WO2015015687A1 - Upward-drawing continuous casting method, and upward-drawing continuous casting apparatus - Google Patents

Upward-drawing continuous casting method, and upward-drawing continuous casting apparatus Download PDF

Info

Publication number
WO2015015687A1
WO2015015687A1 PCT/JP2014/003011 JP2014003011W WO2015015687A1 WO 2015015687 A1 WO2015015687 A1 WO 2015015687A1 JP 2014003011 W JP2014003011 W JP 2014003011W WO 2015015687 A1 WO2015015687 A1 WO 2015015687A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
rod
opening
shaped members
casting
Prior art date
Application number
PCT/JP2014/003011
Other languages
French (fr)
Japanese (ja)
Inventor
直晋 杉浦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015015687A1 publication Critical patent/WO2015015687A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Definitions

  • the present invention relates to a pull-up type continuous casting method and a pull-up type continuous casting apparatus.
  • Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold.
  • the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface) (that is, the molten metal surface)
  • the molten metal follows the starter by the surface film or surface tension of the molten metal.
  • a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
  • the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold.
  • the cast casting since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
  • the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction.
  • regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained.
  • Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
  • Patent Document 1 In the free casting method disclosed in Patent Document 1, it was impossible to form an opening in a casting while casting.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method capable of forming an opening in a casting while casting.
  • the up-drawing continuous casting method is as follows. Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up; Inserting a pair of rod-shaped members in contact with each other to the molten metal pulled up while passing through the shape determining member, and determining an upper end of an opening formed in the casting; and Separating the pair of rod-shaped members inserted into the molten metal; Re-contacting the pair of spaced apart rod-shaped members; A step of raising the pair of rod-shaped members that have been re-contacted to the upper side of the solidification interface and determining the lower end of the opening while being inserted into the molten metal. With such a configuration, the opening can be formed in the casting while casting.
  • the step of determining the upper end of the opening it is preferable to proceed to the step of continuously separating the pair of rod-shaped members. Moreover, it is preferable to transfer to the step which determines the lower end of the said opening part continuously after the step which re-contacts the said one pair of rod-shaped member. Further, in the step of determining the lower end of the opening, it is preferable to raise the pair of rod-shaped members while synchronizing with the pulling speed of the casting. Moreover, it is preferable to further comprise a step of pulling out the pair of rod-shaped members from the opening after the step of determining the lower end of the opening.
  • the up-drawing continuous casting apparatus is as follows.
  • a holding furnace for holding molten metal A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
  • a pair of rod-shaped members that are inserted into the molten metal pulled up while passing through the shape-defining member and form an opening in the casting;
  • a drive unit that moves the pair of rod-shaped members in the vertical direction;
  • the pair of rod-shaped members can contact and separate from each other. With such a configuration, the opening can be formed in the casting while casting.
  • the drive unit raises the pair of rod-shaped members while synchronizing with the pulling speed of the casting.
  • the cross-sectional shape of a pair of said rod-shaped member is circular shape.
  • the pair of rod-shaped members are formed so as to become narrower as they approach the tip at the tip on the side inserted into the molten metal.
  • an up-drawing continuous casting apparatus and an up-drawing continuous casting method capable of forming an opening in a casting while casting.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 3 is a perspective view showing a positional relationship between a shape defining member 102 and an opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 1.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 3 is a perspective view showing a positional relationship between a shape defining member 102 and an opening forming
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2.
  • FIG. It is a perspective view of the square pipe which has the opening part 50 only in one side.
  • 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1.
  • FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 6 is a side view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 5 is a perspective view showing a casting M3 having a plurality of openings 50.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • the free casting apparatus according to Embodiment 1 includes a molten metal holding furnace 101, a shape defining member 102, a support rod 104, actuators 105 and 112, a cooling gas nozzle 106, a pulling machine 108, and an opening forming member 110. It has.
  • the xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
  • the molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds the molten metal M1 at a predetermined temperature at which the molten metal M1 has fluidity.
  • a molten metal M1 such as aluminum or an alloy thereof
  • the surface of the molten metal M1 decreases as the casting progresses.
  • the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant.
  • the molten metal M1 may be another metal or alloy other than aluminum.
  • the shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the main surface (lower surface) on the lower side of the shape defining member 102 is disposed so as to contact the molten metal surface.
  • the shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from entering the casting M3.
  • the casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape.
  • the cross-sectional shape of the casting M3 is not particularly limited.
  • the casting M3 may be a hollow casting such as a round pipe or a square pipe.
  • FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment.
  • the cross-sectional view of the shape defining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG.
  • the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t ⁇ b> 1 ⁇ a width w ⁇ b> 1 for allowing the molten metal to pass through a central portion.
  • FIG. 2 also shows the opening forming member 110 located above the shape defining member 102.
  • the opening forming member 110 is movable in the x-axis direction. A state in which the opening forming member 110 shields the molten metal is indicated by a broken line. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.
  • the molten metal M ⁇ b> 1 is pulled up following the casting M ⁇ b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined.
  • the molten metal pulled up from the molten metal surface following the casting M3 by the surface film or surface tension of the molten metal is referred to as a retained molten metal M2.
  • the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
  • the support rod 104 supports the shape defining member 102.
  • a support rod 104 is connected to the actuator 105.
  • the shape defining member 102 can be moved in the vertical direction (vertical direction) and the horizontal direction by the actuator 105 via the support rod 104. With such a configuration, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be changed.
  • the cooling gas nozzle (cooling unit) 106 is a cooling unit that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) onto the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface SIF, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface SIF. Although not shown, the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the shape defining member 102.
  • the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface SIF is sequentially solidified to form the casting M3.
  • Increasing the pulling speed by the pulling machine 108 can raise the position of the solidification interface SIF, and decreasing the pulling speed can lower the position of the solidification interface SIF.
  • FIG. 3 is a perspective view showing the positional relationship between the shape defining member 102 and the opening forming member 110 according to the first embodiment.
  • the opening forming member 110 includes a pair of rod-like members 110a and 110b for providing an opening in the casting M3.
  • the rod-shaped members 110a and 110b are made of, for example, ceramics or stainless steel.
  • the rod-shaped members 110a and 110b are installed substantially vertically (that is, substantially horizontal) with respect to the opening to be formed. In the example of FIG. 3, the rod-shaped members 110a and 110b are extended in the x-axis direction. Further, it is installed between the shape defining member 102 and the solidification interface SIF in the height direction (z-axis direction).
  • the cross-sectional shapes of the rod-shaped members 110a and 110b shown in FIG. 3 are circular, but are not limited to this, and may be polygonal or other shapes.
  • the spacing between the rod-shaped members 110a and 110b can be freely changed by moving the rod-shaped members 110a and 110b in directions opposite to each other in the horizontal plane.
  • the intervals between the rod-shaped members 110a and 110b can be freely changed by moving the rod-shaped members 110a and 110b in the y-axis plus direction or the y-axis minus direction, respectively.
  • FIG. 3 shows a state where the rod-shaped members 110a and 110b are in contact with each other.
  • the rod-shaped members 110a and 110b When providing an opening in the casting M3, the rod-shaped members 110a and 110b are moved in the negative direction of the x-axis while being in contact with each other, and inserted into the retained molten metal M2. In a state where the rod-shaped members 110a and 110b are inserted into the holding molten metal M2, they move in directions opposite to each other on the y-axis, and an interval between both is widened, so that an opening is formed in the casting M3. Further, the rod-shaped members 110a and 110b are also movable in the z-axis direction. Here, as shown in FIGS. 1 and 2, it is preferable that the tip portions of the rod-like members 110a and 110b are sharp so that they can be easily inserted into the retained molten metal M2.
  • the rod-shaped members 110a and 110b are formed narrower as they approach the tip at the tip portion on the side inserted into the retained molten metal M2.
  • tip of rod-shaped member 110a, 110b is sharp is abbreviate
  • the actuator 112 is connected to rod-like members 110a and 110b.
  • the actuator 112 can move the rod-shaped members 110a and 110b in the horizontal direction (x-axis direction and y-axis direction). Therefore, the rod-shaped members 110a and 110b can be moved in the horizontal direction in synchronization with the shape defining member 102.
  • the rod-like members 110a and 110b can be moved in the x-axis direction by the actuator 112 and inserted into the retained molten metal M2 or pulled out from the casting M3. Further, the actuator 112 can move the rod-shaped members 110a and 110b in the y-axis plus direction or the y-axis minus direction, and the distance between them can be freely changed.
  • the rod members 110a and 110b can be moved in the z-axis direction by the actuator 112. Thereby, for example, the rod-shaped members 110a and 110b can be moved downward (z-axis minus direction) as the molten metal surface is lowered due to the progress of casting. On the contrary, the rod-shaped members 110a and 110b can be moved upward (z-axis plus direction) in accordance with the pulling speed.
  • FIGS. 4A and 4B are perspective views illustrating a method of forming an opening by the molten metal shielding plate 10 according to Comparative Example 1.
  • FIG. The xyz coordinates in FIGS. 4A and 4B coincide with those in FIG.
  • the molten metal shielding plate 10 having a semicircular tip is moved in the negative direction of the x axis and inserted into the retained molten metal M2.
  • the molten metal shielding board 10 is gradually inserted according to pulling-up speed. Further, the closer the insertion height is to the solidification interface SIF, the more accurately the shape of the molten metal shielding plate 10 can be reflected on the upper end of the opening 50.
  • the molten metal shielding plate 10 blocks the retained molten metal M ⁇ b> 2 being pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 10. As the casting proceeds (that is, the casting M3 is pulled up), the opening 50 expands upward. Here, the molten molten metal M ⁇ b> 2 is held below the molten metal shielding plate 10.
  • the molten metal shielding plate 10 according to Comparative Example 1 cannot move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, at the same height as FIG. 4A, the molten metal shielding plate 10 is moved in the x-axis plus direction and pulled out from the retained molten metal M2.
  • the molten metal shielding plate 10 is quickly pulled out from the retained molten metal M2, as shown in FIG. 4B, the retained molten metal M2 held on the lower side of the molten metal shielding plate 10 falls off due to gravity. As a result, the lower end of the opening 50 cannot be determined, and the opening 50 continues to extend in the longitudinal direction. That is, when the molten metal shielding plate 10 according to the comparative example 1 is used, the opening 50 having a desired dimension cannot be formed in the casting M3 while casting.
  • 5A to 5D are perspective views showing a method for forming an opening by the molten metal shielding plate 10 according to Comparative Example 2.
  • FIG. The xyz coordinates in FIGS. 5A to 5D coincide with those in FIG.
  • FIG. 5A is the same as FIG. 4A, description thereof is omitted.
  • the molten metal shielding plate 10 is moved in the x-axis plus direction while maintaining the inserted height. , Retreat from the holding molten metal M2.
  • the molten metal shielding plate 10 is gradually retracted in accordance with the pulling speed.
  • the molten metal shielding plate 10 is not completely pulled out from the retained molten metal M2, and when the front end reaches the retained molten metal M2, the molten metal shielding plate 10 is prevented from retreating.
  • FIG. 5B shows a state in which only the tip of the molten metal shielding plate 10 is inserted into the retained molten metal M2. That is, the tip of the molten metal shielding plate 10 holds the retained molten metal M2.
  • the molten metal shielding plate 10 according to Comparative Example 2 can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 5C, the molten metal shielding plate 10 is moved upward while being synchronized with the pulling speed of the casting M3 while the tip of the molten metal shielding plate 10 is inserted into the holding molten metal M2.
  • the molten metal shielding plate 10 is raised above the solidification interface SIF.
  • the retained molten metal M2 held on the lower side of the molten metal shielding plate 10 is solidified and changed to a casting M3. As a result, the lower end of the opening 50 is determined.
  • the molten metal shielding plate 10 is further moved in the positive direction of the x-axis and pulled out from the casting M3.
  • the racetrack-shaped opening 50 can be formed in the casting M3 while casting.
  • FIG. 6 is a perspective view of a square pipe having an opening 50 on only one side.
  • FIGS. 7A to 7G are perspective views showing a method of forming openings by the opening forming member 110 according to the present embodiment.
  • the xyz coordinates in FIGS. 7A to 7G coincide with those in FIG.
  • both are moved in the x-axis minus direction and inserted into the holding molten metal M2.
  • the holding molten metal M2 pulled up is blocked by the bar-shaped members 110a and 110b, and the opening 50 starts to be formed above the bar-shaped members 110a and 110b.
  • the rod-shaped member 110a is moved in the y-axis minus direction, and the rod-shaped member 110b is moved in the y-axis plus direction.
  • the upper circular arc part 50a (refer FIG. 7G) of the opening part 50 is formed.
  • the speed at which the interval between the rod-shaped members 110a and 110b is increased is appropriately determined according to the shape of the upper arc part 50a of the opening 50 and the pulling speed.
  • the positions of the rod-shaped members 110a and 110b are held. Thereby, the parallel part 50b (refer FIG. 7G) of the opening part 50 is formed.
  • the rod-shaped member 110a is moved in the y-axis plus direction, and the rod-shaped member 110b is moved in the y-axis minus direction.
  • the lower circular arc part 50c (refer FIG. 7G) of the opening part 50 is formed.
  • the approach speed of the rod-shaped members 110a and 110b is appropriately determined according to the shape of the lower arc part 50c of the opening 50 and the pulling speed.
  • FIG. 7C the positions of the rod-shaped members 110a and 110b are held. Thereby, the parallel part 50b (refer FIG. 7G) of the opening part 50 is formed.
  • the rod-shaped member 110a is moved in the y-axis plus direction
  • the rod-shaped member 110b is moved in the y-axis minus direction.
  • the lower circular arc part 50c (refer FIG. 7G)
  • the retained molten metal M2 follows the approaching action of the rod-like members 110a and 110b. Therefore, the width of the non-existing region of the retained molten metal M2 is also narrowed. If the approach speed of the rod-shaped members 110a and 110b is too large, the retained molten metal M2 cannot follow the rod-shaped members 110a and 110b. In such a case, the pulling speed is reduced.
  • the rod-like members 110a and 110b according to the present embodiment can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 7F, the rod-shaped members 110a and 110b are moved upward while being synchronized with the pulling speed of the casting M3 while being inserted into the holding molten metal M2.
  • the rod-shaped members 110a and 110b are raised above the solidification interface SIF.
  • the retained molten metal M2 retained below the rod-shaped members 110a and 110b is solidified and changed to a casting M3.
  • the lower arc portion 50c of the opening 50 is completed, and the lower end of the opening 50 is determined.
  • the rod-like members 110a and 110b shown in FIG. 7E quickly move to the ascending operation of the rod-like members 110a and 110b shown in FIG.
  • the rod-shaped members 110a and 110b are moved in the x-axis plus direction and pulled out from the casting M3.
  • the cooling gas nozzle 106 is provided above the solidification interface SIF, it is preferable to quickly pull out the rod-shaped members 110a and 110b.
  • the racetrack-shaped opening 50 can be formed in the casting M3 while casting.
  • the shape of the opening 50 is not limited to a racetrack, and can be a free shape.
  • the molten metal shielding plate 10 according to the comparative example it is necessary to change the molten metal shielding plate 10 for each shape of the opening 50 in principle.
  • the rod-shaped members 110a and 110b according to the present embodiment are used, the openings 50 having various shapes can be formed by one kind of the rod-shaped members 110a and 110b.
  • the free casting method according to Embodiment 1 will be described with reference to FIG. First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
  • start-up of the starter ST is started at a predetermined speed.
  • the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension.
  • the retained molten metal M ⁇ b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
  • the upper end of the opening 50 to be formed in the casting M3 is determined by first inserting the rod-like members 110a and 110b into the holding molten metal M2. Next, the rod-shaped members 110 a and 110 b are separated according to the width of the opening 50. And in order to determine the lower end of the opening part 50, after making the rod-shaped members 110a and 110b contact again, the rod-shaped members 110a and 110b are raised above the solidification interface SIF while being inserted into the retained molten metal M2. Let Thereby, the opening part 50 is formed. The details of the method of forming the opening 50 are as described with reference to FIGS. 7A to 7G.
  • the opening forming member 110 (bar-shaped members 110a and 110b) is movable in the vertical direction. Therefore, it is possible to determine the lower end of the opening 50 by raising the opening forming member 110 to the upper side above the solidification interface SIF while being inserted into the retained molten metal M2. Therefore, it is possible to form the opening 50 having a desired dimension with respect to the casting M3 while casting.
  • the shape of the opening 50 is determined not by the insertion / extraction operation of the molten metal shielding plate 10 (for example, the operation in the x-axis direction in FIG. 3) but by the opening / closing operation (for example, the operation in the y-axis direction in FIG. Grant. Therefore, for example, a square pipe having an opening 50 only on one side as shown in FIG. 6 can be cast.
  • the molten metal shielding plate 10 when used, it is necessary to change the molten metal shielding plate 10 for each shape of the opening 50 in principle.
  • the rod-shaped members 110a and 110b according to the present embodiment are used, the openings 50 having various shapes can be formed by one kind of the rod-shaped members 110a and 110b.
  • the casting M3 manufactured using the free casting method according to the first embodiment includes an opening 50 formed while casting. Therefore, in the casting M3 according to the first embodiment, there is no need for processing for forming the opening 50 separately. Or in the casting M3 which concerns on Embodiment 1, the process for forming the opening part 50 is reduced.
  • the casting M3 according to Embodiment 1 is particularly suitable for automobile crash boxes, bumpers, side members, and the like.
  • FIG. 8 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 9 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 8 and 9 also coincide with those in FIG.
  • the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed.
  • the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d, as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
  • the shape defining plates 102a and 102b are arranged to face each other in the y-axis direction. As shown in FIG. 9, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the y-axis direction, the width w1 can be changed. In order to measure the width w1 of the molten metal passage portion 103, as shown in FIGS. 8 and 9, a laser displacement meter S1 may be provided on the shape defining plate 102a, and a laser reflecting plate S2 may be provided on the shape defining plate 102b. .
  • the shape defining plates 102c and 102d are arranged to face each other side by side in the x-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the x-axis direction, the thickness t1 can be changed.
  • the shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
  • the drive mechanism of the shape defining plate 102a will be described with reference to FIGS.
  • the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2.
  • the shape defining plates 102b, 102c, and 102d are provided with a drive mechanism similarly to the shape defining plate 102a, but are omitted in FIGS.
  • the shape defining plate 102a is placed and fixed on a slide table T1 that can slide in the y-axis direction.
  • the slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the y-axis direction.
  • the slide table T1 is connected to a rod R1 extending from the actuator A1 in the y-axis direction.
  • the linear guides G11 and G12 and the actuator A1 are mounted and fixed on a slide table T2 that can slide in the z-axis direction.
  • the slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction.
  • the slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2.
  • the linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction.
  • the actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
  • FIG. 10 is a perspective view showing a casting M3 having a plurality of openings 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

An upward-drawing continuous casting method according to one embodiment of the present invention is provided with: a step in which a molten metal (M1) held in a holding furnace (101) is passed through a shape-regulation member (102) and drawn upward, said shape-regulation member (102) regulating the cross-sectional shape of a casting (M3) to be cast; a step in which a pair of rod-shaped members (110), while in a state of being in contact with each other, is inserted into a molten metal (M2) being drawn upward while being passed through the shape-regulation member (102), to determine an upper end of an opening (50) to be formed in the casting (M3); a step in which the pair of rod-shaped members (110) inserted in the molten metal (M2) is separated; a step in which the separated pair of rod-shaped members (110) is brought into contact with each other again; and a step in which the pair of rod-shaped members (110), having been brought into contact with each other again, and while in a state of still being inserted in the molten metal (M2), is lifted further towards an upper side than a solidification interface (SIF) to determine a lower end of the opening (50).

Description

引上式連続鋳造方法、及び引上式連続鋳造装置Pull-up type continuous casting method and pull-up type continuous casting apparatus
 本発明は引上式連続鋳造方法、及び引上式連続鋳造装置に関する。 The present invention relates to a pull-up type continuous casting method and a pull-up type continuous casting apparatus.
 特許文献1には、鋳型を要しない画期的な引上式連続鋳造方法として、自由鋳造方法が提案されている。特許文献1に示したように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。 Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold. As shown in Patent Document 1, after the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface), when the starter is pulled up, the molten metal follows the starter by the surface film or surface tension of the molten metal. Derived. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
 通常の連続鋳造方法では、鋳型によって断面形状とともに長手方向の形状も規定される。とりわけ、連続鋳造方法では、鋳型内を凝固した金属(すなわち鋳物)が通り抜ける必要があるため、鋳造された鋳物は長手方向に直線状に延びた形状となる。
 これに対し、自由鋳造方法における形状規定部材は、鋳物の断面形状のみを規定し、長手方向の形状は規定しない。そして、形状規定部材は、湯面に平行な方向(すなわち水平方向)に移動可能であるから、長手方向の形状が様々な鋳物が得られる。例えば、特許文献1には、長手方向に直線状でなく、ジグザグ状あるいは螺旋状に形成された中空鋳物(すなわちパイプ)が開示されている。
In a normal continuous casting method, the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold. In particular, in the continuous casting method, since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
On the other hand, the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction. And since a shape prescription | regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained. For example, Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
特開2012-61518号公報JP 2012-61518 A
 発明者は以下の課題を見出した。
 特許文献1に開示された自由鋳造方法では、鋳造しながら鋳物に開口部を形成することができなかった。
The inventor has found the following problems.
In the free casting method disclosed in Patent Document 1, it was impossible to form an opening in a casting while casting.
 本発明は、上記を鑑みなされたものであって、鋳造しながら鋳物に開口部を形成することができる引上式連続鋳造装置及び引上式連続鋳造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method capable of forming an opening in a casting while casting.
 本発明の一態様に係る引上式連続鋳造方法は、
 保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させ、引き上げるステップと、
 前記形状規定部材を通過させながら引き上げられた前記溶湯に対し、1対の棒状部材を互いに接触させた状態で挿入し、前記鋳物に形成する開口部の上端を決定するステップと、
 前記溶湯に挿入された前記1対の棒状部材を離間させるステップと、
 離間した前記1対の棒状部材を再接触させるステップと、
 前記溶湯に挿入したままの状態で、再接触した前記1対の棒状部材を凝固界面よりも上側に上昇させ、前記開口部の下端を決定するステップと、を備えたものである。
 このような構成により、鋳造しながら鋳物に開口部を形成することができる。
The up-drawing continuous casting method according to one aspect of the present invention is as follows.
Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up;
Inserting a pair of rod-shaped members in contact with each other to the molten metal pulled up while passing through the shape determining member, and determining an upper end of an opening formed in the casting; and
Separating the pair of rod-shaped members inserted into the molten metal;
Re-contacting the pair of spaced apart rod-shaped members;
A step of raising the pair of rod-shaped members that have been re-contacted to the upper side of the solidification interface and determining the lower end of the opening while being inserted into the molten metal.
With such a configuration, the opening can be formed in the casting while casting.
 前記開口部の上端を決定するステップの後、続けて前記1対の棒状部材を離間させるステップに移行することが好ましい。
 また、前記1対の棒状部材を再接触させるステップの後、続けて前記開口部の下端を決定するステップに移行することが好ましい。
 さらに、開口部の下端を決定するステップにおいて、前記鋳物の引上速度と同調させながら、前記1対の棒状部材を上昇させることが好ましい。
 また、前記開口部の下端を決定するステップの後、前記開口部から前記1対の棒状部材を引き抜くステップをさらに備えることが好ましい。
After the step of determining the upper end of the opening, it is preferable to proceed to the step of continuously separating the pair of rod-shaped members.
Moreover, it is preferable to transfer to the step which determines the lower end of the said opening part continuously after the step which re-contacts the said one pair of rod-shaped member.
Further, in the step of determining the lower end of the opening, it is preferable to raise the pair of rod-shaped members while synchronizing with the pulling speed of the casting.
Moreover, it is preferable to further comprise a step of pulling out the pair of rod-shaped members from the opening after the step of determining the lower end of the opening.
 本発明の一態様に係る引上式連続鋳造装置は、
 溶湯を保持する保持炉と、
 前記保持炉に保持された前記溶湯の湯面近傍に設置され、かつ、鋳造する鋳物の断面形状を規定する形状規定部材と、
 前記形状規定部材を通過させながら引き上げられた前記溶湯に挿入され、前記鋳物に開口部を形成する1対の棒状部材と、
 前記1対の棒状部材を上下方向に移動させる駆動部と、を備え、
 前記1対の棒状部材は、互いに接触及び離間が可能であるものである。
 このような構成により、鋳造しながら鋳物に開口部を形成することができる。
The up-drawing continuous casting apparatus according to one aspect of the present invention is as follows.
A holding furnace for holding molten metal;
A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
A pair of rod-shaped members that are inserted into the molten metal pulled up while passing through the shape-defining member and form an opening in the casting;
A drive unit that moves the pair of rod-shaped members in the vertical direction;
The pair of rod-shaped members can contact and separate from each other.
With such a configuration, the opening can be formed in the casting while casting.
 前記駆動部は、前記鋳物の引上速度と同調させながら、前記1対の棒状部材を上昇させることが好ましい。
 また、前記1対の棒状部材の断面形状が円形状であることが好ましい。
 さらに、前記1対の棒状部材は、前記溶湯に挿入される側の先端部において、先端に近付くにつれて細く形成されていることが好ましい。
It is preferable that the drive unit raises the pair of rod-shaped members while synchronizing with the pulling speed of the casting.
Moreover, it is preferable that the cross-sectional shape of a pair of said rod-shaped member is circular shape.
Furthermore, it is preferable that the pair of rod-shaped members are formed so as to become narrower as they approach the tip at the tip on the side inserted into the molten metal.
 本発明により、鋳造しながら鋳物に開口部を形成することができる引上式連続鋳造装置及び引上式連続鋳造方法を提供することができる。 According to the present invention, it is possible to provide an up-drawing continuous casting apparatus and an up-drawing continuous casting method capable of forming an opening in a casting while casting.
実施の形態1に係る自由鋳造装置の模式的断面図である。1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. 実施の形態1に係る形状規定部材102の平面図である。3 is a plan view of a shape defining member 102 according to Embodiment 1. FIG. 実施の形態1に係る形状規定部材102と開口形成部材110との位置関係を示す斜視図である。3 is a perspective view showing a positional relationship between a shape defining member 102 and an opening forming member 110 according to Embodiment 1. FIG. 比較例1に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 1. FIG. 比較例1に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 1. FIG. 比較例2に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2. FIG. 比較例2に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2. FIG. 比較例2に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2. FIG. 比較例2に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 10 according to Comparative Example 2. FIG. 1つの側面のみに開口部50を有する角パイプの斜視図である。It is a perspective view of the square pipe which has the opening part 50 only in one side. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1に係る開口形成部材110による開口部の形成方法を示す斜視図である。6 is a perspective view showing a method for forming an opening by opening forming member 110 according to Embodiment 1. FIG. 実施の形態1の変形例に係る形状規定部材102の平面図である。6 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 実施の形態1の変形例に係る形状規定部材102の側面図である。6 is a side view of a shape defining member 102 according to a modification of the first embodiment. FIG. 複数の開口部50を有する鋳物M3を示す斜視図である。5 is a perspective view showing a casting M3 having a plurality of openings 50. FIG.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
(実施の形態1)
 まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置の模式的断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉101、形状規定部材102、支持ロッド104、アクチュエータ105、112、冷却ガスノズル106、引上機108、開口形成部材110を備えている。図1におけるxy平面は水平面を構成し、z軸方向が鉛直方向である。より具体的には、z軸のプラス方向が鉛直上向きとなる。
(Embodiment 1)
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. As shown in FIG. 1, the free casting apparatus according to Embodiment 1 includes a molten metal holding furnace 101, a shape defining member 102, a support rod 104, actuators 105 and 112, a cooling gas nozzle 106, a pulling machine 108, and an opening forming member 110. It has. The xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
 溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、溶湯M1が流動性を有する所定の温度に保持する。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。ここで、保持炉の設定温度を上げると凝固界面SIFの位置を上げることができ、保持炉の設定温度を下げると凝固界面SIFの位置を下げることができる。なお、当然のことながら、溶湯M1は他のアルミニウム以外の金属や合金であってもよい。 The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof and holds the molten metal M1 at a predetermined temperature at which the molten metal M1 has fluidity. In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. Here, when the set temperature of the holding furnace is raised, the position of the solidification interface SIF can be raised, and when the set temperature of the holding furnace is lowered, the position of the solidification interface SIF can be lowered. As a matter of course, the molten metal M1 may be another metal or alloy other than aluminum.
 形状規定部材102は、例えばセラミックスやステンレスなどからなり、湯面近傍に配置されている。図1の例では、形状規定部材102の下側の主面(下面)が湯面に接触するように配置されている。形状規定部材102は、鋳造する鋳物M3の断面形状を規定するとともに、溶湯M1の表面に形成される酸化膜や溶湯M1の表面に浮遊する異物の鋳物M3への混入を防止する。図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が板状の中実鋳物である。なお、当然のことながら、鋳物M3の断面形状は特に限定されない。鋳物M3は、丸パイプや角パイプなどの中空鋳物でもよい。 The shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the main surface (lower surface) on the lower side of the shape defining member 102 is disposed so as to contact the molten metal surface. The shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from entering the casting M3. The casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape. Of course, the cross-sectional shape of the casting M3 is not particularly limited. The casting M3 may be a hollow casting such as a round pipe or a square pipe.
 図2は、実施の形態1に係る形状規定部材102の平面図である。ここで、図1の形状規定部材102の断面図は、図2のI-I断面図に相当する。図2に示すように、形状規定部材102は、例えば矩形状の平面形状を有し、中央部に溶湯が通過するための厚さt1×幅w1の矩形状の開口部(溶湯通過部103)を有している。
 ここで、図2には、形状規定部材102よりも上側に位置する開口形成部材110も併せて図示されている。開口形成部材110はx軸方向に移動可能である。開口形成部材110が溶湯を遮蔽する状態が破線で示されている。なお、図2におけるxyz座標は、図1と一致している。
FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment. Here, the cross-sectional view of the shape defining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG. As shown in FIG. 2, the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t <b> 1 × a width w <b> 1 for allowing the molten metal to pass through a central portion. have.
Here, FIG. 2 also shows the opening forming member 110 located above the shape defining member 102. The opening forming member 110 is movable in the x-axis direction. A state in which the opening forming member 110 shields the molten metal is indicated by a broken line. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.
 図1に示すように、溶湯M1は、その表面膜や表面張力により鋳物M3に追従して引き上げられ、形状規定部材102の溶湯通過部103を通過する。すなわち、溶湯M1が形状規定部材102の溶湯通過部103を通過することにより、溶湯M1に対し形状規定部材102から外力が印加され、鋳物M3の断面形状が規定される。ここで、溶湯の表面膜や表面張力によって、鋳物M3に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との境界が凝固界面SIFである。 As shown in FIG. 1, the molten metal M <b> 1 is pulled up following the casting M <b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined. Here, the molten metal pulled up from the molten metal surface following the casting M3 by the surface film or surface tension of the molten metal is referred to as a retained molten metal M2. Further, the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
 支持ロッド104は、形状規定部材102を支持する。
 アクチュエータ105には、支持ロッド104が連結されている。アクチュエータ105によって、支持ロッド104を介して形状規定部材102が上下方向(鉛直方向)及び水平方向に移動可能となっている。このような構成により、鋳造の進行による湯面の低下とともに、形状規定部材102を下方向に移動させることができる。また、形状規定部材102を水平方向に移動させることができるため、鋳物M3の長手方向の形状を変化させることができる。
The support rod 104 supports the shape defining member 102.
A support rod 104 is connected to the actuator 105. The shape defining member 102 can be moved in the vertical direction (vertical direction) and the horizontal direction by the actuator 105 via the support rod 104. With such a configuration, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be changed.
 冷却ガスノズル(冷却部)106は、冷却ガス供給部(不図示)から供給される冷却ガス(空気、窒素、アルゴンなど)を鋳物M3に吹き付け、冷却する冷却手段である。冷却ガスの流量を増やすと凝固界面SIFの位置を下げることができ、冷却ガスの流量を減らすと凝固界面SIFの位置を上げることができる。なお、図示されていないが、冷却ガスノズル(冷却部)106も形状規定部材102の移動に合わせて、水平方向や上下方向に移動することができる。 The cooling gas nozzle (cooling unit) 106 is a cooling unit that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) onto the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface SIF, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface SIF. Although not shown, the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the shape defining member 102.
 スタータSTに連結された引上機108により鋳物M3を引き上げつつ、冷却ガスにより鋳物M3を冷却することにより、凝固界面SIF近傍の保持溶湯M2が順次凝固し、鋳物M3が形成されていく。引上機108による引上速度を速くすると凝固界面SIFの位置を上げることができ、引上速度を遅くすると凝固界面SIFの位置を下げることができる。 While the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface SIF is sequentially solidified to form the casting M3. Increasing the pulling speed by the pulling machine 108 can raise the position of the solidification interface SIF, and decreasing the pulling speed can lower the position of the solidification interface SIF.
 次に、図1に加え図3も参照して、開口形成部材110について説明する。図3は実施の形態1に係る形状規定部材102と開口形成部材110との位置関係を示す斜視図である。 Next, the opening forming member 110 will be described with reference to FIG. 3 in addition to FIG. FIG. 3 is a perspective view showing the positional relationship between the shape defining member 102 and the opening forming member 110 according to the first embodiment.
 開口形成部材110は、鋳物M3に開口部を設けるための1対の棒状部材110a、110bを備えている。棒状部材110a、110bは、例えばセラミックスやステンレスなどからなる。棒状部材110a、110bは、形成する開口部に対して略垂直(つまり略水平)に設置される。図3の例では、棒状部材110a、110bは、x軸方向に延設されている。また、高さ方向(z軸方向)において形状規定部材102と凝固界面SIFとの間に設置される。図3に示した棒状部材110a、110bの断面形状は円形だが、これに限らず、多角形やその他の形状でもよい。 The opening forming member 110 includes a pair of rod- like members 110a and 110b for providing an opening in the casting M3. The rod-shaped members 110a and 110b are made of, for example, ceramics or stainless steel. The rod-shaped members 110a and 110b are installed substantially vertically (that is, substantially horizontal) with respect to the opening to be formed. In the example of FIG. 3, the rod-shaped members 110a and 110b are extended in the x-axis direction. Further, it is installed between the shape defining member 102 and the solidification interface SIF in the height direction (z-axis direction). The cross-sectional shapes of the rod-shaped members 110a and 110b shown in FIG. 3 are circular, but are not limited to this, and may be polygonal or other shapes.
 さらに、棒状部材110a、110bは、水平面内において、互いに反対方向へ移動することにより、棒状部材110a、110bの間隔を自由に変更することができる。図3の例では、棒状部材110a、110bがそれぞれy軸プラス方向もしくはy軸マイナス方向に移動することにより、棒状部材110a、110bの間隔を自由に変更することができる。図3は、棒状部材110a、110bが接触した状態を示している。 Furthermore, the spacing between the rod-shaped members 110a and 110b can be freely changed by moving the rod-shaped members 110a and 110b in directions opposite to each other in the horizontal plane. In the example of FIG. 3, the intervals between the rod-shaped members 110a and 110b can be freely changed by moving the rod-shaped members 110a and 110b in the y-axis plus direction or the y-axis minus direction, respectively. FIG. 3 shows a state where the rod-shaped members 110a and 110b are in contact with each other.
 鋳物M3に開口部を設ける場合、棒状部材110a、110bが接触した状態のままx軸マイナス方向に移動し、保持溶湯M2に挿入される。棒状部材110a、110bが保持溶湯M2に挿入された状態で、互いにy軸の反対方向に移動し、両者の間隔が広がることにより、鋳物M3に開口部が形成される。また、棒状部材110a、110bはz軸方向にも移動可能である。ここで、図1、2に示すように、棒状部材110a、110bの先端部分は、容易に保持溶湯M2に挿入できるように、鋭利であることが好ましい。つまり、棒状部材110a、110bは、保持溶湯M2に挿入される側の先端部において、先端に近付くにつれて細く形成されていることが好ましい。なお、図3では、棒状部材110a、110bの先端が鋭利である様子は省略されている。また、鋳物M3に対する開口部の形成方法の詳細については、後述する。 When providing an opening in the casting M3, the rod-shaped members 110a and 110b are moved in the negative direction of the x-axis while being in contact with each other, and inserted into the retained molten metal M2. In a state where the rod-shaped members 110a and 110b are inserted into the holding molten metal M2, they move in directions opposite to each other on the y-axis, and an interval between both is widened, so that an opening is formed in the casting M3. Further, the rod-shaped members 110a and 110b are also movable in the z-axis direction. Here, as shown in FIGS. 1 and 2, it is preferable that the tip portions of the rod- like members 110a and 110b are sharp so that they can be easily inserted into the retained molten metal M2. That is, it is preferable that the rod-shaped members 110a and 110b are formed narrower as they approach the tip at the tip portion on the side inserted into the retained molten metal M2. In addition, in FIG. 3, the mode that the front-end | tip of rod-shaped member 110a, 110b is sharp is abbreviate | omitted. Details of the method of forming the opening for the casting M3 will be described later.
 アクチュエータ112には、棒状部材110a、110bが連結されている。アクチュエータ112により、棒状部材110a、110bを水平方向(x軸方向及びy軸方向)に移動させることができる。そのため、棒状部材110a、110bを形状規定部材102と同調させて水平方向に移動させることができる。 The actuator 112 is connected to rod- like members 110a and 110b. The actuator 112 can move the rod-shaped members 110a and 110b in the horizontal direction (x-axis direction and y-axis direction). Therefore, the rod-shaped members 110a and 110b can be moved in the horizontal direction in synchronization with the shape defining member 102.
 また、鋳物M3に開口部を設けるために、アクチュエータ112により棒状部材110a、110bをx軸方向に移動させ、保持溶湯M2に挿入したり、鋳物M3から引き抜いたりすることができる。
 さらに、アクチュエータ112により、棒状部材110a、110bをy軸プラス方向もしくはy軸マイナス方向に移動させ、両者の間隔を自由に変更することができる。
Further, in order to provide an opening in the casting M3, the rod- like members 110a and 110b can be moved in the x-axis direction by the actuator 112 and inserted into the retained molten metal M2 or pulled out from the casting M3.
Further, the actuator 112 can move the rod-shaped members 110a and 110b in the y-axis plus direction or the y-axis minus direction, and the distance between them can be freely changed.
 さらに、アクチュエータ112により、棒状部材110a、110bをz軸方向に移動させることもできる。これにより、例えば鋳造の進行による湯面の低下とともに、棒状部材110a、110bを下方向(z軸マイナス方向)に移動させることができる。反対に、引上速度に合わせて棒状部材110a、110bを上方向(z軸プラス方向)に移動させることもできる。 Further, the rod members 110a and 110b can be moved in the z-axis direction by the actuator 112. Thereby, for example, the rod-shaped members 110a and 110b can be moved downward (z-axis minus direction) as the molten metal surface is lowered due to the progress of casting. On the contrary, the rod-shaped members 110a and 110b can be moved upward (z-axis plus direction) in accordance with the pulling speed.
 次に、本実施の形態に係る開口形成部材110(棒状部材110a、110b)による開口部の形成方法を説明する。
 まず、図4A、4Bを参照して、本実施の形態の比較例1に係る溶湯遮蔽板10による開口部の形成方法を説明する。図4A、4Bは、比較例1に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。図4A、4Bにおけるxyz座標は、図1と一致している。
Next, a method of forming an opening using the opening forming member 110 (bar-shaped members 110a and 110b) according to the present embodiment will be described.
First, with reference to FIG. 4A and 4B, the formation method of the opening part by the molten metal shielding board 10 which concerns on the comparative example 1 of this Embodiment is demonstrated. 4A and 4B are perspective views illustrating a method of forming an opening by the molten metal shielding plate 10 according to Comparative Example 1. FIG. The xyz coordinates in FIGS. 4A and 4B coincide with those in FIG.
 図4Aに示すように、鋳物M3にレーストラック状の開口部50を設ける場合、先端部が半円状の溶湯遮蔽板10をx軸マイナス方向に移動し、保持溶湯M2に挿入する。ここで、溶湯遮蔽板10の先端部の形状を開口部50の上端に反映させるため、引上速度に合わせて溶湯遮蔽板10を徐々に挿入する。また、挿入する高さは凝固界面SIFに近い程、溶湯遮蔽板10の形状を精度良く開口部50の上端に反映させることができる。溶湯遮蔽板10により、引き上げられている保持溶湯M2が遮断され、溶湯遮蔽板10の上側に開口部50が形成される。鋳造の進行(すなわち鋳物M3の引上げ)とともに、開口部50は上方に拡大して行く。ここで、溶湯遮蔽板10の下側には保持溶湯M2が保持されている。 As shown in FIG. 4A, when the racetrack-shaped opening 50 is provided in the casting M3, the molten metal shielding plate 10 having a semicircular tip is moved in the negative direction of the x axis and inserted into the retained molten metal M2. Here, in order to reflect the shape of the front-end | tip part of the molten metal shielding board 10 on the upper end of the opening part 50, the molten metal shielding board 10 is gradually inserted according to pulling-up speed. Further, the closer the insertion height is to the solidification interface SIF, the more accurately the shape of the molten metal shielding plate 10 can be reflected on the upper end of the opening 50. The molten metal shielding plate 10 blocks the retained molten metal M <b> 2 being pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 10. As the casting proceeds (that is, the casting M3 is pulled up), the opening 50 expands upward. Here, the molten molten metal M <b> 2 is held below the molten metal shielding plate 10.
 比較例1に係る溶湯遮蔽板10は、上下方向(鉛直方向すなわちz軸方向)に移動できない。そのため、図4Aと同じ高さにおいて、溶湯遮蔽板10をx軸プラス方向に移動し、保持溶湯M2から引き抜くことになる。溶湯遮蔽板10を保持溶湯M2から素早く引き抜いた場合、図4Bに示すように、溶湯遮蔽板10の下側に保持されていた保持溶湯M2は、重力によって脱落してしまう。この結果、開口部50の下端を決定することができず、開口部50が長手方向に延び続けることになる。すなわち、比較例1に係る溶湯遮蔽板10を用いた場合、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができない。 The molten metal shielding plate 10 according to Comparative Example 1 cannot move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, at the same height as FIG. 4A, the molten metal shielding plate 10 is moved in the x-axis plus direction and pulled out from the retained molten metal M2. When the molten metal shielding plate 10 is quickly pulled out from the retained molten metal M2, as shown in FIG. 4B, the retained molten metal M2 held on the lower side of the molten metal shielding plate 10 falls off due to gravity. As a result, the lower end of the opening 50 cannot be determined, and the opening 50 continues to extend in the longitudinal direction. That is, when the molten metal shielding plate 10 according to the comparative example 1 is used, the opening 50 having a desired dimension cannot be formed in the casting M3 while casting.
 次に、図5A~5Dを参照して、本実施の形態の比較例2に係る溶湯遮蔽板10による開口部の形成方法を説明する。図5A~5Dは、比較例2に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。図5A~5Dにおけるxyz座標は、図1と一致している。 Next, with reference to FIGS. 5A to 5D, a method for forming an opening by the molten metal shielding plate 10 according to Comparative Example 2 of the present embodiment will be described. 5A to 5D are perspective views showing a method for forming an opening by the molten metal shielding plate 10 according to Comparative Example 2. FIG. The xyz coordinates in FIGS. 5A to 5D coincide with those in FIG.
 図5Aは図4Aと同じであるため、説明を省略する。
 次に、図5Bに示すように、開口部50の下端についても溶湯遮蔽板10の先端部の形状を反映させるため、挿入した高さのまま、溶湯遮蔽板10をx軸プラス方向に移動させ、保持溶湯M2から後退させる。ここで、挿入時と同様に、引上速度に合わせて溶湯遮蔽板10を徐々に後退させる。また、溶湯遮蔽板10を保持溶湯M2から完全に引き抜かず、先端が保持溶湯M2に到達した時点で、溶湯遮蔽板10の後退を止める。図5Bは、溶湯遮蔽板10の先端のみが保持溶湯M2に挿入された状態を示している。すなわち、溶湯遮蔽板10の先端が保持溶湯M2を保持している。
Since FIG. 5A is the same as FIG. 4A, description thereof is omitted.
Next, as shown in FIG. 5B, in order to reflect the shape of the tip of the molten metal shielding plate 10 also at the lower end of the opening 50, the molten metal shielding plate 10 is moved in the x-axis plus direction while maintaining the inserted height. , Retreat from the holding molten metal M2. Here, similarly to the insertion, the molten metal shielding plate 10 is gradually retracted in accordance with the pulling speed. Further, the molten metal shielding plate 10 is not completely pulled out from the retained molten metal M2, and when the front end reaches the retained molten metal M2, the molten metal shielding plate 10 is prevented from retreating. FIG. 5B shows a state in which only the tip of the molten metal shielding plate 10 is inserted into the retained molten metal M2. That is, the tip of the molten metal shielding plate 10 holds the retained molten metal M2.
 比較例2に係る溶湯遮蔽板10は、上下方向(鉛直方向すなわちz軸方向)に移動することができる。そのため、図5Cに示すように、溶湯遮蔽板10の先端を保持溶湯M2に挿入したままの状態で、鋳物M3の引上速度に同調させながら上方向に移動させる。ここで、溶湯遮蔽板10を凝固界面SIFよりも上側まで上昇させる。これにより、溶湯遮蔽板10の下側に保持されていた保持溶湯M2が、凝固して鋳物M3へ変化する。この結果、開口部50の下端が決定される。 The molten metal shielding plate 10 according to Comparative Example 2 can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 5C, the molten metal shielding plate 10 is moved upward while being synchronized with the pulling speed of the casting M3 while the tip of the molten metal shielding plate 10 is inserted into the holding molten metal M2. Here, the molten metal shielding plate 10 is raised above the solidification interface SIF. As a result, the retained molten metal M2 held on the lower side of the molten metal shielding plate 10 is solidified and changed to a casting M3. As a result, the lower end of the opening 50 is determined.
 最後に、図5Dに示すように、溶湯遮蔽板10をさらにx軸プラス方向に移動し、鋳物M3から引き抜く。以上により、鋳造しながら鋳物M3に対してレーストラック状の開口部50を形成することができる。 Finally, as shown in FIG. 5D, the molten metal shielding plate 10 is further moved in the positive direction of the x-axis and pulled out from the casting M3. As described above, the racetrack-shaped opening 50 can be formed in the casting M3 while casting.
 比較例2では、溶湯遮蔽板10の挿抜により開口部50の形状付与を行う。そのため、例えば図6に示すような1つの側面のみに開口部50を有する角パイプを鋳造することが難しかった。具体的には、1つの側面に開口部50を形成するために溶湯遮蔽板10を挿入すると、当該側面に対向する側面にも開口部が形成されてしまう。図6は、1つの側面のみに開口部50を有する角パイプの斜視図である。 In Comparative Example 2, the shape of the opening 50 is given by inserting and removing the molten metal shielding plate 10. Therefore, for example, it is difficult to cast a square pipe having an opening 50 only on one side as shown in FIG. Specifically, when the molten metal shielding plate 10 is inserted to form the opening 50 on one side, an opening is also formed on the side facing the side. FIG. 6 is a perspective view of a square pipe having an opening 50 on only one side.
 次に、図7A~7Gを参照して、本実施の形態に係る開口形成部材110(棒状部材110a、110b)による開口部の形成方法を説明する。図7A~7Gは、本実施の形態に係る開口形成部材110による開口部の形成方法を示す斜視図である。図7A~7Gにおけるxyz座標は、図1と一致している。 Next, with reference to FIGS. 7A to 7G, a method of forming an opening by the opening forming member 110 (bar-shaped members 110a and 110b) according to the present embodiment will be described. 7A to 7G are perspective views showing a method of forming openings by the opening forming member 110 according to the present embodiment. The xyz coordinates in FIGS. 7A to 7G coincide with those in FIG.
 まず、図7Aに示すように、棒状部材110a、110bを接触させた状態で、両者をx軸マイナス方向に移動させ、保持溶湯M2に挿入する。棒状部材110a、110bにより、引き上げられている保持溶湯M2が遮断され、棒状部材110a、110bの上側に開口部50が形成され始める。 First, as shown in FIG. 7A, in a state where the rod-shaped members 110a and 110b are in contact with each other, both are moved in the x-axis minus direction and inserted into the holding molten metal M2. The holding molten metal M2 pulled up is blocked by the bar-shaped members 110a and 110b, and the opening 50 starts to be formed above the bar-shaped members 110a and 110b.
 次に、図7Bに示すように、棒状部材110aをy軸マイナス方向へ、棒状部材110bをy軸プラス方向へ移動させる。これにより、開口部50の上側円弧部50a(図7G参照)が形成される。棒状部材110a、110bの間隔を広げる速度は、開口部50の上側円弧部50aの形状及び引上速度に応じて適宜決定される。ここで、図7Aに示した棒状部材110a、110bの挿入動作の後、速やかに図7Bに示した棒状部材110a、110bの離間動作へ移行することが好ましい。また、棒状部材110a、110bの間には保持溶湯M2を支持するものがない。そのため、棒状部材110a、110bの間に保持溶湯M2の非存在領域が形成され、保持溶湯M2が2つの領域に分断される。 Next, as shown in FIG. 7B, the rod-shaped member 110a is moved in the y-axis minus direction, and the rod-shaped member 110b is moved in the y-axis plus direction. Thereby, the upper circular arc part 50a (refer FIG. 7G) of the opening part 50 is formed. The speed at which the interval between the rod-shaped members 110a and 110b is increased is appropriately determined according to the shape of the upper arc part 50a of the opening 50 and the pulling speed. Here, after the insertion operation of the rod- like members 110a and 110b shown in FIG. 7A, it is preferable to immediately shift to the separation operation of the rod- like members 110a and 110b shown in FIG. 7B. Moreover, there is nothing which supports the holding | maintenance molten metal M2 between the rod-shaped members 110a and 110b. Therefore, a non-existing region of the retained molten metal M2 is formed between the rod-shaped members 110a and 110b, and the retained molten metal M2 is divided into two regions.
 次に、図7Cに示すように、棒状部材110a、110bの位置を保持する。これにより、開口部50の平行部50b(図7G参照)が形成される。
 次に、図7Dに示すように、棒状部材110aをy軸プラス方向へ、棒状部材110bをy軸マイナス方向へ移動させる。これにより、開口部50の下側円弧部50c(図7G参照)が形成される。棒状部材110a、110bの接近速度は、開口部50の下側円弧部50cの形状及び引上速度に応じて適宜決定される。ここで、図7Dに示すように、棒状部材110a、110bの接近動作に保持溶湯M2も追従する。従って、保持溶湯M2の非存在領域の幅も狭くなる。なお、棒状部材110a、110bの接近速度が大き過ぎると、棒状部材110a、110bに対して保持溶湯M2が追従できなくなる。このような場合、引上速度を減速する。
Next, as shown in FIG. 7C, the positions of the rod-shaped members 110a and 110b are held. Thereby, the parallel part 50b (refer FIG. 7G) of the opening part 50 is formed.
Next, as shown in FIG. 7D, the rod-shaped member 110a is moved in the y-axis plus direction, and the rod-shaped member 110b is moved in the y-axis minus direction. Thereby, the lower circular arc part 50c (refer FIG. 7G) of the opening part 50 is formed. The approach speed of the rod-shaped members 110a and 110b is appropriately determined according to the shape of the lower arc part 50c of the opening 50 and the pulling speed. Here, as shown in FIG. 7D, the retained molten metal M2 follows the approaching action of the rod- like members 110a and 110b. Therefore, the width of the non-existing region of the retained molten metal M2 is also narrowed. If the approach speed of the rod-shaped members 110a and 110b is too large, the retained molten metal M2 cannot follow the rod-shaped members 110a and 110b. In such a case, the pulling speed is reduced.
 そして、図7Eに示すように、棒状部材110aと棒状部材110bとが再接触する。これにより、図7Eに示すように、2つの領域に分断されていた保持溶湯M2が再統合される。 And as shown to FIG. 7E, the rod-shaped member 110a and the rod-shaped member 110b re-contact. Thereby, as shown to FIG. 7E, the holding | maintenance molten metal M2 divided | segmented into two area | regions is reintegrated.
 本実施の形態に係る棒状部材110a、110bは、上下方向(鉛直方向すなわちz軸方向)に移動することができる。そのため、図7Fに示すように、棒状部材110a、110bを保持溶湯M2に挿入したままの状態で、鋳物M3の引上速度に同調させながら上方向に移動させる。ここで、棒状部材110a、110bを凝固界面SIFよりも上側まで上昇させる。これにより、棒状部材110a、110bの下側に保持されていた保持溶湯M2が、凝固して鋳物M3へ変化する。この結果、開口部50の下側円弧部50cが完成し、開口部50の下端が決定される。また、図7Eに示した棒状部材110a、110bの再接触動作の後、速やかに図7Fに示した棒状部材110a、110bの上昇動作へ移行することが好ましい。 The rod- like members 110a and 110b according to the present embodiment can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 7F, the rod-shaped members 110a and 110b are moved upward while being synchronized with the pulling speed of the casting M3 while being inserted into the holding molten metal M2. Here, the rod-shaped members 110a and 110b are raised above the solidification interface SIF. As a result, the retained molten metal M2 retained below the rod-shaped members 110a and 110b is solidified and changed to a casting M3. As a result, the lower arc portion 50c of the opening 50 is completed, and the lower end of the opening 50 is determined. In addition, it is preferable that the rod- like members 110a and 110b shown in FIG. 7E quickly move to the ascending operation of the rod- like members 110a and 110b shown in FIG.
 最後に、図7Gに示すように、棒状部材110a、110bをx軸プラス方向に移動させ、鋳物M3から引き抜く。ここで、図1に示すように、凝固界面SIFの上方には、冷却ガスノズル106が設けられているため、棒状部材110a、110bを速やかに引き抜くことが好ましい。
 以上により、鋳造しながら鋳物M3に対してレーストラック状の開口部50を形成することができる。
Finally, as shown in FIG. 7G, the rod-shaped members 110a and 110b are moved in the x-axis plus direction and pulled out from the casting M3. Here, as shown in FIG. 1, since the cooling gas nozzle 106 is provided above the solidification interface SIF, it is preferable to quickly pull out the rod-shaped members 110a and 110b.
As described above, the racetrack-shaped opening 50 can be formed in the casting M3 while casting.
 なお、当然のことながら、開口部50の形状はレーストラック状に限らず、自由な形状とすることができる。特に、比較例に係る溶湯遮蔽板10を用いる場合には、原則として開口部50の形状毎に溶湯遮蔽板10を変更する必要がある。これに対し、本実施の形態に係る棒状部材110a、110bを用いれば、1種類の棒状部材110a、110bにより様々な形状の開口部50を形成することができる。 Of course, the shape of the opening 50 is not limited to a racetrack, and can be a free shape. In particular, when using the molten metal shielding plate 10 according to the comparative example, it is necessary to change the molten metal shielding plate 10 for each shape of the opening 50 in principle. On the other hand, if the rod-shaped members 110a and 110b according to the present embodiment are used, the openings 50 having various shapes can be formed by one kind of the rod-shaped members 110a and 110b.
 次に、図1を参照して、実施の形態1に係る自由鋳造方法について説明する。
 まず、スタータSTを降下させ、形状規定部材102の溶湯通過部103を通して、スタータSTの先端部を溶湯M1に浸漬させる。
Next, the free casting method according to Embodiment 1 will be described with reference to FIG.
First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
 次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、表面膜や表面張力によって、スタータSTに追従して湯面から引き上げられた保持溶湯M2が形成される。図1に示すように、保持溶湯M2は、形状規定部材102の溶湯通過部103に形成される。つまり、形状規定部材102により、保持溶湯M2に形状が付与される。 Next, start-up of the starter ST is started at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension. As shown in FIG. 1, the retained molten metal M <b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
 次に、スタータSTは、冷却ガスノズル106から吹き出される冷却ガスにより冷却されているため、保持溶湯M2が上側から下側に向かって順に凝固し、鋳物M3が成長していく。 Next, since the starter ST is cooled by the cooling gas blown from the cooling gas nozzle 106, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows.
 鋳造しながら鋳物M3に開口部50を形成する場合、まず、棒状部材110a、110bを接触させた状態で、保持溶湯M2に挿入し、鋳物M3に形成する開口部50の上端を決定する。次に、開口部50の幅に応じて、棒状部材110a、110bを離間させる。そして、開口部50の下端を決定するには、棒状部材110a、110bを再接触させた後、保持溶湯M2に挿入したままの状態で、棒状部材110a、110bを凝固界面SIFよりも上側に上昇させる。これにより、開口部50が形成される。なお、開口部50の形成方法の詳細については、図7A~7Gを参照して説明した通りである。 When the opening 50 is formed in the casting M3 while casting, the upper end of the opening 50 to be formed in the casting M3 is determined by first inserting the rod- like members 110a and 110b into the holding molten metal M2. Next, the rod-shaped members 110 a and 110 b are separated according to the width of the opening 50. And in order to determine the lower end of the opening part 50, after making the rod-shaped members 110a and 110b contact again, the rod-shaped members 110a and 110b are raised above the solidification interface SIF while being inserted into the retained molten metal M2. Let Thereby, the opening part 50 is formed. The details of the method of forming the opening 50 are as described with reference to FIGS. 7A to 7G.
 以上に説明した通り、実施の形態1に係る自由鋳造装置では、開口形成部材110(棒状部材110a、110b)が上下方向に移動可能である。そのため、保持溶湯M2に挿入したままの状態で、開口形成部材110を凝固界面SIFよりも上側まで上昇させ、開口部50の下端を決定することができる。従って、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができる。 As described above, in the free casting apparatus according to Embodiment 1, the opening forming member 110 (bar-shaped members 110a and 110b) is movable in the vertical direction. Therefore, it is possible to determine the lower end of the opening 50 by raising the opening forming member 110 to the upper side above the solidification interface SIF while being inserted into the retained molten metal M2. Therefore, it is possible to form the opening 50 having a desired dimension with respect to the casting M3 while casting.
 また、溶湯遮蔽板10の挿抜動作(例えば図3におけるx軸方向への動作)ではなく、棒状部材110a、110bの開閉動作(例えば図3におけるy軸方向への動作)により開口部50の形状付与を行う。そのため、例えば図6に示すような1つの側面のみに開口部50を有する角パイプを鋳造することもできる。 In addition, the shape of the opening 50 is determined not by the insertion / extraction operation of the molten metal shielding plate 10 (for example, the operation in the x-axis direction in FIG. 3) but by the opening / closing operation (for example, the operation in the y-axis direction in FIG. Grant. Therefore, for example, a square pipe having an opening 50 only on one side as shown in FIG. 6 can be cast.
 さらに、溶湯遮蔽板10を用いる場合には、原則として開口部50の形状毎に溶湯遮蔽板10を変更する必要がある。これに対し、本実施の形態に係る棒状部材110a、110bを用いれば、1種類の棒状部材110a、110bにより様々な形状の開口部50を形成することができる。 Furthermore, when the molten metal shielding plate 10 is used, it is necessary to change the molten metal shielding plate 10 for each shape of the opening 50 in principle. On the other hand, if the rod-shaped members 110a and 110b according to the present embodiment are used, the openings 50 having various shapes can be formed by one kind of the rod-shaped members 110a and 110b.
 実施の形態1に係る自由鋳造方法を用いて製造された鋳物M3は、鋳造しながら形成された開口部50を備えている。そのため、実施の形態1に係る鋳物M3では、別途開口部50を形成するための加工が必要ない。あるいは、実施の形態1に係る鋳物M3では、開口部50を形成するための加工が軽減される。実施の形態1に係る鋳物M3は、自動車用のクラッシュボックス、バンパー、サイドメンバーなどに特に好適である。 The casting M3 manufactured using the free casting method according to the first embodiment includes an opening 50 formed while casting. Therefore, in the casting M3 according to the first embodiment, there is no need for processing for forming the opening 50 separately. Or in the casting M3 which concerns on Embodiment 1, the process for forming the opening part 50 is reduced. The casting M3 according to Embodiment 1 is particularly suitable for automobile crash boxes, bumpers, side members, and the like.
(実施の形態1の変形例)
 次に、図8、9を参照して、実施の形態1の変形例に係る自由鋳造装置について説明する。図8は、実施の形態1の変形例に係る形状規定部材102の平面図である。図9は、実施の形態1の変形例に係る形状規定部材102の側面図である。なお、図8、9におけるxyz座標も、図1と一致している。
(Modification of Embodiment 1)
Next, a free casting apparatus according to a modification of the first embodiment will be described with reference to FIGS. FIG. 8 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 9 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 8 and 9 also coincide with those in FIG.
 図2に示された実施の形態1に係る形状規定部材102は、1枚の板から構成されていたため、溶湯通過部103の厚さt1、幅w1は固定されていた。これに対し、実施の形態1の変形例に係る形状規定部材102は、図8に示すように、4枚の矩形状の形状規定板102a、102b、102c、102dを備えている。すなわち、実施の形態1の変形例に係る形状規定部材102は、複数に分割されている。このような構成により、溶湯通過部103の厚さt1、幅w1を変化させることができる。また、4枚の矩形状の形状規定板102a、102b、102c、102dは、同調してz軸方向に移動することができる。 Since the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed. On the other hand, the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d, as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
 図8に示すように、形状規定板102a、102bは、y軸方向に並んで対向配置されている。また、図9に示すように、形状規定板102a、102bは、z軸方向には同じ高さで配置されている。形状規定板102a、102bの間隔が、溶湯通過部103の幅w1を規定している。そして、形状規定板102a、102bが、独立してy軸方向に移動可能であるため、幅w1を変化させることができる。なお、溶湯通過部103の幅w1を測定するために、図8、9に示すように、形状規定板102a上にレーザ変位計S1、形状規定板102b上にレーザ反射板S2が設けてもよい。 As shown in FIG. 8, the shape defining plates 102a and 102b are arranged to face each other in the y-axis direction. As shown in FIG. 9, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the y-axis direction, the width w1 can be changed. In order to measure the width w1 of the molten metal passage portion 103, as shown in FIGS. 8 and 9, a laser displacement meter S1 may be provided on the shape defining plate 102a, and a laser reflecting plate S2 may be provided on the shape defining plate 102b. .
 また、図8に示すように、形状規定板102c、102dは、x軸方向に並んで対向配置されている。また、形状規定板102c、102cは、z軸方向には同じ高さで配置されている。形状規定板102c、102dの間隔が、溶湯通過部103の厚さt1を規定している。そして、形状規定板102c、102dが、独立してx軸方向に移動可能であるため、厚さt1を変化させることができる。
 形状規定板102a、102bは、形状規定板102c、102dの上側に接触するように配置されている。
Further, as shown in FIG. 8, the shape defining plates 102c and 102d are arranged to face each other side by side in the x-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the x-axis direction, the thickness t1 can be changed.
The shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
 次に、図8、9を参照して、形状規定板102aの駆動機構について説明する。図8、9に示すように、形状規定板102aの駆動機構は、スライドテーブルT1、T2、リニアガイドG11、G12、G21、G22、アクチュエータA1、A2、ロッドR1、R2を備えている。なお、形状規定板102b、102c、102dも形状規定板102aと同様に駆動機構を備えているが、図8、9では省略されている。 Next, the drive mechanism of the shape defining plate 102a will be described with reference to FIGS. As shown in FIGS. 8 and 9, the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2. The shape defining plates 102b, 102c, and 102d are provided with a drive mechanism similarly to the shape defining plate 102a, but are omitted in FIGS.
 図8、9に示すように、形状規定板102aは、y軸方向にスライド可能なスライドテーブルT1に載置、固定されている。スライドテーブルT1は、y軸方向に平行して延設された1対のリニアガイドG11、G12上に、摺動自在に載置されている。また、スライドテーブルT1は、アクチュエータA1からy軸方向に延設されたロッドR1に連結されている。以上のような構成により、形状規定板102aは、y軸方向にスライドすることができる。 8 and 9, the shape defining plate 102a is placed and fixed on a slide table T1 that can slide in the y-axis direction. The slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the y-axis direction. The slide table T1 is connected to a rod R1 extending from the actuator A1 in the y-axis direction. With the configuration described above, the shape defining plate 102a can slide in the y-axis direction.
 また、図8、9に示すように、リニアガイドG11、G12、及びアクチュエータA1は、z軸方向にスライド可能なスライドテーブルT2上に載置、固定されている。スライドテーブルT2は、z軸方向に平行して延設された1対のリニアガイドG21、G22上に、摺動自在に載置されている。また、スライドテーブルT2は、アクチュエータA2からz軸方向に延設されたロッドR2に連結されている。リニアガイドG21、G22、及びアクチュエータA2は、水平な床面や台座(不図示)などに固定されている。以上のような構成により、形状規定板102aは、z軸方向にスライドすることができる。なお、アクチュエータA1、A2として、油圧シリンダ、エアシリンダ、モータなどを挙げることができる。 8 and 9, the linear guides G11 and G12 and the actuator A1 are mounted and fixed on a slide table T2 that can slide in the z-axis direction. The slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction. The slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2. The linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction. The actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
(その他の実施の形態)
 例えば、溶湯遮蔽板を複数組並べて設ければ、図10に示すように、複数の開口部50を並べて形成することができる。図10は、複数の開口部50を有する鋳物M3を示す斜視図である。
(Other embodiments)
For example, if a plurality of molten metal shielding plates are provided side by side, a plurality of openings 50 can be formed side by side as shown in FIG. FIG. 10 is a perspective view showing a casting M3 having a plurality of openings 50. FIG.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 この出願は、2013年7月30日に出願された日本出願特願2013-158207を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-158207 filed on July 30, 2013, the entire disclosure of which is incorporated herein.
50 開口部
50a 上側円弧部
50b 平行部
50c 下側円弧部
101 溶湯保持炉
102 形状規定部材
102a~102d 形状規定板
103 溶湯通過部
104 支持ロッド
105、112 アクチュエータ
106 冷却ガスノズル
108 引上機
110 開口形成部材
110a、110b 棒状部材
A1、A2 アクチュエータ
G11、G12、G21、G22 リニアガイド
M1 溶湯
M2 保持溶湯
M3 鋳物
R1、R2 ロッド
S1 レーザ変位計
S2 レーザ反射板
SIF 凝固界面
ST スタータ
T1、T2 スライドテーブル
50 Opening portion 50a Upper arc portion 50b Parallel portion 50c Lower arc portion 101 Molten holding furnace 102 Shape defining members 102a to 102d Shape defining plate 103 Molten passage portion 104 Support rod 105, 112 Actuator 106 Cooling gas nozzle 108 Pulling machine 110 Opening formation Member 110a, 110b Rod member A1, A2 Actuator G11, G12, G21, G22 Linear guide M1 Molten metal M2 Holding molten metal M3 Cast R1, R2 Rod S1 Laser displacement meter S2 Laser reflector SIF Solidification interface ST Starter T1, T2 Slide table

Claims (9)

  1.  保持炉に保持された溶湯を、鋳造する鋳物の断面形状を規定する形状規定部材を通過させ、引き上げるステップと、
     前記形状規定部材を通過させながら引き上げられた前記溶湯に対し、1対の棒状部材を互いに接触させた状態で挿入し、前記鋳物に形成する開口部の上端を決定するステップと、
     前記溶湯に挿入された前記1対の棒状部材を離間させるステップと、
     離間した前記1対の棒状部材を再接触させるステップと、
     前記溶湯に挿入したままの状態で、再接触した前記1対の棒状部材を凝固界面よりも上側に上昇させ、前記開口部の下端を決定するステップと、を備えた引上式連続鋳造方法。
    Passing the molten metal held in the holding furnace through a shape defining member that defines the cross-sectional shape of the casting to be cast, and pulling up;
    Inserting a pair of rod-shaped members in contact with each other to the molten metal pulled up while passing through the shape determining member, and determining an upper end of an opening formed in the casting; and
    Separating the pair of rod-shaped members inserted into the molten metal;
    Re-contacting the pair of spaced apart rod-shaped members;
    A step of raising the pair of rod-shaped members that have been re-contacted while being inserted into the molten metal above the solidification interface, and determining a lower end of the opening.
  2.  前記開口部の上端を決定するステップの後、続けて前記1対の棒状部材を離間させるステップに移行する、
    請求項1に記載の引上式連続鋳造方法。
    After the step of determining the upper end of the opening, the process continues to the step of separating the pair of rod-shaped members.
    The pulling-up-type continuous casting method according to claim 1.
  3.  前記1対の棒状部材を再接触させるステップの後、続けて前記開口部の下端を決定するステップに移行する、
    請求項1又は2に記載の引上式連続鋳造方法。
    After the step of recontacting the pair of rod-shaped members, the process proceeds to the step of subsequently determining the lower end of the opening.
    The pulling-up-type continuous casting method according to claim 1 or 2.
  4.  前記開口部の下端を決定するステップにおいて、前記鋳物の引上速度と同調させながら、前記1対の棒状部材を上昇させる、
    請求項1~3のいずれか一項に記載の引上式連続鋳造方法。
    In the step of determining the lower end of the opening, the pair of rod-shaped members are raised while synchronizing with the pulling speed of the casting,
    The up-drawing continuous casting method according to any one of claims 1 to 3.
  5.  前記開口部の下端を決定するステップの後、前記開口部から前記1対の棒状部材を引き抜くステップをさらに備える、
    請求項1~4のいずれか一項に記載の引上式連続鋳造方法。
    After the step of determining the lower end of the opening, further comprising the step of pulling out the pair of rod-shaped members from the opening;
    The up-drawing continuous casting method according to any one of claims 1 to 4.
  6.  溶湯を保持する保持炉と、
     前記保持炉に保持された前記溶湯の湯面近傍に設置され、かつ、鋳造する鋳物の断面形状を規定する形状規定部材と、
     前記形状規定部材を通過させながら引き上げられた前記溶湯に挿入され、前記鋳物に開口部を形成する1対の棒状部材と、
     前記1対の棒状部材を上下方向に移動させる駆動部と、を備え、
     前記1対の棒状部材は、互いに接触及び離間が可能である、引上式連続鋳造装置。
    A holding furnace for holding molten metal;
    A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
    A pair of rod-shaped members that are inserted into the molten metal pulled up while passing through the shape-defining member and form an opening in the casting;
    A drive unit that moves the pair of rod-shaped members in the vertical direction;
    The pair of rod-shaped members is a pulling-up-type continuous casting apparatus that can contact and separate from each other.
  7.  前記駆動部は、前記鋳物の引上速度と同調させながら、前記1対の棒状部材を上昇させる、
    請求項6に記載の引上式連続鋳造装置。
    The drive unit raises the pair of rod-shaped members while synchronizing with the pulling speed of the casting.
    The up-drawing continuous casting apparatus according to claim 6.
  8.  前記1対の棒状部材の断面形状が円形状である、
    請求項6又は7に記載の引上式連続鋳造装置。
    The cross-sectional shape of the pair of rod-shaped members is circular.
    The up-drawing continuous casting apparatus according to claim 6 or 7.
  9.  前記1対の棒状部材は、前記溶湯に挿入される側の先端部において、先端に近付くにつれて細く形成されている、
    請求項6~8のいずれか一項に記載の引上式連続鋳造装置。
    The pair of rod-shaped members are formed narrower as they approach the tip at the tip of the side inserted into the molten metal,
    The up-drawing continuous casting apparatus according to any one of claims 6 to 8.
PCT/JP2014/003011 2013-07-30 2014-06-05 Upward-drawing continuous casting method, and upward-drawing continuous casting apparatus WO2015015687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158207 2013-07-30
JP2013158207A JP5967030B2 (en) 2013-07-30 2013-07-30 Pull-up type continuous casting method and pull-up type continuous casting apparatus

Publications (1)

Publication Number Publication Date
WO2015015687A1 true WO2015015687A1 (en) 2015-02-05

Family

ID=52431253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003011 WO2015015687A1 (en) 2013-07-30 2014-06-05 Upward-drawing continuous casting method, and upward-drawing continuous casting apparatus

Country Status (2)

Country Link
JP (1) JP5967030B2 (en)
WO (1) WO2015015687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155512A3 (en) * 2014-04-07 2016-01-21 Cambridge Enterprise Limited Continuous strip casting apparatus comprising a form adjustment system and continuous casting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) * 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1286510B (en) * 1962-11-23 1969-01-09 Siemens Ag Process for the production of band-shaped single crystals consisting of semiconductor material by pulling from a melt
JP2013226581A (en) * 2012-04-26 2013-11-07 Toyota Motor Corp Method for producing casting and production device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JP2012061518A (en) * 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155512A3 (en) * 2014-04-07 2016-01-21 Cambridge Enterprise Limited Continuous strip casting apparatus comprising a form adjustment system and continuous casting method
US10293399B2 (en) 2014-04-07 2019-05-21 Cambridge Enterprise Limited Strip casting

Also Published As

Publication number Publication date
JP5967030B2 (en) 2016-08-10
JP2015027694A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5967030B2 (en) Pull-up type continuous casting method and pull-up type continuous casting apparatus
JP6036710B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP5994747B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6003840B2 (en) Pull-up continuous casting method
EP2985095A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP5700057B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
EP3074154B1 (en) Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP2015167989A (en) Drawing-up type continuous casting method
US9919357B2 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6003839B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
JP5926161B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
EP3092093B1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
US20160296999A1 (en) Pulling-up-type continuous casting method and pulling-up-type continuous casting apparatus
JP2014140859A (en) Pull-up continuous casting device and pull-up continuous casting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832348

Country of ref document: EP

Kind code of ref document: A1