WO2014163445A1 - 위암에 대한 예후 예측 모형의 제조방법 - Google Patents

위암에 대한 예후 예측 모형의 제조방법 Download PDF

Info

Publication number
WO2014163445A1
WO2014163445A1 PCT/KR2014/002959 KR2014002959W WO2014163445A1 WO 2014163445 A1 WO2014163445 A1 WO 2014163445A1 KR 2014002959 W KR2014002959 W KR 2014002959W WO 2014163445 A1 WO2014163445 A1 WO 2014163445A1
Authority
WO
WIPO (PCT)
Prior art keywords
letter
base
group
expression
gastric cancer
Prior art date
Application number
PCT/KR2014/002959
Other languages
English (en)
French (fr)
Inventor
허용민
노성훈
서진석
정재호
박은성
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US14/782,519 priority Critical patent/US20160040253A1/en
Priority to CN201480024783.5A priority patent/CN105431738B/zh
Priority to EP14779750.0A priority patent/EP2982986B1/en
Priority to JP2016506253A priority patent/JP6356217B2/ja
Publication of WO2014163445A1 publication Critical patent/WO2014163445A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/30Unsupervised data analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Definitions

  • the present invention relates to a method for producing a novel prognostic prediction model capable of predicting the prognosis of gastric cancer through a gene mutation comparative analysis.
  • Gastric adeno-carcinoma is the second leading cause of death in 700,349 people in 2000, the fourth most commonly diagnosed cancer in the world. It is considered a single heterogeneous disease with several epidemiological and histopathological features. Gastric cancer treatment is primarily based on clinical parameters such as tumor, node, metastasis staging, which determines whether the patient should be treated with surgery alone or with surgery and chemotherapy. Gastric cancer, unlike breast cancer and colon cancer, clearly varies from stage 1 to stage 4 according to the TNM staging system. In other words, the 5-year survival rate is greater than 90% in the first stage, and less than 20% in the fourth stage.
  • the prognostic predictive power of the TNM staging system is very good [Ref., 7th edition of the AJCC cancer staging Manual: stomach. Ann Surg Oncol 2010; 17: 3077-3079.
  • gastric cancer is often divided into Early Gastric Cancer, Locally Advanced Gastric Cancer, Locally Advanced Invasive Gastric Cancer, and Metastatic Gastric Cancer. .
  • the present invention comprises the steps of measuring the expression of a single base polymorphism in at least one gene selected from the group consisting of KRAS, MET and PIK3CA in a biological sample comprising cancer cells obtained from a subject; And determining a statistically significant set point range according to the frequency of expression of the single nucleotide polymorphism, and classifying it into a good prognosis group and a bad prognosis group in terms of overall survival (OS) according to the set point range.
  • OS overall survival
  • the prognostic model may be to predict the clinical outcome after surgery for resection of all gastric cancer irrespective of the TNM stage.
  • a statistically significant value according to the frequency of expression of gene mutations due to molecular characteristics of all gastric cancer patient groups irrespective of TNM stage is set as a set value, which can be classified into a good and bad prognosis group in terms of overall survival rate.
  • Prognostic prognosis models can be provided to predict clinical outcome after resection by gastric cancer surgery.
  • Figure 1 shows the mRNA microarray results and group classification according to the tumor tissue.
  • Figure 2 shows the Kaplan-Meir Plot of each group.
  • 3 to 5 show the results of cross analysis and chi-square analysis of the mutation relationship with group 2.
  • the present invention comprises the steps of measuring the expression of a single base polymorphism in at least one gene selected from the group consisting of KRAS, MET and PIK3CA in a biological sample comprising cancer cells obtained from a subject; And determining a statistically significant setpoint range according to the frequency of expression of the single nucleotide polymorphism, and classifying it into a good prognosis group and a bad prognosis group in terms of overall survival (OS) according to the setpoint range.
  • OS overall survival
  • a prognostic gene group showing differential mRNA expression associated with gastric cancer is selected, classified into a high mRNA expression group and a low expression group, and the KRAS is a gene having a significantly high probability of mutation in the classification group.
  • MET and / or PIK3CA were selected, and the expression of one or more single nucleotide polymorphisms in the genes was determined.
  • the frequency of expression of the single nucleotide polymorphisms of the genes was statistically significant in the mRNA high and low expression groups. To a certain extent, it was confirmed that the prognosis could be applied as a classification criteria that can be classified into a good group and a bad group in terms of overall survival rate.
  • the prognostic prediction model is classified into a good prognosis group and a bad prognosis group based on the frequency of expression of single nucleotide polymorphisms of the KRAS, MET and / or PIK3CA genes in a subject diagnosed as gastric cancer.
  • the classification is characterized by having a statistically significant value.
  • Prognostic gene groups that exhibit such differential mRNA expression can be performed according to PCR or array based methods.
  • the classification of the prognostic groups of genes indicative of such differential mRNA expression can be determined using a variety of known statistical means.
  • the mRNA high and low expression groups can be divided into groups with statistically significant values: about 1.5 times or more, about 2 times or more, about 4 times or more, about 6 times or more, or about 10 times or more. have.
  • Cancer is caused by the accumulation of genetic and epigenetic mutations in the genome. Changes in one or two bases can cause amino acid substitutions to alter the activity of the protein. The presence of these single base polymorphisms correlates with the diagnosis and prognosis of cancer.
  • the present invention applies the frequency of expression of one or more single base polymorphisms of the KRAS, MET and / or PIK3CA genes to the preparation of a prognostic prediction model.
  • the single base polymorphism of KRAS may be one or more selected from the group consisting of A146PT_g436ca, G10R_g28a, G12DAV_g35act, G12SRC_g34act, G13DAV_g38act, G13SRC_g37act, Q61EKX_c181gat, Q61HHE_a183ctg and Q61LPR_a182tct.
  • the setpoint determination involves counting these mutations as one and applying them to the setpoint.
  • the uppercase alphabetic character is an amino acid one letter code
  • the lowercase alphabetic character represents a base
  • the numeral represents a base or amino acid residue position.
  • g may be substituted with c or a at the gene 436 position, which means that the amino acid alanine (A) may be substituted with proline (P) or threonine (T) at the amino acid position 146.
  • proline P
  • T threonine
  • the MET mutation may be at least one selected from the group consisting of H1112_a3335gt, H1112Y_c3334t, M1268T_t3803c, N375S_a1124g, R988C_c2962t, T1010I_c3029t, Y1248HD_t3742cg and Y1253D_t3757g.
  • the setpoint determination involves counting these mutations as one and applying them to the setpoint.
  • Mutations in the PIK3CA is A1046V_c3137t, C420R_t1258c, E110K_g328a, E418K_g1252a, E453K_g1357a, E542KQ_g1624ac, E542VG_a1625tg, E545AGV_a1634cgt, E545D_g1635ct, E545KQ_g1633ac, F909L_c2727g, G1049R_g3145c, H1047RL_a3140gt, H1047RL_a3140gt, H1047RL_a3140gt H1047Y_c3139t, H701P_a2102c, K111N_g333c, M1043I_g3129atc, M1043V_a3127g, N345K_t1035a, P539R_c1616g, Q060K_c178a, Or at least one selected from the group
  • the method for measuring the single nucleotide polymorphism is not particularly limited, but may use matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS).
  • MALDI-TOF MS matrix-assisted laser desorption / ionization time-of-flight mass spectrometry
  • a statistically significant set range is determined according to the frequency of expression of a single nucleotide polymorphism.
  • the prognosis may be classified into a good and a bad group.
  • the set range may be set to about 7%, about 5%, about 3% by calculating the expression of a single base polymorphism with respect to the entire subject as a percentage, but is not particularly limited thereto.
  • the prognosis when the frequency of expression of a single nucleotide polymorphism of the KRAS or PIK3CA gene is 3% or less, respectively, the prognosis is poor, and when it exceeds 3%, the prognosis is good.
  • the prognosis when the frequency of expression of a single nucleotide polymorphism of the MET gene is 7% or less, the prognosis is good, and when it exceeds 7%, the prognosis is poor.
  • a group with a good prognosis means a high overall survival rate for a period of 3 years, 6 years, or 10 years, and a group with a poor prognosis has a low overall survival rate during the period.
  • good prognosis can be expressed as an increase in the likelihood of a positive clinical outcome of a clinical outcome
  • a bad prognosis can be expressed as a decrease in the likelihood of a positive clinical outcome of a clinical outcome.
  • Prognostic prediction models according to the methods of the present invention may be useful for predicting clinical outcome after surgical resection of total gastric cancer regardless of TNM stage.
  • polynucleotide generally refers to any polyribonucleotide or polydeoxyribonucleotide, and may be, for example, modified or non-modified RNA or DNA. As used herein, "polynucleotide” specifically includes cDNA.
  • oligonucleotide refers to a relatively short polynucleotide, including but not limited to one-stranded deoxyribonucleotides, one- or two-stranded ribonucleotides, RNA: DNA hybrids and two-stranded DNA. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods using, for example, commercially available automated oligonucleotide synthesizers. However, oligonucleotides can be prepared by a variety of other methods, including in vitro recombinant DNA-mediated techniques, and by expression of DNA in cells and organisms.
  • differentiated gene refers to a gene that is activated at a higher or lower level among subjects with cancer, such as gastric cancer, as compared to the expression of normal or control subjects. It also includes genes that are activated at higher or lower levels in different stages of the same disease. Genes that are differentially expressed may be activated or inhibited at the nucleic acid level or the protein level, or subjected to other splicing resulting in different polypeptide products. Such differences can be demonstrated, for example, by changes in the mRNA level, surface expression, secretion or other distribution of the polypeptide.
  • differentiated gene expression means at least about 1.5 times, at least about 4 times, at least about 6 times, between the expression of a given gene in normal and diseased subjects or in various stages of diseased subjects, It is considered to exist when there is a difference of about 10 times or more.
  • standardized with respect to a gene transcript or gene expression product refers to the level of the transcript or gene expression product relative to the average level of the transcript / product of the reference gene set, wherein the reference genes are throughout the patient, tissue or treatment. Selected based on their minimal variation (“housekeeping genes”), or reference genes refer to all of the tested genes. In the latter case, generally referred to as “global normalization", it is important that the total number of genes tested is relatively large, preferably greater than 50. Specifically, the term 'standardized' with respect to RNA transcripts refers to the level of transcription relative to the average of the levels of transcription of a set of reference genes.
  • expression threshold and “defined expression threshold” are used interchangeably and above this level refer to the level of the gene or gene product at which the gene or gene product is used as a predictive marker for patient response. Thresholds are typically defined experimentally from clinical studies. The expression threshold may be selected with maximum sensitivity, or maximum selectivity (eg to select only responders for one drug), or with minimal error.
  • gene amplification refers to the process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. Replicated regions (extension of amplified DNA) are often referred to as "amplicons”. Often, the amount of mRNA produced, ie gene expression, also increases in proportion to the number of copies made of a particular gene.
  • prognosis is used herein to refer to the prediction of the likelihood of death from cancer or progression of neoplastic disease such as gastric cancer (including relapse, metastatic spread and drug resistance).
  • prediction is used herein to refer to the likelihood that a patient will survive for a certain period of time without cancer recurrence after surgical removal of the primary tumor. Such prediction can be used clinically to determine treatment by selecting the most appropriate treatment technique for any particular patient. Such prediction is a valuable means in predicting whether a patient is likely to respond favorably to a treatment regimen, for example a surgical procedure, or whether the patient can be prolonged survival after the end of the surgery.
  • the present invention can be carried out using conventional techniques of molecular biology (including recombination techniques), microbiology, cell biology and biochemistry.
  • Gene expression profile creation methods include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics based methods.
  • methods for quantification of mRNA expression include northern blotting and in situ hybridization; RNAse protection assay; And PCR-based methods such as reverse transcription polymerase chain reaction (RT-PCR) and the like.
  • RT-PCR reverse transcription polymerase chain reaction
  • antibodies can be used that can recognize two specific strands, including two strands of DNA, two strands of RNA, and two strands of DNA-RNA hybrids or two strands of DNA-protein.
  • Representative methods in sequencing-based gene expression analysis include gene expression analysis by Serial Analysis of Gene Expression (SAGE) and massively parallel signature sequencing (MPSS).
  • SAGE Serial Analysis of Gene Expression
  • MPSS massively parallel signature sequencing
  • RT-PCR Reverse Transcriptase PCR
  • RT-PCR One of the most sensitive and most flexible quantitative PCR-based gene expression profiling methods is RT-PCR, which compares mRNA levels in different sample populations in normal and tumor tissues with or without drug treatment. It can be used to characterize gene expression patterns, determine closely related mRNAs, and analyze RNA structure.
  • the first step is the isolation of mRNA from the target sample.
  • mRNA can be extracted, for example, from frozen or stored paraffin-embedded and immobilized (eg formalin-fixed) tissue samples.
  • RNA isolation can be performed according to the manufacturer's instructions using a purification kit, buffer set and protease from a commercial manufacturer, such as Qiagen.
  • Other commercially available RNA isolation kits include MasterPure TM Complete DNA and RNA Purification Kit (EPICENTRE ® , Madison, WI) and Paraffin Block RNA Isolation Kit (Ambion, Inc.). (Ambion, Inc.). Complete RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumors can be isolated, for example, by cesium chloride density gradient centrifugation.
  • RNA cannot be used as a template for PCR
  • the first step in gene expression profile creation by RT-PCR is reverse transcription of the RNA template into cDNA, followed by exponential amplification into its PCR reaction.
  • Reverse transcriptase can mainly use avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney rat leukemia virus reverse transcriptase (MMLV-RT).
  • the reverse transcription step is typically first antigen-stimulated using specific primers, random hexamers, or oligo-dT primers, depending on the environment and goal of expression profiling.
  • extracted RNA can be reverse-transcribed using the GeneAmp RNA PCR Kit (Perkin Elmer, California, USA) according to the manufacturer's instructions.
  • the derived cDNA can then be used as a template in subsequent PCR reactions.
  • the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically uses Taq DNA polymerase, which has 5'-3 'nuclease activity, but 3'- There is a lack of 5 'proofreading endonuclease activity.
  • Takman ® PCR typically utilizes 5'-nuclease activity that hybridizes hybridization probes bound to its target amplicons of Taq or Tth polymerase, but with any 5 'nuclease activity. Enzymes can be used. Two oligonucleotide primers are used to generate representative amplicons of the PCR reaction.
  • the third oligonucleotide or probe is designed to detect a nucleotide sequence located between two PCR primers.
  • the probe is non-extensible by Taq DNA polymerase enzyme and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is erased by the quencher dye when the two dyes are placed together as closely as they are on the probe.
  • Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resulting probe fragments dissociate in solution and have no scavenging effect of the second fluorophore on the signal from the released reporter dye.
  • One molecule of reporter dye is released from each of the synthesized new molecules, and detection of the undone reporter dye provides a basis for quantitative interpretation of the data.
  • TAKMAN ® RT-PCR is a commercially available instrument, such as ABI Prism 7700TM Sequence Detection System TM (Perkin-Elmer-Applied Biosystems), or Lightcycler (Roche Molecular). Biochemicals).
  • 5'-nuclease assay data is initially expressed as Ct, or threshold cycle.
  • the fluorescence value is recorded every cycle and represents the amount of product amplified to that point in the amplification reaction.
  • the point when the fluorescence signal is first recorded as statistically significant is the threshold cycle (Ct).
  • RT-PCR is generally performed using reference RNA, which is ideally expressed at some level between different tissues, and is not affected by experimental treatment.
  • the RNA most often used to normalize gene expression patterns is the mRNAs of the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPD) and ⁇ -actin (ACTB).
  • the new real-time quantitative PCR is a dual-labeled fluorescent immunogenic probe to the technology of measuring the PCR product accumulation through a (i.e., Tacna Go ® probes), quantitative competitive PCR (in this case, the internal competitor for each target sequence is used to standardize And quantitative comparison PCR using standardized genes or housekeeping genes for RT-PCR included in the sample.
  • a i.e., Tacna Go ® probes
  • quantitative competitive PCR in this case, the internal competitor for each target sequence is used to standardize
  • quantitative comparison PCR using standardized genes or housekeeping genes for RT-PCR included in the sample.
  • Massarray-based gene expression profiling methods developed by Sequenom, Inc. target cDNAs obtained after isolation and reverse transcription of RNA from synthetic DNA molecules (competitors) (which are targeted at all positions except a single base). spiked into the cDNA region) and used as an internal standard.
  • the cDNA / competitor mixture is PCR amplified and post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment is added to cause dephosphorylation of the remaining nucleotides. After inactivation of alkaline phosphatase, PCR products from competitors and cDNAs are primer stretched, which produces separate mass signals for competitor- and cDNA-derived PCR products.
  • SAP shrimp alkaline phosphatase
  • the expression profile of cancer-related genes in fresh or paraffin embedded tumor tissues can be measured.
  • the sequence of interest including cDNA and oligonucleotides
  • the arranged sequences are then hybridized with specific DNA probes from the cell or tissue of interest.
  • the source of mRNA is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines.
  • RNA can be isolated from various major tumors or tumor cell lines.
  • Microarray technology provides amplified arrays of PCR amplified inserts of cDNA clones on a substrate. Preferably, 10,000 or more nucleotide sequences are added to the substrate.
  • Microarrayed genes immobilized on microchips with 10,000 elements each are suitable for hybridization under stringent conditions.
  • Fluorescently labeled cDNA probes can be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissue of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by in-focus laser microscopy or by another detection method, such as a CCD camera. Quantification of hybridization of each arranged element allows for evaluation of the corresponding mRNA excess. In the case of dual color fluorescence, separately labeled cDNA probes generated from two RNA sources hybridize to each pair in the array.
  • Miniaturization scale hybridization provides convenient and rapid evaluation of expression patterns for large numbers of genes. This method has been shown to have the sensitivity needed to detect rare transcripts (which are expressed in a few copies per cell) and to reproducibly detect at least approximately two-fold differences in expression.
  • Microarray analysis can be performed by commercially available equipment according to the manufacturer's protocol, for example using Affymetrix GenChip technology or Insight's microarray technology.
  • An important aspect of the present invention is the use of the measured expression of specific genes by gastric cancer tissue to provide prognostic information. For this purpose, it is essential to correct (standardize) the amount of RNA tested, variations in RNA quality used, and differences in other factors such as machine and operator differences. Therefore, assays typically measure and incorporate the use of reference RNA, including those transcribed from known housekeeping genes such as GAPD and ACTB. Alternatively, normalization can be based on the mean or median signal (Ct) of the assayed genes or all of their many subsets (full normalization approach). The following example used a central standardization strategy, which used a subset of screened genes selected based on lack of correlation with clinical outcome for standardization.
  • tumor tissue samples 537 tumor tissue samples, 129 normal tissue samples, 125 FFPE tumor samples (gastric cancer patients who received gastrectomy at the Yonsei University Severance Hospital from 1999 to 2006) and 123 FFPE normal tissue samples
  • AKT1, BRAF, CTNNB1, FBWX7, GNAS, IDH1, JAK2, KIT, KRAS, MET, NRAS, PDGFRA, PDPK1, PHLPP2, PIK3CA and PIK3R1 were selected and 159 types of mutations appearing in them were investigated.
  • Single-base polymorphism detection was performed using the cyanome MALDI TOF MassArray system (matrix-assisted laser desorption / ionization time-of-flight mass spectrometry). This method first amplifies selected SNPs near DNA, then proceeds with a primer extension reaction to determine potential SNP bases. Both PCR primers and extension primers were designed using Sequenom Assay Design software. The program allows multiple reactions of up to 29 different SNPs per well. Initial PCR reactions were performed in 384 well format according to the manufacturer's instructions and then PCR was completed using EXO-SAP from Sequenom. Primer extension reactions were performed according to their protocol using Sequenom's IPLEX chemistry.
  • KRAS, MET, PIK3CA mutations were found to appear more in the tumor compared to normal tissue.
  • Group 3 are divided into two groups (CL1, CL2), divided into three groups (CL1, CL2, CL3), divided into four groups (CL1, CL2, CL3, CL4) P-values of (CL1, CL2, CL3, CL4, CL5), when divided into five groups, are described.
  • group 2 is divided into two groups (CL1 and CL2) and it is possible to know whether KRAS, MET and PIK3CA are mutated in each group.
  • Figure 2 shows the Kaplan-Meir Plot of each group.
  • 3 to 5 show the results of cross analysis and chi-square analysis of the mutation relationship with group 2.
  • the mutation frequency of the KRAS and PIK3CA genes was high in the class 2 with a good prognosis, and the mutation frequency of the KRAS and PIK3CA genes was low in the class 1 with a poor prognosis.
  • the mutation frequency of the MET gene was low in the class 2 with a good prognosis, and the mutation frequency of the MET gene was high in the class 1 with a poor prognosis.
  • the present invention can be used as a diagnostic kit in the field of predicting gastric cancer recurrence prognosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)

Abstract

본 발명은 위암의 예후 예측이 가능한 신규한 예후 예측 모형의 제조방법에 관한 것으로, 보다 상세하게는, 유전자 돌연변이 비교 분석법을 통해 위암의 수술에 의한 절제 후 임상 결과를 예측하는 예측 모형을 제조할 수 있다.

Description

위암에 대한 예후 예측 모형의 제조방법
본 발명은 유전자 돌연변이 비교 분석법을 통해 위암의 예후 예측이 가능한 신규한 예후 예측 모형의 제조방법에 관한 것이다.
위선암(Gastric adeno-carcinoma)은 2000년 700,349명의 사망에서 두 번째 원인으로, 세계에서 가장 일반적으로 진단된 네 번째 암이다. 몇 가지 역학적 및 조직병리학적 특징들을 갖는 단일 이질적 질환으로 간주하고 있다. 위암 치료는 주로 환자를 수술 만으로 또는 수술과 화학요법으로 치료하여야 하는지를 결정하는 TNM(tumor, node, metastasis) 병기결정 같은 임상적 파라미터에 근거한다. 위암은 유방암과 대장암 등과 달리 TNM 병기 시스템에 따라서 1기에서 4기까지 명확하게 차이가 난다. 즉, 1기의 경우에는 5년 생존율이 90% 이상이며, 4기의 경우에는 20% 이하로 큰 차이를 보인다. 그러므로 TNM 병기 시스템의 예후 예측력이 매우 뛰어남을 알 수 있다[참고문헌, 7th edition of the AJCC cancer staging Manual: stomach. Ann Surg Oncol 2010;17:3077-3079]. 상기 병기 시스템에 기반을 두어 위암은 흔히 조기 위암(Early Gastric Cancer), 국소진행형(Locally Advanced Gastric Cancer), 국소 침윤형(Locally Advanced Invasive Gastric Cancer) 및 전이 위암(Metastatic Gastric Cancer) 등으로 나눌 수 있다.
비록 수술이 실시 가능한 위암의 주요 치료이긴 하나, 진행성인 경우 재발률이 높다. 재발을 예방하고, 위암 환자들의 예후를 개선하기 위해 화학요법과 화학-방사선요법을 포함한 집학적 치료가 도입되었다. 그러나, 이들 치료 방법이 환자들에서 일반적인 임상 결과를 개선하기는 하나 종양의 임상병리학적 이질성과, 같은 병기에 있는 환자들의 다른 결과는 어쥬번트 화학요법의 임무를 예측하는데 한계가 있어 개별 환자들에 대한 최적 접근이 부족한 상태이다.
최근의 진전에도 불구하고 발병적으로 별개의 종양 유형에 대해 특이적 치료 섭생을 표적화하고, 궁극적으로 성과를 최대화시키기 위하여 종양 치료를 개인화하기 위한 암 치료의 도전과제들이 남아있다. 따라서, 각종 치료 선택사항들에 대한 환자 반응에 관한 예측적 정보를 동시에 제공하는 시험을 필요로 하고 있다.
본 발명의 목적은 위암 환자들의 유전자 돌연변이에 기초한 새로운 예후 예측 모형의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 KRAS, MET 및 PIK3CA로 이루어진 군으로부터 선택된 하나 이상의 유전자에서 단일 염기 다형성의 발현 여부를 측정하는 단계; 및 상기 단일 염기 다형성의 발현 빈도에 따라 통계적으로 유의한 설정치 범위를 결정하고, 상기 설정치 범위에 따라 전체 생존율(Overall Survival, OS) 측면에서 좋은 예후 군과 나쁜 예후 군으로 분류하는 단계를 포함하는, 위암으로 진단된 대상에서 예후 예측 모형을 제조하는 방법을 제공한다.
상기 예후 예측 모형은 TNM 병기와 상관없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것일 수 있다.
본 발명은 TNM 병기와 상관없는 전체 위암 환자 군을 대상으로 분자적 특성에 의한 유전자 돌연변이의 발현 빈도에 따른 통계적 유의 값을 설정치로 정하여 전체 생존율 측면에서 예후가 좋은 군과 나쁜 군으로 분류할 수 있는 예후 예측 모형을 제공함으로써, 위암 수술에 의한 절제 후 임상 결과를 예측할 수 있도록 한다.
도 1은 종양조직의 mRNA 마이크로어레이 결과와 이에 따른 그룹 분류를 나타낸 것이다.
도 2는 각 그룹의 Kaplan-Meir Plot를 나타낸 것이다.
도 3 내지 5는 그룹 2와 돌연변이 관계를 교차분석 및 chi-square 분석 결과로 나타낸 것이다.
이하 본 발명의 구성을 구체적으로 설명한다.
본 발명은 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 KRAS, MET 및 PIK3CA로 이루어진 군으로부터 선택된 하나 이상의 유전자에서 단일 염기 다형성의 발현 여부를 측정하는 단계; 및 상기 단일 염기 다형성의 발현 빈도에 따라 통계적으로 유의한 설정치 범위를 결정하고, 상기 설정치 범위에 따라 전체 생존율(Overall Survival, OS) 측면에서 좋은 예후 군과 나쁜 예후 군으로 분류하는 단계를 포함하는, 위암으로 진단된 대상에서 예후 예측 모형을 제조하는 방법을 제공한다.
본 발명의 일 구체예에 따르면, 위암과 관련된 차등적인 mRNA 발현을 나타내는 예후 관련 유전자 군을 선정하고, mRNA 고 발현 군과 저 발현 군으로 분류하고, 상기 분류 군에서 돌연변이 확률이 현저히 높은 유전자로 KRAS, MET 및/또는 PIK3CA를 선정하고, 상기 유전자를 대상으로 하나 이상의 단일 염기 다형성의 발현 여부를 측정한 결과, 상기 유전자들의 단일 염기 다형성의 발현 빈도는 mRNA 고 발현 군과 저 발현 군에서 통계적으로 유의한 정도로 다르게 나타나 전체 생존율 측면에서 예후가 좋은 군과 나쁜 군으로 분류할 수 있는 분류 기준으로 적용될 수 있음을 확인하였다.
따라서, 본 발명에 따른 방법에서, 예후 예측 모형은 위암으로 진단된 대상에서 KRAS, MET 및/또는 PIK3CA 유전자의 단일 염기 다형성의 발현 빈도를 분류 기준으로 하여 좋은 예후 군과 나쁜 예후 군으로 분류하고 이러한 분류는 통계적 유의 값을 가지는 것을 특징으로 한다.
상기 차등적인 mRNA 발현을 나타내는 예후 관련 유전자 군은 PCR 또는 어레이 기반 방법에 따라 실시될 수 있다.
상기 차등적인 mRNA 발현을 나타내는 예후 관련 유전자 군의 분류는 공지된 다양한 통계적 수단을 사용하여 결정할 수 있다. mRNA 고 발현 군과 저 발현 군은 통계적으로 유의한 값, 즉, 약 1.5배 이상, 약 2배 이상, 약 4배 이상, 약 6배 이상, 약 10배 이상의 차이가 있는 군을 대상으로 나눌 수 있다.
암은 게놈 내 유전적 및 후성적 돌연변이의 축적에 의해 유발된다. 하나 또는 두 개의 염기의 변화는 아미노산 치환을 유발하여 단백질의 활성을 바꿀 수 있다. 이들 단일 염기 다형성의 존재는 암의 진단 및 예후와 상관관계가 있다. 따라서, 본 발명은 KRAS, MET 및/또는 PIK3CA 유전자의 하나 이상의 단일 염기 다형성의 발현 빈도를 예후 예측 모형 제조에 적용하였다.
상기 KRAS의 단일 염기 다형성은 A146PT_g436ca, G10R_g28a, G12DAV_g35act, G12SRC_g34act, G13DAV_g38act, G13SRC_g37act, Q61EKX_c181gat, Q61HHE_a183ctg 및 Q61LPR_a182tct로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 설정치 결정에는 이러한 돌연변이를 하나로 계수하여 설정치에 적용한다.
여기서, 알파벳 대문자는 아미노산 1문자 코드이고, 알파벳 소문자는 염기를 나타내며, 숫자는 염기 또는 아미노산 잔기 위치를 나타낸다. 예컨대, A146PT_g436ca의 경우 유전자 436 위치에서 g는 c 또는 a로 치환될 수 있고, 이로 인해 아미노산 146번째 위치에서 아미노산 알라닌(A)은 프롤린(P) 또는 트레오닌(T)로 치환될 수 있다는 의미이다. 이하 MET 및 PIK3CA의 돌연변이의 예시 역시 이러한 의미를 나타낸다.
상기 MET의 돌연변이는 H1112_a3335gt, H1112Y_c3334t, M1268T_t3803c, N375S_a1124g, R988C_c2962t, T1010I_c3029t, Y1248HD_t3742cg 및 Y1253D_t3757g로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 설정치 결정에는 이러한 돌연변이를 하나로 계수하여 설정치에 적용한다.
상기 PIK3CA의 돌연변이는 A1046V_c3137t, C420R_t1258c, E110K_g328a, E418K_g1252a, E453K_g1357a, E542KQ_g1624ac, E542VG_a1625tg, E545AGV_a1634cgt, E545D_g1635ct, E545KQ_g1633ac, F909L_c2727g, G1049R_g3145c, H1047RL_a3140gt, H1047RL_a3140gt, H1047RL_a3140gt H1047Y_c3139t, H701P_a2102c, K111N_g333c, M1043I_g3129atc, M1043V_a3127g, N345K_t1035a, P539R_c1616g, Q060K_c178a, Q546EK_c1636ga, Q546LPR_a1637Tcg, R088Q_g263a, S405F_c1214t, T1025SA_a3073tg, Y1021C_a3062g 및 Y1021HN_t3061ca로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 설정치 결정에는 이러한 돌연변이를 하나로 계수하여 설정치에 적용한다.
상기 단일 염기 다형성을 측정하는 방법은 특별히 제한하지는 않으나, MALDI-TOF MS(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry)를 이용할 수 있다.
본 발명의 예후 예측 모형을 제조하는 방법에서, 단일 염기 다형성의 발현 빈도를 예후가 좋은 군과 나쁜 군으로 분류 기준으로 사용함에 있어서, 단일 염기 다형성의 발현 빈도에 따라 통계적으로 유의한 설정치 범위를 결정하고 상기 설정치 범위를 기준으로 전체 생존율 측면에서 예후가 좋은 군과 나쁜 군으로 분류할 수 있다.
상기 설정치 범위는 전체 대상에 대한 단일 염기 다형성의 발현 여부를 백분율로 계산하여 약 7%, 약 5%, 약 3%로 정할 수 있으나, 이에 특별히 제한하지는 않는다.
예컨대, 본 발명의 일 구체예에 따르면, KRAS 또는 PIK3CA 유전자의 단일 염기 다형성의 발현 빈도가 각각 3% 이하인 경우 예후가 나쁜 군으로, 3%를 초과한 경우 예후가 좋은 군으로 분류할 수 있다.
본 발명의 다른 구체예에 따르면, MET 유전자의 단일 염기 다형성의 발현 빈도가 7% 이하인 경우 예후가 좋은 군으로, 7%를 초과한 경우 예후가 나쁜 군으로 분류할 수 있다.
본 발명의 예후 예측 모형을 제조하는 방법에서, 예후가 좋은 군은 3년 이상, 6년 이상, 10년 이상의 기간 동안 전체 생존율이 높음을 의미하고, 예후가 나쁜 군은 상기 기간 동안 전체 생존율이 낮음을 의미한다. 상기 용어, 좋은 예후는 임상 결과의 긍정적 임상 결과 가능성의 증가로 표현될 수 있고, 나쁜 예후는 임상 결과의 긍정적 임상 결과 가능성의 감소로 표현될 수 있다.
본 발명의 방법에 따른 예후 예측 모형은 TNM 병기와 상관없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는데 유용할 수 있다.
달리 정의되지 않는다면, 본원에 사용된 기술 및 과학 용어들은 당업자 수준에서 일반적으로 이해하는 바와 같은 의미가 있다. 본 발명은 어떤 방식으로든 설명된 방법 및 재료로 제한되지 않는다. 본 발명의 목적상, 하기 용어들이 아래에서 정의된다.
용어, "폴리뉴클레오티드"는 일반적으로 임의의 폴리리보뉴클레오티드 또는 폴리데옥시리보뉴클레오티드를 말하고, 예컨대 변형 또는 비-변형 RNA 또는 DNA일 수 있다. 본 명세서에서, "폴리뉴클레오티드"는 구체적으로 cDNA를 포함한다.
용어, "올리고뉴클레오티드"는 비제한적으로 한-가닥 데옥시리보뉴클레오티드, 한- 또는 두-가닥 리보뉴클레오티드, RNA:DNA 하이브리드 및 두-가닥 DNA를 포함하는, 비교적 짧은 폴리뉴클레오티드를 말한다. 올리고뉴클레오티드, 예를 들면 한-가닥 DNA 프로브 올리고뉴클레오티드는 종종 예를 들면 상업적으로 입수가능한 자동화 올리고뉴클레오티드 합성기를 사용하는 화학적 방법에 의해 합성된다. 그러나, 올리고뉴클레오티드는 시험관내 재조합 DNA-매개 기술을 포함하는 각종 다른 방법들에 의해 및 세포 및 유기체 중에서의 DNA 발현에 의해 제조될 수 있다.
용어, "차등적으로 발현된 유전자" 또는 "차등적인 유전자 발현"은 정상 또는 대조용 대상체의 발현에 비하여 위암과 같은 암을 앓는 대상체 중에서 더 높거나 낮은 수준으로 활성화되는 유전자를 말한다. 또한, 동일한 질병의 다른 병기에서 더 높거나 낮은 수준으로 활성화되는 유전자를 포함한다. 차등적으로 발현되는 유전자는 핵산 수준 또는 단백질 수준에서 활성화 또는 억제되거나, 다른 스플라이싱을 받아 상이한 폴리펩타이드 산물을 야기하는 경우일 수 있다. 이러한 차이는 예를 들면 폴리펩타이드의 mRNA 수준, 표면 발현, 분비 또는 다른 분배에 있어서의 변화에 의해 입증될 수 있다. 본 발명의 목적상, "차등적인 유전자 발현"은 정상 및 질병에 걸린 대상체에서 또는 질병에 걸린 대상체의 다양한 병기에서 주어진 유전자의 발현 사이에 약 1.5배 이상, 약 4배 이상, 약 6배 이상, 약 10배 이상의 차이가 있을 때 존재하는 것으로 간주 된다.
유전자 전사체 또는 유전자 발현 생성물에 관한 용어 "표준화된"은 기준 유전자 세트의 전사체/생성물의 평균 수준에 대한 전사체 또는 유전자 발현 생성물의 수준을 말하는데, 여기서 레퍼런스 유전자들은 환자, 조직 또는 치료에 걸쳐 이들의 최소한의 변동에 기준하여 선택되거나 ("하우스키핑 유전자(housekeeping genes)"), 또는 레퍼런스 유전자는 시험된 유전자들 전체를 말한다. 후자의 경우, 일반적으로 "전체 표준화(global normalization)"로 언급되는데, 시험된 유전자들의 총 수가 비교적 큰, 바람직하게는 50 초과인 것이 중요하다. 구체적으로, RNA 전사체에 관한 용어 '표준화된'은 기준 유전자 세트의 전사 수준의 평균에 대한 전사 수준을 말한다.
용어, "발현 역치" 및 "정의된 발현 역치"는 혼용하여 사용하며, 이 수준 이상에서는 유전자 또는 유전자 생성물이 환자 반응에 대한 예측 마커로서 사용되는 해당 유전자 또는 유전자 생성물의 수준을 말한다. 역치는 대표적으로 임상적 연구로부터 실험적으로 정의된다. 발현 역치는 최대 민감성, 또는 최대 선택성(예를 들면 한 약물에 대한 반응자들 만을 선택하도록), 또는 최소 오차로 선택될 수 있다.
용어, "유전자 증폭"은 특정 세포 또는 세포주에서 유전자 또는 유전자 단편의 다수개의 복사물이 형성되는 과정을 말한다. 복제된 영역 (증폭된 DNA의 신장)은 종종 "암플리콘"으로 언급된다. 종종, 생산된 mRNA의 양, 즉 유전자 발현도는 또한 특정 유전자의 만들어진 복제 수에 비례하여 증가한다.
본 명세서에서, "예후"는 본원에서 암에 의한 사망 또는 위암과 같은 신생물성 질환의 진행(재발, 전이성 확산 및 내약물성 포함)의 가능성의 예측을 말하는데 사용된다. 용어 "예측"은 본원에서 환자가 주요 종양의 수술 제거 후에 암 재발 없이 특정 기간 동안 살아남게 될 가능성을 말하는데 사용된다. 이러한 예측은 임의의 특정 환자에 대하여 가장 적절한 치료 기법을 선택함으로써 치료를 결정하는데 임상적으로 사용될 수 있다. 이러한 예측은 환자가 치료 섭생, 예를 들면 수술 시술에 대하여 유리하게 반응하기 쉬운지, 또는 수술 종료 후에 환자의 장기간 생존이 가능한지를 예측하는데 있어서 귀중한 수단이 된다.
달리 지시하지 않는 한, 분자 생물학(재조합 기술 포함), 미생물학, 세포 생물학 및 생화학의 종래 기술을 사용하여 본 발명을 수행할 수 있다.
1. 유전자 발현 프로파일 작성(Profiling)
유전자 발현 프로파일 작성 방법은 폴리뉴클레오티드의 혼성화 분석에 기초한 방법, 폴리뉴클레오티드의 서열화에 기초한 방법, 및 프로테오믹스 기재 방법을 포함한다. 예를 들어 mRNA 발현의 정량화를 위한 방법은 노던 블랏팅(northern blotting) 및 인 시츄 혼성화(in situ hybridization); RNAse 보호 검정시험; 및 PCR-기재 방법, 예를 들면 역 전사 폴리머라제 연쇄 반응(RT-PCR) 등을 포함한다. 또는, DNA 두 가닥, RNA 두 가닥, 및 DNA-RNA 하이브리드 두 가닥 또는 DNA-단백질 두 가닥을 포함하는 특정 두 가닥을 인식할 수 있는 항체들이 사용될 수 있다. 서열화-기재 유전자 발현 분석에서 대표적인 방법은 유전자 발현의 연속 분석(Serial Analysis of Gene Expression, SAGE) 및 대량적으로 평행한 시그너쳐 서열화(massively parallel signature sequencing, MPSS)에 의한 유전자 발현 분석을 포함한다.
2. PCR-기반 유전자 발현 프로파일 작성 방법
a. 역 전사효소 PCR(RT-PCR)
가장 민감하고 가장 유연한 정량적 PCR-기재 유전자 발현 프로파일작성 방법들 중 하나는 RT-PCR이고, 이것은 약물 치료와 함께 또는 약물 치료 없이 정상 조직 및 종양 조직에서의 상이한 샘플 집단에 있어서의 mRNA 수준을 비교하여 유전자 발현 패턴을 특성화하고, 밀접하게 관련된 mRNA들을 판별하고, RNA 구조를 분석하는데 사용될 수 있다.
제1단계는 표적 샘플로부터 mRNA의 단리이다. mRNA는 예를 들면 냉동되거나 보관된 파라핀-매립 및 고정된 (예를 들면, 포르말린-고정된) 조직 샘플로부터 추출될 수 있다.
mRNA 추출을 위한 일반적인 방법은 당업계에 공지되어 있으며, 파라핀에 매립된 조직으로부터의 RNA 추출 방법은 문헌 ([Rupp and Locker, Lab Invest. 56: A67 (1987)] 및 [De Andres et al., BioTechniques 18: 42044 (1995)]) 등에 개시되어 있다. 특히, RNA 단리는 상업적 제조업체, 예를 들면 퀴아겐(Qiagen)으로부터의 정제 키트, 완충제 세트 및 프로테아제를 사용하여 제조업체의 설명서에 따라 수행할 수 있다. 다른 상업적으로 입수가능한 RNA 단리 키트는 마스터푸어(MasterPure)TM 완전 DNA 및 RNA 정제 키트(에피센트레(EPICENTRE)®, 위스콘신주 매디슨) 및 파라핀 블록(Paraffin Block) RNA 단리 키트(앰비온, 인크.(Ambion, Inc.))를 포함한다. 조직 샘플로부터의 전제 RNA는 RNA Stat-60 (Tel-Test)를 사용하여 단리할 수 있다. 종양으로부터 제조된 RNA는 예를 들면 염화세슘 밀도 구배 원심분리에 의해 단리될 수 있다.
RNA는 PCR을 위한 주형으로 사용될 수 없기 때문에, RT-PCR에 의한 유전자 발현 프로파일 작성의 제1단계는 RNA 주형의 cDNA로의 역 전사이고, 이후 그의 PCR 반응으로의 지수적 증폭이 이어진다. 역 전사효소는 주로 조류 골수아세포증 바이러스 역 전사효소(AMV-RT) 및 몰로니(Moloney) 쥐 백혈병 바이러스 역 전사효소(MMLV-RT)를 사용할 수 있다. 역 전사 단계는 대표적으로 발현 프로파일작성의 환경 및 목표에 따라, 특정 프라이머, 무작위 헥사머, 또는 올리고-dT 프라이머를 사용하여 초회항원자극된다. 예를 들면, 추출된 RNA는 진앰프(GeneAmp) RNA PCR 키트(퍼킨 엘머(Perkin Elmer), 미국 캘리포니아주)를 사용하여 제조업체의 설명서에 따라 역-전사될 수 있다. 유도된 cDNA는 이어서 후속되는 PCR 반응에서 주형으로서 사용될 수 있다.
비록 PCR 단계가 각종 열안정성 DNA-의존성 DNA 폴리머라제를 사용할 수 있지만, 이것은 전형적으로는 Taq DNA 폴리머라제를 사용하는데, Taq DNA 폴리머라제는 5'-3' 뉴클레아제 활성을 갖지만, 3'-5' 판독방지(proofreading) 엔도뉴클레아제 활성은 부족하다. 따라서, 타크맨® PCR은 전형적으로는 Taq 또는 Tth 폴리머라제의 그의 표적 암플리콘에 결합된 혼성화 프로브를 혼성화시키는 5'-뉴클레아제 활성을 이용하지만, 5' 뉴클레아제 활성을 갖는 임의의 효소가 사용될 수 있다. 2개의 올리고뉴클레오티드 프라이머들을 사용하여 PCR 반응의 대표적인 암플리콘을 생성시킨다. 제3 올리고뉴클레오티드 또는 프로브는 2개의 PCR 프라이머들 사이에 위치한 뉴클레오티드 서열을 검출하도록 설계된다. 프로브는 Taq DNA 폴리머라제 효소에 의해 비-연신성이고, 리포터 형광 염료 및 소광제(quencher) 형광 염료로 표지된다. 리포터 염료로부터 임의의 레이저-유도 방출은 2개의 염료가 이들이 프로브 상에 있을 때와 같이 함께 가깝게 위치할 때 소광제 염료에 의해 소거된다. 증폭 반응 동안, Taq DNA 폴리머라제 효소는 주형-의존적 방식으로 프로브를 절단한다. 생성되는 프로브 단편들은 용액 중에서 해리되고, 방출된 리포터 염료로부터의 신호에는 제2 형광단의 소거 효과가 없다. 리포터 염료의 한 분자가 합성된 새로운 분자 각각으로부터 방출되고, 소거되지 않은 리포터 염료의 검출은 데이터의 정량적 해석에 대한 기준을 제공한다.
타크맨® RT-PCR은 상업적으로 입수 가능한 장비, 예를 들면 ABI 프리즘(PRISM) 7700TM 시퀀스 검출 시스템(Sequence Detection System)TM(Perkin-Elmer-Applied Biosystems), 또는 라이트사이클러(Lightcycler)(Roche Molecular Biochemicals)를 사용하여 수행될 수 있다.
5'-뉴클레아제 검정시험 데이터는 초기에 Ct, 또는 역치 사이클로서 표현된다. 형광 값은 매 사이클 동안 기록되고, 증폭 반응으로 그 지점으로까지 증폭된 생성물의 양을 나타낸다. 형광 신호가 처음 통계학적으로 유의한 것으로 기록될 때의 지점이 역치 사이클(Ct)이다.
샘플 간의 변동 효과 및 오차를 최소화시키기 위하여, RT-PCR은 일반적으로 기준 RNA(이것은 이상적으로는 상이한 조직들 사이에서 일정 수준으로 발현됨)를 사용하여 수행되고, 실험 치료에 의해 영향을 받지 않는다. 유전자 발현 패턴을 표준화하는데 가장 자주 사용되는 RNA는 하우스키핑 유전자 글리세르알데히드-3-포스페이트-데히드로게나제 (GAPD) 및 β-액틴(ACTB)의 mRNA이다.
또한, 새로운 실시간 정량적 PCR은 이중-표지된 형광원성 프로브(즉, 타크맨® 프로브)를 통한 PCR 생성물 축적을 측정하는 기술로, 정량적 경쟁적 PCR(여기서는, 각 표적 서열에 대한 내부 경쟁자가 표준화에 사용됨) 및 샘플 내에 포함된 표준화 유전자 또는 RT-PCR에 대한 하우스키핑 유전자를 사용하는 정량적 비교용 PCR 모두와 상용 가능하다.
b. 매스어레이(MassARRAY) 시스템
시커놈, 인크.(Sequenom, Inc.)가 개발한 매스어레이-기반 유전자 발현 프로파일 작성 방법에서는 RNA의 단리 및 역 전사 후에 얻은 cDNA를 합성 DNA 분자(경쟁자)(이것은 단일 염기를 제외한 모든 위치에서 표적화 cDNA 구역과 일치함)로 스파이크하고(spiked), 내부 표준으로 사용한다. cDNA/경쟁자 혼합물을 PCR 증폭시키고, 후-PCR 새우 알칼리성 포스파타제(SAP) 효소 처리를 가하여 남아있는 뉴클레오티드의 데포스포릴화를 야기한다. 알칼리성 포스파타제의 불활성화 후에, 경쟁자 및 cDNA로부터의 PCR 생성물을 프라이머 신장시키고, 이것은 경쟁자- 및 cDNA-유래 PCR 생성물에 대한 별도의 질량 신호들을 생성시킨다. 정제 후, 이들 생성물들을 매트릭스-보조 레이저 탈착 이온화 흐름 시간 질량 분광측정법(MALDI-TOF MS) 분석을 이용한 분석에 필요한 성분들이 이미-부하 되어 있는 칩 어레이 상에 계량분배한다. 반응에 존재하는 cDNA를 이어서 생성된 질량 스펙트럼 내의 피크 면적 비를 분석하여 정량화한다.
c. 기타 PCR-기반 방법
기타 시차 디스플레이; 증폭된 단편 길이 다형성 (iAFLP); 비드어레이(BeadArray) TM 기술 (일루미나(Illumina), 캘리포니아주 샌 디에고); 유전자 발현에 대한 신속 검정시험에 상업적으로 입수 가능한 루미넥스(Luminex)100 LabMAP 시스템 및 다색-코딩된 미소구(Luminex Corp.)를 사용하는, 유전자 발현 검출용 비즈어레이(BeadsArray for Detection of Gene Expression, BADGE); 및 고 피복 발현프로파일 작성(HiCEP) 분석이 있다.
3. 마이크로어레이
신선한 또는 파라핀에 매립된 종양 조직에서 암 관련 유전자의 발현 프로파일을 측정할 수 있다. 이 방법에서는, 관심을 갖는 서열(cDNA 및 올리고뉴클레오티드 포함)을 마이크로칩 기판상에 플레이팅 또는 배열시킨다. 배열된 서열들을 이어서 관심을 갖는 세포 또는 조직으로부터의 특정 DNA 프로브와 혼성화시킨다. RT-PCR 방법에서와 마찬가지로, mRNA의 공급원은 전형적으로 사람 종양 또는 종양 세포주, 및 대응하는 정상 조직 또는 세포주로부터 단리된 총 RNA이다. 따라서 RNA는 각종 주요 종양 또는 종양 세포주로부터 단리될 수 있다. 마이크로어레이 기술은 cDNA 클론의 PCR 증폭된 삽입물을 치밀한 어레이로 기판상에 제공한다. 바람직하게는, 10,000 이상의 뉴클레오티드 서열들을 기판에 가한다. 10,000 엘레멘트 각각으로 마이크로칩 상에 고정화된 미세배열된 유전자들이 엄격한 조건 하에서의 혼성화에 적합하다. 형광적으로 표지된 cDNA 프로브들이 관심을 갖는 조직으로부터 추출된 RNA의 역 전사에 의해 형광 뉴클레오티드의 혼입을 통해 생성될 수 있다. 칩에 가해진 표지된 cDNA 프로브는 어레이 상의 DNA 각 스팟에 특이성을 갖게 혼성화된다. 비-특이적으로 결합된 프로브들을 제거하기 위한 엄격한 세척 후, 칩을 동일초점 레이저 현미경에 의해 또는 다른 검출 방법, 예를 들면 CCD 카메라에 의해 주사한다. 각 배열된 엘레멘트의 혼성화에 대한 정량화는 대응하는 mRNA 과다의 평가를 가능하게 한다. 이중 색 형광의 경우, 2개의 RNA 공급원으로부터 생성된 별도로 표지된 cDNA 프로브가 어레이에 각 쌍 별로 혼성화된다. 따라서 각 명시된 유전자에 대응하는 2개의 공급원으로부터의 전사체의 상대적 과다가 동시에 결정된다. 소형화 규모의 혼성화가 많은 수의 유전자들에 대한 발현 패턴의 편리하고 신속한 평가를 제공한다. 이러한 방법은 희귀한 전사체(이것은 세포당 소수개의 복사물로 발현됨)을 검출하는데 및 발현도에 있어서 적어도 대략 2배 차이로 재현 가능하게 검출하는데 필요한 민감성을 갖는 것으로 나타났다. 마이크로어레이 분석은 상업적으로 입수 가능한 장비에 의해 제조업체의 프로토콜에 따라, 예를 들면 아피매트릭스 겐칩(Affymetrix GenChip) 기술 또는 인사이트(Incyte's) 마이크로어레이 기술을 사용하여 수행될 수 있다.
4. mRNA 단리, 정제 및 증폭의 일반적인 설명
파라핀에 매립된 조직을 사용하여 유전자 발현 프로파일을 작성하는 기술은 상술한 바와 같다. 최종적으로 얻은 데이터를 분석하여 관찰된 종양 샘플에서 확인된 특징적인 유전자 발현 패턴에 기초하여 환자에게 이용할 수 있는 최상의 치료 선택사항(들)을 판별해낸다.
본 발명의 중요한 면은 위암 조직에 의한 특정 유전자의 측정된 발현을 사용하여 예후 정보를 제공하는 것이다. 이러한 목적을 위해, 검정 시험된 RNA의 양, 사용된 RNA 품질에 있어서의 변동, 및 다른 인자, 예를 들면 기계 및 작업자 차이에 있어서의 차이에 대해 보정하는(표준화) 것이 필수적이다. 그러므로, 검정시험은 전형적으로 GAPD 및 ACTB와 같은 공지된 하우스키핑 유전자로부터 전사된 것들을 포함하는, 기준 RNA의 사용을 측정하여 혼입시킨다. 또는, 표준화는 검정시험된 유전자들 또는 이들의 많은 서브세트 전부의 평균 또는 중간 신호(Ct)를 기준으로 할 수 있다(전체 표준화 접근법). 하기 실시예에서는 중심 표준화 전략을 사용하였는데, 이것은 표준화를 위해 임상적 성과와의 상관성 부족에 기초하여 선택된 스크리닝된 유전자의 서브세트를 이용하였다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 예후 예측 대상 선정 및 실험설계
Sanger Institute가 보유하고 있는 다양한 암 종에서 동정되는 체세포 돌연변이에 대한 데이터베이스를 이용하여, 본 발명자들은 많은 다른 암에서 존재하는 보다 일반적으로 발생하는 단일 염기 다형성(SNP)의 존재를 검출하는 분석을 개발하였다.
이를 위해, 종양 조직 샘플 537개, 정상 조직 샘플 129개, FFPE 종양 샘플 125개(1999년 내지 2006년까지 연세대학교 세브란스 병원에서 일차 치료로 위 절제술을 받은 위암 환자들) 및 FFPE 정상 조직 샘플 123개를 대상으로, AKT1, BRAF, CTNNB1, FBWX7, GNAS, IDH1, JAK2, KIT, KRAS, MET, NRAS, PDGFRA, PDPK1, PHLPP2, PIK3CA 및 PIK3R1를 선정하고, 이들에서 나타나는 159 종류의 돌연변이를 조사하였다.
단일 염기 다형성 검출은 시커놈 MALDI TOF MassArray system(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry)을 사용하였다. 이 방법은 DNA 근처 선정된 SNP를 일차로 PCR로 증폭하고 나서 프라이머 익스텐션 반응을 진행하여 잠재적 SNP 염기를 측정한다. PCR 프라이머와 익스텐션 프라이머 둘 다 Sequenom Assay Design software를 이용하여 설계하였다. 이 프로그램은 웰 당 29개까지 다른 SNP의 다중 반응이 가능하다. 초기 PCR 반응은 제조업체 설명서에 따라 384 웰 포맷에서 수행하고 나서, Sequenom 사의 EXO-SAP를 이용하여 PCR을 마무리하였다. 프라이머 익스텐션 반응은 Sequenom s IPLEX 화학을 이용하여 그들의 프로토콜에 따라 수행하였다. 그 후, IPLEX 반응은 Sequenom s Clean Resin을 이용하여 탈염 처리되고, Samsung Nanodispenser를 이용하여 Spectrochip matrix chips 상에 스팟팅 하였다. 그 후 상기 칩을 Sequenom MassArray 시켰다. Sequenom Typer Software는 생성된 질량 스펙트럼을 해석하고 기대된 질량에 기초하여 SNP를 보고한다. 생성된 모든 스펙트럼은 2반복으로 진행하고 육안으로 점검하였다.
결과는 표 1에 나타내었고, 각 유전자에서 발생하는 한 종류 이상의 돌연변이를 1개로 계수하고 산출하였다.
표 1
구분 AKT1 BRAF CTNNB1 FBWX7 GNAS IDH1 JAK2 KIT KRAS MET NRAS PDGFRA PDPK1 PHLPP2 PIK3CA PIK3R1
종양조직-537 2 1 6 7 1 1 1 1 33 54 1 7 1 0 42 0
정상조직-129 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0
FFPE-종양샘플-125 0 0 0 0 0 0 0 0 3 12 1 1 0 4 3 15
FFPE-정상샘플-123 0 0 0 0 0 0 0 0 1 12 0 1 0 4 0 12
G.C 세포주-108 - 4반복 0 0 11 4 0 0 0 0 23 4 4 1 0 0 19 0
유방암세포주- 16-4반복 0 11 0 0 0 0 0 0 11 0 0 0 0 0 0 0
ETC 0 0 0 0 0 0 0 4 1 6 0 2 0 0 1 0
TOTAL - 1081 2 12 17 11 1 1 1 5 72 99 6 12 1 8 65 27
표 1에 나타난 바와 같이, KRAS, MET, PIK3CA 돌연변이가 정상 조직과 비교하여 종양에서 많이 나타남을 알 수 있었다.
KRAS, MET 및 PIK3CA의 단일 염기 다형성에 의한 돌연변이 종류는 표 2와 같다.
표 2
유전자 종류 돌연변이 종류
KRAS A146PT_g436ca, G10R_g28a, G12DAV_g35act, G12SRC_g34act, G13DAV_g38act, G13SRC_g37act, Q61EKX_c181gat, Q61HHE_a183ctg, Q61LPR_a182tct
MET H1112_a3335gt, H1112Y_c3334t, M1268T_t3803c, N375S_a1124g, R988C_c2962t, T1010I_c3029t, Y1248HD_t3742cg, Y1253D_t3757g
PIK3CA A1046V_c3137t, C420R_t1258c, E110K_g328a, E418K_g1252a, E453K_g1357a, E542KQ_g1624ac, E542VG_a1625tg, E545AGV_a1634cgt, E545D_g1635ct, E545KQ_g1633ac, F909L_c2727g, G1049R_g3145c, H1047RL_a3140gt, H1047RL_a3140gt, H1047RL_a3140gt H1047Y_c3139t, H701P_a2102c, K111N_g333c, M1043I_g3129atc, M1043V_a3127g, N345K_t1035a, P539R_c1616g, Q060K_c178a, Q546EK_c1636ga, Q546LPR_a1637Tcg, R088Q_g263a, S405F_c1214t, T1025SA_a3073tg, Y1021C_a3062g, Y1021HN_t3061ca
알파벳 대문자는 아미노산 1문자 코드이고, 대문자 사이의 숫자는 아미노산 위치로 숫자 왼쪽은 치환 전 아미노산, 숫자 오른쪽은 치환 후 아미노산을 나타냄.알파벳 소문자는 염기를 나타내고, 소분자 사이의 숫자는 유전자 내 염기 위치로 숫자 왼쪽은 치환 전 염기, 숫자 오른쪽은 치환 후 염기를 나타냄
상기 결과를 기반으로, 연세대학교 세브란스 병원에서 보유 중인 종양조직 샘플 545개와 정상조직 샘플 129개를 대상으로 chi-square 분석을 한 결과, KRAS, MET 및 PIK3CA의 p-값은 0.001 이하였다. 즉, 정상조직과 종양조직 간에는 돌연변이 여부에 대한 구분이 분명히 이루어진다고 볼 수 있다.
상기 샘플 중 종양조직 350개를 대상으로 mRNA 마이크로어레이를 실시하고, mRNA 그룹에서 해당 예후와 관련된 돌연변이가 있는지를 조사하였다. 이를 위해 350개의 mRNA의 unsupervised clustering 분석을 하여 그룹으로 나누고 Kaplan-Mei Plot 및 log rank test를 실시하여 예후 관련 그룹을 확정하였다. 즉, 350개 샘플을 원래의 로우 데이터로 추출하여 사분위수 표준화를 실시하고, 로그 베이스 2로 전환한 후 median centering를 실시하였다. 분산 여과 방법을 통해 예후 관련 유전자를 그룹화하고, 최종적으로 중간값과 비교하여 1.5배 이상의 증가 또는 감소를 보여주는 15개의 프로브를 사용하여 5432개의 유전자를 추출하고 Cluster and Treeview(http://rana.lbl.gov/EigenSoftware.htm)으로 클러스터 분석을 시행하였다.
상기 그룹에서 KRAS, MET 및 PIK3CA 돌연변이가 있는 샘플을 배치하고, chi-square 분석 기법을 통해 그룹 간의 해당 돌연변이와의 연관 관계를 조사하였다. 종양조직의 mRNA 마이크로어레이 결과는 도 1에 나타내었다.
도 1 및 표 3은 두 개의 그룹으로 구분하였을 경우(CL1, CL2), 세 개의 그룹으로 구분하였을 경우(CL1, CL2, CL3), 4개의 그룹으로 구분하였을 경우(CL1, CL2, CL3, CL4), 5개의 그룹으로 구분하였을 경우 (CL1, CL2, CL3, CL4, CL5) 의 P-값을 기재하였다. 예컨대, 그룹 2는 2개의 그룹(CL1, CL2)으로 구분되며 각 그룹에서 KRAS, MET 및 PIK3CA의 돌연변이 여부를 알 수 있다.
표 3
CHI-SQUARE KRAS MET PIK3CA
그룹 2 0.046 0.064 0.015
그룹 3 0.003 0.180 0.002
그룹 4 0.008 0.314 0.005
그룹 5 0.016 0.181 0.007
도 2는 각 그룹의 Kaplan-Meir Plot를 나타낸 것이다.
도 3 내지 5는 그룹 2와 돌연변이 관계를 교차분석 및 chi-square 분석 결과로 나타낸 것이다.
도 3 내지 5에 나타난 바와 같이, 예후가 좋은 클래스 2에서 KRAS 및 PIK3CA 유전자의 돌연변이 빈도가 높았고, 예후가 나쁜 클래스 1에서는 KRAS 및 PIK3CA 유전자의 돌연변이 빈도가 낮게 나타났다. 또한, 예후가 좋은 클래스 2에서 MET 유전자의 돌연변이 빈도가 낮았고, 예후가 나쁜 클래스 1에서는 MET 유전자의 돌연변이 빈도가 높게 나타났다.
본 발명은 위암 재발 예후 예측 분야에서 진단 키트로 사용할 수 있다.

Claims (5)

  1. 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서
    KRAS, MET 및 PIK3CA로 이루어진 군으로부터 선택된 하나 이상의 유전자에서 단일 염기 다형성의 발현 여부를 측정하는 단계; 및
    상기 단일 염기 다형성의 발현 빈도에 따라 통계적으로 유의한 설정치 범위를 결정하고, 상기 설정치 범위에 따라 전체 생존율(Overall Survival, OS) 측면에서 좋은 예후 군과 나쁜 예후 군으로 분류하는 단계를 포함하는, 위암으로 진단된 대상에서 예후 예측 모형을 제조하는 방법.
  2. 제1항에 있어서,
    KRAS의 단일 염기 다형성은 A146PT_g436ca, G10R_g28a, G12DAV_g35act, G12SRC_g34act, G13DAV_g38act, G13SRC_g37act, Q61EKX_c181gat, Q61HHE_a183ctg 및 Q61LPR_a182tct로 이루어진 군으로부터 선택된 하나 이상이고, 여기서, 알파벳 대문자는 아미노산 1문자 코드이고, 알파벳 소문자는 염기를 나타내며, 숫자는 염기 또는 아미노산 잔기 위치를 나타내는 것인 방법.
  3. 제1항에 있어서,
    MET의 돌연변이는 H1112_a3335gt, H1112Y_c3334t, M1268T_t3803c, N375S_a1124g, R988C_c2962t, T1010I_c3029t, Y1248HD_t3742cg 및 Y1253D_t3757g로 이루어진 군으로부터 선택된 하나 이상이고, 여기서, 알파벳 대문자는 아미노산 1문자 코드이고, 알파벳 소문자는 염기를 나타내며, 숫자는 염기 또는 아미노산 잔기 위치를 나타내는 것인 방법.
  4. 제1항에 있어서,
    PIK3CA의 돌연변이는 A1046V_c3137t, C420R_t1258c, E110K_g328a, E418K_g1252a, E453K_g1357a, E542KQ_g1624ac, E542VG_a1625tg, E545AGV_a1634cgt, E545D_g1635ct, E545KQ_g1633ac, F909L_c2727g, G1049R_g3145c, H1047RL_a3140gt, H1047RL_a3140gt, H1047RL_a3140gt H1047Y_c3139t, H701P_a2102c, K111N_g333c, M1043I_g3129atc, M1043V_a3127g, N345K_t1035a, P539R_c1616g, Q060K_c178a, Q546EK_c1636ga, Q546LPR_a1637Tcg, R088Q_g263a, S405F_c1214t, T1025SA_a3073tg, Y1021C_a3062g 및 Y1021HN_t3061ca로 이루어진 군으로부터 선택된 하나 이상이고, 여기서, 알파벳 대문자는 아미노산 1문자 코드이고, 알파벳 소문자는 염기를 나타내며, 숫자는 염기 또는 아미노산 잔기 위치를 나타내는 것인 방법.
  5. 제1항에 있어서,
    예후 예측 모형은 TNM 병기와 상관없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 방법.
PCT/KR2014/002959 2013-04-05 2014-04-07 위암에 대한 예후 예측 모형의 제조방법 WO2014163445A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/782,519 US20160040253A1 (en) 2013-04-05 2014-04-07 Method for manufacturing gastric cancer prognosis prediction model
CN201480024783.5A CN105431738B (zh) 2013-04-05 2014-04-07 胃癌的预后预测模型的建立方法
EP14779750.0A EP2982986B1 (en) 2013-04-05 2014-04-07 Method for manufacturing gastric cancer prognosis prediction model
JP2016506253A JP6356217B2 (ja) 2013-04-05 2014-04-07 胃癌に対する予後予測模型の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130037336A KR101501826B1 (ko) 2013-04-05 2013-04-05 위암에 대한 예후 예측 모형의 제조방법
KR10-2013-0037336 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163445A1 true WO2014163445A1 (ko) 2014-10-09

Family

ID=51658661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002959 WO2014163445A1 (ko) 2013-04-05 2014-04-07 위암에 대한 예후 예측 모형의 제조방법

Country Status (6)

Country Link
US (1) US20160040253A1 (ko)
EP (1) EP2982986B1 (ko)
JP (1) JP6356217B2 (ko)
KR (1) KR101501826B1 (ko)
CN (1) CN105431738B (ko)
WO (1) WO2014163445A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851185A (zh) * 2021-11-29 2021-12-28 求臻医学科技(北京)有限公司 一种用于非小细胞肺癌患者免疫治疗的预后评估方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094569A1 (zh) * 2016-11-22 2018-05-31 深圳华大基因研究院 多肽及其应用
WO2018098636A1 (zh) * 2016-11-29 2018-06-07 深圳华大基因研究院 多肽及其应用
KR102127449B1 (ko) * 2017-02-08 2020-06-26 사회복지법인 삼성생명공익재단 생존율 예측 모델 생성 방법, 장치 및 컴퓨터 프로그램
CN108504732A (zh) * 2017-02-27 2018-09-07 复旦大学附属华山医院 一种建立胃癌的风险预测模型的方法
KR101940657B1 (ko) 2017-04-24 2019-01-21 (주) 노보믹스 위암의 생물학적 특성에 기반한 군 구분 및 예후 예측 시스템
CN107090503B (zh) * 2017-04-27 2020-06-19 元码基因科技(北京)股份有限公司 探针组合物、基因捕获芯片、试剂盒及其应用
CN107641653B (zh) * 2017-10-20 2021-02-19 南方医科大学南方医院 Macc1-as1探针在制备用于预测胃癌临床预后的诊断试剂中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055095A1 (en) * 2006-10-26 2010-03-04 Zhengyan Kan Genetic variations associated with tumors
KR20120061010A (ko) * 2010-11-02 2012-06-12 서울대학교산학협력단 위암 진단 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3556866T (pt) * 2004-03-02 2021-04-30 Univ Johns Hopkins Mutações do gene de pik3ca em cancros humanos
CN102943108B (zh) * 2006-01-05 2014-05-21 俄亥俄州立大学研究基金会 用于肺癌的诊断、预后和治疗的基于微小rna的方法和组合物
US7890267B2 (en) * 2006-03-31 2011-02-15 Ordway Research Institute Prognostic and diagnostic method for cancer therapy
EP2288728A4 (en) * 2008-05-15 2011-11-02 Univ Southern California ANALYSIS OF GENOTYPE AND EXPRESSION TO PREDICT THE EVOLUTION OF A DISEASE AND CHOOSE THE MOST SUITABLE THERAPY
KR101437718B1 (ko) * 2010-12-13 2014-09-11 사회복지법인 삼성생명공익재단 위암의 예후 예측용 마커 및 이를 이용하는 위암의 예후 예측 방법
CN103906848B (zh) * 2011-08-18 2016-03-02 雀巢产品技术援助有限公司 用于检测等位变体的组合物和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055095A1 (en) * 2006-10-26 2010-03-04 Zhengyan Kan Genetic variations associated with tumors
KR20120061010A (ko) * 2010-11-02 2012-06-12 서울대학교산학협력단 위암 진단 방법

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Ann Surg Oncol", vol. 17, 2010, article "the AJCC cancer staging Manual: stomach", pages: 3077 - 3079
DE ANDRES ET AL., BIOTECHNIQUES, vol. 18, 1995, pages 42044
QUAYE, L. ET AL.: "The Effects of Common Genetic Variants in Oncogenes on Ovarian Cancer Survival", CLINICAL CANCER RESEARCH, vol. 14, no. 18, 2008, pages 5833 - 5839, XP055286157 *
RUPP; LOCKER, LAB INVEST., vol. 56, 1987, pages A67
See also references of EP2982986A4
SIENA, S. ET AL.: "Biomarkers Predicting Clinical Outcome of Epidermal Growth Factor Receptor-Targeted Therapy in Metastatic Colorectal Cancer", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 101, no. 19, 2009, pages 1308 - 1324, XP008155321 *
WINDER, T. ET AL.: "Molecular Predictive and Prognostic Markers in Colon Cancer", CANCER TREATMENT REVIEWS, vol. 36, no. 7, 2010, pages 550 - 556, XP027398554 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851185A (zh) * 2021-11-29 2021-12-28 求臻医学科技(北京)有限公司 一种用于非小细胞肺癌患者免疫治疗的预后评估方法
CN113851185B (zh) * 2021-11-29 2022-04-19 求臻医学科技(北京)有限公司 一种用于非小细胞肺癌患者免疫治疗的预后评估方法

Also Published As

Publication number Publication date
EP2982986A4 (en) 2016-12-07
KR20140121524A (ko) 2014-10-16
JP2016515390A (ja) 2016-05-30
JP6356217B2 (ja) 2018-07-11
US20160040253A1 (en) 2016-02-11
EP2982986B1 (en) 2019-01-30
KR101501826B1 (ko) 2015-03-13
CN105431738B (zh) 2017-11-03
CN105431738A (zh) 2016-03-23
EP2982986A1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2014163445A1 (ko) 위암에 대한 예후 예측 모형의 제조방법
JP6190434B2 (ja) 化学療法剤に対する応答を予測するための遺伝子発現マーカー
CA2585571C (en) Predicting response to chemotherapy using gene expression markers
EP2504451B1 (en) Methods to predict clinical outcome of cancer
ES2787475T3 (es) Predicción de probabilidad de recurrencia del cáncer
EP2768985B1 (en) Colorectal cancer associated circulating nucleic acid biomarkers
US20160222468A1 (en) Diagnosis, prognosis and treatment of glioblastoma multiforme
KR20080065476A (ko) 폐암 환자 또는 폐암 치료를 받은 폐암 환자에 대한 폐암재발의 위험을 예측하는 방법, 폐암 환자 또는 폐암 치료를받은 환자의 폐암 재발 위험성에 대한 보고서를 작성하는방법, 그에 의하여 작성된 보고서, 폐암 환자 또는 폐암치료를 받은 폐암 환자의 폐암 재발 위험을 진단하기 위한조성물, 키트 및 마이크로어레이
WO2013086352A1 (en) Prostate cancer associated circulating nucleic acid biomarkers
JP2007509613A (ja) 遺伝子発現プロファイリングのためのqRT−PCRアッセイシステム
US9890430B2 (en) Copy number aberration driven endocrine response gene signature
WO2013103945A1 (en) Composite assay for developmental disorders
WO2017112738A1 (en) Methods for measuring microsatellite instability
AU2017281099A1 (en) Compositions and methods for diagnosing lung cancers using gene expression profiles
CN108026583A (zh) Hla-b*15:02的单核苷酸多态性及其应用
US20120004127A1 (en) Gene expression markers for colorectal cancer prognosis
US20080014579A1 (en) Gene expression profiling in colon cancers
CN111788317B (zh) 用于表征癌症的组合物和方法
KR102096498B1 (ko) 대장암 진단 또는 재발 예측을 위한 마이크로RNA-4732-5p 및 이의 용도
WO2013160176A1 (en) Diagnostic mirna profiles in multiple sclerosis
KR102096499B1 (ko) 대장암 진단 또는 재발 예측을 위한 마이크로rna-3960 및 이의 용도
US20090297506A1 (en) Classification of cancer
EP1683862B1 (en) Microarray for assessing neuroblastoma prognosis and method of assessing neuroblastoma prognosis
CN115491421A (zh) 胰腺癌诊断相关dna甲基化标志物及其应用
KR101504818B1 (ko) 위암에 대한 예후 예측 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024783.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14782519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014779750

Country of ref document: EP