WO2014163272A1 - Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor - Google Patents

Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor Download PDF

Info

Publication number
WO2014163272A1
WO2014163272A1 PCT/KR2013/010914 KR2013010914W WO2014163272A1 WO 2014163272 A1 WO2014163272 A1 WO 2014163272A1 KR 2013010914 W KR2013010914 W KR 2013010914W WO 2014163272 A1 WO2014163272 A1 WO 2014163272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
polymer binder
curable polymer
activated carbon
composition
Prior art date
Application number
PCT/KR2013/010914
Other languages
French (fr)
Korean (ko)
Inventor
장윤석
조정대
김광영
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to EP13863700.4A priority Critical patent/EP2983186B1/en
Publication of WO2014163272A1 publication Critical patent/WO2014163272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode composition for a supercapacitor, a cured product of the composition, an electrode including the cured product, a supercapacitor including the electrode, and a method of manufacturing the supercapacitor.
  • Capacitors are another form of energy storage. Capacitors separate two metal plates by a certain distance, put a dielectric between them, apply a voltage, and a charge ion layer is formed across the electrodes to store electricity. In this case, electricity is not generated by chemical reactions like batteries, but simply by electrical double layers. Therefore, the life of the electrode is almost infinite because it does not damage the electrode itself. In addition, since the charge and discharge time is not long, a large amount of current can be stored in a short time. Therefore, this device is an essential electrical storage when high power is needed.
  • capacitors are their poor electrical storage capacity.
  • the storage capacity of the capacitor is inversely proportional to the distance between the two plates and is proportional to the area. If you think that the distance is fixed, you can increase the area of the electrode plate. However, the larger the surface area, the larger the uselessness. Therefore, the effective area should be increased, not the surface area. This effective area is usually increased by making small holes in the electrodes.
  • the problem in this area is to find an electrode material with a large effective area and low electrode resistance.
  • the conductivity of the electrode is good, less energy consumption due to the reduction of joule heat.
  • Activated carbon has been used as a material that satisfies these two conditions. Activated carbon has many pores that are made during the carbonization process, so the effective surface area is wide, and because it is carbon, it has good conductivity.
  • a super capacitor is a component that is mainly used for the purpose of a battery as a reinforcement of the performance of a capacitor (condenser), especially an electric capacity.
  • Capacitors used in electronic circuits have the function of electrically charging batteries. The basic purpose is to collect power and emit it as needed. It is one of the necessary parts for stable operation of the electronic circuit.
  • the supercapacitor includes an electrode and an electrolyte layer positioned between the electrodes, and stores an energy by forming an electric double layer on the electrode and the electrolyte.
  • the activated carbon is composed of carbon having a very high specific surface area, and because of the high specific surface area, the electrode has an advantageous structure for forming an electric double layer with the ions of the electrolyte. It has a very advantageous structure for making an electric double layer.
  • the active carbons currently in use are usually very hydrophobic on surfaces made up of carbons.
  • very hydrophobic polymer binders such as polyvinylidene fluoride are used. Since water-soluble electrolytes have hydrophilic properties, there are many restrictions in forming an effective electric double layer.
  • One embodiment of the present invention is to provide an electrode composition that can prevent the functional activated carbon to be dissolved in the electrolyte solution.
  • Another embodiment of the present invention is also to provide a cured product of the composition.
  • Another embodiment of the present invention to provide an electrode including the cured product.
  • Another embodiment of the present invention to provide a super capacitor including the electrode.
  • Another embodiment of the present invention is to provide a method of manufacturing the super capacitor.
  • One embodiment of the present invention provides an electrode composition comprising activated carbon and a curable polymer binder.
  • the activated carbon may comprise a hydrophilic functional group.
  • the curable polymer binder may be at least one selected from a thermosetting polymer binder and a photocurable polymer binder.
  • the curable polymer binder may comprise a hydrophilic functional group.
  • the curable polymer binder may be a compound represented by the following formula (1).
  • the curable polymer binder may be a compound represented by the following formula (2).
  • n is an integer from 1 to 30,000.
  • the electrode composition according to the present invention may further comprise a crosslinking agent and a solvent.
  • the crosslinking agent may be a compound represented by Formula 3 below.
  • R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and m is an integer of 1 to 1,000.
  • the solvent may be a compound represented by the following formula (4).
  • the total amount of the curable polymer binder and the crosslinking agent based on 100 parts by weight of the activated carbon may be 1 part by weight to 100 parts by weight.
  • the combined amount of the activated carbon, the curable polymer binder, and the crosslinking agent based on the solvent volume may be 0.01 w / v% to 10 w / v%.
  • the present invention provides a cured product of the above-described composition, wherein the curable polymer binder may form a network of three-dimensional crosslinked structure.
  • the present invention also provides an electrode comprising the cured product.
  • the present invention is a pair of current collectors; A pair of electrodes formed to face each of the pair of current collectors and including the cured product; An electrolyte layer formed by being injected between the pair of electrodes; And it provides a super capacitor comprising a separator inserted into the electrolyte layer.
  • the electrode of the supercapacitor according to the present invention may have a thickness of 1 nm to 2 ⁇ m and may be transparent or translucent.
  • the present invention comprises the steps of coating a composition comprising activated carbon, a curable polymer binder, a crosslinking agent and a solvent on each of the pair of current collectors; Curing the composition to form a pair of opposite electrodes; Injecting an electrolyte between the pair of electrodes; Inserting a separator into the electrolyte; And it provides a method of manufacturing a super capacitor comprising the step of sealing.
  • the thickness and transparency of the electrode may be controlled by controlling the number of coating of the composition.
  • the curable polymer binder forms a network of three-dimensional crosslinked structure, the functional activated carbon can be effectively prevented from falling into the electrolyte solution. Since the network formed by the curable polymer binder is only absorbed (not swelled), the supercapacitor electrode can provide a very advantageous function by forming the maximum electric double layer through absorption of the electrolyte.
  • the network formed by the curable polymer binder ensures the conductivity of the supercapacitor electrode without a conductive agent.
  • Functional activated carbon having a hydrophilic property on its surface has a high affinity with an aqueous electrolyte solution used as an electrolyte, thereby maximizing the formation of an electric double layer.
  • the curable polymer binder can prevent the functional activated carbon from dissolving in the aqueous electrolyte solution through network formation.
  • the curable polymer binder can form a structure capable of producing sufficient conductivity without a conductive agent by reducing the distance between functional activated carbons through network formation.
  • 1 is a cross-sectional view schematically showing a stacked structure of a super capacitor.
  • FIG. 2 is a graph showing the filling capacity according to the amount of the curable polymer binder (PVP) and the crosslinking agent.
  • 3 is a graph showing the electrode thickness according to the number of coating of the electrode composition.
  • the present invention relates to an electrode composition for a supercapacitor, a cured product of the composition, an electrode including the cured product, a supercapacitor including the electrode, and a method of manufacturing the supercapacitor.
  • An electrode composition according to an embodiment of the present invention may include activated carbon and a curable polymer binder.
  • the electrode composition may further include a crosslinking agent and a solvent.
  • the electrode composition may comprise activated carbon, curable polymer binder, crosslinking agent and solvent.
  • the activated carbon is a porous material having a large effective area and excellent conductivity and low electrode resistance.
  • the activated carbon may be used in the form of a nano powder, for example, it may be used in the form of nano powder having a size of 1 nm to 1,000 nm.
  • the activated carbon may preferably be a functional activated carbon.
  • Functional activated carbon is the introduction of a hydrophilic functional group, that is, a hydrophilic functional group, on the surface of the activated carbon.
  • activated carbon into which such hydrophilic functional groups have been introduced for example, activated carbon having one or more hydrophilic functional groups introduced therein may be used, and activated carbon having many hydrophilic functional groups introduced therein may be used.
  • the curable polymer binder serves to form a cured product when the electrode composition of the present invention is cured, and in particular, serves to form a network of three-dimensional crosslinked structure in the cured product.
  • thermosetting polymer binder 1 or more types chosen from a thermosetting polymer binder and a photocurable polymer binder can be used.
  • one kind of thermosetting polymer binder can be used, several kinds of thermosetting polymer binders can be used in combination, and also one kind of photocurable polymer binder can be used, and several kinds of photocurable polymer binders can be used. May be used in combination, and one or several kinds of thermosetting polymer binders and one or several kinds of photocurable polymer binders may be used in combination.
  • the curable polymer binder may include a hydrophilic functional group like the activated carbon, wherein the hydrophilic functional group is -COOH, -OH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM (M Silver may be one or more selected from alkali metals or NH 4 ), ⁇ O, —CO.
  • a curable polymer binder containing such hydrophilic functional groups it is advantageous to form an effective network in combination with functional activated carbon, and also to form an effective electric double layer.
  • the weight average molecular weight (Mw) of the curable polymer binder may be 500 to 500,000.
  • a compound represented by the following formula (1) may be used as the curable polymer binder containing a hydrophilic functional group.
  • the compound represented by the following formula (2) can be used as the curable polymer binder containing a hydrophilic functional group.
  • n is an integer from 1 to 30,000.
  • the compound of Formula 2 is poly (4-vinylphenol) (Poly (4-vinylphenol: hereinafter referred to as PVP).
  • the weight average molecular weight (Mw) of the PVP may be 100,000 or less, and may be 500 to 100,000.
  • the PVP may have a weight average molecular weight of 50,000 or less and 5000 to 50,000.
  • the crosslinking agent combines with the curable polymer binder to form a three-dimensional network of crosslinked structures in the cured product.
  • the number average molecular weight (Mn) can use what is 50-500,000.
  • Suitable crosslinking agents in one embodiment of the present invention include compounds represented by the following formula (3).
  • R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and m is an integer of 1 to 1,000.
  • R 3 to R 6 may be each independently hydrogen or a methyl group.
  • poly (melamine-co-formaldehyde) methylated may be used as the compound of Formula 3, wherein the number average molecular weight (Mn) is 10,000 or less. And may be 400 to 10,000.
  • the number average molecular weight (Mn) of the poly (melamine-co-formaldehyde) methylated (poly (melamine-co-formaldehyde), methylated) may be 1,000 or less, and may be 400 to 1000.
  • the solvent serves to form the electrode by a method such as coating by including each component of the electrode composition in a dissolved state and / or dispersed state.
  • the solvent usable in the present invention is not particularly limited, but preferably, a compound represented by the following Chemical Formula 4 may be used.
  • the compound of Formula 4 is propylene glycol methyl ether acetate.
  • the total amount of the curable polymer binder and the crosslinking agent based on 100 parts by weight of the activated carbon may be 100 parts by weight or less. That is, the curable polymer binder and the crosslinking agent may be used in an amount equal to or less than the activated carbon.
  • the amount of the curable polymer binder and the crosslinking agent is 1 to 100 parts by weight based on 100 parts by weight of the activated carbon based on the sum of the two components. Parts, preferably 1 to 50 parts by weight. If the amount of the curable polymer binder and the crosslinking agent is too small relative to the amount of activated carbon, the activated carbon may be separated from the formed electrode.
  • the amount of the curable polymer binder and the crosslinking agent when the amount of the curable polymer binder and the crosslinking agent is too high compared to the amount of activated carbon, the electrode resistance may increase while the conductivity is lowered.
  • the curable polymer binder plays a role of a binder together with a crosslinking agent, the amount of the curable polymer binder and the crosslinking agent is important, and the ratio of the curable polymer binder and the crosslinking agent is not an important factor, and is suitably within the range of use of the curable polymer binder and the crosslinking agent. I can regulate it.
  • the combined amount of the activated carbon, the curable polymer binder, and the crosslinking agent based on the solvent may be 10 w / v% or less. That is, most of the electrode composition according to the present invention is occupied by a solvent, and the sum of the remaining components except for the solvent is 0.01 w / v% to 10 w / v%, preferably 0.1 w / v% to 5 w / v%. , More preferably from 0.5 w / v% to 2 w / v%.
  • the amount of the remaining components except for the solvent is too small, it may be difficult to form the electrode or cured material or the physical properties may be lowered. On the contrary, when the amount of the remaining components other than the solvent is relatively high, coating workability may deteriorate or physical properties may deteriorate.
  • this invention provides the hardened
  • the curable polymer binder in the cured product is characterized by forming a network of three-dimensional crosslinked structure together with a crosslinking agent.
  • the present invention also provides an electrode comprising the cured product.
  • the electrode for the supercapacitor according to the present invention is made of a cured product of the electrode composition according to the present invention, thereby preventing the functional activated carbon from falling off from the formed electrode.
  • the present invention is a pair of current collectors; A pair of electrodes formed to face each of the pair of current collectors and including the cured product; An electrolyte layer formed by being injected between the pair of electrodes; And it provides a super capacitor comprising a separator inserted into the electrolyte layer.
  • the supercapacitor according to the present invention includes a pair of current collectors 10 and 70, a pair of electrodes 20 and 60, a pair of electrolyte layers 30 and 50, and a separator 40. It can be composed of).
  • the current collectors 10 and 70 may be made of a material such as metal, glass, plastic, or the like.
  • the current collector may be aluminum, nickel, copper, SUS, iron, silver, gold, platinum, transparent indium tin oxide (ITO), poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) It may be prepared such as.
  • the current collector may be a substrate coated with a wire or a coating layer.
  • the wire or coating layer may be a conductive material such as Ag, Au, Al, Ni, Co, Cu, Pt or graphene, carbon nanotubes (CNT), or a metal composite, and the substrate may be polyethylene terephthalate, polyimide, or It may be glass.
  • the electrodes 20 and 60 are formed on each of the pair of current collectors 10 and 70, and are specifically formed to face each other between the current collectors 10 and 70. As described above, the electrodes 20 and 60 are made of a cured product of the electrode composition according to the present invention.
  • the thickness of the electrodes 20 and 60 is not particularly limited, and may be formed in various thicknesses by controlling the number of coatings. For example, a thickness of 2 ⁇ m or less, preferably 10 nm to 1,500 nm, more preferably 100 nm to 1,000 nm, based on the average thickness may be formed for each coating. For example, when a thickness of 0.8 ⁇ 0.5 ⁇ m is formed based on the average thickness of each coating, an electrode having a thickness of 5 ⁇ 1 ⁇ m may be formed in six repeated coatings.
  • the thickness of the electrodes 20, 60 and the transparency is inversely related, that is, the transparency decreases as the thickness of the electrodes 20, 60 increases, on the contrary, the thinner the thickness of the electrodes 20, 60 Transparency increases.
  • a transparent or semitransparent electrode may be obtained.
  • the transparent may refer to the case where the light transmittance exceeds 70%
  • the translucent may refer to the case where the light transmittance is 30 to 70%
  • the opacity may refer to the case where the light transmittance is less than 30%. have.
  • the number of coatings is limited to about 1 to 2 times to adjust the thickness of the electrodes 20 and 60 to 2 ⁇ m or less, thereby obtaining a transparent or semitransparent electrode. Conversely, if the number of coatings is repeated five or more times, the electrode material becomes opaque with full coverage of the electrode material.
  • the electrolyte layers 30 and 50 may be injected and formed between the pair of electrodes 20 and 60.
  • the aqueous electrolyte can be suitably used as the electrolyte of the electrolyte layer.
  • the aqueous electrolyte may include an electrolytic salt and a solvent.
  • the electrolytic salt any of the electrolytic salts used in the aqueous electrolyte may be used, and examples thereof may include acidic electrolytic salts, neutral electrolytic salts, or basic electrolytic salts.
  • Specific examples of the electrolytic salt include sulfuric acid, sodium sulfate, potassium chloride, potassium hydroxide or a combination thereof having high ion conductivity.
  • Water may be used as the solvent.
  • concentration of the electrolyte may be about 0.1M to 6M.
  • the separator 40 is formed between the pair of electrodes 20 and 60, that is, formed in the middle of the electrolyte layers 30 and 50.
  • the separator 40 is preferably a porous separator having a plurality of pores, the pore of the porous separator is preferably sized to pass only the electrolyte solution.
  • the separator may be cellulose, polyolefin, celgard S-20, rayon, or the like.
  • the present invention comprises the steps of coating a composition comprising activated carbon, a curable polymer binder, a crosslinking agent and a solvent on each of the pair of current collectors; Curing the composition to form a pair of opposite electrodes; Injecting an electrolyte between the pair of electrodes; Inserting a separator into the electrolyte; And it provides a method of manufacturing a super capacitor comprising the step of sealing.
  • an electrode composition comprising activated carbon, a curable polymer binder, a crosslinking agent, and a solvent is coated on each of the pair of current collectors 10 and 70.
  • the coating method is not particularly limited and may use most existing coating processes, for example spray coating, slot die coating, bar coating, blade coating, and the like. have.
  • the coated electrode composition is cured to form a pair of opposite electrodes 20 and 60.
  • Curing may be accomplished through thermal curing and / or photocuring, for example at a temperature of 150 to 200 ° C. for thermal curing, and by ultraviolet (UV) irradiation for photocuring.
  • UV ultraviolet
  • the electrolyte solution is injected between the formed two electrodes 20 and 60 to form the electrolyte layers 30 and 50.
  • the electrolyte solution may contain a solvent such as an electrolytic salt such as sulfuric acid, sodium sulfate, potassium chloride and the like with high ionic conductivity and water.
  • the separator 40 is inserted into the electrolyte layers 30 and 50 between the electrodes 20 and 60.
  • the ink can be functionalized and various coating processes (most of the existing coating processes) can be applied. Since the curable polymer binder forms a network of three-dimensional crosslinked structure, the functional activated carbon can be effectively prevented from falling into the electrolyte solution. Since the network formed by the curable polymer binder is only absorbed (not swelled), the supercapacitor electrode can provide a very advantageous function by forming the maximum electric double layer through absorption of the electrolyte. The network formed by the curable polymer binder ensures the conductivity of the supercapacitor electrode without a conductive agent.
  • Functional activated carbon having a hydrophilic property on its surface has a high affinity with an aqueous electrolyte solution used as an electrolyte, thereby maximizing the formation of an electric double layer.
  • the curable polymer binder can prevent the functional activated carbon from dissolving in the aqueous electrolyte solution through network formation.
  • the curable polymer binder can form a structure capable of producing sufficient conductivity without a conductive agent by reducing the distance between functional activated carbons through network formation.
  • Each of the pair of current collectors was coated with an electrode composition comprising activated carbon, curable polymer binder, crosslinking agent and solvent.
  • the electrode composition was prepared by adding 1 g of activated carbon nanopowder to 100 mL of solvent, and adding the curable polymer binder and the crosslinking agent in the amounts shown in Table 1 in the range of 0.01 to 1 g in a combined amount.
  • PVP Mw: 20,000
  • Poly (melamine-co-formaldehyde) methylated (Mn: 511) was used and propylene glycol methyl ether acetate was used as the solvent.
  • the coating process was carried out five times, using a spray coating. Thereafter, the coated electrode composition was thermally cured at 180 ° C. to form a pair of electrodes facing each other, and then an electrolyte solution was injected to form an electrolyte layer between two formed electrodes.
  • an electrolyte solution a water solution in which 1 M sodium sulfate was dissolved was used. Subsequently, a porous separator was inserted into the electrolyte layer between the two electrodes, and the electrolyte solution was sealed to prevent leakage of the electrolyte to prepare a supercapacitor.
  • the charge capacity according to the amount of the curable polymer binder (PVP) and the crosslinking agent was measured.
  • the results are shown in FIG.
  • Example 3 The same procedure as in Example 3 was carried out except that the coating was performed once.
  • Example 3 The same procedure as in Example 3 was carried out except that the coating was performed twice.
  • Example 3 The same procedure as in Example 3 was carried out except that the coating was performed three times.
  • Example 3 The same procedure as in Example 3 was carried out except that the coating was performed four times.
  • Example 3 The same procedure as in Example 3 was carried out except that the coating was performed six times.
  • the electrode thicknesses of Examples 7 to 11 were measured.
  • the electrode thickness of Example 3 was measured. The results are shown in FIG. As shown in FIG. 3, as the number of coatings increased, the electrode thickness became thicker, and in particular, the coating thickness increased by about 0.8 ⁇ 0.5 ⁇ m as the average thickness for each coating.
  • Figure 4 shows the electrode picture according to the number of coating of the electrode composition of Example 7 and Example 3. As shown in FIG. 4, when only one coating was performed, a transparent or translucent electrode was obtained, and when the coating was repeated five or more times, the electrode material covered the entire surface.

Abstract

The present invention relates to: an electrode composition for supercapacitors that solves the problem of functional activated carbon dissolving into the electrolyte solution by using a curable polymer binder; a cured product of said composition; an electrode comprising said cured product; a supercapacitor comprising said electrode, and a manufacturing method for said supercapacitor.

Description

슈퍼 커패시터용 전극 조성물, 상기 조성물의 경화물, 상기 경화물을 포함하는 전극, 상기 전극을 포함하는 커패시터 및 상기 슈퍼 커패시터의 제조 방법An electrode composition for a supercapacitor, a cured product of the composition, an electrode containing the cured product, a capacitor including the electrode and a method of manufacturing the supercapacitor
본 발명은 슈퍼 커패시터용 전극 조성물, 상기 조성물의 경화물, 상기 경화물을 포함하는 전극, 상기 전극을 포함하는 슈퍼 커패시터 및 상기 슈퍼 커패시터의 제조방법에 관한 것이다.The present invention relates to an electrode composition for a supercapacitor, a cured product of the composition, an electrode including the cured product, a supercapacitor including the electrode, and a method of manufacturing the supercapacitor.
커패시터는 에너지 저장체의 또 다른 형태이다. 커패시터는 두 개의 금속판을 일정거리만큼 떼어놓고 그 사이에 유전체를 넣어주어 전압을 걸어주면 전극 양단에 전하이온층이 형성되어 전기를 저장한다. 이 경우 전기는 전지처럼 화학작용에 의해 발생하지 않고 단순히 전기 이중층에 의해 만들어진다. 따라서 전극 자체를 손상시키지 않아 수명은 거의 무한대이다. 또한 충방전 시간이 길지 않아 짧은 시간에 많은 양의 전류를 저장할 수 있다. 그러므로 이 장치는 고출력이 필요할 때 긴요한 전기저장체이다.Capacitors are another form of energy storage. Capacitors separate two metal plates by a certain distance, put a dielectric between them, apply a voltage, and a charge ion layer is formed across the electrodes to store electricity. In this case, electricity is not generated by chemical reactions like batteries, but simply by electrical double layers. Therefore, the life of the electrode is almost infinite because it does not damage the electrode itself. In addition, since the charge and discharge time is not long, a large amount of current can be stored in a short time. Therefore, this device is an essential electrical storage when high power is needed.
커패시터의 유일한 단점은 전기저장능력이 떨어진다는 점이다. 커패시터의 저장용량은 두 판 사이의 거리에 반비례하고 면적에 비례한다. 만약 거리가 고정되어 있다고 생각하면 전극판의 면적을 늘리면 된다. 그러나 겉면적이 커지면 덩치가 커져 쓸모가 없다. 따라서 겉면적이 아니라 유효면적을 늘려야 한다. 이 유효면적은 보통 전극에 작은 구멍을 만들어 증가시킨다. The only disadvantage of capacitors is their poor electrical storage capacity. The storage capacity of the capacitor is inversely proportional to the distance between the two plates and is proportional to the area. If you think that the distance is fixed, you can increase the area of the electrode plate. However, the larger the surface area, the larger the uselessness. Therefore, the effective area should be increased, not the surface area. This effective area is usually increased by making small holes in the electrodes.
결국 이 분야의 문제는 유효면적이 큰 다공성 물질이면서 전극저항이 낮은 전극물질을 찾아내는 것이다. 물론 전극의 전도성이 좋아야 줄열의 감소에 의한 에너지 소모가 적다. 이 두 가지 조건을 만족하는 재료로서 이제까지 활성탄이 이용되었다. 활성탄은 탄화과정 동안 만들어지는 동공들이 많아 소위 유효 표면적이 넓고, 탄소라서 전도성도 좋아 지금까지 상업용으로 이 재료를 많이 쓰고 있다.After all, the problem in this area is to find an electrode material with a large effective area and low electrode resistance. Of course, the conductivity of the electrode is good, less energy consumption due to the reduction of joule heat. Activated carbon has been used as a material that satisfies these two conditions. Activated carbon has many pores that are made during the carbonization process, so the effective surface area is wide, and because it is carbon, it has good conductivity.
슈퍼 커패시터(super capacitor)는 커패시터(콘덴서)의 성능 중 특히 전기 용량의 성능을 중점적으로 강화한 것으로서, 전지의 목적으로 사용하도록 한 부품이다. 전자 회로에 사용되는 커패시터는 전기적으로 충전지와 같은 기능을 갖는다. 전력을 모아서 필요에 따라 방출한다는 것이 기본 취지이며, 전자 회로를 안정되게 동작시키기 위해서는 반드시 필요한 부품의 하나이다. A super capacitor is a component that is mainly used for the purpose of a battery as a reinforcement of the performance of a capacitor (condenser), especially an electric capacity. Capacitors used in electronic circuits have the function of electrically charging batteries. The basic purpose is to collect power and emit it as needed. It is one of the necessary parts for stable operation of the electronic circuit.
이러한 슈퍼 커패시터는 전극 및, 전극 사이에 위치하는 전해질층을 포함하며, 전극 및 전해액에 전기 이중층(electric double layer)을 형성하여 에너지를 저장한다.The supercapacitor includes an electrode and an electrolyte layer positioned between the electrodes, and stores an energy by forming an electric double layer on the electrode and the electrolyte.
상기 전극의 주성분은 활성 탄소로서, 활성 탄소는 비표면적이 매우 높은 탄소로 이루어져 있고, 높은 비표면적으로 인해 전해질의 이온들과 전기 이중층을 만들기 유리한 구조를 지니고 있으며, 또한 탄소 자체가 전기를 통하기 때문에 전기 이중층을 만들기 매우 유리한 구조를 지니고 있다.Since the main component of the electrode is activated carbon, the activated carbon is composed of carbon having a very high specific surface area, and because of the high specific surface area, the electrode has an advantageous structure for forming an electric double layer with the ions of the electrolyte. It has a very advantageous structure for making an electric double layer.
그러나 현재 사용되고 있는 활성 탄소들은 탄소들로 이루어져 있는 표면에 대체로 매우 소수성(hydrophobic) 성질을 띠고 있다. 또한, 폴리비닐리덴 플루오라이드(polyvinylidene fluoride)와 같은 매우 소수성의 폴리머 바인더를 사용하고 있다. 수용성의 전해질은 친수성(hydrophilic) 성질을 지니고 있기 때문에, 효과적인 전기 이중층을 형성하는데 많은 제약이 따른다.However, the active carbons currently in use are usually very hydrophobic on surfaces made up of carbons. In addition, very hydrophobic polymer binders such as polyvinylidene fluoride are used. Since water-soluble electrolytes have hydrophilic properties, there are many restrictions in forming an effective electric double layer.
이러한 제약을 해소하기 위해, 활성 탄소의 표면에 -COOH, -OH 등과 같은 친수성 성질의 기능성 관능기(functional group)를 도입하면, 즉 기능성 활성 탄소를 제작할 경우, 효과적인 전기 이중층을 형성하는데 매우 유리하다.In order to solve this limitation, the introduction of a hydrophilic functional group such as -COOH, -OH, etc. on the surface of the activated carbon, that is, when manufacturing the functional activated carbon, is very advantageous for forming an effective electric double layer.
그러나 이러한 기능성 활성 탄소는 표면이 친수성 성질을 지니므로, 전해질로 사용하는 수용액성 전해질 용액에 녹아내린다는 단점이 있다.However, since such functional activated carbon has hydrophilic properties on its surface, it has a disadvantage in that it is dissolved in an aqueous electrolyte solution used as an electrolyte.
본 발명의 일 구현예는 기능성 활성 탄소가 전해질 용액에 녹아내리지 않게 할 수 있는 전극 조성물을 제공하는 것이다.One embodiment of the present invention is to provide an electrode composition that can prevent the functional activated carbon to be dissolved in the electrolyte solution.
본 발명의 다른 일 구현예는 또한 상기 조성물의 경화물을 제공하는 것이다.Another embodiment of the present invention is also to provide a cured product of the composition.
본 발명의 또 다른 일 구현예는 상기 경화물을 포함하는 전극을 제공하는 것이다.Another embodiment of the present invention to provide an electrode including the cured product.
본 발명의 또 다른 일 구현예는 상기 전극을 포함하는 슈퍼 커패시터를 제공하는 것이다.Another embodiment of the present invention to provide a super capacitor including the electrode.
본 발명의 또 다른 일 구현예는 상기 슈퍼 커패시터의 제조방법을 제공하는 것이다.Another embodiment of the present invention is to provide a method of manufacturing the super capacitor.
본 발명의 일 구현예는 활성 탄소 및 경화성 폴리머 바인더를 포함하는 전극 조성물을 제공한다.One embodiment of the present invention provides an electrode composition comprising activated carbon and a curable polymer binder.
본 발명의 일 실시형태에 따르면, 상기 활성 탄소는 친수성 관능기를 포함할 수 있다.According to one embodiment of the invention, the activated carbon may comprise a hydrophilic functional group.
상기 친수성 관능기로는 관능기는 -COOH, -OH, -SO3H, -NH2, -NH4, -SO3, -COOM(M은 알칼리금속 또는 NH4), =O, -CO 중에서 선택되는 1종 이상일 수 있다As the hydrophilic functional group, the functional group is selected from -COOH, -OH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM (M is an alkali metal or NH 4 ), = O, -CO May be one or more
상기 경화성 폴리머 바인더는 열 경화성 폴리머 바인더 및 광 경화성 폴리머 바인더 중에서 선택되는 1종 이상일 수 있다.The curable polymer binder may be at least one selected from a thermosetting polymer binder and a photocurable polymer binder.
상기 경화성 폴리머 바인더는 친수성 관능기를 포함할 수 있다. 본 발명의 일 실시형태에 따르면, 상기 경화성 폴리머 바인더는 하기 화학식 1로 표시되는 화합물일 수 있다.The curable polymer binder may comprise a hydrophilic functional group. According to one embodiment of the invention, the curable polymer binder may be a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2013010914-appb-I000001
Figure PCTKR2013010914-appb-I000001
상기 식에서, R1은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 18의 아릴기, 또는 (-CH2CH-)n이고, n은 1 내지 20,000의 정수이며, R2는 -OH, -COOH, -SO3H, -NH2, -NH4, -SO3, -COOM, =O 또는 -CO이고, M은 알칼리금속 또는 NH4이다.Wherein R 1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or (—CH 2 CH—) n , n is an integer of 1 to 20,000, R 2 is —OH, —COOH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM, = O or -CO, M is an alkali metal or NH 4 .
본 발명의 일 실시형태에 따르면, 상기 경화성 폴리머 바인더는 하기 화학식 2로 표시되는 화합물일 수 있다.According to one embodiment of the invention, the curable polymer binder may be a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2013010914-appb-I000002
Figure PCTKR2013010914-appb-I000002
상기 식에서, n은 1 내지 30,000의 정수이다.Wherein n is an integer from 1 to 30,000.
본 발명에 따른 전극 조성물은 가교제 및 용매를 추가로 포함할 수 있다.The electrode composition according to the present invention may further comprise a crosslinking agent and a solvent.
본 발명에서 상기 가교제는 하기 화학식 3으로 표시되는 화합물일 수 있다.In the present invention, the crosslinking agent may be a compound represented by Formula 3 below.
[화학식 3][Formula 3]
Figure PCTKR2013010914-appb-I000003
Figure PCTKR2013010914-appb-I000003
상기 식에서, R3 내지 R6은 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 18의 아릴기이고, m은 1 내지 1,000의 정수이다.In the above formula, R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and m is an integer of 1 to 1,000.
본 발명에서 상기 용매는 하기 화학식 4로 표시되는 화합물일 수 있다.In the present invention, the solvent may be a compound represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2013010914-appb-I000004
Figure PCTKR2013010914-appb-I000004
본 발명에 따른 전극 조성물에서 상기 활성 탄소 100 중량부에 대하여 경화성 폴리머 바인더 및 가교제를 합한 양은 1 중량부 내지 100 중량부일 수 있다.In the electrode composition according to the present invention, the total amount of the curable polymer binder and the crosslinking agent based on 100 parts by weight of the activated carbon may be 1 part by weight to 100 parts by weight.
본 발명에 따른 전극 조성물에서 상기 용매 부피를 기준으로 활성 탄소, 경화성 폴리머 바인더 및 가교제를 합한 양은 0.01 w/v% 내지 10 w/v%일 수 있다.In the electrode composition according to the present invention, the combined amount of the activated carbon, the curable polymer binder, and the crosslinking agent based on the solvent volume may be 0.01 w / v% to 10 w / v%.
또한, 본 발명은 상술한 조성물을 경화시킨 경화물을 제공하며, 상기 경화물 내에서 경화성 폴리머 바인더는 3차원적 가교 구조의 네트워크를 형성할 수 있다.In addition, the present invention provides a cured product of the above-described composition, wherein the curable polymer binder may form a network of three-dimensional crosslinked structure.
또한, 본 발명은 상기 경화물을 포함하는 전극을 제공한다.The present invention also provides an electrode comprising the cured product.
또한, 본 발명은 한 쌍의 집전체; 상기 한 쌍의 집전체 각각에 마주보도록 형성되고, 상기 경화물을 포함하는 한 쌍의 전극; 상기 한 쌍의 전극 사이에 주입되어 형성되는 전해질층; 및 상기 전해질층에 삽입되는 분리막을 포함하는 슈퍼 커패시터를 제공한다.In addition, the present invention is a pair of current collectors; A pair of electrodes formed to face each of the pair of current collectors and including the cured product; An electrolyte layer formed by being injected between the pair of electrodes; And it provides a super capacitor comprising a separator inserted into the electrolyte layer.
본 발명에 따른 슈퍼 커패시터의 전극은 1 nm 내지 2 ㎛의 두께를 가지면서 투명 또는 반투명할 수 있다.The electrode of the supercapacitor according to the present invention may have a thickness of 1 nm to 2 μm and may be transparent or translucent.
또한, 본 발명은 한 쌍의 집전체 각각에 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함하는 조성물을 코팅하는 단계; 상기 조성물을 경화시켜 마주보는 한 쌍의 전극을 형성하는 단계; 상기 한 쌍의 전극 사이에 전해질을 주입하는 단계; 상기 전해질에 분리막을 삽입하는 단계; 및 밀봉하는 단계를 포함하는 슈퍼 커패시터의 제조방법을 제공한다.In addition, the present invention comprises the steps of coating a composition comprising activated carbon, a curable polymer binder, a crosslinking agent and a solvent on each of the pair of current collectors; Curing the composition to form a pair of opposite electrodes; Injecting an electrolyte between the pair of electrodes; Inserting a separator into the electrolyte; And it provides a method of manufacturing a super capacitor comprising the step of sealing.
본 발명에 따른 슈퍼 커패시터의 제조방법에서 상기 조성물의 코팅 횟수를 조절하여 전극의 두께 및 투명도를 조절할 수 있다.In the manufacturing method of the supercapacitor according to the present invention, the thickness and transparency of the electrode may be controlled by controlling the number of coating of the composition.
본 발명에서는 경화성 폴리머 바인더를 도입하여 기능성 활성 탄소의 문제점을 해결할 수 있다. 경화성 폴리머 바인더를 사용할 경우, 기능성 활성 탄소의 잉크화가 가능하여 다양한 코팅 공정(통상 대부분의 코팅공정)을 적용할 수 있다. In the present invention, it is possible to solve the problem of functional activated carbon by introducing a curable polymer binder. In the case of using the curable polymer binder, it is possible to ink functional functional carbon so that various coating processes (usually most coating processes) can be applied.
경화성 폴리머 바인더는 3차원적 가교 구조의 네트워크를 형성하기 때문에 기능성 활성 탄소가 전해질 용액 속으로 떨어져 나가는 것을 효과적으로 방지할 수 있다. 경화성 폴리머 바인더가 형성하는 네트워크는 녹지는 않고 흡수(swelling)만 되기 때문에, 슈퍼 커패시터 전극을 제조할 경우 전해액의 흡수를 통한 최대한의 전기 이중층을 형성할 수 있어 매우 유리한 기능을 제공할 수 있다. Since the curable polymer binder forms a network of three-dimensional crosslinked structure, the functional activated carbon can be effectively prevented from falling into the electrolyte solution. Since the network formed by the curable polymer binder is only absorbed (not swelled), the supercapacitor electrode can provide a very advantageous function by forming the maximum electric double layer through absorption of the electrolyte.
경화성 폴리머 바인더가 형성하는 네트워크를 통해 도전제 없이도 슈퍼 커패시터 전극의 전도도를 확보할 수 있다. 표면이 친수성 성질을 지닌 기능성 활성 탄소는 전해질로 사용하는 수용액성 전해질 용액과의 친화도가 매우 높아 전기 이중층 형성을 극대화할 수 있다. 경화성 폴리머 바인더는 네트워크 형성을 통해 수용액성 전해질 용액에 기능성 활성 탄소가 녹아나는 것을 막아줄 수 있다. 경화성 폴리머 바인더는 네트워크 형성을 통해 기능성 활성 탄소 간의 거리를 줄여 도전제 없이도 충분한 전도도를 낼 수 있는 구조를 형성할 수 있다.The network formed by the curable polymer binder ensures the conductivity of the supercapacitor electrode without a conductive agent. Functional activated carbon having a hydrophilic property on its surface has a high affinity with an aqueous electrolyte solution used as an electrolyte, thereby maximizing the formation of an electric double layer. The curable polymer binder can prevent the functional activated carbon from dissolving in the aqueous electrolyte solution through network formation. The curable polymer binder can form a structure capable of producing sufficient conductivity without a conductive agent by reducing the distance between functional activated carbons through network formation.
도 1은 슈퍼 커패시터의 적층구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing a stacked structure of a super capacitor.
도 2는 경화성 폴리머 바인더(PVP) 및 가교제의 사용량에 따른 충전용량을 나타낸 그래프이다.2 is a graph showing the filling capacity according to the amount of the curable polymer binder (PVP) and the crosslinking agent.
도 3은 전극 조성물의 코팅 횟수에 따른 전극 두께를 나타낸 그래프이다.3 is a graph showing the electrode thickness according to the number of coating of the electrode composition.
도 4는 전극 조성물의 코팅 횟수에 따른 전극 사진이다.4 is an electrode photograph according to the number of coating of the electrode composition.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 슈퍼 커패시터용 전극 조성물, 상기 조성물의 경화물, 상기 경화물을 포함하는 전극, 상기 전극을 포함하는 슈퍼 커패시터 및 상기 슈퍼 커패시터의 제조방법에 관한 것이다.The present invention relates to an electrode composition for a supercapacitor, a cured product of the composition, an electrode including the cured product, a supercapacitor including the electrode, and a method of manufacturing the supercapacitor.
본 발명의 일 구현예에 따른 전극 조성물은 활성 탄소 및 경화성 폴리머 바인더를 포함할 수 있다. 상기 전극 조성물은 가교제 및 용매를 추가로 포함할 수도 있다. 본 발명의 바람직한 실시형태에 따르면, 전극 조성물은 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함할 수 있다.An electrode composition according to an embodiment of the present invention may include activated carbon and a curable polymer binder. The electrode composition may further include a crosslinking agent and a solvent. According to a preferred embodiment of the present invention, the electrode composition may comprise activated carbon, curable polymer binder, crosslinking agent and solvent.
상기 활성 탄소는 전극 조성물의 주성분으로서, 유효면적이 큰 다공성 물질이면서 전도성이 우수하고 전극저항이 낮은 물질이다. 상기 활성 탄소는 나노 분말 형태로 사용될 수 있으며, 예를 들어 1 nm 내지 1,000 nm의 크기를 갖는 나노 분말 형태의 활성 탄소를 사용할 수 있다.As the main component of the electrode composition, the activated carbon is a porous material having a large effective area and excellent conductivity and low electrode resistance. The activated carbon may be used in the form of a nano powder, for example, it may be used in the form of nano powder having a size of 1 nm to 1,000 nm.
상기 활성 탄소는 바람직하게는 기능성 활성 탄소일 수 있다. 기능성 활성 탄소는 활성 탄소의 표면에 친수성 성질의 기능성 관능기, 즉 친수성 관능기를 도입한 것이다. 이때, 도입되는 친수성 관능기는 -COOH, -OH, -SO3H, -NH2, -NH4, -SO3, -COOM(M은 알칼리금속 또는 NH4), =O, -CO 중에서 선택되는 1종 이상일 수 있다. 이러한 친수성 관능기가 도입된 활성 탄소는, 예를 들어 한 종류의 친수성 관능기가 1개 또는 다수 개로 도입된 활성 탄소를 사용할 수 있고, 여러 종류의 친수성 관능기가 다수 개로 도입된 활성 탄소를 사용할 수 있다. The activated carbon may preferably be a functional activated carbon. Functional activated carbon is the introduction of a hydrophilic functional group, that is, a hydrophilic functional group, on the surface of the activated carbon. In this case, the hydrophilic functional groups to be introduced are selected from -COOH, -OH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM (M is an alkali metal or NH 4 ), = O, -CO It may be one or more. As the activated carbon into which such hydrophilic functional groups have been introduced, for example, activated carbon having one or more hydrophilic functional groups introduced therein may be used, and activated carbon having many hydrophilic functional groups introduced therein may be used.
이러한 친수성 관능기를 활성 탄소의 표면에 도입하면, 즉 기능성 활성 탄소를 제조할 경우, 효과적인 전기 이중층을 형성하는데 매우 유리하다.The introduction of such hydrophilic functional groups onto the surface of activated carbon, ie when producing functional activated carbon, is very advantageous for forming an effective electrical double layer.
상기 경화성 폴리머 바인더는 본 발명의 전극 조성물이 경화될 경우 경화물을 형성하는 역할을 하며, 특히 경화물 내에서 3차원적 가교 구조의 네트워크를 형성하는 역할을 한다.The curable polymer binder serves to form a cured product when the electrode composition of the present invention is cured, and in particular, serves to form a network of three-dimensional crosslinked structure in the cured product.
상기 경화성 폴리머 바인더로는 열 경화성 폴리머 바인더 및 광 경화성 폴리머 바인더 중에서 선택되는 1종 이상을 사용할 수 있다. 예를 들어, 한 종류의 열 경화성 폴리머 바인더를 사용할 수 있고, 여러 종류의 열 경화성 폴리머 바인더를 조합하여 사용할 수 있으며, 또한 한 종류의 광 경화성 폴리머 바인더를 사용할 수 있고, 여러 종류의 광 경화성 폴리머 바인더를 조합하여 사용할 수 있으며, 또한 한 종류 또는 여러 종류의 열 경화성 폴리머 바인더 및 한 종류 또는 여러 종류의 광 경화성 폴리머 바인더를 조합하여 사용할 수 있다.As said curable polymer binder, 1 or more types chosen from a thermosetting polymer binder and a photocurable polymer binder can be used. For example, one kind of thermosetting polymer binder can be used, several kinds of thermosetting polymer binders can be used in combination, and also one kind of photocurable polymer binder can be used, and several kinds of photocurable polymer binders can be used. May be used in combination, and one or several kinds of thermosetting polymer binders and one or several kinds of photocurable polymer binders may be used in combination.
상기 경화성 폴리머 바인더는 상기 활성 탄소와 마찬가지로 친수성 관능기를 포함할 수 있는데, 이때 상기 친수성 관능기는 -COOH, -OH, -SO3H, -NH2, -NH4, -SO3, -COOM(M은 알칼리금속 또는 NH4), =O, -CO 중에서 선택되는 1종 이상일 수 있다. 이러한 친수성 관능기를 포함하는 경화성 폴리머 바인더를 사용할 경우, 기능성 활성 탄소와 조합되어 효과적인 네트워크 형성에 유리하고, 또한 효과적인 전기 이중층을 형성하는 데에도 매우 유리하다.The curable polymer binder may include a hydrophilic functional group like the activated carbon, wherein the hydrophilic functional group is -COOH, -OH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM (M Silver may be one or more selected from alkali metals or NH 4 ), ═O, —CO. When using a curable polymer binder containing such hydrophilic functional groups, it is advantageous to form an effective network in combination with functional activated carbon, and also to form an effective electric double layer.
상기 경화성 폴리머 바인더의 중량 평균 분자량(Mw)는 500 내지 500,000일 수 있다.The weight average molecular weight (Mw) of the curable polymer binder may be 500 to 500,000.
바람직하게는, 친수성 관능기를 포함하는 경화성 폴리머 바인더로는 하기 화학식 1로 표시되는 화합물을 사용할 수 있다.Preferably, as the curable polymer binder containing a hydrophilic functional group, a compound represented by the following formula (1) may be used.
[화학식 1][Formula 1]
Figure PCTKR2013010914-appb-I000005
Figure PCTKR2013010914-appb-I000005
상기 식에서, R1은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 18의 아릴기, 또는 (-CH2CH-)n이고, n은 1 내지 20,000의 정수이며, R2는 -OH, -COOH, -SO3H, -NH2, -NH4, -SO3 또는 -COOM, =O, -CO이고, M은 알칼리금속 또는 NH4이다.Wherein R 1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or (—CH 2 CH—) n , n is an integer of 1 to 20,000, R 2 is —OH, —COOH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 or -COOM, = O, -CO, M is an alkali metal or NH 4 .
더욱 바람직하게는, 친수성 관능기를 포함하는 경화성 폴리머 바인더로는 하기 화학식 2로 표시되는 화합물을 사용할 수 있다.More preferably, the compound represented by the following formula (2) can be used as the curable polymer binder containing a hydrophilic functional group.
[화학식 2][Formula 2]
Figure PCTKR2013010914-appb-I000006
Figure PCTKR2013010914-appb-I000006
상기 식에서, n은 1 내지 30,000의 정수이다.Wherein n is an integer from 1 to 30,000.
상기 화학식 2의 화합물은 폴리(4-비닐페놀)(Poly(4-vinylphenol: 이하 PVP라 함)이다. 상기 PVP의 중량 평균 분자량(Mw)이 100,000 이하일 수 있고, 500 내지 100,000일 수 있다. 또한, PVP의 중량 평균 분자량은 50,000 이하일 수 있고, 5000 내지 50,000일 수 있다.The compound of Formula 2 is poly (4-vinylphenol) (Poly (4-vinylphenol: hereinafter referred to as PVP). The weight average molecular weight (Mw) of the PVP may be 100,000 or less, and may be 500 to 100,000. The PVP may have a weight average molecular weight of 50,000 or less and 5000 to 50,000.
상기 가교제는 상기 경화성 폴리머 바인더와 결합하여 경화물 내에서 3차원적 가교 구조의 네트워크를 형성하는 역할을 한다. 본 발명에서 사용 가능한 가교제는 특별히 제한되지 않으나, 수 평균 분자량(Mn)이 50 내지 500,000인 것을 사용할 수 있다.The crosslinking agent combines with the curable polymer binder to form a three-dimensional network of crosslinked structures in the cured product. Although the crosslinking agent which can be used by this invention is not specifically limited, The number average molecular weight (Mn) can use what is 50-500,000.
본 발명의 일 구현예에서 적절한 가교제는 하기 화학식 3으로 표시되는 화합물을 들 수 있다.Suitable crosslinking agents in one embodiment of the present invention include compounds represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2013010914-appb-I000007
Figure PCTKR2013010914-appb-I000007
상기 식에서, R3 내지 R6은 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 18의 아릴기이고, m은 1 내지 1,000의 정수이다. 바람직하게는 R3 내지 R6은 각각 독립적으로 수소 또는 메틸기일 수 있다.In the above formula, R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and m is an integer of 1 to 1,000. Preferably, R 3 to R 6 may be each independently hydrogen or a methyl group.
더욱 바람직하게는, 상기 화학식 3의 화합물로서 폴리(멜라민-코-포름알데히드) 메틸레이티드(poly(melamine-co-formaldehyde), methylated)를 사용할 수 있으며, 이때 수 평균 분자량(Mn)이 10,000 이하일 수 있고, 400 내지 10,000일 수 있다. 상기 폴리(멜라민-코-포름알데히드) 메틸레이티드(poly(melamine-co-formaldehyde), methylated)의 수 평균 분자량(Mn)은 1,000 이하일 수 있고, 400 내지 1000인 것을 사용할 수 있다.More preferably, poly (melamine-co-formaldehyde) methylated (poly (melamine-co-formaldehyde), methylated) may be used as the compound of Formula 3, wherein the number average molecular weight (Mn) is 10,000 or less. And may be 400 to 10,000. The number average molecular weight (Mn) of the poly (melamine-co-formaldehyde) methylated (poly (melamine-co-formaldehyde), methylated) may be 1,000 or less, and may be 400 to 1000.
상기 용매는 전극 조성물의 각 구성성분을 용해된 상태 및/또는 분산된 상태로 포함하여 코팅 등의 방법으로 전극을 형성하도록 하는 역할을 한다. 본 발명에서 사용 가능한 용매는 특별히 제한되지 않으나, 바람직하게는 하기 화학식 4로 표시되는 화합물을 사용할 수 있다.The solvent serves to form the electrode by a method such as coating by including each component of the electrode composition in a dissolved state and / or dispersed state. The solvent usable in the present invention is not particularly limited, but preferably, a compound represented by the following Chemical Formula 4 may be used.
[화학식 4][Formula 4]
Figure PCTKR2013010914-appb-I000008
Figure PCTKR2013010914-appb-I000008
상기 화학식 4의 화합물은 프로필렌 글리콜 메틸 에테르 아세테이트(propylene glycol methyl ether acetate)이다.The compound of Formula 4 is propylene glycol methyl ether acetate.
본 발명에 따른 전극 조성물에서 상기 활성 탄소 100 중량부에 대하여 경화성 폴리머 바인더 및 가교제를 합한 양은 100 중량부 이하일 수 있다. 즉, 경화성 폴리머 바인더 및 가교제는 활성 탄소와 같거나 활성 탄소보다 적은 양으로 사용될 수 있는데, 경화성 폴리머 바인더 및 가교제의 사용량은 두 성분을 합한 양을 기준으로 활성 탄소 100 중량부에 대해 1 내지 100 중량부, 바람직하게는 1 내지 50 중량부일 수 있다. 활성 탄소의 양에 비해 경화성 폴리머 바인더 및 가교제의 양이 너무 적을 경우, 형성된 전극으로부터 활성 탄소가 떨어져 나갈 수 있다. 반대로 활성 탄소의 양에 비해 경화성 폴리머 바인더 및 가교제의 양이 너무 많을 경우, 전도성이 낮아지면서 전극저항이 상승할 수 있다. 상기 경화성 폴리머 바인더가 가교제와 함께 바인더 역할을 하는 것으로서, 경화성 폴리머 바인더와 가교제의 사용량이 중요하며, 경화성 폴리머 바인더와 가교제의 비율은 중요한 요소가 아니며, 경화성 폴리머 바인더와 가교제의 사용량 범위 내에서 적절하게 조절할 수 있다.In the electrode composition according to the present invention, the total amount of the curable polymer binder and the crosslinking agent based on 100 parts by weight of the activated carbon may be 100 parts by weight or less. That is, the curable polymer binder and the crosslinking agent may be used in an amount equal to or less than the activated carbon. The amount of the curable polymer binder and the crosslinking agent is 1 to 100 parts by weight based on 100 parts by weight of the activated carbon based on the sum of the two components. Parts, preferably 1 to 50 parts by weight. If the amount of the curable polymer binder and the crosslinking agent is too small relative to the amount of activated carbon, the activated carbon may be separated from the formed electrode. On the contrary, when the amount of the curable polymer binder and the crosslinking agent is too high compared to the amount of activated carbon, the electrode resistance may increase while the conductivity is lowered. As the curable polymer binder plays a role of a binder together with a crosslinking agent, the amount of the curable polymer binder and the crosslinking agent is important, and the ratio of the curable polymer binder and the crosslinking agent is not an important factor, and is suitably within the range of use of the curable polymer binder and the crosslinking agent. I can regulate it.
본 발명에 따른 전극 조성물에서 용매를 기준으로 활성 탄소, 경화성 폴리머 바인더 및 가교제를 합한 양은 10 w/v% 이하일 수 있다. 즉, 본 발명에 따른 전극 조성물의 대부분은 용매가 차지하며, 용매를 제외한 나머지 성분들을 합한 양은 0.01 w/v% 내지 10 w/v%, 바람직하게는 0.1 w/v% 내지 5 w/v%, 더욱 바람직하게는 0.5 w/v% 내지 2 w/v%일 수 있다. 용매를 제외한 나머지 성분들의 양이 너무 적을 경우, 전극 또는 경화물의 형성이 어렵거나 물성이 저하될 수 있다. 반대로 용매를 제외한 나머지 성분들의 양이 상대적으로 많을 경우, 코팅 작업성이 나빠지거나 물성이 저하될 수 있다.In the electrode composition according to the present invention, the combined amount of the activated carbon, the curable polymer binder, and the crosslinking agent based on the solvent may be 10 w / v% or less. That is, most of the electrode composition according to the present invention is occupied by a solvent, and the sum of the remaining components except for the solvent is 0.01 w / v% to 10 w / v%, preferably 0.1 w / v% to 5 w / v%. , More preferably from 0.5 w / v% to 2 w / v%. When the amount of the remaining components except for the solvent is too small, it may be difficult to form the electrode or cured material or the physical properties may be lowered. On the contrary, when the amount of the remaining components other than the solvent is relatively high, coating workability may deteriorate or physical properties may deteriorate.
또한, 본 발명은 상술한 조성물을 열 또는 광에 의해 경화시킨 경화물을 제공한다. 상기 경화물 내에서 경화성 폴리머 바인더는 가교제와 함께 3차원적 가교 구조의 네트워크를 형성하는 것을 특징으로 한다. 이러한 3차원적 가교 구조의 네트워크가 형성됨으로써, 종래기술의 문제점, 즉 기능성 활성 탄소가 전해질 용액에 녹아내리는 것을 방지할 수 있다.Moreover, this invention provides the hardened | cured material which hardened the above-mentioned composition by heat or light. The curable polymer binder in the cured product is characterized by forming a network of three-dimensional crosslinked structure together with a crosslinking agent. By forming the network of such a three-dimensional crosslinked structure, it is possible to prevent the problem of the prior art, that is, the functional activated carbon to be dissolved in the electrolyte solution.
또한, 본 발명은 상기 경화물을 포함하는 전극을 제공한다. 본 발명에 따른 슈퍼 커패시터용 전극은 본 발명에 따른 전극 조성물이 경화된 경화물로 이루어짐으로써, 형성된 전극으로부터 기능성 활성 탄소가 떨어져 나가는 것을 방지할 수 있다.The present invention also provides an electrode comprising the cured product. The electrode for the supercapacitor according to the present invention is made of a cured product of the electrode composition according to the present invention, thereby preventing the functional activated carbon from falling off from the formed electrode.
또한, 본 발명은 한 쌍의 집전체; 상기 한 쌍의 집전체 각각에 마주보도록 형성되고, 상기 경화물을 포함하는 한 쌍의 전극; 상기 한 쌍의 전극 사이에 주입되어 형성되는 전해질층; 및 상기 전해질층에 삽입되는 분리막을 포함하는 슈퍼 커패시터를 제공한다.In addition, the present invention is a pair of current collectors; A pair of electrodes formed to face each of the pair of current collectors and including the cured product; An electrolyte layer formed by being injected between the pair of electrodes; And it provides a super capacitor comprising a separator inserted into the electrolyte layer.
본 발명에 따른 슈퍼 커패시터는 도 1에 도시된 바와 같이, 한 쌍의 집전체(10, 70), 한 쌍의 전극(20, 60), 한 쌍의 전해질층(30, 50) 및 분리막(40)으로 구성될 수 있다.As shown in FIG. 1, the supercapacitor according to the present invention includes a pair of current collectors 10 and 70, a pair of electrodes 20 and 60, a pair of electrolyte layers 30 and 50, and a separator 40. It can be composed of).
상기 집전체(10, 70)는 금속, 유리, 플라스틱 등의 재질로 이루어질 수 있으며, 투명한 것을 사용할 수도 있다. 예를 들어, 상기 집전체는 알루미늄, 니켈, 구리, SUS, 철, 은, 금, 백금, 투명 인듐 틴 옥사이드(ITO), 폴리(3,4-에틸렌디옥시티오펜)/폴리(스티렌설포네이트) 등으로 제조된 것일 수 있다. 또한, 집전체는 와이어 또는 코팅층으로 코팅된 기재일 수 있다. 상기 와이어 또는 코팅층은 Ag, Au, Al, Ni, Co, Cu, Pt 또는 그라핀, 카본 나노 튜브(CNT)와 같은 전도성 물질, 또는 금속 복합체일 수 있고, 상기 기재는 폴리에틸렌 테레프탈레이트, 폴리이미 또는 유리일 수 있다.The current collectors 10 and 70 may be made of a material such as metal, glass, plastic, or the like. For example, the current collector may be aluminum, nickel, copper, SUS, iron, silver, gold, platinum, transparent indium tin oxide (ITO), poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) It may be prepared such as. In addition, the current collector may be a substrate coated with a wire or a coating layer. The wire or coating layer may be a conductive material such as Ag, Au, Al, Ni, Co, Cu, Pt or graphene, carbon nanotubes (CNT), or a metal composite, and the substrate may be polyethylene terephthalate, polyimide, or It may be glass.
상기 전극(20, 60)은 상기 한 쌍의 집전체(10, 70) 각각에 형성되고, 구체적으로 집전체(10, 70) 사이에 서로 마주보도록 형성된다. 상술한 바와 같이, 상기 전극(20, 60)은 본 발명에 따른 전극 조성물의 경화물로 이루어진다.The electrodes 20 and 60 are formed on each of the pair of current collectors 10 and 70, and are specifically formed to face each other between the current collectors 10 and 70. As described above, the electrodes 20 and 60 are made of a cured product of the electrode composition according to the present invention.
상기 전극(20, 60)의 두께는 특별히 제한되지 않으며, 코팅 횟수를 조절함으로써 다양한 두께로 형성할 수 있다. 예를 들어, 1회 코팅 시마다 평균 두께를 기준으로 2 ㎛ 이하, 바람직하게는 10 nm 내지 1,500 nm, 더욱 바람직하게는 100 nm 내지 1,000 nm의 두께가 형성될 수 있다. 구체적인 예를 들면, 1회 코팅 시마다 평균 두께를 기준으로 0.8±0.5 ㎛의 두께가 형성될 경우, 6회 반복 코팅 시에는 두께 5±1 ㎛의 전극이 형성될 수 있다.The thickness of the electrodes 20 and 60 is not particularly limited, and may be formed in various thicknesses by controlling the number of coatings. For example, a thickness of 2 μm or less, preferably 10 nm to 1,500 nm, more preferably 100 nm to 1,000 nm, based on the average thickness may be formed for each coating. For example, when a thickness of 0.8 ± 0.5 μm is formed based on the average thickness of each coating, an electrode having a thickness of 5 ± 1 μm may be formed in six repeated coatings.
한편, 상기 전극(20, 60)의 두께와 투명도는 반비례 관계에 있는데, 즉 상기 전극(20, 60)의 두께가 증가할수록 투명도는 감소하고, 반대로 상기 전극(20, 60)의 두께가 얇을수록 투명도는 증가한다. 상기 전극(20, 60)의 두께가 2 ㎛ 이하일 경우 투명 또는 반투명한 전극을 얻을 수 있다. 본 발명에서 투명하다는 것은 광투과율이 70%를 초과할 경우를 말할 수 있고, 반투명하다는 것은 광투과율이 30 내지 70%일 경우를 말할 수 있으며, 불투명하다는 것은 광투과율이 30% 미만일 경우를 말할 수 있다. 투명 또는 반투명한 전극이 필요할 경우, 코팅 횟수를 1 내지 2회 정도로 제한하여 전극(20, 60)의 두께를 2 ㎛ 이하로 조절하면, 투명 또는 반투명한 전극을 얻을 수 있다. 반대로, 코팅 횟수를 5회 이상 반복할 경우, 전극 물질이 전면을 뒤덮게(full coverage) 되면서 전극은 불투명해진다.On the other hand, the thickness of the electrodes 20, 60 and the transparency is inversely related, that is, the transparency decreases as the thickness of the electrodes 20, 60 increases, on the contrary, the thinner the thickness of the electrodes 20, 60 Transparency increases. When the thickness of the electrodes 20 and 60 is 2 μm or less, a transparent or semitransparent electrode may be obtained. In the present invention, the transparent may refer to the case where the light transmittance exceeds 70%, and the translucent may refer to the case where the light transmittance is 30 to 70%, and the opacity may refer to the case where the light transmittance is less than 30%. have. If a transparent or translucent electrode is required, the number of coatings is limited to about 1 to 2 times to adjust the thickness of the electrodes 20 and 60 to 2 μm or less, thereby obtaining a transparent or semitransparent electrode. Conversely, if the number of coatings is repeated five or more times, the electrode material becomes opaque with full coverage of the electrode material.
상기 전해질층(30, 50)은 상기 한 쌍의 전극(20, 60) 사이에 주입되어 형성될 수 있다. The electrolyte layers 30 and 50 may be injected and formed between the pair of electrodes 20 and 60.
상기 전해질층의 전해질로는 수계 전해질을 적절하게 사용할 수 있다. 상기 수계 전해질은 전해염 및 용매를 포함할 수 있다. 상기 전해염으로는 수계 전해질에서 사용되는 전해염은 어떠한 것도 사용할 수 있으며, 그 예로는 산성 전해염, 중성 전해염 또는 염기성 전해염을 사용할 수 있다. 상기 전해염의 구체적인 예로는 이온 전도도가 높은 황산, 황산나트륨, 염화칼륨, 수산화칼륨 또는 이들의 조합을 들 수 있다.An aqueous electrolyte can be suitably used as the electrolyte of the electrolyte layer. The aqueous electrolyte may include an electrolytic salt and a solvent. As the electrolytic salt, any of the electrolytic salts used in the aqueous electrolyte may be used, and examples thereof may include acidic electrolytic salts, neutral electrolytic salts, or basic electrolytic salts. Specific examples of the electrolytic salt include sulfuric acid, sodium sulfate, potassium chloride, potassium hydroxide or a combination thereof having high ion conductivity.
상기 용매로는 물을 사용할 수 있다. 상기 전해질의 농도는 약 0.1M 내지 6M일 수 있다.Water may be used as the solvent. The concentration of the electrolyte may be about 0.1M to 6M.
상기 분리막(40)은 상기 한 쌍의 전극(20, 60) 사이에 형성되고, 즉 상기 전해질층(30, 50) 중간에 형성된다. 분리막(40)은 다수의 기공을 갖는 다공성 분리막을 사용하는 것이 바람직하며, 다공성 분리막의 기공은 전해질 용액만을 통과시킬 정도의 크기를 갖는 것이 바람직하다. 상기 분리막은 셀룰로즈, 폴리올레핀, 셀가드 S-20, 레이온 등일 수 있다.The separator 40 is formed between the pair of electrodes 20 and 60, that is, formed in the middle of the electrolyte layers 30 and 50. The separator 40 is preferably a porous separator having a plurality of pores, the pore of the porous separator is preferably sized to pass only the electrolyte solution. The separator may be cellulose, polyolefin, celgard S-20, rayon, or the like.
또한, 본 발명은 한 쌍의 집전체 각각에 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함하는 조성물을 코팅하는 단계; 상기 조성물을 경화시켜 마주보는 한 쌍의 전극을 형성하는 단계; 상기 한 쌍의 전극 사이에 전해질을 주입하는 단계; 상기 전해질에 분리막을 삽입하는 단계; 및 밀봉하는 단계를 포함하는 슈퍼 커패시터의 제조방법을 제공한다.In addition, the present invention comprises the steps of coating a composition comprising activated carbon, a curable polymer binder, a crosslinking agent and a solvent on each of the pair of current collectors; Curing the composition to form a pair of opposite electrodes; Injecting an electrolyte between the pair of electrodes; Inserting a separator into the electrolyte; And it provides a method of manufacturing a super capacitor comprising the step of sealing.
먼저, 한 쌍의 집전체(10, 70) 각각에 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함하는 전극 조성물을 코팅한다. 코팅 방법은 특별히 제한되지 않고 현존하는 대부분의 코팅공정을 이용할 수 있는데, 예를 들어 스프레이(spray) 코팅, 슬롯 다이(slot die) 코팅, 바(bar) 코팅, 블레이드(blade) 코팅 등을 이용할 수 있다. 한편, 상술한 바와 같이, 상기 전극 조성물의 코팅 횟수를 조절하여 전극의 두께 및 투명도를 조절할 수 있다.First, an electrode composition comprising activated carbon, a curable polymer binder, a crosslinking agent, and a solvent is coated on each of the pair of current collectors 10 and 70. The coating method is not particularly limited and may use most existing coating processes, for example spray coating, slot die coating, bar coating, blade coating, and the like. have. On the other hand, as described above, it is possible to control the thickness and transparency of the electrode by adjusting the number of coating of the electrode composition.
다음, 코팅된 전극 조성물을 경화시켜 마주보는 한 쌍의 전극(20, 60)을 형성한다. 경화는 열 경화 및/또는 광 경화를 통해 이루어질 수 있고, 예를 들어 열 경화의 경우 150 내지 200℃의 온도에서 실시할 수 있으며, 광 경화의 경우 자외선(UV) 조사에 의해 이루어질 수 있다.Next, the coated electrode composition is cured to form a pair of opposite electrodes 20 and 60. Curing may be accomplished through thermal curing and / or photocuring, for example at a temperature of 150 to 200 ° C. for thermal curing, and by ultraviolet (UV) irradiation for photocuring.
다음, 형성된 두 전극(20, 60) 사이에 전해질 용액을 주입하여 전해질층(30, 50)을 형성한다. 상기 전해질 용액은 이온 전도도가 높은 황산, 황산나트륨, 염화칼륨 등과 같은 전해염 및 물과 같은 용매를 ㅍ함할 수 있다. Next, an electrolyte solution is injected between the formed two electrodes 20 and 60 to form the electrolyte layers 30 and 50. The electrolyte solution may contain a solvent such as an electrolytic salt such as sulfuric acid, sodium sulfate, potassium chloride and the like with high ionic conductivity and water.
다음, 두 전극(20, 60)끼리의 접촉을 막기 위해, 전극(20, 60) 사이의 전해질층(30, 50)에 분리막(40)을 삽입한다.Next, in order to prevent the two electrodes 20 and 60 from contacting each other, the separator 40 is inserted into the electrolyte layers 30 and 50 between the electrodes 20 and 60.
마지막으로, 전해질 용액이 새어나오지 않게 밀봉하여 최종적인 슈퍼 커패시터를 제조한다.Finally, the electrolyte solution is sealed so as not to leak to produce the final supercapacitor.
본 발명에서는 경화성 폴리머 바인더를 도입하여 기능성 활성 탄소의 문제점을 해결할 수 있다. 경화성 폴리머 바인더를 사용할 경우, 기능성 활성 탄소의 잉크화가 가능하여 다양한 코팅 공정(현존하는 대부분의 코팅공정)을 적용할 수 있다. 경화성 폴리머 바인더는 3차원적 가교 구조의 네트워크를 형성하기 때문에 기능성 활성 탄소가 전해질 용액 속으로 떨어져 나가는 것을 효과적으로 방지할 수 있다. 경화성 폴리머 바인더가 형성하는 네트워크는 녹지는 않고 흡수(swelling)만 되기 때문에, 슈퍼 커패시터 전극을 제조할 경우 전해액의 흡수를 통한 최대한의 전기 이중층을 형성할 수 있어 매우 유리한 기능을 제공할 수 있다. 경화성 폴리머 바인더가 형성하는 네트워크를 통해 도전제 없이도 슈퍼 커패시터 전극의 전도도를 확보할 수 있다. 표면이 친수성 성질을 지닌 기능성 활성 탄소는 전해질로 사용하는 수용액성 전해질 용액과의 친화도가 매우 높아 전기 이중층 형성을 극대화할 수 있다. 경화성 폴리머 바인더는 네트워크 형성을 통해 수용액성 전해질 용액에 기능성 활성 탄소가 녹아나는 것을 막아줄 수 있다. 경화성 폴리머 바인더는 네트워크 형성을 통해 기능성 활성 탄소 간의 거리를 줄여 도전제 없이도 충분한 전도도를 낼 수 있는 구조를 형성할 수 있다.In the present invention, it is possible to solve the problem of functional activated carbon by introducing a curable polymer binder. When using a curable polymer binder, the ink can be functionalized and various coating processes (most of the existing coating processes) can be applied. Since the curable polymer binder forms a network of three-dimensional crosslinked structure, the functional activated carbon can be effectively prevented from falling into the electrolyte solution. Since the network formed by the curable polymer binder is only absorbed (not swelled), the supercapacitor electrode can provide a very advantageous function by forming the maximum electric double layer through absorption of the electrolyte. The network formed by the curable polymer binder ensures the conductivity of the supercapacitor electrode without a conductive agent. Functional activated carbon having a hydrophilic property on its surface has a high affinity with an aqueous electrolyte solution used as an electrolyte, thereby maximizing the formation of an electric double layer. The curable polymer binder can prevent the functional activated carbon from dissolving in the aqueous electrolyte solution through network formation. The curable polymer binder can form a structure capable of producing sufficient conductivity without a conductive agent by reducing the distance between functional activated carbons through network formation.
이하 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.Hereinafter, specific embodiments of the present invention are presented. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
[실시예 1 내지 6][Examples 1 to 6]
한 쌍의 집전체 각각에 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함하는 전극 조성물을 코팅하였다. Each of the pair of current collectors was coated with an electrode composition comprising activated carbon, curable polymer binder, crosslinking agent and solvent.
상기 전극 조성물은 용매 100 mL에 활성 탄소 나노 분말 1 g을 첨가하고, 경화성 폴리머 바인더 및 가교제는 합친 양으로 0.01 내지 1 g의 범위에서 하기 표 1에 나타낸 양으로 첨가하여 제조하였다. 이때, 활성 탄소로는 친수성 작용기로 -OH, -COOH, -CO 및 =O를 포함하는 기능성 활성 탄소 나노 분말을 이용하였고, 경화성 폴리머 바인더로는 PVP(Mw: 20,000)를 이용하였으며, 가교제로는 폴리(멜라민-코-포름알데히드) 메틸레이티드(Mn: ~511)를 이용하였고, 용매로는 프로필렌 글리콜 메틸 에테르 아세테이트를 이용하였다. The electrode composition was prepared by adding 1 g of activated carbon nanopowder to 100 mL of solvent, and adding the curable polymer binder and the crosslinking agent in the amounts shown in Table 1 in the range of 0.01 to 1 g in a combined amount. In this case, as activated carbon, a functional activated carbon nano powder including -OH, -COOH, -CO, and = O as a hydrophilic functional group was used, PVP (Mw: 20,000) was used as a curable polymer binder, and as a crosslinking agent. Poly (melamine-co-formaldehyde) methylated (Mn: 511) was used and propylene glycol methyl ether acetate was used as the solvent.
상기 코팅 공정은 스프레이 코팅을 이용하여, 코팅 횟수 5회로 실시하였다. 이후, 코팅된 전극 조성물을 180℃에서 열 경화시켜 마주보는 한 쌍의 전극을 형성한 후, 형성된 두 전극 사이에 전해질 용액을 주입하여 전해질층을 형성하였다. 상기 전해질 용액은 1M 황산나트륨이 용해된 물 용액을 사용하였다. 이어서, 두 전극 사이의 전해질층에 다공성 분리막을 삽입한 후, 전해질 용액이 새어나오지 않게 밀봉하여 슈퍼 커패시터를 제조하였다.The coating process was carried out five times, using a spray coating. Thereafter, the coated electrode composition was thermally cured at 180 ° C. to form a pair of electrodes facing each other, and then an electrolyte solution was injected to form an electrolyte layer between two formed electrodes. As the electrolyte solution, a water solution in which 1 M sodium sulfate was dissolved was used. Subsequently, a porous separator was inserted into the electrolyte layer between the two electrodes, and the electrolyte solution was sealed to prevent leakage of the electrolyte to prepare a supercapacitor.
[시험예][Test Example]
상기 실시예 1 내지 6에 따라 제조된 슈퍼 커패시터에 대하여, 경화성 폴리머 바인더(PVP) 및 가교제의 사용량에 따라 활성 탄소가 전극으로부터 떨어져 나가는지 여부를 시험하였다. 이 실험은 Pt 메쉬 대극, Ag/AgCl (3M KCl) 참조 전극 및 실시예 1 내지 6에 따른 전극을 포함하는 3전극 시스템으로 1000mV/S의 스캔 속도로 50회 실시하였다. 그 결과를 육안으로 관찰하였다. 그 결과를 하기 표 1에 나타내었다.For the supercapacitors prepared according to Examples 1 to 6, it was tested whether the activated carbon was separated from the electrode depending on the amount of the curable polymer binder (PVP) and the crosslinking agent. This experiment was conducted 50 times at a scan rate of 1000 mV / S with a three-electrode system comprising a Pt mesh counter electrode, an Ag / AgCl (3M KCl) reference electrode and an electrode according to Examples 1-6. The result was visually observed. The results are shown in Table 1 below.
표 1
활성 탄소(g) 바인더 + 가교제(g) 활성 탄소 탈착 여부
실시예 1 1 0.01 탈착
실시예 2 1 0.02 탈착
실시예 3 1 0.05 탈착 없음
실시예 4 1 0.1 탈착 없음
실시예 5 1 0.5 탈착 없음
실시예 6 1 1 탈착 없음
Table 1
Activated carbon (g) Binder + Crosslinking Agent (g) Activated Carbon Desorption
Example 1 One 0.01 Desorption
Example 2 One 0.02 Desorption
Example 3 One 0.05 No desorption
Example 4 One 0.1 No desorption
Example 5 One 0.5 No desorption
Example 6 One One No desorption
상기 표 1에 나타낸 것과 같이, 바인더와 가교제를 합쳐 0.01g 또는 0.02g 사용한 실시예 1 및 2의 경우, 활성 탄소가 전극으로부터 떨어져 나갔음을 알 수 있다.As shown in Table 1, in Examples 1 and 2 in which the binder and the crosslinking agent were used in combination with 0.01 g or 0.02 g, it can be seen that the activated carbon was separated from the electrode.
실시예 3 내지 6에 따라 제조된 슈퍼 커패시터에 대하여, 경화성 폴리머 바인더(PVP) 및 가교제의 사용량에 따른 충전용량을 측정하였다. 그 결과를 도 2에 나타내었다. 도 2에 나타낸 것과 같이, 바인더와 가교제의 양이 적을수록 충전용량이 증가하였음을 알 수 있다. 즉, 표 1 및 도 2 결과로부터, 충전용량을 증가시키려면, 바인더와 가교제를 활성 탄소가 전극으로부터 떨어져 나가지 않는 범위(0.05 g 이상)에서 가능한 적게 사용하는 것이 효과적임을 알 수 있다.For the supercapacitors prepared according to Examples 3 to 6, the charge capacity according to the amount of the curable polymer binder (PVP) and the crosslinking agent was measured. The results are shown in FIG. As shown in Figure 2, the smaller the amount of the binder and crosslinking agent can be seen that the filling capacity increased. That is, from the results of Table 1 and FIG. 2, it can be seen that in order to increase the filling capacity, it is effective to use the binder and the crosslinking agent as little as possible in the range (0.05 g or more) in which the activated carbon does not separate from the electrode.
(실시예 7)(Example 7)
코팅 횟수를 1회 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다The same procedure as in Example 3 was carried out except that the coating was performed once.
(실시예 8)(Example 8)
코팅 횟수를 2회 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다The same procedure as in Example 3 was carried out except that the coating was performed twice.
(실시예 9)(Example 9)
코팅 횟수를 3회 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다The same procedure as in Example 3 was carried out except that the coating was performed three times.
(실시예 10)(Example 10)
코팅 횟수를 4회 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다The same procedure as in Example 3 was carried out except that the coating was performed four times.
(실시예 11)(Example 11)
코팅 횟수를 6회 실시한 것을 제외하고는 상기 실시예 3과 동일하게 실시하였다The same procedure as in Example 3 was carried out except that the coating was performed six times.
코팅 횟수에 따른 두께 변화를 알아보기 위하여 실시예 7 내지 11의 전극 두께를 측정하였다. 또한 실시예 3의 전극 두께를 측정하였다. 그 결과를 도 3에 나타내었다. 도 3에 나타낸 것과 같이, 코팅 횟수가 늘어날수록 전극 두께는 두꺼워졌고, 구체적으로 1회 코팅 시마다 평균 두께로 대략 0.8±0.5 ㎛씩 증가하였다.In order to determine the thickness change according to the number of coating, the electrode thicknesses of Examples 7 to 11 were measured. In addition, the electrode thickness of Example 3 was measured. The results are shown in FIG. As shown in FIG. 3, as the number of coatings increased, the electrode thickness became thicker, and in particular, the coating thickness increased by about 0.8 ± 0.5 μm as the average thickness for each coating.
도 4에 실시예 7 및 실시예 3의 전극 조성물의 코팅 횟수에 따른 전극 사진을 나타내었다. 도 4에 나타낸 것과 같이, 1회만 코팅할 경우 투명 또는 반투명의 전극을 얻을 수 있었고, 5회 이상 반복 코팅할 경우 전극물질이 전면을 뒤덮었음을 알 수 있다.Figure 4 shows the electrode picture according to the number of coating of the electrode composition of Example 7 and Example 3. As shown in FIG. 4, when only one coating was performed, a transparent or translucent electrode was obtained, and when the coating was repeated five or more times, the electrode material covered the entire surface.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person skilled in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (19)

  1. 활성 탄소 및 경화성 폴리머 바인더를 포함하는 전극 조성물.An electrode composition comprising activated carbon and a curable polymer binder.
  2. 제1항에 있어서,The method of claim 1,
    상기 경화성 폴리머 바인더는 열 경화성 폴리머 바인더 및 광 경화성 폴리머 바인더 중에서 선택되는 1종 이상인 것을 특징으로 하는 전극 조성물.The curable polymer binder is an electrode composition, characterized in that at least one selected from a heat curable polymer binder and a photocurable polymer binder.
  3. 제1항에 있어서,The method of claim 1,
    상기 활성 탄소 및 경화성 폴리머 바인더는 친수성 관능기를 포함하는 것을 특징으로 하는 전극 조성물.The activated carbon and the curable polymer binder comprise a hydrophilic functional group.
  4. 제3항에 있어서,The method of claim 3,
    상기 친수성 관능기는 -COOH, -OH, -SO3H, -NH2, -NH4, -SO3, -COOM(M은 알칼리금속 또는 NH4), =O, -CO 중에서 선택되는 1종 이상인 것을 특징으로 하는 전극 조성물.The hydrophilic functional group is at least one selected from -COOH, -OH, -SO 3 H, -NH 2 , -NH 4 , -SO 3 , -COOM (M is an alkali metal or NH 4 ), = O, -CO Electrode composition, characterized in that.
  5. 제1항에 있어서,The method of claim 1,
    상기 경화성 폴리머 바인더는 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 전극 조성물:The curable polymer binder is an electrode composition, characterized in that the compound represented by the formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2013010914-appb-I000009
    Figure PCTKR2013010914-appb-I000009
    상기 식에서,Where
    R1은 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 18의 아릴기, 또는 (-CH2CH-)n이고,R 1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or (-CH 2 CH-) n ,
    n은 1 내지 20,000의 정수이며,n is an integer from 1 to 20,000,
    R2는 -OH, -COOH, -SO3H, -NH2, -NH4, -SO3, -COOM, =O 또는, -CO이고,R 2 is —OH, —COOH, —SO 3 H, —NH 2 , —NH 4 , —SO 3 , —COOM, = O or, —CO,
    M은 알칼리금속 또는 NH4이다.M is an alkali metal or NH 4 .
  6. 제1항에 있어서,The method of claim 1,
    상기 경화성 폴리머 바인더는 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 전극 조성물:The curable polymer binder is an electrode composition, characterized in that the compound represented by the formula (2):
    [화학식 2][Formula 2]
    Figure PCTKR2013010914-appb-I000010
    Figure PCTKR2013010914-appb-I000010
    상기 식에서,Where
    n은 1 내지 30,000의 정수이다.n is an integer from 1 to 30,000.
  7. 제1항에 있어서,The method of claim 1,
    가교제 및 용매를 추가로 포함하는 전극 조성물.An electrode composition further comprising a crosslinking agent and a solvent.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 가교제는 하기 화학식 3으로 표시되는 화합물인 것을 특징으로 하는 전극 조성물:The crosslinking agent is an electrode composition, characterized in that the compound represented by the formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2013010914-appb-I000011
    Figure PCTKR2013010914-appb-I000011
    상기 식에서,Where
    R3 내지 R6은 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 18의 아릴기이고,R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms,
    m은 1 내지 1,000의 정수이다.m is an integer from 1 to 1,000.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 용매는 하기 화학식 4로 표시되는 화합물인 것을 특징으로 하는 전극 조성물:The solvent is an electrode composition, characterized in that the compound represented by the formula (4):
    [화학식 4][Formula 4]
    Figure PCTKR2013010914-appb-I000012
    Figure PCTKR2013010914-appb-I000012
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 활성 탄소 100 중량부에 대하여 경화성 폴리머 바인더 및 가교제를 합한 양은 1 중량부 내지 100 중량부인 것을 특징으로 하는 전극 조성물.The amount of the curable polymer binder and the crosslinking agent is added in an amount of 1 part by weight to 100 parts by weight based on 100 parts by weight of the activated carbon.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 활성 탄소 100 중량부에 대하여 경화성 폴리머 바인더 및 가교제를 합한 양은 1 중량부 내지 50 중량부인 것을 특징으로 하는 전극 조성물.The total amount of the curable polymer binder and the crosslinking agent based on 100 parts by weight of the activated carbon is 1 part by weight to 50 parts by weight.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 용매를 기준으로 활성 탄소, 경화성 폴리머 바인더 및 가교제를 합한 양은 0.01 w/v% 내지 10 w/v%인 것을 특징으로 하는 전극 조성물.The amount of the activated carbon, the curable polymer binder, and the crosslinking agent in the sum of the solvents ranges from 0.01 w / v% to 10 w / v%.
  13. 제1항의 조성물을 경화시킨 경화물.Hardened | cured material which hardened the composition of Claim 1.
  14. 제13항에 있어서,The method of claim 13,
    상기 경화물 내에서 경화성 폴리머 바인더는 3차원적 가교 구조의 네트워크를 형성하는 것을 특징으로 하는 조성물.The curable polymer binder in the cured product is characterized in that to form a network of three-dimensional crosslinked structure.
  15. 제13항의 경화물을 포함하는 전극.An electrode comprising the cured product of claim 13.
  16. 한 쌍의 집전체;A pair of current collectors;
    상기 한 쌍의 집전체 각각에 마주보도록 형성되고, 제13항의 경화물을 포함하는 한 쌍의 전극;A pair of electrodes formed to face each of the pair of current collectors and including the cured product of claim 13;
    상기 한 쌍의 전극 사이에 주입되어 형성되는 전해질층; 및An electrolyte layer formed by being injected between the pair of electrodes; And
    상기 전해질층에 삽입되는 분리막을 포함하는 슈퍼 커패시터.A supercapacitor comprising a separator inserted into the electrolyte layer.
  17. 제16항에 있어서,The method of claim 16,
    상기 전극은 1 nm 내지 2 ㎛의 두께를 가지면서 투명 또는 반투명한 것을 특징으로 하는 슈퍼 커패시터.The electrode is a super capacitor, characterized in that the transparent or translucent having a thickness of 1 nm to 2 ㎛.
  18. 한 쌍의 집전체 각각에 활성 탄소, 경화성 폴리머 바인더, 가교제 및 용매를 포함하는 조성물을 코팅하는 단계;Coating a composition comprising activated carbon, a curable polymer binder, a crosslinking agent, and a solvent to each of the pair of current collectors;
    상기 조성물을 경화시켜 마주보는 한 쌍의 전극을 형성하는 단계;Curing the composition to form a pair of opposite electrodes;
    상기 한 쌍의 전극 사이에 전해질을 주입하는 단계;Injecting an electrolyte between the pair of electrodes;
    상기 전해질에 분리막을 삽입하는 단계; 및Inserting a separator into the electrolyte; And
    밀봉하는 단계를 포함하는 슈퍼 커패시터의 제조방법.Method of manufacturing a super capacitor comprising the step of sealing.
  19. 제18항에 있어서,The method of claim 18,
    상기 조성물의 코팅 횟수를 조절하여 전극의 두께 및 투명도를 조절하는 것을 특징으로 하는 슈퍼 커패시터의 제조방법.Method of manufacturing a super capacitor, characterized in that for controlling the thickness and transparency of the electrode by adjusting the number of coating of the composition.
PCT/KR2013/010914 2013-04-01 2013-11-28 Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor WO2014163272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13863700.4A EP2983186B1 (en) 2013-04-01 2013-11-28 Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0035016 2013-04-01
KR1020130035016A KR101325952B1 (en) 2013-04-01 2013-04-01 High performance functionalized activated carbon supercapacitor by using curable polymer binder

Publications (1)

Publication Number Publication Date
WO2014163272A1 true WO2014163272A1 (en) 2014-10-09

Family

ID=49856884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010914 WO2014163272A1 (en) 2013-04-01 2013-11-28 Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor

Country Status (4)

Country Link
US (1) US9318276B2 (en)
EP (1) EP2983186B1 (en)
KR (1) KR101325952B1 (en)
WO (1) WO2014163272A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100317B1 (en) 2006-11-15 2016-01-27 Energ2, Inc. Electric double layer capacitance device
WO2011003033A1 (en) 2009-07-01 2011-01-06 Energ2, Inc. Ultrapure synthetic carbon materials
WO2012045002A1 (en) 2010-09-30 2012-04-05 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
KR102347131B1 (en) 2014-03-14 2022-01-04 그룹14 테크놀로지스, 인코포레이티드 Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
WO2017040299A1 (en) 2015-08-28 2017-03-09 Energ2 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
KR20180034032A (en) * 2016-09-27 2018-04-04 삼성전자주식회사 Electrochemical mirror
KR20180034031A (en) 2016-09-27 2018-04-04 삼성전자주식회사 Electrochemical mirror
EP3593369A4 (en) 2017-03-09 2021-03-03 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
RU2019134226A (en) 2019-10-25 2021-04-26 Общество с ограниченной ответственностью "Комберри" TRANSPARENT GEL-POLYMER ELECTROLYTES OF INCREASED CONDUCTIVITY BASED ON TRIAZINE COPOLYMERS
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255806A (en) * 1997-03-07 1998-09-25 Fujitsu Ltd Electrode and battery using it
KR20120055565A (en) * 2009-07-31 2012-05-31 다우 코닝 도레이 캄파니 리미티드 Electrode active material, electrode, and electricity storage device
JP2013042129A (en) * 2011-08-12 2013-02-28 Samsung Electro-Mechanics Co Ltd Composition for electrode active material slurry and electrochemical capacitor including electrode formed using the same
KR20130026790A (en) * 2011-09-06 2013-03-14 삼성전기주식회사 Active agent composition, and electrochemical capacitors using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015374A1 (en) * 1992-12-25 1994-07-07 Tdk Corporation Lithium secondary cell
JP3669429B2 (en) * 2001-03-27 2005-07-06 信越化学工業株式会社 Electrode composition and electrode material
KR20030026790A (en) 2001-09-28 2003-04-03 안성현 Ground stalk root stem powder ground by removing soil, sand and shells and drying with a dryer
JP4931420B2 (en) * 2003-11-21 2012-05-16 株式会社クレハ Non-aqueous electrolyte battery electrode binder composition and use thereof
JP4276063B2 (en) 2003-12-26 2009-06-10 Tdk株式会社 Electrode capacitor electrode manufacturing method and electrochemical capacitor manufacturing method
CN103730262A (en) 2005-03-30 2014-04-16 日本瑞翁株式会社 Electrode for electric double layer capacitor, electrode material and manufacturing method thereof, and electric double layer capacitor
JP4616052B2 (en) 2005-04-08 2011-01-19 パナソニック株式会社 Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP4490866B2 (en) 2005-05-09 2010-06-30 信越化学工業株式会社 Electrode for electrochemical capacitor, composition used therefor, method for producing the electrode, and electrochemical capacitor using the electrode
KR101320894B1 (en) * 2006-07-05 2013-10-24 삼성디스플레이 주식회사 Photoresist composition and method of manufacturing color filter substrate using the same
JPWO2008029502A1 (en) * 2006-08-29 2010-01-21 ユニチカ株式会社 Electrode forming binder, electrode forming slurry using the binder, electrode using the slurry, secondary battery using the electrode, capacitor using the electrode
JP2010034300A (en) * 2008-07-29 2010-02-12 Jfe Chemical Corp Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
US20140193709A1 (en) * 2011-06-24 2014-07-10 Mitsubishi Rayon Co., Ltd. Binder for electrode of electrochemical element, composition for electrode of electrochemical element, electrode of electrochemical element and electrochemical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255806A (en) * 1997-03-07 1998-09-25 Fujitsu Ltd Electrode and battery using it
KR20120055565A (en) * 2009-07-31 2012-05-31 다우 코닝 도레이 캄파니 리미티드 Electrode active material, electrode, and electricity storage device
JP2013042129A (en) * 2011-08-12 2013-02-28 Samsung Electro-Mechanics Co Ltd Composition for electrode active material slurry and electrochemical capacitor including electrode formed using the same
KR20130026790A (en) * 2011-09-06 2013-03-14 삼성전기주식회사 Active agent composition, and electrochemical capacitors using the same

Also Published As

Publication number Publication date
US20140293508A1 (en) 2014-10-02
EP2983186A4 (en) 2016-11-02
KR101325952B1 (en) 2013-11-07
US9318276B2 (en) 2016-04-19
EP2983186A1 (en) 2016-02-10
EP2983186B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2014163272A1 (en) Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor
CN104466188B (en) Its lithium ion battery of MULTILAYER COMPOSITE anode pole piece and this pole piece preparation method and application
WO2016165559A1 (en) Composite separator and preparation method therefor, and lithium-ion battery
WO2021091323A1 (en) Two-dimensional ni-organic framework/rgo composite and electrode for secondary battery or super-capacitor comprising same
WO2018088735A1 (en) Anode and method for fabricating same
WO2012134166A2 (en) Polymer electrolyte composition and dye-sensitized solar cell containing the same
KR20180076954A (en) Solid electrolyte sheet for all solid battery and method for manufacturing the same, and all solid battery using the same
Sun et al. Energy harvesting and storage devices fused into various patterns
WO2022027907A1 (en) Negative electrode material, negative electrode, potassium ion battery and preparation method therefor
WO2016114474A1 (en) Slurry composition for electrode, electrode, and secondary battery
WO2019035575A1 (en) Electrolyte for secondary battery and secondary battery comprising same
Liu et al. Robust quasi-solid-state integrated asymmetric flexible supercapacitors with interchangeable positive and negative electrode based on all-conducting-polymer electrodes
WO2021033795A1 (en) Two-dimensional material coating composition comprising graphene, secondary battery separator using same, and manufacturing method therefor
WO2017105156A1 (en) Separator and battery comprising same
WO2018217044A1 (en) Electrochemical device comprising carbon quantum dot ionic compound electrolyte
WO2018038479A1 (en) Electrode for secondary battery comprising fine holes
WO2011132952A2 (en) Electrochemical device electrode, method for manufacturing same, and electrochemical device
WO2018008954A1 (en) Positive electrode and secondary battery including same positive electrode
WO2021085767A1 (en) Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method
WO2021029480A1 (en) Binder-free self-supporting electode and method for manufacturing same
CN103515654A (en) Preparation method for polymer solid electrolyte
Yong et al. Flexible Textile Zinc Ion Supercapacitor
CN105097301A (en) Method for manufacturing multilayer composite electrode film
WO2018012940A1 (en) Anode and secondary battery including same
WO2024085273A1 (en) Zinc-bromine supercapattery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013863700

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE