WO2015015685A1 - Upward-drawing continuous casting method, upward-drawing continuous casting apparatus, and casting - Google Patents

Upward-drawing continuous casting method, upward-drawing continuous casting apparatus, and casting Download PDF

Info

Publication number
WO2015015685A1
WO2015015685A1 PCT/JP2014/003009 JP2014003009W WO2015015685A1 WO 2015015685 A1 WO2015015685 A1 WO 2015015685A1 JP 2014003009 W JP2014003009 W JP 2014003009W WO 2015015685 A1 WO2015015685 A1 WO 2015015685A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
shielding plate
casting
opening
continuous casting
Prior art date
Application number
PCT/JP2014/003009
Other languages
French (fr)
Japanese (ja)
Inventor
直晋 杉浦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015015685A1 publication Critical patent/WO2015015685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/145Plants for continuous casting for upward casting

Definitions

  • the present invention relates to an up-drawing continuous casting method, up-drawing continuous casting apparatus, and casting.
  • Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold.
  • the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface)
  • the molten metal follows the starter by the surface film or surface tension of the molten metal Derived.
  • a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
  • the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold.
  • the cast casting since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
  • the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction.
  • regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained.
  • Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
  • Patent Document 1 In the free casting method disclosed in Patent Document 1, it was impossible to form an opening in a casting while casting.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method capable of forming an opening in a casting while casting.
  • the up-drawing continuous casting method is as follows. A step of lifting the molten metal held in the holding furnace from the surface of the molten metal; A step of cooling and solidifying the molten metal, and a pulling-up-type continuous casting method, A shielding plate is inserted into the molten metal that has been pulled up, and an opening is formed in the wall surface of the casting to be cast. With such a configuration, the opening can be formed in the casting while casting.
  • the molten metal is pulled up while passing through a shape defining member that defines the cross-sectional shape of the casting, After the upper end of the opening is determined by inserting the shielding plate into the molten metal, the shielding plate is raised above the solidification interface while being inserted into the molten metal, and the lower end of the opening is determined. It is preferable to do.
  • the shielding plate When determining the lower end of the opening, it is preferable to raise the shielding plate while synchronizing with the pulling speed of the casting. After determining the lower end of the opening, it is preferable to pull out the shielding plate from the opening. Further, the width of the shielding plate becomes smaller as it approaches the tip on the side to be inserted into the molten metal, and when determining the upper end of the opening, the shielding plate is inserted in accordance with the pulling speed of the casting. It is preferable to do. Further, it is preferable to apply a coating agent to the side surface of the shielding plate.
  • the casting according to an aspect of the present invention is cast by the above-described pulling-up-type continuous casting method and includes the opening.
  • the up-drawing continuous casting apparatus is as follows.
  • a holding furnace for holding molten metal A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
  • a shielding plate that is inserted into the molten metal pulled up while passing through the shape determining member and forms an opening in the casting;
  • a drive unit that moves the shielding plate in the vertical direction.
  • the driving unit raises the shielding plate while synchronizing with the pulling speed of the casting.
  • variety of the said shielding board becomes small as it approaches the front-end
  • a coating agent is applied to the side surface of the shielding plate.
  • an up-drawing continuous casting apparatus and an up-drawing continuous casting method capable of forming an opening in a casting while casting.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 3 is a perspective view showing a positional relationship between a shape defining member 102 and a molten metal shielding plate 110 according to Embodiment 1.
  • FIG. It is a perspective view which shows the formation method of the opening part by the molten metal shielding board 10 which concerns on a comparative example.
  • It is a perspective view which shows the formation method of the opening part by the molten metal shielding board 10 which concerns on a comparative example.
  • 5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • FIG. 3 is a plan view of a shape defining member 102 according to Embodiment 1.
  • FIG. 5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1.
  • FIG. 5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1.
  • FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 6 is a side view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 6 is a perspective view showing a positional relationship between a shape defining member 102 and a molten metal shielding plate 210 according to Embodiment 2.
  • FIG. 1 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1.
  • FIG. 5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1.
  • FIG. 6 is a plan view of a shape
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2.
  • FIG. 10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2.
  • FIG. 5 is a perspective view showing a casting M3 having a plurality of openings 50.
  • FIG. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1.
  • a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace 101, a shape defining member 102, support rods 104 and 111, actuators 105 and 112, a cooling gas nozzle 106, a pulling machine 108, and a molten metal shielding.
  • a plate 110 is provided.
  • the xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
  • the molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof, and holds the molten metal M at a predetermined temperature having fluidity.
  • a molten metal M1 such as aluminum or an alloy thereof
  • the surface of the molten metal M1 decreases as the casting progresses.
  • the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant.
  • the molten metal M1 may be another metal or alloy other than aluminum.
  • the shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the main surface (lower surface) on the lower side of the shape defining member 102 is disposed so as to contact the molten metal surface.
  • the shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from entering the casting M3.
  • the casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape.
  • the cross-sectional shape of the casting M3 is not particularly limited.
  • the casting M3 may be a hollow casting such as a round pipe or a square pipe.
  • FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment.
  • the cross-sectional view of the shape defining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG.
  • the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t ⁇ b> 1 ⁇ a width w ⁇ b> 1 for allowing the molten metal to pass through a central portion. have.
  • FIG. 2 also shows a molten metal shielding plate 110 located above the shape defining member 102.
  • the molten metal shielding plate 110 is movable in the x-axis direction. A state where the molten metal shielding plate 110 shields the molten metal is indicated by a broken line. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.
  • the molten metal M ⁇ b> 1 is pulled up following the casting M ⁇ b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined.
  • the molten metal pulled up from the molten metal surface following the casting M3 by the surface film or surface tension of the molten metal is referred to as a retained molten metal M2.
  • the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
  • the support rod 104 supports the shape defining member 102.
  • a support rod 104 is connected to the actuator 105.
  • the shape defining member 102 can be moved in the vertical direction (vertical direction) and the horizontal direction by the actuator 105 via the support rod 104. With such a configuration, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be changed.
  • the cooling gas nozzle (cooling unit) 106 is a cooling unit that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) onto the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface SIF, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface SIF. Although not shown, the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the shape defining member 102.
  • the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface SIF is sequentially solidified to form the casting M3.
  • Increasing the pulling speed by the pulling machine 108 can raise the position of the solidification interface SIF, and decreasing the pulling speed can lower the position of the solidification interface SIF.
  • FIG. 3 is a perspective view showing a positional relationship between the shape defining member 102 and the molten metal shielding plate 110 according to the first embodiment.
  • the molten metal shielding plate 110 is a member for providing an opening in the casting M3, and is made of, for example, ceramics or stainless steel.
  • the molten metal shielding plate 110 is installed between the shape determining member 102 and the solidification interface SIF in the height direction (z-axis direction).
  • the molten metal shielding plate 110 moves in the negative direction of the x axis and is inserted into the retained molten metal M2.
  • the molten metal shielding plate 110 is also movable in the z-axis direction. Furthermore, as shown in FIG. 1, it is preferable that the front-end
  • the support rod 111 supports the molten metal shielding plate 110.
  • a support rod 111 is connected to the actuator 112.
  • the actuator 112 the molten metal shielding plate 110 can be moved in the horizontal direction (x-axis direction and y-axis direction). Therefore, the molten metal shielding plate 110 can be moved in the horizontal direction in synchronization with the shape defining member 102.
  • the molten metal shielding plate 110 can be moved in the x-axis direction and inserted into the retained molten metal M2 or pulled out from the casting M3.
  • the molten metal shielding plate 110 can be moved in the z-axis direction by the actuator 112.
  • the molten metal shielding plate 110 can be moved downward (z-axis minus direction) as the molten metal surface is lowered due to the progress of casting. On the contrary, the molten metal shielding plate 110 can be moved upward (z-axis plus direction) in accordance with the pulling speed.
  • FIGS. 4A and 4B are perspective views illustrating a method of forming an opening by the molten metal shielding plate 10 according to a comparative example.
  • the xyz coordinates in FIGS. 4A and 4B coincide with those in FIG.
  • the molten metal shielding plate 10 when providing an opening in the casting M3, the molten metal shielding plate 10 is moved in the negative direction of the x axis and inserted into the retained molten metal M2.
  • the molten metal shielding plate 10 blocks the retained molten metal M ⁇ b> 2 being pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 10.
  • the opening 50 expands upward.
  • the molten molten metal M ⁇ b> 2 is held below the molten metal shielding plate 10.
  • the molten metal shielding plate 10 according to the comparative example cannot move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, at the same height as FIG. 4A, the molten metal shielding plate 10 is moved in the x-axis plus direction and pulled out from the retained molten metal M2. In this case, as shown in FIG. 4B, the retained molten metal M ⁇ b> 2 held on the lower side of the molten metal shielding plate 10 falls off due to gravity. As a result, the lower end of the opening 50 cannot be determined, and the opening 50 continues to extend in the longitudinal direction. That is, when the molten metal shielding plate 10 according to the comparative example is used, the opening 50 having a desired dimension cannot be formed in the casting M3 while casting.
  • 5A to 5C are perspective views showing a method of forming an opening by the molten metal shielding plate 110 according to the present embodiment.
  • the xyz coordinates in FIGS. 5A to 5C coincide with those in FIG.
  • the molten metal shielding plate 110 when providing an opening in the casting M3, the molten metal shielding plate 110 is moved in the negative direction of the x axis and inserted into the retained molten metal M2.
  • the molten metal shielding plate 110 blocks the retained molten metal M ⁇ b> 2 that is pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 110.
  • the opening 50 expands upward.
  • the molten molten metal M ⁇ b> 2 is held below the molten metal shielding plate 110.
  • 5A is the same as FIG. 4A.
  • the molten metal shielding plate 110 can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 5B, when the vertical dimension of the opening 50 reaches a desired length, the molten metal shielding plate 110 is inserted into the retained molten metal M2 and the casting M3 is pulled up. Move upward while synchronizing. Here, the molten metal shielding plate 110 is raised above the solidification interface SIF. As a result, the retained molten metal M2 held on the lower side of the molten metal shielding plate 110 is solidified and changed to a casting M3. As a result, the lower end of the opening 50 is determined.
  • the molten metal shielding plate 110 is moved in the positive direction of the x axis and pulled out from the casting M3.
  • the opening 50 having a desired dimension can be formed in the casting M3 while casting.
  • a coating agent to the side surface of the molten metal shielding plate 110.
  • a vermiculite coating material can be used as the coating agent.
  • the vermiculite coating material is a coating material in which refractory fine particles such as silicon oxide (SiO 2 ), iron oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ) are suspended in water.
  • refractory fine particles such as silicon oxide (SiO 2 ), iron oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ) are suspended in water.
  • the free casting method according to Embodiment 1 will be described with reference to FIG. First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
  • start-up of the starter ST is started at a predetermined speed.
  • the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension.
  • the retained molten metal M ⁇ b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
  • the molten metal shielding plate 110 When forming the opening 50 in the casting M3 while casting, first, the molten metal shielding plate 110 is inserted into the retained molten metal M2, and the upper end of the opening 50 formed in the casting M3 is determined. Next, when the vertical dimension of the opening 50 reaches a desired length, the molten metal shielding plate 110 is raised above the solidification interface SIF while being inserted into the retained molten metal M2, and the opening 50 Determine the bottom edge.
  • the details of the method of forming the opening 50 are as described with reference to FIGS. 5A to 5C.
  • the molten metal shielding plate 110 is movable in the vertical direction. Therefore, it is possible to determine the lower end of the opening 50 by raising the molten metal shielding plate 110 to the upper side of the solidification interface SIF while being inserted into the retained molten metal M2. Therefore, it is possible to form the opening 50 having a desired dimension with respect to the casting M3 while casting.
  • the casting M3 manufactured using the free casting method according to the first embodiment includes an opening 50 formed while casting. Therefore, in the casting M3 according to the first embodiment, there is no need for processing for forming the opening 50 separately. Or in the casting M3 which concerns on Embodiment 1, the process for forming the opening part 50 is reduced.
  • the casting M3 according to Embodiment 1 is particularly suitable for automobile crash boxes, bumpers, side members, and the like.
  • FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment.
  • FIG. 7 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 6 and 7 also coincide with those in FIG.
  • the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed.
  • the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
  • the shape defining plates 102a and 102b are arranged to face each other in the y-axis direction. Further, as shown in FIG. 7, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the y-axis direction, the width w1 can be changed.
  • a laser displacement meter S1 may be provided on the shape defining plate 102a and a laser reflecting plate S2 may be provided on the shape defining plate 102b as shown in FIGS. .
  • the shape defining plates 102c and 102d are arranged to face each other in the x-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the x-axis direction, the thickness t1 can be changed.
  • the shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
  • the drive mechanism of the shape defining plate 102a will be described with reference to FIGS.
  • the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2.
  • the shape defining plates 102b, 102c, and 102d also have a drive mechanism similar to the shape defining plate 102a, but are omitted in FIGS.
  • the shape defining plate 102a is mounted and fixed on a slide table T1 that can slide in the y-axis direction.
  • the slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the y-axis direction.
  • the slide table T1 is connected to a rod R1 extending from the actuator A1 in the y-axis direction.
  • the linear guides G11 and G12 and the actuator A1 are placed and fixed on a slide table T2 that can slide in the z-axis direction.
  • the slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction.
  • the slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2.
  • the linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction.
  • the actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
  • FIG. 8 is a perspective view showing a positional relationship between the shape defining member 102 and the molten metal shielding plate 210 according to the second embodiment.
  • 9A to 9D are perspective views showing a method of forming an opening by the molten metal shielding plate 210 according to the second embodiment. Note that the xyz coordinates in FIGS. 8 and 9A to 9D also coincide with those in FIG.
  • the molten metal shielding plate 110 has a rectangular shape, and the formed opening 50 has a rectangular shape.
  • the tip of the molten metal shielding plate 210 is semicircular. Therefore, as shown in FIGS. 9A to 9D, the opening 50 to be formed can have a racetrack shape. More generally, the molten metal shielding plate 110 according to the first embodiment has a constant width, whereas the molten metal shielding plate 210 according to the second embodiment has a width as it approaches the tip on the side to be inserted into the retained molten metal M2. It is getting smaller.
  • the molten metal shielding plate 210 when an opening is provided in the casting M3, the molten metal shielding plate 210 is moved in the negative direction of the x axis and inserted into the retained molten metal M2.
  • the molten metal shielding plate 210 is gradually inserted in accordance with the pulling speed. Further, the closer the insertion height is to the solidification interface SIF, the more accurately the shape of the molten metal shielding plate 210 can be reflected on the upper end of the opening 50. In the first embodiment, there are no particular restrictions on the insertion speed and height.
  • FIG. 9B shows a state in which only the tip of the molten metal shielding plate 210 is inserted into the retained molten metal M2. That is, the tip of the molten metal shielding plate 210 holds the retained molten metal M2.
  • the molten metal shielding plate 210 can also move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 9C, while the tip of the molten metal shielding plate 210 is inserted into the retained molten metal M2, the molten metal is moved upward while being synchronized with the pulling speed of the casting M3.
  • the molten metal shielding plate 210 is raised above the solidification interface SIF.
  • the retained molten metal M2 held under the molten metal shielding plate 210 is solidified and changed to a casting M3.
  • the lower end of the opening 50 is determined.
  • the molten metal shielding plate 210 is further moved in the positive direction of the x axis and pulled out from the casting M3.
  • the opening 50 having a desired dimension can be formed in the casting M3 while casting.
  • FIG. 10 is a perspective view showing a casting M3 having a plurality of openings 50.
  • Opening portion 101 Melt holding furnace 102 Shape defining members 102a to 102d Shape defining plate 103 Molten passage portion 104, 111 Support rod 105, 112 Actuator 106 Cooling gas nozzle 108 Lifting machine 110, 210 Molten shield plate A1, A2 Actuator G11, G12 , G21, G22 Linear guide M1 Molten metal M2 Retained molten metal M3 Cast R1, R2 Rod S1 Laser displacement meter S2 Laser reflector SIF Solidification interface ST Starter T1, T2 Slide table

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

An upward-drawing continuous casting method according to one embodiment of the present invention is provided with: a step in which a molten metal (M1) held in a holding furnace (101) is drawn upward from a molten-metal surface; and a step in which a molten metal (M2) being drawn upward is cooled to induce solidification thereof. The upward-drawing continuous casting method is characterized in that a blocking plate (110) is inserted into the molten metal (M2) being drawn upward, to form an opening (50) in a wall surface of a casting (M3) to be cast. As a result, the opening (50) in the wall surface of the casting (M3) can be formed while casting.

Description

引上式連続鋳造方法、引上式連続鋳造装置及び鋳物Pull-up type continuous casting method, pull-up type continuous casting apparatus and casting
 本発明は引上式連続鋳造方法、引上式連続鋳造装置及び鋳物に関する。 The present invention relates to an up-drawing continuous casting method, up-drawing continuous casting apparatus, and casting.
 特許文献1には、鋳型を要しない画期的な引上式連続鋳造方法として、自由鋳造方法が提案されている。特許文献1に示したように、溶融金属(溶湯)の表面(すなわち湯面)にスタータを浸漬させた後、当該スタータを引き上げると、溶湯の表面膜や表面張力によりスタータに追従して溶湯も導出される。ここで、湯面近傍に設置された形状規定部材を介して、溶湯を導出し、冷却することにより、所望の断面形状を有する鋳物を連続鋳造することができる。 Patent Document 1 proposes a free casting method as an innovative pull-up type continuous casting method that does not require a mold. As shown in Patent Document 1, after the starter is immersed in the surface of the molten metal (molten metal) (that is, the molten metal surface), when the starter is pulled up, the molten metal follows the starter by the surface film or surface tension of the molten metal Derived. Here, a casting having a desired cross-sectional shape can be continuously cast by deriving and cooling the molten metal through a shape determining member installed in the vicinity of the molten metal surface.
 通常の連続鋳造方法では、鋳型によって断面形状とともに長手方向の形状も規定される。とりわけ、連続鋳造方法では、鋳型内を凝固した金属(すなわち鋳物)が通り抜ける必要があるため、鋳造された鋳物は長手方向に直線状に延びた形状となる。
 これに対し、自由鋳造方法における形状規定部材は、鋳物の断面形状のみを規定し、長手方向の形状は規定しない。そして、形状規定部材は、湯面に平行な方向(すなわち水平方向)に移動可能であるから、長手方向の形状が様々な鋳物が得られる。例えば、特許文献1には、長手方向に直線状でなく、ジグザグ状あるいは螺旋状に形成された中空鋳物(すなわちパイプ)が開示されている。
In a normal continuous casting method, the shape in the longitudinal direction is defined along with the cross-sectional shape by the mold. In particular, in the continuous casting method, since the solidified metal (that is, the casting) needs to pass through the mold, the cast casting has a shape extending linearly in the longitudinal direction.
On the other hand, the shape defining member in the free casting method defines only the cross-sectional shape of the casting, and does not define the shape in the longitudinal direction. And since a shape prescription | regulation member can move to the direction (namely, horizontal direction) parallel to a molten metal surface, the casting in which the shape of a longitudinal direction is various is obtained. For example, Patent Document 1 discloses a hollow casting (that is, a pipe) that is formed in a zigzag shape or a spiral shape instead of being linear in the longitudinal direction.
特開2012-61518号公報JP 2012-61518 A
 発明者は以下の課題を見出した。
 特許文献1に開示された自由鋳造方法では、鋳造しながら鋳物に開口部を形成することができなかった。
The inventor has found the following problems.
In the free casting method disclosed in Patent Document 1, it was impossible to form an opening in a casting while casting.
 本発明は、上記を鑑みなされたものであって、鋳造しながら鋳物に開口部を形成することができる引上式連続鋳造装置及び引上式連続鋳造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a pulling-up-type continuous casting apparatus and a pull-up-type continuous casting method capable of forming an opening in a casting while casting.
 本発明の一態様に係る引上式連続鋳造方法は、
 保持炉に保持された溶湯を、湯面から引き上げるステップと、
 引き上げられた前記溶湯を冷却して凝固させるステップと、を備えた、引上式連続鋳造方法であって、
 引き上げられた前記溶湯に対して遮蔽板を挿入し、鋳造される鋳物の壁面に開口部を形成するものである。
 このような構成により、鋳造しながら鋳物に開口部を形成することができる。
The up-drawing continuous casting method according to one aspect of the present invention is as follows.
A step of lifting the molten metal held in the holding furnace from the surface of the molten metal;
A step of cooling and solidifying the molten metal, and a pulling-up-type continuous casting method,
A shielding plate is inserted into the molten metal that has been pulled up, and an opening is formed in the wall surface of the casting to be cast.
With such a configuration, the opening can be formed in the casting while casting.
 前記溶湯を引き上げるステップにおいて、前記鋳物の断面形状を規定する形状規定部材を通過させながら前記溶湯を引き上げ、
 前記溶湯に前記遮蔽板を挿入することにより前記開口部の上端を決定した後、前記溶湯に挿入したままの状態で前記遮蔽板を凝固界面よりも上側に上昇させ、前記開口部の下端を決定することが好ましい。
In the step of pulling up the molten metal, the molten metal is pulled up while passing through a shape defining member that defines the cross-sectional shape of the casting,
After the upper end of the opening is determined by inserting the shielding plate into the molten metal, the shielding plate is raised above the solidification interface while being inserted into the molten metal, and the lower end of the opening is determined. It is preferable to do.
 前記開口部の下端を決定する際、前記鋳物の引上速度と同調させながら、前記遮蔽板を上昇させることが好ましい。
 前記開口部の下端を決定した後、前記開口部から前記遮蔽板を引き抜くことが好ましい。
 さらに、前記遮蔽板の幅が、前記溶湯に挿入する側の先端に近付くにつれて小さくなっており、前記開口部の上端を決定する際、前記鋳物の引上速度に合わせて、前記遮蔽板を挿入することが好ましい。
 また、前記遮蔽板の側面に塗型剤を塗布することが好ましい。
When determining the lower end of the opening, it is preferable to raise the shielding plate while synchronizing with the pulling speed of the casting.
After determining the lower end of the opening, it is preferable to pull out the shielding plate from the opening.
Further, the width of the shielding plate becomes smaller as it approaches the tip on the side to be inserted into the molten metal, and when determining the upper end of the opening, the shielding plate is inserted in accordance with the pulling speed of the casting. It is preferable to do.
Further, it is preferable to apply a coating agent to the side surface of the shielding plate.
 本発明の一態様に係る鋳物は、上記の引上式連続鋳造方法によって鋳造され、前記開口部を備えたものである。 The casting according to an aspect of the present invention is cast by the above-described pulling-up-type continuous casting method and includes the opening.
 本発明の一態様に係る引上式連続鋳造装置は、
 溶湯を保持する保持炉と、
 前記保持炉に保持された前記溶湯の湯面近傍に設置され、かつ、鋳造する鋳物の断面形状を規定する形状規定部材と、
 前記形状規定部材を通過させながら引き上げられた前記溶湯に挿入され、前記鋳物に開口部を形成する遮蔽板と、
 前記遮蔽板を上下方向に移動させる駆動部と、を備えたものである。
 このような構成により、鋳造しながら鋳物に開口部を形成することができる。
The up-drawing continuous casting apparatus according to one aspect of the present invention is as follows.
A holding furnace for holding molten metal;
A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
A shielding plate that is inserted into the molten metal pulled up while passing through the shape determining member and forms an opening in the casting;
And a drive unit that moves the shielding plate in the vertical direction.
With such a configuration, the opening can be formed in the casting while casting.
 前記駆動部は、前記鋳物の引上速度と同調させながら、前記遮蔽板を上昇させることが好ましい。
 また、前記遮蔽板の幅が、前記溶湯に挿入する側の先端に近付くにつれて小さくなっていることが好ましい。
 さらに、前記遮蔽板の側面に塗型剤が塗布されていることが好ましい。
It is preferable that the driving unit raises the shielding plate while synchronizing with the pulling speed of the casting.
Moreover, it is preferable that the width | variety of the said shielding board becomes small as it approaches the front-end | tip of the side inserted in the said molten metal.
Furthermore, it is preferable that a coating agent is applied to the side surface of the shielding plate.
 本発明により、鋳造しながら鋳物に開口部を形成することができる引上式連続鋳造装置及び引上式連続鋳造方法を提供することができる。 According to the present invention, it is possible to provide an up-drawing continuous casting apparatus and an up-drawing continuous casting method capable of forming an opening in a casting while casting.
実施の形態1に係る自由鋳造装置の模式的断面図である。1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. 実施の形態1に係る形状規定部材102の平面図である。3 is a plan view of a shape defining member 102 according to Embodiment 1. FIG. 実施の形態1に係る形状規定部材102と溶湯遮蔽板110との位置関係を示す斜視図である。3 is a perspective view showing a positional relationship between a shape defining member 102 and a molten metal shielding plate 110 according to Embodiment 1. FIG. 比較例に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。It is a perspective view which shows the formation method of the opening part by the molten metal shielding board 10 which concerns on a comparative example. 比較例に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。It is a perspective view which shows the formation method of the opening part by the molten metal shielding board 10 which concerns on a comparative example. 実施の形態1に係る溶湯遮蔽板110による開口部の形成方法を示す斜視図である。5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1. FIG. 実施の形態1に係る溶湯遮蔽板110による開口部の形成方法を示す斜視図である。5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1. FIG. 実施の形態1に係る溶湯遮蔽板110による開口部の形成方法を示す斜視図である。5 is a perspective view showing a method for forming an opening by molten metal shielding plate 110 according to Embodiment 1. FIG. 実施の形態1の変形例に係る形状規定部材102の平面図である。6 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 実施の形態1の変形例に係る形状規定部材102の側面図である。6 is a side view of a shape defining member 102 according to a modification of the first embodiment. FIG. 実施の形態2に係る形状規定部材102と溶湯遮蔽板210との位置関係を示す斜視図である。6 is a perspective view showing a positional relationship between a shape defining member 102 and a molten metal shielding plate 210 according to Embodiment 2. FIG. 実施の形態2に係る溶湯遮蔽板210による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2. FIG. 実施の形態2に係る溶湯遮蔽板210による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2. FIG. 実施の形態2に係る溶湯遮蔽板210による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2. FIG. 実施の形態2に係る溶湯遮蔽板210による開口部の形成方法を示す斜視図である。10 is a perspective view showing a method for forming an opening by a molten metal shielding plate 210 according to Embodiment 2. FIG. 複数の開口部50を有する鋳物M3を示す斜視図である。5 is a perspective view showing a casting M3 having a plurality of openings 50. FIG.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
(実施の形態1)
 まず、図1を参照して、実施の形態1に係る自由鋳造装置(引上式連続鋳造装置)について説明する。図1は、実施の形態1に係る自由鋳造装置の模式的断面図である。図1に示すように、実施の形態1に係る自由鋳造装置は、溶湯保持炉101、形状規定部材102、支持ロッド104、111、アクチュエータ105、112、冷却ガスノズル106、引上機108、溶湯遮蔽板110を備えている。図1におけるxy平面は水平面を構成し、z軸方向が鉛直方向である。より具体的には、z軸のプラス方向が鉛直上向きとなる。
(Embodiment 1)
First, with reference to FIG. 1, the free casting apparatus (pull-up type continuous casting apparatus) according to Embodiment 1 will be described. 1 is a schematic cross-sectional view of a free casting apparatus according to Embodiment 1. FIG. As shown in FIG. 1, a free casting apparatus according to Embodiment 1 includes a molten metal holding furnace 101, a shape defining member 102, support rods 104 and 111, actuators 105 and 112, a cooling gas nozzle 106, a pulling machine 108, and a molten metal shielding. A plate 110 is provided. The xy plane in FIG. 1 constitutes a horizontal plane, and the z-axis direction is the vertical direction. More specifically, the positive direction of the z axis is vertically upward.
 溶湯保持炉101は、例えばアルミニウムやその合金などの溶湯M1を収容し、溶湯Mが流動性を有する所定の温度に保持する。図1の例では、鋳造中に溶湯保持炉101へ溶湯を補充しないため、鋳造の進行とともに溶湯M1の表面(つまり湯面)は低下する。他方、鋳造中に溶湯保持炉101へ溶湯を随時補充し、湯面を一定に保持するような構成としてもよい。ここで、保持炉の設定温度を上げると凝固界面SIFの位置を上げることができ、保持炉の設定温度を下げると凝固界面SIFの位置を下げることができる。なお、当然のことながら、溶湯M1は他のアルミニウム以外の金属や合金であってもよい。 The molten metal holding furnace 101 accommodates a molten metal M1 such as aluminum or an alloy thereof, and holds the molten metal M at a predetermined temperature having fluidity. In the example of FIG. 1, since the molten metal is not replenished to the molten metal holding furnace 101 during casting, the surface of the molten metal M1 (that is, the molten metal surface) decreases as the casting progresses. On the other hand, the molten metal may be replenished to the molten metal holding furnace 101 at any time during casting to keep the molten metal surface constant. Here, when the set temperature of the holding furnace is raised, the position of the solidification interface SIF can be raised, and when the set temperature of the holding furnace is lowered, the position of the solidification interface SIF can be lowered. As a matter of course, the molten metal M1 may be another metal or alloy other than aluminum.
 形状規定部材102は、例えばセラミックスやステンレスなどからなり、湯面近傍に配置されている。図1の例では、形状規定部材102の下側の主面(下面)が湯面に接触するように配置されている。形状規定部材102は、鋳造する鋳物M3の断面形状を規定するとともに、溶湯M1の表面に形成される酸化膜や溶湯M1の表面に浮遊する異物の鋳物M3への混入を防止する。図1に示した鋳物M3は、水平方向の断面(以下、横断面と称す)の形状が板状の中実鋳物である。なお、当然のことながら、鋳物M3の断面形状は特に限定されない。鋳物M3は、丸パイプや角パイプなどの中空鋳物でもよい。 The shape determining member 102 is made of, for example, ceramics or stainless steel, and is disposed in the vicinity of the molten metal surface. In the example of FIG. 1, the main surface (lower surface) on the lower side of the shape defining member 102 is disposed so as to contact the molten metal surface. The shape defining member 102 defines the cross-sectional shape of the casting M3 to be cast, and prevents the oxide film formed on the surface of the molten metal M1 and foreign matters floating on the surface of the molten metal M1 from entering the casting M3. The casting M3 shown in FIG. 1 is a solid casting in which the shape of a horizontal cross section (hereinafter referred to as a transverse cross section) is a plate shape. Of course, the cross-sectional shape of the casting M3 is not particularly limited. The casting M3 may be a hollow casting such as a round pipe or a square pipe.
 図2は、実施の形態1に係る形状規定部材102の平面図である。ここで、図1の形状規定部材102の断面図は、図2のI-I断面図に相当する。図2に示すように、形状規定部材102は、例えば矩形状の平面形状を有し、中央部に溶湯が通過するための厚さt1×幅w1の矩形状の開口部(溶湯通過部103)を有している。
 ここで、図2には、形状規定部材102よりも上側に位置する溶湯遮蔽板110も併せて図示されている。溶湯遮蔽板110はx軸方向に移動可能である。溶湯遮蔽板110が溶湯を遮蔽する状態が破線で示されている。なお、図2におけるxyz座標は、図1と一致している。
FIG. 2 is a plan view of the shape defining member 102 according to the first embodiment. Here, the cross-sectional view of the shape defining member 102 in FIG. 1 corresponds to the II cross-sectional view in FIG. As shown in FIG. 2, the shape defining member 102 has, for example, a rectangular planar shape, and has a rectangular opening portion (a molten metal passage portion 103) having a thickness t <b> 1 × a width w <b> 1 for allowing the molten metal to pass through a central portion. have.
Here, FIG. 2 also shows a molten metal shielding plate 110 located above the shape defining member 102. The molten metal shielding plate 110 is movable in the x-axis direction. A state where the molten metal shielding plate 110 shields the molten metal is indicated by a broken line. Note that the xyz coordinates in FIG. 2 coincide with those in FIG.
 図1に示すように、溶湯M1は、その表面膜や表面張力により鋳物M3に追従して引き上げられ、形状規定部材102の溶湯通過部103を通過する。すなわち、溶湯M1が形状規定部材102の溶湯通過部103を通過することにより、溶湯M1に対し形状規定部材102から外力が印加され、鋳物M3の断面形状が規定される。ここで、溶湯の表面膜や表面張力によって、鋳物M3に追従して湯面から引き上げられた溶湯を保持溶湯M2と呼ぶ。また、鋳物M3と保持溶湯M2との境界が凝固界面SIFである。 As shown in FIG. 1, the molten metal M <b> 1 is pulled up following the casting M <b> 3 by its surface film and surface tension, and passes through the molten metal passage portion 103 of the shape determining member 102. That is, when the molten metal M1 passes through the molten metal passage portion 103 of the shape defining member 102, an external force is applied from the shape defining member 102 to the molten metal M1, and the cross-sectional shape of the casting M3 is defined. Here, the molten metal pulled up from the molten metal surface following the casting M3 by the surface film or surface tension of the molten metal is referred to as a retained molten metal M2. Further, the boundary between the casting M3 and the retained molten metal M2 is a solidification interface SIF.
 支持ロッド104は、形状規定部材102を支持する。
 アクチュエータ105には、支持ロッド104が連結されている。アクチュエータ105によって、支持ロッド104を介して形状規定部材102が上下方向(鉛直方向)及び水平方向に移動可能となっている。このような構成により、鋳造の進行による湯面の低下とともに、形状規定部材102を下方向に移動させることができる。また、形状規定部材102を水平方向に移動させることができるため、鋳物M3の長手方向の形状を変化させることができる。
The support rod 104 supports the shape defining member 102.
A support rod 104 is connected to the actuator 105. The shape defining member 102 can be moved in the vertical direction (vertical direction) and the horizontal direction by the actuator 105 via the support rod 104. With such a configuration, the shape determining member 102 can be moved downward as the molten metal surface is lowered due to the progress of casting. Further, since the shape defining member 102 can be moved in the horizontal direction, the shape of the casting M3 in the longitudinal direction can be changed.
 冷却ガスノズル(冷却部)106は、冷却ガス供給部(不図示)から供給される冷却ガス(空気、窒素、アルゴンなど)を鋳物M3に吹き付け、冷却する冷却手段である。冷却ガスの流量を増やすと凝固界面SIFの位置を下げることができ、冷却ガスの流量を減らすと凝固界面SIFの位置を上げることができる。なお、図示されていないが、冷却ガスノズル(冷却部)106も形状規定部材102の移動に合わせて、水平方向や上下方向に移動することができる。 The cooling gas nozzle (cooling unit) 106 is a cooling unit that blows cooling gas (air, nitrogen, argon, etc.) supplied from a cooling gas supply unit (not shown) onto the casting M3 to cool it. Increasing the flow rate of the cooling gas can lower the position of the solidification interface SIF, and decreasing the flow rate of the cooling gas can increase the position of the solidification interface SIF. Although not shown, the cooling gas nozzle (cooling unit) 106 can also move in the horizontal direction and the vertical direction in accordance with the movement of the shape defining member 102.
 スタータSTに連結された引上機108により鋳物M3を引き上げつつ、冷却ガスにより鋳物M3を冷却することにより、凝固界面SIF近傍の保持溶湯M2が順次凝固し、鋳物M3が形成されていく。引上機108による引上速度を速くすると凝固界面SIFの位置を上げることができ、引上速度を遅くすると凝固界面SIFの位置を下げることができる。 While the casting M3 is pulled up by the pulling machine 108 connected to the starter ST and the casting M3 is cooled by the cooling gas, the retained molten metal M2 in the vicinity of the solidification interface SIF is sequentially solidified to form the casting M3. Increasing the pulling speed by the pulling machine 108 can raise the position of the solidification interface SIF, and decreasing the pulling speed can lower the position of the solidification interface SIF.
 次に、図1に加え図3も参照して、溶湯遮蔽板(溶湯断絶部材)110について説明する。図3は実施の形態1に係る形状規定部材102と溶湯遮蔽板110との位置関係を示す斜視図である。
 溶湯遮蔽板110は、鋳物M3に開口部を設けるための部材であって、例えばセラミックスやステンレスなどからなる。溶湯遮蔽板110は、高さ方向(z軸方向)において形状規定部材102と凝固界面SIFとの間に設置される。鋳物M3に開口部を設ける場合、溶湯遮蔽板110がx軸マイナス方向に移動し、保持溶湯M2に挿入される。また、溶湯遮蔽板110はz軸方向にも移動可能である。さらに、図1に示すように、溶湯遮蔽板110の先端部分は、容易に保持溶湯M2に挿入できるように、鋭利であることが好ましい。鋳物M3に対する開口部の形成方法の詳細については、後述する。
Next, referring to FIG. 3 in addition to FIG. 1, the molten metal shielding plate (molten metal breaking member) 110 will be described. FIG. 3 is a perspective view showing a positional relationship between the shape defining member 102 and the molten metal shielding plate 110 according to the first embodiment.
The molten metal shielding plate 110 is a member for providing an opening in the casting M3, and is made of, for example, ceramics or stainless steel. The molten metal shielding plate 110 is installed between the shape determining member 102 and the solidification interface SIF in the height direction (z-axis direction). When providing an opening in the casting M3, the molten metal shielding plate 110 moves in the negative direction of the x axis and is inserted into the retained molten metal M2. Further, the molten metal shielding plate 110 is also movable in the z-axis direction. Furthermore, as shown in FIG. 1, it is preferable that the front-end | tip part of the molten metal shielding board 110 is sharp so that it can insert in the holding molten metal M2 easily. Details of the method of forming the opening for the casting M3 will be described later.
 支持ロッド111は、溶湯遮蔽板110を支持する。
 アクチュエータ112には、支持ロッド111が連結されている。アクチュエータ112により、溶湯遮蔽板110を水平方向(x軸方向及びy軸方向)に移動させることができる。そのため、溶湯遮蔽板110を形状規定部材102と同調させて水平方向に移動させることができる。他方、鋳物M3に開口部を設けるために、溶湯遮蔽板110をx軸方向に移動させ、保持溶湯M2に挿入したり、鋳物M3から引き抜いたりすることができる。
 また、アクチュエータ112により、溶湯遮蔽板110をz軸方向に移動させることもできる。これにより、鋳造の進行による湯面の低下とともに、溶湯遮蔽板110を下方向(z軸マイナス方向)に移動させることができる。反対に、引上速度に合わせて溶湯遮蔽板110を上方向(z軸プラス方向)に移動させることもできる。
The support rod 111 supports the molten metal shielding plate 110.
A support rod 111 is connected to the actuator 112. By the actuator 112, the molten metal shielding plate 110 can be moved in the horizontal direction (x-axis direction and y-axis direction). Therefore, the molten metal shielding plate 110 can be moved in the horizontal direction in synchronization with the shape defining member 102. On the other hand, in order to provide an opening in the casting M3, the molten metal shielding plate 110 can be moved in the x-axis direction and inserted into the retained molten metal M2 or pulled out from the casting M3.
In addition, the molten metal shielding plate 110 can be moved in the z-axis direction by the actuator 112. Thereby, the molten metal shielding plate 110 can be moved downward (z-axis minus direction) as the molten metal surface is lowered due to the progress of casting. On the contrary, the molten metal shielding plate 110 can be moved upward (z-axis plus direction) in accordance with the pulling speed.
 次に、本実施の形態に係る溶湯遮蔽板110による開口部の形成方法を説明する。まず、図4A、4Bを参照して、本実施の形態の比較例に係る溶湯遮蔽板10による開口部の形成方法を説明する。図4A、4Bは、比較例に係る溶湯遮蔽板10による開口部の形成方法を示す斜視図である。図4A、4Bにおけるxyz座標は、図1と一致している。 Next, a method for forming an opening by the molten metal shielding plate 110 according to the present embodiment will be described. First, with reference to FIG. 4A and 4B, the formation method of the opening part by the molten metal shielding board 10 which concerns on the comparative example of this Embodiment is demonstrated. 4A and 4B are perspective views illustrating a method of forming an opening by the molten metal shielding plate 10 according to a comparative example. The xyz coordinates in FIGS. 4A and 4B coincide with those in FIG.
 図4Aに示すように、鋳物M3に開口部を設ける場合、溶湯遮蔽板10をx軸マイナス方向に移動し、保持溶湯M2に挿入する。溶湯遮蔽板10により、引き上げられている保持溶湯M2が遮断され、溶湯遮蔽板10の上側に開口部50が形成される。鋳造の進行(すなわち鋳物M3の引上げ)とともに、開口部50は上方に拡大して行く。ここで、溶湯遮蔽板10の下側には保持溶湯M2が保持されている。 As shown in FIG. 4A, when providing an opening in the casting M3, the molten metal shielding plate 10 is moved in the negative direction of the x axis and inserted into the retained molten metal M2. The molten metal shielding plate 10 blocks the retained molten metal M <b> 2 being pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 10. As the casting proceeds (that is, the casting M3 is pulled up), the opening 50 expands upward. Here, the molten molten metal M <b> 2 is held below the molten metal shielding plate 10.
 比較例に係る溶湯遮蔽板10は、上下方向(鉛直方向すなわちz軸方向)に移動できない。そのため、図4Aと同じ高さにおいて、溶湯遮蔽板10をx軸プラス方向に移動し、保持溶湯M2から引き抜くことになる。この場合、図4Bに示すように、溶湯遮蔽板10の下側に保持されていた保持溶湯M2は、重力によって脱落してしまう。この結果、開口部50の下端を決定することができず、開口部50が長手方向に延び続けることになる。すなわち、比較例に係る溶湯遮蔽板10を用いた場合、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができない。 The molten metal shielding plate 10 according to the comparative example cannot move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, at the same height as FIG. 4A, the molten metal shielding plate 10 is moved in the x-axis plus direction and pulled out from the retained molten metal M2. In this case, as shown in FIG. 4B, the retained molten metal M <b> 2 held on the lower side of the molten metal shielding plate 10 falls off due to gravity. As a result, the lower end of the opening 50 cannot be determined, and the opening 50 continues to extend in the longitudinal direction. That is, when the molten metal shielding plate 10 according to the comparative example is used, the opening 50 having a desired dimension cannot be formed in the casting M3 while casting.
 次に、図5A~5Cを参照して、本実施の形態に係る溶湯遮蔽板110による開口部の形成方法を説明する。図5A~5Cは、本実施の形態に係る溶湯遮蔽板110による開口部の形成方法を示す斜視図である。図5A~5Cにおけるxyz座標は、図1と一致している。 Next, with reference to FIGS. 5A to 5C, a method for forming an opening by the molten metal shielding plate 110 according to the present embodiment will be described. 5A to 5C are perspective views showing a method of forming an opening by the molten metal shielding plate 110 according to the present embodiment. The xyz coordinates in FIGS. 5A to 5C coincide with those in FIG.
 図5Aに示すように、鋳物M3に開口部を設ける場合、溶湯遮蔽板110をx軸マイナス方向に移動させ、保持溶湯M2に挿入する。溶湯遮蔽板110により、引き上げられている保持溶湯M2が遮断され、溶湯遮蔽板110の上側に開口部50が形成される。鋳物M3の引上げとともに、開口部50は上方に拡大して行く。ここで、溶湯遮蔽板110の下側には保持溶湯M2が保持されている。なお、図5Aは図4Aと同様である。 As shown in FIG. 5A, when providing an opening in the casting M3, the molten metal shielding plate 110 is moved in the negative direction of the x axis and inserted into the retained molten metal M2. The molten metal shielding plate 110 blocks the retained molten metal M <b> 2 that is pulled up, and an opening 50 is formed on the upper side of the molten metal shielding plate 110. As the casting M3 is pulled up, the opening 50 expands upward. Here, the molten molten metal M <b> 2 is held below the molten metal shielding plate 110. 5A is the same as FIG. 4A.
 本実施の形態に係る溶湯遮蔽板110は、上下方向(鉛直方向すなわちz軸方向)に移動することができる。そのため、図5Bに示すように、開口部50の上下方向の寸法が所望の長さに到達した場合、溶湯遮蔽板110を保持溶湯M2に挿入したままの状態で、鋳物M3の引上速度に同調させながら上方向に移動させる。ここで、溶湯遮蔽板110を凝固界面SIFよりも上側まで上昇させる。これにより、溶湯遮蔽板110の下側に保持されていた保持溶湯M2が、凝固して鋳物M3へ変化する。この結果、開口部50の下端が決定される。 The molten metal shielding plate 110 according to the present embodiment can move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 5B, when the vertical dimension of the opening 50 reaches a desired length, the molten metal shielding plate 110 is inserted into the retained molten metal M2 and the casting M3 is pulled up. Move upward while synchronizing. Here, the molten metal shielding plate 110 is raised above the solidification interface SIF. As a result, the retained molten metal M2 held on the lower side of the molten metal shielding plate 110 is solidified and changed to a casting M3. As a result, the lower end of the opening 50 is determined.
 最後に、図5Cに示すように、溶湯遮蔽板110をx軸プラス方向に移動させ、鋳物M3から引き抜く。以上により、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができる。 Finally, as shown in FIG. 5C, the molten metal shielding plate 110 is moved in the positive direction of the x axis and pulled out from the casting M3. As described above, the opening 50 having a desired dimension can be formed in the casting M3 while casting.
 なお、この引き抜きの際の鋳物M3からの剥離を容易にするため、溶湯遮蔽板110の側面には塗型剤を塗布しておくことが好ましい。塗型剤としては、例えば、バーミキュライト塗型材を用いることができる。バーミキュライト塗型材は、酸化ケイ素(SiO)、酸化鉄(Fe)、酸化アルミニウム(Al)等の耐火物微粒子を水に懸濁させた塗型材である。
 また、図1に示すように、凝固界面SIFの上方には、冷却ガスノズル106が設けられているため、溶湯遮蔽板110を速やかに抜くことが好ましい。
In order to facilitate peeling from the casting M3 during the drawing, it is preferable to apply a coating agent to the side surface of the molten metal shielding plate 110. As the coating agent, for example, a vermiculite coating material can be used. The vermiculite coating material is a coating material in which refractory fine particles such as silicon oxide (SiO 2 ), iron oxide (Fe 2 O 3 ), and aluminum oxide (Al 2 O 3 ) are suspended in water.
Moreover, as shown in FIG. 1, since the cooling gas nozzle 106 is provided above the solidification interface SIF, it is preferable to quickly remove the molten metal shielding plate 110.
 次に、図1を参照して、実施の形態1に係る自由鋳造方法について説明する。
 まず、スタータSTを降下させ、形状規定部材102の溶湯通過部103を通して、スタータSTの先端部を溶湯M1に浸漬させる。
Next, the free casting method according to Embodiment 1 will be described with reference to FIG.
First, the starter ST is lowered, and the tip of the starter ST is immersed in the molten metal M1 through the molten metal passage portion 103 of the shape defining member 102.
 次に、所定の速度でスタータSTの引き上げを開始する。ここで、スタータSTが湯面から離間しても、表面膜や表面張力によって、スタータSTに追従して湯面から引き上げられた保持溶湯M2が形成される。図1に示すように、保持溶湯M2は、形状規定部材102の溶湯通過部103に形成される。つまり、形状規定部材102により、保持溶湯M2に形状が付与される。 Next, start-up of the starter ST is started at a predetermined speed. Here, even if the starter ST is separated from the molten metal surface, the retained molten metal M2 pulled up from the molten metal surface following the starter ST is formed by the surface film or surface tension. As shown in FIG. 1, the retained molten metal M <b> 2 is formed in the molten metal passage portion 103 of the shape defining member 102. That is, the shape defining member 102 imparts a shape to the retained molten metal M2.
 次に、スタータSTは、冷却ガスノズル106から吹き出される冷却ガスにより冷却されているため、保持溶湯M2が上側から下側に向かって順に凝固し、鋳物M3が成長していく。 Next, since the starter ST is cooled by the cooling gas blown from the cooling gas nozzle 106, the retained molten metal M2 is solidified in order from the upper side to the lower side, and the casting M3 grows.
 鋳造しながら鋳物M3に開口部50を形成する場合、まず、溶湯遮蔽板110を保持溶湯M2に挿入し、鋳物M3に形成する開口部50の上端を決定する。次に、開口部50の上下方向の寸法が所望の長さに到達したら、保持溶湯M2に挿入したままの状態で、溶湯遮蔽板110を凝固界面SIFよりも上側に上昇させ、開口部50の下端を決定する。なお、開口部50の形成方法の詳細については、図5A~5Cを参照して説明した通りである。 When forming the opening 50 in the casting M3 while casting, first, the molten metal shielding plate 110 is inserted into the retained molten metal M2, and the upper end of the opening 50 formed in the casting M3 is determined. Next, when the vertical dimension of the opening 50 reaches a desired length, the molten metal shielding plate 110 is raised above the solidification interface SIF while being inserted into the retained molten metal M2, and the opening 50 Determine the bottom edge. The details of the method of forming the opening 50 are as described with reference to FIGS. 5A to 5C.
 以上に説明した通り、実施の形態1に係る自由鋳造装置では、溶湯遮蔽板110が上下方向に移動可能である。そのため、保持溶湯M2に挿入したままの状態で、溶湯遮蔽板110を凝固界面SIFよりも上側まで上昇させ、開口部50の下端を決定することができる。従って、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができる。 As described above, in the free casting apparatus according to Embodiment 1, the molten metal shielding plate 110 is movable in the vertical direction. Therefore, it is possible to determine the lower end of the opening 50 by raising the molten metal shielding plate 110 to the upper side of the solidification interface SIF while being inserted into the retained molten metal M2. Therefore, it is possible to form the opening 50 having a desired dimension with respect to the casting M3 while casting.
 実施の形態1に係る自由鋳造方法を用いて製造された鋳物M3は、鋳造しながら形成された開口部50を備えている。そのため、実施の形態1に係る鋳物M3では、別途開口部50を形成するための加工が必要ない。あるいは、実施の形態1に係る鋳物M3では、開口部50を形成するための加工が軽減される。実施の形態1に係る鋳物M3は、自動車用のクラッシュボックス、バンパー、サイドメンバーなどに特に好適である。 The casting M3 manufactured using the free casting method according to the first embodiment includes an opening 50 formed while casting. Therefore, in the casting M3 according to the first embodiment, there is no need for processing for forming the opening 50 separately. Or in the casting M3 which concerns on Embodiment 1, the process for forming the opening part 50 is reduced. The casting M3 according to Embodiment 1 is particularly suitable for automobile crash boxes, bumpers, side members, and the like.
(実施の形態1の変形例)
 次に、図6、7を参照して、実施の形態1の変形例に係る自由鋳造装置について説明する。図6は、実施の形態1の変形例に係る形状規定部材102の平面図である。図7は、実施の形態1の変形例に係る形状規定部材102の側面図である。なお、図6、7におけるxyz座標も、図1と一致している。
(Modification of Embodiment 1)
Next, a free casting apparatus according to a modification of the first embodiment will be described with reference to FIGS. FIG. 6 is a plan view of a shape defining member 102 according to a modification of the first embodiment. FIG. 7 is a side view of the shape defining member 102 according to a modification of the first embodiment. Note that the xyz coordinates in FIGS. 6 and 7 also coincide with those in FIG.
 図2に示された実施の形態1に係る形状規定部材102は、1枚の板から構成されていたため、溶湯通過部103の厚さt1、幅w1は固定されていた。これに対し、実施の形態1の変形例に係る形状規定部材102は、図6に示すように、4枚の矩形状の形状規定板102a、102b、102c、102dを備えている。すなわち、実施の形態1の変形例に係る形状規定部材102は、複数に分割されている。このような構成により、溶湯通過部103の厚さt1、幅w1を変化させることができる。また、4枚の矩形状の形状規定板102a、102b、102c、102dは、同調してz軸方向に移動することができる。 Since the shape defining member 102 according to Embodiment 1 shown in FIG. 2 is composed of one plate, the thickness t1 and the width w1 of the molten metal passage portion 103 are fixed. In contrast, the shape defining member 102 according to the modification of the first embodiment includes four rectangular shape defining plates 102a, 102b, 102c, and 102d as shown in FIG. That is, the shape defining member 102 according to the modification of the first embodiment is divided into a plurality of parts. With such a configuration, the thickness t1 and the width w1 of the molten metal passage portion 103 can be changed. Further, the four rectangular shape defining plates 102a, 102b, 102c, and 102d can move in the z-axis direction in synchronization.
 図6に示すように、形状規定板102a、102bは、y軸方向に並んで対向配置されている。また、図7に示すように、形状規定板102a、102bは、z軸方向には同じ高さで配置されている。形状規定板102a、102bの間隔が、溶湯通過部103の幅w1を規定している。そして、形状規定板102a、102bが、独立してy軸方向に移動可能であるため、幅w1を変化させることができる。なお、溶湯通過部103の幅w1を測定するために、図6、7に示すように、形状規定板102a上にレーザ変位計S1、形状規定板102b上にレーザ反射板S2が設けてもよい。 As shown in FIG. 6, the shape defining plates 102a and 102b are arranged to face each other in the y-axis direction. Further, as shown in FIG. 7, the shape defining plates 102a and 102b are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102a and 102b defines the width w1 of the molten metal passage portion 103. Since the shape defining plates 102a and 102b can move independently in the y-axis direction, the width w1 can be changed. In order to measure the width w1 of the molten metal passage portion 103, a laser displacement meter S1 may be provided on the shape defining plate 102a and a laser reflecting plate S2 may be provided on the shape defining plate 102b as shown in FIGS. .
 また、図6に示すように、形状規定板102c、102dは、x軸方向に並んで対向配置されている。また、形状規定板102c、102cは、z軸方向には同じ高さで配置されている。形状規定板102c、102dの間隔が、溶湯通過部103の厚さt1を規定している。そして、形状規定板102c、102dが、独立してx軸方向に移動可能であるため、厚さt1を変化させることができる。
 形状規定板102a、102bは、形状規定板102c、102dの上側に接触するように配置されている。
Further, as shown in FIG. 6, the shape defining plates 102c and 102d are arranged to face each other in the x-axis direction. Further, the shape defining plates 102c and 102c are arranged at the same height in the z-axis direction. The distance between the shape defining plates 102c and 102d defines the thickness t1 of the molten metal passage portion 103. Since the shape defining plates 102c and 102d are independently movable in the x-axis direction, the thickness t1 can be changed.
The shape defining plates 102a and 102b are disposed so as to contact the upper side of the shape defining plates 102c and 102d.
 次に、図6、7を参照して、形状規定板102aの駆動機構について説明する。図6、7に示すように、形状規定板102aの駆動機構は、スライドテーブルT1、T2、リニアガイドG11、G12、G21、G22、アクチュエータA1、A2、ロッドR1、R2を備えている。なお、形状規定板102b、102c、102dも形状規定板102aと同様に駆動機構を備えているが、図6、7では省略されている。 Next, the drive mechanism of the shape defining plate 102a will be described with reference to FIGS. As shown in FIGS. 6 and 7, the drive mechanism of the shape defining plate 102a includes slide tables T1, T2, linear guides G11, G12, G21, G22, actuators A1, A2, and rods R1, R2. The shape defining plates 102b, 102c, and 102d also have a drive mechanism similar to the shape defining plate 102a, but are omitted in FIGS.
 図6、7に示すように、形状規定板102aは、y軸方向にスライド可能なスライドテーブルT1に載置、固定されている。スライドテーブルT1は、y軸方向に平行して延設された1対のリニアガイドG11、G12上に、摺動自在に載置されている。また、スライドテーブルT1は、アクチュエータA1からy軸方向に延設されたロッドR1に連結されている。以上のような構成により、形状規定板102aは、y軸方向にスライドすることができる。 6 and 7, the shape defining plate 102a is mounted and fixed on a slide table T1 that can slide in the y-axis direction. The slide table T1 is slidably mounted on a pair of linear guides G11 and G12 extending in parallel with the y-axis direction. The slide table T1 is connected to a rod R1 extending from the actuator A1 in the y-axis direction. With the configuration described above, the shape defining plate 102a can slide in the y-axis direction.
 また、図6、7に示すように、リニアガイドG11、G12、及びアクチュエータA1は、z軸方向にスライド可能なスライドテーブルT2上に載置、固定されている。スライドテーブルT2は、z軸方向に平行して延設された1対のリニアガイドG21、G22上に、摺動自在に載置されている。また、スライドテーブルT2は、アクチュエータA2からz軸方向に延設されたロッドR2に連結されている。リニアガイドG21、G22、及びアクチュエータA2は、水平な床面や台座(不図示)などに固定されている。以上のような構成により、形状規定板102aは、z軸方向にスライドすることができる。なお、アクチュエータA1、A2として、油圧シリンダ、エアシリンダ、モータなどを挙げることができる。 6 and 7, the linear guides G11 and G12 and the actuator A1 are placed and fixed on a slide table T2 that can slide in the z-axis direction. The slide table T2 is slidably placed on a pair of linear guides G21 and G22 extending in parallel with the z-axis direction. The slide table T2 is connected to a rod R2 extending in the z-axis direction from the actuator A2. The linear guides G21 and G22 and the actuator A2 are fixed to a horizontal floor surface or a pedestal (not shown). With the above configuration, the shape defining plate 102a can slide in the z-axis direction. The actuators A1 and A2 can include hydraulic cylinders, air cylinders, motors, and the like.
(実施の形態2)
 次に、図8、9A~9Dを参照して、実施の形態2に係る自由鋳造装置について説明する。図8は、実施の形態2に係る形状規定部材102と溶湯遮蔽板210との位置関係を示す斜視図である。図9A~9Dは、実施の形態2に係る溶湯遮蔽板210による開口部の形成方法を示す斜視図である。なお、図8、9A~9Dにおけるxyz座標も、図1と一致している。
(Embodiment 2)
Next, with reference to FIGS. 8 and 9A to 9D, a free casting apparatus according to Embodiment 2 will be described. FIG. 8 is a perspective view showing a positional relationship between the shape defining member 102 and the molten metal shielding plate 210 according to the second embodiment. 9A to 9D are perspective views showing a method of forming an opening by the molten metal shielding plate 210 according to the second embodiment. Note that the xyz coordinates in FIGS. 8 and 9A to 9D also coincide with those in FIG.
 実施の形態1に係る自由鋳造装置では、溶湯遮蔽板110が矩形状であり、形成される開口部50も矩形状であった。これに対し、実施の形態2に係る自由鋳造装置では、図8に示すように、溶湯遮蔽板210の先端が半円状である。そのため、図9A~9Dに示すように、形成される開口部50をレーストラック状とすることができる。より一般化すると、実施の形態1に係る溶湯遮蔽板110は幅が一定であるのに対し、実施の形態2に係る溶湯遮蔽板210は保持溶湯M2に挿入する側の先端に近付くにつれて幅が小さくなっている。 In the free casting apparatus according to the first embodiment, the molten metal shielding plate 110 has a rectangular shape, and the formed opening 50 has a rectangular shape. On the other hand, in the free casting apparatus according to the second embodiment, as shown in FIG. 8, the tip of the molten metal shielding plate 210 is semicircular. Therefore, as shown in FIGS. 9A to 9D, the opening 50 to be formed can have a racetrack shape. More generally, the molten metal shielding plate 110 according to the first embodiment has a constant width, whereas the molten metal shielding plate 210 according to the second embodiment has a width as it approaches the tip on the side to be inserted into the retained molten metal M2. It is getting smaller.
 図9Aに示すように、鋳物M3に開口部を設ける場合、溶湯遮蔽板210をx軸マイナス方向に移動させ、保持溶湯M2に挿入する。ここで、溶湯遮蔽板210の形状を開口部50の上端に反映させるため、引上速度に合わせて溶湯遮蔽板210を徐々に挿入する。また、挿入する高さは凝固界面SIFに近い程、溶湯遮蔽板210の形状を精度良く開口部50の上端に反映させることができる。なお、実施の形態1では、このような挿入速度や高さについての制約は特にない。 As shown in FIG. 9A, when an opening is provided in the casting M3, the molten metal shielding plate 210 is moved in the negative direction of the x axis and inserted into the retained molten metal M2. Here, in order to reflect the shape of the molten metal shielding plate 210 on the upper end of the opening 50, the molten metal shielding plate 210 is gradually inserted in accordance with the pulling speed. Further, the closer the insertion height is to the solidification interface SIF, the more accurately the shape of the molten metal shielding plate 210 can be reflected on the upper end of the opening 50. In the first embodiment, there are no particular restrictions on the insertion speed and height.
 次に、開口部50の下端についても溶湯遮蔽板210の形状を反映させたい場合には、図9Bに示すように、挿入した高さのまま、溶湯遮蔽板210をx軸プラス方向に移動させ、保持溶湯M2から後退させる。ここで、挿入時と同様に、引上速度に合わせて溶湯遮蔽板210を徐々に後退させる。また、溶湯遮蔽板210を保持溶湯M2から完全に引き抜かず、先端が保持溶湯M2に到達した時点で、溶湯遮蔽板210の後退を止める。図9Bは、溶湯遮蔽板210の先端のみが保持溶湯M2に挿入された状態を示している。すなわち、溶湯遮蔽板210の先端が保持溶湯M2を保持している。 Next, when it is desired to reflect the shape of the molten metal shielding plate 210 also at the lower end of the opening 50, as shown in FIG. 9B, the molten metal shielding plate 210 is moved in the x-axis plus direction while maintaining the inserted height. , Retreat from the holding molten metal M2. Here, similarly to the insertion, the molten metal shielding plate 210 is gradually retreated in accordance with the pulling speed. In addition, the molten metal shielding plate 210 is not completely pulled out from the retained molten metal M2, and when the front end reaches the retained molten metal M2, the molten metal shielding plate 210 stops moving backward. FIG. 9B shows a state in which only the tip of the molten metal shielding plate 210 is inserted into the retained molten metal M2. That is, the tip of the molten metal shielding plate 210 holds the retained molten metal M2.
 本実施の形態に係る溶湯遮蔽板210も、上下方向(鉛直方向すなわちz軸方向)に移動することができる。そのため、図9Cに示すように、溶湯遮蔽板210の先端を保持溶湯M2に挿入したままの状態で、鋳物M3の引上速度に同調させながら上方向に移動させる。ここで、溶湯遮蔽板210を凝固界面SIFよりも上側まで上昇させる。これにより、溶湯遮蔽板210の下側に保持されていた保持溶湯M2が、凝固して鋳物M3へ変化する。この結果、開口部50の下端が決定される。 The molten metal shielding plate 210 according to the present embodiment can also move in the vertical direction (vertical direction, that is, the z-axis direction). Therefore, as shown in FIG. 9C, while the tip of the molten metal shielding plate 210 is inserted into the retained molten metal M2, the molten metal is moved upward while being synchronized with the pulling speed of the casting M3. Here, the molten metal shielding plate 210 is raised above the solidification interface SIF. As a result, the retained molten metal M2 held under the molten metal shielding plate 210 is solidified and changed to a casting M3. As a result, the lower end of the opening 50 is determined.
 最後に、図9Dに示すように、溶湯遮蔽板210をさらにx軸プラス方向に移動し、鋳物M3から引き抜く。以上により、鋳造しながら鋳物M3に対して所望の寸法の開口部50を形成することができる。 Finally, as shown in FIG. 9D, the molten metal shielding plate 210 is further moved in the positive direction of the x axis and pulled out from the casting M3. As described above, the opening 50 having a desired dimension can be formed in the casting M3 while casting.
(その他の実施の形態)
 例えば、溶湯遮蔽板を複数並べて設ければ、図10に示すように、複数の開口部50を並べて形成することができる。図10は、複数の開口部50を有する鋳物M3を示す斜視図である。
(Other embodiments)
For example, if a plurality of molten metal shielding plates are provided side by side, a plurality of openings 50 can be formed side by side as shown in FIG. FIG. 10 is a perspective view showing a casting M3 having a plurality of openings 50. FIG.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
 この出願は、2013年7月30日に出願された日本出願特願2013-158203を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-158203 filed on July 30, 2013, the entire disclosure of which is incorporated herein.
50 開口部
101 溶湯保持炉
102 形状規定部材
102a~102d 形状規定板
103 溶湯通過部
104、111 支持ロッド
105、112 アクチュエータ
106 冷却ガスノズル
108 引上機
110、210 溶湯遮蔽板
A1、A2 アクチュエータ
G11、G12、G21、G22 リニアガイド
M1 溶湯
M2 保持溶湯
M3 鋳物
R1、R2 ロッド
S1 レーザ変位計
S2 レーザ反射板
SIF 凝固界面
ST スタータ
T1、T2 スライドテーブル
50 Opening portion 101 Melt holding furnace 102 Shape defining members 102a to 102d Shape defining plate 103 Molten passage portion 104, 111 Support rod 105, 112 Actuator 106 Cooling gas nozzle 108 Lifting machine 110, 210 Molten shield plate A1, A2 Actuator G11, G12 , G21, G22 Linear guide M1 Molten metal M2 Retained molten metal M3 Cast R1, R2 Rod S1 Laser displacement meter S2 Laser reflector SIF Solidification interface ST Starter T1, T2 Slide table

Claims (11)

  1.  保持炉に保持された溶湯を、湯面から引き上げるステップと、
     引き上げられた前記溶湯を冷却して凝固させるステップと、を備えた、引上式連続鋳造方法であって、
     引き上げられた前記溶湯に対して遮蔽板を挿入し、鋳造される鋳物の壁面に開口部を形成する、引上式連続鋳造方法。
    A step of lifting the molten metal held in the holding furnace from the surface of the molten metal;
    A step of cooling and solidifying the molten metal, and a pulling-up-type continuous casting method,
    A pulling-up-type continuous casting method, wherein a shielding plate is inserted into the molten metal that has been pulled up, and an opening is formed in a wall surface of a casting to be cast.
  2.  前記溶湯を引き上げるステップにおいて、前記鋳物の断面形状を規定する形状規定部材を通過させながら前記溶湯を引き上げ、
     前記溶湯に前記遮蔽板を挿入することにより前記開口部の上端を決定した後、前記溶湯に挿入したままの状態で前記遮蔽板を凝固界面よりも上側に上昇させ、前記開口部の下端を決定する、
    請求項1に記載の引上式連続鋳造方法。
    In the step of pulling up the molten metal, the molten metal is pulled up while passing through a shape defining member that defines the cross-sectional shape of the casting,
    After the upper end of the opening is determined by inserting the shielding plate into the molten metal, the shielding plate is raised above the solidification interface while being inserted into the molten metal, and the lower end of the opening is determined. To
    The pulling-up-type continuous casting method according to claim 1.
  3.  前記開口部の下端を決定する際、前記鋳物の引上速度と同調させながら、前記遮蔽板を上昇させる、
    請求項2に記載の引上式連続鋳造方法。
    When determining the lower end of the opening, the shielding plate is raised while synchronizing with the pulling speed of the casting.
    The pulling-up-type continuous casting method according to claim 2.
  4.  前記開口部の下端を決定した後、前記開口部から前記遮蔽板を引き抜く、
    請求項2又は3に記載の引上式連続鋳造方法。
    After determining the lower end of the opening, pull out the shielding plate from the opening,
    The pulling-up-type continuous casting method according to claim 2 or 3.
  5.  前記遮蔽板の幅が、前記溶湯に挿入する側の先端に近付くにつれて小さくなっており、
     前記開口部の上端を決定する際、前記鋳物の引上速度に合わせて、前記遮蔽板を挿入する、
    請求項2~4のいずれか一項に記載の引上式連続鋳造方法。
    The width of the shielding plate is reduced as it approaches the tip of the side to be inserted into the molten metal,
    When determining the upper end of the opening, insert the shielding plate according to the lifting speed of the casting,
    The up-drawing continuous casting method according to any one of claims 2 to 4.
  6.  前記遮蔽板の側面に塗型剤を塗布する、
    請求項1~5のいずれか一項に記載の引上式連続鋳造方法。
    A coating agent is applied to the side of the shielding plate;
    The up-drawing continuous casting method according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載の引上式連続鋳造方法によって鋳造され、前記開口部を備えた鋳物。 A casting that is cast by the pulling-up-type continuous casting method according to any one of claims 1 to 6 and includes the opening.
  8.  溶湯を保持する保持炉と、
     前記保持炉に保持された前記溶湯の湯面近傍に設置され、かつ、鋳造する鋳物の断面形状を規定する形状規定部材と、
     前記形状規定部材を通過させながら引き上げられた前記溶湯に挿入され、前記鋳物に開口部を形成する遮蔽板と、
     前記遮蔽板を上下方向に移動させる駆動部と、を備えた引上式連続鋳造装置。
    A holding furnace for holding molten metal;
    A shape defining member that is installed in the vicinity of the molten metal surface of the molten metal held in the holding furnace, and that defines a cross-sectional shape of a casting to be cast;
    A shielding plate that is inserted into the molten metal pulled up while passing through the shape determining member and forms an opening in the casting;
    A pulling-up-type continuous casting apparatus comprising: a drive unit that moves the shielding plate in the vertical direction.
  9.  前記駆動部は、前記鋳物の引上速度と同調させながら、前記遮蔽板を上昇させる、
    請求項8に記載の引上式連続鋳造装置。
    The drive unit raises the shielding plate while synchronizing with the pulling speed of the casting.
    The pulling-up-type continuous casting apparatus according to claim 8.
  10.  前記遮蔽板の幅が、前記溶湯に挿入する側の先端に近付くにつれて小さくなっている、
    請求項8又は9に記載の引上式連続鋳造装置。
    The width of the shielding plate decreases as it approaches the tip of the side to be inserted into the molten metal,
    The pulling-up-type continuous casting apparatus according to claim 8 or 9.
  11.  前記遮蔽板の側面に塗型剤が塗布されている、
    請求項8~10のいずれか一項に記載の引上式連続鋳造装置。
    A coating agent is applied to the side surface of the shielding plate,
    The up-drawing continuous casting apparatus according to any one of claims 8 to 10.
PCT/JP2014/003009 2013-07-30 2014-06-05 Upward-drawing continuous casting method, upward-drawing continuous casting apparatus, and casting WO2015015685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158203 2013-07-30
JP2013158203A JP5994747B2 (en) 2013-07-30 2013-07-30 Pull-up continuous casting method and pull-up continuous casting apparatus

Publications (1)

Publication Number Publication Date
WO2015015685A1 true WO2015015685A1 (en) 2015-02-05

Family

ID=52431251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003009 WO2015015685A1 (en) 2013-07-30 2014-06-05 Upward-drawing continuous casting method, upward-drawing continuous casting apparatus, and casting

Country Status (2)

Country Link
JP (1) JP5994747B2 (en)
WO (1) WO2015015685A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JPH09248657A (en) * 1996-03-19 1997-09-22 Toyota Motor Corp Formation and forming apparatus
JP2012061518A (en) * 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226581A (en) * 2012-04-26 2013-11-07 Toyota Motor Corp Method for producing casting and production device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205232A (en) * 1989-02-01 1990-08-15 Natl Res Inst For Metals Method and apparatus for drawing-up continuous casting
JPH09248657A (en) * 1996-03-19 1997-09-22 Toyota Motor Corp Formation and forming apparatus
JP2012061518A (en) * 2010-09-17 2012-03-29 Toyota Central R&D Labs Inc Free casting method, free casting apparatus, and casting

Also Published As

Publication number Publication date
JP2015027690A (en) 2015-02-12
JP5994747B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP2015167987A (en) Drawing-up type continuous casting device and drawing-up type continuous casting method
JP6036710B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP5994747B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
JP6119578B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP5967030B2 (en) Pull-up type continuous casting method and pull-up type continuous casting apparatus
EP2985095A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6003840B2 (en) Pull-up continuous casting method
JP5700057B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6701615B2 (en) Pull-up continuous casting apparatus and pull-up continuous casting method
JP2015167989A (en) Drawing-up type continuous casting method
JP6003839B2 (en) Pull-up continuous casting method and pull-up continuous casting apparatus
WO2015079810A1 (en) Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP6020712B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
US20160296999A1 (en) Pulling-up-type continuous casting method and pulling-up-type continuous casting apparatus
EP3106246A1 (en) Pulling-up-type continuous casting apparatus and pulling-up-type continuous casting method
JP2015128784A (en) Upward continuous casting method and upward continuous casting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831906

Country of ref document: EP

Kind code of ref document: A1