region, so that the negative pressure state in the negative pressure region is more reliably relaxed.

前記負圧領域の圧力を測定する圧力センサをさらに備え、前記送風部は、前記圧力センサの測定結果に応じた流量で送風することが好ましい。それにより、負圧領域の負圧状態を緩和するのに適した流量の風を送り込むことが可能になるため、より正確に負圧領域の負圧状態が緩和される。   It is preferable that a pressure sensor for measuring the pressure in the negative pressure region is further provided, and the blowing unit blows air at a flow rate corresponding to a measurement result of the pressure sensor. As a result, it becomes possible to send in a wind having a flow rate suitable for alleviating the negative pressure state in the negative pressure region, so that the negative pressure state in the negative pressure region is more accurately relaxed.

本発明の一態様に係る引上式連続鋳造方法は、保持炉に保持された溶湯の湯面から前記溶湯を導出して、中空鋳物の断面形状を規定する形状規定部材を通過させることにより、前記中空鋳物を鋳造する引上式連続鋳造方法であって、凝固界面近傍の前記中空鋳物の内周面に冷却ガスを吹き付けることにより、前記中空鋳物と当該凝固界面を介して連続する、前記湯面から導出された前記溶湯、を冷却するステップと、吹き出された前記冷却ガスの流れる流路と前記形状規定部材の上面との間の空間において発生する負圧領域に対して送風するステップと、を備えるものである。それにより、負圧領域の負圧状態が緩和されるため、湯面から導出された溶湯が中空鋳物の内側に流れ込むのを抑制することができる。   In the up-drawing continuous casting method according to one aspect of the present invention, the molten metal is led out from the surface of the molten metal held in a holding furnace, and passed through a shape defining member that defines the cross-sectional shape of the hollow casting, An up-drawing continuous casting method for casting the hollow casting, wherein the hot water is continuous with the hollow casting through the solidification interface by blowing a cooling gas to an inner peripheral surface of the hollow casting near the solidification interface. Cooling the molten metal derived from a surface, blowing air to a negative pressure region generated in a space between the flow path of the blown-out cooling gas and the upper surface of the shape defining member; Is provided. Thereby, since the negative pressure state of the negative pressure region is relaxed, it is possible to suppress the molten metal led out from the molten metal surface from flowing into the hollow casting.

本発明により、湯面から導出された溶湯が中空鋳物の内側に流れ込むのを抑制することが可能な引上式連続鋳造装置及び引上式連続鋳造方法を提供することができる。   According to the present invention, it is possible to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method that can suppress the molten metal led out from the molten metal surface from flowing into the inside of the hollow casting.

実施の形態1に係る自由鋳造装置を模式的に示す断面図である。1 is a cross-sectional view schematically showing a free casting apparatus according to Embodiment 1. FIG. 図1に示す形状規定部材の平面図である。It is a top view of the shape prescription | regulation member shown in FIG. 比較例に係る自由鋳造装置の課題を説明するための図である。It is a figure for demonstrating the subject of the free casting apparatus which concerns on a comparative example. 比較例に係る自由鋳造装置の課題を説明するための図である。It is a figure for demonstrating the subject of the free casting apparatus which concerns on a comparative example. 図1に示す自由鋳造装置の一部を示す拡大断面図である。It is an expanded sectional view which shows a part of free casting apparatus shown in FIG. 実施の形態1に係る自由鋳造方法を示すフローチャートである。3 is a flowchart showing a free casting method according to Embodiment 1. 冷却ガスの流量と、負圧領域の圧力と大気圧との差圧と、の関係を示す図である。It is a figure which shows the relationship between the flow volume of a cooling gas, and the pressure difference of the pressure of a negative pressure area | region, and atmospheric pressure. 実施の形態2に係る自由鋳造装置を模式的に示す断面図である。It is sectional drawing which shows typically the free casting apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る自由鋳造装置の一部を示す拡大断面図である。6 is an enlarged cross-sectional view showing a part of a free casting apparatus according to Embodiment 3. FIG. 図9に示す形状規定部材周辺を示す平面図である。It is a top view which shows the shape prescription | regulation member periphery shown in FIG. 図9に示す自由鋳造装置の変形例の一部を示す拡大断面図である。It is an expanded sectional view which shows a part of modification of the free casting apparatus shown in FIG. 図11に示す形状規定部材周辺を示す平面図である。It is a top view which shows the shape prescription | regulation member periphery shown in FIG.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

<実施の形態1>
まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置を模式的に示す断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉(保持炉)101、形状規定部材102、支持ロッド106,107、アクチュエータ108、冷却部109、送風部116、及び、引上機115を備えている。なお、図1には、構成要素の位置関係を説明するために便宜的に右手系xyz座標が示されている。図1におけるxy平面は水平面を構成し、z軸方向が鉛直方向である。より具体的には、z軸のプラス方向が鉛直上向きとなる。
<Embodiment 1>
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. 1 is a cross-sectional view schematically showing a free casting apparatus according to Embodiment 1. FIG. As shown in FIG. 1, a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace (holding furnace) 101, a shape defining member 102, support rods 106 and 107, an actuator 108, a cooling unit 109, a blower unit 116, and A puller 115 is provided. In FIG. 1, right-handed xyz coordinates are shown for the sake of convenience in order to explain the positional relationship between the components. The xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.

溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、溶湯M1が流動性を有する所定の温度に保持する。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。ここで、溶湯保持炉101の設定温度を上げると凝固界面SIFの位置を上げることができ、溶湯保持炉101の設定温度を下げると凝固界面SIFの位置を下げることができる。なお、当然のことながら、溶湯M1はアルミニウム以外の金属やその合金であってもよい。   The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof, and holds the molten metal M1 at a predetermined temperature having fluidity. In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. Here, if the set temperature of the molten metal holding furnace 101 is raised, the position of the solidification interface SIF can be raised, and if the set temperature of the molten metal holding furnace 101 is lowered, the position of the solidified interface SIF can be lowered. As a matter of course, the molten metal M1 may be a metal other than aluminum or an alloy thereof.

形状規定部材102は、例えばセラミックスやステンレスなどからなり、湯面上に配置されている。形状規定部材102は、外部形状規定部材103と、内部形状規定部材104と、により構成されている。外部形状規定部材103は、鋳造する鋳物M3の外部の断面形状を規定し、内部形状規定部材104は、鋳造する鋳物M3の内部の断面形状を規定する。図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が管状の中空鋳物(つまりパイプ)である。   The shape defining member 102 is made of, for example, ceramics or stainless steel, and is disposed on the molten metal surface. The shape defining member 102 includes an external shape defining member 103 and an internal shape defining member 104. The external shape defining member 103 defines the external cross-sectional shape of the casting M3 to be cast, and the internal shape defining member 104 defines the internal cross-sectional shape of the cast M3 to be cast. The casting M3 shown in FIG. 1 is a hollow casting (that is, a pipe) having a horizontal cross section (hereinafter referred to as a transverse section) having a tubular shape.

図1の例では、外部形状規定部材103及び内部形状規定部材104は、それらの下側の主面(下面)が湯面に接触するように配置されている。それにより、溶湯M1の表面に形成される酸化膜や溶湯M1の表面に浮遊する異物の鋳物M3への混入が抑制される。一方、外部形状規定部材103及び内部形状規定部材104は、それらの下面が湯面に接触しないように設置されてもよい。具体的には、外部形状規定部材103及び内部形状規定部材104は、それらの下面が湯面から所定の距離(例えば0.5mm程度)だけ離間するように配置されてもよい。それにより、外部形状規定部材103及び内部形状規定部材104では、熱変形や溶損が抑制されるため、耐久性が向上する。   In the example of FIG. 1, the external shape defining member 103 and the internal shape defining member 104 are arranged such that their lower main surfaces (lower surfaces) are in contact with the hot water surface. Thereby, mixing of the oxide film formed on the surface of the molten metal M1 and the foreign matter floating on the surface of the molten metal M1 into the casting M3 is suppressed. On the other hand, the outer shape defining member 103 and the inner shape defining member 104 may be installed such that their lower surfaces do not contact the molten metal surface. Specifically, the outer shape defining member 103 and the inner shape defining member 104 may be arranged such that their lower surfaces are separated from the molten metal surface by a predetermined distance (for example, about 0.5 mm). Thereby, in the external shape defining member 103 and the internal shape defining member 104, since thermal deformation and melting damage are suppressed, durability is improved.

図2は、図1に示す形状規定部材102の平面図である。ここで、図1の形状規定部材102の断面図は、図2のI−I断面図に相当する。図2の例では、外部形状規定部材103は、例えば矩形状の平面形状を有し、中央部に円形状の開口部を有している。内部形状規定部材104は、円形状の平面形状を有し、外部形状規定部材103の開口部の中央部に配置されている。外部形状規定部材103と内部形状規定部材104との間の間隙が、溶湯が通過する溶湯通過部105となる。なお、図2におけるxyz座標は、図1と一致している。   FIG. 2 is a plan view of the shape defining member 102 shown in FIG. Here, the cross-sectional view of the shape determining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG. 2. In the example of FIG. 2, the external shape defining member 103 has, for example, a rectangular planar shape, and has a circular opening at the center. The internal shape defining member 104 has a circular planar shape and is disposed at the center of the opening of the external shape defining member 103. A gap between the outer shape defining member 103 and the inner shape defining member 104 becomes a molten metal passage portion 105 through which the molten metal passes. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.

ここで、図2には、冷却部109のノズル先端部114も示されている。ノズル先端部114は、内部形状規定部材104の中央部に配置されている。ノズル先端部114には、平面視して溶湯通過部105に向けて開口する複数の冷却ガス吹き出し口114aが設けられている。   Here, FIG. 2 also shows the nozzle tip 114 of the cooling unit 109. The nozzle tip 114 is disposed at the center of the internal shape defining member 104. The nozzle tip portion 114 is provided with a plurality of cooling gas outlets 114 a that open toward the melt passage portion 105 in plan view.

引上機115は、スタータ(導出部材)STを把持し、スタータSTを溶湯M1に浸漬させたり、溶湯M1に浸漬されたスタータSTを引き上げたりする。   The pulling machine 115 holds the starter (leading member) ST and immerses the starter ST in the molten metal M1 or pulls up the starter ST immersed in the molten metal M1.

図1に示すように、溶湯M1は、浸漬されたスタータSTと結合した後、その表面膜や表面張力により外形を維持したままスタータSTに追従して引き上げられ、形状規定部材102の溶湯通過部105を通過する。溶湯M1が形状規定部材102の溶湯通過部105を通過することにより、溶湯M1に対し形状規定部材102から外力が印加され、鋳物M3の断面形状が規定される。ここで、溶湯M1の表面膜や表面張力によってスタータST(又は、スタータSTに追従して引き上げられた溶湯M1が凝固して形成された鋳物M3)に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との境界が凝固界面SIFである。   As shown in FIG. 1, after the molten metal M1 is coupled to the immersed starter ST, the molten metal M1 is pulled up following the starter ST while maintaining its outer shape by its surface film and surface tension, and the molten metal passage portion of the shape defining member 102 Go through 105. When the molten metal M1 passes through the molten metal passage portion 105 of the shape defining member 102, an external force is applied to the molten metal M1 from the shape defining member 102, and the cross-sectional shape of the casting M3 is defined. Here, the molten metal pulled up from the molten metal surface following the starter ST (or the casting M3 formed by solidification of the molten metal M1 pulled up following the starter ST) by the surface film or surface tension of the molten metal M1. This is called retained molten metal M2. Further, the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.

支持ロッド106は、外部形状規定部材103を支持し、支持ロッド107は、内部形状規定部材104を支持する。支持ロッド106,107は何れもアクチュエータ108に連結されている。   The support rod 106 supports the external shape defining member 103, and the support rod 107 supports the internal shape defining member 104. Both of the support rods 106 and 107 are connected to the actuator 108.

アクチュエータ108は、支持ロッド106,107を介して、外部形状規定部材103及び内部形状規定部材104を上下方向(z軸方向)に移動させることができる。それにより、鋳造の進行による湯面の低下とともに、形状規定部材102を下方向に移動させることができる。   The actuator 108 can move the external shape defining member 103 and the internal shape defining member 104 in the vertical direction (z-axis direction) via the support rods 106 and 107. Thereby, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting.

冷却部109は、冷却ガス(例えば空気、窒素、アルゴンなど)をスタータSTや鋳物M3に吹き付けることで、間接的に保持溶湯M2を冷却する部である。冷却ガスの流量を増やすと凝固界面SIFの位置を下げることができ、冷却ガスの流量を減らすと凝固界面SIFの位置を上げることができる。なお、冷却部109も、上下方向(鉛直方向;z軸方向)及び水平方向(x軸方向及びy軸方向)に移動可能となっている。そのため、例えば、鋳造の進行による湯面の低下とともに、形状規定部材102の下方向の移動に合わせて、冷却部109を下方向に移動することができる。あるいは、引上機115や形状規定部材102の水平方向の移動に合わせて、冷却部109を水平方向に移動することができる。   The cooling unit 109 is a unit that indirectly cools the retained molten metal M2 by blowing a cooling gas (for example, air, nitrogen, argon, or the like) onto the starter ST or the casting M3. Increasing the flow rate of the cooling gas can lower the position of the solidification interface SIF, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface SIF. The cooling unit 109 is also movable in the vertical direction (vertical direction; z-axis direction) and in the horizontal direction (x-axis direction and y-axis direction). Therefore, for example, along with the lowering of the molten metal surface due to the progress of casting, the cooling unit 109 can be moved downward in accordance with the downward movement of the shape defining member 102. Alternatively, the cooling unit 109 can be moved in the horizontal direction in accordance with the horizontal movement of the puller 115 and the shape defining member 102.

より具体的には、冷却部109は、冷却ガス供給部110と、ノズル111,112と、ノズル先端部113,114と、により構成される。冷却部109は、冷却ガス供給部110により供給された冷却ガスを、それぞれノズル111,112を介してノズル先端部113,114から吹き出す。   More specifically, the cooling unit 109 includes a cooling gas supply unit 110, nozzles 111 and 112, and nozzle tip portions 113 and 114. The cooling unit 109 blows out the cooling gas supplied from the cooling gas supply unit 110 from the nozzle tip portions 113 and 114 via the nozzles 111 and 112, respectively.

ノズル先端部113は、鋳物M3の外側に鋳物M3の外周面を囲むようにして設けられている。ノズル先端部113に設けられた複数の冷却ガス吹き出し口は、凝固界面SIF近傍の鋳物M3の外周面に向けて開口している。ノズル先端部113は、複数の冷却ガス吹き出し口から吹き出された冷却ガスを、凝固界面SIF近傍の鋳物M3の外周面に吹き付ける。   The nozzle tip 113 is provided outside the casting M3 so as to surround the outer peripheral surface of the casting M3. The plurality of cooling gas blowing ports provided at the nozzle tip 113 are open toward the outer peripheral surface of the casting M3 in the vicinity of the solidification interface SIF. The nozzle tip 113 sprays the cooling gas blown from the plurality of cooling gas blowout ports onto the outer peripheral surface of the casting M3 in the vicinity of the solidification interface SIF.

ノズル先端部114は、鋳物M3の内側(本例では、内部形状規定部材104の中央部)に設けられている。ノズル先端部114に設けられた複数の冷却ガス吹き出し口114aは、凝固界面近傍SIFの鋳物M3の内周面に向けて開口している。ノズル先端部114は、複数の冷却ガス吹き出し口114aから吹き出された冷却ガスを、凝固界面SIF近傍の鋳物M3の内周面に吹き付ける。   The nozzle tip 114 is provided inside the casting M3 (in this example, the center of the internal shape defining member 104). The plurality of cooling gas outlets 114a provided at the nozzle tip 114 are open toward the inner peripheral surface of the casting M3 near the solidification interface SIF. The nozzle tip 114 blows the cooling gas blown from the plurality of cooling gas blowout ports 114a onto the inner peripheral surface of the casting M3 in the vicinity of the solidification interface SIF.

スタータSTに連結された引上機115により鋳物M3を引き上げつつ、冷却ガスによりスタータSTや鋳物M3を冷却することにより、凝固界面SIF近傍の保持溶湯M2が上側(z軸方向プラス側)から下側(z軸方向マイナス側)へ順次凝固し、鋳物M3が形成されていく。引上機115による引上速度を速くすると凝固界面SIFの位置を上げることができ、引上速度を遅くすると凝固界面SIFの位置を下げることができる。   The molten metal M2 in the vicinity of the solidification interface SIF is lowered from the upper side (the z-axis direction plus side) by pulling up the casting M3 by the puller 115 connected to the starter ST and cooling the starter ST and the casting M3 with the cooling gas. The casting M3 is sequentially solidified to the side (z-axis direction minus side) to form a casting M3. Increasing the pulling speed by the puller 115 can raise the position of the solidification interface SIF, and decreasing the pulling speed can lower the position of the solidification interface SIF.

また、引上機115を水平方向(x軸方向やy軸方向)に移動させながら引き上げることにより、保持溶湯M2を斜め方向に導出することができる。そのため、鋳物M3の長手方向の形状を自由に変化させることができる。なお、引上機115を水平方向に移動させる代わりに、形状規定部材102を水平方向に移動させることにより、鋳物M3の長手方向の形状を自由に変化させてもよい。   Moreover, the holding molten metal M2 can be derived | led-out in the diagonal direction by pulling up, moving the pulling machine 115 to a horizontal direction (x-axis direction or y-axis direction). Therefore, the shape of the casting M3 in the longitudinal direction can be freely changed. Note that the shape of the casting M3 in the longitudinal direction may be freely changed by moving the shape defining member 102 in the horizontal direction instead of moving the pulling machine 115 in the horizontal direction.

送風部116は、凝固界面SIF近傍の鋳物M3の内周面に冷却ガスを吹き付けることにより発生する負圧領域Xに対して送風する部である。負圧領域Xの詳細については後述する。   The blowing part 116 is a part that blows air against the negative pressure region X generated by blowing cooling gas to the inner peripheral surface of the casting M3 in the vicinity of the solidification interface SIF. Details of the negative pressure region X will be described later.

より具体的には、送風部116は、風供給部117と、ノズル118と、ノズル先端部119と、により構成される。送風部116は、風供給部117により供給された風(空気、又は、冷却ガスと同じ種類のガス等)を、ノズル118を介してノズル先端部119から送風する。   More specifically, the air blowing unit 116 includes a wind supply unit 117, a nozzle 118, and a nozzle tip 119. The air blowing unit 116 blows the wind (air, the same type of gas as the cooling gas) supplied from the wind supply unit 117 from the nozzle tip 119 via the nozzle 118.

ノズル先端部119は、引上機115付近からノズル118によって中空形状の鋳物M3の内側(筒内)に吊るされるようにして配置されている。ノズル先端部119に設けられた複数の送風口119aは、冷却部109のノズル先端部114の上方に位置し、下方の負圧領域Xに向けて開口しており、負圧領域Xに対して送風する。上述のような送風部116の配置の場合、ノズル118を溶湯保持炉101内に設置する必要が無いため、送風部116の設置が容易である。   The nozzle tip 119 is arranged so as to be hung from the vicinity of the pulling machine 115 by the nozzle 118 inside the hollow casting M3 (inside the cylinder). The plurality of air outlets 119 a provided in the nozzle tip 119 are located above the nozzle tip 114 of the cooling unit 109 and open toward the negative pressure region X below. Blow. In the case of the arrangement of the air blowing unit 116 as described above, it is not necessary to install the nozzle 118 in the molten metal holding furnace 101, so that the air blowing unit 116 is easily installed.

以下、図3〜図5を用いて、負圧領域Xの発生による課題及び送風部116を用いることによる効果を説明する。   Hereinafter, the problem caused by the generation of the negative pressure region X and the effect of using the air blowing unit 116 will be described with reference to FIGS.

図3及び図4は、比較例に係る自由鋳造装置の課題を説明するための図である。図3及び図4に示す自由鋳造装置には、送風部116が設けられていない。図5は、図1に示す自由鋳造装置の一部を示す拡大断面図である。   3 and 4 are diagrams for explaining the problem of the free casting apparatus according to the comparative example. The free casting apparatus shown in FIGS. 3 and 4 is not provided with the blower unit 116. FIG. 5 is an enlarged sectional view showing a part of the free casting apparatus shown in FIG.

図3に示すように、ノズル先端部114に設けられた複数の冷却ガス吹き出し口114aから吹き出された冷却ガスの流れる流路(図中の黒い矢印)と、内部形状規定部材104の上面と、の間の空間は、冷却ガスの気流の影響で、大気圧よりも低い圧力値を示す負圧状態となる。この負圧状態の空間を負圧領域Xと称している。   As shown in FIG. 3, a flow path (black arrow in the figure) through which the cooling gas blown out from the plurality of cooling gas blowing ports 114 a provided at the nozzle tip 114, the upper surface of the internal shape defining member 104, The space between is in a negative pressure state showing a pressure value lower than the atmospheric pressure due to the influence of the cooling gas flow. This negative pressure space is called a negative pressure region X.

図4に示すように、送風部116が設けられていない場合、負圧領域Xに接する保持溶湯M2が負圧に引っ張られて中空形状の鋳物M3の内側に流れ込んでしまう場合がある。これを回避するためには、冷却ガスの流量を少なくして負圧領域Xの発生を抑制せざるを得ない。しかしながら、冷却ガスの流量を少なくすると、保持溶湯M2の凝固に時間がかかってしまい、鋳物M3の生産性が低下してしまう。   As shown in FIG. 4, when the ventilation part 116 is not provided, the holding | maintenance molten metal M2 which contact | connects the negative pressure area | region X may be pulled by the negative pressure, and may flow in the inside of the hollow shaped casting M3. In order to avoid this, the flow rate of the cooling gas must be reduced to suppress the generation of the negative pressure region X. However, if the flow rate of the cooling gas is reduced, it takes time for the retained molten metal M2 to solidify, and the productivity of the casting M3 decreases.

それに対し、図5に示すように、送風部116が設けられた場合、送風部116から負圧領域Xに対して送風されることで、負圧領域Xの負圧状態が緩和される。つまり、負圧領域Xの圧力と大気圧との差圧が小さくなる。そのため、冷却ガスの流量を減らさなくても、保持溶湯M2が中空形状の鋳物M3の内側に流れ込むのを抑制することができる。   On the other hand, as shown in FIG. 5, when the blower unit 116 is provided, the negative pressure state of the negative pressure region X is relieved by blowing air from the blower unit 116 to the negative pressure region X. That is, the differential pressure between the pressure in the negative pressure region X and the atmospheric pressure is reduced. Therefore, it is possible to suppress the retained molten metal M2 from flowing into the hollow casting M3 without reducing the flow rate of the cooling gas.

続いて、図1及び図6を参照して、実施の形態1にかかる自由鋳造方法について説明する。図6は、実施の形態1にかかる自由鋳造方法を示すフローチャートである。   Next, the free casting method according to the first embodiment will be described with reference to FIGS. 1 and 6. FIG. 6 is a flowchart illustrating the free casting method according to the first embodiment.

まず、引上機115によりスタータSTを降下させ、外部形状規定部材103と内部形状規定部材104との間の溶湯通過部105を通して、スタータSTの先端部(下端部)を溶湯M1に浸漬させる(ステップS101)。   First, the starter ST is lowered by the pulling machine 115, and the front end portion (lower end portion) of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 105 between the external shape defining member 103 and the internal shape defining member 104 ( Step S101).

次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、溶湯M1は、表面膜や表面張力によってスタータSTに追従して湯面から引き上げられ(導出され)保持溶湯M2を形成する。図1に示すように、保持溶湯M2は、形状規定部材102の溶湯通過部105に形成される。つまり、形状規定部材102により、保持溶湯M2に形状が付与される(ステップS102)。   Next, the starter ST is started to be pulled up at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the molten metal M1 is pulled up (derived) from the molten metal surface by the surface film or surface tension to form the retained molten metal M2. As shown in FIG. 1, the retained molten metal M <b> 2 is formed in the molten metal passage portion 105 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2 (step S102).

次に、スタータSTや鋳物M3は、冷却部109から吹き出される冷却ガスによって冷却される(ステップS103)。それにより、保持溶湯M2が間接的に冷却されて上側から下側に向かって順に凝固し、鋳物M3が成長していく(ステップS104)。このようにして、鋳物M3を連続鋳造することができる。   Next, the starter ST and the casting M3 are cooled by the cooling gas blown out from the cooling unit 109 (step S103). Thereby, the retained molten metal M2 is indirectly cooled and solidified in order from the upper side to the lower side, and the casting M3 grows (step S104). In this way, the casting M3 can be continuously cast.

ここで、ノズル先端部114に設けられた複数の冷却ガス吹き出し口114aから吹き出された冷却ガスの流れる流路と、内部形状規定部材104の上面と、の間の空間には、冷却ガスの気流の影響により負圧領域Xが発生する。そこで、送風部116から負圧領域Xに対して送風する(ステップS103)。それにより、負圧領域Xの負圧状態が緩和される。つまり、負圧領域Xの圧力と大気圧との差圧が小さくなる。それにより、保持溶湯M2が中空形状の鋳物M3の内側に流れ込むのを抑制することができる。   Here, in the space between the flow path of the cooling gas blown out from the plurality of cooling gas outlets 114 a provided at the nozzle tip 114 and the upper surface of the internal shape defining member 104, there is an air flow of the cooling gas. The negative pressure region X is generated due to the influence of. Then, it blows with respect to the negative pressure area | region X from the ventilation part 116 (step S103). Thereby, the negative pressure state of the negative pressure region X is relaxed. That is, the differential pressure between the pressure in the negative pressure region X and the atmospheric pressure is reduced. Thereby, it is possible to suppress the retained molten metal M2 from flowing into the inside of the hollow casting M3.

図7は、冷却ガスの流量と、負圧領域Xの圧力と大気圧との差圧と、の関係を示す図である。図7を参照すると、冷却ガスの流量がゼロの場合、負圧領域Xは発生しない(差圧はゼロである)が、冷却ガスの流量が増加するほど、負圧領域Xの負圧は大きくなる(負圧領域Xの圧力と大気圧との差圧は大きくなる)。また、冷却ガスの流量が一定である場合、冷却ガス吹き出し口114aの面積が小さいほど、冷却ガスの流速が速くなるため、負圧領域Xの負圧は大きくなる。ここで、送風部116は、例えば図7に示す情報に基づいて負圧領域Xの圧力を推定し、風量を調整してもよい。   FIG. 7 is a diagram illustrating the relationship between the flow rate of the cooling gas and the differential pressure between the pressure in the negative pressure region X and the atmospheric pressure. Referring to FIG. 7, when the flow rate of the cooling gas is zero, the negative pressure region X does not occur (the differential pressure is zero), but the negative pressure in the negative pressure region X increases as the flow rate of the cooling gas increases. (The pressure difference between the pressure in the negative pressure region X and the atmospheric pressure increases). In addition, when the flow rate of the cooling gas is constant, the smaller the area of the cooling gas outlet 114a, the higher the flow rate of the cooling gas, and thus the negative pressure in the negative pressure region X increases. Here, the air blower 116 may adjust the air volume by estimating the pressure in the negative pressure region X based on, for example, information shown in FIG.

このように、本実施の形態にかかる自由鋳造装置は、中空形状の鋳物M3の内周面に吹き付けられる冷却ガスの影響で発生する負圧領域Xに対して送風する送風部116を備える。それにより、本実施の形態にかかる自由鋳造装置は、負圧領域Xの負圧状態を緩和することができるため、保持溶湯M2が中空形状の鋳物M3の内側に流れ込むのを抑制することができる。   Thus, the free casting apparatus according to the present embodiment includes the blower 116 that blows air to the negative pressure region X generated by the influence of the cooling gas blown to the inner peripheral surface of the hollow casting M3. Thereby, since the free casting apparatus concerning this Embodiment can relieve the negative pressure state of the negative pressure area | region X, it can suppress that the hold | maintenance molten metal M2 flows into the inside of the hollow-shaped casting M3. .

<実施の形態2>
図8は、実施の形態2に係る自由鋳造装置を模式的に示す断面図である。図8に示す自由鋳造装置では、図1に示す自由鋳造装置と比較して、送風部116が負圧領域Xの圧力に応じた風量で送風するフィードバック機能をさらに有する。なお、図8におけるxyz座標は、図1と一致している。
<Embodiment 2>
FIG. 8 is a cross-sectional view schematically showing a free casting apparatus according to the second embodiment. The free casting apparatus shown in FIG. 8 further has a feedback function in which the air blowing unit 116 blows with an air volume corresponding to the pressure in the negative pressure region X, as compared with the free casting apparatus shown in FIG. Note that the xyz coordinates in FIG. 8 coincide with those in FIG.

具体的には、図8に示す自由鋳造装置は、負圧領域X内に設けられた圧力センサ120をさらに備える。圧力センサ120は、負圧領域Xの圧力を測定する。そして、送風部116は、圧力センサ120の測定結果に応じた風量で負圧領域Xに対して送風する。例えば、送風部116は、負圧領域Xの圧力と大気圧との差圧が小さい場合に風量を少なくし、負圧領域Xの圧力と大気圧との差圧が大きい場合に風量を多くする。   Specifically, the free casting apparatus shown in FIG. 8 further includes a pressure sensor 120 provided in the negative pressure region X. The pressure sensor 120 measures the pressure in the negative pressure region X. And the ventilation part 116 ventilates with respect to the negative pressure area | region X with the air volume according to the measurement result of the pressure sensor 120. FIG. For example, the air blowing unit 116 reduces the air volume when the differential pressure between the pressure in the negative pressure region X and the atmospheric pressure is small, and increases the air volume when the differential pressure between the pressure in the negative pressure region X and the atmospheric pressure is large. .

それにより、本実施の形態にかかる自由鋳造装置は、負圧領域Xの負圧状態を緩和するのに適した流量の風を負圧領域Xに送り込むことが可能になるため、より正確に負圧領域Xの負圧状態を緩和することができる。   As a result, the free casting apparatus according to the present embodiment can send a wind having a flow rate suitable for alleviating the negative pressure state in the negative pressure region X to the negative pressure region X. The negative pressure state of the pressure region X can be relaxed.

<実施の形態3>
図9は、実施の形態3に係る自由鋳造装置の一部を示す拡大断面図である。図10は、図9に示す形状規定部材102周辺を示す平面図である。なお、図9及び図10におけるxyz座標は、図1と一致している。
<Embodiment 3>
FIG. 9 is an enlarged cross-sectional view showing a part of the free casting apparatus according to the third embodiment. FIG. 10 is a plan view showing the periphery of the shape defining member 102 shown in FIG. The xyz coordinates in FIGS. 9 and 10 are the same as those in FIG.

図9に示す自由鋳造装置では、図1に示す自由鋳造装置と比較して、送風部116に設けられたノズル先端部(及び送風口)の配置位置が異なる。   The free casting apparatus shown in FIG. 9 differs from the free casting apparatus shown in FIG. 1 in the arrangement position of the nozzle tip (and the air outlet) provided in the air blowing part 116.

図9に示す自由鋳造装置は、送風部116として、風供給部117、ノズル121及び複数のノズル先端部122を備える。ノズル121の一部は、溶湯M1内に設置されている。溶湯M1内に設置されたノズル121は、内部形状規定部材104の下面からその内部を通過して上面まで延在し、複数のノズル先端部122に接続される。図10を参照すると、複数のノズル先端部122は、負圧領域Xに接する部材の一つである内部形状規定部材104の上面に、冷却部109のノズル先端部114を囲むように設けられている。そして、複数のノズル先端部122のそれぞれに設けられた複数の送風口122aは、負圧領域Xに向けて開口している。   The free casting apparatus shown in FIG. 9 includes a wind supply unit 117, a nozzle 121, and a plurality of nozzle tip portions 122 as the blower unit 116. A part of the nozzle 121 is installed in the molten metal M1. The nozzle 121 installed in the molten metal M <b> 1 extends from the lower surface of the internal shape defining member 104 to the upper surface through the inside thereof, and is connected to the plurality of nozzle tip portions 122. Referring to FIG. 10, the plurality of nozzle tip portions 122 are provided on the upper surface of the internal shape defining member 104 that is one of the members in contact with the negative pressure region X so as to surround the nozzle tip portion 114 of the cooling unit 109. Yes. The plurality of air blowing ports 122 a provided in each of the plurality of nozzle tip portions 122 are open toward the negative pressure region X.

図9に示す自由鋳造装置のその他の構成については、図1に示す自由鋳造装置の場合と同様であるため、その説明を省略する。   The other configuration of the free casting apparatus shown in FIG. 9 is the same as that of the free casting apparatus shown in FIG.

それにより、本実施の形態にかかる自由鋳造装置は、より正確に負圧領域Xに風を送り込むことが可能になるため、より確実に負圧領域Xの負圧状態を緩和することができる。   As a result, the free casting apparatus according to the present embodiment can more accurately feed wind into the negative pressure region X, and therefore can more reliably relieve the negative pressure state in the negative pressure region X.

(図9に示す自由鋳造装置の変形例)
図11は、図9に示す自由鋳造装置の変形例の一部を示す拡大断面図である。図12は、図11に示す形状規定部材102周辺を示す平面図である。なお、図11及び図12におけるxyz座標は、図1と一致している。
(Modification of the free casting apparatus shown in FIG. 9)
FIG. 11 is an enlarged sectional view showing a part of a modification of the free casting apparatus shown in FIG. FIG. 12 is a plan view showing the periphery of the shape defining member 102 shown in FIG. The xyz coordinates in FIGS. 11 and 12 are the same as those in FIG.

図11に示す自由鋳造装置では、図9に示す自由鋳造装置と比較して、送風部116に設けられたノズル先端部(及び送風口)の配置位置が異なる。   The free casting apparatus shown in FIG. 11 differs from the free casting apparatus shown in FIG. 9 in the arrangement position of the nozzle tip (and the air outlet) provided in the air blowing part 116.

図11に示す自由鋳造装置は、送風部116として、風供給部117、ノズル123及びノズル先端部124を備える。ノズル123の一部は、溶湯M1内に設置されている。溶湯M1内に設置されたノズル123は、内部形状規定部材104の下面からその内部を通過して上面まで延在し、ノズル先端部124に接続される。ここで、送風部116のノズル先端部124は、冷却部109のノズル先端部114を形成する円柱状の部材を共用している。図11及び図12を参照すると、複数の送風口124aは、負圧領域Xに接する部材の一つであるノズル先端部114,124を形成する円柱状の部材、の側面に設けられ、負圧領域Xに向けて開口している。   The free casting apparatus shown in FIG. 11 includes a wind supply unit 117, a nozzle 123, and a nozzle tip 124 as the blowing unit 116. A part of the nozzle 123 is installed in the molten metal M1. The nozzle 123 installed in the molten metal M <b> 1 extends from the lower surface of the internal shape defining member 104 to the upper surface through the inside thereof, and is connected to the nozzle tip portion 124. Here, the nozzle tip 124 of the blower 116 shares a cylindrical member that forms the nozzle tip 114 of the cooling unit 109. Referring to FIGS. 11 and 12, the plurality of air outlets 124 a are provided on the side surface of a cylindrical member that forms nozzle tip portions 114 and 124 that are one of the members in contact with the negative pressure region X. Opening toward region X.

図11に示す自由鋳造装置のその他の構成については、図9に示す自由鋳造装置の場合と同様であるため、その説明を省略する。   The other configuration of the free casting apparatus shown in FIG. 11 is the same as that of the free casting apparatus shown in FIG.

それにより、本実施の形態にかかる自由鋳造装置は、より正確に負圧領域Xに風を送り込むことが可能になるため、より確実に負圧領域Xの負圧状態を緩和することができる。   As a result, the free casting apparatus according to the present embodiment can more accurately feed wind into the negative pressure region X, and therefore can more reliably relieve the negative pressure state in the negative pressure region X.

以上のように、上記実施の形態1乃至3にかかる自由鋳造装置は、中空形状の鋳物M3の内周面に吹き付けられる冷却ガスの影響で発生する負圧領域Xに対して送風する送風部116を備える。それにより、上記実施の形態1乃至3にかかる自由鋳造装置は、負圧領域Xの負圧状態を緩和することができるため、保持溶湯M2が中空形状の鋳物M3の内側に流れ込むのを抑制することができる。   As described above, the free casting apparatus according to Embodiments 1 to 3 blows air to the negative pressure region X generated by the influence of the cooling gas blown to the inner peripheral surface of the hollow casting M3. Is provided. As a result, the free casting apparatus according to the first to third embodiments can relieve the negative pressure state of the negative pressure region X, so that the retained molten metal M2 is prevented from flowing into the hollow casting M3. be able to.

上記実施の形態では、円筒形状の鋳物を鋳造する場合を例に説明したが、これに限られない。角筒形状等のその他の中空形状の鋳物を鋳造する場合にも、本発明を適用可能である。   In the said embodiment, although the case where the casting of a cylindrical shape was cast was demonstrated to the example, it is not restricted to this. The present invention can also be applied when casting other hollow shaped castings such as a rectangular tube shape.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

101 溶湯保持炉
102 形状規定部材
103 外部形状規定部材
104 内部形状規定部材
105 溶湯通過部
106 支持ロッド
107 支持ロッド
108 アクチュエータ
109 冷却部
110 冷却ガス供給部
111 ノズル
112 ノズル
113 ノズル先端部
114 ノズル先端部
114a 冷却ガス吹き出し口
115 引上機
116 送風部
117 風供給部
118 ノズル
119 ノズル先端部
119a 送風口
120 圧力センサ
121 ノズル
122 ノズル先端部
122a 送風口
123 ノズル
124 ノズル先端部
124a 送風口
M1 溶湯
M2 保持溶湯
M3 鋳物
SIF 凝固界面
ST スタータ
DESCRIPTION OF SYMBOLS 101 Molten metal holding furnace 102 Shape defining member 103 External shape defining member 104 Internal shape defining member 105 Melt passage part 106 Support rod 107 Support rod 108 Actuator 109 Cooling part 110 Cooling gas supply part 111 Nozzle 112 Nozzle 113 Nozzle tip part 114 Nozzle tip part 114a Cooling gas outlet 115 Lifter 116 Air blower 117 Air supply part 118 Nozzle 119 Nozzle tip 119a Air blower 120 Pressure sensor 121 Nozzle 122 Nozzle tip 122a Air blower 123 Nozzle 124 Nozzle tip 124a Air blower M1 Molten metal M2 Holding Molten metal M3 casting SIF solidification interface ST starter

Claims (4)

溶湯を保持する保持炉と、
前記溶湯の湯面上に設置され、前記湯面から導出された前記溶湯が通過することにより、鋳造する中空鋳物の断面形状を規定する形状規定部材と、
凝固界面近傍の前記中空鋳物の内周面に冷却ガスを吹き付けることにより、前記中空鋳物と当該凝固界面を介して連続する前記湯面から導出された前記溶湯、を冷却する冷却部と、を備えた引上式連続鋳造装置であって、
前記冷却部から吹き出された前記冷却ガスの流れる流路と前記形状規定部材の上面との間の空間において発生する負圧領域に対して送風する送風部をさらに備え
前記送風部の送風口は、前記中空鋳物の内部において前記冷却部よりも上方に設けられ、下方の前記負圧領域に向けて送風する、引上式連続鋳造装置。
A holding furnace for holding molten metal;
A shape determining member that defines a cross-sectional shape of a hollow casting to be cast by passing through the molten metal that is installed on the molten metal surface and is derived from the molten metal surface;
A cooling unit that cools the hollow casting and the molten metal led out from the molten metal surface through the solidification interface by spraying a cooling gas on the inner peripheral surface of the hollow casting near the solidification interface. A pull-up type continuous casting apparatus,
An air blower for blowing air to a negative pressure region generated in a space between the flow path of the cooling gas blown from the cooling part and the upper surface of the shape defining member ;
The blow-up port of the blower unit is a pulling-up-type continuous casting apparatus that is provided above the cooling unit inside the hollow casting and blows air toward the negative pressure region below .
溶湯を保持する保持炉と、
前記溶湯の湯面上に設置され、前記湯面から導出された前記溶湯が通過することにより、鋳造する中空鋳物の断面形状を規定する形状規定部材と、
凝固界面近傍の前記中空鋳物の内周面に冷却ガスを吹き付けることにより、前記中空鋳物と当該凝固界面を介して連続する前記湯面から導出された前記溶湯、を冷却する冷却部と、を備えた引上式連続鋳造装置であって、
前記冷却部から吹き出された前記冷却ガスの流れる流路と前記形状規定部材の上面との間の空間において発生する負圧領域に対して送風する送風部と、
前記負圧領域の圧力を測定する圧力センサと、をさらに備え、
前記送風部は、前記圧力センサの測定結果に応じた流量で送風する、引上式連続鋳造装置。
A holding furnace for holding molten metal;
A shape determining member that defines a cross-sectional shape of a hollow casting to be cast by passing through the molten metal that is installed on the molten metal surface and is derived from the molten metal surface;
A cooling unit that cools the hollow casting and the molten metal led out from the molten metal surface through the solidification interface by spraying a cooling gas on the inner peripheral surface of the hollow casting near the solidification interface. A pull-up type continuous casting apparatus,
A blower for blowing air to a negative pressure region generated in a space between the flow path of the cooling gas blown out from the cooling unit and the upper surface of the shape defining member ;
A pressure sensor for measuring the pressure in the negative pressure region,
The blower is a pulling-up-type continuous casting apparatus that blows air at a flow rate corresponding to the measurement result of the pressure sensor .
前記送風部の送風口は、前記中空鋳物の内部において前記冷却部よりも上方に設けられ、下方の前記負圧領域に向けて送風する、請求項に記載の引上式連続鋳造装置。 The up-drawing continuous casting apparatus according to claim 2 , wherein the blower port of the blower is provided above the cooling unit in the hollow casting and blows air toward the negative pressure region below. 前記送風部の送風口は、前記負圧領域に接する部材に配置され、当該負圧領域に向けて開口している、請求項に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 2 , wherein the blower port of the blower part is disposed in a member in contact with the negative pressure region and opens toward the negative pressure region.
JP2015120515A 2015-06-15 2015-06-15 Pull-up continuous casting equipment Expired - Fee Related JP6265172B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015120515A JP6265172B2 (en) 2015-06-15 2015-06-15 Pull-up continuous casting equipment
CN201610364296.4A CN106238693A (en) 2015-06-15 2016-05-27 Top-guiding type continuous casting apparatus and top-guiding type continuous casing
US15/168,918 US20160361761A1 (en) 2015-06-15 2016-05-31 Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
EP16172806.8A EP3106246A1 (en) 2015-06-15 2016-06-03 Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
KR1020160071478A KR20160147657A (en) 2015-06-15 2016-06-09 Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120515A JP6265172B2 (en) 2015-06-15 2015-06-15 Pull-up continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2017001084A JP2017001084A (en) 2017-01-05
JP6265172B2 true JP6265172B2 (en) 2018-01-24

Family

ID=56098148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120515A Expired - Fee Related JP6265172B2 (en) 2015-06-15 2015-06-15 Pull-up continuous casting equipment

Country Status (5)

Country Link
US (1) US20160361761A1 (en)
EP (1) EP3106246A1 (en)
JP (1) JP6265172B2 (en)
KR (1) KR20160147657A (en)
CN (1) CN106238693A (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056448A (en) * 1983-09-06 1985-04-02 Kawasaki Steel Corp Continuous casting device for metallic pipe
JPS63199050A (en) * 1987-02-13 1988-08-17 Natl Res Inst For Metals Drawing-up continuous casting method without using mold and its apparatus
JP3211655B2 (en) * 1996-03-19 2001-09-25 トヨタ自動車株式会社 Molding method and molding apparatus
FI112447B (en) * 1997-04-29 2003-12-15 Outokumpu Oy Method and apparatus for upward casting of metal wires, rods and pipes
CN101837368B (en) * 2010-04-27 2012-02-01 新星化工冶金材料(深圳)有限公司 Continuous casting and rolling molding method for magnesium alloy plate
JP5373728B2 (en) * 2010-09-17 2013-12-18 株式会社豊田中央研究所 Free casting method, free casting apparatus and casting
JP5912859B2 (en) * 2012-05-24 2016-04-27 トヨタ自動車株式会社 Casting body manufacturing apparatus and manufacturing method thereof
JP2014057980A (en) * 2012-09-18 2014-04-03 Toyota Motor Corp Pull up type continuous casting device and pull up type continuous casting method
JP2014104468A (en) * 2012-11-22 2014-06-09 Toyota Motor Corp Draw-up continuous casting apparatus and draw-up type continuous casting method
JP5700057B2 (en) * 2013-01-30 2015-04-15 トヨタ自動車株式会社 Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP2015027693A (en) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 Drawing type continuous casting apparatus and drawing type continuous casting method
JP2015093308A (en) * 2013-11-13 2015-05-18 トヨタ自動車株式会社 Up-drawing casting apparatus
JP2015096269A (en) * 2013-11-15 2015-05-21 トヨタ自動車株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6136892B2 (en) * 2013-11-27 2017-05-31 トヨタ自動車株式会社 Pull-up type continuous casting apparatus and pull-up type continuous casting method
CN104596243B (en) * 2014-05-04 2017-02-15 上海康成铜业集团有限公司 Melting furnace, device and method for casting and producing high-performance Cu-Ag alloy

Also Published As

Publication number Publication date
JP2017001084A (en) 2017-01-05
EP3106246A1 (en) 2016-12-21
CN106238693A (en) 2016-12-21
KR20160147657A (en) 2016-12-23
US20160361761A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP5373728B2 (en) Free casting method, free casting apparatus and casting
JP6265172B2 (en) Pull-up continuous casting equipment
JP6616343B2 (en) Pull-up continuous casting equipment
JP6123644B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6036710B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6737689B2 (en) Pull-up type continuous casting equipment
JP6156222B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6119579B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
WO2014167598A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6701615B2 (en) Pull-up continuous casting apparatus and pull-up continuous casting method
JP5700057B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6477667B2 (en) Molded body manufacturing method and molded body manufacturing apparatus
WO2014167600A1 (en) Hoisting type continuous casting device and hoisting type continuous casting method
JP2015167989A (en) Drawing-up type continuous casting method
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
US20160067771A1 (en) Upward continuous casting apparatus and upward continuous casting method
JP2016028830A (en) Upward continuous casting apparatus
JP5892078B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP2015226915A (en) Up-drawing continuous casting apparatus
JP5994747B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP2014079780A (en) Pull up type continuous casting device and pull up type continuous casting method
JP6100707B2 (en) Pull-up continuous casting equipment
JP2014100736A (en) Pull-up type continuous casting device and pull-up type continuous casting method
JP2015100819A (en) Upward continuous casting method and upward continuous casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6265172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees