JP2014104468A - Draw-up continuous casting apparatus and draw-up type continuous casting method - Google Patents

Draw-up continuous casting apparatus and draw-up type continuous casting method Download PDF

Info

Publication number
JP2014104468A
JP2014104468A JP2012256513A JP2012256513A JP2014104468A JP 2014104468 A JP2014104468 A JP 2014104468A JP 2012256513 A JP2012256513 A JP 2012256513A JP 2012256513 A JP2012256513 A JP 2012256513A JP 2014104468 A JP2014104468 A JP 2014104468A
Authority
JP
Japan
Prior art keywords
molten metal
casting
shape
continuous casting
defining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012256513A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ikuta
浩之 生田
Naokuni Sugiura
直晋 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012256513A priority Critical patent/JP2014104468A/en
Publication of JP2014104468A publication Critical patent/JP2014104468A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a draw-up type continuous casting apparatus and a draw-up type continuous casting method which achieve a higher casting speed and excellent productivity.SOLUTION: A draw-up type continuous casting apparatus comprises a holding furnace 101 holding a molten metal M1, a shape regulation member 102 arranged in the vicinity of the molten metal surface of the molten metal M1 held in the holding furnace 101 and regulating the shape of the cross section of a casting to be casted when the molten metal passes, a cooling part 106 cooling the molten metal M2 passing through the shape regulation member 102 to solidify and a nozzle 107 supplying a high-oxygen gas having an oxygen concentration higher than that of the air to the molten metal M2 passing through the shape regulation member 102.

Description

本発明は引上式連続鋳造装置及び引上式連続鋳造方法に関する。   The present invention relates to an up-drawing continuous casting apparatus and an up-drawing continuous casting method.

特許文献1には、鋳型を要しない画期的な引上式連続鋳造方法として、自由鋳造方法が提案されている。特許文献1に示したように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。   Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold. As shown in Patent Document 1, after the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface), when the starter is pulled up, the molten metal follows the starter by the surface film or surface tension of the molten metal. Derived. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.

通常の連続鋳造方法では、鋳型によって断面形状とともに長手方向の形状も規定される。とりわけ、連続鋳造方法では、鋳型内を凝固した金属(すなわち鋳物)が通り抜ける必要があるため、鋳造された鋳物は長手方向に直線状に延びた形状となる。
これに対し、自由鋳造方法における形状規定部材は、鋳物の断面形状のみを規定し、長手方向の形状は規定しない。そして、形状規定部材は、湯面に平行な方向(すなわち水平方向)に移動可能であるから、長手方向の形状が様々な鋳物が得られる。例えば、特許文献1には、長手方向に直線状でなく、ジグザグ状あるいは螺旋状に形成された中空鋳物(すなわちパイプ)が開示されている。
In a normal continuous casting method, the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold. In particular, in the continuous casting method, since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
On the other hand, the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction. And since a shape prescription | regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained. For example, Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.

特開2012−61518号公報JP 2012-61518 A

発明者は以下の課題を見出した。
特許文献1に記載の自由鋳造方法では、鋳造速度を上昇させると、鋳物の寸法ばらつきが大きくなる。そのため、鋳造速度を上げることができず、生産性に劣る問題があった。
The inventor has found the following problems.
In the free casting method described in Patent Document 1, when the casting speed is increased, the dimensional variation of the casting increases. Therefore, there was a problem that the casting speed could not be increased and the productivity was inferior.

本発明は、上記を鑑みなされたものであって、より鋳造速度が速く生産性に優れる引上式連続鋳造装置及び引上式連続鋳造方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the pulling-up-type continuous casting apparatus and pull-up-type continuous casting method which are faster in casting speed and excellent in productivity.

本発明の一態様に係る引上式連続鋳造装置は、
前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
前記形状規定部材を通過した前記溶湯を冷却し、凝固させる冷却部と、
前記形状規定部材を通過した前記溶湯に対し、空気よりも酸素濃度が高い高酸素ガスを供給するノズルと、を備えているものである。このような構成により、鋳造速度を速め、生産性を向上させることができる。
The up-drawing continuous casting apparatus according to one aspect of the present invention is as follows.
A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
A cooling unit for cooling and solidifying the molten metal that has passed through the shape determining member;
A nozzle for supplying a high oxygen gas having an oxygen concentration higher than that of air to the molten metal that has passed through the shape determining member. With such a configuration, the casting speed can be increased and the productivity can be improved.

前記ノズルは、前記形状規定部材を通過した前記溶湯の周囲に複数設けられていることが好ましい。これにより、より確実に鋳造速度を速めることができる。
また、前記ノズルは、前記高酸素ガスの供給を停止するための開閉弁を備えていることが好ましい。
It is preferable that a plurality of nozzles are provided around the molten metal that has passed through the shape determining member. Thereby, the casting speed can be increased more reliably.
Moreover, it is preferable that the said nozzle is provided with the on-off valve for stopping supply of the said high oxygen gas.

本発明の一態様に係る引上式連続鋳造方法は、
保持炉に保持された溶湯を、スタータにより前記溶湯の表面から導出し、鋳造する鋳物の断面形状を規定する形状規定部材を介して引き上げるステップと、
前記形状規定部材を通過して引き上げられた前記溶湯を冷却し、凝固させるステップと、を備え、
前記形状規定部材を通過した前記溶湯に対し、空気よりも酸素濃度が高い高酸素ガスを供給するものである。このような構成により、鋳造速度を速め、生産性を向上させることができる。
The up-drawing continuous casting method according to one aspect of the present invention is as follows.
Deriving the molten metal held in the holding furnace from the surface of the molten metal with a starter, and pulling up through a shape defining member that defines the cross-sectional shape of the casting to be cast;
Cooling and solidifying the molten metal that has been pulled up through the shape determining member,
A high oxygen gas having a higher oxygen concentration than air is supplied to the molten metal that has passed through the shape determining member. With such a configuration, the casting speed can be increased and the productivity can be improved.

鋳造を終了する際、前記高酸素ガスの供給を停止した後、前記形状規定部材を通過した前記溶湯と前記鋳物とを切り離すことが好ましい。あるいは、鋳造を終了する際、前記高酸素ガスから非酸化ガスの供給に切り換えた後、前記形状規定部材を通過した前記溶湯と前記鋳物とを切り離すことが好ましい。   When the casting is finished, it is preferable that after the supply of the high oxygen gas is stopped, the molten metal that has passed through the shape defining member is separated from the casting. Alternatively, when the casting is finished, after switching from the high oxygen gas to the supply of the non-oxidizing gas, it is preferable to separate the molten metal that has passed through the shape determining member and the casting.

本発明により、より鋳造速度が速く生産性に優れる引上式連続鋳造装置及び引上式連続鋳造方法を提供することができる。   According to the present invention, it is possible to provide a pulling-up-type continuous casting apparatus and a pulling-up-type continuous casting method that are faster in casting speed and excellent in productivity.

実施の形態1に係る自由鋳造装置の断面図である。1 is a cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. 内部形状規定部材102a及び外部形状規定部材102bの平面図である。It is a top view of the internal shape defining member 102a and the external shape defining member 102b. 外部冷却ガスノズル106及び外部酸化ガスノズル107の平面配置関係の一例を示す平面図である。5 is a plan view showing an example of a planar arrangement relationship between an external cooling gas nozzle 106 and an external oxidizing gas nozzle 107. FIG. 実施例及び比較例における厚さのばらつきを比較して示すグラフである。It is a graph which compares and shows the dispersion | variation in the thickness in an Example and a comparative example.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

(実施の形態1)
まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置の断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉101、内部形状規定部材102a、外部形状規定部材102b、二重ガスノズル103、支持ロッド104、アクチュエータ105、外部冷却ガスノズル106、外部酸化ガスノズル107を備えている。ここで、二重ガスノズル103は、内部冷却ガスノズル103a及び内部酸化ガスノズル103bを備えている。
(Embodiment 1)
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. 1 is a cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. As shown in FIG. 1, a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace 101, an internal shape defining member 102a, an external shape defining member 102b, a double gas nozzle 103, a support rod 104, an actuator 105, and an external cooling gas nozzle. 106, an external oxidizing gas nozzle 107 is provided. Here, the double gas nozzle 103 includes an internal cooling gas nozzle 103a and an internal oxidizing gas nozzle 103b.

溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、所定の温度に保持する。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。なお、当然のことながら、溶湯M1は他のアルミニウム以外の金属や合金であってもよい。   The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds it at a predetermined temperature. In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. As a matter of course, the molten metal M1 may be another metal or alloy other than aluminum.

内部形状規定部材102a及び外部形状規定部材102bは、例えばセラミックスやステンレスなどからなり、湯面近傍に配置されている。図1の例では、内部形状規定部材102a及び外部形状規定部材102bが湯面に接触するように配置されている。内部形状規定部材102aは、鋳造する鋳物M3の内部形状を規定し、外部形状規定部材102bは、鋳造する鋳物M3の外部形状を規定する。また、外部形状規定部材102bは、溶湯M1の表面に形成される酸化膜や溶湯M1の表面に浮遊する異物の鋳物M3への混入を防止する。   The internal shape defining member 102a and the external shape defining member 102b are made of, for example, ceramics or stainless steel, and are disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the inner shape defining member 102a and the outer shape defining member 102b are arranged so as to contact the molten metal surface. The internal shape defining member 102a defines the internal shape of the casting M3 to be cast, and the external shape defining member 102b defines the external shape of the cast M3 to be cast. Further, the external shape determining member 102b prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from being mixed into the casting M3.

図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が管状の中空鋳物(つまりパイプ)である。すなわち、より具体的には、内部形状規定部材102aは、鋳物M3の横断面の内径を規定し、外部形状規定部材102bは、鋳物M3の横断面の外径を規定する。   The casting M3 shown in FIG. 1 is a hollow casting (that is, a pipe) having a horizontal cross section (hereinafter referred to as a transverse section) having a tubular shape. Specifically, the inner shape defining member 102a defines the inner diameter of the cross section of the casting M3, and the outer shape defining member 102b defines the outer diameter of the cross section of the casting M3.

図2は、内部形状規定部材102a及び外部形状規定部材102bの平面図である。ここで、図1の内部形状規定部材102a及び外部形状規定部材102bの断面図は、図2のI−I断面図に相当する。図2に示すように、外部形状規定部材102bは、例えば矩形状の平面形状を有し、中央部に円形状の開口部を有している。内部形状規定部材102aは、円形状の平面形状を有し、外部形状規定部材102bの開口部の中央部に配置されている。内部形状規定部材102aと外部形状規定部材102bとの間の間隙が、溶湯が通過する溶湯通過部102cとなる。このように、内部形状規定部材102a、外部形状規定部材102b、溶湯通過部102cから形状規定部材102が構成されている。なお、内部形状規定部材102aの中央部には、二重ガスノズル103が配置されている。   FIG. 2 is a plan view of the inner shape defining member 102a and the outer shape defining member 102b. Here, the cross-sectional views of the internal shape determining member 102a and the external shape determining member 102b in FIG. 1 correspond to the II cross-sectional view in FIG. As shown in FIG. 2, the external shape defining member 102b has, for example, a rectangular planar shape, and has a circular opening at the center. The internal shape defining member 102a has a circular planar shape and is disposed at the center of the opening of the external shape defining member 102b. A gap between the inner shape determining member 102a and the outer shape determining member 102b becomes a molten metal passage portion 102c through which the molten metal passes. As described above, the shape defining member 102 includes the inner shape defining member 102a, the external shape defining member 102b, and the molten metal passage portion 102c. A double gas nozzle 103 is disposed at the center of the internal shape defining member 102a.

図1に示すように、溶湯M1は、その表面膜や表面張力により鋳物M3に追従して引き上げられ、形状規定部材102の溶湯通過部102cを通過する。すなわち、溶湯M1が形状規定部材102の溶湯通過部103を通過することにより、溶湯M1に対し形状規定部材102(内部形状規定部材102a及び外部形状規定部材102b)から外力が印加され、鋳物M3の断面形状が規定される。ここで、溶湯の表面膜や表面張力によって、鋳物M3に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との界面が凝固界面である。   As shown in FIG. 1, the molten metal M <b> 1 is pulled up following the casting M <b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 102 c of the shape defining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied to the molten metal M1 from the shape defining member 102 (the internal shape defining member 102a and the external shape defining member 102b), and the casting M3 A cross-sectional shape is defined. Here, the molten metal pulled up from the molten metal surface following the casting M3 by the surface film or surface tension of the molten metal is referred to as a retained molten metal M2. Further, the interface between the casting M3 and the retained molten metal M2 is a solidification interface.

二重ガスノズル103は、内部形状規定部材102aの中央部に接続され、内部形状規定部材102aを支持している。ここで、二重ガスノズル103の内側に設けられた小径の内部冷却ガスノズル103aは、鋳物M3の中央部から鋳物M3に冷却ガス(空気、窒素、アルゴンなど)を吹き付け、鋳物M3を内部から冷却している。   The double gas nozzle 103 is connected to the central portion of the internal shape defining member 102a and supports the internal shape defining member 102a. Here, the small-diameter internal cooling gas nozzle 103a provided inside the double gas nozzle 103 sprays a cooling gas (air, nitrogen, argon, etc.) from the center of the casting M3 to the casting M3, and cools the casting M3 from the inside. ing.

一方、二重ガスノズル103の外側に設けられた大径の内部酸化ガスノズル103bは、空気よりも酸素濃度の高いガス(以下、単に「高酸素ガス」ともいう)を低流速で導入している。これにより、鋳物M3内側の保持溶湯M2の表面における酸化膜の形成が促進され、保持溶湯M2を保持する力が高まる。そのため、鋳造速度を上げた場合の鋳物M3の寸法精度が向上する。すなわち、鋳造速度を上げることができ、生産性が向上する。なお、この高酸素ガスは冷却を意図するものではない。   On the other hand, a large-diameter internal oxidizing gas nozzle 103b provided outside the double gas nozzle 103 introduces a gas having a higher oxygen concentration than air (hereinafter also simply referred to as “high oxygen gas”) at a low flow rate. Thereby, formation of the oxide film on the surface of the retained molten metal M2 inside the casting M3 is promoted, and the force for retaining the retained molten metal M2 is increased. Therefore, the dimensional accuracy of the casting M3 when the casting speed is increased is improved. That is, the casting speed can be increased and productivity is improved. The high oxygen gas is not intended for cooling.

また、鋳造を終了する際、高酸素ガスの供給を止めると、保持溶湯M2の表面における酸化膜の形成が促進されなくなり、保持溶湯M2と鋳物M3とを切り離し易くなり好ましい。内部酸化ガスノズル103bに開閉弁を設ければよい。あるいは、鋳造終了直前に、高酸素ガスから非酸化ガス(例えば、窒素、アルゴンなど)に切り換えると、逆に保持溶湯M2の表面における酸化膜の形成が抑制され、保持溶湯M2と鋳物M3とをさらに切り離し易くなる。   Further, it is preferable to stop the supply of the high oxygen gas at the end of casting because the formation of an oxide film on the surface of the retained molten metal M2 is not promoted, and the retained molten metal M2 and the casting M3 are easily separated. An open / close valve may be provided in the internal oxidizing gas nozzle 103b. Alternatively, when the high oxygen gas is switched to a non-oxidizing gas (for example, nitrogen, argon, etc.) immediately before the end of casting, the formation of the oxide film on the surface of the retained molten metal M2 is suppressed, and the retained molten metal M2 and the casting M3 are Furthermore, it becomes easy to separate.

支持ロッド104は、外部形状規定部材102bを支持する。二重ガスノズル103、支持ロッド104により、内部形状規定部材102aと外部形状規定部材102bとの位置関係を維持することができる。   The support rod 104 supports the external shape defining member 102b. The positional relationship between the internal shape defining member 102a and the external shape defining member 102b can be maintained by the double gas nozzle 103 and the support rod 104.

アクチュエータ105には、二重ガスノズル103及び支持ロッド104が連結されている。アクチュエータ105によって、二重ガスノズル103及び支持ロッド104は、内部形状規定部材102a及び外部形状規定部材102bの位置関係を維持したまま、上下方向(鉛直方向)及び水平方向に移動可能である。このような構成により、鋳造の進行による湯面の低下とともに、内部形状規定部材102a及び外部形状規定部材102bを下方向に移動させることができる。また、内部形状規定部材102a及び外部形状規定部材102bを水平方向に移動させることができるため、鋳物M3の長手方向の形状を自由に変化させることができる。   A double gas nozzle 103 and a support rod 104 are connected to the actuator 105. The actuator 105 allows the double gas nozzle 103 and the support rod 104 to move in the vertical direction (vertical direction) and the horizontal direction while maintaining the positional relationship between the internal shape defining member 102a and the external shape defining member 102b. With such a configuration, the inner shape defining member 102a and the outer shape defining member 102b can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the inner shape defining member 102a and the outer shape defining member 102b can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be freely changed.

外部冷却ガスノズル(外部冷却部)106は、鋳物M3の外部から鋳物M3に冷却ガス(空気、窒素、アルゴンなど)を吹き付け、冷却するためのものである。スタータSTに連結された引上機(不図示)により鋳物M3を引き上げつつ、冷却ガスにより鋳物M3を冷却することにより、凝固界面近傍の保持溶湯M2が順次凝固し、鋳物M3が形成されていく。   The external cooling gas nozzle (external cooling part) 106 is for blowing and cooling cooling gas (air, nitrogen, argon, etc.) on the casting M3 from the outside of the casting M3. While the casting M3 is pulled up by a pulling machine (not shown) connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 near the solidification interface is sequentially solidified to form the casting M3. .

外部酸化ガスノズル107は、高酸素ガスを低流速で導入している。これにより、鋳物M3外側の保持溶湯M2の表面における酸化膜の形成が促進され、保持溶湯M2を保持する力が高まる。そのため、鋳造速度を上げた場合の鋳物M3の寸法精度が向上する。すなわち、鋳造速度を上げることができ、生産性が向上する。なお、この高酸素ガスは冷却を意図するものではない。   The external oxidizing gas nozzle 107 introduces high oxygen gas at a low flow rate. Thereby, formation of the oxide film on the surface of the retained molten metal M2 outside the casting M3 is promoted, and the force for retaining the retained molten metal M2 is increased. Therefore, the dimensional accuracy of the casting M3 when the casting speed is increased is improved. That is, the casting speed can be increased and productivity is improved. The high oxygen gas is not intended for cooling.

また、鋳造終了直前に、高酸素ガスの供給を止めると、保持溶湯M2の表面における酸化膜の形成が促進されなくなり、保持溶湯M2と鋳物M3とを切り離し易くなり好ましい。外部酸化ガスノズル107に開閉弁を設ければよい。あるいは、鋳造終了直前に、高酸素ガスから非酸化ガス(例えば、窒素、アルゴンなど)に切り換えると、逆に保持溶湯M2の表面における酸化膜の形成が抑制され、保持溶湯M2と鋳物M3とをさらに切り離し易くなる。   Further, it is preferable to stop the supply of the high oxygen gas immediately before the end of casting because the formation of an oxide film on the surface of the retained molten metal M2 is not promoted, and the retained molten metal M2 and the casting M3 are easily separated. An open / close valve may be provided in the external oxidizing gas nozzle 107. Alternatively, when the high oxygen gas is switched to a non-oxidizing gas (for example, nitrogen, argon, etc.) immediately before the end of casting, the formation of the oxide film on the surface of the retained molten metal M2 is suppressed, and the retained molten metal M2 and the casting M3 are Furthermore, it becomes easy to separate.

図3は、外部冷却ガスノズル106及び外部酸化ガスノズル107の平面配置関係の一例を示す平面図である。図3の例では、8本の外部冷却ガスノズル106が鋳物M3の周囲を45°間隔で放射状に取り囲むように配置されている。また、8本の外部酸化ガスノズル107も鋳物M3の周囲を45°間隔で放射状に取り囲むように配置されている。全体として、8本の外部冷却ガスノズル106と8本の外部酸化ガスノズル107とが交互に略等間隔(22.5°間隔)に放射状に配置されている。   FIG. 3 is a plan view showing an example of a planar arrangement relationship between the external cooling gas nozzle 106 and the external oxidizing gas nozzle 107. In the example of FIG. 3, eight external cooling gas nozzles 106 are arranged so as to surround the periphery of the casting M3 radially at 45 ° intervals. Further, the eight external oxidizing gas nozzles 107 are also arranged so as to surround the casting M3 radially at intervals of 45 °. As a whole, eight external cooling gas nozzles 106 and eight external oxidizing gas nozzles 107 are alternately arranged radially at substantially equal intervals (22.5 ° intervals).

次に、図1を参照して、実施の形態1に係る自由鋳造方法について説明する。
まず、スタータSTを降下させ、内部形状規定部材102aと外部形状規定部材102bとの間の溶湯通過部102cを通して、スタータSTの先端部を溶湯M1に浸漬させる。スタータSTとしては鋳物M3と同じ断面形状を有し、長手方向に直線状に延びたものを用いることが好ましい。
Next, the free casting method according to Embodiment 1 will be described with reference to FIG.
First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 102c between the internal shape defining member 102a and the external shape defining member 102b. It is preferable to use a starter ST having the same cross-sectional shape as the casting M3 and extending linearly in the longitudinal direction.

次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、表面膜や表面張力によって、スタータSTに追従して湯面から引き上げられた保持溶湯M2が形成される。図1に示すように、保持溶湯M2は、内部形状規定部材102aと外部形状規定部材102bとの間の溶湯通過部102cに形成される。つまり、内部形状規定部材102aと外部形状規定部材102bとにより、保持溶湯M2に形状が付与される。実施の形態1に係る自由鋳造方法では、内部酸化ガスノズル103b及び外部酸化ガスノズル107により、高酸素ガスを低流速で導入している。そのため、保持溶湯M2の表面における酸化膜の形成が促進され、保持溶湯M2を保持する力が高まっている。   Next, the starter ST is started to be pulled up at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension. As shown in FIG. 1, the retained molten metal M2 is formed in the molten metal passage portion 102c between the inner shape defining member 102a and the outer shape defining member 102b. That is, the shape is imparted to the retained molten metal M2 by the inner shape defining member 102a and the outer shape defining member 102b. In the free casting method according to the first embodiment, high oxygen gas is introduced at a low flow rate by the internal oxidizing gas nozzle 103b and the external oxidizing gas nozzle 107. Therefore, the formation of an oxide film on the surface of the retained molten metal M2 is promoted, and the force for retaining the retained molten metal M2 is increased.

次に、スタータSTは、内部冷却ガスノズル103a及び外部冷却ガスノズル106から吹き出される冷却ガスにより冷却されているため、保持溶湯M2が上側から下側に向かって順に凝固し、鋳物M3が成長していく。このようにして、鋳物M3を連続鋳造することができる。また、内部形状規定部材102a及び外部形状規定部材102bを水平方向に移動させることにより、鋳物M3に屈曲部を付与することができる。なお、内部形状規定部材102a及び外部形状規定部材102bを水平方向に移動させる代わりに、引上機に固定されたスタータSTを水平方向に移動させてもよい。あるいは、内部形状規定部材102a及び外部形状規定部材102bと、スタータSTとを水平面内において反対方向に移動させてもよい。   Next, since the starter ST is cooled by the cooling gas blown from the internal cooling gas nozzle 103a and the external cooling gas nozzle 106, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows. Go. In this way, the casting M3 can be continuously cast. Moreover, a bending part can be provided to the casting M3 by moving the internal shape defining member 102a and the external shape defining member 102b in the horizontal direction. Instead of moving the inner shape defining member 102a and the outer shape defining member 102b in the horizontal direction, the starter ST fixed to the pulling machine may be moved in the horizontal direction. Alternatively, the inner shape defining member 102a, the outer shape defining member 102b, and the starter ST may be moved in opposite directions within the horizontal plane.

(実施例)
次に、実施の形態1に係る具体的な実施例について説明する。
外径30mmφ、内径24mmφ、厚さ3mmの設計寸法を有し、アルミニウム合金A6063からなるパイプを図1に示した自由鋳造装置を用いて鋳造した。溶湯温度は705±5℃とした。内部冷却ガスノズル103aにおける冷却ガス(空気)流量は2L/min、8本の外部冷却ガスノズル106における冷却ガス流量は合計8L/minとした。また、内部酸化ガスノズル103bにおける酸素ガス流量は0.5L/min、8本の外部酸化ガスノズル107における酸素ガス流量は合計0.5L/minとした。外部冷却ガスノズル106の先端部の外部形状規定部材102bからの高さH1=30mm、鋳物M3との距離L1=10mmとした。外部酸化ガスノズル107の先端部の外部形状規定部材102bからの高さH2=5mm、保持溶湯M2との距離L2=20mmとした。引上速度は50mm/minと100mm/minとの2種類とした。2種類の引上速度で鋳造した長さ200mmパイプについて、円周方向4箇所×長手方向20箇所=80箇所における厚さのばらつきを調査した。
(Example)
Next, specific examples according to the first embodiment will be described.
A pipe made of aluminum alloy A6063 having a design size of an outer diameter of 30 mmφ, an inner diameter of 24 mmφ, and a thickness of 3 mm was cast using the free casting apparatus shown in FIG. The molten metal temperature was 705 ± 5 ° C. The cooling gas (air) flow rate in the internal cooling gas nozzle 103a was 2 L / min, and the cooling gas flow rates in the eight external cooling gas nozzles 106 were 8 L / min in total. The oxygen gas flow rate in the internal oxidizing gas nozzle 103b was 0.5 L / min, and the oxygen gas flow rates in the eight external oxidizing gas nozzles 107 were 0.5 L / min in total. The height H1 of the front end portion of the external cooling gas nozzle 106 from the external shape determining member 102b was 30 mm, and the distance L1 from the casting M3 was 10 mm. The height H2 = 5 mm from the external shape determining member 102b at the tip of the external oxidizing gas nozzle 107 and the distance L2 = 20 mm from the retained molten metal M2. Two pulling speeds, 50 mm / min and 100 mm / min, were used. For 200 mm long pipes cast at two different pulling speeds, the variation in thickness at 4 locations in the circumferential direction × 20 locations in the longitudinal direction = 80 locations was investigated.

(比較例)
内部酸化ガスノズル103b及び8本の外部酸化ガスノズル107において酸素ガスを流さなかったこと以外は実施例と同様の条件で鋳造したパイプについて、厚さのばらつきを調査した。
(Comparative example)
The pipes cast under the same conditions as in the example except that the oxygen gas was not passed through the internal oxidizing gas nozzle 103b and the eight external oxidizing gas nozzles 107 were examined for thickness variations.

図4は、実施例及び比較例における厚さのばらつきを比較して示すグラフである。図4に示すように、引上速度50mm/min、100mm/minのいずれにおいても、実施例では比較例に比べ、パイプ厚さのばらつきが小さかった。特に、引上速度100mm/minの場合、比較例におけるパイプ厚さのばらつきが大きい(特に薄肉化してしまう)のに対し、実施例では比較例における引上速度50mm/minの場合と同程度の値及びばらつきであった。このように、保持溶湯M2の周囲を酸化雰囲気とすることにより、鋳造速度を上げることが可能となり、生産性を向上させることができた。   FIG. 4 is a graph showing a comparison of thickness variations in the example and the comparative example. As shown in FIG. 4, the variation in pipe thickness was smaller in the example than in the comparative example at both pulling speeds of 50 mm / min and 100 mm / min. In particular, when the pulling speed is 100 mm / min, the pipe thickness variation in the comparative example is large (particularly thinning), whereas in the example, the pulling speed is 50 mm / min in the comparative example. Values and variability. Thus, by setting the surroundings of the retained molten metal M2 as an oxidizing atmosphere, the casting speed can be increased and the productivity can be improved.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

101 溶湯保持炉
102 形状規定部材
102a 内部形状規定部材
102b 外部形状規定部材
102c 溶湯通過部
103 二重ガスノズル
103a 内部冷却ガスノズル
103b 内部酸化ガスノズル
104 支持ロッド
105 アクチュエータ
106 外部冷却ガスノズル
107 外部酸化ガスノズル
M1 溶湯
M2 保持溶湯
M3 鋳物
ST スタータ
101 Molten metal holding furnace 102 Shape defining member 102a Internal shape defining member 102b External shape defining member 102c Molten metal passage 103 Double gas nozzle 103a Internal cooling gas nozzle 103b Internal oxidation gas nozzle 104 Support rod 105 Actuator 106 External cooling gas nozzle 107 External oxidation gas nozzle M1 Molten metal M2 Holding molten metal M3 casting ST starter

Claims (6)

溶湯を保持する保持炉と、
前記保持炉に保持された前記溶湯の湯面近傍に設置され、前記溶湯が通過することにより、鋳造する鋳物の断面形状を規定する形状規定部材と、
前記形状規定部材を通過した前記溶湯を冷却し、凝固させる冷却部と、
前記形状規定部材を通過した前記溶湯に対し、空気よりも酸素濃度が高い高酸素ガスを供給するノズルと、を備えている、引上式連続鋳造装置。
A holding furnace for holding molten metal;
A shape determining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace and that defines the cross-sectional shape of a casting to be cast by passing the molten metal,
A cooling unit for cooling and solidifying the molten metal that has passed through the shape determining member;
A pulling-up-type continuous casting apparatus, comprising: a nozzle that supplies high oxygen gas having an oxygen concentration higher than air to the molten metal that has passed through the shape defining member.
前記ノズルは、前記形状規定部材を通過した前記溶湯の周囲に複数設けられている、
請求項1に記載の引上式連続鋳造装置。
A plurality of the nozzles are provided around the molten metal that has passed through the shape defining member.
The up-drawing continuous casting apparatus according to claim 1.
前記ノズルは、前記高酸素ガスの供給を停止するための開閉弁を備えている、
請求項1又は2に記載の引上式連続鋳造装置。
The nozzle includes an on-off valve for stopping the supply of the high oxygen gas.
The up-drawing continuous casting apparatus according to claim 1 or 2.
保持炉に保持された溶湯を、スタータにより前記溶湯の表面から導出し、鋳造する鋳物の断面形状を規定する形状規定部材を介して引き上げるステップと、
前記形状規定部材を通過して引き上げられた前記溶湯を冷却し、凝固させるステップと、を備え、
前記形状規定部材を通過した前記溶湯に対し、空気よりも酸素濃度が高い高酸素ガスを供給する、引上式連続鋳造方法。
Deriving the molten metal held in the holding furnace from the surface of the molten metal with a starter, and pulling up through a shape defining member that defines the cross-sectional shape of the casting to be cast;
Cooling and solidifying the molten metal that has been pulled up through the shape determining member,
A pulling-up-type continuous casting method, wherein high oxygen gas having an oxygen concentration higher than air is supplied to the molten metal that has passed through the shape determining member.
鋳造を終了する際、前記高酸素ガスの供給を停止した後、前記形状規定部材を通過した前記溶湯と前記鋳物とを切り離す、
請求項4に記載の引上式連続鋳造方法。
When ending casting, after the supply of the high oxygen gas is stopped, the molten metal that has passed through the shape determining member and the casting are separated.
The pulling-up-type continuous casting method according to claim 4.
鋳造を終了する際、前記高酸素ガスから非酸化ガスの供給に切り換えた後、前記形状規定部材を通過した前記溶湯と前記鋳物とを切り離す、
請求項4に記載の引上式連続鋳造方法。
When ending casting, after switching from the high oxygen gas to the supply of non-oxidizing gas, the molten metal that has passed through the shape determining member and the casting are separated,
The pulling-up-type continuous casting method according to claim 4.
JP2012256513A 2012-11-22 2012-11-22 Draw-up continuous casting apparatus and draw-up type continuous casting method Pending JP2014104468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256513A JP2014104468A (en) 2012-11-22 2012-11-22 Draw-up continuous casting apparatus and draw-up type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256513A JP2014104468A (en) 2012-11-22 2012-11-22 Draw-up continuous casting apparatus and draw-up type continuous casting method

Publications (1)

Publication Number Publication Date
JP2014104468A true JP2014104468A (en) 2014-06-09

Family

ID=51026400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256513A Pending JP2014104468A (en) 2012-11-22 2012-11-22 Draw-up continuous casting apparatus and draw-up type continuous casting method

Country Status (1)

Country Link
JP (1) JP2014104468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244500A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Device and method for producing casting
CN106238693A (en) * 2015-06-15 2016-12-21 丰田自动车株式会社 Top-guiding type continuous casting apparatus and top-guiding type continuous casing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244500A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Device and method for producing casting
CN106238693A (en) * 2015-06-15 2016-12-21 丰田自动车株式会社 Top-guiding type continuous casting apparatus and top-guiding type continuous casing
EP3106246A1 (en) * 2015-06-15 2016-12-21 Toyota Jidosha Kabushiki Kaisha Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP2017001084A (en) * 2015-06-15 2017-01-05 トヨタ自動車株式会社 Pull-up type continuous casting apparatus and pull-up type continuous casting method

Similar Documents

Publication Publication Date Title
JP5373728B2 (en) Free casting method, free casting apparatus and casting
JP2014104468A (en) Draw-up continuous casting apparatus and draw-up type continuous casting method
JP2014144484A (en) Hoisting type continuous casting device
JP6036671B2 (en) Pull-up type continuous casting method and pull-up type continuous casting apparatus
JP2014057980A (en) Pull up type continuous casting device and pull up type continuous casting method
US20150122451A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP5700057B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
WO2014167598A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
US10512969B2 (en) Up-drawing continuous casting method and up-drawing continuous casting apparatus
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6003840B2 (en) Pull-up continuous casting method
JP6737689B2 (en) Pull-up type continuous casting equipment
JP6003839B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
US20150202681A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
US20160361761A1 (en) Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP2014100736A (en) Pull-up type continuous casting device and pull-up type continuous casting method
JPWO2014167600A1 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP5849926B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP5892078B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP2015226915A (en) Up-drawing continuous casting apparatus
KR20130002510A (en) Fixing device for shroud nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223