WO2014167600A1 - Hoisting type continuous casting device and hoisting type continuous casting method - Google Patents

Hoisting type continuous casting device and hoisting type continuous casting method Download PDF

Info

Publication number
WO2014167600A1
WO2014167600A1 PCT/JP2013/002456 JP2013002456W WO2014167600A1 WO 2014167600 A1 WO2014167600 A1 WO 2014167600A1 JP 2013002456 W JP2013002456 W JP 2013002456W WO 2014167600 A1 WO2014167600 A1 WO 2014167600A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
temperature
continuous casting
retained
pulling
Prior art date
Application number
PCT/JP2013/002456
Other languages
French (fr)
Japanese (ja)
Inventor
裕生 日下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2015510950A priority Critical patent/JPWO2014167600A1/en
Priority to CN201380074353.XA priority patent/CN105073300A/en
Priority to CA2908121A priority patent/CA2908121A1/en
Priority to BR112015024917A priority patent/BR112015024917A2/en
Priority to EP13881878.6A priority patent/EP2962784A4/en
Priority to RU2015147724A priority patent/RU2015147724A/en
Priority to US14/783,185 priority patent/US20160045954A1/en
Priority to AU2013386132A priority patent/AU2013386132A1/en
Priority to PCT/JP2013/002456 priority patent/WO2014167600A1/en
Publication of WO2014167600A1 publication Critical patent/WO2014167600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/08Accessories for starting the casting procedure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Definitions

  • the present invention relates to a pull-up type continuous casting apparatus and a pull-up type continuous casting method.
  • Patent Document 1 the inventors have proposed a free casting method as an innovative continuous casting method that does not require a mold.
  • the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface) (that is, the molten metal surface)
  • the molten metal follows the starter by the surface film or surface tension of the molten metal.
  • a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
  • the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold.
  • the cast casting since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
  • the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction.
  • regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained.
  • Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
  • the present invention has been made in view of the above, and by controlling the temperature of the retained molten metal with high accuracy, the pulling-up-type continuous casting apparatus and the pull-up-type continuous casting device that can control the pulling-up speed of the starter with high accuracy.
  • An object is to provide a casting method.
  • An up-drawing continuous casting apparatus includes a holding furnace for holding a molten metal, a lead-out portion for deriving the molten metal from the molten metal surface held in the holding furnace, and a vicinity of the molten metal surface.
  • a shape determining member that defines the cross-sectional shape of a casting to be cast by applying an external force to the retained molten metal that is installed and derived by the derivation unit and that is before solidification, and a temperature that measures the temperature of the retained molten metal And a temperature of the retained molten metal based on a measurement result of the temperature measuring unit.
  • the temperature measuring unit is preferably a thermocouple, and the temperature measuring contact is preferably provided in the retained molten metal.
  • the temperature measuring unit is preferably a thermocouple, and the temperature measuring contact is preferably provided in the molten metal near the molten metal.
  • the temperature measuring unit is a thermocouple, and the temperature measuring contact is provided in the molten metal immediately below the retained molten metal.
  • the temperature measuring unit is a thermocouple, and the temperature measuring contact is preferably provided in the vicinity of the contact surface between the shape defining member and the retained molten metal inside the shape defining member.
  • the holding furnace controls the temperature of the molten metal by controlling the temperature of the molten metal based on the measurement result of the temperature measuring unit.
  • the temperature control unit is provided in the molten metal near the retained molten metal.
  • the temperature control unit is provided in the molten metal immediately below the retained molten metal.
  • the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
  • the temperature control unit has a protrusion that extends into the retained molten metal.
  • the temperature control unit is preferably provided in the vicinity of the contact surface between the shape determining member and the retained molten metal in the shape determining member.
  • An up-drawing continuous casting method includes a step of installing a shape defining member that defines a cross-sectional shape of a casting to be cast in the vicinity of a molten metal surface of a molten metal held in a holding furnace, and pulling up the molten metal
  • the temperature of the retained molten metal can be controlled with high accuracy, so that the starter pulling speed can be controlled with high accuracy.
  • thermocouple temperature measuring contact in the retained molten metal.
  • thermocouple temperature measuring contact in the molten metal in the vicinity of the retained molten metal.
  • thermocouple temperature measuring contact in the molten metal immediately below the retained molten metal.
  • thermocouple it is preferable to measure the temperature of the retained molten metal by providing a temperature measuring contact of a thermocouple in the vicinity of the contact surface between the shape defining member and the retained molten metal inside the shape defining member.
  • thermocontrol unit It is preferable to control the temperature of the retained molten metal by a temperature control unit.
  • the temperature control unit is provided in the molten metal in the vicinity of the retained molten metal.
  • the temperature control unit is provided in the molten metal immediately below the retained molten metal.
  • the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
  • the temperature control unit is provided with a protrusion that extends into the retained molten metal.
  • the temperature control unit is provided in the vicinity of the contact surface between the shape determining member and the retained molten metal inside the shape determining member.
  • FIG. 3 is a cross-sectional view illustrating a first specific configuration example of a temperature control unit 109.
  • FIG. 6 is a cross-sectional view illustrating a second specific configuration example of the temperature control unit 109.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a free casting apparatus according to the first embodiment.
  • a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace (holding furnace) 101, an internal shape defining member 102a, an external shape defining member 102b, support rods 103 and 104, an actuator 105, and a cooling gas nozzle.
  • 106 a deriving unit 107, and a thermocouple (temperature measuring unit) 108.
  • the molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds it at a predetermined temperature.
  • a molten metal M1 such as aluminum or an alloy thereof
  • a case where the molten metal holding furnace 101 holds the molten metal M1 at a temperature corresponding to the measurement result of the thermocouple 108 will be described as an example (described later).
  • the surface of the molten metal M1 that is, the molten metal surface
  • the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant.
  • the molten metal M1 may be a metal or alloy other than aluminum.
  • the inner shape determining member 102a and the outer shape determining member 102b are made of, for example, ceramics or stainless steel, and are disposed in the vicinity of the molten metal surface.
  • the inner shape defining member 102a and the outer shape defining member 102b are arranged so as to contact the molten metal surface.
  • the inner shape defining member 102a and the outer shape defining member 102b may be installed such that their main surfaces on the lower side (the hot water surface side) do not contact the hot water surface.
  • a predetermined gap (for example, about 0.5 mm) may be provided between the main surface on the lower side of the inner shape defining member 102a and the outer shape defining member 102b and the molten metal surface.
  • the internal shape defining member 102a defines the internal shape of the casting M3 to be cast
  • the external shape defining member 102b defines the external shape of the cast M3 to be cast.
  • the casting M3 shown in FIG. 1 is a hollow casting (that is, a pipe) having a horizontal cross section (hereinafter referred to as a transverse section) having a tubular shape.
  • the inner shape defining member 102a defines the inner diameter of the cross section of the casting M3
  • the outer shape defining member 102b defines the outer diameter of the cross section of the casting M3.
  • FIG. 2 is a plan view of the internal shape defining member 102a and the external shape defining member 102b.
  • the sectional view of the inner shape defining member 102a and the outer shape defining member 102b in FIG. 1 corresponds to the II sectional view in FIG.
  • the external shape defining member 102b has, for example, a rectangular planar shape, and has a circular opening at the center.
  • the internal shape defining member 102a has a circular planar shape and is disposed at the center of the opening of the external shape defining member 102b.
  • a gap between the inner shape determining member 102a and the outer shape determining member 102b becomes a molten metal passage portion 102c through which the molten metal passes.
  • the shape defining member 102 includes the inner shape defining member 102a, the external shape defining member 102b, and the molten metal passage portion 102c.
  • the lead-out unit 107 includes a starter (lead-out member) ST that is immersed in the molten metal M1 and a puller PL (not shown) that drives the starter ST in the vertical direction, for example.
  • the molten metal M1 is pulled up following the starter ST while maintaining its outer shape by its surface film and surface tension, and passes through the molten metal passage portion 102c.
  • the molten metal pulled up from the molten metal surface following the starter ST (or the casting M3 formed by solidification of the molten metal M1 derived by the starter ST) by the surface film or surface tension of the molten metal M1 is retained in the molten metal M2. Call it. Further, the interface between the casting M3 and the retained molten metal M2 is a solidification interface.
  • the starter ST is made of, for example, ceramics or stainless steel.
  • the surface of the starter ST may be covered with a protective film (not shown) such as a salt crystal.
  • a protective film such as a salt crystal.
  • the support rod 103 supports the internal shape defining member 102a, and the support rod 104 supports the external shape defining member 102b.
  • the support rods 103 and 104 can maintain the positional relationship between the internal shape defining member 102a and the external shape defining member 102b.
  • the support rod 103 has a pipe structure, a cooling gas is allowed to flow therethrough, and a blow hole is provided in the internal shape defining member 102a, the casting M3 can be cooled also from the inside.
  • the support rods 103 and 104 are connected to the actuator 105.
  • the actuator 105 By the actuator 105, the support rods 103 and 104 can move in the vertical direction (vertical direction) and the horizontal direction while maintaining the positional relationship between the internal shape defining member 102a and the external shape defining member 102b.
  • the inner shape defining member 102a and the outer shape defining member 102b can be moved downward as the molten metal surface is lowered due to the progress of casting.
  • the inner shape defining member 102a and the outer shape defining member 102b can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be freely changed.
  • the cooling gas nozzle (cooling unit) 106 is for spraying a cooling gas (air, nitrogen, argon, etc.) on the starter ST or the casting M3 to cool it. While the casting M3 is pulled up by a puller PL (not shown) connected to the starter ST and the starter ST and the casting M3 are cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface is sequentially solidified and continuously. Casting M3 is formed.
  • a cooling gas air, nitrogen, argon, etc.
  • the thermocouple 108 is for measuring the temperature of the retained molten metal M2.
  • a temperature measuring contact of a thermocouple is provided inside the retained molten metal M2.
  • the thermocouple 108 can accurately measure the temperature of the retained molten metal M2.
  • the temperature measuring contact of the thermocouple 108 is not limited to the inside of the retained molten metal M2, but may be provided in the vicinity of the retained molten metal M2 or in the molten metal M1 immediately below as shown in FIG. Further, as long as the temperature of the retained molten metal M2 can be measured, the temperature is not limited to the thermocouple 108, and other temperature measuring means may be used.
  • the molten metal holding furnace 101 controls the temperature of the molten metal M1 based on the measurement result of the thermocouple 108 as described above.
  • the temperature of the retained molten metal M2 is controlled with high accuracy.
  • the temperature of the retained molten metal M2 can be lowered to the vicinity of the melting point, so that the pulling speed of the starter ST can be improved (that is, the pulling speed of the starter ST can be accurately controlled). It becomes.
  • the starter ST is lowered, and the starter ST is immersed in the molten metal M1 through the molten metal passage portion 102c between the internal shape defining member 102a and the external shape defining member 102b.
  • start-up of the starter ST is started at a predetermined speed.
  • the molten metal M1 is pulled up (derived) from the molten metal surface by the surface film or surface tension to form the retained molten metal M2.
  • the retained molten metal M2 is formed in the molten metal passage portion 102c between the inner shape defining member 102a and the outer shape defining member 102b. That is, the shape is imparted to the retained molten metal M2 by the inner shape defining member 102a and the outer shape defining member 102b.
  • the starter ST (and the casting M3) is cooled by the cooling gas blown out from the cooling gas nozzle 106.
  • the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows. In this way, the casting M3 can be continuously cast.
  • the temperature of the retained molten metal M2 is measured by the thermocouple 108.
  • the molten metal holding furnace 101 controls the temperature of the molten metal M ⁇ b> 1 based on the measurement result of the thermocouple 108.
  • the temperature of the retained molten metal M2 is controlled with high accuracy.
  • the temperature of the retained molten metal M2 can be lowered to the vicinity of the melting point, so that the pulling speed of the starter ST can be improved (that is, the pulling speed of the starter ST can be accurately controlled). It becomes.
  • the free casting apparatus includes the thermocouple 108 that measures the temperature of the retained molten metal M2, and accurately controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. .
  • the free casting apparatus according to the present embodiment can reduce the temperature of the retained molten metal M2 to near the melting point, for example, thereby improving the pulling speed of the starter ST (that is, the starter ST The pulling speed can be controlled with high accuracy).
  • the case where the temperature of the retained molten metal M2 is always measured during casting is described as an example, but the present invention is not limited to this.
  • the temperature of the retained molten metal M2 may not be measured after the pulling speed of the starter ST is determined, for example. Therefore, for example, the temperature measuring contact of the thermocouple 108 may be installed in the holding molten metal M2 or in the vicinity thereof with the start of casting, and may be removed after the starter ST pulling speed is determined.
  • FIG. 4 is a cross-sectional view illustrating a configuration example of the free casting apparatus according to the second embodiment.
  • the molten metal holding furnace 101 controls the temperature of the molten metal M2 by controlling the temperature of the molten metal M1 based on the measurement result of the thermocouple 108.
  • the free casting apparatus shown in FIG. 4 further includes a temperature control unit 109 that controls the temperature of the retained molten metal M2 (or the molten metal M1 in the vicinity thereof) based on the measurement result of the thermocouple 108.
  • the temperature control unit 109 is provided in the molten metal M1 near or just below the retained molten metal M2, and controls the temperature of the molten metal M1 near or directly below the retained molten metal M2 based on the measurement result of the thermocouple 108.
  • the temperature control unit 109 heats the molten metal M1 using a heater or the like, or cools the molten metal M1 by flowing a refrigerant through a refrigerant circuit. Thereby, the temperature of the retained molten metal M2 is controlled with higher accuracy.
  • thermocouple 108 is not limited to the inside of the retained molten metal M2, but may be provided in the vicinity of the retained molten metal M2 or in the molten metal M1 immediately below as shown in FIG.
  • FIG. 6 is a cross-sectional view illustrating a first specific configuration example of the temperature control unit 109.
  • the temperature control unit 109 is formed so as to surround the molten metal M ⁇ b> 1 near or directly below the retained molten metal M ⁇ b> 2.
  • the temperature control unit 109 includes a main body part and a protruding part.
  • the main body of the temperature controller 109 is provided directly below the retained molten metal M2.
  • the protrusion part of the temperature control part 109 protrudes upwards from the both ends of the main-body part so that the molten metal M1 of the vicinity of the holding
  • the molten metal M1 near or directly below the retained molten metal M2 and the other molten metal M1 are not completely separated.
  • Such a configuration makes it possible to control the temperature of the retained molten metal M2 with higher accuracy.
  • FIG. 7 is a cross-sectional view illustrating a second specific configuration example of the temperature control unit 109.
  • the temperature control unit 109 is formed so as to surround the molten metal M ⁇ b> 1 in the vicinity of the retained molten metal M ⁇ b> 2 or directly below, and has a protrusion that extends to the interior of the retained molten metal M ⁇ b> 2.
  • the temperature control unit 109 includes a main body part, a first projecting part, and a second projecting part.
  • the main body of the temperature controller 109 is provided directly below the retained molten metal M2.
  • the first projecting portion of the temperature control unit 109 is provided so as to project upward from both ends of the main body so as to separate the molten metal M1 near or directly below the retained molten metal M2 from the other molten metal M1.
  • the molten metal M1 near or directly below the retained molten metal M2 and the other molten metal M1 are not completely separated.
  • the 2nd protrusion part of the temperature control part 109 protrudes upwards from the upper surface center part of the main-body part, and is provided. This 2nd protrusion part is extended even inside the holding
  • Such a configuration makes it possible to directly control the temperature of the retained molten metal M2 (control the temperature of the retained molten metal M2 with higher accuracy).
  • the free casting apparatus includes a thermocouple 108 that measures the temperature of the retained molten metal M2, and a temperature control unit 109 that controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. .
  • the free casting apparatus according to the present embodiment can control the temperature of the retained molten metal M2 with higher accuracy, the pulling speed of the starter ST is further improved (that is, the pulling speed of the starter ST is further increased). Can be controlled with high accuracy).
  • FIG. 8 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention.
  • the temperature measuring contact of the thermocouple 108 is the contact between the shape defining member 102 and the retained molten metal M2 in the shape defining member 102 (in the example of FIG. 8, the external shape defining member 102b). It is provided near the surface. Since the other structure of the free casting apparatus shown in FIG. 8 is the same as that of the free casting apparatus shown in FIG. 4, the description thereof is omitted.
  • FIG. 9 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention.
  • the temperature control unit 109 is provided in the vicinity of the contact surface between the shape defining member 102 and the retained molten metal M ⁇ b> 2 in the shape defining member 102.
  • the function of the temperature control unit 109 is added to the shape defining member 102.
  • the other configuration of the free casting apparatus shown in FIG. 9 is the same as that of the free casting apparatus shown in FIG.
  • FIG. 10 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention.
  • a separating unit 110 formed so as to surround the molten metal M ⁇ b> 1 in the vicinity of the retained molten metal M ⁇ b> 2 or immediately below is further provided.
  • the other configuration of the free casting apparatus shown in FIG. 10 is the same as that of the free casting apparatus shown in FIG.
  • the free casting apparatus includes the thermocouple 108 that measures the temperature of the retained molten metal M2, and the temperature that controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. And a control unit 109 (or molten metal holding furnace 101).
  • the free casting apparatus according to the first to third embodiments can accurately control the temperature of the retained molten metal M2, thereby improving the pulling speed of the starter ST (that is, increasing the pulling speed of the starter ST). Can be controlled with high accuracy).
  • the present invention can also be applied when casting a cylindrical casting or casting a casting having another shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

This hoisting type continuous casting device is provided with: a holding furnace (101) for holding a molten metal; an extraction unit (107)for extracting the molten metal from the surface of the molten metal held in the holding furnace; a shape-defining member (102) installed near the surface of the molten metal, the shape-defining member (102) applying an external force onto the held molten metal, which is the pre-solidification molten metal extracted by the extraction unit, and thereby defining the cross-sectional shape of the casting to be casted; and a temperature measurement unit (108) for measuring the temperature of the held molten metal. The temperature of the held molten metal is controlled on the basis of the result of measurement by the temperature measurement unit.

Description

引上式連続鋳造装置及び引上式連続鋳造方法Pull-up type continuous casting apparatus and pull-up type continuous casting method
 本発明は引上式連続鋳造装置及び引上式連続鋳造方法に関する。 The present invention relates to a pull-up type continuous casting apparatus and a pull-up type continuous casting method.
 特許文献1には、発明者らにより、鋳型を要しない画期的な連続鋳造方法として、自由鋳造方法が提案されている。特許文献1に示したように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。 In Patent Document 1, the inventors have proposed a free casting method as an innovative continuous casting method that does not require a mold. As shown in Patent Document 1, after the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface), when the starter is pulled up, the molten metal follows the starter by the surface film or surface tension of the molten metal. Derived. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
 通常の連続鋳造方法では、鋳型によって断面形状とともに長手方向の形状も規定される。とりわけ、連続鋳造方法では、鋳型内を凝固した金属(すなわち鋳物)が通り抜ける必要があるため、鋳造された鋳物は長手方向に直線状に延びた形状となる。
 これに対し、自由鋳造方法における形状規定部材は、鋳物の断面形状のみを規定し、長手方向の形状は規定しない。そして、形状規定部材は、湯面に平行な方向(すなわち水平方向)に移動可能であるから、長手方向の形状が様々な鋳物が得られる。例えば、特許文献1には、長手方向に直線状でなく、ジグザグ状あるいは螺旋状に形成された中空鋳物(すなわちパイプ)が開示されている。
In a normal continuous casting method, the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold. In particular, in the continuous casting method, since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
On the other hand, the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction. And since a shape prescription | regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained. For example, Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
特開2012-61518号公報JP 2012-61518 A
 発明者は以下の課題を見出した。
 特許文献1に記載の自由鋳造方法では、スタータに追従して湯面から引き上げられた凝固前の溶湯(保持溶湯)の温度を精度良く制御することができないため、スタータの引き上げ速度を精度良く制御することができない、という問題があった。
The inventor has found the following problems.
In the free casting method described in Patent Document 1, the temperature of the melt before being solidified (held molten metal) pulled up from the molten metal surface following the starter cannot be accurately controlled. There was a problem that I could not do it.
 本発明は、上記を鑑みなされたものであって、保持溶湯の温度を精度良く制御することにより、スタータの引き上げ速度を精度良く制御することが可能な引上式連続鋳造装置及び引上式連続鋳造方法を提供することを目的とする。 The present invention has been made in view of the above, and by controlling the temperature of the retained molten metal with high accuracy, the pulling-up-type continuous casting apparatus and the pull-up-type continuous casting device that can control the pulling-up speed of the starter with high accuracy. An object is to provide a casting method.
 本発明の一態様に係る引上式連続鋳造装置は、溶湯を保持する保持炉と、前記保持炉に保持された前記溶湯の湯面から前記溶湯を導出する導出部と、前記湯面近傍に設置され、前記導出部によって導出された凝固前の前記溶湯である保持溶湯に外力を印加することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、前記保持溶湯の温度を測定する温度測定部と、を備え、前記温度測定部の測定結果に基づいて前記保持溶湯の温度が制御されるものである。それにより、保持溶湯の温度を精度良く制御することができるため、スタータの引き上げ速度を精度良く制御することができる。 An up-drawing continuous casting apparatus according to an aspect of the present invention includes a holding furnace for holding a molten metal, a lead-out portion for deriving the molten metal from the molten metal surface held in the holding furnace, and a vicinity of the molten metal surface. A shape determining member that defines the cross-sectional shape of a casting to be cast by applying an external force to the retained molten metal that is installed and derived by the derivation unit and that is before solidification, and a temperature that measures the temperature of the retained molten metal And a temperature of the retained molten metal based on a measurement result of the temperature measuring unit. As a result, the temperature of the retained molten metal can be controlled with high accuracy, so that the starter pulling speed can be controlled with high accuracy.
 前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯内に設けられていることが好ましい。 The temperature measuring unit is preferably a thermocouple, and the temperature measuring contact is preferably provided in the retained molten metal.
 前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯近傍の前記溶湯内に設けられていることが好ましい。 The temperature measuring unit is preferably a thermocouple, and the temperature measuring contact is preferably provided in the molten metal near the molten metal.
 前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯直下の前記溶湯内に設けられていることが好ましい。 It is preferable that the temperature measuring unit is a thermocouple, and the temperature measuring contact is provided in the molten metal immediately below the retained molten metal.
 前記温度測定部は、熱電対であって、その測温接点が前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設けられていることが好ましい。 The temperature measuring unit is a thermocouple, and the temperature measuring contact is preferably provided in the vicinity of the contact surface between the shape defining member and the retained molten metal inside the shape defining member.
 前記保持炉は、前記温度測定部の測定結果に基づいて前記溶湯の温度を制御することにより、前記保持溶湯の温度を制御することが好ましい。 It is preferable that the holding furnace controls the temperature of the molten metal by controlling the temperature of the molten metal based on the measurement result of the temperature measuring unit.
 前記温度測定部の測定結果に基づいて前記保持溶湯の温度を制御する温度制御部をさらに備えることが好ましい。 It is preferable to further include a temperature control unit that controls the temperature of the retained molten metal based on the measurement result of the temperature measuring unit.
 前記温度制御部は、前記保持溶湯近傍の前記溶湯内に設けられていることが好ましい。 It is preferable that the temperature control unit is provided in the molten metal near the retained molten metal.
 前記温度制御部は、前記保持溶湯直下の前記溶湯内に設けられていることが好ましい。 It is preferable that the temperature control unit is provided in the molten metal immediately below the retained molten metal.
 前記温度制御部は、前記保持溶湯近傍の前記溶湯を囲うように形成されていることが好ましい。 It is preferable that the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
 前記保持溶湯近傍の前記溶湯を囲う隔離部をさらに有することが好ましい。 It is preferable to further have a separating part surrounding the molten metal in the vicinity of the retained molten metal.
 前記温度制御部は、前記保持溶湯内部にまで延びる突出部を有することが好ましい。 It is preferable that the temperature control unit has a protrusion that extends into the retained molten metal.
 前記温度制御部は、前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設けられていることが好ましい。 The temperature control unit is preferably provided in the vicinity of the contact surface between the shape determining member and the retained molten metal in the shape determining member.
 本発明の一態様に係る引上式連続鋳造方法は、鋳造する鋳物の断面形状を規定する形状規定部材を、保持炉に保持された溶湯の湯面近傍に設置するステップと、前記溶湯を引き上げて前記形状規定部材を通過させるステップと、引き上げられた凝固前の前記溶湯である保持溶湯の温度を測定するステップと、測定結果に基づいて前記保持溶湯の温度を制御するステップと、を備えるものである。それにより、保持溶湯の温度を精度良く制御することができるため、スタータの引き上げ速度を精度良く制御することができる。 An up-drawing continuous casting method according to an aspect of the present invention includes a step of installing a shape defining member that defines a cross-sectional shape of a casting to be cast in the vicinity of a molten metal surface of a molten metal held in a holding furnace, and pulling up the molten metal A step of passing the shape determining member, a step of measuring a temperature of the retained molten metal that has been pulled up, and a step of controlling the temperature of the retained molten metal based on a measurement result. It is. As a result, the temperature of the retained molten metal can be controlled with high accuracy, so that the starter pulling speed can be controlled with high accuracy.
 前記保持溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定することが好ましい。 It is preferable to measure the temperature of the retained molten metal by providing a thermocouple temperature measuring contact in the retained molten metal.
 前記保持溶湯近傍の前記溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定することが好ましい。 It is preferable to measure the temperature of the retained molten metal by providing a thermocouple temperature measuring contact in the molten metal in the vicinity of the retained molten metal.
 前記保持溶湯直下の前記溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定することが好ましい。 It is preferable to measure the temperature of the retained molten metal by providing a thermocouple temperature measuring contact in the molten metal immediately below the retained molten metal.
 前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定することが好ましい。 It is preferable to measure the temperature of the retained molten metal by providing a temperature measuring contact of a thermocouple in the vicinity of the contact surface between the shape defining member and the retained molten metal inside the shape defining member.
 前記保持炉により前記溶湯の温度を制御することで、前記保持溶湯の温度を制御することが好ましい。 It is preferable to control the temperature of the molten metal by controlling the temperature of the molten metal with the holding furnace.
 温度制御部により前記保持溶湯の温度を制御することが好ましい。 It is preferable to control the temperature of the retained molten metal by a temperature control unit.
 前記温度制御部を、前記保持溶湯近傍の前記溶湯内に設けることが好ましい。 It is preferable that the temperature control unit is provided in the molten metal in the vicinity of the retained molten metal.
 前記温度制御部を、前記保持溶湯直下の前記溶湯内に設けることが好ましい。 It is preferable that the temperature control unit is provided in the molten metal immediately below the retained molten metal.
 前記温度制御部を、前記保持溶湯近傍の前記溶湯を囲うように形成することが好ましい。 It is preferable that the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
 前記保持溶湯近傍の前記溶湯を囲う隔離部をさらに設けることが好ましい。 It is preferable to further provide an isolating portion surrounding the molten metal in the vicinity of the retained molten metal.
 前記温度制御部に、前記保持溶湯内部にまで延びる突出部を設けることが好ましい。 It is preferable that the temperature control unit is provided with a protrusion that extends into the retained molten metal.
 前記温度制御部を、前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設けることが好ましい。 It is preferable that the temperature control unit is provided in the vicinity of the contact surface between the shape determining member and the retained molten metal inside the shape determining member.
 本発明により、保持溶湯の温度を精度良く制御することにより、スタータの引き上げ速度を精度良く制御することが可能な引上式連続鋳造装置及び引上式連続鋳造方法を提供することができる。 According to the present invention, it is possible to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method that can control the pulling speed of the starter with high accuracy by controlling the temperature of the retained molten metal with high accuracy.
実施の形態1に係る自由鋳造装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the free casting apparatus which concerns on Embodiment 1. FIG. 内部形状規定部材102a及び外部形状規定部材102bの平面図である。It is a top view of the internal shape defining member 102a and the external shape defining member 102b. 実施の形態1に係る自由鋳造装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the free casting apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る自由鋳造装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the free casting apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る自由鋳造装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the free casting apparatus which concerns on Embodiment 2. FIG. 温度制御部109の第1の具体的構成例を示す断面図である。3 is a cross-sectional view illustrating a first specific configuration example of a temperature control unit 109. FIG. 温度制御部109の第2の具体的構成例を示す断面図である。6 is a cross-sectional view illustrating a second specific configuration example of the temperature control unit 109. FIG. 本発明に係る自由鋳造装置のその他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the free casting apparatus which concerns on this invention. 本発明に係る自由鋳造装置のその他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the free casting apparatus which concerns on this invention. 本発明に係る自由鋳造装置のその他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the free casting apparatus which concerns on this invention. 本発明に係る自由鋳造装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the free casting apparatus which concerns on this invention.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
<実施の形態1>
 まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置の構成例を示す断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉(保持炉)101、内部形状規定部材102a、外部形状規定部材102b、支持ロッド103、104、アクチュエータ105、冷却ガスノズル106、導出部107、及び、熱電対(温度測定部)108を備えている。
<Embodiment 1>
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. FIG. 1 is a cross-sectional view illustrating a configuration example of a free casting apparatus according to the first embodiment. As shown in FIG. 1, a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace (holding furnace) 101, an internal shape defining member 102a, an external shape defining member 102b, support rods 103 and 104, an actuator 105, and a cooling gas nozzle. 106, a deriving unit 107, and a thermocouple (temperature measuring unit) 108.
 溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、所定の温度に保持する。特に、本実施の形態では、溶湯保持炉101が溶湯M1を熱電対108の測定結果に応じた温度に保持する場合を例に説明する(後述)。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。なお、当然のことながら、溶湯M1はアルミニウム以外の他の金属や合金であってもよい。 The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds it at a predetermined temperature. In particular, in the present embodiment, a case where the molten metal holding furnace 101 holds the molten metal M1 at a temperature corresponding to the measurement result of the thermocouple 108 will be described as an example (described later). In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. As a matter of course, the molten metal M1 may be a metal or alloy other than aluminum.
 内部形状規定部材102a及び外部形状規定部材102bは、例えばセラミックスやステンレスなどからなり、湯面近傍に配置されている。図1の例では、内部形状規定部材102a及び外部形状規定部材102bが湯面に接触するように配置されている。しかしながら、内部形状規定部材102a及び外部形状規定部材102bは、それらの下側(湯面側)の主面が湯面に接触しないように設置されてもよい。具体的には、内部形状規定部材102a及び外部形状規定部材102bの下側の主面と湯面との間に所定の(例えば0.5mm程度の)ギャップを設けてもよい。 The inner shape determining member 102a and the outer shape determining member 102b are made of, for example, ceramics or stainless steel, and are disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the inner shape defining member 102a and the outer shape defining member 102b are arranged so as to contact the molten metal surface. However, the inner shape defining member 102a and the outer shape defining member 102b may be installed such that their main surfaces on the lower side (the hot water surface side) do not contact the hot water surface. Specifically, a predetermined gap (for example, about 0.5 mm) may be provided between the main surface on the lower side of the inner shape defining member 102a and the outer shape defining member 102b and the molten metal surface.
 内部形状規定部材102aは、鋳造する鋳物M3の内部形状を規定し、外部形状規定部材102bは、鋳造する鋳物M3の外部形状を規定する。図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が管状の中空鋳物(つまりパイプ)である。すなわち、より具体的には、内部形状規定部材102aは、鋳物M3の横断面の内径を規定し、外部形状規定部材102bは、鋳物M3の横断面の外径を規定する。 The internal shape defining member 102a defines the internal shape of the casting M3 to be cast, and the external shape defining member 102b defines the external shape of the cast M3 to be cast. The casting M3 shown in FIG. 1 is a hollow casting (that is, a pipe) having a horizontal cross section (hereinafter referred to as a transverse section) having a tubular shape. Specifically, the inner shape defining member 102a defines the inner diameter of the cross section of the casting M3, and the outer shape defining member 102b defines the outer diameter of the cross section of the casting M3.
 図2は、内部形状規定部材102a及び外部形状規定部材102bの平面図である。ここで、図1の内部形状規定部材102a及び外部形状規定部材102bの断面図は、図2のI-I断面図に相当する。図2に示すように、外部形状規定部材102bは、例えば矩形状の平面形状を有し、中央部に円形状の開口部を有している。内部形状規定部材102aは、円形状の平面形状を有し、外部形状規定部材102bの開口部の中央部に配置されている。内部形状規定部材102aと外部形状規定部材102bとの間の間隙が、溶湯が通過する溶湯通過部102cとなる。このように、内部形状規定部材102a、外部形状規定部材102b、溶湯通過部102cから形状規定部材102が構成されている。 FIG. 2 is a plan view of the internal shape defining member 102a and the external shape defining member 102b. Here, the sectional view of the inner shape defining member 102a and the outer shape defining member 102b in FIG. 1 corresponds to the II sectional view in FIG. As shown in FIG. 2, the external shape defining member 102b has, for example, a rectangular planar shape, and has a circular opening at the center. The internal shape defining member 102a has a circular planar shape and is disposed at the center of the opening of the external shape defining member 102b. A gap between the inner shape determining member 102a and the outer shape determining member 102b becomes a molten metal passage portion 102c through which the molten metal passes. As described above, the shape defining member 102 includes the inner shape defining member 102a, the external shape defining member 102b, and the molten metal passage portion 102c.
 導出部107は、溶湯M1に浸漬されるスタータ(導出部材)STと、スタータSTを例えば鉛直方向に駆動する引上機PL(不図示)と、を有する。 The lead-out unit 107 includes a starter (lead-out member) ST that is immersed in the molten metal M1 and a puller PL (not shown) that drives the starter ST in the vertical direction, for example.
 図1に示すように、溶湯M1は、浸漬されたスタータSTと結合した後、その表面膜や表面張力により外形を維持したままスタータSTに追従して引き上げられ、溶湯通過部102cを通過する。ここで、溶湯M1の表面膜や表面張力によってスタータST(又は、スタータSTによって導出された溶湯M1が凝固して形成された鋳物M3)に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との界面が凝固界面である。 As shown in FIG. 1, after the molten metal M1 is combined with the immersed starter ST, the molten metal M1 is pulled up following the starter ST while maintaining its outer shape by its surface film and surface tension, and passes through the molten metal passage portion 102c. Here, the molten metal pulled up from the molten metal surface following the starter ST (or the casting M3 formed by solidification of the molten metal M1 derived by the starter ST) by the surface film or surface tension of the molten metal M1 is retained in the molten metal M2. Call it. Further, the interface between the casting M3 and the retained molten metal M2 is a solidification interface.
 スタータSTは、例えばセラミックスやステンレスなどからなる。なお、スタータSTの表面は塩結晶等の保護被膜(不図示)で覆われていてもよい。それにより、スタータSTと溶湯M1との溶融結合が抑制されるため、スタータSTと鋳物M3との剥離性を向上させることができる。その結果、スタータSTの再利用が可能となる。さらに、スタータSTの表面は凹凸形状を有していてもよい。それにより、スタータSTの表面に保護被膜を付着(析出)させやすくなるため、スタータSTと鋳物M3との剥離性をさらに向上させることができる。同時に、溶湯導出時のスタータSTと溶湯M1との引上げ方向の結合力を向上させることができる。 The starter ST is made of, for example, ceramics or stainless steel. The surface of the starter ST may be covered with a protective film (not shown) such as a salt crystal. Thereby, since the melt bond between the starter ST and the molten metal M1 is suppressed, the peelability between the starter ST and the casting M3 can be improved. As a result, the starter ST can be reused. Furthermore, the surface of the starter ST may have an uneven shape. Thereby, since it becomes easy to adhere (deposit) a protective film on the surface of the starter ST, the peelability between the starter ST and the casting M3 can be further improved. At the same time, it is possible to improve the coupling force in the pulling direction between the starter ST and the molten metal M1 when the molten metal is led out.
 支持ロッド103は、内部形状規定部材102aを支持し、支持ロッド104は、外部形状規定部材102bを支持する。支持ロッド103、104により、内部形状規定部材102aと外部形状規定部材102bとの位置関係を維持することができる。ここで、支持ロッド103をパイプ構造とし、これに冷却ガスを流し、さらに内部形状規定部材102aに吹出孔を設ければ、内側からも鋳物M3を冷却することができる。 The support rod 103 supports the internal shape defining member 102a, and the support rod 104 supports the external shape defining member 102b. The support rods 103 and 104 can maintain the positional relationship between the internal shape defining member 102a and the external shape defining member 102b. Here, if the support rod 103 has a pipe structure, a cooling gas is allowed to flow therethrough, and a blow hole is provided in the internal shape defining member 102a, the casting M3 can be cooled also from the inside.
 アクチュエータ105には、支持ロッド103、104がともに連結されている。アクチュエータ105によって、支持ロッド103、104は、内部形状規定部材102a及び外部形状規定部材102bの位置関係を維持したまま、上下方向(鉛直方向)及び水平方向に移動可能である。このような構成により、鋳造の進行による湯面の低下とともに、内部形状規定部材102a及び外部形状規定部材102bを下方向に移動させることができる。また、内部形状規定部材102a及び外部形状規定部材102bを水平方向に移動させることができるため、鋳物M3の長手方向の形状を自由に変化させることができる。 The support rods 103 and 104 are connected to the actuator 105. By the actuator 105, the support rods 103 and 104 can move in the vertical direction (vertical direction) and the horizontal direction while maintaining the positional relationship between the internal shape defining member 102a and the external shape defining member 102b. With such a configuration, the inner shape defining member 102a and the outer shape defining member 102b can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the inner shape defining member 102a and the outer shape defining member 102b can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be freely changed.
 冷却ガスノズル(冷却部)106は、スタータSTや鋳物M3に冷却ガス(空気、窒素、アルゴンなど)を吹き付け、冷却するためのものである。スタータSTに連結された引上機PL(不図示)により鋳物M3を引き上げつつ、冷却ガスによりスタータSTや鋳物M3を冷却することにより、凝固界面近傍の保持溶湯M2が順次凝固し、連続的に鋳物M3が形成されていく。 The cooling gas nozzle (cooling unit) 106 is for spraying a cooling gas (air, nitrogen, argon, etc.) on the starter ST or the casting M3 to cool it. While the casting M3 is pulled up by a puller PL (not shown) connected to the starter ST and the starter ST and the casting M3 are cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface is sequentially solidified and continuously. Casting M3 is formed.
 熱電対108は、保持溶湯M2の温度を測定するためのものである。図1の例では、熱電対の測温接点が保持溶湯M2の内部に設けられている。それにより、熱電対108は、保持溶湯M2の温度を精度良く測定することができる。なお、熱電対108の測温接点は、保持溶湯M2の内部に限られず、図3に示すように、保持溶湯M2近傍又は直下の溶湯M1内に設けられても良い。また、保持溶湯M2の温度を測定することができるのであれば、熱電対108に限られず、他の温度測定手段が用いられてもよい。 The thermocouple 108 is for measuring the temperature of the retained molten metal M2. In the example of FIG. 1, a temperature measuring contact of a thermocouple is provided inside the retained molten metal M2. Thereby, the thermocouple 108 can accurately measure the temperature of the retained molten metal M2. Note that the temperature measuring contact of the thermocouple 108 is not limited to the inside of the retained molten metal M2, but may be provided in the vicinity of the retained molten metal M2 or in the molten metal M1 immediately below as shown in FIG. Further, as long as the temperature of the retained molten metal M2 can be measured, the temperature is not limited to the thermocouple 108, and other temperature measuring means may be used.
 ここで、溶湯保持炉101は、上記したように熱電対108の測定結果に基づいて溶湯M1の温度を制御する。それにより、保持溶湯M2の温度が精度良く制御される。その結果、例えば、保持溶湯M2の温度を融点付近にまで低くすることが可能になるため、スタータSTの引き上げ速度を向上させること(即ち、スタータSTの引き上げ速度を精度良く制御すること)が可能となる。 Here, the molten metal holding furnace 101 controls the temperature of the molten metal M1 based on the measurement result of the thermocouple 108 as described above. Thereby, the temperature of the retained molten metal M2 is controlled with high accuracy. As a result, for example, the temperature of the retained molten metal M2 can be lowered to the vicinity of the melting point, so that the pulling speed of the starter ST can be improved (that is, the pulling speed of the starter ST can be accurately controlled). It becomes.
 次に、図1を参照して、本実施の形態にかかる自由鋳造方法について説明する。 Next, the free casting method according to the present embodiment will be described with reference to FIG.
 まず、スタータSTを降下させ、内部形状規定部材102aと外部形状規定部材102bとの間の溶湯通過部102cを通して、スタータSTを溶湯M1に浸漬させる。 First, the starter ST is lowered, and the starter ST is immersed in the molten metal M1 through the molten metal passage portion 102c between the internal shape defining member 102a and the external shape defining member 102b.
 次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、溶湯M1は、表面膜や表面張力によってスタータSTに追従して湯面から引き上げられ(導出され)保持溶湯M2を形成する。図1に示すように、保持溶湯M2は、内部形状規定部材102aと外部形状規定部材102bとの間の溶湯通過部102cに形成される。つまり、内部形状規定部材102aと外部形状規定部材102bとにより、保持溶湯M2に形状が付与される。 Next, start-up of the starter ST is started at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the molten metal M1 is pulled up (derived) from the molten metal surface by the surface film or surface tension to form the retained molten metal M2. As shown in FIG. 1, the retained molten metal M2 is formed in the molten metal passage portion 102c between the inner shape defining member 102a and the outer shape defining member 102b. That is, the shape is imparted to the retained molten metal M2 by the inner shape defining member 102a and the outer shape defining member 102b.
 次に、スタータST(及び鋳物M3)は、冷却ガスノズル106から吹き出される冷却ガスにより冷却される。それにより、保持溶湯M2が上側から下側に向かって順に凝固し、鋳物M3が成長していく。このようにして、鋳物M3を連続鋳造することができる。 Next, the starter ST (and the casting M3) is cooled by the cooling gas blown out from the cooling gas nozzle 106. Thereby, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows. In this way, the casting M3 can be continuously cast.
 ここで、鋳造が行われている間、熱電対108によって保持溶湯M2の温度が測定される。そして、溶湯保持炉101は、熱電対108の測定結果に基づいて溶湯M1の温度を制御する。それにより、保持溶湯M2の温度が精度良く制御される。その結果、例えば、保持溶湯M2の温度を融点付近にまで低くすることが可能になるため、スタータSTの引き上げ速度を向上させること(即ち、スタータSTの引き上げ速度を精度良く制御すること)が可能となる。 Here, while casting is performed, the temperature of the retained molten metal M2 is measured by the thermocouple 108. The molten metal holding furnace 101 controls the temperature of the molten metal M <b> 1 based on the measurement result of the thermocouple 108. Thereby, the temperature of the retained molten metal M2 is controlled with high accuracy. As a result, for example, the temperature of the retained molten metal M2 can be lowered to the vicinity of the melting point, so that the pulling speed of the starter ST can be improved (that is, the pulling speed of the starter ST can be accurately controlled). It becomes.
 このように、本実施の形態にかかる自由鋳造装置は、保持溶湯M2の温度を測定する熱電対108を備え、熱電対108の測定結果に基づいて保持溶湯M2の温度を精度良く制御している。それにより、本実施の形態にかかる自由鋳造装置は、例えば、保持溶湯M2の温度を融点付近にまで低くすることが可能になるため、スタータSTの引き上げ速度を向上させること(即ち、スタータSTの引き上げ速度を精度良く制御すること)が可能となる。 As described above, the free casting apparatus according to the present embodiment includes the thermocouple 108 that measures the temperature of the retained molten metal M2, and accurately controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. . As a result, the free casting apparatus according to the present embodiment can reduce the temperature of the retained molten metal M2 to near the melting point, for example, thereby improving the pulling speed of the starter ST (that is, the starter ST The pulling speed can be controlled with high accuracy).
 本実施の形態では、鋳造が行われている間、常に保持溶湯M2の温度が測定されている場合を例に説明したが、これに限られない。保持溶湯M2の温度は、例えば、スタータSTの引き上げ速度が確定した後は測定されなくてもよい。したがって、例えば、熱電対108の測温接点は、鋳造の開始とともに保持溶湯M2内部又はその近傍に設置され、スタータSTの引き上げ速度の確定後に取り外されてもよい。 In the present embodiment, the case where the temperature of the retained molten metal M2 is always measured during casting is described as an example, but the present invention is not limited to this. The temperature of the retained molten metal M2 may not be measured after the pulling speed of the starter ST is determined, for example. Therefore, for example, the temperature measuring contact of the thermocouple 108 may be installed in the holding molten metal M2 or in the vicinity thereof with the start of casting, and may be removed after the starter ST pulling speed is determined.
<実施の形態2>
 図4は、実施の形態2に係る自由鋳造装置の構成例を示す断面図である。上記した図1に示す自由鋳造装置では、溶湯保持炉101が、熱電対108の測定結果に基づいて溶湯M1の温度を制御することで保持溶湯M2の温度を制御していた。それに対し、図4に示す自由鋳造装置は、熱電対108の測定結果に基づいて保持溶湯M2(又はその近傍の溶湯M1)の温度を制御する温度制御部109をさらに備える。
<Embodiment 2>
FIG. 4 is a cross-sectional view illustrating a configuration example of the free casting apparatus according to the second embodiment. In the free casting apparatus shown in FIG. 1, the molten metal holding furnace 101 controls the temperature of the molten metal M2 by controlling the temperature of the molten metal M1 based on the measurement result of the thermocouple 108. On the other hand, the free casting apparatus shown in FIG. 4 further includes a temperature control unit 109 that controls the temperature of the retained molten metal M2 (or the molten metal M1 in the vicinity thereof) based on the measurement result of the thermocouple 108.
 温度制御部109は、保持溶湯M2近傍又は直下の溶湯M1内に設けられ、熱電対108の測定結果に基づいて保持溶湯M2近傍又は直下にある溶湯M1の温度を制御する。例えば、温度制御部109は、ヒータ等を用いて当該溶湯M1を加熱したり、冷媒回路に冷媒を流すことで当該溶湯M1を冷却したりする。それにより、保持溶湯M2の温度がさらに精度良く制御される。 The temperature control unit 109 is provided in the molten metal M1 near or just below the retained molten metal M2, and controls the temperature of the molten metal M1 near or directly below the retained molten metal M2 based on the measurement result of the thermocouple 108. For example, the temperature control unit 109 heats the molten metal M1 using a heater or the like, or cools the molten metal M1 by flowing a refrigerant through a refrigerant circuit. Thereby, the temperature of the retained molten metal M2 is controlled with higher accuracy.
 図4に示す自由鋳造装置のその他の構成については、図1に示す自由鋳造装置の場合と同様であるため、その説明を省略する。なお、熱電対108の測温接点は、保持溶湯M2の内部に限られず、図5に示すように、保持溶湯M2近傍又は直下の溶湯M1内に設けられても良い。 4 is the same as that of the free casting apparatus shown in FIG. 1, and thus the description thereof is omitted. Note that the temperature measuring contact of the thermocouple 108 is not limited to the inside of the retained molten metal M2, but may be provided in the vicinity of the retained molten metal M2 or in the molten metal M1 immediately below as shown in FIG.
(温度制御部109の第1の具体的構成例)
 図6は、温度制御部109の第1の具体的構成例を示す断面図である。図6の例では、温度制御部109が保持溶湯M2近傍又は直下の溶湯M1を囲うように形成されている。
(First specific configuration example of the temperature control unit 109)
FIG. 6 is a cross-sectional view illustrating a first specific configuration example of the temperature control unit 109. In the example of FIG. 6, the temperature control unit 109 is formed so as to surround the molten metal M <b> 1 near or directly below the retained molten metal M <b> 2.
 より具体的には、図6の例では、温度制御部109が、本体部と突出部とにより構成されている。温度制御部109の本体部は、保持溶湯M2の直下に設けられている。そして、温度制御部109の突出部は、保持溶湯M2近傍又は直下の溶湯M1とそれ以外の溶湯M1とを隔てるように、本体部の両端から上方に突出して設けられている。ただし、保持溶湯M2近傍又は直下の溶湯M1とそれ以外の溶湯M1とは、完全に分離されるわけではない。 More specifically, in the example of FIG. 6, the temperature control unit 109 includes a main body part and a protruding part. The main body of the temperature controller 109 is provided directly below the retained molten metal M2. And the protrusion part of the temperature control part 109 protrudes upwards from the both ends of the main-body part so that the molten metal M1 of the vicinity of the holding | maintenance molten metal M2 or the direct bottom may be separated from the other molten metal M1. However, the molten metal M1 near or directly below the retained molten metal M2 and the other molten metal M1 are not completely separated.
 このような構成により、保持溶湯M2の温度をさらに精度良く制御することが可能となる。 Such a configuration makes it possible to control the temperature of the retained molten metal M2 with higher accuracy.
(温度制御部109の第2の具体的構成例)
 図7は、温度制御部109の第2の具体的構成例を示す断面図である。図7の例では、温度制御部109が、保持溶湯M2近傍又は直下の溶湯M1を囲うように形成されるとともに、保持溶湯M2内部にまで延びる突出部を有する。
(Second specific configuration example of the temperature control unit 109)
FIG. 7 is a cross-sectional view illustrating a second specific configuration example of the temperature control unit 109. In the example of FIG. 7, the temperature control unit 109 is formed so as to surround the molten metal M <b> 1 in the vicinity of the retained molten metal M <b> 2 or directly below, and has a protrusion that extends to the interior of the retained molten metal M <b> 2.
 より具体的には、図7の例では、温度制御部109は、本体部と第1突出部と第2突出部とにより構成されている。温度制御部109の本体部は、保持溶湯M2の直下に設けられている。温度制御部109の第1突出部は、保持溶湯M2近傍又は直下の溶湯M1とそれ以外の溶湯M1とを隔てるように、本体部の両端から上方に突出して設けられている。ただし、保持溶湯M2近傍又は直下の溶湯M1とそれ以外の溶湯M1とは、完全に分離されているわけではない。さらに、温度制御部109の第2突出部は、本体部の上面中央部分から上方に突出して設けられている。この第2突出部は、保持溶湯M2内部にまで延びている。 More specifically, in the example of FIG. 7, the temperature control unit 109 includes a main body part, a first projecting part, and a second projecting part. The main body of the temperature controller 109 is provided directly below the retained molten metal M2. The first projecting portion of the temperature control unit 109 is provided so as to project upward from both ends of the main body so as to separate the molten metal M1 near or directly below the retained molten metal M2 from the other molten metal M1. However, the molten metal M1 near or directly below the retained molten metal M2 and the other molten metal M1 are not completely separated. Furthermore, the 2nd protrusion part of the temperature control part 109 protrudes upwards from the upper surface center part of the main-body part, and is provided. This 2nd protrusion part is extended even inside the holding | maintenance molten metal M2.
 このような構成により、保持溶湯M2の温度を直接的に制御すること(保持溶湯M2の温度をさらに精度良く制御すること)が可能となる。 Such a configuration makes it possible to directly control the temperature of the retained molten metal M2 (control the temperature of the retained molten metal M2 with higher accuracy).
 このように、本実施の形態にかかる自由鋳造装置は、保持溶湯M2の温度を測定する熱電対108と、熱電対108の測定結果に基づいて保持溶湯M2の温度を制御する温度制御部109と、を備える。それにより、本実施の形態にかかる自由鋳造装置は、保持溶湯M2の温度をさらに精度良く制御することができるため、スタータSTの引き上げ速度をさらに向上させること(即ち、スタータSTの引き上げ速度をさらに精度良く制御すること)ができる。 Thus, the free casting apparatus according to the present embodiment includes a thermocouple 108 that measures the temperature of the retained molten metal M2, and a temperature control unit 109 that controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. . Thereby, since the free casting apparatus according to the present embodiment can control the temperature of the retained molten metal M2 with higher accuracy, the pulling speed of the starter ST is further improved (that is, the pulling speed of the starter ST is further increased). Can be controlled with high accuracy).
<実施の形態3>
 本実施の形態では、本発明に係る自由鋳造装置のその他の構成例について説明する。
<Embodiment 3>
In the present embodiment, other configuration examples of the free casting apparatus according to the present invention will be described.
(本発明に係る自由鋳造装置のその他の構成例(その1))
 図8は、本発明に係る自由鋳造装置のその他の構成例を示す断面図である。図8に示す自由鋳造装置では、熱電対108の測温接点が、形状規定部材102(図8の例では、外部形状規定部材102b)内部のうち、形状規定部材102と保持溶湯M2との接触面近傍に設けられている。図8に示す自由鋳造装置のその他の構成については、図4に示す自由鋳造装置の場合と同様であるため、その説明を省略する。
(Other configuration examples of the free casting apparatus according to the present invention (part 1))
FIG. 8 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention. In the free casting apparatus shown in FIG. 8, the temperature measuring contact of the thermocouple 108 is the contact between the shape defining member 102 and the retained molten metal M2 in the shape defining member 102 (in the example of FIG. 8, the external shape defining member 102b). It is provided near the surface. Since the other structure of the free casting apparatus shown in FIG. 8 is the same as that of the free casting apparatus shown in FIG. 4, the description thereof is omitted.
(本発明に係る自由鋳造装置のその他の構成例(その2))
 図9は、本発明に係る自由鋳造装置のその他の構成例を示す断面図である。図9に示す自由鋳造装置では、温度制御部109が、形状規定部材102内部のうち、形状規定部材102と保持溶湯M2との接触面近傍に設けられている。換言すると、図9に示す自由鋳造装置では、形状規定部材102に温度制御部109の機能が付加されている。図9に示す自由鋳造装置のその他の構成については、図4に示す自由鋳造装置の場合と同様であるため、その説明を省略する。
(Other configuration examples of the free casting apparatus according to the present invention (part 2))
FIG. 9 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention. In the free casting apparatus shown in FIG. 9, the temperature control unit 109 is provided in the vicinity of the contact surface between the shape defining member 102 and the retained molten metal M <b> 2 in the shape defining member 102. In other words, in the free casting apparatus shown in FIG. 9, the function of the temperature control unit 109 is added to the shape defining member 102. The other configuration of the free casting apparatus shown in FIG. 9 is the same as that of the free casting apparatus shown in FIG.
(本発明に係る自由鋳造装置のその他の構成例(その3))
 図10は、本発明に係る自由鋳造装置のその他の構成例を示す断面図である。図10に示す自由鋳造装置では、温度制御部109とは別に、保持溶湯M2近傍又は直下の溶湯M1を囲うように形成された隔離部110がさらに設けられている。図10に示す自由鋳造装置のその他の構成については、図4に示す自由鋳造装置の場合と同様であるため、その説明を省略する。
(Other configuration examples of the free casting apparatus according to the present invention (part 3))
FIG. 10 is a cross-sectional view showing another configuration example of the free casting apparatus according to the present invention. In the free casting apparatus shown in FIG. 10, apart from the temperature control unit 109, a separating unit 110 formed so as to surround the molten metal M <b> 1 in the vicinity of the retained molten metal M <b> 2 or immediately below is further provided. The other configuration of the free casting apparatus shown in FIG. 10 is the same as that of the free casting apparatus shown in FIG.
 以上のように、上記実施の形態1~3に係る自由鋳造装置は、保持溶湯M2の温度を測定する熱電対108と、熱電対108の測定結果に基づいて保持溶湯M2の温度を制御する温度制御部109(又は溶湯保持炉101)と、を備える。それにより、上記実施の形態1~3にかかる自由鋳造装置は、保持溶湯M2の温度を精度良く制御することができるため、スタータSTの引き上げ速度を向上させること(即ち、スタータSTの引き上げ速度を精度良く制御すること)ができる。 As described above, the free casting apparatus according to Embodiments 1 to 3 described above includes the thermocouple 108 that measures the temperature of the retained molten metal M2, and the temperature that controls the temperature of the retained molten metal M2 based on the measurement result of the thermocouple 108. And a control unit 109 (or molten metal holding furnace 101). As a result, the free casting apparatus according to the first to third embodiments can accurately control the temperature of the retained molten metal M2, thereby improving the pulling speed of the starter ST (that is, increasing the pulling speed of the starter ST). Can be controlled with high accuracy).
 上記実施の形態では、円筒形状の鋳物(中空鋳物)を鋳造する場合を例に説明したがこれに限られない。図11に示すように円柱形状の鋳物を鋳造する場合や、その他の形状の鋳物を鋳造する場合にも、本発明を適用可能である。 In the above embodiment, the case of casting a cylindrical casting (hollow casting) has been described as an example, but the present invention is not limited thereto. As shown in FIG. 11, the present invention can also be applied when casting a cylindrical casting or casting a casting having another shape.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記した構成例は組み合わせて用いられても良い。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, the above-described configuration examples may be used in combination.
 101 溶湯保持炉
 102 形状規定部材
 102a 内部形状規定部材
 102b 外部形状規定部材
 102c 溶湯通過部
 103、104 支持ロッド
 105 アクチュエータ
 106 冷却ガスノズル
 107 導出部
 108 熱電対
 109 温度制御部
 110 隔離部
 M1 溶湯
 M2 保持溶湯
 M3 鋳物
 ST スタータ
 PL 引上機
DESCRIPTION OF SYMBOLS 101 Molten metal holding furnace 102 Shape defining member 102a Internal shape defining member 102b External shape defining member 102c Melt passage part 103, 104 Support rod 105 Actuator 106 Cooling gas nozzle 107 Deriving part 108 Thermocouple 109 Temperature control part 110 Isolation part M1 Molten metal M2 Holding molten metal M3 Casting ST Starter PL Pulling machine

Claims (26)

  1.  溶湯を保持する保持炉と、
     前記保持炉に保持された前記溶湯の湯面から前記溶湯を導出する導出部と、
     前記湯面近傍に設置され、前記導出部によって導出された凝固前の前記溶湯である保持溶湯に外力を印加することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
     前記保持溶湯の温度を測定する温度測定部と、を備え、
     前記温度測定部の測定結果に基づいて前記保持溶湯の温度が制御される、引上式連続鋳造装置。
    A holding furnace for holding molten metal;
    A lead-out portion for leading out the molten metal from the surface of the molten metal held in the holding furnace;
    A shape defining member that defines a cross-sectional shape of a casting to be cast by applying an external force to the holding molten metal that is installed in the vicinity of the molten metal surface and is derived by the lead-out portion and that is the molten metal before solidification,
    A temperature measuring unit for measuring the temperature of the retained molten metal,
    An up-drawing continuous casting apparatus in which the temperature of the retained molten metal is controlled based on the measurement result of the temperature measuring unit.
  2.  前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯内に設けられている、請求項1に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 1, wherein the temperature measuring section is a thermocouple, and a temperature measuring contact is provided in the retained molten metal.
  3.  前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯近傍の前記溶湯内に設けられている、請求項1に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 1, wherein the temperature measuring unit is a thermocouple, and a temperature measuring contact is provided in the molten metal in the vicinity of the retained molten metal.
  4.  前記温度測定部は、熱電対であって、その測温接点が前記保持溶湯直下の前記溶湯内に設けられている、請求項1に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 1, wherein the temperature measuring unit is a thermocouple, and a temperature measuring contact is provided in the molten metal immediately below the retained molten metal.
  5.  前記温度測定部は、熱電対であって、その測温接点が前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設けられている、請求項1に記載の引上式連続鋳造装置。 The said temperature measurement part is a thermocouple, Comprising: The temperature measurement contact is provided in the contact surface vicinity of the said shape determination member and the said holding molten metal inside the said shape determination member. Upper continuous casting machine.
  6.  前記保持炉は、前記温度測定部の測定結果に基づいて前記溶湯の温度を制御することにより、前記保持溶湯の温度を制御する、請求項1~5の何れか一項に記載の引上式連続鋳造装置。 The pulling-up type according to any one of claims 1 to 5, wherein the holding furnace controls the temperature of the molten metal by controlling the temperature of the molten metal based on a measurement result of the temperature measuring unit. Continuous casting equipment.
  7.  前記温度測定部の測定結果に基づいて前記保持溶湯の温度を制御する温度制御部をさらに備えた、請求項1~5の何れか一項に記載の引上式連続鋳造装置。 The up-drawing continuous casting apparatus according to any one of claims 1 to 5, further comprising a temperature control unit that controls a temperature of the retained molten metal based on a measurement result of the temperature measurement unit.
  8.  前記温度制御部は、前記保持溶湯近傍の前記溶湯内に設けられている、請求項7に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 7, wherein the temperature control unit is provided in the molten metal in the vicinity of the retained molten metal.
  9.  前記温度制御部は、前記保持溶湯直下の前記溶湯内に設けられている、請求項7に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 7, wherein the temperature control unit is provided in the molten metal immediately below the retained molten metal.
  10.  前記温度制御部は、前記保持溶湯近傍の前記溶湯を囲うように形成されている、請求項7~9の何れか一項に記載の引上式連続鋳造装置。 The up-drawing continuous casting apparatus according to any one of claims 7 to 9, wherein the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
  11.  前記保持溶湯近傍の前記溶湯を囲う隔離部をさらに有する、請求項7~9の何れか一項に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to any one of claims 7 to 9, further comprising a separating portion surrounding the molten metal in the vicinity of the retained molten metal.
  12.  前記温度制御部は、前記保持溶湯内部にまで延びる突出部を有する、請求項7~11の何れか一項に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to any one of claims 7 to 11, wherein the temperature control unit has a protrusion that extends into the retained molten metal.
  13.  前記温度制御部は、前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設けられている、請求項7に記載の引上式連続鋳造装置。 The pulling-up-type continuous casting apparatus according to claim 7, wherein the temperature control unit is provided in the vicinity of a contact surface between the shape defining member and the retained molten metal in the shape defining member.
  14.  鋳造する鋳物の断面形状を規定する形状規定部材を、保持炉に保持された溶湯の湯面近傍に設置するステップと、
     前記溶湯を引き上げて前記形状規定部材を通過させるステップと、
     引き上げられた凝固前の前記溶湯である保持溶湯の温度を測定するステップと、
     測定結果に基づいて前記保持溶湯の温度を制御するステップと、を備えた、引上式連続鋳造方法。
    Installing a shape defining member that defines a cross-sectional shape of a casting to be cast in the vicinity of a molten metal surface of a molten metal held in a holding furnace;
    Pulling up the molten metal and passing the shape defining member;
    Measuring the temperature of the retained molten metal, which is the molten metal before being pulled up;
    And a step of controlling the temperature of the retained molten metal based on a measurement result.
  15.  前記保持溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定する、請求項14に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to claim 14, wherein the temperature of the retained molten metal is measured by providing a thermocouple temperature measuring contact in the retained molten metal.
  16.  前記保持溶湯近傍の前記溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定する、請求項14に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to claim 14, wherein the temperature of the retained molten metal is measured by providing a thermocouple temperature measuring contact in the molten metal in the vicinity of the retained molten metal.
  17.  前記保持溶湯直下の前記溶湯内に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定する、請求項14に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to claim 14, wherein the temperature of the retained molten metal is measured by providing a temperature measuring contact of a thermocouple in the molten metal immediately below the retained molten metal.
  18.  前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に熱電対の測温接点を設けることにより、前記保持溶湯の温度を測定する、請求項14に記載の引上式連続鋳造方法。 The pulling-up type according to claim 14, wherein the temperature of the retained molten metal is measured by providing a temperature measuring contact of a thermocouple in the vicinity of the contact surface between the shape defining member and the retained molten metal inside the shape defining member. Continuous casting method.
  19.  前記保持炉により前記溶湯の温度を制御することで、前記保持溶湯の温度を制御する、請求項14~18の何れか一項に記載の引上式連続鋳造方法。 The up-drawing continuous casting method according to any one of claims 14 to 18, wherein the temperature of the molten metal is controlled by controlling the temperature of the molten metal with the holding furnace.
  20.  温度制御部により前記保持溶湯の温度を制御する、請求項14~18の何れか一項に記載の引上式連続鋳造方法。 The up-drawing continuous casting method according to any one of claims 14 to 18, wherein the temperature of the retained molten metal is controlled by a temperature control unit.
  21.  前記温度制御部を、前記保持溶湯近傍の前記溶湯内に設ける、請求項20に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to claim 20, wherein the temperature control unit is provided in the molten metal in the vicinity of the retained molten metal.
  22.  前記温度制御部を、前記保持溶湯直下の前記溶湯内に設ける、請求項20に記載の引上式連続鋳造方法。 21. The up-drawing continuous casting method according to claim 20, wherein the temperature control unit is provided in the molten metal immediately below the retained molten metal.
  23.  前記温度制御部を、前記保持溶湯近傍の前記溶湯を囲うように形成する、請求項20~22の何れか一項に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to any one of claims 20 to 22, wherein the temperature control unit is formed so as to surround the molten metal in the vicinity of the retained molten metal.
  24.  前記保持溶湯近傍の前記溶湯を囲う隔離部をさらに設ける、請求項20~22の何れか一項に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to any one of claims 20 to 22, further comprising a separating portion surrounding the molten metal in the vicinity of the retained molten metal.
  25.  前記温度制御部に、前記保持溶湯内部にまで延びる突出部を設ける、請求項20~24の何れか一項に記載の引上式連続鋳造方法。 The pulling-up-type continuous casting method according to any one of claims 20 to 24, wherein the temperature control unit is provided with a protruding portion that extends into the retained molten metal.
  26.  前記温度制御部を、前記形状規定部材内部のうち当該形状規定部材と前記保持溶湯との接触面近傍に設ける、請求項20に記載の引上式連続鋳造方法。 21. The up-drawing continuous casting method according to claim 20, wherein the temperature control unit is provided in the vicinity of a contact surface between the shape defining member and the retained molten metal in the shape defining member.
PCT/JP2013/002456 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method WO2014167600A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015510950A JPWO2014167600A1 (en) 2013-04-10 2013-04-10 Pull-up type continuous casting apparatus and pull-up type continuous casting method
CN201380074353.XA CN105073300A (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method
CA2908121A CA2908121A1 (en) 2013-04-10 2013-04-10 Pulling-up-type continuous casting apparatus and upward continuous casting method
BR112015024917A BR112015024917A2 (en) 2013-04-10 2013-04-10 pull-up continuous casting apparatus and upward continuous casting method
EP13881878.6A EP2962784A4 (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method
RU2015147724A RU2015147724A (en) 2013-04-10 2013-04-10 CONTINUOUS CASTING DEVICE WITH EXTRACTION OF Billets UP AND METHOD OF CONTINUOUS CASTING UP
US14/783,185 US20160045954A1 (en) 2013-04-10 2013-04-10 Pulling-up-type continuous casting apparatus and upward continuous casting method
AU2013386132A AU2013386132A1 (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method
PCT/JP2013/002456 WO2014167600A1 (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002456 WO2014167600A1 (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method

Publications (1)

Publication Number Publication Date
WO2014167600A1 true WO2014167600A1 (en) 2014-10-16

Family

ID=51689038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002456 WO2014167600A1 (en) 2013-04-10 2013-04-10 Hoisting type continuous casting device and hoisting type continuous casting method

Country Status (9)

Country Link
US (1) US20160045954A1 (en)
EP (1) EP2962784A4 (en)
JP (1) JPWO2014167600A1 (en)
CN (1) CN105073300A (en)
AU (1) AU2013386132A1 (en)
BR (1) BR112015024917A2 (en)
CA (1) CA2908121A1 (en)
RU (1) RU2015147724A (en)
WO (1) WO2014167600A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032111A (en) 2019-09-16 2021-03-24 삼성전자주식회사 Semiconductor memory device and memory system having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Continuous crystal growth method
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445181B (en) * 1982-12-15 1986-06-09 Nippon Light Metal Co SET FOR CONTINUOUS METAL CASTING
JPS60238066A (en) * 1984-05-10 1985-11-26 O C C:Kk Upward type continuous casting method for steel ingot using heated casting mold
JP2010162573A (en) * 2009-01-15 2010-07-29 Hitachi Cable Ltd Method for producing porous metal and method for producing heat sink
IN2012DN06610A (en) * 2010-02-11 2015-10-23 Novelis Inc
JP2014057980A (en) * 2012-09-18 2014-04-03 Toyota Motor Corp Pull up type continuous casting device and pull up type continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049A (en) * 1987-02-13 1988-08-17 Sumitomo Electric Ind Ltd Continuous crystal growth method
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2962784A4

Also Published As

Publication number Publication date
JPWO2014167600A1 (en) 2017-02-16
RU2015147724A (en) 2017-05-15
AU2013386132A1 (en) 2015-10-15
BR112015024917A2 (en) 2017-07-18
US20160045954A1 (en) 2016-02-18
CN105073300A (en) 2015-11-18
EP2962784A4 (en) 2016-04-13
CA2908121A1 (en) 2014-10-16
EP2962784A1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5373728B2 (en) Free casting method, free casting apparatus and casting
WO2014167600A1 (en) Hoisting type continuous casting device and hoisting type continuous casting method
JP6123644B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6036671B2 (en) Pull-up type continuous casting method and pull-up type continuous casting apparatus
JP2015096269A (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP2014144484A (en) Hoisting type continuous casting device
JP2014057980A (en) Pull up type continuous casting device and pull up type continuous casting method
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
WO2015015696A1 (en) Hoisting-type continuous casting device and hoisting-type continuous casting method
JP5742867B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP2010264485A (en) Tundish for continuous casting, and method for continuous casting
JP5926161B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6156222B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP5849926B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP5892078B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6737689B2 (en) Pull-up type continuous casting equipment
JP2015167989A (en) Drawing-up type continuous casting method
JP6265172B2 (en) Pull-up continuous casting equipment
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP5994747B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
US20160296999A1 (en) Pulling-up-type continuous casting method and pulling-up-type continuous casting apparatus
JP2015093309A (en) Up-drawing casting apparatus
JP2015226915A (en) Up-drawing continuous casting apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074353.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015500626

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2015510950

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2908121

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013881878

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013881878

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14783185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013386132

Country of ref document: AU

Date of ref document: 20130410

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015147724

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024917

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024917

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150929